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HARDY-WEINBERG EQUILIBRIUM ASSUMPTIONS IN CASE-CONTROL TESTS 
OF GENETIC ASSOCIATION 

 

Myoungkeun Lee, M.S. 

University of Pittsburgh, 2009

 

The case-control study design is commonly used in genetic association study with a binary trait 

using unrelated individuals from a population. To test association with a binary trait in a case-

control or cohort study, the standard analysis is a chi-square test or logistic regression model that 

test to detect a difference in frequencies of alleles or genotypes.   

In this thesis, we derive the maximum likelihood estimator, using Chen and Chatterjee’s 

methods, for standard 1 df genetic tests (dominant, recessive, and multiplicative). We then 

compare these methods that assume HWE with standard Wald tests and chi-squared tests that do 

not make the HWE assumption. We consider four different HWE scenarios: 1) when HWE holds 

in both cases and controls, 2) when HWE does not hold in cases and controls follow HWE, 3) 

when HWE does not hold in controls, and cases follow HWE and 4) when HWE does not hold in 

either cases or controls.    

Our results show that the performances of the three statistics (chi-squared, Wald, and 

Chen and Chatterjee Wald) are equivalent for multiplicative test under all four HWE scenarios. 

When HWE holds in both cases and controls, the performances of the three statistics are also 

equivalent, except for variations attributable to type I error issues. When HWE fails to hold in 

either cases or controls or both, the 2 df version of the Chan and Chatterjee Wald test (and to a 

lesser extent the dominant and recessive versions) detects this HWE departure and can therefore 

"find" a case-control difference even if there is not an allele frequency difference or even a 
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genotype frequency difference. Our results will improve the design and analysis of genetic 

association studies. Such association studies are a crucial step in understanding the genetic 

components of many diseases that have a large impact on public health. Better understanding of 

the etiology of these diseases will lead in the long term to better prevention and treatment 

strategies.   
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1.0  INTRODUCTION 

Genetic association studies are used to test whether phenotypic traits are associated with allele 

frequencies or genotype frequencies. Genetic association tests can be conducted using unrelated 

individuals from a population, or using families. Association studies can also use a binary trait. 

To test association with a binary trait using unrelated individuals (a case-control or cohort study), 

the standard analysis is a chi-square test or logistic regression model that tests to detect the 

difference of the frequencies of alleles, or those of genotypes between case and control at the 

maker locus using unrelated subjects. The cases have been diagnosed with the disease (or non-

disease trait) under study, and the controls are randomly selected from the population 

(“population controls”), or are chosen as “true controls” who are known not to have the disease 

or trait. 

In case-control testing, it is often assumed that Hardy-Weinberg equilibrium (HWE) 

should hold in the overall population or in the controls. This assumption is justified either by 

assuming that controls are from population controls, or by assuming that controls are from true 

controls when a disease is rare in the population. In practice, most deviations from HWE are 

interpreted as evidence of genotyping error, but it is also possible for them to represent real 

genetic effects due to selection, non-random mating, inbreeding, small population size, 

population stratification, etc.  

 

 1 



The standard chi-squared test and Wald test do not require HWE assumptions in case-

control studies. Chen and Chatterjee (2007) proposed a likelihood-based test that assumes HWE 

in the controls. (Satten and Epstein (2004) also described likelihood-based tests for haplotypes 

that assume HWE holds in the controls.) However, there are many unresolved issues in Chen and 

Chatterjee's work. First, Chen and Chatterjee (2007) only considered tests with 2 degrees of 

freedom. Second, they did not comprehensively examine the behaviors of the statistics when 

HWE holds and when it does not. An important issue here is whether we want to detect genotype 

differences and/or departures from HWE, or just allele differences.  

To evaluate which methods have better performance, we conducted simulation studies to 

compare with Chi-squared tests, Wald test, and Chen and Chatterjee’s Wald test when HWE 

holds and when it does not. In order to do this, we first derived 1 df versions (dominant, 

recessive, and multiplicative, as described below) of the Chen and Chatterjee test. We considered 

four different HWE scenarios, as follows: 1) when HWE holds in both cases and controls, 2) 

when HWE does not hold in both cases and controls, 3) when HWE does not hold in cases and 

controls follow HWE, 4) when HWE does not hold in controls, and cases follow HWE. We also 

considered in each HWE scenario the situation in which the allele frequency is the same in cases 

and controls (the null hypothesis, in some sense), and the situation in which the allele frequency 

is different in cases and controls. These simulations allow us to answer the following questions. 

First, how much power is gained by the Chen and Chatterjee approach when the HWE 

assumption is correct, and second, what can go wrong if the assumption is incorrect. 
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2.0  METHODS 

2.1 NON-LIKELIHOOD METHODS 

The standard analysis method for a case-control study is a chi-squared test on a contingency 

table as shown in Table 1. There are several different chi-squared tests that are commonly used.  

The classical case-control association studies may be analyzed by chi-square test with 2 degrees 

of freedom (df) using 2×3 contingency table under the null hypothesis of no association. The chi-

square test statistic is  

χ df = 2
2 = nij −

nin• j

n

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
nin• j

n
j= 0

2

∑
i=1

2

∑

 
The chi-square test with 2 degrees of freedom makes no assumptions based on genetic 

models. It is also common to form tests that have higher power under particular genetic models. 

