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EVALUATION OF ACCELEROMETER-BASED ACTIVITY MONITORS TO 

ASSESS ENERGY EXPENDITURE OF MANUAL WHEELCHAIR USERS WITH 

SPINAL CORD INJURY 

Shivayogi Hiremath, M.S. 

University of Pittsburgh, 2009 

A primary objective of the study was to determine the validity of a SenseWear (SW) activity 

monitor (AM) in assessing Energy Expenditure (EE) of manual wheelchair users with spinal 

cord Injury (SCI) while resting and performing three types of physical activities including 

wheelchair propulsion, arm-ergometer exercise, and deskwork. A secondary objective of the 

study was to build and validate a new EE prediction model for a SW AM for the physical 

activities performed in the study. A tertiary objective was to examine the relationship between 

the criterion EE and three activity monitors including the ActiGraph, the RT3 on arm, and RT3 

on waist.  Ten manual wheelchair users with SCI were recruited to participate in this pilot study.  

The results indicate that EE estimated by SenseWear AM with the default EE equation

for  resting was close  (0.2%) to the  criterion  EE  in  manual wheelchair  users  with  SCI. 

However,  the  SW  AM overestimated  EE  during  deskwork,  wheelchair  propulsion and arm-

ergometry exercise by 6.5%, 105% and 32%, respectively.  

From the investigation, we found that the EE estimated by SW AM using the new 

regression equation model significantly improved its performance in manual wheelchair users 

with SCI. The Intraclass Correlation Coefficient of EE estimated by SW using new prediction 

equation and the criterion EE were excellent (0.90) and moderate (0.74) with percent errors 

reduced to 17.4% and 7.0% for wheelchair propulsion and arm-ergometry exercise, respectively. 

The new prediction equation for SW AM was able to differentiate and discriminate (sensitive) 
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EE estimation in physical activities like wheelchair propulsion and arm-ergometer exercises in 

manual wheelchair users with SCI indicating that it has a potential to be used in manual 

wheelchair users with SCI.  

In addition,  the  variance  explained  by  RT3 (R2 = 0.68,  p<0.001)  on arm and the 

ActiGraph (R2 = 0.59, p<0.001) on the wrist wrist indicate that AMs placed on an arm or 

wrist may be able to better predict EE compared to the AM on the waist. 
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1.0  INTRODUCTION 

The lack of participation in regular physical activity is one of the top public health concerns for 

the general population [1], but it appears more acute among people with disabilities [2, 3].  

Despite proven health benefits associated with regular physical activity, such as reduced risk of 

cardiovascular disease and other chronic conditions, and improved psychological well-being, 

people with disabilities remain one of the most physically inactive groups in society. Healthy 

People 2010 outlines the levels of physical activity among various subpopulations in the United 

States based on cross-sectional surveys; it indicated that individuals with disabilities are much 

less active than their non-disabled counterparts and participate in less regular and vigorous 

physical activity[4]. There is also a prevalence of secondary conditions among people with 

disabilities such as pain, fatigue, weight gain, and deconditioning [5],  many of which are 

considered preventable by physical activity and exercise interventions [6].  

 People with spinal cord injury [7] who rely on manual wheelchairs as their primary 

means of mobility face special challenges in engaging in regular physical activity. These 

individuals use their upper extremities for locomotion and other activities of daily living [8] as 

well as for exercise and recreational activities. Several physiological factors, including the 

relatively small muscle mass that is under voluntary control, deficient cardiovascular reflex 

responses, and decreased blood circulation in the legs, can markedly reduce their capacity for 

arm activity [9]. Such physiological changes along with mobility limitations contribute to a large 
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extent of the sedentary lifestyles in this population [10]. This lack of physical activity is further 

aggravated by alterations in body composition and metabolism after SCI, resulting in significant 

decrements in physical fitness and increased risk of secondary conditions such as weight gain, 

cardiovascular disease, and diabetes mellitus. 

The positive effects of physical activity on reducing or mitigating secondary conditions 

such as deconditioning and pain, increasing cardiorespiratory fitness and muscular strength, and 

improving quality of life is well documented in persons with SCI [9, 11-18]. However, such 

interventions generally occur in laboratory settings and physical activity participation in free-

living conditions is frequently assessed through self-report [19]. There is no validated objective 

tool, to our knowledge, that allow these individuals to gauge their physical activity levels in free-

living conditions and enable professionals to evaluate interventions that aim to promote physical 

activity participation in this population.  

Extensive studies have been done to investigate the technical reliability and 

methodological usefulness of pedometers and activity monitors in measuring physical activities 

and predicting activity-related energy expenditures for an ambulatory population without 

disabilities [20, 21]. Quantified information about day-to-day physical activity levels have been 

used to motivate users to continue or alter their physical activity behaviors [22]. However, these 

pedometers or activity monitors cannot be simply applied to manual wheelchair users with SCI 

who often have volitional movements only in the upper extremities. In this research, we 

examined the validity of three off-the-shelf activity monitors with different complexities in 

assessing energy expenditure in manual wheelchair users with SCI. We also developed and 

evaluated new energy expenditure prediction model based on one of the activity monitors to 
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provide manual wheelchair users with SCI an accurate means to gauge their physical activity 

participation on a daily basis. 

1.1 PHYSICAL ACTIVITY AFTER SPINAL CORD INJURY 

Spinal Cord Injury is a disorder that can result in paraplegia or tetraplegia due to lesions that 

hinder the transmission of nerve signals between the brain and periphery [9]. Persons with 

tetraplegia have SCI to the cervical region of the spinal cord, while people with paraplegia have 

lesions in the thoracic, lumbar, or sacral regions of the spinal cord. There are two types of SCI: 

complete (lack of sensor and motor function below the level of injury) and incomplete (some 

motor or sensory function below the level of injury). It has been estimated that there were 

between 227,080 and 300,938 persons with SCI in 2007 with 41.5% of that population with 

paraplegia and 58.5% with tetraplegia [23]. There are approximately 12,000 new cases of SCI 

each year [23]. Life expectancy for persons with SCI continues to increase with individuals with 

paraplegia having a near normal life expectancy, whereas those with tetraplegia having a 10 

percent lower life expectancy than nondisabled individuals [23]. Currently, the prevalent causes 

of death with long-term SCI appear to be related to a variety of cardiovascular and respiratory 

disorders [24]. 

Physical activity is defined as bodily movement produced by skeletal muscles that results 

in energy expenditure ranging from light leisure-time activity to vigorous exercise [25]. People 

with SCI face considerable challenges in pursuing regular physical activity due to both intrinsic 

and extrinsic factors. The wasting of skeletal muscle mass in lower extremities of people with 

SCI due to disuse of the venous pump reduces the cardiovascular reflex during exercise. The 
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exercise capacity of persons with SCI may further be decreased due to dysfunction of the 

sympathetic nervous system. Paralysis of chest and abdominal muscles in persons with high SCI 

results in reduced lung capacity and volume affecting exercise endurance and capacity. As a 

result of paralysis there is a decrease in blood and nerve supply to the skeletal bones (reduced 

nutrients) resulting in less bone mass density [9]. Additionally persons with SCI usually use 

relatively small muscles (upper arm) for physical activity such as wheelchair propulsion and 

other activities of daily living. This is further compounded by deficient cardiovascular reflex 

responses to physical activity, causing early fatigue of active arm muscles, discomfort, pain or 

injury [9, 14, 17, 26]. Persons with SCI are more insulin resistant than the ambulatory 

population[27]. Immunity to insulin adversely affects sugar metabolism resulting in multiple 

metabolic and blood pressure abnormalities such as non-insulin dependent diabetes mellitus, 

impaired glucose tolerance, high blood pressure (hypertension), and high blood fat [27]. These 

metabolic abnormalities along with loss of skeletal muscle mass adversely affect the exercise 

capacity of a person with SCI. The physiological changes after SCI along with their mobility 

impairments and environmental barriers discourage these individuals from engaging in regular 

physical activity. 

Many people with SCI adopt sedentary lifestyle due to lack of accessible gymnasiums, 

reduction of recreation therapy in rehabilitation centers, requirement of specialized exercise 

equipment which may not be covered by the insurance companies and absence of group activity 

opportunities like the National Veterans Wheelchair Games. Only 13-16% of persons with SCI 

reported consistent physical activity [28] and the majority of people with SCI report virtually no 

regular physical activity [26, 28-31]. The physical activity level (PAL), expressed as daily EE 

due to basal metabolic rate, in persons with paraplegia were found to be low compared to the 
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World Health Organization (WHO) recommendation of 1.75 times of daily EE due to basal 

metabolic rate [10, 32]. The study found that PAL in persons with paraplegia measured using 

doubly labeled water over a duration of three days was low compared to the World Health 

Organization (WHO) recommendations, and the total daily EE was 24.6% lower in persons with 

complete SCI than those with incomplete SCI [10]. The literature review performed by Fernhall 

found that the levels of physical activity in persons with SCI were lower than the ambulatory 

population and demonstrated early onset of cardiovascular and other chronic diseases [26]. 

A sedentary lifestyle can further contribute to the decrement of cardiovascular and 

functional fitness, and secondary conditions such as weight gain, cardiopulmonary, and diabetes. 

Physical activity has been found to be an important factor influencing the physical capacity of 

manual wheelchairs users. Muraki et al. performed a multivariate analysis and found level of 

physical activity, age, smoking, occupation, level of SCI and time period since SCI were factors 

influencing physical work capacity in persons with paraplegia. The two most important factors in 

determining physical work capacity in persons with paraplegia were the level of SCI (r = 0.651) 

and the physical activity level (r = 0.583) [33]. In a similar study, Janssen et al., attempted to 

define normative values and determinants of physical capacity for fitness status and therapeutic 

interventions in individuals with tetraplegia and paraplegia. Using multiple regressions, they 

found that 48-80% of the variance in physical capacity can be explained by physical activity 

level, body mass, gender, age, time since injury, lesion level and completeness [34].  

Researchers have shown that moderate intensity handbiking, wheelchair racing, 

wheelchair basketball, and wheelchair tennis are sufficient to maintain fitness and prevent 

cardiovascular diseases [35, 36]. Maki et al. showed that persons with SCI are able to utilize 

hand bikes and row cycles at an intensity high enough to improve and maintain cardiorespiratory 
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fitness without leading to undue fatigue [37]. Previous studies have found that the 

cardiorespiratory fitness of active or trained persons with SCI is higher than those who are 

inactive. Davis et al. compared cardiorespiratory fitness between active and inactive persons with 

paraplegia using arm crank [38]. The active group showed significantly higher cardiorespiratory 

fitness with the average VO2 peak of 2.24 l/min compared to the inactive group with an average 

VO2 peak of 1.56 l/min. In another study by Bougenot and colleagues [39], wheelchair 

ergometer training program showed significant improvements in maximal tolerated power 

(+19.6%), peak oxygen consumption (+16%) and oxygen uptake per heart beat (+18.7%) in 

persons with SCI. Jacobs et al. found that circuit training three times a week in persons with 

paraplegia for a duration of 12 weeks improved their cardiorespiratory endurance by 30% and 

their upper extremity muscle strength from 12% to 30% [40]. Hicks et al. conducted a 

randomized controlled trial to evaluate the impact of a long-term exercise training program (nine 

months, two times a week) on persons with SCI [17]. The results showed that the experimental 

group achieved significant improvements in submaximal arm ergometry power output and upper 

body muscle strength, whereas the control group presented no significant changes. In addition, 

the experimental group reported significantly less pain, stress and depression after training, and 

scored higher than the control group with respect to indices of satisfaction with physical 

function, level of perceived health and overall quality of life.   

