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PROVIDING FAIRNESS THROUGH DETECTION AND PREFERENTIAL DROPPING

OF HIGH BANDWIDTH UNRESPONSIVE FLOWS

Gwyn Chatranon, PhD

University of Pittsburgh, 2004

Stability of the Internet today depends largely on cooperation between hosts employing TCP

(Transmission Control Protocol) in the transport layer and network routers along an end-to-end

path. However, in the past several years, the incidence of various types of non-TCP traffic over the

Internet, including streaming media applications, has increased. These traffic flows typically are

based on UDP (User Datagram Protocol), and they usually do not employ end-to-end congestion

or flow control mechanisms. Such applications can unfairly consume greater amount of bandwidth

than competing, responsive TCP traffic. In this manner, the unfairness problem and congestion

collapse can occur. To avoid substantial memory requirements and computational complexity, fair

Active Queue Management (AQM) schemes requiring no (or partial) flow state information have

been proposed over the past several years to solve these problems. However, these schemes have

several problems under different circumstances.

This dissertation presents two fair AQM mechanisms, BLACK and AFC, that overcome the

problems and the limitations of the existing schemes. Both BLACK and AFC need to store only

a small amount of state information in order to maintain and use their fairness mechanisms. Ex-

tensive simulation studies show that both of these schemes outperform other schemes in terms

of throughput fairness in a large number of scenarios. Not only are they able to handle multiple

flows of unresponsive traffic, but they also improve fairness among TCP connections with different

round trip delays. AFC, with little more overhead than BLACK, provides additional advantages,

including an ability to achieve good fairness in conditions of different-sized and bursty traffic and

to provide smoother transfer rates for unresponsive flows, which are usually transmitting real-time
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traffic.

This research also includes a comparative study of the existing techniques for estimating the

number of active flows, a crucial component of some fair AQM schemes, including BLACK and

AFC. A further contribution of this dissertation is the first comprehensive evaluation of fair AQM

schemes in the presence of various types of TCP-friendly traffic.
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1.0 INTRODUCTION

1.1 BACKGROUND

The Internet is a vast network that connects many millions of computers used by a large, widespread

population. A majority of the Internet traffic today, including traffic from world wide web (HTTP),

file transfer (FTP), TELNET, and email (SMTP) processes, is carried by TCP (Transmission Con-

trol Protocol), a transport layer protocol. A key to the success of TCP’s deployment has been its

Congestion Avoidancealgorithm, introduced by V. Jacobson in 1988 [33]. This mechanism helps

an end host to determine the amount of available on the network so that its transmission rate can be

adjusted accordingly. Basically, this approach aims to have the source gradually increase its con-

gestion window, reflecting the amount of data allowed for transmission on the network at a given

time, until congestion is indicated by one or more packet drops. In response, the TCP source backs

off the amount of transmitting data by reducing the congestion window by half or more. This re-

sponsive mechanism, referred to as the additive increase/multiplicative decrease algorithm, keeps

the network from being overloaded. It has become a critically important factor in maintaining the

robustness and stability of the Internet.

Today, various types of traffic are increasingly deployed over the Internet. Traffic caused by

streaming media applications usually relies on UDP (User Datagram Protocol). UDP typically

does not employs either end-to-end congestion or flow control mechanisms; if these mechanisms

are employed, it is on a very limited basis.. Rather, the sending rate is chosen based on the value

appropriated for the applications, and no consideration is given to network congestion during the

transmission. The lack of end-to-end congestion control on the flows from these applications

can results in two serious problems:unfairnessandcongestion collapse. An unfairness problem

occurs when traffic with no end-to-end congestion control unfairly consumes a greater amount of
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bandwidth than competing responsive flows, such as TCP traffic. In some situations, responsive

flows may even be shut down due to excessive reduction of traffic. A congestion collapse problem

occurs when a large amount of bandwidth is wasted by packets that are discarded before reaching

their destination because they were transmitted by a source with no congestion control. Both

unfairness and congestion collapse can trouble the current Internet. These problems are discussed

in greater detail below.

1.2 PROBLEM OF UNFAIRNESS

An unfairness problem occurs when unresponsive and responsive traffic share the same network

and compete for scarce bandwidth. Unresponsive applications do not have congestion control

mechanisms and, therefore, have no way of detecting and reacting to network congestion properly.

When they are competing with responsive applications for bandwidth , the packets from both types

of traffic may be dropped at the onset of congestion. All responsive flows, including TCP, reduce

their transmission rates to alleviate the congestion, while unresponsive flows continue tosend their

data at the original rate. As a result, a large proportion of the bandwidth can be consumed by the

unresponsive flows unfairly.

The danger of the unfairness problem is illustrated in Figure1 [25]. Under FIFO (First-In

First-Out) scheduling, UDP flow (S2 to S4) share the same bottleneck link with three TCP flows

(S1 to S3). As shown in the simulation, only when the arrival rate of UDP traffic is low can TCP

traffic flows grasp the portion of bandwidth they deserve. As the arrival rate of UDP increases, the

UDP flow begins to receive a larger proportion of the bandwidth than the combined bandwidth of

the three TCP flows. Eventually, as UDP’s arrival rate approaches the bottleneck link bandwidth,

this situation almost effectively shuts down responsive TCP traffic.