For a “dominant” test, we merge the Aa and AA genotype frequencies, so that a chi-square test 

with 1 df (  ) can use a 2×2 contingency table. A “recessive” test also can be formed as a 

chi-square test with 1 df (  ) by pooling the aa and Aa genotype frequencies. An “additive” 

or “multiplicative” test is the Cochran-Armitage (CA) trend test with weights equal to the 

number of A alleles,    (Cochran, 1954, Armitage, 1955).  

χdom,df =1
2

χrec,df=1
2

xi =   (0,1,2)
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Table 1. Contingency table for Case-Control 

 

 

The formula for the additive/multiplicative test is as follows. 
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Another common test is the allele test, which is a chi-square test with 1 df (  ) based on 

the 2×2 contingency table that counts the numbers of A and a alleles but doubles the total sample 

size as compared to other tests. The allele test is asymptotically equivalent to the multiplicative 

χallele,df =1
2
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test, under certain HWE assumptions (Sasieni, 1997). In general, the allele test is less 

appropriate, and will not be discussed further in this thesis.  

2.2 LIKELIHOOD METHODS (WALD TEST) 

For each of the chi-squared tests discussed above, an asymptotically equivalent likelihood-based 

(Wald) test can be constructed based on the maximum likelihood estimates of the odds ratios for 

each genotype using the retrospective likelihood function. The estimated odds ratios, based on 

the notation used in Table 1, are shown as  

1022

2012

1021

2011 ˆ  and   ˆ
nn
nn

nn
nn

AAAa == ψψ
. 

 The asymptotic variance-covariance matrix for the logarithm of odds ratios are given by 

⎥
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++++

++++
=

222012102010

201021201110
ˆlog,ˆlog 111111

111111

nnnnnn

nnnnnnV
AAAa ψψ

,

 

and the standard Wald statistic has a chi-square test with 2 df under the null hypothesis of no 

association,  ψAa =   ψAA =1,  

.)ˆlog,ˆ(log))(ˆlog,ˆ(log 1
ˆlog,ˆlogˆlog,ˆlog

T
AAAaAAAa AAAaAAAa

VW ψψψψ ψψψψ
−=  

The standard Wald tests can be modified as 1-df tests for specific models, similarly to the 

chi-squared tests. The estimated odds ratios and the asymptotic variance can be estimated by 

using logistic regression.  Here the Wald test for testing the hypothesis of no association between 

the marker and disease with 1 df can be a dominant test ( Aaψ =ψ AA = ψ ), a recessive test (ψAa = 

1, ψAA = ψ ), or a multiplicative test (ψAa  = ψ , ψ AA = ). ψ 2
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2.3 LIKELIHOOD METHODS (CC WALD TEST) 

Chen and Chatterjee (2007) proposed a modified Wald test with 2df that assumes the controls are 

in HWE. The assumption of HWE for the controls can be justified when the population is under 

HWE and the disease is rare. The minor allele frequency (MAF, p ) of controls is estimated as 

22122 2)2(ˆ nnnp += , using the observed genotype frequencies in the control group, and then the 

expected genotype frequencies of controls under HWE are computed as 

follows: , , and . The estimated odds ratios 

( ) and the asymptotic variance-covariance matrix ( ) are then 

calculated by using the expected genotype frequencies of controls instead of the observed 

genotype frequencies as follows. 

2
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 Their proposed Wald statistic has a chi-square test with 2 df assuming the controls under 

HWE as shown in    

TE
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Chen and Chatterjee (2007) showed that their proposed 2 df Wald test had more power 

than the standard 2 df Wald test because the difference between an asymptotic variance-

covariance matrix of their test and that of the standard Wald test was asymptotically negative 
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definite and the non-centrality parameter of their proposed Wald test was greater than the 

standard Wald test. Their test gained efficiency under a recessive disease test and made no 

difference under a multiplicative test. They also noted that the test would be expected to have 

inflated type I error under the null hypothesis when the HWE assumption does not hold, but they 

did not comprehensively consider the behavior under various HWE scenarios. 

Chen and Chatterjee type Wald tests can be modified as 1-df tests for specific models, 

analogously to the chi-squared tests. The estimated odds ratios and the asymptotic variance can 

be estimated by using the expected genotype frequencies of controls instead of the observed 

genotype frequencies as follows, 

22
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Here the Wald test for testing the hypothesis of no association between the marker and 

disease with 1 df can be a dominant test ( Aaψ = ψ AA = ψ ), a recessive test (ψAa = 1, ψAA = ψ ), or 

a multiplicative test (ψAa  = ψ , ψ AA = ). ψ 2
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3.0  SIMULATION 

We conducted simulation studies to compare the behavior of the Chi-squared test, Wald test, and 

Chen and Chatterjee’s Wald test. For each test, we considered the 2 df test and the three 1-df 

tests previously discussed (dominant, recessive, multiplicative). We also considered four 

different HWE scenarios: 1) HWE for both case and control, 2) Not HWE for both case and 

control, 3) Not HWE for case and HWE for control, 4) HWE for case and Not HWE for control. 

For each HWE scenario, we considered the null hypothesis situation of no difference in allele 

frequencies between cases and controls as well as the alternative hypothesis.  

We constructed the four HWE scenarios as follows. When the violation of HWE is 

excess heterozygotsity, we subtract small amounts (e=0.01, 0.02), 

, from the homozygous genotype frequencies, aa and AA, and 

add 2e to the heterozygous genotype frequency Aa. When violation of HWE is excess 

homozygosity, we add e in the homozygous genotypes, aa and AA, and subtract 2e in the 

heterozygous genotype Aa.  