1.2 CRITERION MEASURE OF ENERGY EXPENDITURE 

Total Energy expenditure (EE) in calories is an important and actionable parameter for weight 

control, cardiorespiratory fitness, performance in sports, and body composition changes [41]. 
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The EE  is comprised of resting energy expenditure (REE), the thermic effect of food (TEF), and 

energy expenditure from physical activity [42]. REE refers to the energy expenditure from 

normal cellular and organ function during resting conditions and contributes 65-75% of the EE. 

REE can be found by using either the Harris-Benedict equations or indirect calorimetry [43-45]. 

The Harris-Benedict equations take into account gender, age, height and weight and can explain 

about 50% to 75% of the variability in REE [45]. The REE estimated by indirect calorimetry 

uses VO2 and VCO2 in the abbreviated Weir Equation [44]. Commonly used REE prediction 

equations based on physical attributes often overestimate REE in SCI population by 5–32% [46]. 

REE in people with SCI measured by indirect calorimetry was 14–27% less than those without 

injury due to decreased fat-free mass and sympathetic nervous system activity. The thermic 

effect of food refers to energy expenditure associated with the increase in metabolism due to 

digestion, assimilation of nutrients in food and contributes 5-10% of EE. It was found that 

metabolic activity and thermic effect of food in persons with SCI were low compared to persons 

without SCI [46]. Energy expenditure from physical activity is a result of volitional mechanical 

work, such as exercise and daily activities, and non-volitional activity, such as fidgeting, 

spontaneous muscle contractions, and maintaining posture, which accounts for 15%-30% of EE. 

Energy expenditure from physical activity is the most variable component in the EE and depends 

on the intensity and duration of activities. Three methods used to measure EE include direct 

calorimetry, indirect calorimetry, and doubly labeled water, all of which can serve as a criterion 

measure of EE [47-50]. 
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1.2.1 Direct Calorimetry  

Direct calorimetry measures the total heat loss dissipated by evaporation, radiation, conduction 

and convection from the study participant who is placed in a thermally-isolated chamber [48, 

49]. Direct calorimetry is rarely used for clinical data collection due to the technical challenges 

and costs involved. 

1.2.2 Indirect Calorimetry  

Indirect calorimetry measures the oxygen consumption (VO2) and the carbon dioxide production 

(VCO2) by the participant when performing an activity and computes the total EE from these 

respiratory gases using standard equations [35]. Indirect calorimetry can be classified as a 

closed-circuit system, which measures changes in the amount of gases in a reservoir over time, 

or an open-circuit system, which measures the difference between inspired and expired gas 

concentrations. Open-circuit systems are more appropriate for measuring EE from physical 

activity. 

Respiratory metabolic carts based on open-circuit indirect calorimetry are widely used 

and accepted in the research community as a criterion measure of EE [50]. Portable respiratory 

metabolic carts are devices that require participants to wear an analyzer module in a harness 

either on the chest or the back, and breathe through a mouthpiece or a mask over the nose and 

mouth. They are able to measure EE from physical activity in the field, but are limited by battery 

power and memory capacity, and cannot be used to measure EE in a free-living environment for 

extensive periods of time. The stationary and portable metabolic carts may differ from one 

another by 5-10% and their values on repeated measurements of the same activity may vary by 
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around 5-10% [41, 51, 52]. Studies have used both stationary and portable metabolic carts as a 

criterion measure to measure EE from different types of physical activity in persons with SCI 

such as arm cranking, rowcycle, circuit training, wheelchair racing, wheelchair tennis, 

wheelchair basketball and wheelchair rugby [11, 12, 17, 35-37].  

Respiratory chambers are another open-circuit system that can measure EE from a wide 

variety of activities over long period of time (e.g., 24 hours) without the discomfort of a mask or 

mouthpiece [53-55]. These chambers regulate the temperature at 24.0±0.5oC and continuously 

monitor both the oxygen consumption (VO2) and carbon dioxide production (VCO2) of a 

participant in the chamber. Monroe et al. have used a respiratory chamber to compare the daily 

EE in persons with SCI and without SCI. The study results indicated that the 24-hour EE and the 

24-hour EE adjusted for fat-free mass, fat mass and age were both lower in persons with SCI 

than without SCI [54]. The disadvantages of using respiratory chambers are its high cost of 

construction and maintenance. 

1.2.3 Doubly Labeled Water 

The Doubly Labeled Water (DLW) method is considered the most accurate way to measure EE 

in free-living individuals [41]. Participants are asked to take an oral dose of water containing a 

known amount of two stable isotopes: Deuterium and Oxygen-18. Urine or saliva concentration 

of the isotopes is measured both before and several days after consumption of the labeled water, 

and the differential clearance rate of the isotopes is used to assess the CO2 production, which can 

be used to calculate total EE. Unlike indirect calorimetry that estimates EE breath-by-breath, 

DLW only gives information about total EE over the study periods, usually 4-20 days. DLW is 

also expensive due to the high cost of the isotopes (~1500USD per person) and the specialized 
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expertise required for isotope analysis. DLW has been used to measure EE in ambulatory 

population [56, 57],  but no DLW studies were encountered in the literature review in persons 

with SCI. 

1.3 METHODS OF EE ESTIMATION 

Although the measures in the previous section can provide accurate EE estimation, there are 

many factors that may limit their use in assessing EE in free-living conditions such as high 

investment in the equipment, need of laboratory resources, controlled environments and trained 

personnel. Alternative methods with varying sensitivity and accuracy have been developed to 

estimate EE in free-living conditions which include self-report, heart rate monitoring, wheel 

rotation datalogger, motion based monitors and multi-sensor activity monitors. Currently there 

are a number of these methods that have been validated to assess physical activity and estimate 

EE in ambulatory population and manual wheelchair users. The method used for EE estimation 

in a research study is based on factors such as the number of participants to be monitored, the 

time period of measurements and the finances available [47]. Alternative methods to estimate EE 

may be affected by variations in physiological factors between people, performance of the 

physical activity and environment. In the majority of cases alternative methods have been 

validated against a criterion measure for only few specific physical activities, which may affect 

the accuracy of EE estimation when the method is used for a non-validated physical activity [51, 

58-64]. 
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1.3.1 Self-Report 

One of the most widely used and least expensive ways of measuring physical activity are 

questionnaires [65]. However this method relies on self-report which may suffer from participant 

bias, inaccuracy from recall activities, and choice of consistent low or high score on the surveys 

leading to floor effects and social acceptability bias [65-69]. Physical activity questionnaires for 

people with disabilities need to assess low-intensity and low-frequency activity as well as 

capture the activity performed by movement of arms. Three such instruments which have been 

specifically constructed for people with disabilities are the Physical Activity and Disability 

Survey (PADS), the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) 

and the Human Activity Profile (HAP) [65, 70-72]. Washburn et al. evaluated the construct 

validity of the 13-item Physical Activity Scale for Individuals with Physical Disabilities 

(PASIPD) [70]. The PASIPD requests participants to record the number of days a week and 

hours daily of participation in recreational, household, and occupational activities over the last 7 

days. Total scores are calculated as the average hours (daily) times a metabolic equivalent value 

summed over all items. Those who reported excellent health had higher total, vigorous sport and 

recreation, and occupation and transportation subcategory scores compared with those who rated 

their health fair or poor (p<0.05) [70].  

Physical activity is also measured by asking participants to regularly record their physical 

activities and the duration of performance for a fixed time interval during the study [73].  Based 

on the self-report, activities are categorized into specific physical activities like running, 

walking, deskwork, sleeping and others [74]. For the categorized activities, EE per activity is 

estimated using activity specific equations validated by large samples, which takes into account 

demographic variables like age, height, weight and BMI [74]. The total EE is calculated by 
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integrating the activity specific EE estimated over the duration of time. Warms and Belza 

evaluated validity of an accelerometer to measure community living physical activity in 

wheelchair users with SCI with respect to self-reported activity [73]. The Pearson correlation 

coefficients between the activity counts and self-reported activity intensity varied from 0.30 to 

0.77 for individual participants. 

1.3.2 Heart Rate Monitoring 

Researchers have utilized the method of heart rate (HR) monitoring to estimate EE in persons 

performing physical activity. Studies have shown that the HR and VO2 have a fairly close linear 

(r>0.802) relationship during exercises involving large muscle groups [8, 75]. Records of HR 

and VO2 in an individual can be used to construct calibration curves for EE estimations [8, 76]. 

In the FLEX HR method of EE estimation [75], each individual is monitored simultaneously for 

HR and VO2 while resting, lying down, sitting, standing, and performing exercises at a variety of 

intensities to construct EE estimation equations. The total daily estimates of EE from HR may 

contain errors of up to 30% in individuals, although the average for a group of individuals is 

likely to be within 10% of the true value [47]. 

Hayes et al. evaluated the accuracy of calibrated HR from a maximum exercise test for 

predicting EE during five activities of daily living (ADL) in participants with tetraplegia and 

paraplegia. They showed that the HR measured and the HR derived, from individualized 

regression equations, explained 8.3% and 55% of the variance in measured EE, respectively. The 

calibrated HR consistently overestimated by 25% the actual EE and can be used as a gross 

estimate of EE during higher-intensity ADL [77]. Mukherjee et al. found that quadratic 

functional relationships exist between manual wheelchair propulsion by persons with paraplegia 
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at different speeds and physiological factors [78]. The variance in the propulsion speed (m/min) 

explained by HR, oxygen consumption (ml/kg/min), Physiological Cost Index (beats/meter) and 

oxygen cost (ml/kg/meter) were found to be 0.90, 0.65, 0.60 and 0.81, respectively. Additionally 

HR and oxygen consumption increased progressively with increasing propulsion speed. 

HR monitors are commonly used to estimate EE due to the ease of HR acquisition; HR 

monitors are portable and can be used to collect data in free-living conditions. However, HR 

monitors need individual calibration, and are influenced by many factors other than physical 

activity like gender, BMI, fitness level, high ambient temperature, high humidity, hydration 

level, posture and illness, emotional stress, and caffeinated drinks. Variations in HR may also be 

hard to detect during low-intensity activity. Additionally participant calibration process is usually 

impractical because of the time and expense [79]. In persons with SCI use of HR monitoring has 

unique challenges. Due to sympathetic nervous system dysfunction the change in HR during an 

exercise in persons with SCI is diminished to varying degrees [9]. Persons with complete 

tetraplegia usually have a peak exercise HR (100-120 beats/min) that is well below age-predicted 

maximal due to withdrawal of parasympathetic vagal tone to the sinoatrial node [9]. 

1.3.3 Wheel Rotation Datalogger 

The Human Engineering Research Laboratories (HERL) has developed a wheel rotation 

datalogger (datalogger) that can be mounted on a wheelchair to detect the mobility aspects 

(distance travelled and speed) of wheelchair users in a free-living environment. Tolerico et al. 

have used the datalogger to collect gross mobility characteristics of manual wheelchair users in 

the National Veterans Wheelchair Games (NVWG) and in community settings  [80].  MWC 

users were found to use their wheelchairs for about 116.23±50.30 min/day and 42.60±34.13 
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min/day in the NVWG and community, respectively. Although the datalogger is portable, easy to 

use and can collect gross activity for up to three months in free living conditions, the major 

limitation is that it cannot measure or estimate EE. The other limitations that hinder datalogger 

usage are its inability to differentiate between self propulsion of the wheelchair or being pushed 

by a caregiver, and inability to assess activities such as deskwork or arm-ergometry. 

