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Glypican 3 (GPC3) belongs to a family of glycosylphosphatidylinositol-anchored, cell-surface 

heparan sulfate proteoglycans. The GPC3 gene is located on the X chromosome, and is highly 

expressed during embryogenesis and organogenesis. Loss-of-function mutations of GPC3 in 

humans result in the Simpson-Golabi-Behmel syndrome, an X-linked disorder characterized by 

pre- and post-natal liver and other organ overgrowth. GPC3 is one of the most over-expressed 

proteins in human hepatocellular carcinoma and is used as a novel diagnostic marker. However, 

its role in normal liver regeneration is still not well characterized. In this study, we investigated 

the role and effects of GPC3 in hepatocyte proliferation and liver regeneration, using the 2/3 

partial hepatectomy (PHx) model in rats and hepatocyte-targeted GPC3 transgenic mice. We 

found in rats that GPC3 mRNA and protein increase in a time frame which coincides with the 

termination of proliferative activities of either hepatocytes (day 2 after PHx and day 8-12 in 

culture) or non-parenchymal cells (day 5-6 after PHx). Blocking GPC3 expression using 

morpholino oligonucleotides promoted rat hepatocyte growth in vitro. We further generated 

GPC3 transgenic mice with hepatocyte-targeted over-expression of GPC3. These transgenic 

mice develop normally compared with their non-transgenic littermates, but have a suppressed 

rate of hepatocyte proliferation and liver regeneration after 2/3 PHx. Therefore we hypothesize 

that GPC3 is a negative regulator of hepatocyte proliferation and liver regeneration. The yeast 

two-hybrid assay revealed that GPC3 interacts with several interesting proteins including CD81, 

a cell membrane tetraspanin. CD81 levels changed in the same manner as GPC3 after rat PHx, 

and their interaction was confirmed by co-immunoprecipitation and co-immunofluorescence. 

The co-localization of GPC3 and CD81 after PHx indicates an important regulator interaction 

between the two proteins. Moreover, gene array analysis revealed a series of changes in the 

expression profiles in GPC3 transgenic mice. After PHx, a panel of cell cycle related genes and 
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some oncogenes are either up- or down-regulated, which was confirmed by western blotting. Our 

results indicate that GPC3 plays a negative regulatory role in hepatocyte proliferation and liver 

regeneration in rats and hepatocyte-targeted transgenic mice, in which several potential proteins 

and multiple pathways are involved and affected.  
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1.0 INTRODUCTION 

1.1 GLYPICAN 3 (GPC3) 

 

1.1.1 Glypicans 

Glypicans (GPCs) are a family of heparan sulfate proteoglycans (HSPG) that are bound to the 

cell surface through a glycosylphosphatidylinositol (GPI) anchor (1). Six glypicans have been 

identified in mammals so far (GPC1 to GPC6) (Fig.1) (2) and two members of this family have 

been found in Drosophila (dally and dlp) (3). The mammalian glypican family members are 

further separated into two groups according to the degree of amino acid sequence homology (2). 

One group, which includes GPC1, GPC2, GPC4 and GPC6, displays 35–63% sequence 

similarity between its members. The other group is comprised of GPC3 and GPC5, which are 

54% similar (2). The similarities between members of the two groups are only 17–25%.  

 

Although the homology of amino acids between glypican members is moderate, the core proteins 

of all glypicans are approximately 500 amino acids in length and 60–70 kDa in size, and share a 

characteristic pattern of 14 conserved cysteine residues (Fig.1) (4). Discrepancies exist between 
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the predicted and observed molecular weights, owing to varying degrees of N- and/or O-

glycosylations (2).  

 

  

 

Figure 1. Mammalian Glypican Family Members. LP, leader peptide; CRD, cysteine-rich domain; GAG, 

glycosaminoglycan chains; GPI, glycosylphosphatidylinositol anchor. Reproduced from reference (2). 
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Intact glypicans are decorated with heparan sulfate (HS), which is located in the last 50 amino 

acids of the C-terminus, placing the HS chains close to the cell membrane (Fig.2) (5,6). This 

feature clearly distinguishes glypicans from syndecans, the other family of membrane-bound 

HSPGs, since in the syndecans the glycosaminoglycan (GAG) insertion sites can be found all 

along the core proteins (2). In addition to the GAG containing region, the mature glypican core 

proteins also have a linker domain and an N-terminal globular domain, with an internal 

proteolytic cleavage site identified at the proposed globular domain/linker junction (2). However, 

the 30-40 kDa cleavage product generated from the N-terminus of the glypican protein core 

remains attached to its C-terminal half through one or more disulfide bridges, and may be 

released into the extracellular environment under certain circumstance (2,7).  

 

 

Figure 2. Schematic Diagram of Glypicans. GPI, glycosylphosphatidylinositol anchor; GAG, 

glycosaminoglycan chains. Reproduced from reference (6). 
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Glypicans are expressed predominantly during development (8). Their expression levels change 

in a stage- and tissue-specific manner, suggesting that glypicans are involved in the regulation of 

morphogenesis (7). The expression patterns and suggested roles among glypican family members 

varies greatly depending on the tissue or cellular context (2,7). The current understanding of the 

functions and mechanisms of mammalian glypicans mainly rests on the studies of glypican 3 

(GPC3), the clinical significance of which has gained increasing attention and interest in the 

fields of morphogenesis and tumorigenesis.  

 

1.1.2 GPC3 in Human Diseases 

GPC3 is located at chromosome Xq26.1 and spans more than 500 kb (9,10), consisting of eight 

exons (11). High levels of GPC3 can be found in most tissues during embryogenesis and 

organogenesis, with the exception of the nervous system (2,7,12). In the adult, GPC3 can only be 

detected in a limited number of tissues, including the lung, ovaries, mammary epithelium, and 

mesothelium (2,13). The stage- and tissue- specific pattern of expression suggests that GPC3 is 

involved in morphogenesis and development.  

 

It is reported that a loss-of -function mutation in the GPC3 gene causes Simpson-Golabi-Behmel 

syndrome (SGBS), an X-linked disorder characterized by pre- and post-natal overgrowth, 

increased risk of embryonic tumors during early childhood, and numerous visceral and skeletal 

anomalies (Fig.3) (12,14,15). It was found that SGBS is caused by a nonfunctional GPC3 
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protein, with additional genetic factors responsible for the intra- and interfamilial phenotypic 

variation (10,14). The involvement of GPC3 in SGBS was confirmed by the generation of 

GPC3-deficient mice (GPC3-/-), since these mice display some of the phenotypic features of 

SGBS, including developmental overgrowth (~ 30 %), and general enlargement of multiple 

organ including liver, respiratory infections, cystic kidneys, etc. (16). 

 

 

 

Figure 3. Typical Manifestations of Simpson-Golabi-Behmel Syndrome (SGBS). SGBS is characterized by 

pre- and post-natal macrosomia, characteristic facial anomalies and abnormalities affecting the internal 

organs, skeleton, and on some occasions, mental retardation of variable degree. Reproduced from reference 

(15). 

 

One the other hand, GPC3 is highly up-regulated in hepatocellular carcinoma (HCC), one of the 

most common solid malignancies in the world that accounts for about 1 million deaths each year 

(17). Our previous study and others have shown that GPC3 is highly up-regulated in HCC and 
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hepatoblastoma, but not in normal liver or tissue adjacent to tumors (Fig.4) (17,18). In cancer 

cells, the mature form of GPC3 is processed by releasing the N-terminal truncated protein of 40 

kDa into the medium (18). The soluble form of GPC3 was identified in the serum of patients 

with hepatocellular carcinomas, and can be used as a serological test for the diagnosis of HCC 

(18-20). GPC3 is also involved in cell proliferation in some hepatoma cell lines (21).  

 

 

 

Figure 4. GPC3 Protein Level Varies in Liver Tumor Tissues. AT: adjacent to the tumor; HCC: 

hepatocellular carcinoma; NL: normal liver; HPBL: hepatoblastoma. Reproduced from reference (18). 

 

It is observed that GPC3 displays a very different expression pattern in tumors (7). Interestingly, 

the expression of GPC3 is turned on in carcinomas originating from tissues where its expression 

is low or barely detectable, like HCC and melanoma (22,23). In contrast, its expression is turned 

down in tumors originating from tissues that normally express it, that is, mammary gland and 

lung (23,24).  
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In several malignant tumors, including ovarian carcinoma, cholangiocarcinoma, mesothelioma, 

and breast cancer, GPC3 is down-regulated as a result of hypermethylation of the GPC3 

promoter (25-28). Because the GPC3 protein product is highly expressed in normal ovarian, 

mammary, and mesothelial cells, GPC3 has been considered a tumor suppressor gene in these 

organs (27). A multitumor array (MTA) study was used to systematically investigate the 

epidemiology of GPC3 expression in the liver and in other organs and tissues (Table.1) (29). 

This tissue specific difference may be due to the fact that GPC3 interacts with different signal 

pathways and regulates different growth factors in various tissue (30). 

 

Table 1. Multitumor Array (MTA) Results of GPC3 Expression in Tumor Cases. For a total of 347 neoplastic 

tissue samples demonstrated expression of GPC3 in 15% or more of the studied cases (n ≥ 15). Reproduced 

from reference (29). 
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1.1.3 GPC3 Function and Pathways 

Despite all the accumulated literature on growth regulation and tumorigenesis by GPC3, its 

function and mechanisms of action remain elusive. Previous studies have proposed that the 

unique structure of GPC3, such as the GPI-anchor and HS chains, have played important roles 

regarding GPC3 function. One possible role of the GPI-anchor is to target the proteins to specific 

micro-domains within the cell membrane called “rafts” (31), which are highly enriched with 

sphingolipids, cholesterol, Src family kinases, G proteins, and molecules involved in Ca+ influx 

(32,33). The targeting of GPC3 to these rafts may therefore facilitate interactions with specific 

intracellular signaling molecules in the absence of a cytoplasmic domain (2).  

 

On the other hand, GPI-anchored proteins could also be regulated and released into the 

extracellular environment through the cleavage of GPI linkage by phospholipase C (PLC) (34). It 

is also suggested that the GPI-anchored proteins are susceptible to unique endocytic pathways 

that allow them to be remodeled and recycled to the cell surface (35). This recycling for 

glypicans  is accompanied by the remodeling of the GAG chains and the acylation of the GPI 

anchor to a form resistant to PLC cleavage (35). This process may be associated with receptor-

mediated endocytosis (36), which may play a role in the GPC3 pathway.  

 

The modifications in the HS chains of GPC3 are reported to regulate their affinity when 

interacting with certain ligands, the so called “heparin-binding growth factors (HBGF)” (30), 

such as fibroblast growth factors (FGFs), Wnts, Hedgehogs (Hhs), bone morphogenetic proteins 
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(BMPs) (37-40). However, there is evidence that the HS chains are not required for all the 

activities of GPC3 (41), while the core protein itself could interact with some of those signal 

molecules and carry out some of the GPC3 functions.  

 

In addition, GPC3 can be cleaved by convertases, generating an ~30 kDa C-terminal subunit 

containing the heparan sulfate chains and an ~40 kDa N-terminal subunit, the latter being 

released into the extracellular environment under certain circumstances (42). But the 

mechanisms of the secreted form of GPC3 may be different from the GPI-anchored cell surface 

form (6), and the convertase processing of GPC3 may not be required for its activity and 

signaling pathways (43).   

 

Previous studies suggest that GPC3 is involved in the control of cell proliferation and/or the 

induction of apoptosis, and may interact with various pathways under normal conditions as well 

as during carcinogenesis. HSPGs are known to be co-receptors for fibroblast growth factor 2 

(FGF2) by promoting FGF-FGFR binding and subsequent activation of the receptor (44,45). It is 

reported that in HCC, over-expression of GPC3 interacts with FGF2 and inhibits the activity of 

the receptor (45). Meanwhile, GPC3 can also modulate cell proliferation by inhibiting BMP-7 

activity, which is known to control cell proliferation and apoptosis in a dose-dependent manner 

via Smad1- dependent and -independent pathways (38,46). Previous studies also suggest that 

GPC3 can stimulate both canonical and non-canonical Wnt signaling pathway in a highly tissue-

specific manner (30,47,48). It is reported that GPC3 stimulates HCC growth by facilitating the 

interaction of Wnt and its receptors, thus activating canonical Wnt pathway (47). This activity of 
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GPC3 in HCC does not require the presence of HS chains or convertase processing (47,49), but 

requires attachment of GPC3 to the cell membrane. Therefore, a mutated soluble GPC3 lacking 

the GPI anchoring domain is able to block Wnt signaling and inhibit the growth of Wnt-

dependent tumors (50). On the other hand, the involvement of GPC3 in insulin-like growth factor 

2 (IGF2) function and its pathway is still controversial (11,51). These findings suggest that 

GPC3 does not only regulate cell proliferation under certain conditions but that it also plays an 

important role in carcinogenesis (38).  