  (max[−p2,−(1− p)2] ≤ e ≤ p(1− p))

Table 2. Genotype frequencies when not HWE 

Genotype excess heterozygosity excess homozygosity 
aa ep −− 2)1(  ep +− 2)1(  
Aa epp 2)1(2 +−  epp 2)1(2 −−  
AA ep −2  ep +2  

 

 8 



Our simulated data used equal sample sizes of 200 and 300 in both case and control with 

10,000 replicates. For each HWE scenario, we considered the same MAF=0.3 in both case and 

control and MAF=0.3 in case and MAF=0.2 in control. We show the trinomial distribution 

probability of the genotypes in Table 3. The frequencies of genotypes are generated from the 

trinomial distributions in both cases and controls. The odds ratios for the model implied by the 

allele frequencies above are Aaψ  = 1.71 and AAψ  = 2.94.  

For each replicate dataset, we performed all genetic tests: Chi-squared test, Wald test, and 

Chen and Chatterjee’s Wald test, with both 1-df and 2-df versions of each. The estimated 

rejection probabilities rates are the proportion of replicated data in which the p-value of each 

statistics is less than the nominal level 0.05 under the null hypothesis or under the alternative 

hypothesis. 

Table 3. Trinomial distribution probability of the frequencies of genotypes (aa, Aa, AA)   

HWE  e=0.01 e=0.02 
Case Control MAF Case Control Case Control 

ca:0.3 
co:0.3 (0.49,0.42,0.09) (0.49,0.42,0.09) (0.49,0.42,0.09) (0.49,0.42,0.09)

HWE HWE ca:0.3 
co:0.2 (0.49,0.42,0.09) (0.64,0.32,0.04) (0.49,0.42,0.09) (0.64,0.32,0.04)

ca:0.3 
co:0.3 (0.48,0.44,0.08) (0.48,0.44,0.08) (0.47,0.46,0.07) (0.47,0.46,0.07)not 

HWE 
not 

HWE ca:0.3 
co:0.2 (0.48,0.44,0.08) (0.63,0.34,0.03) (0.47,0.46,0.07) (0.62,0.36,0.02)

ca:0.3 
co:0.3 (0.48,0.44,0.08) (0.49,0.42,0.09) (0.47,0.46,0.07) (0.49,0.42,0.09)not 

HWE HWE ca:0.3 
co:0.2 (0.48,0.44,0.08) (0.64,0.32,0.04) (0.47,0.46,0.07) (0.64,0.32,0.04)

ca:0.3 
co:0.3 (0.49,0.42,0.09) (0.47,0.46,0.07) (0.49,0.42,0.09) (0.47,0.46,0.07)

HWE not 
HWE ca:0.3 

co:0.2 (0.49,0.42,0.09) (0.63,0.34,0.03) (0.49,0.42,0.09) (0.62,0.36,0.02)
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4.0  RESULTS 

We performed simulations to compare rejection probabilities of three statistics: Chi-squared 

tests, Wald test, and Chen and Chatterjee’s Wald test, with 4 different versions of each test (2 df, 

dominant, multiplicative, recessive). In Table 4 and Table 5, we present simulation results for the 

situation of excess heterozygosity (when there is an HWE deviation). The only difference 

between Table 4 and Table 5 is the sample size in each dataset. 

Under HWE for both cases and controls, when the same MAF=0.3 in both case and 

control, Chen and Chatterjee’s Wald test with 2 df and the Wald test with 2 df, and Chi-squared 

test with 2 df have rejection probabilities under the nominal level (0.05) with no genetic 

assumption, and those of 1df tests have similar rejection probabilities for the dominant test and 

for the multiplicative test. But the rejection probability in Chen and Chatterjee’s methods is 

inflated in the recessive test. When the MAF=0.3 for case and MAF=0.2 for control, the 2 df 

tests have the same rejection probability, and the 1 df tests have similar rejection probabilities for 

the dominant test and the same rejection probability for the multiplicative test. The Wald test has 

more rejection probability than the chi-squared test under the recessive test. When HWE holds 

for both cases and controls, the performances of three statistics are equivalent, except that Chen 

and Chatterjee’s Wald test has the highest rejection probability with MAF=0.3 for case and 0.2 

for control for the recessive test, presumably because of the inflated rejection probability with 

the same MAF=0.3 in both case and control.  
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Under no HWE for both cases and controls, when the same MAF=0.3 in both case and 

control, Chen and Chatterjee’s methods are more inflated rejection probabilities for the recessive 

test, and also more inflated in 2 df tests than the Wald test and Chi-squared test. All 

multiplicative tests are similar. When the deviation of HWE (e) is large, Chen and Chatterjee’s 

Wald tests increase but Chi-squared tests and Wald tests remain the same rejection probabilities 

for the dominant and recessive tests, and no genetic test. When the MAF=0.3 for cases and 

MAF=0.2 for controls, Wald test and chi-squared test are similar with no genetic assumption, 

and are similar in dominant and multiplicative tests. The Wald test has more rejection probability 

than chi-squared test for the recessive test. When HWE does not hold for cases and controls, the 

performances of three statistics are equivalent for multiplicative test, but Wald test shows better 

performances than chi-squared test. Note that in this scenario our cases and controls are out of 

HWE by exactly the same amount. Of course in a realistic scenario the amount of deviation from 

HWE may not be identical in cases and controls. 