1.3.4 Motion Based Monitors 

Motion based monitors have been developed in an attempt to objectively monitor physical 

activity in the day-to-day activities [81]. These monitors range from simple mechanical 

pedometers to complex activity monitors that have multiple sensors and use complex algorithms 

to record physical activity with varying degrees of sensitivity. The advantages of these motion 

based monitors include the small size, non-obtrusiveness, commercial availability and the ability 

to store data continuously over long periods of time. Many motion-based monitors have been 

tested in ambulatory population to investigate its validity with respect to motion, physical 

activity, steps and EE [50, 53, 64, 67, 68, 82-96]. Very few studies have researched motion based 

monitors among to assess physical activity in wheelchair users with SCI [73, 80, 97]. To our 

knowledge only Washburn et al. investigated the validity of motion based monitors with respect 

to EE in manual wheelchairs users during wheelchair propulsion [97]. 

Pedometers are devices worn by ambulatory individuals on their waist to estimate 

number of steps, pace and EE. Electronic pedometers usually consist of sensors and 

microprocessor that detect steps by sensing the vertical movement at the waist or the 

biomechanical bounce created during walking [88]. In mechanical pedometers the vertical 

movement at the waist triggers a lever arm to move vertically and rotate a ratchet to record steps 
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[47]. Pedometers worn on the waist tend to be less sensitive to the upper extremity movement 

and may underestimate EE in persons using wheelchairs. Step counts detected by pedometers are 

a major contributor of EE estimation in ambulatory population [86, 88, 93]. The absence of step 

counts in manual wheelchair users may considerably underestimate EE in this population.  

An accelerometer is a sensing element that measures acceleration in single or multiple 

axes. Based on the type of sensing element and the principle of operation, accelerometers are 

classified as capacitive, piezoelectric, piezoresistive, hall effect, and Micro-Electro-Mechanical 

Systems [98]. Most common types of accelerometers are based on piezoelectric or piezoresistive 

principles. ActiGraph (ActiGraph, Inc.) uses piezoelectric accelerometer to collect uni-axial 

acceleration data[99].  Accelerometry based AMs have been developed and validated to measure 

activities and predict EE in ambulatory populations [50, 53, 64, 67, 68, 82-92, 94-96, 100-105]. 

Activity monitors using uni-axial accelerometers like Caltrac (Hemokentics, Inc.), CSA 

(Computer Science Applications, Inc.) and ActiGraph [67, 81, 95, 105] and tri-axial 

accelerometers like Tritrac R3D (Hemokentics, Inc.) [81, 102] have been validated to assess 

physical activities like walking, running, outdoor activities with respect to criterion EE in adults, 

children and young adults. Large inconsistencies have also between found by researchers 

between AMs and criterion EE [50, 53, 81, 102]. Studies have found that CSA, Biotrainer Pro 

(Individual Monitoring Systems, Inc.), Tritrac-R3D, and Actical (Mini-Mitter Co., Inc.) AMs are 

reliable and feasible in elderly, youth and children [85, 90, 96, 102, 106, 107].  

Studies have shown that ActiGraph provides a method to estimate EE and participation in 

moderate and vigorous activity in adults, children, and wheelchair users with SCI [73, 82, 89]. 

Rothney et al. evaluated the validity of ActiGraph to predict physical activity intensity by 

comparing the EE estimation by regression equation and the EE measured by room 
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calorimeter[82]. METS estimated by ActiGraph was not significantly different from the METS 

measured by the criterion for the whole duration, however the RT3 significantly underestimated 

METS when the visit was divided into sedentary, light, moderate, and vigorous activities (P < 

0.001) [82]. Crouter et al. developed a new two-regression model using activity counts from 

ActiGraph to estimate EE over a wide range of physical activities [89]. The mean estimates using 

the new algorithm (2-regression model with an inactivity threshold) were within 0.75 metabolic 

equivalents (METs) of measured METs for each of the activities performed (P>=0.05), which 

was a substantial improvement over the single-regression models [89]. 

Previous studies have also shown that RT3 provides a valid estimate of inactivity, 

walking, running and objectively measures physical activity levels in children, adults and 

overweight adults [62, 64, 82, 84]. Rothney et al. evaluated the validity of RT3 to predict 

physical activity intensity by comparing the EE estimation by regression equations and the EE 

measured by room calorimeter[82]. METS estimated by RT3 was not significantly different from 

the METS measured by the criterion for the whole duration, however the RT3 significantly 

underestimated METS when the visit was divided into sedentary, light, moderate, and vigorous 

activities (P < 0.001) [82]. Jacobi et al performed two experiments to evaluate RT3 estimation of 

physical activity EE in overweight adults [84]. In the first experiment overweight/obese 

participants were monitored over 2 weeks in everyday life, and no significant difference was 

found between EE measured by DLW (704+/-223kcal/d) and EE estimated by RT3(656+/-

140kcal/d) [84]. In the second experiment, 8 overweight/obese participants and 10 normal-

weight participants were monitored during a treadmill walking protocol, and it was found that 

RT3 accelerometer was sensitive to the changes in treadmill speed, with no significant difference 

between EE measured by indirect calorimetry and EE estimated by RT3 in overweight/obese 
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participants [84]. Rowlands et al. evaluated and compared the validity of the RT3 accelerometer 

for the assessment of physical activity in boys and men performing running on a treadmill, 

kicking a ball, playing hopscotch and sitting quietly [64]. RT3 counts correlated significantly 

with SVO2 in boys (r = 0.87, P < 0.01) and men (r = 0.85, P < 0.01). However RT3 counts were 

significantly higher for boys (P < 0.05) during treadmill activities. In another study, Hussey et al. 

assessed the validity of the RT3 accelerometer in measuring inactivity, walking and running in 

children [62]. EE from RT3 significantly correlated with that obtained by indirect calorimetry for 

each activity independently (r=0.56–0.84, all P<0.01) [62]. 

Different algorithms have been developed to estimate EE by comparing the activity 

counts from activity monitors and the oxygen consumption from a criterion measure. Linear 

regression equations are commonly used to predict EE from accelerometer counts [87]. Crouter 

et al. have presented a two regression equation approach to estimate EE, where the choice of the 

regression equation is based on the observed coefficient of variation (accelerometer counts) over 

a period of 10 seconds [89]. Some of the linear regression equations also use parameters such as 

age, gender, height and mass to estimate EE [101]. Researchers have also proposed Artificial 

Neural Network (ANN) algorithms to estimate EE based on an extracted number of acceleration 

features and participant demographics that correlated well with the minute-by-minute EE [108]. 

Parrka et al. used a modified integral method, which takes absolutes of the three-dimensional 

acceleration signals to generate one signal. The metabolic estimates for some of the everyday 

tasks were obtained by fitting a line on the data set (ingenerated signal vs. measured metabolic 

equivalent) [109]. 

Few studies have been conducted to evaluate the validity of activity monitors among 

wheelchair users. Washburn and Copay assessed the validity of ActiGraph worn on the wrists to 
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measure the EE during wheelchair propulsion at three different speeds [97]. Significant 

correlation (0.52-0.66, p <0.01) were reported between the activity counts from both wrists and 

EE over the three pushing speeds. Warms et al. assessed the suitability and validity of ActiGraph 

as a measure of free-living physical activity for wheelchairs users with SCI [73]. The Pearson 

correlation coefficients between the activity counts and self-reported activity intensity varied 

from 0.30 to 0.77 for individual participants. Mean activity counts by actigraphy during active 

tasks were significantly different from the counts during inactive tasks (p =.003) [73]. Studies 

involving multi-axial accelerometer to estimate EE in persons with SCI are missing. 

1.3.5 Multi-Sensor Monitors  

Researchers have also explored the use of more than one sensor to estimate EE. One of the 

common methods is to combine motion-based sensors with heart rate to estimate EE [110-112]. 

The basic idea in this approach was to use an accelerometer as a secondary measurement 

instrument to verify that elevations in heart rate are relevant responses to physical activity 

thereby reducing the variability of HR as a single primary predictive measure [112]. The 

estimation of the EE was performed by using a regression equation with HR and combined 

activity as variables[112]. Another example is the SenseWear Pro (SW) AM (Bodymedia, Inc.) 

which combines an accelerometer, skin temperature sensor, Galvanic Skin Resistor (GSR) 

sensor, Heat Flux (HF) sensor and near body temperature sensor to provide information 

regarding the physical activity and in estimating EE [58]. The machine learning algorithms 

present in the SW AM use multiple sensors to accurately monitor the physiological state of the 

wearer to classify the physical activity. Based on the activity detected, the algorithm uses 

specific regression equations to predict the measure of physical activity or EE.  
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The SW has been studied and validated in estimating EE while performing resting, 

rowing, arm-ergometry, walking, cycle-ergometry, stepping exercise and running in a variety of 

populations including, adults, children, morbidly obese and chronic obstructive pulmonary 

disorder [41, 59, 60, 63, 113-115]. Malavolti et al. reported no significant difference was found 

in mean REE between SenseWear (1540±280kcal/day) and Sensor Medics Vmax 

(1700±330kcal/day) (p=ns) and the correlation between REE measured by SenseWear and 

Sensor Medics Vmax was high (r=0.86, p<0.0001) [114]. In another study, the correlations 

between indirect calorimetry and EE estimated by SenseWear for arm and rowing ergometry, the 

treadmill and recumbent stepper were r=0.90, r=0.67, r=0 .80 and r=0.74, respectively [60]. 

Bland and Altman plots revealed the greatest spread of scores for the rower and the treadmill 

[60]. Cole et al. also indicated that EE estimated by SenseWear appears to be exercise dependent 

in those with heart disease and needs to be cautiously interpreted[60]. No significant differences 

were found between energy expenditure estimates from indirect calorimetry (144±5 MET-min) 

and the SenseWear (139±6 MET-min; –4%) [63]. Fruin et al found that the the SenseWear 

significantly overestimated the EE for walking with no grade (27.4% for 3 mph, p<0.001; 12.6% 

for 4 mph, p<0.02) and significantly underestimated EE for walking on a 5% grade (21.9%, 

p<0.002) indicating that the SenseWear was sensitive to change in speed and not in resistance 

[115]. Jackicic et al. found that the SenseWear Pro Armband significantly underestimated EE by 

14.9+/-17.5 kcal (6.9+/-8.5%) during walking exercise, 32.4+/-18.8 kcal (28.9+/-13.5%) during 

cycle ergometry, 28.2+/-20.3 kcal (17.7+/-11.8%) during stepping exercise, and overestimated 

EE by 21.7+/-8.7 kcal (29.3+/-13.8%) during arm-ergometer exercise (P <= 0.001)[113]. 

However, there is no research involving wheelchair users utilizing multi-sensor based activity 

monitors to estimate EE. 
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2.0  SPECIFIC AIMS & HYPOTHESIS 

The goal of the study is to examine the validity of three types of activity monitors including SW, 

ActiGraph, and RT3 to assess EE of manual wheelchair users with SCI during varying modes 

and intensities of physical activity. This was conducted by comparing outputs of these devices 

with the criterion EE from a portable metabolic cart on the targeted physical activities. We also 

aim to explore building EE predictive equations to improve the accuracy of activity monitors for 

this population. We expect this research will lead to a convenient and effective tool for manual 

wheelchair users with SCI to estimate energy expenditure associated with physical activity level 

and aid clinical professionals to monitor interventions that promote physical activity among this 

population.  

