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This dissertation investigated the use of various techniques in modeling non-linear change in the 

context of latent growth modeling.  A simulation study was conducted utilizing four between 

subjects factors:  sample size (50, 75, 100, 150, 200, 300 and 500), slope variance (.15, .45 and 

.75), factor correlation (.15, .45 and .75) and growth curve (exponential, logarithmic and 

logistic).  There was also a single within subjects factor: fit technique (quadratic, unspecified and 

spline).  The outcomes of interest were the χ2 model fit statistic and the following goodness-of-fit 

indices: CFI, GFI, AGFI, SRMR and RMSEA.  Results indicated the unspecified technique 

provided the best statistical estimates of model fit while the quadratic technique provided the 

worst.  This result was consistent across all of the between subject factor conditions.  The spline 

technique performed very similarly to the quadratic technique.  These results suggest applied 

researchers should pay very close attention when utilizing polynomial techniques and should also 

strongly consider the unspecified technique as either the model of choice or as a comparison to 

results obtained for another model. 
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1.0 Introduction 

Longitudinal research is increasingly common in the social and behavioral 

sciences.  Regardless of discipline, incorporating time into the design of a study provides 

valuable information regarding the process of change.  An educational researcher, for 

instance, assesses the development of mathematics ability by examining change in 

standardized assessment scores over a period of time.  A psychologist studies the 

development of a particular mental illness or the long term effects of a treatment 

approach.  A sociologist studies attitudes of a community towards a certain political 

decision.  Regardless of the subject area, unit of analysis, or time interval, longitudinal 

research describes the process of change and the reasoning behind the process of change. 

Traditionally, researchers have relied on two wave designs and difference score 

analyses to address questions regarding change.  Two wave designs have garnered 

criticism from a methodological perspective and, more importantly, from a conceptual 

perspective (Willett, 1988).  Measuring subjects at two points in time does not account 

for the important developments likely to occur between the measured time points.  Rather 

the two wave design is only able to address the magnitude of change that has occurred 

between the measured time points.  On the other hand, obtaining multiple measurements 

from a large number of individuals allows change to be appropriately treated as a 

continuous process (Rogosa, Brandt & Zimowski, 1982; Willett, 1988).  A continuous 
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process of change can be represented in various statistical frameworks via a growth 

model.  By definition, growth models are statistical approaches to describing the shape of 

a developmental trajectory or the rate of change.  Growth models are particularly 

effective for answering questions regarding baseline levels and the direction and 

magnitude of change in an outcome measure.  While assessing baseline levels is 

straightforward in a growth model, choosing an appropriate method for describing the 

direction and magnitude of change is difficult.   

Specialized approaches have been developed that extend growth models to the 

realm of measuring individual change.  Individual growth modeling (Rogosa et al., 1982; 

Willett, 1988) provides researchers powerful tools for using continuous multiwave panel 

data to examine correlates and predictors of systematic interindividual differences in 

change.  Individual growth models examine how the developmental process of each 

individual differs from the developmental process of the overall group.  Furthermore, 

important predictors of individual differences can be identified.  As mentioned previously 

for the general growth model, choosing among the methods for describing the direction 

and magnitude of change in individual growth modeling has also not been adequately 

defined in the literature. 

To illustrate the process of individual growth modeling, consider the development 

of mathematics ability in elementary school children across five points in time.  Three 

general questions could be addressed in such a design.  First, how does mathematics 

ability change as a function of time for all elementary students involved in the study?  Is 

the rate of change best explained by a linear function of time or is it best explained by a 

non-linear function?  This question can be addressed via simple (repeated measures 
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Analysis of Variance) or advanced (Hierarchial Linear Modeling; Latent Growth 

Modeling) statistical approaches to modeling change.  However, the latter approaches are 

necessary for addressing the remaining questions.  That is, how much individual 

variability, if any, is there around the overall rate of change?  Assuming each student will 

develop mathematics skills at the same rate is unrealistic.  Thus, identifying 

interindividual differences in intraindividual change becomes very important and 

meaningful.  Lastly, if significant differences in individual rates of change exist, what 

variables account for these differences?  In other words, what factors contribute to 

individual differences in the development of mathematics ability?  Differences in 

baseline ability can also be identified and explanatory variables can be used to explain 

these differences as well. 

A general individual growth model consists of two levels.  A Level-1, within-

subjects, model is devised to describe each individual's initial status (intercept) and rate 

of change (slope) in relation to time.  In general, intercept and slope parameters estimated 

at Level-1 are assumed to be of a similar form (e.g., linear, quadratic, cubic, etc.) across 

subjects but individual parameters may be heterogeneous.  Each subject may display a 

different initial status and/or rate of change but the function used to model change is 

assumed to be the same across all subjects.  For instance, mathematics ability in all 

elementary school students may develop linearly but each student's rate of change may 

not follow the exact same linear form.  The Level-2, between-subjects model, describes 

heterogeneity in initial status and rate of change and relates this heterogeneity to 

important predictor variables, allowing for the identification of variables which explain 

the individual differences.  In summary, while the Level-1 model describes the overall 
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initial status and rate of change, the Level-2 model examines the deviations of each 

individual from the overall group means for initial status and rate of change. 

When applying individual growth modeling techniques, the observed trajectories 

of change should be examined carefully.  The linear model, where rate of change over 

time follows a constant pattern (trajectories follow a straight line), is common in applied 

settings due to ease of interpretation.  Linear models have been useful in a variety of 

studies, including research on intelligence in children (Espy, Molfese & DiLalla, 2001), 

antisocial behavior in children (Curran & Hussong, 2002; Bank, Burraston & Snyder, 

2004), parental involvement in student achievement (Fan, 2001; Hong & Ho, 2005), 

families at risk of maladaptive parenting, child abuse, or neglect (Willett, Ayoub & 

Robinson, 1991), development of height (Ghisletta, 2001), educational policy (Kaplan, 

2002) and evaluation (Hess, 2000). 

Various non-linear patterns of change (e.g., trajectories follow a curvilinear 

pattern) have also been reported in literature using individual growth modeling 

techniques.  In a study of young children between the ages of 14-26 months conducted by 

Huttenlocher, Haight, Bryk and Seltzer (1991), vocabulary acquisition was found to 

follow a curvilinear pattern, where rate of new word acquisition increased over time.  

Similar non-linear rates of change were observed in studies on issues related to change in 

parent training therapy (Stoolmiller, Duncan, Bank & Patterson, 1993), recovery of 

cognitive function following pediatric closed head injury (Francis, Fletcher, Stuebing, 

Davidson & Thompson, 1991), and physical and psychological health (Aldwin, Spiro, 

Levenson & Cupertino, 2001).  Other studies have revealed a mixture of linear and non-

linear patterns of change.  Muthén (1997) utilized data over four time points (grades 7-
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10) from the Longitudinal Study of American Youth (LSAY), a national study of 

performance in and attitudes toward science and mathematics, to examine student 

attitudes towards mathematics.  Findings from this study indicated 7th and 8th grade 

student attitudes towards mathematics changed linearly over time whereas mathematics 

achievement accelerated in higher grades. 

The primary advantage of the linear growth model over the non-linear growth 

model is the straightforward interpretation of the slope parameter.  Regardless of the 

mathematical function used to model the data, the intercept is interpreted as the ''baseline'' 

measure.  On the other hand, the interpretation of the slope is complicated by the 

mathematical function chosen to model the data.  If the process of change is modeled as a 

linear function, the slope represents a constant rate of change in the outcome measure.  

Interpretation of a non-linear slope is not as straightforward.  Non-linear slopes can take 

various forms, all of which are designed to model non-constant change (e.g., a steep 

increase in the outcome measure up to a certain point followed by a leveling out period).  

Difficulties interpreting a non-linear slope may lead to the choice of a linear growth 

model even though it may not provide the best representation of the given process of 

change.  However, the underlying process of change should be modeled as accurately as 

possible regardless of interpretation issues. 

Modeling non-linear change can be a challenging process requiring the use of 

either a data transformation technique or selection of the most appropriate mathematical 

function for explaining the process of change.  Transformation techniques are considered 

the ''simplest'' methods for addressing smooth, non-linear rates of change since 

transforming either the outcome measure, or time, makes fitting a linear growth model 
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possible.  In addition, identifying and tracking important predictors of change is not 

dependent upon the scale utilized so very little information is lost when transforming data 

from a non-linear to linear scale.  Unfortunately, identifying the most appropriate 

transformation, and accurately interpreting the results, can be an arduous process. 

The development of alternative techniques for modeling non-linear change has 

rendered the implementation of data transformation techniques unnecessary in many 

situations.  Estimation of Level-1 and Level-2 model parameters can be conducted in 

statistical frameworks treating the intercept and slope as either random coefficients or 

latent variables. The random coefficient framework includes hierarchical linear modeling 

(HLM: Bryk & Raudenbush, 1987, 1992; Raudenbush & Bryk, 2002) or multi-level 

modeling (MLM; Bock, 1989; Goldstein, 1987, 1995).  Methods approaching the 

analysis of change from the latent variable perspective take on various monikers but are 

all considered a special type of structural equation model (SEM; Bentler & Weeks, 1980; 

Jöreskog, 1973, 1977; McDonald, 1978; Sörbom, 1974) most commonly referred to as 

latent curve analysis (LCA;  Meredith & Tisak, 1984, 1990) or latent growth modeling 

(LGM; Duncan, Duncan, Strycker, Li & Alpert, 1999).  While each of these techniques 

are valuable, the latent variable approach is the focus of this dissertation due to it's 

generality and flexibility in modeling error terms.  From this point forward, the LGM 

acronym will be used to identify the latent variable models considered in this dissertation. 

Among the challenges inherent in modeling non-linear change are choosing the 

most appropriate technique to identify intercept and slope parameters and accurately 

interpreting parameter estimates.  Selecting a technique is complicated by the possibility 

that various techniques may provide equally adequate statistical parameter estimates for 
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empirical trajectories following a given process of change.  In this instance, focus should 

switch from selecting a technique based on statistical guidelines to one providing the 

most accurate substantive interpretation of model parameters based on theoretical 

guidelines. However, as previously mentioned, interpretation of non-linear parameters is 

clouded by the curvature nature of empirical trajectories.   

Given the lack of guidelines for choosing among the techniques for modeling 

non-linear change, this dissertation is designed to provide researchers a better 

understanding of the statistical performance and interpretability of parameters estimated 

by the techniques available for modeling non-linear change.  In general, while there are 

defined situations for applying certain techniques, the boundaries for utilizing these 

techniques are not well understood.  For instance, it is unclear whether certain non-linear 

techniques are more effective when modeling a curvilinear trajectory than others in terms 

of statistical estimates as well as substantive interpretations.  Therefore, this dissertation 

is designed to address the following research questions: 

(1) Which technique provides the best statistical estimates when modeling non-

linear patterns of change? 

(2) Which technique provides the most appropriate interpretation of parameter 

estimates when modeling non-linear patterns of change? 

Addressing these research questions will provide researchers a better understanding of 

when to use a certain non-linear technique and which technique will provide the clearest 

interpretation of parameter estimates. 

The remainder of this dissertation is organized as follows.  Chapter 2 reviews the 

common approaches to modeling change and how each handles non-linear change.  This 
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chapter will include a brief discussion of data transformation approaches to modeling 

non-linear change as well as discussions of the repeated measures ANOVA, HLM and 

SEM approaches to modeling change.  This chapter will also provide a detailed 

discussion of the techniques for modeling non-linear change specified in the hypotheses.  

Chapter 2 will conclude with an application of the repeated measures ANOVA and LGM 

approaches to modeling change in data collected by the National Center for Educational 

Statistics for the Early Childhood Longitudinal Study - Kindergarten Cohort of 1998-99 

(ECLS-K; U.S. Department of Education, 2006).  Chapter 3 provides a discussion of the 

simulation study designed to address the research questions.  Chapter 4 summarizes the 

statistical results of the simulation study.  Chapter 5 discusses the results of the 

simulation study and provides a discussion of the interpretation issues encountered for 

each technique.  The dissertation concludes in chapter 5 with a discussion of the 

implications of the study and directions for future research. 
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2.0 Literature Review 

In longitudinal studies, there are various methods available for dealing with data 

displaying nonlinear change.  These methods include transformations of the data or direct 

modeling of the non-linear pattern of change.  In the context of modeling individual 

growth, the latter procedures are preferable.  This is primarily due to the ease in which 

non-linear change can be modeled via advanced techniques such as HLM or LGM.  

Traditional techniques, such as repeated measures analysis of variance (ANOVA), have 

also been utilized to model both constant and non-linear change.  However, this 

technique is limited by an inability to model individual differences in change. 

The following sections include a discussion of: (1) data transformation 

procedures; (2) repeated measures ANOVA; (3) Hierarchical Linear Modeling (HLM); 

and (4) Latent Growth Modeling (LGM).  Each of the methods utilized in the simulation 

study are presented in detail within the section on LGM.  To conclude the literature 

review, results from an application of the repeated measures ANOVA and LGM 

approaches to modeling change will be compared. 
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2.1 DATA TRANSFORMATION PROCEDURES 

Data transformation techniques have long been utilized for research involving a 

non-linear relationship between variables.  Among the most commonly utilized of the 

various data transformation techniques is the ''ladder of powers'' or ''ladder of re-

expressions'' approach (Mosteller & Tukey, 1977).  This approach can be used for 

transforming a variety of non-linear patterns of change (Daniel & Wood, 1971; Draper & 

Smith, 1981).  Traditional statistical procedures making the assumptions of linearity and 

homoscedasticity of errors (e.g., linear regression) have benefited tremendously from the 

development of this and related techniques (e.g., Box-Cox transformation - Box & Cox, 

1964). 

The ''ladder of powers'' approach was presented by Singer and Willet (2003) as a 

viable option for dealing with non-linear change.  This approach utilizes a numerical 

scale consisting of a center point representing the variable to be transformed, with 

positive powers greater than 1 (e.g., square, cube, etc.) above the center point and 

negative, logarithmic and fractional powers (e.g., square root, cube root, etc.) below the 

center point.  Figure 1 is a reproduction of a graphical depiction of this approach 

provided by Singer and Willet (2003, p. 211).  