Under no HWE for cases and HWE for controls, when the same MAF=0.3 in both case 

and control, all the multiplicative tests are similar. When the deviation of HWE (e) is large, the 

rejection probabilities are inflated in the dominant test, the recessive test, and the 2df test, but the 

multiplicative test remains the same when the deviation of HWE (e) is large. If we consider the 

deviation from HWE to be a difference that we want to detect, the 2 df tests detect a violation of 

HWE for all 3 tests. If we consider that the deviation from HWE must be some other kind of 

error that we don't want to detect, the multiplicative test does not detect the deviation from 
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HWE, whether we use chi-squared, Wald, or CC Wald. When the MAF=0.3 for case and 

MAF=0.2 for control, the performances of 3 statistics are equivalent for the multiplicative test.  

Under HWE for cases and no HWE for controls, when the same MAF=0.3 in both case 

and control, the multiplicative tests are similar to each other. When the deviation of HWE (e) is 

large, the rejection probabilities are inflated in the Wald test and Chi-squared test for the 

dominant test, for the recessive test, and with no genetic assumption but Chen and Chatterjee’s 

Wald test remains the same. If we consider the deviation from HWE to be a difference that we 

want to detect, the chi-square and Wald detect a violation of HWE for all 3 tests. When the 

MAF=0.3 for case and MAF=0.2 for control, 1df tests are similar under the dominant model and 

for the multiplicative model. The performances of 3 statistics are equivalent for multiplicative 

test and 2df for no genetic assumption, and Chen and Chatterjee’s Wald tests, 1df for the 

dominant test has the highest rejection probability.  

In Table 6, the simulation results are shown when the deviation of HWE (e) is 0.01 where 

there are more homozygous genotypes than expected under HWE. The results are qualitatively 

similar to those in Table 4 and Table 5.  

In Table 7, we show the mean of estimated OR in the standard and Chen and Chatterjee’s 

methods when sample size is 200, and the deviation of HWE (e) is 0.01 where there are more 

heterozygous genotypes than expected under HWE. When controls are not in HWE, the mean of 

the estimated OR in Chen and Chatterjee’s method is the same when HWE holds in both cases 

and controls because the estimated MAF of controls based on the observed genotype frequencies 

when HWE does not hold are the same as the observed genotype frequencies when HWE holds. 
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Table 4. Probability of rejecting hypotheses when excess heterozygote (n=200) 

HWE e=0.01 e=0.02 
Case Control MAF Test Chisq Wald ccWald Chisq Wald ccWald

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.040 
0.031 
0.047 
0.049

0.050
0.051
0.048
0.051

0.048 
0.069 
0.047 
0.045 

   

HWE HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.832 
0.454 
0.900 
0.838

0.856
0.542
0.901
0.841

0.880 
0.792 
0.902 
0.844 

   

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.039 
0.030 
0.050 
0.046

0.050
0.052
0.050
0.048

0.050 
0.081 
0.044 
0.069 

0.043 
0.030 
0.052 
0.053 

0.056 
0.051 
0.052 
0.055 

0.067 
0.140 
0.041 
0.180 not HWE not HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.833 
0.535 
0.921 
0.870

0.856
0.631
0.922
0.873

0.918 
0.669 
0.912 
0.868 

0.836 
0.606 
0.937 
0.901 

0.859 
0.717 
0.937 
0.906 

0.951 
0.479 
0.921 
0.911 

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.047 
0.044 
0.053 
0.067

0.060
0.071
0.053
0.069

0.060 
0.081 
0.049 
0.074 

0.061 
0.079 
0.052 
0.128 

0.073 
0.113 
0.052 
0.136 

0.075 
0.145 
0.048 
0.189 not HWE HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.875 
0.314 
0.909 
0.852

0.893
0.400
0.910
0.854

0.916 
0.653 
0.903 
0.858 

0.916 
0.193 
0.920 
0.876 

0.931 
0.262 
0.920 
0.878 

0.946 
0.475 
0.912 
0.898 

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.042 
0.042 
0.046 
0.064

0.054
0.066
0.046
0.067

0.042 
0.065 
0.044 
0.041 

0.058 
0.082 
0.051 
0.125 

0.071 
0.118 
0.051 
0.128 

0.046 
0.067 
0.045 
0.045 HWE not HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.782 
0.668 
0.914 
0.872

0.810
0.749
0.915
0.876

0.886 
0.802 
0.909 
0.855 

0.722 
0.852 
0.926 
0.928 

0.752 
0.908 
0.926 
0.933 

0.888 
0.809 
0.916 
0.856 
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Table 5. Probability of rejecting hypotheses when excess heterozygote (n=300) 

HWE e=0.01 e=0.02 
Case Control MAF Test Chisq Wald ccWald Chisq Wald ccWald

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.039 
0.035 
0.047 
0.046

0.051
0.052
0.047
0.047

0.046 
0.072 
0.046 
0.049 

   

HWE HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.953 
0.651 
0.980 
0.953

0.961
0.724
0.980
0.955

0.967 
0.914 
0.979 
0.956 

   

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.041 
0.032 
0.047 
0.050

0.054
0.047
0.047
0.051

0.054 
0.092 
0.041 
0.092 

0.044 
0.033 
0.050 
0.050 

0.055 
0.052 
0.050 
0.051 

0.076 
0.204 
0.039 
0.278 not HWE not HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.956 
0.727 
0.988 
0.970