The unfairness problem occurs even with traffic that has implemented some level of congestion

control, but is not TCP-compatible. An example is RTP (Real-Time Transport Protocol). RTP

employs an adaptive algorithm to control the amount of outgoing data in a manner similar to the

additive increase/multiplicative decrease algorithm used to determine the congestion window in

TCP’s congestion control. However, although feedback information for the RTP adaptive data

control mechanism is provided at a minimum of 5-second intervals, this is much longer than the
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Figure 1:Simulation showing an unfairness problem [25].
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time required for the TCP sender to be informed of congestion by a packet drop. As a result, while

TCP sources lower their transmission rates, RTP connections continue to transmit at a higher rate

and, eventually, they consume most of the bandwidth on the shared link [62].

One well-known solution to an unfairness problem is the per-flow fair scheduling mechanism

[14, 60]. Because the bandwidth is allocated almost equally to all different flows passing through

a router, per-flow scheduling eliminates the unfairness problem effectively. This merit, however,

comes with the cost of increased state maintenance and greater complexity in the routers. This

can result in a scalability problem at very high speeds, especially for a high-speed backbone router

serving thousands of traffic flows. In addition, that the literature shows that most of the traffic flows

on the Internet are short-lived. (I think you need to have reference numbers here.) A fair queueing

mechanism that requires a router to maintain a separate queue for every passing connection, even

the small flows which together comprise the majority of network traffic, is not intended to be

widely implemented.

1.3 PROBLEM OF CONGESTION COLLAPSE

The congestion collapse problem arises when senders continue to transmit packets that will be

dropped downstream before reaching their final destinations, resulting in wasted bandwidth from

undelivered packets. The primary factor behind this problem is the increasing deployment of ap-

plications without end-to-end congestion control. When packets are dropped in these applications,

they do not reduce their sending rate. Thus, the network bandwidth can be continuously consumed

by undelivered packets due to the unresponsive behavior even if per-flow scheduling is deployed.

This situation is illustrated in Figure Figure2 [67].

The available bandwidth for each of the links in the figure is 8 Mbps, with the exception of the

link from router R1 to node S4, which has 2 Mbps of bandwidth. Two flows, each with a constant

rate of 6 Mbps, traverse from node S1 to node S3 and from node S2 to node S4, respectively.

Assuming that router R1 uses per-flow fair scheduling, each flow receives 4 Mbps of bandwidth

on the R1-R2 link. Since the final link of flow 2 has an available bandwidth of just 2 Mbps, about

half of the packets from flow 2 are dropped at R2. Hence, the throughput of flow 2 is limited to 2

Mbps while the throughput of flow 1 remains at 4 Mbps. In this case, the flow 2 packets that are
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Figure 2:Example of congestion collapse [67].

discarded before reaching their destination node (S4) block the throughput of flow 1 to 4 Mbps,

which causes congestion in spite of per-flow scheduling.

The impact of congestion collapse could be more severe if there were more unresponsive traffic

flows in the same scenario, as demonstrated by Floyd and Fall’s simulation [25]. Using the same

topology as Figure1, with the R2-S4 link bandwidth now set to 128 kbps, ten flows traverse from

the left nodes to the right nodes of the network. TCP traffic flows from node S1 to node S3, and

a number of UDP flows move from node S2 to node S4. The result is shown in Figure3. The

x-axis shows the number of UDP flows as a fraction of the total flows from 1 to 9; the y-axis shows

the aggregate goodput of TCP flows as a fraction of the bandwidth on the R1-R2 link. The Figure

provides evidence that a congestion collapse problem worsens as the number of unresponsive UDP

flows increases, regardless of scheduling type.

Figure 3:Congestion collapse as the number of UDP flows increases [25].
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Consequently, scheduling type is not the key factor for either the congestion collapse or the

bandwidth use; rather, the absence of end-to-end congestion control for unresponsive traffic is the

key. To date, the current Internet paradism has been without an effective approach to regulating

unresponsive flow applications and prevent the congestion collapse problem [32]. However, Floyd

and Fall [25] propose that penalizing unresponsive high bandwidth flows would be a concrete

incentive for users to implement end-to-end congestion controls that would solve unfairness and

congestion problems.