To determine the most appropriate transformation, empirical trajectories are 

examined in relation to the ''rule of the bulge'' (Mosteller & Tukey, 1977).  The four 

exemplars of change utilized by this method, shown in Figure 1, are matched to the 

observed empirical trajectories.  After matching the observed trajectories to the exemplar, 

the variable is transformed to linearity by moving ''up'' or ''down'' the ladder of powers.  
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The transformations impact is determined by relative proximity to the center point, with 

transformations lying furthest in either direction have the most dramatic impact. 
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Figure 1.  Ladder of Powers and Rule of the Bulge 

Unfortunately, selecting an appropriate transformation for the plethora of 

individual trajectories typically encountered in applied settings requires compromise.  In 

general, many individual trajectories may flow in a particular direction (e.g., growth or 

decline).  However, the likelihood of observing identical trajectories is small, making it 

difficult to select a single transformation to account for all individual trajectories.  For 

instance, squaring the outcome measure may linearize trajectories for some individuals 

whereas cubing the outcome measure may be necessary for linearizing other individual 
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trajectories.  Therefore, selecting the most appropriate transformation requires 

experimentation with viable alternatives. 

There also exists the matter of interpretation.  Substantively speaking, interpreting 

nonlinear data transformed to a linear scale is similar to interpretation in its original 

nonlinear metric.  Unfortunately, similar interpretations do not hold numerically.  To 

illustrate, suppose nonlinear trajectories observed for student development of 

mathematics ability during elementary years are transformed to a linear scale.  A constant 

numerical value is calculated for the slope parameter, meaning rate of change is equal 

across all time points.  Conversely, the slope trajectory becomes curved when 

transformed back to the original metric.  Now, slope is no longer constant and, depending 

on the shape of observed trajectories, must be interpreted in terms of acceleration or 

deceleration at a given time point(s).  In other words, while directional relationships can 

be gathered regardless of scale, the magnitude of change (e.g., numerical value of slope) 

is scale dependent.  Also, interpreting non-linear trajectories through a linear slope 

parameter does not provide the most accurate representation of relationships in the data.             

2.2 REPEATED MEASURES ANOVA 

Analysis of variance (ANOVA) techniques are useful for quantifying the 

relationship between a dependent variable and one or more independent variables, also 

termed factors, with two or more levels.  While the outcome variable in ANOVA is 

typically considered random (takes on values from a larger population), independent 

variables are either random or fixed (do not take on values from a larger population).  
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Independent variables are also considered either between-subjects factors (different 

subjects observed at each level of the IV) or within-subjects factors (same subjects 

observed at each level of the IV).  A special type of ANOVA model which contains 

within-subjects factors is the repeated measures ANOVA.  The repeated measures 

ANOVA model seeks to describe outcome measures from a random sample of subjects 

observed over several different fixed treatments or a single treatment at several fixed 

points in time.  

By treating time as the independent variable, repeated measures ANOVA can be 

utilized for research questions involving change over time.  Typically, research on time 

effects is designed to define the pattern of change rather than to just identify what is 

occurring at each time point.  To illustrate, consider a repeated measures model 

consisting of a single factor, time, expressed as  

( ) ijijijijy εαππαμ ++++= , 
                      
where i  and j  are used to distinguish individuals and time points, respectively.  Thus, 

ijy  is the thi  (i=1,...,N) response at the jth time point (j=1,...,t).  The five parameters of 

interest are:  (1) μ is the grand mean representing the average response over all 

individuals and time points; (2) πi represents the individual effect or the individuals mean 

deviation from the grand mean; (3) αj represents the time effect or the deviation of the 

time mean deviation from the grand mean; (4) (απ)ij represents the idiosyncratic behavior 

of individual i at time j; (5) εij represents errors or residuals when predicting yij from the 

aforementioned terms and are assumed to be independent and identically distributed 

( )2,0
ij

N εσ  and also independent of πi. 
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In the repeated measures model, an omnibus F-test is used to determine if mean 

response rates are different across time points.  Typically, a significant F-test would be 

followed by a contrast procedure to identify which time points differ.  However, with a 

quantitative factor such as time, researchers are generally more interested in describing 

the pattern depicted by observed changes.  Polynomial trend analysis is a comparison 

method used for a quantitative variable in order to describe the pattern displayed by the 

means.  For instance, a researcher interested in the development of mathematics ability 

could examine standardized assessment scores across multiple time points.  Analyzing 

this data via repeated measures ANOVA would involve multiple steps.  The first step 

would be determining if an overall time effect exists.  If the omnibus F-test is significant, 

indicating a time effect, the next step becomes describing the pattern of change and/or 

identifying where the change is significant.  This is done via the polynomial trend 

analysis, which uses orthogonal polynomials to identify linear, quadratic or higher order 

components in the pattern of change.  

Polynomial trend analysis begins with the selection of contrast coefficients 

depicting the pattern of change to be tested.  Given frequent occurrence and 

straightforward interpretation, a linear trend is initially examined.  For instance, when the 

model consists of four time points, the coefficients {-3,-1,1,3} could be utilized to 

determine if the pattern of change is linear.  In many instances, the linear model does not 

account for all of the variability in the data.  Under these circumstances, a set of 

coefficients which are orthogonal to those utilized for the linear trend are selected.  If the 

quadratic trend is of interest, the coefficients {1,-1,-1,1} are used in the comparison.  This 

process could continue until the number of higher-order polynomials that can be tested 
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(equal to the number of time points minus 1) is exhausted.  However, linear or quadratic 

models typically account for an adequate amount of residual variability among the 

means.  In addition, higher-order models such as the cubic or quartic (and sometimes 

even the quadratic) are not utilized due to difficulties with interpretation. 

Application of repeated measures ANOVA to modeling change is limited by the 

assumption of compound symmetry (e.g., equal variances and covariances across fixed 

time factors), which when violated leads to an upwardly biased omnibus F-test and higher 

Type I error rates (Huynh & Mandeville, 1979).  Identifying and correcting this bias does 

not imply the technique is correctly modeling the data (Chan, 2003).  Nonlinear variation 

and covariation between time observations may reflect systematic interindividual 

differences in individual change.  More importantly, repeated measures ANOVA and 

related techniques (e.g., regression, ANCOVA, MANOVA) are limited to group level 

analyses (assuming change in DV is same across all subjects), thus failing to provide 

sufficient information about individual differences in change (Bryk & Raudenbush, 1992; 

Raudenbush & Bryk, 2002).  The following approaches to be discussed are considered 

superior to the repeated measures ANOVA because they model change at the group level 

as well as the individual level. 

 



 

 27 

2.3 HIERARCHICAL LINEAR MODELING 

In many instances, data collected in the social and behavior sciences are 

hierarchical in nature.  A research setting may consist of variables describing subjects and 

variables describing a larger unit in which subjects are grouped or ''nested.''  Situations 

also arise where the larger unit in which subjects are nested is also considered nested 

within a larger unit.  For instance, research questions in the field of education are 

typically geared toward identifying factors which effect student performance.  

Educational research is enhanced by examining the effect a teacher, school and/or school 

district has on student performance.  In a design such as this, student is considered nested 

within teacher while teacher is nested within school and school is nested within school 

district.    

Statistical modeling of nested designs is problematic due to assumptions made by 

traditional techniques.  Techniques such as ANOVA and regression are limited by the 

assumption of independent observations.  Relaxing this assumption is necessary for 

incorporating higher level variables, such as schools, when analyzing data at the 

individual student level.  In educational research, student performance may differ by 

schools.  Thus, students in different schools are generally considered to independent.  On 

the other hand, students in the same school are generally not considered independent 

because they all attend the same school and some are even taught by the same teacher. 

Hierarchical linear models can be used to model data containing dependent 

observations through the use of Level-1, Level-2 or even Level-3 models.  In HLM, the 

Level-1 model is a within-subjects model represented as 
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ijijjjij rxbby ++= 10 , 

where yij represents the outcome measure for individual i nested within group j.  The b0j 

and b1j terms are randomly varying intercept and slope parameters for each j group, xij is 

an indicator variable, and rij is the residual for individual i nested within group j.  The 

residual terms are assumed to be independently and identically distributed ( )2,0
ijrN σ . 

The random intercept and slope parameters estimated at Level-1 become outcome 

variables in a Level-2, between-subjects, model.  The Level 2 model, often referred to as 

a ''slopes as outcomes'' model (Burstein, 1980) without predictor variables, is represented 

as 

jjb 0000 μγ +=  

jjb 1101 μγ += , 

where 00γ  and 10γ  represent the mean intercept and slope across all j groups in the 

sample.  Each group's deviation from sample mean intercept and slope are represented by 

j0μ  and j1μ .  These unique effects are of primary interest since they represent the extent 

to which intercept and slope parameters for each group differ from overall intercept and 

slope parameters.   

The HLM can be extended to individual growth modeling by considering time 

points nested within subjects rather than subjects nested within groups.  Instead of 

estimating parameters at the group level, parameters are estimated at the subject level.  

To illustrate, consider the following model representing linear change over time for 

outcome variable y measured on i (i=1,...,N) subjects at j (j=1,...,t) occasions 

ijijiiij rxbby ++= 10 . 
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In the case of modeling change, the indicator ijx  contains the value of the observed time 

point j for individual i.  Allowing 0ib  and 1ib  to vary across individuals provides the basis 

for the Level-2 model 

0000 iib μγ +=  

1011 iib μγ += , 

where 00γ  and 10γ  represent the overall sample mean for the intercept (i.e., initial status) 

and slope (i.e., rate of change), respectively.  The 0iμ  and 1iμ  terms are random effects 

representing individual deviations around the overall sample means.  These terms are 

what distinguish each individuals intercept, 0ib , and slope, 1ib , from those of the overall 

sample mean and intercept.  Heterogeneity in the individual intercept and slope 

parameters is determined by examining 2
0iμ

σ  and 2
1iμ

σ  .  Differences in individual 

intercepts and slopes exist if 2
0iμ

σ  and 2
1iμ

σ are not equal to 0.   

Various nonlinear models are also available in the framework of HLM.  The 

quadratic model involves an additional term describing the pattern of change.  In this 

case, the Level-1 equation becomes 

ijijiijiiij rxbxbby +++= 2
210 , 

where the additional parameter, 2ib , captures the curvature or acceleration in the 

individual growth trajectories.  To determine individual differences in the curvature 

parameter, 2ib  is modeled at Level-2 as  

2022 iib μγ += . 

Again, the amount of variability in the curvature parameter is measured by 2
2iμ

σ .   
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The heterogeneity in individual parameter estimates can be explained by 

including indicator variables (e.g., gender, socioeconomic status, race, etc.) in the model.  

Indicators are introduced into the Level-2 equation of the model.  For the quadratic model 

with a single predictor, the Level-2 equations become 

0110000 iii zb μγγ ++=  
 

1111011 iii zb μγγ ++=  
 

2112022 iii zb μγγ ++= . 
 

HLM provides a powerful framework for analyzing data with a nested structure.  

Flexibility with missing data is a primary advantage offered when applying HLM to 

repeated measures data.  HLM allows both the number and timing of observations to vary 

randomly over participants, meaning subjects do not need to be measured at identical 

points in time nor do they need to be measured an equal number of times.  The spacing 

between measurements on each individual also need not be equal.  In addition, Level-1 

predictors may be continuous and take on a different distribution for each member of the 

sample (Raudenbush & Bryk, 2002).  A third level of the model could also be introduced 

to address effects of external environments (e.g., classroom, school, etc.) on individual 

change.  However, HLM is limited by assumptions made regarding error terms and the 

inability to handle complex covariance structures, limitations overcome in the framework 

of latent growth modeling.   
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2.4 LATENT GROWTH MODELING 

The latent growth model (LGM) is a special type of structural equation model 

(SEM).  Karl Jöreskog is credited with bridging the gaps between path analysis, factor 

analysis and simultaneous equation modeling to create the modern day framework for 

SEM (Joreskog, 1973).  SEM encompasses a family of techniques including regression, 

path analysis and confirmatory factor analysis.  Arguably the most popular multivariate 

technique in the social and behavior sciences (Hershberger, 2003), SEM is perhaps best 

defined as a class of methodologies seeking to represent hypotheses about means, 

variances and covariances of observed data in terms of a smaller number of structural 

parameters defined by a hypothesized underlying model (Kaplan, 2000).  

SEM provides a method for rigorously testing a hypothesized model of relations 

among variables through the use of a combination of manifest and latent variables.  

Latent variables are unobservable theoretical constructs, such as mathematics ability, 

intelligence, motivation, depression and anxiety, whose measurement relies on 

observable manifest variables.  For instance, in educational research, mathematics ability 

can be measured via an achievement test designed to yield scores on various subsections 

of mathematics (e.g., algebra, geometry, calculus, etc.).  Variables in SEM can also be 

considered either exogenous or endogenous.  Exogenous variables are not explained in 

the model and either directly or indirectly influence the endogenous variables in the 

model. 

A path diagram can be used to depict relationships under consideration in a SEM.  

A path diagram generally consists of ellipses or circles, rectangles or squares and single- 

and/or double-headed arrows.  Rectangles or squares are used to represent manifest 
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variables while ellipses or circles are used to represent latent variables.  Single-headed 

arrows represent the impact of one variable on another, with the variable at the base of 

the arrow impacting the variable at the head.  Double-headed arrows represent the 

correlation or covariance between two variables or, in some instances, may be used to 

represent the variance of an exogenous variable.   

The path diagram in Figure 2 displays a full latent variable model containing an 

exogenous latent factor ξ1 with two manifest indicators X1 and X2 predicting an 

endogenous latent factor η1 with two manifest indicators Y1 and Y2.  The γ11, λX11, λX21, 

λY11, and λY21 represent regression coefficients.  A residual error in predicting η1 from ξ1 is 

represented by ζ1 while δ1, δ2, ε1 and ε2 represent measurement errors for X1, X2, Y1 and 

Y2, respectively. 
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1ξ 1η

11Xλ 21Xλ 11Yλ 21Yλ

1ζ

11γ

1δ 2δ 1ε 2ε  

Figure 2.  Full Structural Equation Model 

SEM’s can also be expressed in equation form using either the Bentler-Weeks 

model notation (Bentler & Weeks, 1979, 1980) or Lisrel notation (Jöreskg, 1973).  

Unless specified otherwise, the latter will be used throughout this manuscript.  The full 

SEM presented in Figure 2 consists of a structural model representing relationships 

among latent factors and a pair of measurement models representing relationships 

between the exogenous and endogenous latent factors and their respective indicator 

variables.  In matrix terms, the structural model is expressed as  

η = ν +Βη + Γξ + ζ, 
 
where ν is an intercept vector, η is a m x 1 vector of endogenous latent variables, ξ is a k x 

1 vector of exogenous latent variables, Β is a m x m matrix of regression coefficients 
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relating the latent endogenous variables to each other, Γ is a m x k matrix of regression 

coefficients relating endogenous variables to exogenous variables, and ζ is a m x 1 vector 

of residual error terms. 

The X and Y measurement models can be expressed in matrix terms as, 

respectively, 

X = τ + ΛXξ + δ 
 

and 
 

Y = α + ΛYη + ε. 
 