0.965
0.791
0.988
0.971

0.986 
0.811 
0.985 
0.970 

0.955 
0.806 
0.991 
0.980 

0.964 
0.856 
0.991 
0.981 

0.995 
0.606 
0.987 
0.985 

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.046 
0.053 
0.050 
0.075

0.057
0.074
0.050
0.076

0.057 
0.098 
0.046 
0.097 

0.067 
0.115 
0.045 
0.172 

0.082 
0.154 
0.046 
0.174 

0.078 
0.214 
0.041 
0.286 not HWE HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.977 
0.482 
0.985 
0.967

0.981
0.558
0.985
0.968

0.985 
0.806 
0.983 
0.968 

0.986 
0.292 
0.984 
0.975 

0.988 
0.365 
0.984 
0.975 

0.992 
0.614 
0.981 
0.979 

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.054 
0.054 
0.057 
0.081

0.068
0.074
0.057
0.083

0.052 
0.075 
0.053 
0.047 

0.069 
0.111 
0.050 
0.170 

0.086 
0.149 
0.050 
0.172 

0.043 
0.070 
0.045 
0.045 HWE not HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.925 
0.849 
0.983 
0.970

0.936
0.892
0.983
0.972

0.972 
0.912 
0.982 
0.964 

0.882 
0.964 
0.986 
0.989 

0.897 
0.978 
0.986 
0.990 

0.973 
0.916 
0.983 
0.962 
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Table 6. Probability of rejecting hypotheses when excess homozygote (e=0.01) 

HWE   n=200 n=300 
Case Control MAF Test Chisq Wald ccWald Chisq Wald ccWald

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.039 
0.031 
0.047 
0.050

0.050
0051 
0.048
0.052

0.049 
0.072 
0.047 
0.047 

0.044 
0.036 
0.048 
0.052 

0.056 
0.050 
0.048 
0.052 

0.049 
0.074 
0.048 
0.049 HWE HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.835 
0.463 
0.904 
0.847

0.859
0.548
0.905
0.850

0.882 
0.795 
0.902 
0.848 

0.069 
0.651 
0.984 
0.960 

0.966 
0.718 
0.984 
0.961 

0.975 
0.915 
0.984 
0.964 

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.042 
0.035 
0.052 
0.051

0.052
0.054
0.053
0.053

0.057 
0.110 
0.057 
0.092 

0.044 
0.035 
0.051 
0.050 

0.057 
0.051 
0.052 
0.051 

0.057 
0.123 
0.056 
0.112 not HWE not HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.839 
0.407 
0.896 
0.829

0.862
0.497
0.897
0.832

0.837 
0.891 
0.904 
0.863 

0.957 
0.583 
0.977 
0.949 

0.964 
0.653 
0.977 
0.949 

0.945 
0.966 
0.980 
0.963 

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.044 
0045 
0.053 
0.068

0.055
0.068
0.03 
0.069

0.056 
0.106 
0.055 
0.089 

0.049 
0.048 
0.050 
0.072 

0.062 
0.070 
0.051 
0.074 

0.058 
0.116 
0.053 
0.107 not HWE HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.782 
0.593 
0.903 
0.841

0.811
0.677
0.903
0.846

0.838 
0.897 
0.906 
0.863 

0.927 
0.787 
0.976 
0.955 

0.939 
0.839 
0.976 
0.955 

0.948 
0.969 
0.977 
0.964 

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.045 
0.041 
0.051 
0.064

0.055
0.066
0.051
0.065

0.053 
0.072 
0.053 
0.047 

0.044 
0.052 
0.048 
0.072 

0.058 
0.072 
0.049 
0.074 

0.050 
0.078 
0.050 
0.050 HWE not HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

0.883 
0.280 
0.901 
0.853

0.902
0.362
0.902
0.856

0.881 
0.803 
0.906 
0.846 

0.976 
0.424 
0.977 
0.961 

0.980 
0.500 
0.977 
0.961 

0.969 
0.913 
0.979 
0.959 
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Table 7. The mean of estimated OR when excess heterozygote (n=200) 

HWE   e=0.01 
Case Control MAF Test Chisq, Wald ccWald 

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

1.02(0.205) 
1.07(0.410) 
1.01(0.158) 

1.02,1.07(0.217,0.425)

1.02(0.196) 
1.02(0.310) 
1.01(0.157) 

1.02,1.02(0.189,0.357)HWE HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

1.89(0.391) 
2.80(1.768) 
1.74(0.299) 

1.76, 3.48(0.381,2.21) 

1.89(0.379) 
2.46(0.825) 
1.74(0.296) 

1.75,3.09(0.343,1.154)

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

1.02(0.206) 
1.07(0.445) 
1.00(0.162) 

1.02,1.08(0.215,0.461)

1.05(0.203) 
0.90(0.278) 
1.01(0.157) 

1.09,0.94(0.200,0.328)not HWE not HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

1.88(0.390) 
3.57(2.585) 
1.80(0.313) 

1.74,4.45(0.373,3.248)

1.97(0.398) 
2.16(0.719) 
1.77(0.301) 

1.87,2.78(0.362,1.033)

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

1.06(0.219) 
0.94(0.373) 
1.01(0.163) 

1.09,0.98(0.236,0.401)

1.06(0.209) 
0.90(0.286) 
1.01(0.162) 

1.09,0.94(0.205,0.340)not HWE HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

1.97(0.410) 
2.46(1.561) 
1.77(0.313) 