The thesis focused on a complete analysis of the SenseWear armband and a preliminary 

analysis of the ActiGraph worn on the wrist, the RT3 worn on the upper arm (RT3A), and the 

RT3 worn on the waist (RT3W). 

Aim 1: Determine the validity of SenseWear armband in assessing EE of manual wheelchair 

users with SCI while resting and performing three types of physical activities including 

wheelchair propulsion, arm-ergometer exercise, and deskwork. 

Hypothesis 1.1: EE estimated by SW using its default EE prediction equation will be 

significantly different from the criterion EE for each activity. 
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Hypothesis 1.2: EE estimated by SW using its default EE prediction equation will NOT 

be able to differentiate between different intensities of wheelchair propulsion and arm-

ergometry exercise. 

Aim 2: Build and validate a new EE prediction model for SenseWear armband for the activities 

mentioned in Aim 1. 

Hypothesis 2.1: EE estimated by SW using the new EE prediction equation will NOT be 

significantly different from the criterion EE for each activity. 

Hypothesis 2.2: EE estimated by SW using the new EE prediction equation will be able to 

differentiate between different intensities of wheelchair propulsion and arm-ergometry 

exercise. 

Aim 3: Examine the relationship between the criterion EE and three activity monitors including 

the ActiGraph, the RT3 on arm, and RT3 on waist.   

Hypothesis 3.1: Raw accelerometer data (i.e., activity counts) from each activity monitor 

will at least moderately correlate (r>0.6) with the criterion EE across all the activities. 
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3.0  METHODS 

3.1 RECRUITMENT PROCEDURES 

Participants were identified through Institutional Review Board (IRB) approved registries at the 

Human Engineering Research Laboratories (HERL), the Center for Assistive Technology at the 

University of Pittsburgh Medical Center (UPMC), and UPMC Department of Physical Medicine 

and Rehabilitation. Participants in these registries have provided informed consent to be 

contacted for research studies. In addition, we recruited participants via flyers and 

advertisements in print media such as magazines and newsletters, and web-based postings. Flyers 

were also posted in local rehabilitation facilities, outpatient facilities, and disability 

organizations.  

People who expressed interest in the study first went through a screening procedure via 

telephone when they answered questions regarding the inclusion/exclusion criteria and 

completed the Physical Activity Readiness Questionnaire (PAR-Q) recommended by the 

American College of Sports Medicine as a self-screening tool for moderate intensity physical 

activity [116]. The inclusion/exclusion criteria for the study included participant to 1) use a 

manual wheelchair as primary means of mobility (>20 hrs/week), 2) be between the ages of 18 

and 60, 3) have a diagnosis of SCI below T1, 4) be at least six months post-injury, 5) be able to 

use an arm-ergometer to exercise, 6) not have history of cardiovascular or cardiopulmonary 
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disease with him/herself or an immediate family member (parents, grandparents and siblings), 

which was defined as death as a result of CVD prior to the age of 55.  

Persons with SCI who satisfied the inclusion/exclusion criteria and answered No to all 

the PAR-Q questions were sent a physician release form for completion prior to participating in 

the study. 

3.2 PROTOCOL 

The study was approved by the IRB at the University of Pittsburgh and the VA Pittsburgh 

Healthcare System. Participants were asked to make one visit to the Human Engineering 

Research Laboratories (HERL), where the protocol was completed in no more than 3.5 hours. 

Participants were instructed to refrain from eating at least 2 hours and from exercising at least 12 

hours prior to arriving at HERL. The protocol consisted of a pre-test session and an activity 

session. 

3.2.1 Pre-test Session 

The purpose and overall procedure of the study was explained to the participants. After signing 

the informed consent, participants were asked to complete a questionnaire including questions on 

demographics such as gender, ethnicity, age, injury level, and time of injury, wheelchair 

information such as brand and model, and health and physical activity history. General feeling 

about the nutritional habits and fitness level were also inquired about as part of the questionnaire 

(Appendix A). Body weight was then measured using a wheelchair scale to the nearest 0.5kg. 
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Participant’s reported height was used or, it was measured using a measuring tape (PowerLock, 

The Stanley Works) to the nearest cm if the participants were not aware of their height.  Skinfold 

measurements were performed at four sites (i.e., biceps, triceps, subscapular and suprailiac) 

using the Lange® skinfold caliper to a mm of accuracy [117]. Three measurements were taken at 

each site and averaged [118]. The triceps skinfold site measured was between tip of the 

olecranon process of the ulna (elbow) and the acromion process of the scapula (shoulder). The 

biceps skinfold site was measured at the midpoint of the muscle belly. The subscapular skinfold 

site was measured at the tip of inferior angle scapula, 45 degrees vertical to shoulder blade. The 

suprailiac skinfold site was measured above the ilac crest in mid-axillary line. 

3.2.2 Activity Session 

At the commencement of the protocol, resting EE from the participants was measured while they 

were quietly seated in their wheelchairs for a period of eight minutes. Following the resting, EE 

from participants was measured while they performed three types of physical activities including 

wheelchair propulsion, arm-ergometer exercise, and desk work. The wheelchair propulsion 

session included three trials of eight minutes each. Two trials were conducted on a stationary 

dynamometer (dyno) where participants propelled their own wheelchairs at low (2 mph) and 

medium (3 mph) speeds, respectively (Figure 1). Speed feedback was provided by a monitor in 

front of the participant. In the other trial, participants were asked to propel the wheelchair at a 

medium speed (3 mph) on a flat tile floor. They were asked to follow a power wheelchair 

travelling at 3 mph as closely as possible to maintain the target speed. The arm-ergometer 

session also included three trials of eight minutes each. Participants were seated in their own 

wheelchair to perform arm-ergometer exercise at 1) low speed (60 rpm) and low resistance (20 
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Watts), 2) low speed (60 rpm) and medium resistance (40 Watts), 3) medium speed (90 rpm) and 

medium resistance (40 Watts) (Figure 2). The deskwork session included only one trial where 

participants were asked to perform tasks of retrieving a set of books from the overhead shelf, 

reading a book for about four minutes and typing on a computer for four minutes. 

 

Figure 1. Participant performing wheelchair propulsion 
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Figure 2. Participant performing arm-ergometry exercise 

Participants were given a short period of time for practice and warm-up before each 

activity session. They were also allowed to rest for 5 to 10 minutes between each trial and up to 

30 or 40 minutes between each activity session. Participants were asked to perform each trial for 

eight minutes which was intended to allow sufficient time to establish steady state physiological 

response. The activity sessions were counterbalanced and the trials in each activity session were 

randomized to counter order effects. Participants were asked to provide a rating on the Borg’s 

CR10 scale [74] after each trial with 0-1 for nothing at all to very weak activity, 2-5 for weak to 

strong activity, and 7-11 for very strong to absolute maximum activity. 
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3.3 INSTRUMENTATION 

Throughout the protocol, participants wore five instruments that provided concurrent estimates 

of the activity of each trial for a total of eight trials including resting, three wheelchair propulsion 

trials, three arm-ergometry trials, and deskwork. The instruments used in the study included a 

Cosmed K4b2 portable metabolic cart (COSMED USA, Inc., Chicago, IL [www.cosmed.it]), and 

four commercially available activity monitors, i.e., one Bodymedia SenseWear® Pro Armband 

(Bodymedia Inc., Pittsburgh, PA [www.bodymedia.com]), two StayHealthy RT3 tri-axial 

accelerometers (Stayhealthy Inc., Monrovia, CA [www.stayhealthy.com]), and one ActiGraph 

uni-axial accelerometer (GT1M ActiGraph, ActiGraph LLC, Fort Walton Beach, FL 

[www.theactigraph.com]). All instruments were programmed using a single computer, during 

which the clock of the computer and the devices were synchronized. 

3.3.1 Portable Metabolic Cart 

The Cosmed K4b2 shown in Figure 3 is a portable metabolic cart that measures the exhaled gas 

concentrations to estimate EE in kilocalories per minute (Kcal/min). The system has been shown 

to be both valid and reliable in the general population [119, 120]. It has been also used to 

measure oxygen consumption in published studies involving people with SCI [35, 121, 122], 

although it has not been specifically validated in these populations. The system comprises of an 

analyzer unit and a rubber face mask. The face mask covers the participant’s mouth and nose to 

capture the expired air, and is held in place with a head nylon mesh harness. The exhaled air is 

channeled through a ventilation turbine into the analyzer unit where the contents of O2 and CO2 

in the expired air are measured. The analyzer unit along with the battery weighs approximately 
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1.5 kg. Participants wore the analyzer unit on the chest and the battery on the back using a chest 

harness. 

Prior to each test, the K4b2 system was calibrated according to manufacturer’s guidelines 

for turbine, gas and delay calibration. After the device calibration, information regarding the 

humidity of the test environment and demographics of the participant is updated in the metabolic 

cart. Prior to each activity trial, the metabolic cart performed a room air calibration and adjusted 

for the device temperature. At the start and end of each trial the metabolic cart was annotated. 

Cosmed 9.0 software was used to retrieve and analyze the metabolic data. The data collected 

from the metabolic cart included EE in kcal/ min, VO2 and VCO2 in mL/min/kg for each breath. 

The EE in kcal/min was used a criterion measure throughout the study. Data were also collected 

from a Polar heart rate monitor (Polar, USA [www.polarusa.com]), during the activity session.  

 

Figure 3. K4b2 Metabolic Cart 

3.3.2 Activity Monitors 

The SenseWear (SW) Armband (Figure 4) is a multi-sensor activity monitor that collects and 

analyzes physiological and lifestyle data to determine energy expenditure and activity levels. It 

 28 



consists of a unique array of biometric sensors including a two-axis accelerometer, skin 

temperature sensor, Galvanic Skin Resistor (GSR) sensor, Heat Flux (HF) sensor, and near body 

temperature sensor. The physiologic information collected by these sensors along with personal 

information including gender, age, height and weight are processed to provide estimation of EE 

for many different types of physical activity. The multi-sensor information is used by the 

algorithms in the device to detect a particular context or activity such as resting, running, 

walking, jogging, sleeping and biking. Based on the context and activity detected, the SW 

chooses a specific EE estimation equation.  All the sensors in the SW are internally sampled at a 

frequency of 32 Hz and can be down sampled and stored at any user-defined sampling 

frequency. The SW can collect data for 3 hours at a frequency of 8Hz.  

 

Figure 4. SenseWear Armband AM 

Before commencement of each participant testing, the SenseWear was initialized 

according to manufacturer specifications. It was positioned on the right upper arm on the triceps. 

As data collection was planned for two and half to three hours, we chose to sample the 

acceleration signals at 8Hz. The annotation button on the SW device was used to note the start 

and end of each trial. The data collected from the SenseWear included transverse and 

longitudinal acceleration components sampled at 8Hz, EE in kcal/ min, and heat flux, galvanic 
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skin response and skin temperatures sampled every minute. InnerView Research Software 4.2 

and InnerView Research Software 7.0 was used to retrieve and analyze the SW data. 

The RT3 (Figure 5) is a pager-size single sensor AM that is recommended by the 

manufacturer to place around the waist. The RT3 consists of a piezoelectric tri-axial 

accelerometer that senses acceleration in three dimensions at 1Hz and is able to collect data for 

three hours [123]. The RT3 ASSIST software uses raw data from the RT3 to convert it into 

activity counts using a proprietary formula based on the product of mass and integrated 

acceleration, which is used to estimate activity kilocalories. The software also computes resting 

kilocalories in adults using the participant’s physiological statistics  [124]. The total EE 

estimated by the RT3 ASSIST software is the sum of resting and activity kilocalories.  