Here, X and Y represent p x 1 and q x 1 vectors of p- and q-observed variables, 

respectively.  The τ and α terms represent p x 1 and q x 1 intercept vectors, respectively, 

while ΛX and ΛY are p x k and q x m matrices of factor loadings relating manifest variables 

to the k x 1 and m x 1 vectors of latent variables, ξ and η.  The random error terms are 

contained in vectors δ and ε, respectively, which are the same dimension as X and Y.  

The general SEM can be extended to longitudinal data, at the group and 

individual levels, through the latent growth modeling (LGM) framework.  Meredith and 

Tisak (1984, 1990) are credited with extending the work of Tucker (1958) and Rao 

(1958) to modeling interindividual differences in change through SEM.  LGM’s assess 

change through multiple indicator latent variables, essentially representing Level-1 and 

Level-2 models from HLM as Y-measurement and structural models, respectively.  Thus, 

for i (i=1,2,...,N) subjects measured at j (j=1,2,...,t) occasions, the Y-measurement model 

representing linear change can be expressed in equation form as 

yij = λ0jη0i + λ1jη1i + εij, 
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where yij is the outcome measure for individual i at time j predicted by η0i and η1i, which 

represent individual parameters for initial status and rate of change.  These individual 

parameters become outcome measures in the structural model, represented in equation 

form as 

η0i = ν0 + ζ0i 
 

and 
 

η1i = ν1 + ζ1i, 
 
where η0i and η1i are functions of individual deviations, ζ0i and ζ1i, from sample mean 

initial status, ν0, and rate of change, ν1, respectively. 

The path diagram displayed in Figure 3 represents a LGM with two latent factors, 

initial status (η0) and linear slope (η1), explaining outcomes at four time points (Y1-Y4).  

Each of the Y variables constitutes a score on the outcome measure at a specific point in 

time that contains random measurement error which is identified by ε1, ε2, ε3 and ε4.  The 

Bentler-Weeks representation in EQS utilizes V999 as a constant (i.e., 1), thus providing 

the mechanism for transforming a pure covariance structure model into a mean and 

covariance structure model.   Thus, the residual error terms ζ0 and ζ1 represent individual 

differences in η0 and η1 from the overall group means ν0 and ν1.   
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Figure 3.  Unconditional Latent Growth Model 

 

The model in Figure 3 is considered an unconditional LGM since it does not 

contain covariates.  A conditional LGM containing a single covariate that influences η0 

and η1 can be represented in equation form as 

       
η0i = ν0 + γ01X1i + ζ0i 

 
and 
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η1i = ν1 + γ11X1i + ζ1i, 

 
where γ01 and γ11 are regression coefficients relating X1i to η0i and η1i, respectively.  A 

path diagram for this model is on display in Figure 4. 

Y4Y3

1

1

Y2Y1

1
1

0ζ 1ζ

1 320

V999

0ν 1ν

1ε 3ε 4ε2ε

0η 1η

1γ
0γ

X1

 
Figure 4.  Conditional Latent Growth Model 

 
In the LGM, λ0j is fixed at 1 for all j=1,...,t.  This being the case, there is one-to-

one correspondence between parameters estimated in HLM and LGM.  Of particular 

interest in these models is the observed variability in individual deviations from sample 
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means.  That is, the terms 2
0μ

σ and 2
1μ

σ from HLM and 2
0ζ

σ and 2
1ζ

σ from LGM indicate 

the degree of individual differences in the parameters describing initial status and rate of 

change.  In addition, the covariance between the parameters describing initial status and 

rate of change provides valuable information regarding the manner in which individual 

trajectories are affected by the point at which they begin. 

The LGM has the ability to address important hypotheses about individual 

differences in initial status and rate of change as well as allowing predictors of change to 

be incorporated into the model.  For example, a researcher interested in the development 

of quantitative ability could assess student's quantitative skills across four equally spaced 

intervals and include gender as a variable in the model to determine if differences exist 

between males and females.  In such a scenario, utilization of a LGM requires a 

continuous outcome measure and an adequate number of subjects to detect person level 

effects.  In addition, conditions pertaining to missing data and distributional requirements 

of random effects in the Y-measurement model must also be met.  Namely, an equal 

number and spacing of time points must be present for each subject and the random 

effects predictor variables must be identically distributed across all participants in each 

subpopulation (Raudenbush & Bryk, 2002).  In comparison to the HLM, the LGM offers 

more flexibility in testing complex error structures (e.g., tests of homoscedasticity of 

measurement errors).  In general, however, there is very little difference between 

parameter estimates obtained via HLM and LGM (Chou, Bentler & Petz, 1998).  In fact, 

modeling growth in HLM has been shown to be a special case of the LGM (Curran, 

2002).   
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2.5 NON-LINEAR LATENT GROWTH MODELING 

Like the HLM approach to modeling change, non-linear trajectories are typically 

modeled in LGM through polynomial, unspecified or spline techniques.  The 

implementation of these techniques in the LGM framework for specific types of non-

linear trajectories will be discussed in the following sections.    

2.5.1 Polynomial Models 

The LGM framework utilizes polynomials to model non-linear trajectories.  The 

linear model is considered a ''first order'' polynomial model due to time being raised to 

the 1st power equaling itself.  To illustrate, consider the Y-measurement model expressed 

in matrix form as  

εηλ += YY , 

where Y is a vector of values observed at given points in time which are defined in λY, 

intercept (η0) and slope (η1) parameters are contained in η, and occasion specific 

measurement errors in ε, which are distributed ( )2,0
ij

N εσ .  In polynomial models, the 

coefficients used in the λY matrix are chosen to be consistent with time of measurement.  

For instance, a linear model containing measures at four points in time could be 

represented in matrix form as  
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The column of 1’s in λY serve to fix η1 to a value consistent with the initial measurement.  

The second column of λY is used to define the time line of measurement.  In general, X1 is 

fixed to 0 while X2, X3, and X4 are fixed to 1, 2, and 3, respectively.  The constant rate of 

change found in a linear slope is indicated by the equal difference between adjacent 

regression coefficients. 

For non-linear trajectories, higher-order polynomials can be specified as the 

regression coefficients in the λY matrix.  The quadratic model can be represented in 

matrix form as  
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where X1, X2, X3 and X4 are the same as before while 2
1X , 2

2X , 2
3X  and 2

4X  become 0, 1, 4 

and 9, respectively.  The cubic model can be represented as   
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In the cubic model, 2
1X , 2

2X , 2
3X  and 2

4X  become 0, 1, 8 and 27, respectively. 

As the aforementioned models indicate, the number of parameters included in η  

is dependent upon the trend that is modeled.  Higher-order polynomials can be used to 

model trajectories that display nonlinear change.  However, while intercept is typically 

interpreted as initial status, interpretation of slope is dependent upon the number of 

parameters inη .  In the cubic model, the linear slope, 1η , is interpreted as instantaneous 
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rate of change while the quadratic and cubic slope, 2η  and 3η , describe the curvature in 

the observed trajectories.  Thus, as the number of parameters in η  increases, 

interpretation becomes more complex. 

2.5.2 Unspecified Models 

There are instances where complex non-linear trajectories of change make a priori 

specification of coefficients in ΛY difficult.  In a two-factor model, LGM allows these 

coefficients to be estimated (Meredith & Tisak, 1990).  To illustrate, consider a 

measurement model containing two-factors expressed in matrix notation as 
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where 1X , 2X , 3X  and 4X  become 0, 1, fa and fb, respectively.  The values fa and fb 

indicate freely estimated trajectories (from the data) of change at time points 3 and 4.  

Unlike polynomial models, the unspecified model contains only intercept and slope 

factors, making interpretation fairly straightforward.  Duncan, Duncan, Stryker, Li and 

Alpert (1999) indicate the slope, 1η , is better interpreted as a general ''shape'' factor  in an 

unspecified model.  Unless, of course, the values estimated for fa and fb follow linearly 

from the values used for the first two time points, 0 and 1.  In this case, 1η , would retain 

its original interpretation as constant rate of change and the unspecified model would 

essential be the linear model.  Thus, the only difference between the unspecified model 
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and the linear model are the values of coefficients to be estimated.  There are no changes 

in the Y-measurement model. 

2.5.3 Spline Models 

Spline models break an observed curvature pattern of change into piecewise linear 

components.  These models are especially useful for comparing rates of change at 

different periods in time.  For instance, Frank and Seltzer (1990) found patterns of change 

in acquisition of reading ability for Chicago Public school students to differ between 

grades 1 thru 3 and 4 through 6.  Khoo (1997) found piecewise techniques to be useful 

for assessing the effectiveness of intervention programs, where rates of change are 

different before and after implementation of an intervention. 

To illustrate a type of spline model, consider observed trajectories that are 

different between time points 0 thru 1 and 2 thru 3.  In matrix notation, this model is 

represented as  
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where X1 is fixed to 0, X2 to 1, X3 to 2 and X4 is fixed to 3.   Since rate of change is 

different prior to and following a particular time point, multiple slope parameters are 

needed to address the factor(s) causing curvature in observed trajectories.  Thus, 0η  is the 

intercept, 1η  is the slope for period 1 (i.e., rate of change between time points 0 and 1) 

and 2η  is the slope for period 2 (i.e., rate of change between time points 2 and 3).  The 
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regression coefficients contained in ΛY define beginning and ending points for 1η  and 2η  

as well as the magnitude of change between these points. 

Another two-factor spline model could be implemented by specifying ΛY as 
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 where 1Y , 2Y , 3Y  and 4Y  are the observed means at each time point.  In other words, 1η  

crosses through the mean of each time point.  As in the two-factor unspecified model, 

rate of change parameters for intercept and slope(s) become dependent measures in spline 

models.  However, since certain covariates may not be relevant to each rate of change 

parameter, separate structural models may be necessary. 

2.6 EMPIRICAL EXAMPLE 

Data collected for the Early Childhood Longitudinal Study, Kindergarten Class of 

1998-99 (ECLS-K; U.S. Department of Education, 2006) was used to demonstrate the 

application of latent growth models.  For this example, a sample of n=1650 students were 

selected.  This sample consisted of students that were 1st time kindergartners at the 

beginning of the study who remained at the same school for the duration of the study.  In 

addition, complete data was present for all of the students at each of the four time points 

of measurement (Fall and Spring of Kindergarten and Fall and Spring of 1st grade) and 

for the gender and ethnicity variables.       
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Investigation of the data revealed severe nonnormality and the presence of three 

outlying cases, which were ultimately removed.  Table 1 displays descriptive statistics for 

the IRT-Scaled mathematics achievement scores for the n=1647 students that were used 

in the analyses.  The results reveal the presence of a nonlinear increase mathematics 

scores over time.  The increase is scores during the Kindergarten year is 11.48 points 

whereas the increase during 1st grade is 18.76 points.  The increase in scores between 

Kindergarten and 1st grade was 7.04 points.  The standard deviation, on the other hand, 

increased at a relatively constant rate of approximately 2 points. 

Table 1.  Descriptive statistics for IRT-Scaled mathematics achievement scores 

 Fall 
Kindergarten

Spring 
Kindergarten

Fall 
1st Grade 

Spring  
1st Grade 

Mean 25.18 36.64 43.68 62.44 
Standard 
Deviation 9.16 11.69 13.36 15.88 

 
 Table 2 displays results for the overall model and the polynomial trend analysis 

obtained from a repeated measures ANOVA.  The overall model results indicate a 

significant change in mathematics scores over the four measurement points and a large 

time effect.  Results from the polynomial trend analysis indicate significant linear, 

quadratic, and cubic trends.  However, only the linear trend produced a large effect size.  

Also, the cubic trend produced a larger effect size than the quadratic trend.   

Table 2.  Repeated Measures ANOVA results 

 F-statistic Df P-value Partial 2η  
Linear 17361.72 (1,1646) .000 .913 

Quadratic     639.44 (1,1646) .000 .280 
Cubic     805.53 (1,1646) .000 .329 

 
The quadratic and cubic trends are slightly apparent in the line in Figure 5, which 

displays the empirical trajectories for four randomly selected students (labeled 1, 2, 3 and 
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4) and the overall group (labeled T).  Between the fall of Kindergarten and the fall of 1st 

grade, mathematics scores appear to increase linearly.  However, the change between 

spring of Kindergarten and fall of 1st grade is smaller than the change between fall of 

Kindergarten and spring of Kindergarten (this is the quadratic component).  The cubic 

component is present due to the relative increase in mathematics scores in the spring of 

1st grade. 
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Figure 5.  Empirical trajectories for 4 randomly selected students and the overall group 

The repeated measures analysis of variance mentioned above is limited to 

describing group differences.  In addition to identifying change in the overall group over 

time, LGM's are useful for identifying the presence of individual differences in change.  

Figure 5 displays growth trajectories for the entire sample of students (labeled T) and for 

four randomly selected students (labeled 1, 2, 3 and 4).  As generally expected, none of 
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the trajectories are the same nor do the individual student trajectories mirror the overall 

trajectory.  While the trajectory for student 1 is similar to the overall trajectory, the 

increase in mathematics scores between fall of 1st grade and spring of 1st grade is greater 

for student’s 1 and 3 than it is for the overall sample.  The trajectory for student 2 is very 

similar to the overall trajectory while the trajectory for student 3 is different from the 

overall trajectory between the spring of kindergarten and the fall of 1st grade.  Student 2 

displays a greater increase between these time periods than is found overall and for 

students 1, 3, and 4.     

Linear, mean-spline, and unspecified techniques were used to model change in the 

mathematics scores.  Polynomial techniques were also utilized but did not provide 

adequate solutions and were not reported.  Each of the models was specified to contain an 

intercept and a single slope factor.  The difference between the specifications of the 

models was in the factor loading matrix, ΛY.  The linear model contained the values 0, 1, 

2 and 3 to represent the four equally spaced measurement occasions.  The mean-spline 

model utilized the values 0, 1, 1.61 and 3.25 while the unspecified model utilized the 

same initial values of 0 and 1 but left the last two values to be estimated by the data.  In 

each of the models, the variances of the error terms and factors were feely estimated as 

was the covariance between the intercept and slope factors. 

Table 3 displays selected fit indices for each of the fit techniques.  Since the data 

was nonnormally distributed (i.e., multivariate kurtosis = 32.31), the Satorra-Bentler 

rescaled 2
SBχ  (Satorra & Bentler, 1988; 1994) statistic was utilized.  The 2

SBχ  downwardly 

adjusts the normal theory 2χ  according to the amount of nonnormality in the data.  In the 

presence of nonnormal data, the Comparative Fit Index (CFI; Bentler, 1990) and Root 
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Mean Squared Error of Approximation (RMSEA; Steiger & Lind, 1980) are also 

available.  All of the models were fit in EQS 6.1 (Bentler, 2004).  