1.88,3.16(0.408,2.012)

1.97(0.398) 
2.16(0.750) 
1.77(0.311) 

1.88,2.80(0.368,1.079)

ca:0.3 
co:0.3 

Dom 
Rec 
Mul 
Geno

0.98(0.198) 
1.23(0.491) 
1.01(0.158) 

0.95,1.19(0.203,0.489)

1.02(0.194) 
1.03(0.305) 
1.01(0.154) 

1.01,1.04(0.188,0.350)HWE not HWE 

ca:0.3 
co:0.2 

Dom 
Rec 
Mul 
Geno

1.81(0.372) 
4.04(2.910) 
1.77(0.301) 

1.63,4.89(0.347,3.573)

1.89(0.372) 
2.46(0.805) 
1.74(0.290) 

1.75,3.09(0.338,1.121)
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5.0  DISCUSSION 

Our simulation results show that the multiplicative test is essentially the same under all 4 HWE 

scenarios. This is to be expected, as the multiplicative test is basically a test of allele frequency 

difference. By contrast, the 2 df test is a very sensitive test of genotype frequency difference, so 

we expect it to behave very differently in different HWE scenarios. The recessive and dominant 

tests are less-sensitive tests of genotype frequency difference.    

When HWE holds for both cases and controls, the three statistics (chi-squared, Wald, and 

Chen and Chatterjee Wald) are more or less equivalent for the 2 df and 1 df tests except the 

recessive test. The recessive test has the highest rejection probability under the alternative 

hypothesis in the Chen and Chatterjee version, but it also has an inflated rejection probability 

under the null hypothesis above the nominal level. Chen and Chatterjee (2007) considered only 2 

df test with underlying genetic models and indicated that their 2 df test had gained more power 

with larger ORs and smaller MAFs when the underlying genetic model was the recessive model. 

We did not consider an underlying genetic model but our underlying model was more likely 

additive/multiplicative model. We considered more tests; 1 df (dominant, recessive, and 

multiplicative) tests and 2 df test but fewer genetic models than Chen and Chatterjee did. Our 

results did not have a discrepancy because we did not test underlying the recessive model. 

When HWE fails to hold in either cases or controls or both, the 2 df version of the Chan 

and Chatterjee Wald test (and to a lesser extent the dominant and recessive versions) detects this 
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HWE departure and can therefore "find" a case-control difference even if there is not an allele 

frequency difference or even a genotype frequency difference. In principle, it could be 

considered desirable to "detect" HWE departures in cases only and consider this evidence of 

association even in the absence of allele frequency differences, but we believe that the 

"detection" of association when there are no allele or genotype frequency differences is 

problematic. We note that Chen and Chatterjee did point out this problem, describing their 

method as having incorrect type I error when the HWE assumption is violated.  

We compared the performances of the three statistics based on a single SNP.  A critical 

question is how these statistics would be compared if used in a genome scan. In a genome scan 

context, we expect that some loci will be in HWE and others will not. Loci with large departures 

from HWE are typically excluded in genome scanning, but the cutoff p-value is typically quite 

extreme, so many retained loci would show moderate departures from HWE. If one uses the CC 

Wald statistic with 2df for a genome scan, it should detect all true positives, but it might also 

detect many loci in which there is no association but just a HWE departure. Thus we do not 

recommend the use of the Chen and Chatterjee statistic for genome scanning. Simulation studies 

with realistic genome scan data could tell us more about the size of this effect, however.  

On the other hand, when one of HWE assumptions such as population stratification is 

violated, these methods can be used after it adjusts for PCAs, or genetic association tests can be 

conducted using family-based methods: case trio, case trio + unrelated control, case trio + 

control trio, and case duo + control duo instead of using unrelated individuals from a population. 

There are limitations of this study. We only consider that the same MAF is 0.3 in both 

case and control, and that the different MAFs are 0.3 in case and 0.2 in control for each HWE 
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scenario. We also considered 200 and 300 sample sizes only. Nor did we evaluate performances 

of 3 statistics in other MAFs and sample sizes.    
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APPENDIX A 

DERIVATION OF ODDS RATIO AND ITS VARIANCE 

The genotype probability in cases is as follows 
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where is the probability of genotype in controls, )( gGP = gψ is the odds ratio for genotype, and 

genotype g=aa, Aa, AA.  

Assuming n cases and J controls, the whole likelihood for the case-control is as follows 
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Taking log of the likelihood,
 

  

logL = P(Gi | Di =1)
i=1
∑ + P(G j | D j = 0)

j=1
∑

         = (n11 + n21)logP(G = aa)+ (n12 + n22 )logP(G = Aa)+ (n13 + n23 )log P(G = AA)
            + n22 logψAa + n23 logψAA − n2 log P(G = aa)+ψAaP(G = Aa)+ψAaP(G = AA)( ). 