Prior to the commencement of each participant testing, the RT3s were initialized 

according to manufacturer specifications. The manufacturer of the RT3 recommends that the 

device be worn on the waist to accurately estimate EE in ambulatory population. In this research 

we chose to test two RT3s that were positioned on the triceps of the left upper arm (RT3A) and 

the waist (RT3W), respectively, to evaluate the acceleration values at different sites on the body. 

The data collected from the RT3 included total calories, activity calories, and activity counts at 

1Hz in three orthogonal directions as well as the vector magnitude. The RT3 continuously 

collected data throughout the activity session and annotations from SW were taken as the 

reference annotations for RT3. StayHealthy RT3 ASSIST was used to retrieve and analyze and 

the RT3 data. 
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Figure 5. RT3 Tri-axial AM 

The GT1M ActiGraph (Figure 6) is a compact uni-axial accelerometer that uses a 

cantilevered piezoelectric plate to sense acceleration in one direction. The accelerometer output 

is digitized by an analog to digital converter (ADC) at the rate of 30Hz and passed through a 

digital filter that band-limits the output data to the frequency range of 0.25 to 2.5 Hz 

corresponding to normal human motion [99]. The collected accelerometer data samples are 

summed over a user specified interval of time called an ‘epoch’. Similar to RT3, ActiLife 

software analyzes the acceleration data from the device to report activity counts and steps taken. 

However, ActiGraph activity counts are not comparable to RT3 due to different sensitivity (AD 

converter) and filtering algorithms in the device. The software uses a Crouter 2 regression 

equation based on activity counts and steps to determine activity levels and EE [89, 100, 125].   

The ActiGraph was initialized according to manufacturer specifications prior to the 

commencement of each participant testing. The ActiGraph was positioned on the right wrist of 

the participant. The ActiGraph continuously collected data throughout the activity session and 

annotations from SW were taken as the reference annotations for the ActiGraph. ActiLife 

software was used to retrieve and analyze the ActiGraph data to produce total calories and 

acceleration counts in 1Hz. Work energy theorem, the Freedson equation and the combination of 
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work energy theorem and the Freedson equation are the three options available in the ActiLife 

software to estimate EE from the raw ActiGraph data. 

 

Figure 6. ActiGraph AM 

3.4 DATA ANALYSIS 

Power analysis was performed to calculate the number of participants required to test these 

hypotheses [126]. Using a paired t-test, we calculated that with a total of 50 participants and 

effect size 0.5, it will provide a statistical power of 70% for a two-tailed hypothesis with an alpha 

level of 0.5. Currently data has been collected from ten participants, but ultimately this data will 

be used in conjunction with the data collected from the remaining participants. As such we will 

conduct the data analysis as though this is a pilot study at this time.  

Descriptive statistics were performed on participant characteristics and experimental test 

responses. All experimental test responses were also checked for normality using Shapiro-Wilk’s 

W test. Given the small number of participants (n=10) in the study, non-parametric statistical 

tests were used to test the hypotheses. Custom MATLAB programs (R2008a, The MathWorks, 

Inc.) were used to clean the data files from the metabolic cart and all the AMs for statistical 

analysis. An average of the last six minutes of data was utilized for data analysis.  All analyses 
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were performed using SPSS for windows (version 15.0, SPSS, Inc.). The significance level was 

set at α < 0.05.  

To test hypothesis 1.1, Wilcoxon signed rank sum tests were used to compare the EE 

estimated by the SW default equation with the criterion EE for each activity trial. To test 

Hypothesis 1.2, two one-way Friedman tests with post hoc pairwise comparisons were performed 

to evaluate differences in criterion EE in three intensities of wheelchair propulsion and three 

intensities of arm-ergometry exercise, respectively. The same procedure was also used to 

evaluate differences in the EE estimated by the SW default equation during these activities.  The 

estimated EE by SW was also compared with the criterion measure using the Intraclass 

correlation coefficient (ICC), mean absolute error (MAE), mean squared error (MSE), and 

percent error for each activity, each participant, three propulsion trials, three arm-ergometry 

trials, and all the eight trials of the 10 participants pooled together. The ICC used for the 

comparison was single measures, two-way mixed model of type consistency with 95% 

confidence level. The MAE, MSE and percent error used the equations 1, 2 and 3, respectively.  
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Pace regression in Weka 3 (a data mining software package in Java) [127] was performed 

to construct a new EE prediction model. Pace regression was used to select the attributes for new 

EE prediction model, as it is known to pick as few attributes as possible [128]. A 10-fold cross 

validation was used to evaluate the model performance. The dependent variable was the criterion 
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EE by the portable metabolic cart, and the independent variables included the number of 

acceleration peaks in transverse direction (TPEAKS), the number of acceleration peaks in 

longitudinal direction (LPEAKS), average acceleration in transverse direction (TAVG), average 

acceleration in longitudinal direction (LAVG), mean absolute deviation in transverse direction 

(TMAD), mean absolute deviation in longitudinal direction (LMAD), average heat flux (HF), 

average skin temperature (STEMP), average near body temp (NBTEMP), average galvanic skin 

resistance (GSR), detection of physical activity (DETECTPA), weight, age, gender and 

completeness of injury. Data from all the activity trials were pooled and treated as independent 

observations.  

To test hypothesis 2.1, Wilcoxon signed rank sum tests were used to compare the EE 

estimated by the new SW EE prediction equation with the criterion EE for each activity trial. To 

test Hypothesis 2.2, two one-way Friedman tests with post hoc pairwise comparisons were 

performed to evaluate differences in the EE estimated by the new SW EE prediction equation 

during these activities.  The EE estimated by new SW EE prediction equation was also compared 

with the criterion measure using the ICC, MAE, MSE, and percent error for each activity, each 

participant, three propulsion trials, three arm-ergometry trials, and all the eight trials of the 10 

participants pooled together. The ICC used for the comparison was single measures, two-way 

mixed model of type consistency with 95% confidence level. The MAE, MSE and percent error 

used the equations 1, 2 and 3, respectively. 

To test hypothesis 3.1, the association between the criterion EE and activity counts was 

assessed with Spearman Rho tests for ActiGraph, RT3A and RT3W during wheelchair 

propulsion, arm-ergometry, and all eight activity trials as a whole. Data from the three 
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propulsion trials, three arm-ergometry trials, and all the eight trials of the 10 participants were 

pooled and treated as independent observations. 
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4.0  RESULTS 

4.1 DEMOGRAPHIC CHARACTERISTICS OF PARTICIPANTS  

Ten participants (9 males and 1 female) with an average age of 43±11 years (ranging from 26 to 

59 years) completed the study. Particpants had been using manual wheelchairs for 15.6±7.8 years 

(ranging from 9 months to 27.5 years). The level of SCI among the participants varied from T4-

T12 with two T4 and T5, one T7, T8, and T11, and three T12. Half of the participants had a 

complete spinal cord lesion. Eight of the participants were Caucasian, with one African 

American and one of Arabic ethnicity. The average body weight and height of the participants 

were 81.4±18.3 kg and 182.8±7.4 cm, respectively. The average skinfold measurements for 

participants at triceps, bicep, subscapula, and suprailiac were 17.2±10.2 mm, 10.3±7.4 mm, 

20.4±8.5 mm, 21.5±8.7 mm, respectively. The percentage body fat estimated based on the total 

skinfold measurement and age was 26.8±5.8% [117]. 

Four participants reported they were athletes, exercising at least twice a week. Among the 

six non-athlete participants, two did not exercise at all and four exercised regularly. The type of 

physical activity reported by the participants included wheelchair basketball, weight lifting, arm-

ergometry, wheeling, and pushups etc. Only one participant reported to be a smoker (20 

cigarettes a day). The perceived nutritional habit on a 5-point Likert scale (poor=1 to 

excellent=5) was 3.5±1.2. The perceived fitness level was 3.4±1.2. 
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4.2 EE MEASURED BY METABOLIC CART 

Energy expenditure in kcal per minute for four types of physical activities measured by the 

portable metabolic cart is shown in Table 1. The Metabolic Equivalent of Task (MET), defined 

as the ratio of metabolic rate during a specific physical activity to a reference rate of metabolic 

rate at rest (set by convention to 3.5 ml(O2)/kg/min), was also calculated for each type of 

physical activity (Table 1). The heart rate and rating of perceived exertion based on the Borg 

CR10 scale for each activity is also shown in Table 1. 

Table 1. Energy expenditure for four types of physical activities in manual wheelchair users 

Activity METs (SD) EE kcal/min (SD) HR (SD) RPE (SD) 

Resting 0.9 (0.2) 1.5 (0.5) 62.3 (16.7) 0.0 (0.0) 

Wheelchair 

propulsion 

2mph on Dyno 3.0 (0.9) 4.5 (1.8) 97.8 (11.2) 3.3 (1.9) 

3mph on Dyno 4.1 (1.6) 5.9 (2.8) 117.1 (22.6) 5.0 (2.8) 

3mph on Tile 2.1 (0.6) 3.1 (1.2) 88.6 (19.1) 2.3 (1.6) 

Arm-

ergometry  

20W at 60 rpm 2.5 (0.3) 3.6 (0.6) 94.6 (13.3) 2.0 (2.1) 

40W at 60 rpm 3.5 (0.8) 4.9 (0.5) 112.8 (14.8) 3.4 (2.0) 

40W at 90 rpm 4.2 (0.7) 5.9 (0.7) 131.0 (18.6) 5.6 (2.9) 

Deskwork 1.1 (0.3) 1.5 (0.4) 78.7 (17.8) 0.5 (0.5) 
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4.3 EE ESTIMATED BY THE SENSEWEAR ARMBAND 

Hypothesis 1.1: EE estimated by SW using its default EE prediction equation will be 

significantly different from the criterion EE for each activity. 

Mean and standard deviation (SD) of the criterion EE from the portable metabolic cart 

and the estimated EE from the SW are shown in Table 2.  

Table 2. Mean and SD for EE from metabolic cart and SW for four types of physical activities 

Activity 
EE kcal/min (SD) 

P-value 
Metabolic Cart SenseWear Error (%) 

Resting 1.5 (0.5) 1.4 (0.3) +0.2 (32.5) 0.386 

Wheelchair 

propulsion 

2mph on Dyno 4.5 (1.8) 9.1 (4.2) -111.1 (79.8) 0.005 

3mph on Dyno 5.9 (2.8) 9.8 (5.3) -75.4 (60.4) 0.005 

3mph on Tile 3.1 (1.2) 6.6 (1.9) -128.6 (58.1) 0.005 

Arm-

ergometry  

20W at 60 rpm 3.6 (0.6) 5.2 (1.3) -44.3 (19.7) 0.005 

40W at 60 rpm 4.9 (0.5) 6.0 (0.8) -22.0 (14.9) 0.009 

40W at 90 rpm 5.9 (0.7) 7.7 (2.0) -29.7 (21.4) 0.009 

Deskwork 1.5 (0.4) 1.6 (0.3) -6.5 (20.3) 0.575 

 

The Wilcoxon signed rank sum test showed that the EE estimated by SW was not 

significantly different from the criterion EE during resting (Z = -0.866, p = 0.386), and deskwork 

(Z = -0.561, p = 0.575). However, the same test showed the criterion EE and EE estimated by the 

SW was significantly different for three wheelchair propulsion trials (z = -2.803, p = 0.005 for 

2mph on dyno; z = -2.803, p = 0.005 for 3mph on dyno and z = -2.803, p = 0.005 for 3mph on 
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tile) and the three arm-ergometry trials (z = -2.803, p=0.005 for 20W at 60rpm; z = -2.599, p 

=0.009 for 40W at 60rpm and z = -2.599, p =0.009 for 40W at 90rpm). 