Table 3.  Model fit indices for each technique 

 2
SBχ  Df p CFI RMSEA 90% CI 

RMSEA 
Linear 898.55 5 < .01 .935 .330 .311 - .348 
Spline 59.93 5 < .01 .982 .082 .064 - .100 

Unspecified 54.07 3 < .01 .983 .102 .079 - .126 
 
As Table 3 indicates, the linear model was the least adequate in modeling the 

data.  The 2
SBχ  model test statistic was much higher in the linear model than the mean-

spline and unspecified models.  Likewise, the CFI and RMSEA fit indices indicated the 

linear model did not fit the data well while the mean-spline and unspecified models fit the 

data similarly.  In comparison to the unspecified model, the 2
SBχ was slightly larger for the 

mean-spline while the RMSEA and the corresponding 90% confidence interval were 

slightly smaller. 

Table 4 displays parameter estimates and standard errors obtained from each 

modeling technique.  

Table 4.  Parameter estimates and standard errors for each technique 

 Linear Mean-Spline Unspecified 
0η  11.12 (0.09) 11.47 (0.09) 11.54 (0.17) 

1η  25.02 (0.23) 25.18 (0.23) 25.15 (0.23) 
2

0ζ
σ  71.60 (4.40) 75.92 (4.47) 75.78 (4.46) 

2
1ζ

σ    3.72 (0.58)   6.54 (0.61)   6.62 (0.63) 

10ζζσ  13.98 (1.03) 11.34 (1.00) 11.45 (1.04) 
2
0ε

σ  16.34 (1.60) 11.97 (1.56) 11.99 (1.59) 
2
1ε

σ  23.06 (1.68) 25.06 (1.60) 25.02 (1.59) 
2

2ε
σ  49.68 (1.94) 32.58 (2.03) 32.40 (1.99) 

2
3ε

σ  98.94 (3.74) 58.37 (4.25) 58.89 (4.22) 
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13λ  - -   1.62 (0.02) 

14λ  - -   3.22 (0.05) 
 

All parameter estimates and standard errors were significant at the α =.05 level.  As was 

the case with the fit indices, parameter estimates and standard errors from the spline and 

unspecified techniques were virtually identical.  The linear model yielded particularly 

high estimates of error variance at all but one time point and low variance values for the 

disturbance terms.  The similarities between the results for these techniques are due to the 

similarities in the factor loadings.  The values estimated in the unspecified technique 

were very similar to the fixed values used in the mean-spline technique. 

In summary, the linear model is not a good choice for modeling the trajectories 

found in this data.  Moreover, it seems a trivial decision as to whether a spline or 

unspecified model should be used in this situation.  Evaluated via the 2
SBχ  difference test, 

these models were not found to be significantly different.  In either case, this sample of 

subjects began with an IRT scaled mathematics score of approximately 11 which 

increased by approximately 25 points each assessment.  In addition, significant individual 

differences in trajectories were also indicated by the variance in the disturbance terms 

(i.e., approximately 76 and 7, respectively).  The Lagrange multiplier (LM) test (Chou & 

Bentler, 1990) was used to determine if either of these models could be improved.  

However, none of the suggested model additions (e.g., correlated error terms) were added 

due to the moderate amount of improvement in model estimates and the complexity they 

added to interpretation of the models.  
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3.0 Methodology 

A simulation study was designed to examine the appropriateness of the quadratic, 

spline and unspecified techniques to modeling nonlinear trajectories in the framework of 

LGM.  What follows is a discussion of each of the independent and dependent variables 

along with the procedure of the simulation study. 

3.1 INDEPENDENT VARIABLES 

There were 5 independent variables manipulated in the simulation study: sample 

size, trajectory pattern, slope variance, covariance between factor disturbances and non-

linear technique. 

3.1.1 Sample Size 

The 7 levels of sample size used were: 50, 75, 100, 150, 200, 300, and 500.  This 

covers the spectrum of sample sizes commonly seen in individual growth modeling via 

LGM.  Statistical estimates for samples larger than 500 were not expected to change 

significantly, leaving little reason for the investigation of larger sample sizes.  In general, 
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minimum sample size requirements in SEM are determined by the ratio of subjects to 

parameters estimated.  Kline (2005) has indicated this ratio to be at least 5:1, preferably 

10:1, in order for statistical estimates to be accurate and meaningful.  All of the models 

utilized in this study were simple LGMs without predictor variables, which, as seen in 

Table 5, resulted in between 14 and 19 parameter estimates.  At the smallest sample sizes, 

n=50 and n=75, the ratio of subjects to parameters was generally lower than the 

suggested 5:1, providing an evaluation of minimal sample size requirements in non-linear 

LGMs.  Regardless of the non-linear technique implemented to fit the data, minimal 

sample size requirements were met in the remainder of the sample conditions.        

Table 5.  Parameters estimated by each fit technique 

 Quadratic Spline Unspecified 
Factor Means 321 ,, ννν  21 ,νν  21 ,νν  
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321
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3.1.2 Trajectory Pattern 

Various trajectories are found in longitudinal research designed to identify 

differences in individual growth.  This dissertation focused on trajectories consistent with 
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the exponential, logarithmic and logistic functions.  Trajectories displaying a pattern of 

change consistent with either of these functions are generally observed in applied settings 

(Burchinal & Appelbaum, 1991).  Logarithmic growth, where an attribute initially 

develops at a rapid pace but then levels off, essentially represents the ''learning curve'' 

found in many educational settings where knowledge of a concept is initially obtained 

rather quickly but then levels off as time goes on.  Logistic growth, where an attribute 

takes some time to develop but then develops at a rapid pace before leveling off, is most 

often observed in developmental research on young children.  Specifically, logistic 

growth is often seen in the vocabulary development of young children.  Young children 

typically take a year or so to speak an initial word but once the initial word is spoken, 

additional words are acquired at an increasingly rapid pace until a certain age when 

acquisition of new words begins to slow considerably.  Although not as common in the 

social and behavioral sciences, the exponential curve, in which growth of an attribute 

develops slowly but increases rapidly at later time points, was investigated due to the 

possibility of it also being observed in the applied realm.  

Figure 6 displays the shape of each trajectory used for data generation.   
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Figure 6.  Trajectories of change used for generating data 

These curves were created by applying exponential, logarithmic and logistic 

mathematical functions to the values representing each time point (i.e., 1, 2, 3, 4, 5).  

After obtaining the transformed values, the curves were put on the same scale by 

applying a transformation that fixed the values of time points 1 and 5 at 0 and 10, 

respectively.  Table 6 displays the resulting means at each time point.     

Table 6.  Mean values at each time point for the growth trajectories 

 Time 1 Time 2 Time 3 Time 4 Time 5 
Exponential 0 0.32 1.19 3.56 10 
Logarithmic 0 4.31 6.83 8.61 10 
Logistic 0 1.05 5.00 8.95 10 
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3.1.3 Covariance Matrix Structure 

Generating data in LGM is complicated, particularly for nonlinear trajectories, by 

the special covariance structure of these models.  Thus, rather than utilizing a specific 

covariance matrix, data was generated according to the relationship between intercept and 

slope factors in a two factor model.  Factor correlations and slope variances used for data 

generation were .15, .45 and .75, respectively, while the intercept and error variances 

were fixed at 1.  Displayed within the cells of Table 7 are the values for the covariance 

between intercept and slope disturbances when the factor correlations and slope variances 

were fixed at the aforementioned values.    

Table 7.  Parameter values used for data generation 

  Standardized 
21ςς

σ  
  0.15 0.45 0.75 

0.15 0.06 0.17 0.29 
0.45 0.10 0.30 0.50 2

1ς
σ  

0.75 0.13 0.39 0.65 
 

3.1.4 Model Fit Techniques 

The polynomial, spline, and unspecified techniques were used to model the 

aforementioned nonlinear growth trajectories. For the polynomial technique, only 

quadratic and cubic models were implemented due to difficulties fitting and interpreting 

higher order polynomial models.  In general, LGM requires at least three waves of data 

for a quadratic model and four waves of data for a cubic model (Singer & Willett, 2003).  

While five waves of data are commonly collected, cubic models are rarely utilized given 
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the complexity involved in fitting and interpreting parameters. Including them in this 

study will serve to highlight the difficulty of fitting and interpreting cubic models. 

The difference in the four analytic techniques lies in the number of factors and 

corresponding specification of Yλ .  Recall, a two-factor linear model is simply a special 

type of polynomial model (i.e., coefficient raised to the fist power which equals itself).  

Therefore, each step up the polynomial ladder leads to an additional factor and loadings 

consistent with the polynomial term.  Thus, the quadratic model consists of three factors 

with Yλ fixed to  
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On the other hand, the spline and unspecified techniques consist of only two factors, 

leaving Yλ as  
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for the spline technique and 
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for the unspecified.  The EQS programs used to fit the data are displayed in Appendices 

A.1.2 thru A.1.4.  Note that the notation in these programs does not match LISREL notation 

used throughout this manuscript developed by Karl Jöreskg (1973).  EQS utilizes Bentler 

and Weeks (1980) notation where V, F, E and D are used in place of Y, η , ε  and ς  to 

denote variables, factors, errors and disturbances, respectively. 

 

3.2 DEPENDENT VARIABLES 

The goal of this study was to determine which analysis technique most accurately 

models the sample data.  Like many traditional statistical techniques, SEM utilizes tests 

of statistical significance to determine if an implied theoretical model fits the sample 

data.  Unlike many traditional statistical techniques, SEM supplements the overall test of 

significance with numerous goodness-of-fit indices which evaluate the fit of a model 

along a continuum.  The statistical measures of fit chosen for this study will be discussed 

next. 

 3.2.1 Goodness-of-Fit Measures 

Structural equation models rely on statistical measures for determining if the 

covariance matrix implied by the theoretical model is consistent with the sample 

covariance matrix.  There are many statistical measures for determining fit in structural 

equation modeling.  This dissertation will focus on the overall model goodness-of-fit 
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statistic, denoted as 2χ or T, Comparative Fit Index (CFI; Bentler, 1990), Goodness of Fit 

Index (GFI) and Adjusted Goodness of Fit Index (AGFI; Jöreskog & Sörbom, 1984), 

Standardized Root Mean Squared Residal (SRMR; Bentler, 1995) and the Root Mean 

Squared Error of Approximation (RMSEA; Steiger & Lind, 1980).  

The overall goodness-of-fit statistic is considered a global measure of model fit 

(i.e., exact fit statistic) because it assesses the magnitude of the discrepancy between the 

model implied covariance matrix ( )θΣ  and the sample covariance matrix S. The 2χ  can 

be calculated as 

MINFN )1(2 −=χ , 

where N is the number of subjects and FMIN is the minimum fitting function obtained 

from an estimation method such as maximum likelihood (ML), the most commonly 

utilized fitting function in SEM (Gierl & Mulvenon, 1995).  In practice, the 2χ can range 

anywhere from 0 for a saturated model (i.e., the number of parameters estimated is equal 

to the number of elements in the variance/covariance matrix for the observed variables) 

to a maximum for the independence model (i.e., only the variance of the variables are 

estimated; all covariances are set equal to 0).  A non-significant 2χ value with associated 

degrees of freedom (df = (p(p+1)/2)-q, where p is the number of observed variables and q 

is the number of model parameters, indicates very little discrepancy between the model 

implied and sample covariance matrices.  The difference between ( )θΣ  and S is 

represented in a residual matrix which contains residual values close to zero when 

the 2χ is not significant.  Unfortunately, the 2χ statistic is sensitive to sample size and 
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departures from the multivariate normality assumption (e.g., Chou, Bentler & Satorra, 

1991; Curran, West & Finch, 1996; Hu, Bentler & Kano, 1992).   

Goodness-of-fit indices are often used to supplement the 2χ model fit statistic.  

While the 2χ model fit statistic utilizes a statistical distribution to make a distinction 

between a significant and non-significant difference, goodness-of-fit indices quantify the 

fit of the model along a continuum.  Similar to the R2 in regression analyses, fit indices 

quantify the extent to which the variation and covariation in the sample data are 

accounted for by the implied model.  Fit indices are categorized as either absolute or 

incremental (Bollen, 1989; Gerbing & Anderson, 1993; Hu & Bentler, 1995, 1998; 

Marsh, Balla & McDonald, 1988; Tanaka, 1993).  The GFI, AGFI, SRMR and RMSEA 

are considered absolute fit indices.  Absolute fit indices directly assess how well the 

implied model reproduces the sample data by comparing (either implicitly or explicitly) 

the model implied covariance matrix to a saturated model which exactly reproduces the 

sample covariance matrix. 

In contrast to absolute fit indices, incremental fit indices measure the 

proportionate improvement in fit by comparing the implied theoretical model to a more 

restrictive, nested baseline model which typically consists of observed variables that are 

allowed to vary but not covary.  Incremental fit indices can be further defined as Type 1, 

Type 2 or Type 3 fit indices (Marsh et al., 1988; Hu et al., 1998).  Unlike Type 1 fit 

indices, Type 2 and Type 3 fit indices assume the variables to follow a specific 

distributional form.  Type 2 fit indices assume the expected value of the test statistic from 

the target model follows a central 2χ  distribution whereas Type 3 fit indices assume the 

expected value of the same statistic to follow a non-central 2χ  distribution.  In addition, 
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Type 3 fit indices also may use information from the baseline model that the target model 

is being compared to.  The expected value of the baseline model is also assumed to 

follow a non-central 2χ  distribution.  The CFI is the only incremental fit index to be 

examined in this dissertation.  Table 8 summarizes the mathematical form and range of 

values for each of the fit indices to be used in this dissertation.     

Table 8.  Mathematical definitions and range of values for fit indices 

Mathematical Definition Range of Values 

CFI = ( )[ ]
( ) ( )[ ]0,,max

0,max1

BBTT

TT

dfTdfT
dfT
−−

−−  0 to 1 

GFI = ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

Σ

−Σ
−

−

−

21

21

1
Str

IStr  
Typically ranges 

from 0 to 1 but can 
be < 0 and > 1 

AGFI = ( ) ( )GFI
df
pp

T

−⎥
⎦

⎤
⎢
⎣

⎡ +
− 1

2
11  Same as GFI 

SRMR =
( ) ( )[ ]
( )1

ˆ,2 21
1

+

−ΣΣ =
=

pp
sss jjiiijij

j
t

p
t σ

 0 to 1 

RMSEA =
Tdf

F0
ˆ

, where ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−
−

= 0,
1

maxˆ
0 N

dfTF TT
Typically ranges 

from 0 to 1 but can 
be negative 

Note.  TT is the test statistic for the target model; Tdf is the df for the target model; 

Bdf is the df for the baseline model; p is the number of observed variables; ijs  are the 

observed covariances; ijσ̂ are the reproduced covariances; iis and jjs are the observed 
standard deviations.  