Taking the derivatives of log L with respect to a dominant test ( Aaψ = ψ AA = ψ ), a recessive test 

(ψAa = 1, ψAA = ψ ), and a multiplicative test (ψAa  = ψ , ψ AA = ). ψ 2
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By solving the equation, the estimated odds ratios can be estimated by using the expected 

genotype frequencies of controls instead of the observed genotype frequencies as follows, 
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where , , and  are the expected genotype frequencies 

of controls under HWE and 

2
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control group. 
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APPENDIX B 

R PROGRAM FOR SIMULATION 

################################ 
##### Generating Case Data ##### 
################################ 
##  Define number of familiy and replication  ## 
n.rep     <- 10000                # Number of Replication # 
ss        <- 200                  # sample size           # 
##  Minor Allele Frequency and HWD  ## 
case.maf    <- 0.3;     case.e <- 0 
control.maf <- 0.3;  control.e <- 0 
for (k in 1:n.rep){ 
    ##  Minor Allele Frequency  ## 
    p <- case.maf                   # p = P(A)          # 
    q <- 1-p                        # q = P(a) = 1-P(A) # 
    ##  Genotype by Mendelian rule: P(G) ## 
    p.AA <- p^2   -   case.e        # P(G=AA) # 
    p.Aa <- 2*p*q + 2*case.e        # P(G=Aa) # 
    p.aa <- q^2   -   case.e        # P(G=aa) # 
    # generating random number based on P(G) 
    case.r <- t(rmultinom(1, size=ss, prob=c(p.aa, p.Aa, p.AA))) 
    colnames(case.r)<-c("aa","Aa","AA"); rownames(case.r)<-c("case") 
    ################################### 
    ##### Generating Control Data ##### 
    ################################### 
    ##  Minor Allele Frequency  ## 
    p <- control.maf                # p = P(A)          # 
    q <- 1-p                        # q = P(a) = 1-P(A) # 
    ##  Genotype by Mendelian rule: P(G) ## 
    p.AA <- p^2   -   control.e   # P(G=AA) # 
    p.Aa <- 2*p*q + 2*control.e   # P(G=Aa) # 
    p.aa <- q^2   -   control.e   # P(G=aa) # 
    # generating random number based on P(G) 
    control.r <- t(rmultinom(1, size=ss, prob=c(p.aa, p.Aa, p.AA)))   
    colnames(control.r)<-c("aa","Aa","AA");  
    rownames(control.r)<-c("control") 
    table<-rbind(control.r,case.r) 
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   ################### 
   ##### Testing ##### 
   ################### 
   #### Chi-squared test ##### 
   ## No genetic ## 
   #   aa  Aa  AA    ## 
   chisq<-chisq.test(table) 
   ## Dominant test   ## 
   #    aa    Aa+AA    ## 
   c.c.dom<-matrix(c(table[1,1], table[2,1], table[1,2]+table[1,3],  
                     table[2,2]+table[2,3]),ncol=2)  
   chisq.dom<-chisq.test(c.c.dom) 
   ## Recesscive test   ## 
   #         aa+Aa   AA ## 
   c.c.rec<-matrix(c(table[1,1]+table[1,2], table[2,1]+table[2,2],  
                    table[1,3], table[2,3]),ncol=2)  
   chisq.rec<-chisq.test(c.c.rec) 
   ## CA Trend test  ## 
   #   aa  Aa  AA    ## 
   trend<-c(0,1,2) 
   xbar<-(sum(table[,1])*trend[1]+sum(table[,2])*trend[2]+ 
          sum(table[,3])*trend[3])/sum(table) 
   b<-( sum(table[,1])*((table[2,1]/sum(table[,1]))-  
        sum(table[1,])/sum(table)))* (trend[1]-xbar)+   
        sum(table[,2])*((table[2,2]/sum(table[,2]))- 
       (sum(table[1,])/sum(table)))*(trend[2]-xbar)+  
        sum(table[,3])*((table[2,3]/sum(table[,3]))- 
       (sum(table[1,])/sum(table)))*(trend[3]-xbar))/ 
          (sum(table[,1])*((trend[1]-xbar)^2) +  
           sum(table[,2])*((trend[2]-xbar)^2)+  
           sum(table[,3])*((trend[3]-xbar)^2))    
   c.a.trend<-((b^2)/(sum(table[1,])*sum(table[2,])/sum(table)^2))* 
                (sum(table[,1])*((trend[1]-xbar)^2)+ 
                 sum(table[,2])*((trend[2]-xbar)^2)+ 
                 sum(table[,3])*((trend[3]-xbar)^2)) 
   trend.p<-1-pchisq(c.a.trend,df=1) 
 
   ### Standard Wald test ### 
   ## Geno test ## 
   b_Aa<-log((table[1,1] * table[2,2])/(table[1,2] * table[2,1])) 
   b_AA<-log((table[1,1] * table[2,3])/(table[1,3] * table[2,1])) 
   v<-matrix(c(1/table[1,1]+1/table[2,2]+1/table[1,2]+1/table[2,1], 
               1/table[1,1]+1/table[2,1], 
               1/table[1,1]+1/table[2,1],                               
               1/table[1,1]+1/table[2,3]+1/table[1,3]+1/table[2,1]),ncol=2) 
   wald<-t(c(b_Aa,b_AA))%*%solve(v)%*%(c(b_Aa,b_AA)) 
   wald.p<-1-pchisq(wald,df=2) 
   #Geno 
   count<-c(table[1,1], table[2,1], table[1,2],  
            table[2,2], table[1,3], table[2,3]) 
   gr<-rep(0:1,3) 
   geno<-rep(0:2,c(2,2,2)) 
   lg<-data.frame(geno, gr, count) 
   w.g<-anova(glm(gr~factor(geno), data=lg, weight=count, 
                  family=binomial()),test="Chisq") 
   #Dom 
   count<-c(table[1,1],table[2,1], 
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            table[1,2]+table[1,3],table[2,2]+table[2,3]) 
   gr<-rep(0:1,2) 
   geno<-rep(0:1,c(2,2)) 
   ld<-data.frame(geno, gr, count) 
   or.d<-log((table[1,1]*(table[2,2]+table[2,3]))/ 
             ((table[1,2]+table[1,3]) * table[2,1])) 
   w.d<-anova(glm(gr~geno, data=ld, weight=count, 
                 family=binomial()),test="Chisq") 
   #Rec 
   count<-c(table[1,1]+table[1,2], table[2,1]+table[2,2], 
            table[1,3], table[2,3]) 
   gr<-rep(0:1,2) 
   geno<-rep(0:1,c(2,2)) 
   lr<-data.frame(geno, gr, count) 
   or.r<-log(((table[1,1]+table[1,2])*table[2,3])/ 
              (table[1,3]*(table[2,1]+table[2,2]))) 
   w.r<-anova(glm(gr~geno, data=lr, weight=count,  
                  family=binomial()),test="Chisq") 
   #Multi    
   w.m<-anova(glm(gr~geno,data=lg,weight=count, 
                  family=binomial()),test="Chisq") 
   or.m<-summary(glm(gr~geno, data=lg, weight=count, family=binomial())) 
 