The percent error between the SW and the criterion measure for each activity is shown in 

Table 2. The summary statistical measures including the Intraclass correlation (ICC), Mean 

Absolute Error (MAE), Mean Square Error (MSE), and percent error between the SW and the 

criterion measure for wheelchair propulsion, arm-ergometry, and all activities as a whole are 

shown in Table 3. The ICC, MAE, and percent error between the SW and the criterion measure 

were also computed for all the activities performed by each of the 10 participants and illustrated 

in Figure 7 to Figure 9, respectively. 

Table 3. Comparison of EE between SW and metabolic cart 

Activity ICC MAE (kcal/min) MSE (kcal2/min2) Error (%) 

Wheelchair propulsion 0.55 4.00 25.71 -105.05 

Arm-ergometry 0.74 1.54 3.36 -31.99 

All activities 0.65 2.15 10.93 -52.18 
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Figure 8. Plot of mean absolute error (MAE) of SW for ten participants 
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Hypothesis 1.2: EE estimated by SW using its default EE prediction equation will NOT be able 

to differentiate between different intensities of wheelchair propulsion and arm-ergometry 

exercise. 

The Friedman test showed that the criterion EE was significantly different across the 

three propulsion trials (p < 0.001), and pairwise comparisons (with adjusted α = 0.017) revealed 

that the criterion measure was significantly different between the 2mph dyno trial and 3mph over 

ground trial (z = -2.803, p = 0.005), and between the 3mph dyno trial and 3mph over ground trial 

and (z = -2.803, p =0.005), but failed to discriminate between the 2mph and 3mph dyno trials (z 

= -2.293, p=0.022). The same test showed that the EE estimated by the SW was also 

significantly different across the three propulsion trials (p = 0.002), and pairwise comparisons 

(with adjusted α = 0.017) revealed a similar trend as the criterion EE that the SW output was able 

to discriminate between the 2mph dyno trial and 3mph over ground trial (z = -2.803, p = 0.005) 
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and the 3mph dyno trial and 3mph over ground trial (z = -2.599, p =0.009), but failed to find a 

significant difference between the 2mph dyno trial and 3mph dyno trial (z = -0.764, p = 0.445).  

The Friedman test also showed that the criterion EE was significantly different across the 

three arm-ergometry trials (p < 0.001), and pairwise comparisons (with adjusted α = 0.017) 

revealed that the criterion measure at the 60rpm 40W trial was significantly greater than at the 

60rpm 20W trial (z = -2.803, p = 0.005), and that the criterion measure at the 90rpm 40W trial 

was significantly greater than at the 60rpm 40W trial (z = -2.803, p = 0.005). The same test 

showed that the EE output from SW was also significantly different across the three arm-

ergometry trials (p = 0.001), and pairwise comparisons (with adjusted α = 0.017) revealed that 

the SW output was only able to discriminate between the 60rpm 20W trial and 90rpm 40W trial 

(z = -2.803, p = 0.005), but failed to find a significant difference between the 60rpm 20W trial 

and 60rpm 40W trial (z = -2.293, p = 0.022), and the 60rpm 40W trial and 90rpm 40W trial (z = 

-2.293, p =0.022).  

4.4 NEW EE PREDICTION MODELS 

The new EE prediction model obtained by performing Pace regression on the SW data is shown 

in Equation 4. The most significant predictors of the new prediction equation are the number of 

acceleration peaks in transverse direction (TPEAKS), average longitudinal acceleration (LAVG), 

mean absolute deviation in longitudinal acceleration (LMAD) and weight of the participant. The 

R-squared for the prediction equation was 0.8 and the MAE was 0.76 kcal/min. Figure 10 shows 

 E. 
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Figure 10. Scatter plot of EE from SW and EE from SW Model versus Criterion EE 

Hypothesis 2.1: EE estimated by SW using the new EE prediction equation, will NOT be 

significantly different from the criterion EE for each activity. 

Mean and standard deviation (SD) for the EE outputs from the portable metabolic cart 

and the SW prediction model are shown in Table 4. The Wilcoxon signed rank sum test showed 

that the EE estimated by the SW model was significantly different from the criterion EE during 

most of the activities except the resting trial and the 3mph over ground propulsion trial.  

The percent error between the predicted EE from the new model and the criterion EE for 

each activity is shown in Table 4.  The summary statistical measures including the ICC, MAE, 

MSE, and percent error between the predicted EE and criterion EE were shown in Table 5. The 

ICC, MAE, and percent error between the new predicted EE and the criterion EE, and between 

the default SW EE and the criterion EE for all the activities by each participant are illustrated in 

Figure 11 to Figure 13, respectively. Figure 14 shows the predicted EE and the default EE from 

the SW compared to the criterion EE. 
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Table 4. Mean and SD for EE from metabolic cart and SW model for four types of physical activities 

Activity 
EE kcal/min (SD) 

P-value 
Metabolic Cart SW Model Error (%) 

Resting 1.5 (0.5) 1.1 (0.7) +24.8 (45.4) 0.059 

Wheelchair 

propulsion 

2mph on Dyno 4.5 (1.8) 4.9 (1.3) -14.7 (18.3) 0.037 

3mph on Dyno 5.9 (2.8) 5.9 (2.3) -10.0 (33.7) 0.009 

3mph on Tile 3.1 (1.2) 3.7 (1.0) -27.3 (22.7) 0.959 

Arm-

ergometry  

20W at 60 rpm 3.6 (0.6) 3.8 (0.7) -7.0 (7.2) 0.028 

40W at 60 rpm 4.9 (0.5) 4.1 (0.6) +16.1 (12.2) 0.005 

40W at 90 rpm 5.9 (0.7) 5.2 (1.2) +12.0 (15.3) 0.022 

Deskwork 1.5 (0.4) 2.0 (0.6) -37.6 (46.0) 0.022 

 

Table 5. Comparison of EE between SW model and metabolic cart 

Activity ICC MAE (kcal/min) MSE (kcal2/min2) Error (%)

Wheelchair propulsion 0.91 0.78 0.87 -17.35 

Arm-ergometry 0.74 0.65 0.76 7.03 

All activities 0.90 0.68 0.75 -5.46 
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Figure 11. Plot of Intraclass correlation coefficient of SW model for ten participants 
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Figure 12. Plot of mean absolute error (MAE) of SW model for ten participants 
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Figure 13. Plot of Error (%) of SW model for ten participants 
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Figure 14. Plot of EE from metabolic cart, SW AM and SW Model versus activity  

 

Hypothesis 2.2: EE estimated by SW using the new EE prediction equation will be able to 

differentiate between different intensities of wheelchair propulsion and arm-ergometry exercise. 

The Friedman test showed that the predicted EE from the new model was significantly 

different across the three propulsion trials (p < 0.001), and pairwise comparisons (with adjusted 
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α = 0.017) revealed that the predicted EE was able to discriminate between the 2mph dyno trial 

and 3mph over ground trial (z = -2.803, p = 0.005), and between the 3mph dyno trial and 3mph 

over ground trial and (z = -2.803, p =0.005). There was a borderline significant difference 

between the 2mph and 3mph dyno trials (z = -2.395, p=0.017).  

The Friedman test showed that the predicted EE was significantly different across the 

three arm-ergometry trials (p = 0.001), and pairwise comparisons (with adjusted α = 0.017) 

revealed that the EE from SW model at the 90rpm 40W trial was significantly greater than at the 

60rpm 40W trial (z = -2.701, p = 0.007), and the 90rpm 40W trial was significantly greater than 

the 60rpm 20W trial (z = -2.803, p = 0.005). However, there was only a borderline significant 

difference between the 60rpm 20W trial and the 60rpms 40W trial (z = -2.395, p=0.017). 

4.5 ACTIVITY COUNTS IN ACTIGRAPH AND RT3 

Hypothesis 3.1: Raw accelerometer data (i.e., activity counts) from the ActiGraph, the RT3A, 

and RT3W will at least moderately correlate (r>0.6) with the criterion EE across all the 

activities. 

Table 6 shows the correlation coefficient (R) and variance (R2) explained by the activity 

counts from ActiGraph, RT3A, and RT3W. Figure 15 shows the variance of EE explained by the 

ActiGraph, RT3A and RT3W for each participant. Data from the RT3W for one participant was 

lost and not included in the plot. 
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Table 6. Correlation coefficient (R) and variance (R2) explained by the activity counts from 

 ActiGraph, RT3A, and RT3W  

Activity ActiGraph RT3 ARM RT3 WAIST 

R2 R P R2 R P R2 R P 

Wheelchair propulsion 0.44 0.67 <0.001 0.56 0.75 <0.001 0.08 0.29 0.118 

Arm-ergometry 0.13 0.36 0.050 0.38 0.61 <0.001 0.08 0.29 0.120 

All activities 0.59 0.77 <0.0001 0.68 0.83 <0.001 0.22 0.47 <0.001
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Figure 15. Plot of Variance of AMs for ten participants 
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5.0  DISCUSSION 

Activity monitors have been extensively studied to measure physical activities and predict 

activity-related energy expenditure among the ambulatory population without disabilities [20, 21, 

41, 61, 86, 103, 104]. Information provided by AMs regarding physical activity levels have been 

shown to motivate its users to continually alter their physical activity behaviors [22]. However, 

these AMs cannot be directly used by manual wheelchair users who often use upper extremities 

for performing all the physical activities [73]. Very few studies have been performed to evaluate 

activity monitors among wheelchair users [73, 77, 80, 97]. This is the first study to examine the 

validity of common activity monitors including SenseWear, RT3, and ActiGraph AMs to 

estimate EE in manual wheelchair users with SCI, and is an important step towards providing 

accurate self-monitoring tool for this population to gauge their activity levels on a daily basis. 

Metabolic costs during resting 

Eight of the ten participants in this pilot study performed some kind of regular physical 

activity which deviates from the norm of 13-16% [28]. Metabolic costs during resting are often 

expressed as a function of body weight using predictive equations, the majority of which have 

been validated in able-bodied participants [46]. The resting EE measured is proportional to the 

fat-free mass in the participant [46]. When these equations are used in the SCI population, they 

overestimate resting EE by 5–32% [129-132], with higher overestimations in persons with 

tetraplegia [130, 131]. The resting EE measured in the participants of this study was 1.5±0.5 
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kcal/min (MET =0.9±0.2) which deviates from the resting EE measured by Abel et al. in 

wheelchair tennis players 1.13±0.21 Kcal/min, wheelchair rugby players 1.06±0.21 kcal/min and 

wheelchair basketball players 1.04±0.25 kcal/min.  The low resting EE measured by Abel et al. 

may be due to the lower body weights in their study participants (tennis players: 75.4± 11.4 kg, 

rugby players: 73.7±12.7 kg and basketball players: 73.9± 20.6 kg) compared to our study 

(81.4±18.3 kg). Research has shown that resting EE in people with SCI measured by indirect 

calorimetry was 14–27% less than those without injury due to decreased fat-free mass and 

sympathetic nervous system activity [46]. However the when adjusted for fat-free mass, the 

difference in resting EE between the persons with SCI and without SCI are less than 3% (P = 

0.77) [133]. 