  

3.3 DATA GENERATION AND PROCEDURE   

Data was generated according to the mean values of each trajectory in Table 6 and 

the parameter specifications presented in Table 7.  These values were input into EQS 6.1 

(Bentler, 2004) under a two-factor LGM.  This process was replicated 1000 times at each 
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sample size (7) for each trajectory (3) with each type of factor correlation (3) and slope 

variance (3), resulting in a total of 189,000 (7 x 3 x 3 x 3 x 1000) raw datasets.  The 

general program used to generate data is displayed in Appendix A.1.1.  Each of the 

189,000 raw datasets was fit to the quadratic, spline and unspecified models, resulting in 

567,000 analyses.  The programs used to fit the data are on display in Appendices A.1.2 

thru A.1.4.  Goodness-of-fit estimates from analyses which were free of convergence 

problems and/or condition codes (e.g., linear dependencies, negative variance) were 

imported into SPSS for analysis. 

3.4 DATA ANALYTIC STRATEGY   

The primary purpose of this dissertation was to identify the technique which 

provided the best model fit.  To address this question, a series mixed ANOVA's were 

conducted to test for mean differences across conditions.  An ANOVA on each of the 

outcome measures (i.e., p-value, GFI, AGFI, CFI, SRMR and RMSEA) was conducted 

with fit technique (quadratic, spline & unspecified) as the within-subjects factor and 

growth curve (exponential, logarithmic & logistic), sample size (50, 75, 100, 150, 200, 

300 & 500), slope variance (.15, .45 & .75) and factor correlation (.15, .45 & .75) as the 

between-subjects factors.  Given the large number of replications, particular attention was 

paid to effect sizes.  The effect size of most interest was for the technique used to fit the 

data. 
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4.0 Results 

The results of this dissertation are presented in four sections.  Section one 

provides a verification of the data generation process.  Section two provides a summary 

of convergence rates for each growth curve by the conditions of the study.  Section three 

provides descriptive statistics for each growth curve by the conditions of the study and 

section four provides the results from the Mixed ANOVA. 

4.1 VERIFICATION OF DATA GENERATION 

 Table 9 displays the means and standard deviations of the data values generated 

for each growth curve.  The mean values are consistent with those on display in Table 6 

with the only difference being that the generated values began with an initial time point 

of 1 rather than zero, thus causing the value at each of the corresponding time points to 

also be 1 unit higher.  However, the trajectory of the curves was consistent with what was 

expected so the convergence failures and/or conditions codes to be mentioned in the next 

section can not be attributed to the data generation process. 

Table 9.  Mean and standard deviations of all generated data values (n=12,375,000) by growth curve. 

 Time 1 Time 2 Time 3 Time 4 Time 5 
Exponential 1.0001 1.3202 2.1899 4.5595 10.9994 



 

 61 

(1.4144) (1.4943) (1.8314) (3.1618) (7.3908) 
Logarithmic 0.9994 

(1.4141) 
5.3111 

(3.6308) 
7.8314 

(5.2706) 
9.6113 

(6.4554) 
11.0017 
(7.3875) 

Logistic 0.9995 
(1.4140) 

2.0492 
(1.7673) 

5.9984 
(4.0741) 

9.9465 
(6.6855) 

10.9969 
(7.3902) 

 
 As another means of verifying the data generation process, the syntax in 

Appendix A.1.1 was used to generate a single dataset containing 5000 cases.  The factor 

loadings were set to be consistent with the logarithmic curve (i.e., 0, 4.31, 6.83, 8.62 and 

10) while the slope variance and covariance between the disturbances was set to .75.  

This dataset was fit to a two factor model with the loadings fixed to the values defining 

the logarithmic curve (i.e., 0, 4.31, 6.83, 8.62 and 10) while the variance of the errors and 

disturbances and the covariance between the disturbances were free to be estimated.  As 

seen in table 10, the estimates of these parameters are very close to the values used to 

generate the data.  This supports the notion that any convergence issues are not related to 

the data generation process. 

Table 10.  Comparison of generated and fitted data values 

 Generated Fit 
Factor Means 013.11 =ν  013.11 =ν  
 001.12 =ν  001.12 =ν  
Factor Variances 000.12

1
=ςσ  958.02

1
=ςσ  

 750.02
2
=ςσ  749.02

2
=ςσ  

Covariance of Factor Variances 750.0
21
=ςςσ  732.0

21
=ςςσ  

Error Variances 000.12
1
=εσ  952.02

1
=εσ  

 000.12
2
=εσ  028.12

2
=εσ  

 000.12
3
=εσ  022.12

3
=εσ  

 000.12
4
=εσ  007.12

4
=εσ  

 000.12
5
=εσ  961.02

5
=εσ  

Factor Loadings Fixed to values for logarithmic 
curve – 0, 4.31, 6.83, 8.62 and 10. 
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4.2 CONVERGENCE RATES 

The 567,000 replications yielded 298,554 solutions which converged without a 

condition code.  Tables 11 thru 13 display the number of admissible solutions for each 

growth curve by fit technique, slope variance, factor correlation and sample size.  The 

cubic technique is not displayed in these tables due to convergence and/or condition 

codes problems resulting in not a single admissible solution.  The majority of these 

condition codes were due to linear dependencies and further research needs to be 

conducted as to why this was the case.   

Convergence rates were very high for the logarithmic curve across the other 

conditions of the study.  This was not the case for the exponential and logistic curves.  In 

both of these curve conditions, convergence rates were very low except when the 

unspecified model was fit to the data.  In general, fitting the unspecified model resulted in 

the highest rates of convergence regardless of the curve it was being fit to.   For the 

logarithmic curve, rates of convergence were of course highest for the unspecified fit 

technique followed by the quadratic technique and the spline technique.  In addition, for 

the logarithmic curve, convergence rates slightly increased as the slope variance and 

factor correlation increased and also as the sample size increased.  Again, this was the 

case for the other curves when the unspecified technique was fit to the data.  However, 

when the other techniques were fit to the exponential and logistic curves, this pattern was 

not displayed.  In some instances, the number of converging solutions decreased with 

sample size while in others a pattern across the conditions was not discernable.     
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Table 11.  Number of admissible solutions for the logarithmic growth curve by fit technique, slope 

variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
.15 618 733 809 871 899 951 986 
.45 668 783 828 903 932 972 990 .15 
.75 704 835 867 927 953 986 998 
.15 752 882 944 976 993 993 1000 
.45 794 910 962 987 995 999 1000 .45 
.75 850 946 975 998 1000 1000 1000 
.15 784 739 923 964 983 995 1000 
.45 836 945 959 986 996 999 1000 

Quadratic 

.75 
.75 905 958 983 991 1000 999 1000 
.15 502 591 674 785 829 893 963 
.45 583 644 746 813 865 930 973 .15 
.75 599 721 787 846 889 939 992 
.15 632 753 813 886 923 957 989 
.45 721 850 900 946 974 996 1000 .45 
.75 773 904 934 987 991 997 1000 
.15 614 704 760 814 852 876 937 
.45 751 843 886 942 965 985 998 

Spline 

.75 
.75 826 907 948 982 993 998 1000 
.15 990 994 1000 1000 1000 1000 1000 
.45 987 998 1000 1000 1000 1000 1000 .15 
.75 987 997 1000 1000 1000 1000 1000 
.15 981 994 1000 1000 1000 1000 1000 
.45 983 999 1000 1000 1000 1000 1000 .45 
.75 991 999 999 1000 1000 1000 1000 
.15 984 997 1000 1000 1000 1000 1000 
.45 989 998 999 1000 1000 1000 1000 

Unspecified 

.75 
.75 989 999 1000 1000 1000 1000 1000 

 
Table 12.  Number of admissible solutions for the exponential growth curve by fit technique, slope 

variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
.15 49 98 14 2 0 0 0 
.45 321 300 24 5 5 1 0 .15 
.75 358 324 298 390 232 230 330 
.15 23 9 6 1 1 0 0 
.45 351 210 15 3 1 1 0 

Quadratic 

.45 
.75 623 710 751 625 866 877 603 
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.15 2 0 0 0 0 0 0 

.45 14 3 0 0 0 0 0 .75 

.75 208 381 271 317 183 1 0 

.15 72 118 98 102 56 45 14 

.45 108 84 118 94 62 47 19 .15 

.75 144 157 92 95 51 21 18 

.15 28 2 1 0 1 0 0 

.45 5 10 6 0 3 5 1 .45 

.75 50 13 25 9 2 6 3 

.15 2 0 0 0 0 0 0 

.45 15 2 0 0 0 0 0 

Spline 

.75 
.75 10 3 2 2 8 0 0 
.15 662 681 751 807 846 891 948 
.45 698 721 752 803 853 881 946 .15 
.75 654 757 796 855 873 929 968 
.15 597 663 677 742 756 811 883 
.45 605 711 718 752 812 856 899 .45 
.75 673 706 772 815 830 887 951 
.15 611 627 656 685 700 771 837 
.45 578 663 671 696 760 812 846 

Unspecified 

.75 
.75 615 692 716 774 808 845 885 

 
Table 13.  Number of admissible solutions for the logistic growth curve by fit technique, slope 

variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
.15 12 15 12 8 6 3 1 
.45 13 17 17 13 9 2 1 .15 
.75 8 13 8 5 4 0 0 
.15 6 8 10 2 2 0 0 
.45 11 6 5 6 0 0 0 .45 
.75 1 3 2 0 0 0 0 
.15 2 2 7 1 1 0 0 
.45 7 3 2 1 0 0 0 

Quadratic 

.75 
.75 1 1 3 0 0 0 0 
.15 15 3 3 0 0 0 0 
.45 13 7 5 1 0 0 0 .15 
.75 36 16 8 0 0 0 0 
.15 1 3 0 0 0 0 0 
.45 11 5 2 0 0 0 0 .45 
.75 9 9 1 0 0 0 0 
.15 1 0 0 0 0 0 0 
.45 5 0 0 0 0 0 0 

Spline 

.75 
.75 0 2 0 1 0 0 0 
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.15 985 998 998 1000 1000 1000 1000 

.45 986 999 999 1000 1000 1000 1000 .15 

.75 984 999 1000 1000 1000 1000 1000 

.15 983 989 998 1000 1000 1000 1000 

.45 981 997 1000 1000 1000 1000 1000 .45 

.75 990 996 1000 1000 1000 1000 1000 

.15 975 989 999 1000 1000 1000 1000 

.45 975 995 1000 1000 1000 1000 1000 

Unspecified 

.75 
.75 987 994 1000 1000 1000 1000 1000 

4.3 DESCRIPTIVE STATISTICS 

 Tables 14 thru 19 provide means and standard deviations for each of the 

outcome measures (p-value for 2χ model fit statistic, GFI, AGFI, CFI, SRMR and 

RMSEA) of the study broken down by fit technique (quadratic, spline and unspecified), 

slope variance (.15, .45 & .75), factor correlation (.15, .45 & .75) and sample size (50, 75, 

100, 150, 200, 300 and 500) for the logarithmic growth curve.  Separate tables were not 

created for the exponential and logistic growth curves due to the number of inadmissible 

solutions encountered in each.  The inconsistency (in terms of convergence rates) across 

the cells of the factors for each of these curves makes comparisons difficult at best.  

However, Tables 20 thru 25 display means and standard deviations for the unspecified 

technique fit to the exponential and logistic curves.  For these curves, this was the only fit 

technique which yielded an adequate number of admissible solutions for analysis.      

The pattern of results for each of the outcome measures was consistent across the 

cells of the design.  In general, better estimates of model fit were obtained (higher p-

values for the 2χ  model fit statistic, higher values for the GFI, AGFI and CFI, and lower 

values for the SRMR and RMSEA) for the unspecified fit technique followed by the 
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quadratic fit technique and then the spline fit technique.  These results are consistent with 

the results found for the convergence rates.  That is, convergence rates were higher for 

the unspecified technique followed by the quadratic technique followed by the spline 

technique.  In addition, the values of the fit indices indicated better model fit as sample 

size increased but worse model fit as the slope variance and factor correlation increased.  

In many cases, these differences were very small but this was expected given the large 

number of replications (1000) conducted within each cell of the design.  The pattern of 

results for the standard deviation was consistent with the pattern of results for the means.    

Table 14.  Descriptive statistics for the p-value of the model fit statistic for the logarithmic growth 

curve by fit technique, slope variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Quadratic .15 .15 .08(.14) .02(.06) .01(.02) .00(.00) .00(.00) .00(.00) .00(.00)
  .45 .07(.14) .03(.09) .01(.04) .00(.01) .00(.00) .00(.00) .00(.00)
  .75 .07(.13) .03(.08) .01(.03) .00(.01) .00(.00) .00(.00) .00(.00)
 .45 .15 .06(.11) .02(.06) .01(.03) .00(.00) .00(.00) .00(.00) .00(.00)
  .45 .04(.09) .01(.04) .00(.01) .00(.00) .00(.00) .00(.00) .00(.00)
  .75 .05(.10) .01(.05) .00(.02) .00(.00) .00(.00) .00(.00) .00(.00)
 .75 .15 .02(.08) .01(.03) .00(.01) .00(.00) .00(.00) .00(.00) .00(.00)
  .45 .02(.06) .01(.03) .00(.01) .00(.00) .00(.00) .00(.00) .00(.00)
  .75 .03(.07) .01(.03) .00(.01) .00(.00) .00(.00) .00(.00) .00(.00)
Spline .15 .15 .00(.02) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
  .45 .00(.01) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
  .75 .00(.01) .00(.01) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
 .45 .15 .00(.01) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
  .45 .00(.01) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
  .75 .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
 .75 .15 .00(.01) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
  .45 .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
  .75 .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00) .00(.00)
Unspecified .15 .15 .48(.29) .47(.29) .48(.29) .48(.29) .49(.29) .49(.29) .50(.29)
  .45 .48(.30) .49(.29) .50(.29) .49(.29) .49(.29) .50(.29) .49(.29)
  .75 .47(.29) .48(.29) .49(.30) .48(.29) .47(.29) .51(.28) .49(.29)
 .45 .15 .47(.29) .48(.29) .50(.30) .48(.29) .49(.29) .49(.29) .50(.29)
  .45 .48(.29) .48(.30) .49(.28) .49(.29) .50(.29) .50(.29) .50(.29)
  .75 .47(.29) .47(.29) .48(.29) .49(.29) .49(.29) .50(.29) .51(.29)
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 .75 .15 .47(.29) .48(.29) .49(.29) .50(.29) .49(.29) .49(.29) .50(.29)
  .45 .46(.29) .50(.28) .48(.29) .49(.29) .50(.29) .49(.30) .49(.29)
  .75 .48(.28) .51(.29) .49(.30) .48(.29) .50(.29) .50(.29) .49(.29)