 

1.1.4 Regulation of GPC3  

While the function and pathways of action of GPC3 protein are not well characterized, the basis 

and mechanism for GPC3 gene regulation is also poorly understood. The mechanisms regulating 

the transcription of GPC3 are of particular importance for understanding the altered expression 

of GPC3 during development as well as in tumors. Because GPC3 is abundantly expressed in 

fetal liver and HCC and is silent in the normal adult liver, it is reasonable to postulate that GPC3 

is regulated similarly to other genes with the same expression pattern, such as alpha-fetoprotein 

(AFP) and H19 (52). AFP is a major serum transport protein in the developing mammalian fetus 

with abundant expression in the fetal liver and is repressed after birth (53,54). During liver 

regeneration and in HCC, AFP is activated and over-expressed, and is used as a clinical HCC 

marker (55,56). It is noticeable that GPC3 is activated more often than AFP in small dysplastic 

liver nodules, and thus more valuable for early diagnosis of HCC (57,58). H19 encodes an un-

translated mRNA of unknown function, with a similar expression pattern to AFP (59).  
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From the insight into the regulation of AFP and H19, previous studies have suggested that zinc 

finger and homeoboxes 2 (Zhx2) repress GPC3 in the adult liver, and might also be involved in 

GPC3 activation in HCC (52). Alpha-fetoprotein regulator 2 (Afr2) could also reactivate GPC3 

expression in regenerating liver after carbon tetrachloride (CCl4) intoxication (52). It is also 

reported that sulfatase 2 (SULF2) has an oncogenic effect in HCC mediated in part through up-

regulation of FGF signaling and GPC3 expression (60).  

 

As the GPC3 gene is located on the X chromosome and DNA methylation is implicated in 

chromosome X inactivation (61), methylation of the GPC3 promoter was examined with little 

evidence found correlating methylation and expression of GPC3 (62). But an in vitro study 

showed that the transcriptional activation of the GPC3 gene requires an absence of methylation 

of the gene promoter, Although the absence of methylation alone does not necessarily lead to 

transcriptional activity (63). Overall, the pattern and mechanism for GPC3 expression regulation 

still remains to be discovered. 

 

1.2 LIVER REGENERATION 

The liver is the second largest organ (the largest is the skin) and the largest gland in the human 

body. Medical terms of “hepato-” or “hepatic” come from the Greek “hepar” (ήπαρ) for liver. 
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The liver is a complex, indispensable, multipurpose organ, the major role of which is dealing 

with the nutrient products of food digestion and detoxifying harmful substances absorbed via the 

intestine (64). The liver is also the only organ involved in production of bile, which is important 

in the breakdown and absorption of fats and lipophilic substances such as many vitamins. 

Another role of the liver is producing essential proteins and clotting factors for the blood, and 

regulation of the metabolism of cholesterol and glucose (65,66).  

 

1.2.1 Liver Architecture 

At the microscopic level, the liver consists of subunits of a roughly hexagonal arrangement, 

called hepatic lobules, mainly made up of plates of hepatocytes radiating outward from a central 

vein (67) (Fig.5). Between the radiating rows of hepatocytes are small blood vessels called 

sinusoids. These receive oxygen-rich blood from the hepatic artery and nutrients from the 

intestines via the portal vein. The oxygen and nutrients diffuse through the capillary walls into 

hepatocytes (64). The endothelial cells of the hepatic sinusoids are “fenestrated”; they have pores 

that allow direct access of plasma to the underlying hepatocytes. At the corner of each lobule is 

the portal area (portal triad), composed of branches of the hepatic portal vein, hepatic artery, bile 

duct, and nerves. Bile drains from the hepatocyte bile canaliculi into the many small bile ducts 

that unite to form the main bile duct of the liver (the hepatic duct). This joins the cystic duct, 

which leads from the gallbladder, to form the common bile duct, which drains into the duodenum. 

The central lobular veins are blood vessels which receive blood from the hepatic portal vein and 

hepatic artery via the sinusoids and then drain the blood into the hepatic vein (64). 
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Figure 5. The Structure of the Liver’s Functional Units, or Lobules. Blood enters the lobules through 

branches of the portal vein and hepatic artery, then flows through small channels called sinusoids that are 

lined with primary liver cells (i.e., hepatocytes). The hepatocytes remove toxic substances, including alcohol, 

from the blood, which then exits the lobule through the central vein (i.e., the hepatic venule). Reproduced 

from reference (67).   
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1.2.2 Liver Cell Types 

The liver consists of both parenchymal cells (hepatocytes) and non-parenchymal cells (Stellate 

cells or Ito cells, Kupffer cells, biliary epithelial cells or cholangiocytes, and sinusoidal 

endothelial cells) (68,69), as described below: 

 

Hepatocytes: account for 80% of the liver cell population and carry out the major functions of 

the liver. Hepatocytes are large, hexagonally-shaped, polyploid cells arranged in thin layers that 

radiate from the central canal (central vein) to the periphery of the lobule (portal triad). 

Hepatocytes are involved in protein synthesis, protein storage, transformation of carbohydrates, 

synthesis of cholesterol, bile salts and phospholipids, producing clotting factors and serum 

albumin, detoxification, modification, and excretion of exogenous and endogenous substances, 

and initialization of the formation and secretion of bile. 

 

Stellate cells or Ito cells: represent 5-8% of the total population of liver cells. They are pericytes 

found in the liver perisinusoidal space (a small area between the sinusoids and hepatocytes), 

which store fat and vitamin A and produce certain growth factors such as Hepatocyte Growth 

Factor (HGF) and Transforming Growth Factor β1 (TGFβ1). The stellate cells also produce 

connective tissue proteins and are the major cell type involved in liver fibrosis.  

Kupffer cells: specialized macrophages located in the lining of the walls of the sinusoids, which 

break down red blood cells and destroy microbes and foreign substances by phagocytosis. 
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Kupffer cell activation is responsible for early ethanol-induced liver injury, common in chronic 

alcoholics. The other immune cells in the liver belong to the adaptive immune system (T and B 

lymphocytes) and the innate immune system (natural killer cells, and natural killer T cells). 

 

Biliary epithelial cells or cholangiocytes: cuboidal epithelium in the small interlobular bile 

ducts, but become columnar and mucus secreting in larger bile ducts approaching the porta 

hepatis and the extrahepatic ducts. 

 

Sinusoidal endothelial cells: the thin layer of cells that line the interior surface of blood vessels, 

comprising approximately 50 % of the non-parenchymal cells. They separate hepatocytes from 

the passing blood and play an important role in hepatic microcirculation. These cells lack a 

basement membrane, form a fenestrated monolayer, express a variety of scavenger receptors, and 

control the exchange of material between the blood and the liver parenchyma. 

 

1.2.3 Liver Regeneration and Partial Hepatectomy (PHx) Model  

Liver has great potential to regenerate, which is a fundamental parameter of liver response to 

injury. Liver regeneration  may be defined as, "…An orchestrated response induced by specific 

external stimuli and involving sequential changes in gene expression, growth factor production 

and morphologic structure…" (68,69). Unlike other regenerating tissues, such as bone marrow 
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and skin, liver regeneration under normal circumstances does not depend on a small group of 

progenitor or stem cells, but the proliferation of hepatocytes (68,69). 

 

In modern times, the best experimental model for the study of liver regeneration is the 2/3 partial 

hepatectomy models (70), in which specific liver lobes that account for about 2/3 of the total 

mass are removed intact and the residual lobes enlarge to make up for the loss of mass (Fig.6) 

(71). Partial hepatectomy is often used to study liver regeneration because, compared with other 

methods that use hepatic toxins (such as CCl4), it is not associated with tissue injury and 

inflammation, and the initiation of the regenerative stimulus is precisely defined (removal of 

liver lobes) (68,69). The residual lobes enlarge to make up for the mass of the removed lobes, 

though the resected lobes never grow back.  

 

 

 

Figure 6. Schematic Drawings of Mouse Liver Anatomy and PHx Procedure. (a) The thread for the first knot 

should be positioned between the caudate and the left lateral lobes at the base of the latter. (b) The second 

knot should be tied within the dashed area, above the gall bladder but not too close to the suprahepatic vena 
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cava. The tip of the right lobe can be used as a reference point for placing the knot. Reproduced from 

reference (71). 

 

Following liver PHx, hepatocytes enter into the cell cycle from their habitual quiescent phase 

and proliferate to restore normal hepatic mass and hepatic functional capacity (68).  The whole 

process lasts about 5 to 7 days in rats and mice, during which hepatocytes are the first cells to 

enter into DNA synthesis from their habitual quiescent phase at about 24 hours post-PHx in rats. 

Hepatocyte proliferation starts in the areas of the lobules surrounding the portal triads 

(periportal) and proceeds to the pericentral areas (69,72), followed by the biliary ductular cells, 

then the Kupffer cells and stellate cells, and finally the endothelial cells (Fig.7) (68).  

 

 

 

Figure 7. Time Kinetics of DNA Synthesis in Different Liver Cell Types during Liver Regeneration after 

Partial Hepatectomy. The four major types of liver cells undergo DNA synthesis at different times. 

Hepatocyte DNA synthesis peaks at 24 hours, whereas the other cell types proliferate later. Reproduced from 

reference (68). 
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1.2.4 Mitogenic Signals and Pathways 

The liver regenerative process is associated with signaling cascades involving growth factors, 

cytokines, matrix remodeling, and several feedback points between stimulation and inhibition of 

growth related signals (68). During this process, several growth factors and cytokines plays 

important roles, including hepatocyte growth factor (HGF), epidermal growth factor (EGF), 

transforming growth factor-α (TGF-α), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 

insulin, and norepinephrine (Fig.8) (68,69,73).  

 

 

 

Figure 8. Signaling Interactions between Different Hepatic Cell Types during Liver Regeneration. 

Reproduced from reference (68). 
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PHx induces rapid induction of more than 100 genes not expressed in normal liver (74). The 

exact role of each gene may not be fully characterized, but the early changes in gene expression 

should be viewed as serving both the entry of hepatocytes into the cell cycle and the 

orchestration of specific adjustments that hepatocytes have to make, so that they can maintain all 

essential hepatic functions while going through cell proliferation (68,69).  

 

The early events are associated with extracellular matrix (ECM) remodeling and activation of 

locally bound growth factors as well as receptors (Fig.9) (75). While there is not much 

proteinaceous matrix in the liver visible under the microscope, there is a great abundance of 

heavily glycosylated proteins in the pericellular space surrounding hepatocytes (68). One of the 

earliest observations after PHx is the increase in the activity of  urokinase-type plasminogen 

activator (uPA), accompanied by activation of scHGF (single-chain HGF) to HGF (76). 

Urokinase is known to activate matrix remodeling during liver regeneration, and many proteins 

and growth factors in the extracellular matrix are subject to turnover (77). During this process, 

the inactive form of sc-HGF is hypothesized to be locally released from the hepatic biomatrix 

prior to its activation by uPA to its functional heterodimeric form (76,78). Regardless of when 

activation occurs, release and activation of HGF further leads to activation of cMet, the HGF 

receptor, between 5 and 60 minutes after PHx (79).  

 

It has also been observed that TGFβ1, a known hepatocyte mitoinhibitor, is also released locally 

and in the peripheral circulation shortly after PHx (79). This suggests that matrix remodeling 

alters the balance of mitogens and mitoinhibitors formed in the hepatic quiescence state and 
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triggers the regeneration process (68). The EGFR is also activated after PHx, with the same 

kinetics as Met (79). An increase in the concentration of other signaling molecules in plasma is 

observed after PHx, such as TNF, IL6, bile acids, norepinephrine and serotonin (68), which play 

important roles during liver regeneration.  

 

 

 

Figure 9. Chronology of Key Events Occurring at the Early Stages of Liver Regeneration after Partial 

Hepatectomy. Events within similarly colored boxes belong in the same category (e.g., green: growth factor 

related events; blue: plasma related changes, etc.). The associated horizontal lines for each box delineate the 

beginning and the duration of each signal. Reproduced from reference (68). 
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Besides the early changes and remodeling in the extracellular matrix, there are many events 

occurring inside the cells (Fig.9) (68). There is evidence of activation and translocation of the 

transcription factor signal transducer and activator of transcription-3 (STAT3) (80) and nuclear 

factor kappa B (NF-κB) (p50-p65 complex) within 1 hour after PHx, which activates many of the 

immediate early genes (69). Beta catenin (81) and the Notch-1 intracellular domain (NICD) (82) 

also appear in hepatocyte nuclei within 15–30 min after PHx. As a result of new synthesis of 

both c-Fos and c-Jun, the Jun-Fos complex known as activator protein 1 (AP1) activity also 

increases rapidly after PHx (83). LRF-1, another leucine zipper protein, is also induced rapidly 

after PHx and participates in complex formation with c-Jun (83). Activation of STAT3, NF-κB, 

and AP1 is likely to be a major part of the intracellular signaling cascade leading to DNA 

synthesis. At 6 h after PHx there is clear evidence for activation of cyclin D1 (84). There is a 

decrease in CCAAT-enhancer-binding protein α (C/EBPα) amounts and an increase in C/EBPβ, 

a process thought to be underlying some of the shifts in metabolism that occur during liver 

regeneration (85). Additional “hepatic-associated” transcription factors such as hepatic nuclear 

factor 1 (HNF1), HNF4, HNF3, and others remain essentially unchanged (69). 