 
   ### Chen & Chattergee's Wald test ### 
   f<-(2*table[1,3]+table[1,2])/(2*(table[1,1]+table[1,2]+table[1,3])) 
   n_0 <-sum(table[1,]) 
   n_00<-n_0*(1-f)^2 
   n_01<-n_0*2*(1-f)*f 
   n_02<-n_0*(f)^2 
    
   cc.b_Aa<-log((n_00 * table[2,2])/(n_01 * table[2,1])) 
   cc.b_AA<-log((n_00 * table[2,3])/(n_02 * table[2,1])) 
   cc.v<-matrix(c(1/(2*n_02+n_01)+1/table[2,2]+1/(2*n_00+n_01)+1/table[2,1], 
                  1/table[2,1] + 1/(n_0*f*(1-f)), 
                  1/(n_0*f*(1-f))+1/table[2,1],                                           
                  4/(2*n_02+n_01)+1/table[2,3]+1/table[2,1]+4/(2*n_00+n_01)), 
                  ncol=2) 
   cc.wald<-t(c(cc.b_Aa,cc.b_AA))%*%solve(cc.v)%*%(c(cc.b_Aa,cc.b_AA)) 
   cc.wald.p<-1-pchisq(cc.wald,df=2) 
 
   #Dom 
   cc.dom<-log(((table[2,2]+table[2,3])/table[2,1])*((1-f)^2/(2*f-f^2))) 
   cc.dom.v<-1/(table[2,2]+table[2,3])+1/table[2,1]+  
             2*f/(n_0*(1-f)*(2*f-f^2)^2) 
   cc.w.d<-cc.dom^2/cc.dom.v 
   cc.w.d.p<-1-pchisq(cc.w.d,df=1) 
 
   #Rec 
   cc.rec<-log((table[2,3]/(table[2,1]+table[2,2]))*((1-f^2)/(f^2))) 
   cc.rec.v<-1/(table[2,3])+1/(table[2,1]+table[2,2])+(1-f)/(2*n_0*f*(1-f)^2) 
   cc.w.r<-cc.rec^2/cc.rec.v 
   cc.w.r.p<-1-pchisq(cc.w.r,df=1) 
 
   #Multi 
   cc.mul<-log((table[2,2]+2*table[2,3])/(2*table[2,1]+table[2,2])*((1-f)/f)) 
   cc.mul.v<-1/(table[2,2]+2*table[2,3])+1/(2*table[2,1]+table[2,2])+  
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             1/(2*n_02+n_01)+1/(2*n_00+n_01) 
   cc.w.m<-cc.mul^2/cc.mul.v 
   cc.w.m.p<-1-pchisq(cc.w.m,df=1) 
 
   d.p1<-c(chisq.dom$statistic,chisq.dom$p.value,   
           w.d[2,2],w.d[2,5],cc.w.d,cc.w.d.p) 
   r.p1<-c(chisq.rec$statistic, chisq.rec$p.value, 
           w.r[2,2], w.r[2,5], cc.w.r, cc.w.r.p) 
   m.p1<-c(c.a.trend, trend.p, 
           w.m[2,2], w.m[2,5], cc.w.m, cc.w.m.p) 
   g.p2<-c(chisq$statistic,     chisq$p.value, 
          w.g[2,2], w.g[2,5], cc.wald, cc.wald.p) 
   dom.p1<-rbind(dom.p1,d.p1) 
   rec.p1<-rbind(rec.p1,r.p1) 
   mul.p1<-rbind(mul.p1,m.p1) 
   geno.p2<-rbind(geno.p2,g.p2) 
}    
write.table(dom.p1[-1,], paste(dataDir, "/dom.df1.txt", sep=""), sep="\t", 
            col.names=FALSE,row.names = FALSE)  
write.table(rec.p1[-1,], paste(dataDir, "/rec.df1.txt", sep=""), sep="\t", 
           col.names=FALSE,row.names = FALSE)  
write.table(mul.p1[-1,], paste(dataDir, "/mul.df1.txt", sep=""), sep="\t", 
            col.names=FALSE,row.names = FALSE)  
write.table(geno.p2[-1,], paste(dataDir, "/geno.df2.txt", sep=""), sep="\t", 
           col.names=FALSE,row.names = FALSE)  
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