 
Table 15.  Descriptive statistics for the GFI for the logarithmic growth curve by fit technique, slope 

variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Quadratic .15 .15 .95(.02) .96(.02) .97(.02) .97(.01) .98(.01) .98(.01) .98(.01)
  .45 .95(.03) .96(.02) .97(.02) .97(.01) .98(.01) .98(.01) .98(.01)
  .75 .95(.03) .96(.02) .97(.02) .97(.01) .97(.01) .98(.01) .98(.01)
 .45 .15 .94(.03) .95(.02) .96(.02) .96(.02) .96(.01) .96(.01) .97(.01)
  .45 .94(.03) .95(.02) .96(.02) .96(.02) .96(.01) .97(.01) .97(.01)
  .75 .94(.03) .95(.02) .95(.02) .96(.02) .96(.01) .96(.01) .97(.01)
 .75 .15 .92(.04) .93(.03) .93(.03) .94(.02) .94(.02) .94(.01) .94(.01)
  .45 .92(.03) .93(.03) .93(.03) .94(.02) .94(.02) .94(.02) .94(.01)
  .75 .92(.03) .93(.03) .93(.03) .94(.02) .94(.02) .94(.01) .94(.01)
Spline .15 .15 .93(.03) .93(.02) .94(.02) .94(.02) .94(.01) .95(.01) .95(.01)
  .45 .92(.03) .93(.02) .94(.02) .94(.02) .94(.01) .94(.01) .95(.01)
  .75 .92(.03) .93(.02) .93(.02) .94(.02) .94(.01) .94(.01) .95(.01)
 .45 .15 .91(.03) .91(.03) .92(.02) .92(.02) .92(.02) .92(.01) .93(.01)
  .45 .90(.03) .91(.03) .92(.02) .92(.02) .92(.02) .92(.01) .94(.03)
  .75 .90(.03) .91(.03) .92(.02) .92(.02) .92(.02) .92(.01) .92(.01)
 .75 .15 .88(.03) .88(.03) .89(.02) .89(.02) .89(.02) .89(.01) .89(.01)
  .45 .87(.03) .88(.03) .88(.02) .89(.02) .89(.02) .89(.01) .89(.01)
  .75 .87(.03) .88(.03) .88(.02) .89(.02) .89(.02) .89(.01) .89(.01)
Unspecified .15 .15 .95(.03) .97(.02) .98(.01) .98(.01) .99(.01) .99(.01) .99(.02)
  .45 .95(.03) .97(.02) .98(.01) .98(.01) .99(.01) .99(.01) .99(.00)
  .75 .95(.02) .97(.02) .97(.01) .94(.02) .99(.01) .99(.00) .99(.00)
 .45 .15 .95(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.00) .99(.00)
  .45 .95(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.00) .99(.00)
  .75 .95(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.00) .99(.00)
 .75 .15 .96(.02) .97(.02) .98(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .45 .96(.02) .97(.02) .98(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .75 .96(.02) .97(.02) .98(.01) .99(.01) .99(.01) .99(.00) .99(.00)

 
Table 16.  Descriptive statistics for the AGFI for the logarithmic growth curve by fit technique, slope 

variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Quadratic .15 .15 .83(.09) .86(.07) .88(.06) .90(.05) .91(.04) .92(.03) .93(.02)
  .45 .82(.09) .86(.07) .88(.06) .89(.05) .91(.04) .92(.03) .92(.02)
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  .75 .81(.10) .85(.08) .87(.06) .90(.05) .90(.04) .92(.03) .92(.03)
 .45 .15 .78(.11) .82(.09) .83(.07) .85(.06) .86(.05) .87(.04) .88(.03)
  .45 .77(.11) .81(.09) .83(.07) .85(.06) .86(.05) .87(.04) .87(.03)
  .75 .77(.11) .81(.09) .83(.08) .85(.06) .85(.05) .86(.04) .87(.03)
 .75 .15 .70(.13) .73(.11) .74(.09) .77(.07) .77(.06) .78(.05) .79(.04)
  .45 .69(.13) .73(.11) .74(.09) .76(.08) .77(.07) .78(.06) .78(.04)
  .75 .69(.13) .73(.11) .74(.09) .76(.07) .77(.07) .78(.05) .78(.04)
Spline .15 .15 .72(.11) .74(.08) .76(.07) .78(.06) .79(.05) .79(.04) .80(.03)
  .45 .71(.10) .75(.09) .76(.07) .77(.06) .78(.05) .79(.04) .80(.03)
  .75 .70(.11) .74(.09) .75(.08) .77(.06) .78(.05) .79(.04) .80(.03)
 .45 .15 .65(.12) .67(.10) .68(.08) .69(.07) .71(.06) .71(.04) .72(.03)
  .45 .64(.11) .67(.10) .68(.08) .70(.07) .70(.06) .71(.05) .72(.04)
  .75 .63(.11) .66(.09) .68(.08) .70(.07) .70(.06) .71(.05) .72(.03)
 .75 .15 .53(.12) .55(.10) .57(.09) .58(.07) .59(.06) .59(.05) .60(.04)
  .45 .52(.11) .55(.10) .57(.09) .58(.07) .58(.06) .59(.05) .59(.13)
  .75 .52(.12) .55(.10) .56(.09) .57(.07) .58(.06) .58(.05) .59(.04)
Unspecified .15 .15 .81(.09) .87(.06) .90(.05) .93(.03) .95(.03) .97(.02) .98(.01)
  .45 .82(.09) .88(.06) .91(.05) .94(.03) .95(.03) .97(.02) .98(.01)
  .75 .81(.09) .87(.07) .90(.05) .94(.03) .95(.03) .97(.02) .98(.01)
 .45 .15 .82(.09) .88(.06) .91(.05) .94(.03) .95(.03) .97(.02) .98(.01)
  .45 .82(.09) .88(.06) .91(.05) .94(.03) .96(.03) .97(.02) .98(.01)
  .75 .82(.09) .88(.06) .91(.05) .94(.03) .95(.02) .97(.02) .98(.01)
 .75 .15 .83(.08) .89(.06) .92(.04) .94(.03) .96(.02) .97(.02) .98(.01)
  .45 .83(.09) .89(.06) .92(.04) .94(.03) .96(.02) .97(.02) .98(.01)
  .75 .83(.08) .89(.06) .92(.05) .94(.03) .96(.02) .97(.02) .98(.01)

 
Table 17.  Descriptive statistics for the CFI for the logarithmic growth curve by fit technique, slope 

variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Quadratic .15 .15 .99(.01) .99(.01) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .45 .99(.01) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00)
  .75 .99(.01) .99(.01) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00)
 .45 .15 .99(.01) .99(.01) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .45 .99(.01) .99(.01) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .75 .99(.01) .99(.01) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00)
 .75 .15 .98(.01) .98(.01) .98(.01) .98(.01) .98(.01) .98(.00) .98(.00)
  .45 .98(.01) .98(.01) .98(.01) .98(.01) .98(.01) .99(.00) .99(.00)
  .75 .98(.01) .99(.01) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00)
Spline .15 .15 .97(.02) .97(.01) .97(.01) .97(.01) .97(.01) .97(.01) .97(.01)
  .45 .97(.02) .98(.01) .98(.01) .98(.01) .98(.01) .98(.01) .98(.00)
  .75 .98(.01) .98(.01) .98(.01) .98(.01) .98(.01) .98(.01) .98(.00)
 .45 .15 .97(.02) .97(.01) .97(.01) .97(.01) .97(.01) .97(.01) .97(.00)
  .45 .97(.02) .97(.01) .97(.01) .97(.01) .97(.01) .97(.01) .97(.00)
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  .75 .97(.01) .97(.01) .97(.01) .97(.01) .97(.01) .97(.01) .97(.00)
 .75 .15 .96(.02) .96(.01) .96(.01) .96(.01) .96(.01) .96(.01) .96(.01)
  .45 .96(.02) .96(.01) .96(.01) .96(.01) .96(.01) .96(.01) .96(.01)
  .75 .96(.02) .96(.01) .96(.01) .96(.01) .96(.01) .96(.01) .96(.01)
Unspecified .15 .15 .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
  .45 .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
  .75 .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
 .45 .15 .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)
  .45 .99(.01) .99(.01) .99(.03) .99(.00) .99(.01) .99(.00) .99(.00)
  .75 .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)
 .75 .15 .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)
  .45 .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)
  .75 .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)

 
Table 18.  Descriptive statistics for the SRMR for the logarithmic growth curve by fit technique, 

slope variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Quadratic .15 .15 .05(.02) .05(.02) .05(.02) .05(.02) .04(.02) .04(.01) .04(.01)
  .45 .05(.02) .05(.02) .05(.02) .05(.02) .04(.02) .04(.01) .04(.01)
  .75 .05(.03) .05(.02) .05(.02) .05(.02) .05(.02) .04(.01) .04(.01)
 .45 .15 .06(.03) .06(.02) .06(.02) .06(.02) .06(.12) .06(.01) .06(.01)
  .45 .06(.03) .06(.03) .06(.02) .06(.02) .06(.02) .06(.01) .06(.01)
  .75 .07(.03) .06(.03) .06(.02) .06(.02) .06(.02) .06(.01) .06(.01)
 .75 .15 .07(.03) .08(.21) .07(.02) .07(.02) .07(.02) .07(.01) .07(.01)
  .45 .08(.03) .08(.03) .07(.02) .07(.02) .07(.02) .07(.02) .07(.01)
  .75 .08(.03) .08(.03) .08(.03) .08(.02) .08(.02) .07(.02) .07(.01)
Spline .15 .15 .08(.03) .08(.03) .08(.02) .08(.02) .08(.02) .08(.01) .08(.01)
  .45 .09(.04) .08(.03) .08(.03) .08(.02) .08(.02) .08(.02) .08(.01)
  .75 .09(.04) .08(.03) .08(.03) .08(.02) .08(.02) .08(.02) .08(.01)
 .45 .15 .10(.03) .10(.03) .10(.02) .10(.02) .10(.02) .10(.02) .10(.01)
  .45 .11(.04) .11(.03) .11(.03) .11(.02) .11(.02) .10(.02) .10(.01)
  .75 .11(.04) .11(.04) .11(.03) .11(.02) .11(.02) .11(.02) .11(.01)
 .75 .15 .13(.05) .13(.03) .13(.03) .13(.02) .13(.02) .13(.02) .13(.01)
  .45 .14(.04) .13(.04) .13(.03) .13(.03) .14(.02) .14(.02) .14(.02)
  .75 .14(.05) .14(.04) .14(.04) .14(.03) .14(.03) .14(.02) .14(.02)
Unspecified .15 .15 .05(.02) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01) .01(.01)
  .45 .05(.01) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01) .01(.01)
  .75 .04(.02) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01) .01(.01)
 .45 .15 .04(.02) .03(.01) .02(.01) .02(.01) .02(.01) .01(.01) .01(.01)
  .45 .04(.02) .03(.01) .02(.01) .02(.01) .02(.01) .01(.01) .01(.01)
  .75 .03(.02) .03(.01) .02(.01) .02(.01) .02(.01) .01(.01) .01(.01)
 .75 .15 .03(.01) .02(.01) .02(.01) .02(.01) .01(.01) .01(.01) .01(.00)
  .45 .03(.01) .02(.01) .02(.01) .02(.01) .01(.01) .01(.01) .01(.00)
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  .75 .03(.01) .02(.01) .02(.01) .02(.01) .01(.01) .01(.01) .01(.00)
 
Table 19.  Descriptive statistics for the RMSEA for the logarithmic growth curve by fit technique,    

slope variance, factor correlation and sample size 

Sample Size 
Model 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Quadratic .15 .15 .09(.08) .05(.02) .07(.05) .06(.04) .10(.04) .10(.03) .10(.02)
  .45 .10(.08) .10(.06) .10(.06) .10(.05) .10(.04) .11(.03) .11(.02)
  .75 .11(.08) .10(.07) .10(.06) .10(.04) .11(.04) .10(.03) .11(.02)
 .45 .15 .13(.09) .13(.07) .14(.06) .14(.04) .14(.04) .14(.03) .14(.02)
  .45 .14(.08) .13(.07) .14(.06) .14(.05) .14(.04) .14(.03) .14(.02)
  .75 .14(.08) .14(.07) .14(.06) .14(.04) .15(.04) .15(.03) .15(.02)
 .75 .15 .19(.08) .19(.07) .19(.05) .19(.04) .20(.04) .20(.03) .20(.02)
  .45 .19(.08) .19(.06) .20(.05) .20(.04) .20(.04) .20(.03) .20(.02)
  .75 .19(.08) .19(.06) .19(.05) .20(.04) .20(.04) .20(.03) .20(.02)
Spline .15 .15 .19(.08) .20(.06) .20(.05) .20(.04) .20(.03) .20(.02) .20(.02)
  .45 .20(.07) .19(.06) .20(.05) .20(.04) .20(.03) .20(.02) .20(.02)
  .75 .20(.08) .20(.06) .20(.05) .20(.03) .20(.03) .20(.02) .20(.02)
 .45 .15 .24(.08) .24(.06) .25(.05) .25(.04) .25(.03) .25(.02) .25(.02)
  .45 .25(.07) .25(.06) .25(.04) .25(.04) .25(.03) .25(.03) .25(.02)
  .75 .25(.07) .25(.06) .25(.05) .25(.04) .25(.03) .25(.03) .25(.02)
 .75 .15 .31(.07) .31(.05) .31(.05) .31(.04) .31(.03) .31(.02) .31(.02)
  .45 .32(.06) .31(.05) .31(.05) .31(.04) .32(.03) .32(.03) .31(.02)
  .75 .31(.07) .31(.05) .31(.05) .32(.03) .31(.03) .32(.03) .32(.02)
Unspecified .15 .15 .10(.08) .08(.06) .07(.05) .06(.04) .05(.04) .04(.03) .02(.02)
  .45 .10(.08) .08(.06) .07(.05) .06(.04) .05(.04) .04(.03) .03(.02)
  .75 .10(.07) .08(.06) .07(.05) .06(.04) .05(.04) .04(.03) .03(.02)
 .45 .15 .10(.07) .08(.06) .06(.05) .05(.04) .05(.04) .04(.03) .03(.02)
  .45 .09(.07) .08(.06) .06(.05) .05(.04) .04(.04) .04(.03) .03(.02)
  .75 .10(.08) .08(.06) .07(.05) .05(.04) .05(.04) .04(.03) .03(.02)
 .75 .15 .09(.07) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .02(.02)
  .45 .09(.07) .06(.06) .06(.05) .05(.04) .04(.04) .03(.03) .03(.02)
  .75 .09(.07) .06(.06) .06(.05) .05(.04) .04(.04) .03(.03) .02(.02)

 
 Tables 20 thru 25 display means and standard deviations for each outcome 

measure for the unspecified fit technique across all of the factors of the study for the 

exponential and logistic growth curves.  The results for these curves are reported in this 

manner since the unspecified fit technique was the only technique to yield convergence 

rates at or above 60% within each cell of the other conditions.  Therefore, mean 
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comparisons were deemed to be meaningful.  The results found in Tables 20 thru 25 are 

consistent with those found when fitting the unspecified model to the logarithmic curve. 