 

1.2.5 Termination of Liver Regeneration 

After all cellular elements of the liver proliferate, the liver histology is gradually rearranged and 

restored toward the end of the liver regeneration process (69). At days 3 to 4 after PHx the liver 

is characterized by clumps of small hepatocytes surrounded by capillaries. The stellate cells send 

processes that penetrate the hepatocyte clumps and start producing several types of laminin (86). 
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Eventually, the small hepatocyte clumps become rearranged into the typical hepatocyte plates 

seen in the mature liver (69,86). The capillaries of the small hepatocyte clumps (surrounded by 

typical capillary basement membrane) change into true hepatic sinusoids (surrounded by very 

scant matrix and lined by fenestrated endothelial cells and Kupffer cells) (68,69). The hepatic 

matrix composition also changes from high laminin content to very scant matrix containing 

primarily fibronectin, collagen types IV and I, and several other proteins and 

glycosaminoglycans in smaller amounts (69). Normal liver weight, not exceeding the original 

size, is reestablished within 5-7 days in rats and mice (8-15 days in humans). At the end of 

regeneration, the size of the liver lobules is remarkably larger and the thickness of the hepatocyte 

plates is almost twice the size of the normal one cell thickness (68,69). Previous studies suggest 

that a small wave of apoptosis in hepatocytes occurs at the end of regeneration (87), and liver 

lobules are slowly reorganized so that eventually liver histology becomes indistinguishable from 

the original (88).  

 

Most previous studies have focused on the initiation of liver regeneration while much less has 

been studied about the termination of liver regeneration, although it is equally if not more 

important. It is reasonable to speculate that the reassembly of the extracellular matrix and the 

sinusoidal capillary network provides matrix-driven signaling that terminates the regenerative 

process (Fig.10). This may be direct signaling through integrins (89) or signaling induced by 

TGFβ1 (bound to the newly synthesized decorin and again exerting a ‘‘tonic’’ mito-inhibitory 

effect) (68,69). Synthesis of new decorin, perlecan, and syndecan and collagen types I and III 

dramatically increases during regeneration (90,91). Newly synthesized matrix would also be 

capable of binding HGF, which has high affinity to glycosaminoglycans and heparin, thus 
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preventing it from being activated by urokinase (92). This set of events would bring hepatocytes 

back into a state of quiescence, surrounded by HGF (bound to glycosaminoglycans) and TGFβ1 

(bound to decorin). After PHx, early mitogenic stimuli such as HGF and EGF drive both 

hepatocyte proliferation and enhanced expression of TGFβ1. While proliferating hepatocytes 

become resistant to TGFβ1, TGFβ1 stimulates production of extracellular matrix in stellate cells, 

formation of hepatic sinusoids, and leads to inhibition of urokinase and HGF activity (93). New 

extracellular matrix synthesis by stellate cells restores binding of both HGF and TGFβ1 and 

reestablishes quiescence of hepatocytes towards the end of liver regeneration (68,69).  

 

 

 

Figure 10. Schematic of a Feedback Loop between Growth Factors, TGFβ1, and Extracellular Matrix, 

Controlling Early and Late Stages of Regeneration. Mitogens (HGF and EGF) upregulate expression of 

TGFβ1 by stellate cells. The latter stimulates synthesis of new extracellular matrix, while eventually blocking 
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synthesis of new HGF and expression of urokinase. The newly synthesized extracellular matrix supports 

binding of single chain HGF and TGFβ1 around hepatocytes and restoration of quiescence (G0 phase). 

Arrows of the same color denote similar origin of the input and output of the same signaling process. 

Reproduced from reference (68). 

 

Hence, overall, TGFβ1 is not a direct terminator of regeneration but it orchestrates multiple 

events after PHx (68), with the underlying mechanism and overall impact of TGFβ1 still not 

clear. Other potential metabolites, growth factors, cytokines and matrix proteins are also 

proposed to play a role in the termination of liver regeneration, but no specific terminator is 

known and to date, less is understood about the signaling pathways toward the end of liver 

regeneration. 
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2.0  INVESTIGATION OF THE ROLE OF GLYPICAN 3 

IN RAT LIVER REGENERATION AND HEPATOCYTE 

PROLIFERATION 

 

Since loss of function in GPC3 in SGBS and GPC3-/- mice leads to overgrowth of many organs, 

including liver, it is reasonable to speculate that GPC3 normally functions as a growth inhibitor 

in the liver. Given the over-expression of GPC3 in HCC, we wanted to study the role and 

mechanisms of GPC3 signaling in normal liver regeneration and hepatocyte growth regulation. 

To this end, we used the rat model of liver regeneration after partial hepatectomy (PHx) in which 

hepatocyte growth dynamics are well characterized (68). We also used hepatocyte primary 

cultures, in which we and others have characterized the hepatocyte growth cycle under the 

influence of hepatocyte growth factor (HGF) and epidermal growth factor (EGF) (94). Our study 

demonstrated that GPC3 mRNAs and proteins increase in a time frame that coincides with the 

termination of proliferative activities of either hepatocytes (day 2 after PHx and day 8-12 in 

culture) or NPCs (day 5-6 after PHx). In vitro studies showed that hepatocyte growth was 

promoted when GPC3 expression was blocked using antisense morpholino oligonucleotides. The 

yeast two-hybrid assay revealed that GPC3 interacts with CD81, a cell membrane tetraspanin, 
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which was further confirmed by co-immunofluorescence and co-immunoprecipitation studies. 

CD81 mRNA and protein increase in grossly the same time frame after PHx. The co-localization 

of GPC3 and CD81 at days 2 and 6 after PHx indicated the potential for an important regulatory 

interaction between the two proteins. 

 

2.1 MATERIALS AND METHODS 

 

2.1.1 Rat Partial Hepatectomy Model 

Male Fisher344 rats (150–200 g) were purchased from Charles River Laboratories (Frederick, 

MD). Animals were allowed access to food and water ad libitum. Isoflurane inhalation (Baxter, 

IL) was used to anesthetize animals. In the PHx model, the median and left lateral lobes 

(accounting for 2/3 of the total liver mass) were resected (79). The remaining liver lobes were 

obtained from defined time points after PHx at 1, 2, 3, 4, 5, 6, and 7 days. Liver samples were 

promptly frozen in liquid nitrogen and stored at -80°C. Fresh rat liver tissue was also placed in 

Tissue-Tek OCT embedding compound, frozen on dry ice, and stored at -80°C. All animals were 

housed in the animal facility at the University of Pittsburgh, and all procedures performed on 

these rats were approved under the IACUC protocol and conducted according to National 

Institutes of Health guidelines. 
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2.1.2 Cell Culture and Proliferation Assay 

Hepatocytes were isolated from normal Fisher344 rats by an adaptation of Seglen's calcium 2-

step collagenase perfusion technique (79) as previously described from our laboratory (95). 

Isolated rat hepatocytes were added to collagen-coated six well plates (BD Biosciences, CA, 

USA). Each well contained 200,000 freshly isolated hepatocytes in 1 mL hepatocyte growth 

medium (HGM) supplemented with HGF (40 ng/ml) and EGF (20 ng/ml). 3H-thymidine was 

added to the medium for 48 hours at a concentration of 2.5 μCi/ml. The medium was removed at 

defined time points, and hepatocytes were fixed with ice cold 5% TCA. Then TCA was removed 

and the plates were washed in running tap water, and air dried completely. 500 ul 0.33N NaOH 

was added to each well for 30 minutes to solubilize the cells. The solution was transferred into a 

new tube and 166ul 20% TCA/1.2N HCl was added for precipitation. The tubes were centrifuged 

at maximum speed for 10 minutes, and the pellets were re-dissolved in 500 ul 0.33N NaOH. A 

200 ul aliquot was used to measure the CPM/DPM in Beckman LS6000IC scintillation counter 

(Beckman Coulter, CA, USA), and 100 ul was used to determine the OD value of total DNA.  

 

2.1.3 RNA Extraction and Semi-Quantitative RT-PCR 

RNA was extracted from frozen liver tissues with Trizol (Invitrogen, CA, USA) according to the 

manufacturer’s instructions. 5 ug of RNA was reverse-transcribed to complementary DNA 

(cDNA) with SuperScript III reverse transcriptase (Invitrogen, CA, USA) according to the 

standard protocol. Standard PCR was performed with Taq polymerase (Qiagen, CA, USA). The 
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primers used to perform PCR are: GPC3-Forward: GGTGACGGCATGATGAAAGTGAAG; 

GPC3-Reverse: TGGTGATCTCGTTGTCCTTCTGAT; CD81-Forward: CGCGGTACCATGG 

GGGTGGAGGGCTGCAC; CD81-Reverse: CCGGAATTCTCAGTACACGGAGCTGTTCCG 

G. The PCR products were resolved on 2 % agarose gels and visualized with ethidium bromide 

staining, and digital images were quantitated using NIH ImageJ software. 

 

2.1.4 Protein Extraction and Western Blotting 

Frozen liver tissue and hepatocytes were homogenized in RIPA buffer (50mM Tris-HCl, pH 7.4, 

150mM NaCl, 0.1% SDS) supplemented with proteinase inhibitors. For HS chain elimination, 

100 ug protein extract from freshly isolated rat hepatocytes and total rat liver was treated with 5 

microunits heparitinase enzyme (Seikagaku, Tokyo, Japan) and 1 mM CaCl2 for 3 hours (73). 

Protein samples (20 ug) were resolved on 4% to 12% NuPage Bis-Tris gels with 1X MOPS 

running buffer (Invitrogen, CA, USA), then transferred to Immobilon-P membranes (Millipore, 

MA, USA) in NuPAGE transfer buffer containing 10 % methanol. Membranes were stained with 

0.2 % Ponceau Red to verify loading and transfer efficiency. Membranes were then probed with 

primary and secondary antibodies in TBST buffer (Tris-buffered saline Tween 20) containing 5 

% nonfat milk, then processed with SuperSignal West Pico chemiluminescence substrate (Pierce, 

IL, USA) and exposed to a X-ray film (Lab Product Sales, NY, USA). 
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2.1.5 Knocking Down GPC3 using Morpholino Oligos 

Morpholino antisense oligos targeted to translational start sites of rat GPC3 were designed and 

synthesized by Gene Tools, LLC (Philomath, OR, USA). The morpholino oligo sequence 

complementary to the translational-blocking target GPC3 is: 5’-3’ CACGGTCCCGGCCATCCT 

GCTTCTT. The Morpholino was complexed with the Endo-Porter delivery reagent, which is 

used to deliver "bare" oligos by an endocytosis-mediated process (96). Rat hepatocytes were 

isolated and plated into collagen coated six well plates. In brief, 1 ml of HGM with HGF and 

EGF was combined with 20 µl of 1 mM Morpholino oligos and 5 µl of 1mM Endo-Porter 

dissolved in DMSO, and applied to cell cultures in six-well plates for 48 h. Endo-Porter solution 

alone was added as a negative control. After the allotted time period, the medium was removed 

and replaced with fresh HGM with HGF and EGF. For six-day experiments, Morpholino oligos 

and Endo-Porter reagent were added at days 2 and day 4. 3H-thymidine assays were performed as 

described in 2.1.2. All transfection experiments were carried out in triplicate. GPC3 protein 

levels for each time points were determined by western blotting. 

 

2.1.6 Yeast Two-Hybrid Assay 

The matchmaker GAL4 yeast two-hybrid system (Clontech, CA, USA) was used for 

identification of GPC3-binding proteins, according to standard protocol (97). As bait for 

screening, the vector pGBKT7 expressing a fusion protein composed of full-length rat GPC3 

cDNA linked to the DNA-binding domain was constructed. A rat liver cDNA library was cloned 
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into the pACT2 vector containing a GAL4 activation domain. Both of the vectors were used to 

transform the AH109 yeast strain. Positive clones were selected on SD/-Ade/-His/-Leu/-Trp high 

stringency YPDA plates with X-gal. Plasmids from positive clones were subsequently isolated 

from the yeast, transferred to E. coli Top10 competent cells (Invitrogen, CA, USA), and 

sequenced. The GenBank/NCBI databases were screened for similar sequences using a BLAST 

Search. 