Metabolic costs of wheelchair related activities 

According to Pate et al. light, moderate and vigorous-intensity activities are defined as 

those with MET scores below 3.0, between 3.0 and 6.0, and above 6.0, respectively [134]. 

According to the Healthy People 2010 adults should perform 2.5 hours of moderate-intensity 

activity per week  for maintaining a healthy body, enhancing psychological well-being, and 

preventing premature death [4]. The MET data indicated that wheelchair propulsion on dyno at 

3mph (MET=4.1±1.6) and arm-ergometery exercise at 60rpm 40W (MET=3.5±0.8) and 90rpm 

40W (MET=4.2±0.7) were moderate, while the rest of the activity trial were light. Especially, 

propelling on tile floor at 3mph was a light-intensity activity (MET=2.1±0.6), similar to walking 

at 2mph. The lower values of MET for wheelchair propulsion on tile versus dyno could be due to 

less rolling resistance on tile and  psychological feeling of staying stationary on dyno compared 

to following a powered wheelchair on tile. Similar to previous research [9, 26, 29, 35, 46], this 

result also indicates that daily propelling of wheelchair may not enough to maintain or elicit 
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improvements in cardiorespiratory fitness. The rating of perceived exertion (RPE) was found to 

reflect the same trend as the MET and the HR values for wheelchair propulsion and arm-

ergometry trials. However, 80% of participants reported to perform regular exercise, they rated 

the moderate-intensity activity trials including the arm-ergometry trial at 90rpm 40W and 

wheelchair propulsion at 3mph on dyno as strong (RPE=5.6 and 5.0, respectively). It was also 

observed that some participants could not maintain the target speed of propulsion at 3mph on 

dyno or arm-ergometry at 90rpm 40W for the eight-minute duration. 

Validity of the SW in assessing EE 

One of the primary findings of this study is that the SW consistently overestimated EE 

for all the activity trials except for resting where there was only 0.2% difference from the 

criterion EE. “The most quantitatively important component of total daily energy expenditure is 

resting metabolic rate, accounting for approximately 65% of the total [46]”. The close EE 

estimation by SW in persons with SCI for resting may improve the daily EE estimation. Energy 

expenditure estimation for deskwork, consisting of reading magazines and using a computer, was 

slightly overestimated by 6.5%. However, the SW moderately overestimated EE for arm-

ergometry exercise by 32% with a moderate ICC value (0.74) and an average MAE of about 1.5 

kcal/min, and greatly overestimated EE for wheelchair propulsion by 105% with a poor ICC 

value (0.55) and an average MAE of 4.0 kcal/min. Energy expenditure estimation for wheelchair 

propulsion at 3mph on tile floor was found to have the largest discrepancy from the criterion EE 

(128.6%). The hypothesis that EE estimated by SW using its default EE prediction equation 

would significantly differ from the criterion EE was partially supported for all wheelchair 

propulsion and arm-ergometry exercise trials, but not for resting and deskwork. Considering 

wheelchair propulsion is a major daily activity in this population, similar to walking among the 
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ambulatory population, the level of inaccuracy in EE estimation by SW can limit its applicability 

in manual wheelchair users. 

There are several possible explanations for the overestimation of EE by SW for 

wheelchair propulsion. The primary reason is that the SW uses algorithms specifically developed 

for ambulatory population [41]. Unlike other activity monitors that use one regression equation 

for all types of activities, the SW first classifies the activity into a predefined category and then 

uses activity-specific equations to estimate EE [41, 68, 86, 102, 104, 107]. As the classification 

algorithms were evaluated and refined based exclusively on the ambulatory population, 

wheelchair propulsion cannot be among the predefined activity categories, and thus was possibly 

misclassified into a strenuous type of activity such as jogging, leading to greater EE estimation. 

As for resting and deskwork, they represent common activities among all population and 

therefore the SW was able to accurately estimate EE and did not significantly differ from the 

criterion measure. Secondly, the SW used in this study utilizes two-axis accelerometer, which 

may not be sufficient to pick up arm movements in all directions during wheelchair propulsion. 

The high standard deviation (SD) in criterion EE and EE estimated by the SW during wheelchair 

propulsion also indicates arm movements during wheelchair propulsion are not as uniform as 

during arm ergometry and participants were likely use different propulsion patterns [135]. This 

may cause the greater EE overestimation by SW during wheelchair propulsion than during arm-

ergometry exercise.  

It was also noticed from Figures 7-9 that the variability between individual participants 

was relatively high, indicating the SW was not appropriate to estimate EE in individuals.  

Participant 7 seemed to be an outlier with a low ICC and MAE values, and high percent error.  

The review of the demographics of this participant showed this participant was the only female 
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among the 10 participants. On closer analysis we found that the EE estimated by SW for 

participant seven was significantly overestimated for wheelchair propulsion (308.2% for 2mph 

on dyno, 204.7% for 3mph dyno and 116.5% for 3mph on tile). These results may indicate that 

the participant may have an energy efficient (low EE measured by metabolic cart) propulsion 

pattern while regulating the speed (high acceleration recorded by SW AM) on the dyno. 

We also hypothesized that EE estimated by SW using their default EE prediction 

equation will not be as sensitive as the criterion measure to be able to discriminate different 

intensities of wheelchair propulsion and arm-ergometry trials. However, the SW showed a 

similar trend of sensitivity as the criterion measure during wheelchair propulsion. The criterion 

EE for 3mph on tile was significantly smaller than 2mph on dyno (p=0.005) and 3mph on dyno 

(p=0.005), and this was also reflected in EE estimated by SW, which is significantly higher for 

2mph on dyno than 3mph on tile (p=0.005), and 3mph on dyno than 3mph on tile (p=0.009). 

However, both the criterion EE and the SW EE failed to detect the difference between 2mph on 

dyno and 3mph on dyno (p=0.022 for criterion measure, and p=0.445 for SW). The insensitivity 

of the criterion measure to the propulsion speed change on dyno may be due to the inability of 

some participants to maintain the 3mph on dyno.   

The SW did not follow the same trend of sensitivity as the criterion measure during arm-

ergometry trials. The criterion measure was able to discriminate the three intensities of arm-

ergometry exercise. The criterion EE for the 90rpm 40W trial was greater than for the 60rpm 

40W trial (p=0.005), and the latter was greater than the 60rpm 20W trial (p=0.005), while the EE 

estimated by SW was only be able to discriminate the highest intensity (90rpm at 40W) from the 

lowest intensity (60rpm at 20W) (p=0.005). This result indicates that the SW may not be 

sensitive to change in resistance at same speeds or change in speed at same resistance, unless the 
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change is relatively large. Nonetheless, the validity analysis of the SW indicates the device 

cannot be directly used for manual wheelchair users with SCI due to the large discrepancy in EE 

estimation for wheelchair propulsion, and the inaccuracy and insensitivity of discriminating 

different intensities of arm-ergometry exercise.  

Development and evaluation of new EE prediction model for SW 

Given the inaccuracy of EE estimation in SW, a linear regression model using pace 

regression was constructed based on the pooled data from the ten participants. Pace regression 

was used due to its ability to evaluate the effect of each variable and using a clustering analysis 

to improve the statistical basis for estimating their contribution to the overall regression, leading 

to reduced model dimensionality [128]. The selected attributes were three acceleration-based 

features and body weight (Equation 4). From the scatter plots in Figure 10, we can observe that 

the EE estimated with the new model were less dispersed and the regression line was moving 

towards a complete agreement line (i.e., “perfect line” in Figure 10).  

We hypothesized that the EE estimated by the new SW model and the criterion measure 

would not differ significantly for each activity. However, the results failed to support this 

hypothesis. The EE estimated by the new SW model was not significantly different compared to 

criterion EE for resting and wheelchair propulsion trial of 3mph on dyno, but was significantly 

different for deskwork, all the arm-ergometry trials and wheelchair propulsion trials of 2mph on 

dyno and 3mph on tile surface. The probable reasons for the EE estimated by SW using the new 

EE prediction equation being significantly different compared to the criterion EE are small 

sample size and a single EE estimation equation that was developed for all activities. 

When examining the model closely, we noticed that new EE prediction equation 

underestimated the criterion EE by 24.8% for resting and overestimated the criterion EE by 
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37.6% for deskwork, which was worse than the default EE from the SW (0.2% for resting, and 

6.5% for deskwork). However, the EE prediction equation produced better results for wheelchair 

propulsion and arm-ergometry trials. The percent error for wheelchair propulsion dropped from 

105.0% using the default SW EE to 17.4% using the new prediction equation (111.1% to 14.7% 

for 2mph on dyno, 75.4% to 10.0% for 3mph on dyno and 128.6% to 27.3% for 3mph on tile). 

The percent error for arm-ergometry dropped from 32.0% using the default SW EE to 7.0% 

using the new prediction equation (44.3% to 7.0% for 60rpm at 20watts, 22.0% to 16.1% for 

60rpm at 40watts and 29.7% to 12.0% for 90rpm at 40watts). The ICC value for (Table 5) 

wheelchair propulsion was excellent (0.91) with low MAE (0.78kcal/min) and percent error 

(17.35%). The ICC value for arm-ergometry exercise was moderate (0.74) with less than 

0.65kcal/min MAE and a comparatively lower percent error (7.03%).The ICC values for EE 

estimated by SW using default and new prediction equation remain the same for arm-ergometry 

trials. The ICC value for the EE estimated by SW using new prediction equation for all activities 

and participants together was excellent (0.90) and the MAE was 0.68kcal/min with very low 

percent error overestimation (5.46%). ICC values (Figure 11) for all activities together after 

modeling has significantly improved compared to before modeling. The mean MAE and percent 

error (Figure 12 and Figure 13) for ten participants performing all activities together have 

significantly reduced to 0.68kcal/min and 5.46%, respectively indicating that the EE estimated 

by SW using prediction equation is much closer to the criterion EE compared to the EE 

estimated. 

We also hypothesized that EE estimated by SW using the new EE prediction equation 

will be sensitive to the different intensities of wheelchair propulsion and arm-ergometry trials. 

For wheelchair propulsion the results showed the EE estimated by SW using the new equation, is 
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significantly higher for 2mph on dyno than 3mph on tile (p=0.005) and 3mph on dyno than 3mph 

on tile (p=0.005). However, the SW EE using new equation produced a borderline significant 

difference between the 2mph and 3mph dyno trials (p=0.017). The new model reflects the same 

pattern as the criterion EE with a borderline significance which may improve with more 

participants in the study. Arm-ergometry trial results showed that the EE estimated by SW using 

new prediction equation for 90rpm at 40watts was greater than for 60rpm at 40watts (p=0.005) 

and 60rpm at 40watts was greater than for  60rpm at 20watts (p=0.005). The results indicate that 

the sensitivity of EE estimated by SW using prediction equation for arm-ergometry trials and 

wheelchair propulsion were found to be better than the EE estimated by SW using default 

equation. 