Table 20.  Descriptive statistics for the p-value of the model fit statistic for the unspecified fit 

technique by growth curve, slope variance, factor correlation and sample size 

Sample Size 
Curve 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Exponential .15 .15 .47(.30) .48(.29) .48(.29) .48(.29) .49(.29) .50(.30) .50(.29)
  .45 .48(.28) .48(.29) .49(.29) .48(.29) .49(.29) .51(.30) .48(.29)
  .75 .46(.28) .51(.29) .48(.29) .50(.30) .50(.28) .51(.29) .49(.29)
 .45 .15 .49(.30) .49(.30) .47(.29) .50(.29) .48(.29) .50(.29) .51(.29)
  .45 .48(.29) .49(.29) .49(.29) .50(.29) .48(.28) .52(.29) .48(.28)
  .75 .48(.29) .49(.29) .51(.29) .50(.29) .51(.29) .48(.29) .51(.29)
 .75 .15 .48(.30) .49(.28) .50(.29) .50(.29) .48(.29) .49(.29) .50(.29)
  .45 .47(.06) .50(.28) .48(.29) .50(.28) .52(.30) .51(.29) .51(.30)
  .75 .48(.28) .49(.28) .49(.29) .48(.29) .50(.29) .50(.28) .49(.28)
Logistic .15 .15 .48(.30) .47(.29) .47(.28) .50(.30) .50(.29) .50(.28) .50(.29)
  .45 .47(.30) .48(.29) .49(.29) .50(.29) .49(.29) .49(.28) .49(.28)
  .75 .48(.29) .49(.29) .49(.29) .50(.29) .50(.29) .51(.29) .51(.29)
 .45 .15 .47(.30) .49(.30) .50(.29) .51(.29) .50(.29) .48(.29) .49(.29)
  .45 .48(.30) .47(.30) .50(.29) .48(.28) .49(.29) .51(.29) .49(.29)
  .75 .48(.29) .49(.29) .49(.29) .50(.29) .49(.30) .49(.28) .48(.30)
 .75 .15 .48(.29) .47(.30) .50(.29) .47(.29) .48(.29) .49(.28) .50(.30)
  .45 .46(.29) .46(.29) .49(.29) .49(.29) .51(.29) .50(.29) .50(.29)
  .75 .48(.28) .48(.29) .48(.29) .49(.29) .52(.29) .50(.29) .51(.29)
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Table 21.  Descriptive statistics for the GFI for the unspecified fit technique by growth curve, slope 

variance, factor correlation and sample size 

Sample Size 
Curve 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Exponential .15 .15 .95(.03) .93(.03) .97(.01) .98(.01) .99(.01) .99(.01) .99(.00)
  .45 .95(.02) .97(.02) .97(.01) .98(.01) .99(.01) .99(.01) .99(.00)
  .75 .95(.02) .97(.02) .97(.01) .98(.01) .99(.01) .99(.01) .99(.00)
 .45 .15 .95(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.01) .99(.00)
  .45 .95(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.00) .99(.00)
  .75 .95(.02) .90(.02) .91(.02) .98(.01) .99(.01) .99(.01) .99(.00)
 .75 .15 .95(.02) .97(.02) .98(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .45 .95(.02) .97(.02) .98(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .75 .96(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.00) .99(.00)
Logistic .15 .15 .95(.03) .97(.02) .97(.01) .98(.01) .99(.01) .99(.00) .99(.00)
  .45 .95(.03) .97(.02) .97(.01) .98(.01) .99(.01) .99(.01) .99(.00)
  .75 .95(.02) .97(.02) .97(.01) .98(.01) .99(.01) .99(.01) .99(.00)
 .45 .15 .95(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.01) .99(.00)
  .45 .95(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.00) .99(.00)
  .75 .95(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.00) .99(.00)
 .75 .15 .96(.02) .97(.02) .98(.01) .98(.01) .99(.01) .99(.00) .99(.00)
  .45 .96(.02) .97(.02) .98(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .75 .96(.02) .97(.02) .98(.01) .99(.01) .99(.01) .99(.00) .99(.00)

 
Table 22.  Descriptive statistics for the AGFI for the unspecified fit technique by growth curve, slope 

variance, factor correlation and sample size 

Table 4.14.  Descriptive statistics for the AGFI for the unspecified fit technique by growth curve, 
slope variance, factor correlation and sample size. 

Sample Size 
Curve 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Exponential .15 .15 .81(.10) .87(.07) .90(.05) .93(.04) .95(.03) .97(.02) .98(.01)
  .45 .81(.09) .87(.06) .90(.05) .93(.03) .95(.03) .97(.01) .98(.01)
  .75 .81(.09) .88(.07) .90(.05) .94(.04) .95(.02) .97(.02) .98(.01)
 .45 .15 .82(.09) .88(.06) .90(.05) .94(.03) .95(.03) .97(.02) .98(.01)
  .45 .82(.09) .88(.06) .91(.05) .94(.03) .95(.02) .97(.02) .98(.01)
  .75 .82(.08) .88(.06) .91(.05) .94(.03) .96(.02) .97(.02) .98(.01)
 .75 .15 .83(.09) .89(.06) .92(.05) .94(.03) .96(.02) .97(.02) .98(.01)
  .45 .83(.09) .89(.06) .91(.05) .94(.03) .96(.02) .97(.02) .98(.01)
  .75 .83(.08) .89(.06) .92(.05) .94(.03) .96(.02) .97(.01) .98(.01)
Logistic .15 .15 .81(.09) .87(.06) .90(.05) .94(.03) .95(.03) .97(.02) .98(.01)
  .45 .81(.10) .87(.07) .90(.05) .94(.03) .95(.02) .97(.02) .98(.01)
  .75 .81(.09) .88(.06) .90(.05) .94(.03) .95(.03) .97(.02) .98(.01)
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 .45 .15 .82(.09) .88(.06) .91(.05) .94(.03) .95(.03) .97(.02) .98(.01)
  .45 .82(.09) .88(.07) .91(.05) .94(.03) .95(.02) .97(.02) .98(.01)
  .75 .82(.09) .88(.06) .91(.05) .94(.03) .95(.03) .97(.02) .98(.01)
 .75 .15 .84(.08) .89(.06) .92(.05) .94(.03) .96(.02) .97(.01) .98(.01)
  .45 .83(.08) .89(.06) .92(.04) .94(.03) .96(.02) .97(.02) .98(.01)
  .75 .84(.08) .89(.06) .92(.05) .95(.03) .96(.02) .97(.02) .98(.01)

 
 
Table 23.  Descriptive statistics for the CFI for the unspecified fit technique by growth curve, slope 

variance, factor correlation and sample size 

Sample Size 
Curve 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Exponential .15 .15 .97(.03) .98(.02) .99(.01) .99(.01) .99(.01) .99(.01) .99(.00)
  .45 .98(.03) .99(.02) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00)
  .75 .98(.00) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00)
 .45 .15 .98(.02) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00)
  .45 .98(.02) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00)
  .75 .98(.02) .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00)
 .75 .15 .99(.02) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
  .45 .99(.02) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
  .75 .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
Logistic .15 .15 .99(.02) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
  .45 .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)
  .75 .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
 .45 .15 .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
  .45 .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
  .75 .99(.01) .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00)
 .75 .15 .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)
  .45 .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)
  .75 .99(.01) .99(.01) .99(.00) .99(.00) .99(.00) .99(.00) .99(.00)

 
Table 24.  Descriptive statistics for the SRMR for the unspecified fit technique by growth curve, 

slope variance, factor correlation and sample size 

Sample Size 
Curve 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Exponential .15 .15 .08(.03) .06(.02) .05(.02) .04(.02) .04(.01) .03(.01) .02(.01)
  .45 .08(.03) .06(.02) .05(.02) .04(.02) .04(.01) .03(.01) .02(.01)
  .75 .08(.03) .06(.02) .05(.02) .04(.02) .04(.01) .03(.01) .02(.01)
 .45 .15 .07(.03) .06(.02) .05(.02) .04(.01) .04(.01) .03(.01) .02(.01)
  .45 .07(.03) .05(.02) .05(.02) .04(.02) .03(.01) .03(.01) .02(.01)
  .75 .07(.03) .05(.02) .04(.02) .04(.01) .03(.01) .03(.01) .02(.01)
 .75 .15 .06(.02) .05(.02) .04(.02) .04(.01) .03(.01) .03(.01) .02(.01)
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  .45 .06(.03) .05(.02) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01)
  .75 .06(.02) .05(.02) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01)
Logistic .15 .15 .06(.02) .05(.02) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01)
  .45 .06(.03) .05(.02) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01)
  .75 .06(.03) .05(.02) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01)
 .45 .15 .05(.02) .04(.02) .03(.01) .03(.01) .02(.01) .02(.01) .02(.01)
  .45 .05(.02) .04(.02) .03(.02) .03(.01) .02(.01) .02(.01) .02(.01)
  .75 .05(.02) .04(.02) .03(.02) .03(.02) .02(.01) .02(.01) .01(.01)
 .75 .15 .04(.02) .03(.02) .03(.01) .02(.01) .02(.01) .02(.01) .01(.01)
  .45 .04(.02) .03(.02) .03(.01) .02(.01) .02(.01) .02(.01) .01(.01)
  .75 .04(.02) .03(.02) .03(.01) .02(.01) .02(.01) .02(.01) .01(.01)
  .45 .09(.07) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .02(.02)
  .75 .08(.07) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .02(.02)

 
Table 25.  Descriptive statistics for the RMSEA for the unspecified fit technique by growth curve, 

slope variance, factor correlation and sample size 

Sample Size 
Curve 

2
1ς

σ  
21ςς

σ  50 75 100 150 200 300 500 
Exponential .15 .15 .11(.08) .08(.06) .07(.05) .06(.04) .05(.04) .04(.03) .03(.02)
  .45 .10(.07) .08(.06) .07(.05) .06(.04) .05(.04) .04(.03) .03(.02)
  .75 .11(.08) .08(.06) .07(.05) .06(.05) .05(.04) .04(.03) .03(.02)
 .45 .15 .10(.08) .08(.06) .07(.05) .05(.04) .05(.04) .04(.03) .03(.02)
  .45 .10(.07) .08(.06) .07(.05) .05(.04) .05(.04) .03(.03) .03(.02)
  .75 .10(.07) .08(.06) .06(.05) .04(.04) .04(.03) .04(.03) .03(.02)
 .75 .15 .09(.08) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .03(.02)
  .45 .09(.07) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .03(.02)
  .75 .09(.07) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .03(.02)
Logistic .15 .15 .10(.08) .08(.06) .07(.05) .05(.04) .05(.04) .04(.03) .03(.02)
  .45 .10(.08) .08(.06) .07(.05) .06(.04) .05(.04) .04(.03) .03(.02)
  .75 .10(.08) .08(.06) .07(.05) .05(.04) .05(.04) .04(.03) .03(.02)
 .45 .15 .10(.08) .07(.06) .06(.05) .05(.04) .05(.04) .04(.03) .03(.02)
  .45 .10(.08) .08(.06) .06(.05) .05(.04) .05(.04) .04(.03) .03(.02)
  .75 .09(.07) .08(.06) .06(.05) .05(.04) .05(.04) .04(.03) .03(.02)
 .75 .15 .08(.07) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .02(.02)
  .45 .09(.07) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .02(.02)
  .75 .08(.07) .07(.06) .06(.05) .05(.04) .04(.04) .03(.03) .02(.02)
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4.4 MIXED ANOVA’S 

A mixed ANOVA was conducted on each outcome measure with fit technique as 

the within-subjects factor, factor correlation, sample size and slope value as the between 

subjects factors.  Due to the number of convergence problems encountered with the 

logistic curve it was not included in the analyses.  In addition, the logarithmic and 

exponential curves were analyzed separately.  In other words, the curve factor was not 

included as a between-subjects factor as was originally planned.  Rather two separate 

Mixed ANOVAs were conducted. 

As expected, the large number of replications resulted in significant p-values in 

virtually every condition.  Therefore, interpretation of effect sizes measured via the 

partial 2η became the focus of the analyses.  The standards put forth by Cohen (1988) 

were utilized to identify the magnitude of the effect sizes.  Tables 26 and 27 display the 

effect sizes from the Mixed ANOVAs for the logarithmic and exponential growth curves.  

As the tables show, the largest effect sizes were observed for the fit technique, sample 

size and the slope variance.  There was also a large effect size for the interaction between 

the fit technique and the slope variance.  All other effect sizes were small.  In general, the 

effect sizes were larger for the logarithmic curve than for the exponential curve. 