 

2.1.7 Co-Immunoprecipitation  

Normal rat liver tissue was lysed in RIPA buffer as described above. For immunoprecipitation 

studies, 500 ug of protein lysates were diluted to a final volume of 500 ul and pre-cleared by 

incubating with 1 ug hamster IgG (Santa Cruz, CA, USA) and 20 ul agrose A/G plus beads 

(Santa Cruz, CA, USA) for 1 hour at room temperature. Protein complexes were immune-

precipitated from cleared lysates with 1 ug of anti-CD81 monoclonal antibody (GeneTex, TX, 

USA) overnight at 4 °C, followed by a 5-hour incubation at 4 °C with agarose A/G plus beads. 

Immune-complexes were then collected and washed three times with RIPA buffer, prior to 

resuspension in 4X SDS-PAGE sample buffer and 1X Reducing Reagent (Invitrogen, CA, USA). 

Proteins from either immunoprecipitated samples or 20 ug of crude liver protein were separated 

by SDS-PAGE, and subjected to western blotting using antibody against GPC3 (Aviva, CA, 

USA). All protein bands were detected using western blotting as described above. 
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2.1.8 Co-Immunofluoresence 

Frozen rat liver sections (5 µM) were fixed in ice cold 100 % acetone for 5 minutes, blocked 

with 5 % normal goat serum in PBS for 2 hours, and co-stained successively using primary 

antibodies against GPC3 (Aviva, CA, USA) and CD81 (GeneTex, TX, USA). GPC3 rabbit 

antibody (4 ug/ml) was incubated over night at 4°C, washed, and followed by incubation using 

CD81 hamster antibody (1.25 ug/ml) for 2 hours at room temperature. The two fluorescent 

conjugated secondary antibodies were goat-anti-rabbit (Alexa 488) at a dilution of 1:500, and 

goat-anti-hamster (Cy3) antibody at a dilution of 1:1000. Sections were counterstained with the 

nuclear DNA probe DRAQ5 (Biostatus Limited, UK) at a dilution of 1:1000 dilution. Images 

were visualized using Nikon Eclipse confocol fluorescent microscope. 

2.2 RESULTS 

2.2.1 GPC3 Protein and RNA Levels Increase during Liver Regeneration 

During rat liver regeneration following PHx, different cell types proliferate at different times and 

the entire process usually finishes within 7 to 10 days. To study the role of GPC3 in liver 

regeneration, we first investigated the mRNA and protein levels of GPC3 during this process. 

Semi-quantitative RT-PCR results showed that GPC3 expression increases from day 2 after rat 

PHx with a peak at day 5 (Fig.11A). Western blot analysis revealed that GPC3 protein started 

increasing from day 2 after PHx, peaked at day 5, and decreased at day 6, corresponding with the 

RT-PCR results (Fig.11B).  
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Figure 11. RNA and Protein Levels of GPC3 and CD81 increase during Liver Regeneration. (A) Semi-

quantitative RT-PCR results show that GPC3 and CD81 expression are elevated in PHx after day 2. GAPDH: 

loading control. NRT: non-RT negative control. (B) GPC3 and CD81 protein levels, normalized by actin, 

increase from day 2 after PHx with a peak expression at day 5. (C) Western blotting results of GPC3 protein 

extract from freshly isolated normal rat hepatocytes and normal rat liver tissue treated with heparitinase to 

eliminate HS chains. The arrow indicates the 89 kDa glycosylated form of GPC3.  
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It is reported that the core protein of GPC3 is 67.5 kDa in size. However, in our western blotting 

an 89 kDa band was detected by the rabbit anti mouse GPC3 polyclonal antibody. In view of the 

fact that GPC3 is highly glycosylated, to verify the 89 kDa band was GPC3, we treated the 

protein samples from freshly isolated rat hepatocytes as well as normal rat liver extract with 

heparitinase to eliminate the HS chains. After a 3-hour treatment with heparitinase, the intensity 

of the 89 kDa protein band diminished and a series of bands appeared including the 67 kDa 

GPC3 core protein band (Fig.11C). The multiple protein bands which appeared after heparitinase 

treatment may be due to incomplete digestion. These results are consistent with the reported high 

glycosylation levels of GPC3 protein. 

 

2.2.2 GPC3 Increases at the End of Hepatocyte Proliferation 

We further investigated GPC3 in hepatocyte cultures. Rat hepatocytes were isolated from normal 

rat liver and incubated with HGF and EGF, to stimulate cell proliferation in culture. DNA 

synthesis was detected using a 3H-thymidine incorporation assay, and hepatocyte proliferation 

(3H-thymidine count per mg DNA) was determined (Fig.12). The 3H-thymidine incorporation 

assay shows a peak of hepatocyte proliferation at day 7, and then DNA synthesis slows down. 

Western blotting showed that GPC3 levels, normalized by β-actin control, start increasing around 

day 7 (Fig.12), which correlated with the beginning of the decrease in hepatocyte DNA 

synthesis. 
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Figure 12. GPC3 Levels Increase when DNA Synthesis Stops in Rat Hepatocyte Culture. 3H-thymidine 

incorporation per mg total DNA (solid line) and GPC3 level (dotted line) for different time points in 

hepatocyte culture are shown. 

 

2.2.3 Knocking Down of GPC3 by Morpholino Oligos Promotes Hepatocyte 

Growth at the End of Proliferation 

To determine the role of GPC3 in liver regeneration, Morpholino oligos were used to knock 

down GPC3 protein expression in hepatocyte cultures. Morpholino oligos against GPC3 were 

commercially synthesized and added together with Endo-Porter reagent at day 0 and day 4 in 

hepatocyte cultures. To study the growth and proliferation of hepatocytes, 3H-thymidine counts 

and total DNA were collected for each time point. Growth curves were created according to 3H-
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thymidine counts (Fig.13A) or total amount of DNA (Fig.13B) for hepatocytes with GPC3 

Morpholino oligos or only with Endo-Porter control. In cultures with Morpholinos, both 3H-

thymidine counts and total DNA increase at day 6, when cell proliferation in control cultures 

slows down. Western blotting results showed that GPC3 protein is reduced at day 4 and 6 in 

hepatocytes cultured with GPC3 Morpholino oligos, but not with Endo-Porter control (Fig.13C). 

 

 

Figure 13. Effect of GPC3 Morpholino and Endo-Porter Control on 3H-thymidine Up-take (A) and Total 

DNA (B) in Rat Hepatocyte Cultures. All experiments were carried out in triplicate, and standard error is 

indicated by the error bars. GPC3 Morpholino promoted hepatocyte growth at day 6. (C) GPC3 protein is 

knocked down in cell cultures treated with GPC3 Morpholino oligos but not with Endo-Porter control, as 

shown by western blotting. 

 37 



2.2.4 GPC3 and CD81  

To screen for proteins that might interact with GPC3, a yeast two-hybrid assay was performed. 

Several interesting genes were found, such as a tyrosine kinase substrate (Hrs), prostaglandin D2 

synthase (Ptgds), alpha-2-HS-glycoprotein (fetuin), vitamin D-binding protein, splicing factor 

(SRp20), ribosomal protein S2 (Rps2), Ribosomal protein L29, T-cell differentiation protein 2 

(Mal2), 5,10-methenyltetrahydrofolate synthetase (Mthfs), alpha-1-inhibitor III, 

argininosuccinate synthetase (Ass), afamin (Afm), and CD81. Hrs is a gene producing a protein 

which is a substrate of Hepatocyte growth factor-regulated tyrosine kinase (MET) (98). The 

other proteins identified are either circulating in the plasma (fetuin, afamin), located in the 

cytosol (Hrs, vitamin D binding protein), or having no apparent connection in location and 

function. Since GPC3 is a cell surface protein, we decided to focus on the only potentially 

interacting protein that was also located on the plasma membrane.  

 

CD81 (also known as TAPA-1, acronym for Target of Anti-proliferative Antibody 1) is a cell 

surface tetraspanin and reported to be involved in a variety of biologic responses including 

inhibition of growth and proliferation (99). In the liver, previous research revealed that CD81 

interacts with HCV glycoprotein E2, assisting with HCV entry into hepatocytes(100). Still, the 

overall role of CD81 in liver growth regulation has not been previously investigated. As a first 

step, we assayed CD81 RNA and protein levels during liver regeneration. The results of semi-

quantitative RT-PCR and western blotting showed that RNA and protein levels of CD81 start 

increasing from day 2 (Fig.11A, B), which corresponds with changes of GPC3. 
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2.2.5 GPC3 Co-immunoprecipitates with CD81 

The yeast two-hybrid assay suggested that CD81 interacts with GPC3. To further test this 

finding, we performed a co-immunoprecipitation assay. Total protein was extracted from frozen 

normal rat liver, and CD81 was immunoprecipitated with anti-CD81 antibody, or hamster IgG as 

a binding control. The immunoprecipitated material was then probed for the presence of GPC3 

using an anti-GPC3 polyclonal antibody. Fig.14 shows that the 89 kDa band of GPC3 co-

immunoprecipitates with CD81, but not the control IgG. 

 

 

 

Figure 14. Co-Immunoprecipitation of CD81 and GPC3. The rat liver lysates without heparitinase treatment 

were incubated with anti-CD81 monoclonal antibody or control IgG, followed by precipitation with agarose 

A/G plus beads. Precipitates were separated by western blotting and probed with anti-GPC3 rabbit 

polyclonal antibody. Arrowhead indicates the 89 kDa GPC3 protein. 
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2.2.6 Localization of GPC3 and CD81 in Hepatic Tissue by 

Immunofluorescence  

To further study the intracellular localization of GPC3 and CD81 in the liver, co-

immunofluorescence was performed. Frozen sections of liver after PHx were double labeled with 

primary antibodies against GPC3 and CD81, and visualized using confocal microscope to 

determine the localization of both proteins. Our results showed that both GPC3 and CD81 

localize on cell membranes during liver regeneration. At day 2 after PHx, based on cell 

morphology, strong co-localization appeared on hepatocyte plasma membranes while at day 6, 

the co-localization signal appeared mainly along the sinusoids (Fig.15). It has been previously 

reported (68) that during the rat liver regeneration, rat hepatocytes start proliferating first and 

finish proliferation around day 2, followed by the proliferation of other cell types. The whole 

process lasts about 5 to 7 days. Therefore, the co-localization of GPC3 and CD81 at day 2 

coincides with the termination of hepatocyte proliferation, while the co-localization on non-

hepatocyte cell types at day 6 likely reflects the cessation of proliferation of non-parenchymal 

cell types. Western blotting results (Fig.11B) also revealed that there was an increase of GPC3 at 

day 2 and CD81 at day 1 after PHx, followed by another peak around day 5.  
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Figure 15. Immunofluorescence Analysis of GPC3 and CD81 Expression in Rat Liver Regeneration Process. 

Olympus Fluoview 500 Confocal Microscope was used to visualize the images and the original magnification 

was 200X. GPC3 (green), CD81 (red) and DRAQ5 nuclear staining (blue) are shown. Co-localization signals 

at day 2 and 6 after PHx are shown in the merged images (see white arrowheads in the magnified image).  
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2.3 DISCUSSION 

In this study, we showed that GPC3 mRNA and protein increase in a time frame which coincides 

with the termination of proliferative activities of either hepatocytes (day 2 after PHx and Day 8-

12 in culture) or non-parenchymal cells (Day 5-6 after PHx). These results and the previous 

reports about the GPC3 mutation in SGBS and organomegaly in GPC3 knock-out mice are 

consistent with our hypothesis that GPC3 plays an overall growth inhibitory role, at least in liver 

regeneration and hepatocyte proliferation. The studies with patients suffering from SBG 

syndrome also suggest that GPC3 is involved in regulating the growth of mesenchymal tissues, 

including muscle and bone etc. This correlates with the changes observed with GPC3 at Day 5 

and thereafter following PHx, which involve proliferation of non-hepatocytic cells types, such as 

stellate cells and endothelial cells (68).  

 

The yeast two-hybrid assay suggests that GPC3 interacts with CD81 which is a cell membrane 

tetraspanin, a finding which we validated by co-immunoprecipitation. Further study showed that 

CD81 mRNA and protein increase in grossly the same time frame after PHx. Co-

immunofluorescence results show that GPC3 and CD81 co-localize at day 2 and day 6 after PHx, 

indicating an important regulator interaction between the two proteins. At day 2 after PHx, 

strong signal of co-localization of GPC3 and CD81 appeared mainly on the cell membrane of 

hepatocytes. This coincides with the termination of hepatocyte proliferation. At day 6 after PHx, 

when all the other cells are finishing proliferation and arrangement, the co-localization signal 

appeared mainly along the sinusoids. These results suggest a potential regulatory role involving 
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an interaction of CD81 and GPC3 at times in which separate cellular populations in the liver 

(hepatocytes at Day 2 and non-parenchymal cells in Days 5-7) cease to proliferate. 