Validity of ActiGraph and RT3 in assessing EE 

Finally, we examined the ability of using activity counts to predict EE in ActiGraph, 

RT3A, and RT3W. Both the ActiGraph and RT3A were worn on the upper extremity, which is 

not in compliance with the manufacturer recommended waist location. However, both of them 

were able to predict greater variance (68% and 59%, respectively) in the criterion EE than the 

RT3W worn on the waist (22%), indicating that the upper extremity could be a better place for 

wearing an AM among manual wheelchair users; justifiably so as this population relies on their 

upper extremities for all the activities of daily living. This was similar to the study by Pärkkä et 

al., which found that the ankle was a better place to wear accelerometer and gyro sensors to 

estimate EE in ambulatory population for common everyday tasks [109]. The variance in the 

criterion EE explained by the RT3 on waist for wheelchair propulsion and arm-ergometry were 

very low indicating that movements at the waist in manual wheelchair users may not be 

reflective of these types of physical activities. When examining the ActiGraph and RT3A, we 
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noticed the RT3A was able to predict greater variance in the criterion EE than ActiGraph for 

wheelchair propulsion (0.56 vs 0.44), arm-ergometry (0.38 vs 0.13), and all the activities as a 

whole (0.68 vs 0.59). The correlation results of ActiGraph for wheelchair propulsion (0.67, p< 

0.001) trials are similar to the correlations found by Washburn and colleagues, between the 

activity counts from both wrists and EE over the three wheelchair propulsion speeds (0.55 to 

0.66, p<0.01) [97]. This is possibly due to the tri-axial acceleration sensed by the RT3A versus 

the uni-axial acceleration sensed by the ActiGraph and is consistent with the results discovered 

in ambulatory population [82]. Figure 15 shows us that the mean variance in RT3A and 

ActiGraph for the ten participants can explain greater than 60% of variance in EE. The variance 

explained by ActiGraph is slightly greater than that explained by RT3A and may be due to high 

wrist movements involved during deskwork and comparatively less movements in the arm. The 

variability of the RT3 AMs on the arm and the wrist was found to be high (Figure 15) indicating 

that the RT3s may perform better in some participants compared to others based on their upper 

arm usage and biomechanics. 

5.1 CONCLUSION 

The results of this study indicate that SenseWear AM with the default EE equation is not a valid 

instrument to measure physical activity and estimate EE in manual wheelchair users with SCI 

during wheelchair propulsion and arm-ergometry exercise. For resting and deskwork the SW 

AM closely estimated the EE (0.2% and 6.5%) with respect to the criterion EE in manual 

wheelchair users with SCI. However, the SW AM significantly overestimated EE during 

wheelchair propulsion and arm-ergometry exercise by 105% and 32%, respectively.  
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This was the first study to examine and improve the accuracy of the SW to measure 

energy expenditure in manual wheelchair users with SCI during various physical activities.  

From the investigation we found that the EE estimated by SW AM using new regression model 

equation significantly improved its performance in manual wheelchair users with SCI. With the 

new prediction equations the percent errors reduced to 17.4% and 7.0% for wheelchair 

propulsion and arm-ergometry exercise, respectively. The new prediction equation for SW AM 

was able to differentiate and discriminate (sensitive) EE estimation in physical activities like 

wheelchair propulsion and arm-ergometer exercises in manual wheelchair users with SCI 

indicating that it has a potential to be used in manual wheelchair users with SCI. The inability of 

the new EE prediction equation to pick attributes related to spinal cord injury may indicate that 

these equations may be used in larger populations of manual wheelchairs users without SCI.  

In addition, our findings of the high correlations of acceleration data from RT3 on arm 

and ActiGraph on wrist compared to the RT3 on waist indicate that acceleration data can play a 

major role to objectively measure physical activity and estimate EE in manual wheelchairs with 

SCI. The variance explained by RT3 (0.68, p<0.001) on arm and the ActiGraph (0.59, p<0.001) 

on wrist indicate that AMs placed on arm or wrist may be able to better predict EE compared to 

the AM on the waist. 

5.2 LIMITATIONS & FUTURE WORK 

The research performed in this study may provide insight for researchers to explore usage of AM 

to monitor physical activity and estimate EE among manual wheelchair users with SCI. 

However, there are a few limitations which need to be addressed. The small sample size of the 
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number of participants in this data analysis may have affected the modeling of EE prediction 

equation by over fitting the data. We plan to overcome this shortcoming by recruiting about 50 

participants into this study. Ultimately, the data from this study will be used in conjunction with 

the data collected from the rest of the participants. With more participants taking part in the 

study we will be also able to increase the possibility of generalizing the EE prediction equation. 

Another limitation of the study may be that we have currently utilized the average of the 

last six minutes of data. In the future, the performance of EE prediction models for the data 

averaged over the last four minutes and last two minutes will be determined and compared to the 

current six minute data. The data collected for each participant was limited to eight minutes for 

each activity trial in an activity session. Repeated measurement and data collection of 

participants performing more than one activity session over different visits would probably 

provide more data that may offer better insights into measuring physical activity and estimating 

EE. Repeated measurement of EE while performing physical activity may also reduce the errors 

associated with the EE measured by the metabolic cart. In order to simulate the physical activity 

participation on a daily basis, the variety of activity trials will be increased to include activities 

of daily living, instrumental activities of daily living, self care and other physical activities in the 

natural setting. As activity trials like wheelchair propulsion over dynamometer may not be 

representative of over ground wheelchair propulsion on different surfaces and slopes, we also 

aim to study wheelchair propulsion on different surfaces and slopes.  

The current data modeling that we performed involved tenfold cross validation which 

could be significantly improved by splitting the data into training and testing sets. One way of 

performing the data splitting is to randomly select a percentage of participants to compose a 

training set while the others are assigned to a testing set. The other way of performing the data 
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splitting is within the participants where, a percentage of data from all the participants are 

randomly selected as training set while others are selected as testing set. In this study, we 

propose that between participants data modeling may be more beneficial for future EE 

estimation. Currently, we are using SW with two axis accelerometer data and we plan to use the 

new SW with three axis accelerometer data which may increase the accuracy of EE estimation in 

manual wheelchair users with SCI. Also, we would like to explore more features derived from 

raw data which have a relationship with physical activity. The features we would like to derive 

are median, integral, inter-quartile range, low coefficient of variance and high coefficient of 

variance; which represent central tendency of the measured activity, accumulation of measured 

activity, variability of moments, lowest variability during each minute and highest variability 

during each minute, respectively. 

Decrease in sensitivity of EE estimated by SW using new EE prediction equation for 

deskwork and resting compared to the default equation, indicates that one general estimation 

equation may not be accurate to estimate EE for different activities. We plan to solve this 

problem by using a two-tier approach, the first is to use a cut-off value of acceleration to 

discriminate between very light (static) activity and dynamic activity, and a second to use two 

equations for the two types of activity. Also, on lines similar to SW AM; we would like to try 

classifying the activity into more categories and then use an activity-specific model. We would 

like to evaluate sensors like heart-rate monitors and gyro and also analyze the raw data from 

sensors like accelerometers, galvanic skin resistors and skin temperature to classify the manual 

wheelchair activity. We would like to try different models, especially non-linear models such as 

neural network, and Support Vector Machines (SVM). 
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Wheelchair propulsion activity in manual wheelchair users is comparable to walking in 

ambulatory population, a major contributor to EE. Consequently we can hypothesize that 

wheelchair propulsion is a major contributor to EE. To test the above hypothesis we would like 

to extend our research by introducing the wheelchair rotation datalogger to investigate how 

wheelchair inclination during travel, distance travelled, speed and acceleration contribute to EE 

estimation. In order to attain these motion-based parameters we would modify the existing 

datalogger to include an inclinometer and vibration sensor. We would also attempt high 

resolution data collection and wireless communication to detect wheelchair propulsion and 

various other physical activities in real-time. Manual wheelchair users can also utilize their 

wheelchair as a piece of exercise equipment to maintain their health and fitness during lack of 

accessible equipment increasing the importance of wheel rotation datalogger.  

We would like to evaluate the RT3 on arm, RT3 on waist and ActiGraph on wrist to 

estimate EE in manual wheelchair users with SCI. In this evaluation, we would like to determine 

if the regression model from RT3 on an arm is better that the SW AM on an arm as it has a three-

axis accelerometer. We will also evaluate EE estimation from multiple activity monitors on 

body, for example RT3A and ActiGraph or RT3A and RT3W. The idea behind the use of 

multiple activity monitors is to capture large and small body movements from different locations 

and compensate each other. 

Ultimately, we would like to explore methods to provide real time feedback on physical 

activity levels to people who rely on manual wheelchair for mobility. The information could be 

used by the consumers of AMs to perform and achieve the daily quota of physical activity [41, 

50, 53, 63, 67, 68, 87, 90, 96, 97]. Achievement of physical activity goals and real time 

information can aid in behavioral modification to improve and maintain adequate physical 
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activity performance [22, 41]. In addition there is a possibility to use AMs to wirelessly 

communicate to a computer or a cell phone which would place the information over the internet 

[41]. Information on the internet can be used to create applications that increase social as well as 

physical activity network among manual wheelchair users [136]. Through the information 

exchange, wearable monitors could promote activity and telehealth. Social support can play an 

important role in meeting daily recommendation of physical activity; sharing information and 

collaboration to work out together virtually has influence on physical activity levels [137].  

In the future, we would like to develop and evaluate new EE prediction models for 

activity monitors to provide manual wheelchair users with SCI an accurate means to gauge their 

physical activity participation on a daily basis, and extend the findings to manual wheelchair 

users with other diagnosis. 
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APPENDIX A 

EVALUATION OF ACTIVITY MONITORS IN PEOPLE WITH SPINAL CORD 

INJURY  

QUESTIONNAIRE 

Date: ___/___/______ 

Gender:   Male (1)      Female (0)              

Date of Birth: ___/___/______     (mm/dd/year) 

Age: ______ 

SCI Level ________________________ 

Completeness of Injury:  Complete     Incomplete 

Date of Injury Onset: ___/___/______ 

Ethnic Origin:  

   African American (1) 
 Asian American (2)  
 Caucasian (3) 
 Hispanic (4) 
 Native American (5) 
 Other (6): _________________________ 

 
Manual Wheelchair Make (brand): 
☐ Action/Invacare  ☐ Permobil 

☐ Everest and Jennings ☐ Pride   

☐ Kuschall   ☐ Sunrise/Quickie  

☐ Otto Bock   ☐ TiLite/TiSport 
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☐ Other (please specify): ________________________ 
 
Manual Wheelchair Model: _________________ 
 
When did you start using a manual wheelchair: ____/____/____ (mm/dd/year) 
 
Which is you dominant hand?     Right   Left 

Are you an athlete?   Yes    No 

Do you smoke?      Yes     No 
If yes, how much per day and what was your age when you started? 
Amount per day_____ Age_____ 
 
Have you had or do you presently have any of the following conditions?  

 High blood pressure      Seizures     Lung disease     Fainting or dizziness 
  Diabetes     High cholesterol    Shortness of breath at rest or with mild exertion 
  Unusual fatigue or shortness of breath with usual activities 

 
Do you exercise regularly?  

 Yes 
Activity Type Frequency Location 

   

   

   

   

 Occasionally (less than once a week) 
 Not at all 

 
Do you follow any specific dietary intake plan?     Yes     No 
 
In general how do you feel about your nutritional habits? 

 Excellent 
 Very good 
 Good 
 Fair 
 Poor 

In general, how do you rate your fitness level? 
 Excellent 
 Very good 
 Good 
 Fair 
 Poor 
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APPENDIX B 

BORG SCALE USED FOR THE STUDY[74] 

Value 
Category-ratio 
Scale  

0 Nothing at all "No Intensity" 
0.3   
0.5 Extremely weak Just noticeable 
0.7   

1 Very Weak  
1.5   

2 Weak Light 
2.5   

3 Moderate  
4   
5 Strong Heavy 
6   
7 Very Strong  
8   
9   

10 Extremely strong 
"Strongest 
Intensity" 

11 
Absolute 
maximum Highest possible 
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