Table 26.  Partial  values for each of the outcome measures when data was fit to the logarithmic 

curve 

 p-value GFI AGFI CFI SRMR RMSEA 
Fit .745 .876 .876 .886 .808 .894 
Sample .007 .304 .304 .019 .031 .012 
Slope .003 .450 .450 .229 .224 .367 
Factor Correlation .000 .002 .002 .008 .004 .001 
Fit*Sample .002 .044 .044 .015 .028 .091 
Fit*Slope .001 .430 .430 .282 .269 .358 
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Fit*Factor Correlation .000 .001 .001 .011 .006 .001 
Sample*Slope .002 .002 .002 .001 .004 .000 
Sample*Factor 
Correlation .000 .001 .001 .000 .001 .001 

Slope*Factor Correlation .000 .000 .000 .000 .001 .000 
Fit*Sample*Slope .001 .001 .001 .001 .001 .001 
Fit*Sample*Factor 
Correlation .000 .000 .000 .001 .001 .000 

Fit*Slope*Factor 
Correlation .000 .000 .000 .000 .001 .000 

Sample*Slope*Factor 
Correlation .000 .000 .000 .000 .001 .000 

Fit*Sample*Slope*Factor 
Correlation .000 .000 .000 .001 .001 .000 

 
Table 27.  Partial  values for each of the outcome measures when data was fit to the exponential 

curve 

 p-value GFI AGFI CFI SRMR RMSEA 
Fit .084 .602 .602 .657 .244 .601 
Sample .055 .055 .055 .004 .052 .006 
Slope .005 .123 .123 .017 .084 .081 
Factor Correlation .060 .006 .006 .079 .007 .005 
Fit*Sample .055 .065 .065 .028 .047 .044 
Fit*Slope .005 .080 .080 .024 .064 .046 
Fit*Factor Correlation .060 .081 .081 .030 .032 .103 
Sample*Slope .028 .051 .051 .040 .013 .037 
Sample*Factor 
Correlation .038 .033 .033 .026 .008 .021 

Slope*Factor Correlation .013 .000 .000 .009 .002 .000 
Fit*Sample*Slope .028 .038 .038 .025 .032 .029 
Fit*Sample*Factor 
Correlation .038 .057 .057 .062 .043 .049 

Fit*Slope*Factor 
Correlation .012 .023 .023 .012 .020 .024 

Sample*Slope*Factor 
Correlation .000 .000 .000 .000 .000 .000 

Fit*Sample*Slope*Factor 
Correlation .000 .000 .000 .000 .000 .000 
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5.0 Discussion 

The major purpose of this dissertation was to examine the effectiveness of the 

quadratic, spline and unspecified techniques in modeling nonlinear change in the 

framework of latent growth modeling.  A second purpose was to provide a better 

understanding of the interpretation of these models.  The sections to follow discuss 

important findings and how these findings relate to the interpretation of these models.  

The dissertation concludes with a discussion of the limitations of this research and 

directions for future research.   

5.1 SUMMARY OF FINDINGS 

The design of this simulation study resulted in the unspecified fit technique being 

the most effective approach to modeling the nonlinear change represented by the 

exponential, logarithmic and logistic curves as defined in this study.  This result is not 

overly surprising, at least from a pure statistical perspective, given that the unspecified 

technique allows the shape of the empirical growth curves to be determined by the data.  

Thus, the “true” statistical model is being fit to the data.  Unfortunately, the “true” 
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statistical model may not provide a meaningful substantive interpretation.  This issue will 

be discussed in more depth in the section to follow.  

Results also confirmed the complexities involved in estimating quadratic and 

spline models.  While quadratic models were difficult to estimate in this simulation study, 

they have been successfully utilized in the applied realm.  These results support the 

notion that a theoretical basis is needed to estimate these models successfully.   

The number of usable replications and resulting fit indices from the spline models 

were very similar to those for the quadratic models.  This was particularly the case when 

both techniques were fit to the logistic curve.  As is the case with the quadratic model, the 

spline model (i.e., linear spline as opposed to a mean spline) utilized in this study also 

appears to require a theoretical basis.  Recall, linear spline models break observed 

empirical trajectories into pieces which typically identify change prior to and following 

the occurrence of an event (e.g., intervention).  The data of this study was not generated 

in this manner so the spline model utilized was not necessarily appropriate, particularly 

for the logistic curve.  On the other hand, a mean spline model may have generated very 

different results (at least in terms of model fit) due to the mean of each time point being 

utilized rather than predetermined values. 

Another important point to make from the results of this study was the difficulty 

fitting the selected models to the logistic curve.  The logistic curve in this study involved 

a slight increase to a certain point followed by a dramatic increase which was then 

followed by a leveling off period.  The quadratic model did not fit well due to it being 

more appropriate for trajectories displaying non-constant change in a single direction.  

Likewise, the spline model utilized was also meant to model change in a single direction.  
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Perhaps a cubic model, which was designed for this type of non-constant change, would 

provide adequate model fit.   

The effects (or lack thereof) of the other factors included in the simulation study 

also deserve mention.  As is the case in most statistical procedures, sample size did play a 

role in obtaining better estimates of model fit regardless of the other conditions (i.e., in 

general, as sample size increased better model fit was achieved).  However, the 

independent variables that were essentially ignored in the results section were the 

correlation between the factors and the variance in the slope parameter.  Both of these 

factors were used to generate the random data and after carefully inspecting the results 

were not found to yield meaningful differences across the levels of each factor.      

5.2 INTERPRETATION OF MODELS 

 Interpreting non-linear latent growth models is dependent upon the model that is 

utilized.  For instance, interpretation of polynomial models is difficult due to the 

additional slope parameters included in the model.  A quadratic model is much simpler to 

interpret than a cubic or quartic model.  Unspecified and spline models are even easier to 

interpret than the quadratic model.  Of course the linear model offers the easiest 

interpretation hence many researchers attempt to apply a linear transformation to the data 

rather than utilize one of the alternative non-linear techniques.  However, care should be 

taken when interpreting the parameters and standard errors of non-linear data transformed 

to a linear scale.   
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 The lack of parameter (and standard error) estimates obtained for this dissertation 

make interpretation of the models of interest difficult.  These estimates were not 

examined since the primary purpose of this dissertation was to evaluate the model fit of 

the selected fit techniques.  In addition, mathematical proofs for each of the parameters of 

interest (particularly the slope parameter) were also beyond the scope of this dissertation.  

However, the results of this dissertation highlight an important point in the interpretation 

of non-linear LGM’s.  That is, the unspecified model will likely fit (at least statistically) 

any type of non-linear curve.  In addition, by comparing alternative models (such as the 

linear and quadratic) to the unspecified model, the general pattern of change can be 

depicted and is fairly easy to interpret.  For instance, if the linear, quadratic or cubic 

models do not result in adequate model fit, the unspecified model can be adopted 

provided it offers reasonable statistical estimates.  Then the empirical trajectory for the 

entire group can be interpreted as a general shape trajectory rather than having a linear 

and/or quadratic component. 

 Unspecified models can be interpreted in two different ways depending on the 

unspecified model utilized.  The most common unspecified model is the one utilized in 

this study where the first and second factor loadings were fixed to 0 and 1, respectively.  

In this case, the estimated factor loadings are interpreted as the amount of change 

between time points in relation to the amount of change between the first two time points.  

On the other hand, an unspecified model where the first and last loadings are fixed to 0 

and 1, respectively, is interpreted differently.  In this case, the model is interpreted as the 

proportion of overall change between respective time points.   
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Interpretation of quadratic and spline models is difficult as they both require a 

sound theoretical basis.  Spline models simply fit linear trajectories in between one or 

more transition points.  Thus, these models are interpreted similarly to a linear model 

with the addition of the difference in change prior to and following the transition point.  

Polynomial models are much more complicated especially as the number of slope 

parameters increases.  Bollen and Curran (2006) describe the complexities of interpreting 

cubic models as “…and the cubic model implies change in the change in the rate of 

change over time” and suggest applied researchers take great care in interpreting 

polynomial models.  

5.3 LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH 

 As with any simulation study, this dissertation was limited by the number of 

conditions that were included.  This was particularly the case with the number of 

empirical growth trajectories that were examined.  The exponential, logarithmic and 

logistic curves are all very common in the applied literature.  However, future studies in 

the realm of non-linear LGM should examine differing degrees of non-linearity.  For 

instance, it would be useful to determine at what point a non-linear model is more 

appropriate than a linear model.  When does the exponential curve become ‘flat’ enough 

to warrant the use of a simple linear model?  Surely at some point a difference in the 

statistical fit of the models will be realized.  Determining this point is crucial to the 

selection of the appropriate model.  Then, the even more important question of how the 

model is interpreted can be focused upon.   
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 Future research should also further investigate the variability in the slope 

parameter and the correlation between the intercept and slope factors.  This study 

investigated an adequate amount of variability in the slope parameter yet was unable to 

find a significant effect.  At some point the individual differences in the slope parameter 

must have a bearing on the statistical estimates in the model.  Could it be possible that it 

is more difficult to identify individual differences in the slope parameter as the data 

becomes more non-linear?  And what role does the relationship between the intercept and 

slope play in estimating the model?  Does this relationship have a different effect on non-

linear models than linear models? 

 Future research should also examine the different types of spline models.  The 

linear spline model utilized in this study was clearly inappropriate for the growth 

trajectories under investigation.  A mean spline model may have yielded better statistical 

estimates of model fit in this study and may be a better general model for applied 

researchers.   

5.4 SUMMARY 

 This dissertation investigated the application of various techniques for modeling 

non-linear change in the framework of latent growth curve modeling.  Non-linear LGM’s 

are becoming more common in the applied realm and as such the methodology behind 

these techniques deserves more attention.  This dissertation contributes to research in this 

area by investigating the polynomial, spline and unspecified techniques.  The major 

finding from this dissertation is that applied researchers would be wise to begin any 
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analysis with the unspecified LGM unless a solid theoretical justification can be made for 

another model.  The unspecified LGM provides solid statistical estimates of model fit and 

model parameters which can be used as a guide for determining the shape of the 

empirical trajectories or as the final model itself.  The unspecified LGM is a also a viable 

alternative for applied researchers unwilling to face the difficulties associated with fitting 

higher order polynomial models or lacking the theoretical basis required for a linear 

spline model.  These results are clearly based on a limited number of conditions that may 

or may not be applicable to real world datasets.  More research must be done in this area 

to validate and build upon the conclusions made from this study.     
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PROGRAMS USED FOR THE SIMULATION STUDY 

The following programs were used to generate and fit the data to the models of interest. 
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APPENDIX A 

PROGRAMS USED FOR THE SIMULATION STUDY 

A.1 EQS SIMULATION PROGRAMS 

A.1.1 General Program for Generation Raw Data 

/TITLE 
 General Program for Generating Raw Data 
/SPECIFICATIONS 
VARIABLES=5; CASES=*;               !note 1         
MATRIX=RAW; ANALYSIS = MOMENT; 
METHOD=ML; 
/EQUATIONS 
V1 = 1F1 + *F2 + E1;                          !note 2 
V2 = 1F1 + *F2 + E2;  
V3 = 1F1 + *F2 + E3;  
V4 = 1F1 + *F2 + E4; 
V5 = 1F1 + *F2 + E5; 
F1 = a*V999 + D1;                              !note 3  
F2 = b*V999 + D2;  
/VARIANCES 
E1 to E5 = 1;                                  
D1 = 1;                                         !note 4 
D2 = *; 
/COVARIANCES 
D1,D2 = *;                                      !note 5 
/SIMULATIONS 
POPULATION = MODEL; 
SEED = 123456789; 
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REPLICATION = 1000; 
SAVE = CONCATENATE; 
DATA = 'NameOfRawData'; 
/END 
note 1: 50, 75, 100, 150, 200, 300, & 500. 
note 2: The slope estimates (*) are dependent upon the values in Table 3.2. 
note 3: Intercept and slope parameters estimated from the data. 
note 4: Values of slope variance (D2) taken from Table 3.3  
note 5: Values of covariance between intercept and slope (D1,D2) taken from Table 3.3. 

A.1.2 Program for Fitting Raw Data to the Quadratic Model. 

/TITLE 
 Fit Raw Data to Quadratic Model 
/SPECIFICATIONS 
 DATA='NameOfRawData'; 
 VARIABLES=5; LOOP=1000; CASES=*; MATRIX=RAW; !note 1  
 ANALYSIS = MOMENT; METHOD=ML;  
/EQUATIONS 
 V1 = 1F1 + 0F2 + 0F3 + E1;  
 V2 = 1F1 + 1F2 + 1F3 + E2;  
 V3 = 1F1 + 2F2 + 4F3 + E3;  
 V4 = 1F1 + 3F2 + 9F3 + E4; 
 V5 = 1F1 + 4F2 + 16F3 + E5;  
 F1 = *V999 + D1;  
 F2 = *V999 + D2; 
 F3 = *V999 + D3; 
/VARIANCES 
 E1 to E5 = *; 
 D1 to D3 = *;   
/COVARIANCES  
 D1 to D3 = *; 
/PRINT 
FIT=ALL; 
TABLE=EQUATION; 
/OUTPUT 
Parameters; 
Standard Errors; 
RSquare; 
Codebook; 
Listing; 
DATA='ResultsOutput'; 
/TECHNICAL 
ITER=500; 
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/END  
note 1: Cases equal to 50, 75, 100, 150, 200, 300, & 500. 
 

A.1.3 Program for Fitting Raw Data to the Unspecified Model. 

/TITLE 
 Fit Raw Data to Unspecified Model 
/SPECIFICATIONS 
 DATA='NameOfRawData'; 
 VARIABLES=5; LOOP=1000; CASES=*; MATRIX=RAW; !note 1  
 ANALYSIS = MOMENT; METHOD=ML;  
/EQUATIONS 
 V1 = 1F1 + 0F2 + E1;  
 V2 = 1F1 + 1F2 + E2;  
 V3 = 1F1 + *F2 + E3;                         !note 2 
 V4 = 1F1 + *F2 + E4; 
 V5 = 1F1 + *F2 + E5;  
 F1 = *V999 + D1;  
 F2 = *V999 + D2; 
/VARIANCES 
 E1 to E5 = *; 
 D1 to D2 = *;   
/COVARIANCES  
 D1 to D2 = *; 
/PRINT 
FIT=ALL; 
TABLE=EQUATION; 
/OUTPUT 
Parameters; 
Standard Errors; 
RSquare; 
Codebook; 
Listing; 
DATA='ResultsOutput'; 
/TECHNICAL 
ITER=500; 
/END  
note 1: Cases equal to 50, 75, 100, 150, 200, 300, & 500.  
note 2: Coefficents at time points 3, 4, and 5 are estimated from the data. 
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A.1.4 Program for Fitting Raw Data to the Spline Model. 

/TITLE 
 Fit Raw Data to Spline Model 
/SPECIFICATIONS 
 DATA='NameOfRawData'; 
 VARIABLES=5; LOOP=1000; CASES=*; MATRIX=RAW; !note 1  
 ANALYSIS = MOMENT; METHOD=ML;  
/EQUATIONS 
 V1 = 1F1 + 0F2 + 0F3 + E1;  
 V2 = 1F1 + 1F2 + 0F3 + E2;  
 V3 = 1F1 + 2F2 + 2F3 + E3;                     
 V4 = 1F1 + 2F2 + 3F3 + E4;                           
 V5 = 1F1 + 2F2 + 4F3 + E5 
 F1 = *V999 + D1;                               
 F2 = *V999 + D2; 
 F3 = *V999 + D3; 
/VARIANCES 
 E1 to E5 = *; 
 D1 to D3 = *;   
/COVARIANCES  
 D1 to D3 = *; 
/PRINT 
FIT=ALL; 
TABLE=EQUATION; 
/OUTPUT 
Parameters; 
Standard Errors; 
RSquare; 
Codebook; 
Listing; 
DATA='ResultsOutput'; 
/TECHNICAL 
ITER=500; 
/END  
 
note 1: Cases equal to 50, 75, 100, 150, 200, 300, & 500. 
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