 

In view of our results and the studies with SBGS in humans and knock-out mice, the high levels 

of GPC3 observed in human HCC (18) are puzzling. We also observed, in rat liver tumors 

generated by DEN, that different levels of GPC3, some absent and some strikingly elevated, 

were seen (data not shown) (18). The elevated expression of GPC3 seen in liver cancer may 

reflect the fact that the neoplastic hepatocytes attempt to raise their level of GPC3 as a built-in 

hepatocyte feedback aimed to stop their proliferation. HCC cells, however, have lost their 

capacity to respond to this growth termination signal. Recent studies have also shown that GPC3 

is elevated in hepatic progenitor cells (oval cells) in situations when liver regeneration is 

stimulated and hepatocyte proliferation is blocked (101). It is also possible that in those studies 

GPC3 may act as a growth regulator for hepatic progenitor cells.  

 

In general, GPC3 has been reported to interfere with different pathways and growth factors, and 

it has tissue and stage specific roles in development and tumor growth (30). There are several 

glypicans and syndecans which could interact with growth regulatory pathways. It has been 

reported that HSPGs interact with FGFs, BMPs, Wnt pathway, et al (38,47). And those HSPGs 

could act as co-receptors, which regulate the binding affinity of these growth factors to their 

receptors (102). Therefore, it would be very interesting to investigate the role of GPC3 with 

other heparan sulfate proteoglycans during liver regeneration and hepatocyte growth and 

proliferation. 
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The interaction of GPC3 and CD81 is intriguing. One could speculate that the negative 

regulatory effects of GPC3 may be mediated via CD81. Since the latter is known to be a major 

portal of entry of HCV into hepatocytes (100), the finding raises the possibility that HCV 

interacting with CD81 disrupts a major growth regulatory pathway for hepatocytes. In view of 

the well documented but poorly understood high frequency, induction of hepatocellular 

carcinomas by HCV, this possibility is worthy of further exploration. 
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3.0  SUPPRESSION OF LIVER REGENERATION AND 

HEPATOCYTE PROLIFERATION IN GLYPICAN 3 

HEPATOCYTE-TARGETED TRANSGENIC MICE 

 

To further study the role and mode of action GPC3 during the liver regeneration process, we 

generated GPC3 transgenic (TG) mice under the control of the mouse albumin 

promoter/enhancer, in order to over-express GPC3 specifically in mouse hepatocytes. The GPC3 

TG mice appeared phenotypically normal and were indistinguishable from their non-transgenic 

littermates. Further investigation by western blotting and immunofluoresence staining revealed 

an up-regulation in GPC3 levels in the resting liver of these TG mice. We also found that after 

2/3 PHx, liver regeneration and hepatocyte proliferation was suppressed in these TG mice, as 

shown by our assessment of hepatocyte proliferation and the liver weight growth curve. Gene 

array analyses demonstrated an altered gene expression profile in the TG mice compared with 

their wild-type (WT) littermates. A comparison of gene expression profiles at various time points 

after PHx revealed a panel of cell cycle related genes and growth arrest genes there were either 

up- or down-regulated. Western blotting confirmed the changes of key factors in specific 

pathways. The overall findings suggest that GPC3 is indeed a suppressor of hepatocyte growth 
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and that it may play a role in regulation of the processes resulting in termination of liver 

regeneration. 

3.1 MATERIALS AND METHODS 

 

3.1.1 Transgenic (TG) Construct and Production of GPC3 TG Mice 

A 1.8 kb mouse GPC3 insert containing the entire coding region was cloned from mouse liver 

cDNA library and inserted into the BamHI site of an albumin promoter-driven expression vector 

kindly provided by Dr R Palmiter (University of Washington, USA). This transgene construct 

was used to generate transgenic mice using the FVB mouse strain (Taconic, NY, USA) by 

established methodology (103). Transgenic mice were identified by PCR using a forward primer 

located in the albumin promoter region: CTGCACACAGATCACCTTT and a reverse primer 

located within GPC3 exon 2: GCCGTGCTGTTAGTTGGTATTTTTCT. Transgenic mice were 

further confirmed by Southern blotting of BSRGI digested mouse tail genomic DNA using a 32P-

labeled 288 bp GPC3 cDNA probe using standard hybridization conditions (104). One of three 

transgenic lines produced was utilized for this study, based upon its high GPC3 transgene 

expression. Heterozygote mice were propagated by breeding with each other to produce 

homozygote carriers. WT FVB mice were used as controls. All animals were housed in the 

animal facility of the University of Pittsburgh in accordance with the guidelines of the 

Institutional Animal Use and Care Committee of the University of Pittsburgh.  
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3.1.2 Mouse PHx Model  

All mice were housed with a 12-h light/dark schedule and allowed access to food and water ad 

libitum. Isoflurane inhalation (Baxter, IL, USA) was used to anaesthetize animals. In the mouse 

2/3 PHx model, the median and left lobes were resected from TG and WT male mice between 20 

and 30 weeks of age. The remaining liver lobes were obtained from defined time points after 

PHx as: day 2 (2d), 4d and 6d for morphological, immunohistochemical and molecular analysis. 

All procedures performed on these mice were approved under the IACUC protocol and 

conducted according to National Institute of Health guidelines. 

 

For each time point after PHx, the remaining liver weight was recorded. A portion of the liver 

tissue was fixed in 10% formalin solution for 48 hours and embedded in paraffin, or placed in 

Tissue-Tek OCT embedding compound and frozen on dry ice. The rest of the liver samples were 

promptly frozen in liquid nitrogen and stored at -80°C. For some animals, hepatocytes and NPC 

cells were isolated by an adaptation of Seglen's calcium 2-step collagenase perfusion technique 

(95) as previously described from our laboratory (73). All numerical results are expressed as 

mean ± standard error (SE). 
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3.1.3 RNA Extraction and Semi-Quantitative RT-PCR 

RNA was extracted from frozen liver tissues with Trizol (Invitrogen, CA, USA) according to the 

manufacturer’s instructions. 5 ug of RNA was reverse-transcribed to complementary DNA 

(cDNA) and semi-quantitative RT-PCR was performed as described in our previous paper (105). 

The primer sequences used to perform PCR are: mGPC3-Forward: GCACGGCTGAACATGGA 

ACAACTGCTC; mGPC3-Reverse: GGGGTAGTTATTCTTGAACATGGCGTTGGT; mCD81-

Forward: CGCGGTACCATGGGGGTGGAGGGCTGCAC; mCD81-Reverse: CCGGAATTCT 

CAGTACACGGAGCTGTTCCGG. Porphobilinogen deaminase (PBGD, NM_013551.2) 

primers were used as the control: mPBGD-Forward: ATGTCCGGTAACGGCGGC; mPBGD-

Reverse: CAAGGCTTTCAGCATCGCCACCA. The signal intensity was quantitated using 

ImageJ software and normalized to PBGD control. 

 

3.1.4 Protein Extraction and Western Blotting  

Whole liver protein extract was obtained by homogenizing frozen liver tissue in RIPA buffer 

(50mM Tris-HCl, pH 7.4, 150mM NaCl, 0.1% SDS) supplemented with proteinase inhibitors. 

Nucleus protein was extracted using NE-PER Nuclear and Cytoplasmic Extraction Reagent Kit 

(Thermo Scientific, IL, USA) according to the manufacturer’s protocol. Protein samples (20 ug) 

were resolved on 4% to 12% NuPage Bis-Tris gels (Invitrogen, CA, USA) and western blotting 

was processed as described in our previous paper (105). A minimal of three liver samples per 

time point were pooled for western blotting, and the signal intensity of each protein band was 
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quantitated using National Institutes of Health ImageJ software. β-actin was used as the loading 

control for western blotting with total liver protein lysates (Fig.16B,C,D), while ponceau staining 

of each protein column was quantitated as the loading control for western blots using nucleus or 

cytoplasm proteins (Fig.19). The primary antibodies used in this study were: GPC3 rabbit 

antibody (Aviva, CA, USA); CD81 hamster antibody (GeneTex, TX, USA); Cyclin D1 rabbit 

antibody (NeoMarkers, CA, USA); Proliferating Cell Nuclear Antigen (PCNA) mouse antibody 

(Santa Cruz, CA, USA); yes-associated protein (YAP) rabbit antibody (Cell Signaling, MA, 

USA); phosphorylated YAP rabbit antibody (Cell Signaling, MA, USA); Early growth response 

factor 1 (Egr1) mouse antibody (Abcam, MA, USA); c-Myc rabbit antibody (Santa Cruz, CA, 

USA); C/EBPα rabbit antibody (Santa Cruz, CA, USA);. C/EBPβ rabbit antibody (Santa Cruz, 

CA, USA) and runt related transcription factor 3 (Runx3) rabbit antibody (Abcam, MA, USA). 

 

3.1.5 Co-immunofluoresence 

Frozen rat liver sections (5 µM) were fixed in ice cold 100% acetone and co-stained successively 

with primary antibodies against GPC3 (Aviva, CA, USA) and CD81 (GeneTex, TX, USA) as 

described in our previous study (105). Sections were counterstained with the nuclear DNA probe 

DRAQ5 (Biostatus Limited, UK). Images were visualized using a Nikon Eclipse confocol 

fluorescent microscope. 

 

 49 



3.1.6 Immunohistochemistry 

Liver paraffin sections from each sample were cut at 5 μM and stained with proliferation marker 

Ki67 rabbit antibody (ThermoFisher Scientific, MA, USA) using the avidin-biotin-peroxidase 

complex technique (Vectastain ABC kit and DAB peroxidase substrate kit, Vector Laboratories, 

CA, USA). The tissue was counterstained with hematoxylin and Eosin (H&E). The staining was 

visualized using Axiovert 40 CFL inverted microscope (Carl Zeiss MicroImaging, NY, USA) 

and statistically analyzed. Average hepatocyte proliferation rate was demonstrated by the 

percentage of Ki67-positive hepatocytes in the total number of hepatocytes in 13 random 

selected fields taken with a 20X magnification for each group of mice. 

 

3.1.7 Gene Array Analysis 

Multiple frozen liver samples from each time point for GPC3 TG mice or WT mice were pooled 

and RNA was extracted for microarray hybridization. Double stranded cDNA was synthesized 

from total RNA and used as the template for in vitro transcription to generate biotin-labeled 

cRNA according to manufacturer’s instructions. 8 μg of the labeled cRNA from each sample was 

fragmented and hybridized to the Mouse Genome 430 2.0 GeneChip array (Affymetrix, CA, 

USA) and the signal was amplified by the biotin-avidin-phycoerythirn technique. Affymetrix 

scanner 3000 7G and Genechip Operating software 3.2 (Affymetrix, CA, USA) were used to 

scan the images and convert intensity to a numerical format representing an average difference 

value for each probe. 
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3.2 RESULTS 

 

3.2.1 Generation of TG Mice Over-expressing GPC3 in the Liver 

To generate GPC3 transgenic mice, we designed and cloned a transgenic expression construct 

containing the 1.8 kb coding region of GPC3 cDNA under the transcriptional control of the 

mouse albumin promoter/enhancer (Fig. 16A). The insertion of the GPC3 transgene was 

confirmed by PCR and Southern blotting in GPC3 TG mice (data not shown). To examine the 

changes in mRNA and protein levels of GPC3, semi-quantitative RT-PCR and western blotting 

were utilized in livers from TG and WT mice, with a minimal of three mice per time point 

examined. As expected, there was increased GPC3 protein in TG mice at day 0 and at day 2 after 

PHx compared with their non-transgenic littermates (Fig. 16B,D). GPC3 protein increased at 4 

days after PHx in WT mice, as we had previously described (105), while in TG mice it remained 

essentially unchanged (Fig. 16B). Of interest, CD81 protein levels were also significantly up-

regulated in GPC3 TG mice, with a downtrend during the liver regeneration process (Fig. 

16C,D).  
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Figure 16. The Transgene Construct and Expression Levels of GPC3 Transgene. (A) Schematic 

representation of the GPC3 transgene consisting of the 1.8 kb mouse GPC3 cDNA (open box) with GPC3 

3’UTR/Poly A (square mesh box) inserted into the first exon of the human growth hormone gene (black 

boxes) controlled by the mouse albumin enhancer/promoter (dotted ovals), and possessing a human growth 

hormone Poly A site (cross box). Western blotting results showed that GPC3 (B) and CD81 (C) protein levels, 

normalized by β-actin, were up-regulated in TG mice. TG: GPC3 transgenic mice. WT: FVB wild-type mice. 

(D) Original western blots showing GPC3 and CD81 levels during liver regeneration process in WT and TG 

mice. (E) Semi-quantitative RT-PCR of GPC3 results normalized to control PBGD expression and 

quantitated using ImageJ software. No significant changes in GPC3 mRNA levels were observed in total liver 

tissue in TG and WT mice. (F) Semi-quantitative RT-PCR analysis of GPC3 expression in hepatocytes and 

NPCs in WT and TG mice. H: hepatocytes. NPC: non-parenchymal cells. 
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Semi-quantitative RT-PCR results were quantitated using ImageJ software and showed no 

obvious change in GPC3 gene expression between TG and WT mice, after normalization to 

PBGD expression, in the total liver extracts (Fig. 16E). This may be due to the fact that only 

non-parenchymal cells (NPC) express significant levels of GPC3 in the WT mice, whereas in the 

transgenic mice both hepatocytes and NPC express GPC3 at moderate levels (Fig. 16F). In 

contrast, using immunofluorescence, we saw an increase in GPC3 protein on hepatocyte 

membranes as well as in cytoplasm of TG mice compared with their WT littermates (Fig. 17A).  

 

3.2.2 Growth Suppression after PHx in GPC3 TG Mice 

To further study the function and role of GPC3 in vivo, mouse 2/3 PHx was performed in both 

GPC3 TG and WT male mice, and liver tissue samples were collected at days 2, 4 and 6. Liver 

weight was assessed by normalizing to the day 0 total liver weight in each group. The data are 

presented in Figure 18A. There was no significant difference of the total (pre-hepatectomy) liver 

weight at day 0 when comparing TG and WT mice (data not shown). At day 6 after PHx, the 

liver weight of GPC3 TG mice was significantly lower than that of WT mice (Fig. 18A). Ki67 

immunohistochemistry results showed that in WT mice there was abundant hepatocyte 

proliferation at 2 days after PHx, as demonstrated by the percentage of Ki67 positive nuclei. In 

GPC3 TG mice, hepatocyte proliferation was significantly suppressed at day 2 post-PHx 

(Fig.17B,18B), with no significant differences at days 4 and 6 compared with WT. 
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Figure 17. Immunofluoresence Staining of GPC3 and Immunohistochemistry Staining of Ki67 in TG and WT 

Mice. (A) Olympus Fluoview 500 Confocal Microscope was used to visualize the images of the liver in TG and 

WT mice. GPC3 (green), CD81 (red) and DRAQ5 nuclear staining (blue) are shown in the merged images 

with a magnification of 200X. TG mice showed a significant increased level of GPC3. (B) 

Immunohistochemistry staining and Ki67 (brown), a proliferation marker, in paraffin sections of TG and 

WT mice livers after PHx. The Ki67 positive rate was suppressed in TG mice at day 2 after PHx compared 

with WT mice. 

 

 

 54 



 

 

Figure 18. Suppression of Liver Regeneration and Hepatocyte Proliferation in GPC3 TG Mice. (A) Statistic 

analysis of liver weight of TG and WT mice after PHx, normalized to day 0 total (pre-hepatectomy) liver 

weight. D0 in the graph represents the remaining liver weight after PHx, which is 1/3 of the total liver weight. 

There was no significant difference in the pre-hepatectomy liver weights at day 0 between TG and WT mice. 

(B) Positive Ki67 positive staining in hepatocytes of TG and WT mice after PHx. A significant decrease in 

Ki67 positive rate was observed in TG mice at day 2 after PHx. 
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3.2.3 Gene Expression Profile Alteration in Unoperated TG Mice 

Microarray analysis was used to investigate the expression profile and transcriptional regulation 

in liver tissues of TG and WT mice under normal conditions (unoperated mice). The Mouse 

Genome 430 2.0 GeneChip array is a single array analyzing the expression level of over 39,000 

transcripts and variants, including over 34,000 well-characterized mouse genes (Affymetrix, CA, 

USA). Direct comparison between TG mice and WT mice expression patterns revealed 44 genes 

up-regulated and 58 genes down-regulated in TG with > 1.5 fold change (Appendix Table 2). 

Among the most interesting were Runx3 (Runt related transcription factor 3, up by 7.6-fold), 

Jak3 (Janus kinase 3, up by 6.4-fold), Dbp (D site Albumin promoter binding protein, up by 4-

fold), Gabaar (GABA-A receptor, up by 2.9-fold), Wnt7b (Wingless-related MMTV integration 

site 7B, up by 2.8-fold) and Egfr (epidermal growth factor receptor, up by 1.6-fold). Gpc3 and 

Cd81 genes were both up-regulated by 1.5-fold in TG mice. Most strongly down-regulated genes 

were Igfbp1 (insulin-like growth factor binding protein 1, down by 8.4-fold), Rab2 (RAS 

oncogene family, down by 5.6-fold), Egr1 (Early growth response 1, down by 5.3-fold), Tgfb1 

(Transforming growth factor beta type I, down by 3.1-fold), Ndl (Nodal, down by 1.8-fold), 

Catnb (beta catenin, down by 1.7-fold) and Yap (Yes-associated protein, down by 1.4-fold) in 

GPC3 TG mice. A complete list of genes showing either up- or down-regulation in expression of 

TG mice can be found in Appendix Table 2. Some of these genes are involved in multiple 

regulatory pathways, with their changes in expression presumably affected by the over-

expression of the GPC3 transgene in mouse hepatocytes. 
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3.2.4 Gene Expression Profile Altered after PHx in TG Mice 

A comparison of expression profiles between TG mice and WT mice after PHx also indicated 

dysregulation of many genes in GPC3 TG mice during liver regeneration. A panel of important 

genes known to be involved in hepatocyte cell cycle and growth arrest was examined and 

analyzed at 2 days after PHx in TG mice compared with their WT littermates, when the biggest 

suppression of hepatocyte proliferation occurred (Appendix Table 3). Some cell cycle related 

genes were observed to be down-regulated in TG mice at day 2 post-PHx, such as Ccna1 (Cyclin 

A1, by 7.6-fold), Ccnm1 (Cyclin M1, by 5.4-fold), Ccnd1 (Cyclin D1, by 1.4-fold), Ccne2 

(Cyclin E2, by 1.7-fold), and Gas1 (Growth arrest specific 1, by 1.7-fold). The up-regulated 

genes after PHx in TG mice were: Runx3 (by 8-fold), Gadd45b (Growth arrest and DNA-

damage-inducible 45 beta, by 3.9-fold), Fgf14 (Fibroblast growth factor 14, by 2-fold) and Tgfb1 

(by 1.6-fold). A series of Cdks (Cyclin-dependent kinases), Ccns (Cyclins) as well as Igfbps 

(Insulin-like growth factor binding proteins) was also observed to be altered at day 2 after PHx in 

TG mice. Some other important genes that are related to growth and proliferation with less 

significant changes in TG mice, if any, are also listed for reference (Appendix Table 3). 

 

3.2.5 Growth Related Protein Differences after PHx between GPC3 TG and 

WT Mice 

Gene array results revealed a panel of cell cycle related and growth related genes, the expression 

of which is altered in GPC3 TG mice after PHx compared to their WT littermates. Western 
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blotting was performed to further investigate the protein levels of some of these genes (Fig. 19). 

For each time point, liver samples from a minimum of three mice were pooled and the nuclear 

and the cytoplasm proteins were separated for western blotting. Prior to PHx, there was an 

increase in the protein levels of c-Myc, Egr1, C/EBPα and Runx3 in TG mice compared with 

WT. Except for Egr1, these findings correlate with the changes seen for these proteins by gene 

array analyses. After PHx a decrease in levels of some of the proteins in the nucleus was 

observed at day 2 in GPC3 TG mice, such as Cyclin D1, PCNA, c-Myc and YAP. There was 

also increased phosphorylated YAP (p-YAP) protein in cytoplasm, which is the inactive form of 

YAP. C/EBPβ level was increased at day 4 and day 6 after PHx in TG mice. These results 

coincided with the suppression of liver regeneration and hepatocyte proliferation after PHx. 
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Figure 19. Western Blotting Results Showing Changes in Protein Levels of Selected Genes from GPC3 TG 

Mice and WT Mice during Liver Regeneration. Protein levels in the nuclei and cytoplasm of livers from 

GPC3 TG and WT mice were examined. Ponceau staining of each protein lane was used as loading control 

and the average grey value was shown below each column. The protein levels at day 2 after PHx are 

highlighted in TG and WT mice. 
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3.3 DISCUSSION 

Liver regeneration is a complicated process and involves multiple factors and pathways (68). Our 

previous study showed that GPC3 plays an inhibitory role during rat liver regeneration and 

hepatocyte proliferation. The work performed in this study further suggests the effects of GPC3 

on hepatocyte growth are primarily inhibitory, using our GPC3 transgenic mouse model. We 

generated GPC3 transgenic mice using a transgenic construct under the transcriptional control of 

the mouse Albumin promoter/enhancer, targeting for hepatocyte-specific expression. These TG 

mice showed no apparent phenotypic difference compared to their non-TG littermates, but 

further investigation revealed an up-regulation in GPC3 protein levels in the liver of these TG 

mice.  

 

To study the effect of GPC3 transgene over-expression on liver regeneration, we compared the 

liver weight, normalized to day 0, between TG and WT mice at specific time points after PHx for 

each group. Male mice at the age of 20-30 weeks, in which the hepatocyte polyploidization 

process becomes relatively steady, were selected to investigate the liver regeneration process 

(106,107). A suppression of liver growth was observed on day 6 after PHx in TG mice. 

Immunohistochemistry results revealed a significant suppression of the proliferation rate in TG 

mice at 2 days after PHx, when there is a peak of hepatocyte proliferation in WT mice. The 

suppression of liver growth and hepatocyte proliferation after PHx coincided well with the over-

expression of the GPC3 transgene and the up-regulated GPC3 protein levels in these TG mice. 

This also abides with our previous hypothesis that GPC3 plays a negative regulatory role in the 
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liver, since GPC3 up-regulation correlated with suppression of liver regeneration and hepatocyte 

proliferation.  

It is reported that GPC3 is involved in several pathways during development and tumorigenesis, 

and acts as potential co-receptor for many growth factors (30). To study the pathways that might 

be altered and affected by over-expression of the GPC3 transgene in the liver, we examined and 

compared the expression profile of TG mice and WT mice at rest and during the liver 

regeneration process. Our gene array data revealed alterations in the expression of over 100 

genes in GPC3 TG mice, with GPC3 expression itself up-regulated by 1.5 fold. Western blotting 

and immunofluoresence showed an increase of GPC3 protein levels in the livers of TG mice. But 

interestingly, the GPC3 transgene expression at the mRNA level was not as high as expected 

after PHx possibly, because the albumin promoter/enhancer is known to be down-regulated 

slightly during liver regeneration (108,109). Examination of GPC3 expression in whole liver 

showed no obvious change between TG and WT mice. This might be due to a masking effect of 

GPC3 expression from NPCs which was relatively high in both TG and WT mice. In WT mice, 

the GPC3 protein levels were increased in the liver after PHx, while in TG mice with overall 

higher GPC3 levels than WT mice, there was a slight decrease, if any, at 2 and 6 days post-PHx. 

This lack of increase might be due to the down-regulation of the Albumin promoter, which is 

controlling the GPC3 transgene, in the early stages of liver regeneration (109-111). Previous 

studies showed that a decrease of nuclear factors C/EBPα and Dbp (108) and an increase of 

C/EBPβ (109) were involved in the down-regulation of Albumin expression during liver 

regeneration. Our western blotting results confirmed the down-regulation of C/EBPα and up-

regulation of C/EBPβ after PHx in GPC3 TG mice (Fig. 19) In gene array analysis, we also 

observed an 11.5-fold decrease in the expression of Dbp at 2 days after PHx in the TG mice (data 
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not shown). The changes of these nuclear factors may lead to down-regulation of the Albumin 

promoter in TG mice, which may explain the decrease of GPC3 protein levels at day 2 and day 6 

after PHx.  

 

The suppression of regeneration seen in this study corresponds well with some of the changes 

noted in the TG mice prior to PHx. GABA A receptor is over expressed by 2.9-fold. Previous 

studies have also shown that GABA and its receptor also have inhibitory effects on liver 

regeneration (112). Runx3, another over-expressed gene in the TG mice, is associated with 

suppression of Notch signaling events in the liver (113). NICD, the Notch intracellular domain, 

is associated with stimulation of hepatocyte proliferation during liver regeneration (82). The role 

of Wnt7b is not clear. There is minimal expression of Wnt7 in normal mouse liver and, if any, it 

is expressed in NPC cells (48). Surprisingly, there is over-expression of EGFR, a major 

mitogenic receptor for hepatocytes (114). This may reflect a compensatory effect associated with 

a prolonged increase of the growth-inhibitory GPC3 in the liver of the TG mice. Although the 

expression of Egr1 is down-regulated by 5.3-fold, there are enhanced protein levels of Egr1 in 

TG mice, which might be due to the effect of microRNAs or the protein stability. The enhanced 

protein level of Egr1 may also correlate with the observed effects on liver regeneration since 

Egr1 is known to suppress expression of the HGF receptor (115). The changes associated with 

cell cycle related genes after PHx are easier to correlate with the observed suppression of liver 

regeneration, especially in relation to cyclin A and D1, well known to be associated with entry of 

hepatocytes into S-phase of the cycle (116). The observed increase in C/EBPα also relates to the 

overall suppression of regeneration, since C/EBPα is known to decrease following PHx (117). 

Equally important is the observed decrease in YAP nuclear levels in TG mice, associated with an 
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increase in cytoplasmic levels of p-YAP. YAP is known to correlate with hepatocyte growth and 

adjustment of liver size (118,119). Phosphorylation of YAP is associated with export from the 

nucleus to the cytoplasm and suppression of its effects on the regulation of growth related genes 

(119). 

 

The results of our current work further extend the evidence that GPC3 has overall growth-

suppressive effects on hepatocytes. GPC3, however, is greatly elevated in human hepatocellular 

carcinoma (18). One can rationalize that the increased expression of GPC3 in liver cancer 

reflects an existing gene expression algorithm by which proliferating hepatocytes regulate their 

growth, as in liver regeneration. GPC3, however, is also reported to be elevated in liver 

progenitor (oval cell) populations (101), a cell population which is not neoplastic. Despite all the 

accumulated literature on growth regulation by GPC3, its mechanisms of action remain elusive. 

It is associated with CD81, as shown in this work. The latter also has growth regulatory effects in 

specific cell populations (105). We published that there is enhanced association between GPC3 

and CD81 after PHx (105). This may result in suppression of CD81 signaling, a protein of which 

little is known. Since not much is known about the pathways involved in termination of liver 

regeneration, further studies should focus on fully understanding the signaling pathways 

associated with the effects of GPC3 in normal liver, in order to better conceptualize its high 

levels of expression in liver neoplasia. 
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4.0  GENERAL DISCUSSION AND FUTURE 

DIRECTIONS 

GPC3 is a GPI-anchored cell-surface heparin sulfate proteoglycan which plays important roles 

during embryogenesis and organogenesis as well as tumorigenesis. Despite all the accumulated 

literature on growth regulation and potential signaling pathways of GPC3, its mechanism of 

action is still not well characterized. By studying its role and mechanisms during liver 

regeneration process, we hope to gain insights into the functional pathway and regulation of 

GPC3 in different circumstances, and to better understand the regulatory mechanism of the 

termination of liver regeneration.  

 

In order to investigate the role and function of GPC3 in the liver, we used 2/3 partial 

hepatectomy model in rats and hepatocyte-targeted transgenic mice, in which the liver 

regenerates through proliferation of hepatocytes and NPCs with no massive necrosis or acute 

inflammation associated. We also applied yeast two-hybrid assay and microarray analysis to 

study the potential factors involved in GPC3 pathways. Further study of GPC3 function, 

regulation mechanism as well as signaling pathways will be significant for better understanding 

the malfunction of the liver regeneration and tumorigenesis.  
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4.1 SUMMARY 

We first studied the role of GPC3 in rat model of liver regeneration after 2/3 PHx in which 

hepatocyte growth dynamics are well characterized (68). We also used rat hepatocyte primary 

cultures, in which we and others have characterized the hepatocyte growth cycle under the 

influence of HGF and EGF in vitro (94). The RT-PCR and western blotting results demonstrated 

that GPC3 mRNA and protein increase in a time frame that coincides with the termination of 

proliferative activities of either hepatocytes (day 2 after PHx and day 8-12 in culture) or NPCs 

(day 5-6 after PHx). The in vitro proliferation and growth curve studies showed that hepatocyte 

growth was promoted when GPC3 expression was blocked using antisense Morpholino oligos. 

These results and the previous reports about GPC3 mutation in SGBS and organomegaly in 

GPC3-/- mice are consistent with our hypothesis that GPC3 plays a growth inhibitory role, at 

least in liver regeneration and hepatocyte proliferation.  

 

To further validate this, we generated GPC3 transgenic mice under the control of mouse albumin 

promoter/ enhancer to over-express GPC3 specifically in the hepatocytes. The GPC3 TG mice 

appeared phenotypically normal and were indistinguishable from their non-transgenic 

littermates. Further investigation by western blotting and immunofluoresence staining revealed 

an up-regulation in GPC3 levels in the liver of these TG mice. We found that after 2/3 PHx, liver 

regeneration and hepatocyte proliferation was suppressed in these TG mice as shown by 

assessment of hepatocyte proliferation and liver weight growth curve, which abided with our 

hypothesis that GPC3 is a negative regulator during liver regeneration. 
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The following pathway and mechanism studies involved yeast two-hybrid assay and gene array 

analysis. The yeast two-hybrid assay revealed that GPC3 interacts with CD81, a cell membrane 

tetraspanin, as further confirmed by co-immunofluorescence and co-immunoprecipitation 

studies. CD81 mRNA and protein increased in grossly the same time frame after PHx. The co-

localization of GPC3 and CD81 at day 2 and 6 after PHx indicated the potential for an important 

regulatory interaction between the two proteins.  

 

In addition, the gene array analysis results demonstrated a series of changes in the gene 

expression profiles in the GPC3 hepatocyte-targeted TG mice compared with their WT 

littermates. Over 100 genes were either up- or down-regulated, some of which were involved in 

multiple regulatory pathways. After 2/3 PHx, a panel of cell cycle related genes and some 

oncogenes were either up- or down-regulated, which was confirmed by western blotting. These 

results indicated that over-expression of GPC3 in hepatocytes altered gene expression profiles, in 

which potential cell cycle related proteins and pathways were involved and affected. 

 

4.2 DISCUSSION 

Our studies of GPC3 after 2/3 PHx in rats and GPC3 transgenic mice indicate that GPC3 

functions as a growth inhibitor, at least in the liver, which coincides with the previous 

observations of organomegaly in SGBS and GPC3-/- mice (14,16). The role of GPC3 provides 
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an insight into the termination of the liver regeneration, which is much less understood compared 

to its initiation process. At the end of regeneration, liver mass is adjusted and liver histology is 

rearranged to restore the full function of the liver under proper regulation (68). Current study of 

the termination signals of regeneration has focused on TGFβ1, which is produced predominantly 

by stellate cells (120), and also by most carcinomas derived from hepatocytes or hepatoblasts 

(18). As a known suppressor of hepatocyte proliferation in vitro (121), TGFβ1 also suppresses 

production of HGF (122), suppresses urokinase and activation of HGF (92), and stimulate 

production of many extracellular matrix (ECM) proteins in the liver (68). However, current study 

shows that intact TGFβ1 pathway is not required to stop liver regeneration (123) and TGFβ1 is 

not a direct terminator of regeneration (68), indicating the existence of other factors that regulate 

the termination of the regeneration.  

 

Previous studies have shown that the regulation and remodeling of ECM play important roles 

during liver regeneration, which includes a mixture and complex networking of proteins and 

glycosaminoglycans. One of these components is GPC3, a highly glycosylated cell-surface 

proteoglycan existing in the pericellular matrix of many epithelial cells including hepatocytes 

(2). Some of the features of GPC3, such as GPI anchor, HS side chains and globular core protein 

structure, provide insights into the potential interactions between GPC3 and other membrane 

proteins or growth factors in the ECM (1,30). Current literature has suggested that GPC3 is 

involved in the control of cell proliferation and/or the induction of apoptosis, and may be 

involved in various pathways such as FGF, BMP and Wnt pathways (38,47,51). It is possible 

that GPC3 regulates the termination of liver regeneration and hepatocyte proliferation by 
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interacting with several pathways and facilitating the ECM signaling thus altering the 

intracellular events in the hepatocytes and NPCs.    

 

Our yeast two-hybrid assay results reveal that GPC3 interacts with CD81, also called TAPA1 

(Target of Anti-proliferative Antibody 1), which is a cell-surface tetraspanin widely expressed 

and also involved in a broad range of physiological responses (99,124). CD81 is shown to co-

localize with GPC3 at the termination of hepatocyte and NPC proliferation. The function of 

CD81 is still not well understood, but evidence has suggested that CD81 is involved in 

intercellular interactions and intracellular signaling regulation, protein transport, endocytosis and 

exocytosis, et al (124). Previous studies show that CD81 is associated with ECM signaling and 

can interact with α3β1 integrin together with CD151 thus regulating cell adhesion, cell motility 

and integrin-mediated pathways (125,126). Direct evidence has been found that CD81 is 

associate with the activation of the extracellular signal-regulated kinase1/2 (ERK1/2)/mitogen 

activated protein kinase (MAPK) pathway and tyrosine phosphorylation of the adapter protein 

Shc in liver tumor (127).  

 

CD81, as well as other tetraspanin members, can also form homo-multimers through covalent 

cross-linking leading to the aggregation and formation of “tetraspanin-enriched microdomains” 

(TEM) (128,129). TEM is different from lipid rafts in the sensitivity to temperature, cholesterol 

depletion, protein palmitoylation and the basic components (128). TEM possesses considerable 

functional importance not only because it can interact directly with various non-tetraspanin 

proteins, but also due to its capacity to assemble into a heterophilic network and to recruit and 
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regulate different partner proteins, such as integrins, cadherins, immunoglobulin superfamily 

proteins, regulatory proteins, proteases, G protein-coupled receptors (GPCRs), signaling 

enzymes and proteoglycans (such as GPC3) (128). From this perspective, it is reasonable to 

speculate that GPC3 may function through binding with CD81 and affecting and regulating 

different factors in the dynamic TEM signaling platform.  

 

Despite the growth suppressor role shown in our results and previous studies using SGBS and 

GPC3-/- mice, high levels of GPC3 expression are observed in human HCC and in rat liver 

tumors generated by DEN (18,58), which seems to be puzzling. The elevation of GPC3 in liver 

cancer may reflect an existing gene expression algorithm by which neoplastic hepatocytes 

attempt to raise the GPC3 level to stop their own proliferation, as a failed feedback mechanism. 

But the hepatocellular carcinoma cells have lost their capacity to respond to this growth 

termination signal, possibly due to the alterations in the signaling transduction pathways in 

cancers. GPC3, however, is also reported to be elevated in liver progenitor populations (oval 

cells) which are not neoplastic (101), in a situation when liver regeneration is stimulated and 

hepatocyte proliferation is blocked. It is also possible that GPC3 may regulate hepatic progenitor 

cells. To better understand the functions and underlying mechanisms of GPC3, it is essential to 

further investigate GPC3 involved signaling pathways and networks under normal conditions as 

well as in cancers.  

 

Purely within the realm of speculation, it is possible that in the quiescent state of non-

proliferating hepatocytes, mitogenic receptors and their ligands, and mito-inhibitory receptors 

 69 



and their ligands, reside in distinct domains defined by TEMs, in such a way that hepatocytes 

cannot be stimulated to enter into proliferation. In the state of quiescence, TEMs are also 

interacting with integrins and extracellular matrix. The rearrangement of pericellular matrix and 

membrane domains following partial hepatectomy disrupts the TEM microdomains and allows 

interactions between receptors and their ligands, so that the orchestrated process of regeneration 

can take place. At the end of regeneration, GPC3 may be required for the reestablishment of the 

TEM domains and the proper sequestration of the ligand receptor families so that the quiescent 

state can be reestablished. This process would fail if the TEMs are severely disrupted, as in the 

case of many cancer cell types (130-132). In this speculative scenario, GPC3 may be a transient 

organizer for the establishment of the TEM membrane microdomain system. Future studies need 

to employ careful cell fractionation to isolate TEM microdomains and their components in 

different stages of hepatic regeneration, to test for this speculative hypothesis. 

 

4.3 FUTURE DIRECTIONS 

GPC3 is shown to play important and distinct regulatory roles in normal tissues and tumors. But 

much less is known about pathways of GPC3 as well as the termination mechanisms of the liver 

regeneration. Therefore, further studies should be performed to fully understand the functions, 

regulation mechanisms and signaling pathways associated with GPC3 in normal liver, in order to 

better conceptualized the high levels of GPC3 in liver neoplasia. The interaction of GPC3 and 

CD81 is well worth investigating to better understand the correlation between the two cell 
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surface proteins and the involved signaling network. It is also interested to study the effect of 

GPC3 on the pathways and cell growth related proteins that have been altered in GPC3 TG mice, 

as revealed by microarray analysis. Moreover, how GPC3 interact with and regulate ECM would 

be another important subject, which could provide more insights into the termination of the liver 

regeneration. Using the GPC3 TG mice model, one could further study the effect of GPC3 over-

expression in the liver under different conditions, such as chemical-induced acute liver 

inflammation, liver necrosis and tumorigenesis. To understand the role of GPC3 in tumors, it is 

also important to study the effect and pathways of GPC in different tumor cell lines in which 

over-expressed or silenced GPC3 is observed. In addition, characterizing the regulation of GPC3 

expression and function under different circumstances would be equally important for 

constructing the general picture of GPC3 during embryogenesis, organogenesis and 

tumorigenesis.  
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APPENDIX  

Table 2. Selected Genes Showing Changes in Expression in GPC3 TG Mice Compared with their WT 

Littermates. 

 

Gene Name Gene Symbol Fold Change  

Regulator of G-protein signaling 16 Rgs16 11.4 Up 

Runt related transcription factor 3 Runx3 7.6 Up 

Janus kinase 3 Jak3 6.4 Up 

Uroplakin 2  Upk2 6.1 Up 

Sphingosine kinase 2  Sphk2 5.4 Up 

Cortistatin  Cort 4.8 Up 

Homeobox protein NKX2-6  Nkx2-6 4.3 Up 

D site albumin promoter binding protein Dbp 4.0 Up 

Nuclear receptor subfamily 1, group D, member 1 Nr1d1 3.8 Up 

Tropomyosin 3, gamma Tpm3 3.5 Up 

Phospholipase D2 Pld2 3.5 Up 

Very low density lipoprotein receptor Vldlr 3.4 Up 

Major urinary protein 3 Mup3 3.3 Up 

Growth factor receptor bound protein 2-associated protein 2 Gab2 3.2 Up 
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Hyaluronidase 2 Hyal2 3.0 Up 

GABA-A receptor pi subunit Gabaar 2.9 Up 

Transcription factor NFAT1-D Nfatc2 2.8 Up 

Zinc-finger protein FOG-2 Fog-2 2.8 Up 

Wingless-related MMTV integration site 7B Wnt7b 2.8 Up 

Neurotrophic tyrosine kinase, receptor, type 2 Ntrk2 2.8 Up 

Jun-B oncogene Jun B 2.7 Up 

Nestin Nes 2.7 Up 

Lipin 1  Lpin1 2.6 Up 

Galanin receptor 3 Galr3 2.6 Up 

Protein phosphatase 1, catalytic subunit, beta isoform Ppp1cb 2.5 Up 

Sphingosine kinase 2 Sphk2 2.5 Up 

Cytochrome P450, steroid inducible 3a41  Cyp3a41 2.2 Up 

Syndecan 3 Sdc3 1.9 Up 

Bcl2-associated athanogene 1  Bag1 1.8 Up 

Peroxiredoxin 4 Prdx4 1.8 Up 

B-cell leukemialymphoma 6 Bcl6 1.7 Up 

Cytochrome P450, 2g1  Cyp2g1 1.7 Up 

Integrin alpha V Itgav 1.7 Up 

Integrin alpha 5 (fibronectin receptor alpha) Itga5 1.7 Up 

Integrin beta 7 Itgb7 1.7 Up 

Integrin beta 2 Itgb2 1.7 Up 

Bcl2-associated athanogene 3 Bag3 1.6 Up 
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Epidermal growth factor receptor Egfr 1.6 Up 

Metalloproteinase inhibitor  Timp2 1.5 Up 

CD 81 antigen Cd81 1.5 Up 

Cytochrome P450, 26, retinoic acid A1 Cyp26a1 1.5 Up 

BCL2-antagonistkiller 1 Bak1 1.5 Up 

Bcl-associated death promoter Bad 1.5 Up 

Glypican 3 Gpc3 1.5 Up 

    

Beta-site APP-cleaving enzyme 2 Bace2 -11.0 Down

Insulin-like growth factor binding protein 1 Igfbp1 -8.4 Down

Phospholipase D1 Pld1 -7.9 Down

A disintegrin and metalloproteinase domain 12 (meltrin alpha) Adam12 -6.9 Down

Syntaxin 1A Stx1a -6.4 Down

Limitin limitin -6.4 Down

SH3 domain protein 2A Sh3d2a -6.3 Down

Metallothionein 2A Mt2a -6.1 Down

Tubulin, alpha 7 Tuba7 -5.8 Down

RAS oncogene family Rab2 -5.6 Down

Suc1-associated neurotrophic factor target 2 Snt2 -5.3 Down

Early growth response 1 Egr1 -5.3 Down

HS1 binding protein 3 Hs1bp3 -5.3 Down

Procollagen, type VI, alpha 2 Col6a2 -5.3 Down

Aldehyde dehydrogenase 2 Aldh2 -5.2 Down
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Dynamin-1 Dyn1 -5.0 Down

Dystonin Dst -5.0 Down

Brain-specific angiogenesis inhibitor 1-associated protein 2 Baiap2 -5.0 Down

Crp-ductin Crpd -4.7 Down

Delta-like 1 homolog Dlk1 -4.6 Down

Eph receptor A4 Epha4 -4.4 Down

Calmodulin 3 Calm3 -3.8 Down

Regulator of G-protein signaling 4 Rgs4 -3.8 Down

Interleukin 1 receptor, type I Il1r1 -3.7 Down

Fibroblast growth factor (acidic) intracellular binding protein Fibp -3.5 Down

RE1-silencing transcription factor (REST) co-repressor Rcor -3.5 Down

Calpain 6 Capn6 -3.5 Down

Retinol binding protein 1, cellular Rbp1 -3.3 Down

Myosin x Myo10 -3.3 Down

Carbonic anhydrase 2 Car2 -3.3 Down

Thioredoxin 1 Txn1 -3.2 Down

WNT1 inducible signaling pathway protein 2 Wisp2 -3.2 Down

Receptor tyrosine kinase-like orphan receptor 1 Ror1 -3.1 Down

Transforming growth factor beta type I Tgfb1 -3.1 Down

Desmin Des -3.0 Down

Growth arrest specific 5 Gas5 -2.9 Down

Regulator of G-protein signaling 5 Rgs5 -2.9 Down

Syndecan 4 Sdc4 -2.8 Down
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Procollagen, type IV, alpha 6 Col4a6 -2.8 Down

TRAM2 Tram2 -2.7 Down

Glutamate receptor, ionotropic, NMDA1 (zeta 1) Grin1 -2.7 Down

Elastase EL2 -2.6 Down

Cadherin 1  Cdh1 -2.6 Down

Calsequestrin 1 Casq1 -2.6 Down

Secreted phosphoprotein 1 Spp1 -2.6 Down

Focal adhesion kinase 1 Fak1 -2.3 Down

Cytochrome P450, 4a14 Cyp4a14 -2.0 Down

Metalloproteinase inhibitor Timp3 -1.9 Down

A disintegrin and metalloprotease domain 4 Adam4 -1.9 Down

Cytochrome P450 2B10 related protein Cyp2b20 -1.9 Down

Nodal Ndl -1.8 Down

Protein tyrosine phosphatase, non-receptor type 16 Ptpn16 -1.8 Down

Cytochrome P450, 39a1 (oxysterol 7alpha-hydroxylase)  Cyp39a1 -1.8 Down

Bicaudal D homolog 2  Bicd2 -1.7 Down

Beta catenin Catnb -1.7 Down

A disintegrin and metalloproteinase domain 15 Adam15 -1.6 Down

Notch gene homolog 4 Notch4 -1.5 Down

Protein tyrosine phosphatase, non-receptor type 21 Ptpn21 -1.5 Down

Yes-associated protein Yap -1.4 Down

 

 

 76 



Table 3. Selected Cell Cycle Related and Growth Related Genes at Day 2 after PHx in GPC3 TG Mice 

Compared with their WT Littermates. 

 

Gene Name Gene Symbol Fold Change  

Runt related transcription factor 3 Runx3 8.0 Up 

Insulin-like growth factor binding protein 1 Igfbp1 5.1 Up 

Growth arrest and DNA-damage-inducible 45 beta Gadd45b 3.9 Up 

Insulin-like growth factor 2, binding protein 3 Igf2bp3 2.6 Up 

Fibroblast growth factor 14 Fgf14 2.0 Up 

Neural-restrictive silencer factor nrsfrest Nrsfrest 1.9 Up 

Insulin-like growth factor binding protein 3 Igfbp3 1.9 Up 

Fibroblast growth factor (acidic) intracellular binding protein Fibp 1.7 Up 

Transforming growth factor beta type I Tgfb1 1.6 Up 

Cyclin-dependent kinase 6 Cdk6 1.6 Up 

Histone 4 Hist4 1.6 Up 

Fibroblast growth factor receptor 1 Fgfr1 1.6 Up 

Cyclin E1 Ccne1 1.4  

Cyclin G2 Ccng2 1.4  

Insulin-like growth factor 2 receptor Igf2r 1.4  

Cyclin C Ccnc 1.4  

Insulin-like growth factor I receptor Igf1r 1.4  

Cyclin T1 Ccnt1 1.4  

Fibroblast growth factor 21 Fgf21 1.3  

Fibroblast growth factor 6 Fgf6 1.2  
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Growth factor receptor bound protein 2-associated protein 1 Gab1 1.2  

Cyclin F Ccnf 1.2  

Fibroblast growth factor receptor 4 splice variant 17a Fgfr4 1.2  

Growth arrest and DNA-damage-inducible 45 gamma Gadd45g 1.2  

Cyclin B Ccnb 1.2  

Helicase (DNA) B Helb 1.2  

Heparin-binding EGF-like growth factor precursor Hegfl 1.2  

Cyclin-dependent kinase 9 Cdk9 1.2  

Cyclin D3 Ccnd3 1.1  

Yes-associated protein Yap 1.1  

Cyclin-dependent kinase 5 Cdk5 1.1  

Cyclin D2 Ccnd2 1.1  

Jun-B oncogene Junb 1.1  

Catenin beta Catnb 1.1  

Transforming growth factor-alpha Tgfa 1.1  

    

Cyclin A1 Ccna1 -7.6 Down

Insulin-like growth factor 2 Igf2 -6.3 Down

Cyclin M1 Ccnm1 -5.4 Down

D site albumin promoter binding protein Dbp -3.0 Down

Insulin-like growth factor binding protein 4 Igfbp4 -2.4 Down

Insulin-like growth factor binding protein 5 Igfbp5 -2.1 Down

Cyclin-dependent kinase 3 Cdk3 -2.1 Down
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Fos-like antigen 1  Fosl1 -2.0 Down

Suc1-associated neurotrophic factor target 2 Snt2 -1.9 Down

Cyclin-dependent kinase inhibitor 1A P21 -1.8 Down

Fibroblast growth factor 17 Fgf17 -1.7 Down

Growth arrest specific 1 Gas1 -1.7 Down

Transforming growth factor, beta 2 Tgfb2 -1.7 Down

Cyclin E2 Ccne2 -1.7 Down

Insulin-like growth factor binding protein 4 Igfbp4 -1.7 Down

Glypican 6 Gpc6 -1.6 Down

Insulin-like growth factor binding protein 7 Igfbp7 -1.5 Down

Glypican 1 Gpc1 -1.5 Down

CD81 antigen Cd81 -1.5 Down

Syndecan4 Sdc4 -1.4  

Cyclin D1 Ccnd1 -1.4  

Kallikrein 13 Klk13 -1.4  

Cyclin G Ccng -1.4  

Insulin-like growth factor binding protein 2 Igfbp2 -1.4  

Cyclin A2 Ccna2 -1.4  

Growth arrest specific 5 Gas5 -1.4  

Nodal Ndl -1.3  

Insulin-like growth factor binding protein 5 Igfbp5 -1.3  

Cyclin M2 Ccnm2 -1.3  

FBJ osteosarcoma oncogene Fosb -1.3  
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Cyclin-dependent kinase inhibitor 2A Cdkn2a -1.2  

Cyclin-dependent kinase 2 Cdk2 -1.2  

Insulin-like growth factor 2, binding protein 3 Igf2bp3 -1.2  

Cyclin-dependent kinase 12 Cdk12 -1.2  

Cyclin-dependent kinase 4 Cdk4 -1.2  

Epidermal growth factor receptor Egfr -1.2  

Cyclin H Ccnh -1.2  

Fibroblast growth factor 1 Fgf1 -1.2  

Early growth response 1 Egr1 -1.1  

Cyclin M3 Ccnm3 -1.1  

Glypican 4 Gpc4 -1.1  

Epidermal growth factor Egf -1.1  

Insulin-like growth factor 1 Igf1 -1.1  
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