1.4 OTHER CAUSES OF UNFAIRNESS PROBLEM

The unfairness problem is not only caused by long-lived, high-bandwidth applications lacking

proper end-to-end congestion control mechanisms. Responsive traffic flows such as TCP connec-

tions with round-trip times (RTT ) can also lead to problems of unfairness. A TCP connection with

a small round-trip time can secure a large portion of bandwidth since it tends to receive acknowl-

edgement packets faster, resulting in rapid congestion window increases. Ott et al. [47] and Padhye

et al. [50] separately illustrate this fact in their models of TCP congestion control behavior, which

show that the achievable throughput of TCP is inversely proportional to theRTT . Hence, fairness

among TCP connections can deteriorate as a result of different round-trip times. A related problem

is a flash crowd, which can occur even when traffic flows are transmitted over a responsive TCP

protocol. A flash crowd is a large surge in the amount of traffic to a particular server (e.g., HTTP

requests for breaking news), which cause an immense increase in the traffic load of the server or

routers along the path. During a flash event, a large number of packets from other connections may

be dropped because they are not protected from the flash crowds that compete for the bandwidth

to access the same server.

Some types of short-lived traffic can also introduce unfairness. One such type is a short-

lived UDP traffic flow that is transmitted at a very high peak rate. An example of this is a short

duration of video traffic that is later canceled. Another example is any traffic from a source that

intentionally transmits unresponsive data in a series of short-lived bursts to avoid detection by a

router’s fairness mechanism and at a very high peak rate to grasp as much bandwidth as possible.

A UDP pulse will show up at the router for a short period of time, then leave. Most routers do
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not respond quickly enough to be able to manage this type of traffic. Once detected, this traffic

pulse may already cease after a short period of time. As a result, the connection can gain a large

amount of bandwidth without being effectively controlled by a router. During the time that the

traffic dominates a buffer space, packets from low-bandwidth or responsive flows can potentially be

dropped in a large numbers. The situation can be even worse if there are multiple non-responsive

UDP flows that, together, arrive at a router for a briefly before leaving; in this case, a number

of responsive flows could be totally shut down. Even routers with some existing active queue

management (AQM) mechanisms to combat the unfairness problem are unable to cope well with

this type of traffic, as described in Chapter2.2.

1.5 THE PROBLEM STATEMENT

Today’s Internet architecture is vulnerable to the unfairness and congestion collapse problems be-

cause of traffic without conformant end-to-end congestion control. This misbehaving traffic can

consume large amounts of bandwidth, resulting in inferior service to responsive users or instability

of network operations. Although most of the current Internet traffic is TCP, there is clear evidence

of an increasing number of real time and streaming media applications based on UDP protocol that

have no congestion control mechanism or are unresponsive in nature. The negative impact of these

unresponsive traffic flows could range from a mild effect to an extreme danger, as discussed in this

chapter.

One major challenge in mitigating the unfairness problem is that most mechanisms, such as

fair scheduling [14, 60] or per-flow active queue management schemes [68, 45, 4] usually involve

some form of per-flow state information at routers along a network path. The merit of these mech-

anisms thus comes at the expense of memory resources and increased complexity; these aspects

can prevent them from being widely implemented, especially for core network routers that carry

thousands of traffic flows. In response, several newer fairness mechanisms, such as CHOKe [52],

Stochastic Fair Blue (SFB) [19], and CApture-REcapture (CARE) [8] have been proposed. These

mechanisms, which will be covered in Chapter2.2, either have unique, less complex active queue

management mechanisms that require no per-flow state information, or they have a small data

structure to hold partial per-flow state information. However, these less complex AQM schemes
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still have many limitations in solving the unfairness problem.

The goal of this research is to develop a router mechanism that requires no per-flow or only

partial state information and aims to solve the problem of unfairness caused by unresponsive appli-

cations. The scheme is designed in light of the additional challenge of minimizing complexity to

enable practical employment. Therefore, per-flow state information maintained for all active flows

passing through the router should be kept minimal. The use of a preferential dropping mechanism

is considered as an approach for a penalizing scheme that could be operated in a FIFO scheduling

scenario, the simplest queueing discipline widely implemented in the Internet.

The remainder of this thesis is organized as follows. Chapter2 provides a background of

the Internet’s congestion control concept. The chapter also discusses the well-known fair AQM

schemes that contain no or partial state information, as well as their merits and limitations. The first

scheme to combat the problem of unfairness, BLACK, is proposed and compared to other schemes,

in Chapter3. At the end of the chapter, the limitations of BLACK are discussed. Chapter4 details

approaches to solve one of the limitations - the estimation of the number of active flows. Then,

AFC, the second scheme to combat the problems with some advantages over BLACK, is proposed

in Chapter5. A comparative evaluation of AFC, BLACK, and the other fair AQM schemes in an

extended range of scenarios is made in this chapter. Conclusions of the research are presented in

Chapter 6. A discussion of alternatives for controlling traffic in best-effort IP networks is provided

in Appendix B.
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2.0 LITERATURE REVIEW

This chapter is a review of the literature about existing solutions to the problem of unfairness.

While there are several strategies for approaching the problem, the scope of this dissertation is

limited to the router-based AQM approach. The first part of this chapter provides background

information and focuses on the well-known congestion control mechanisms currently employed in

the Internet. The second part of this chapter classifies existing solutions to the unfairness problem

and discusses the router-based AQM approach, its design issues and its goals. The remainder

of the chapter, which motivates most of the work in this dissertation, reviews and compares the

most important router-based AQM mechanisms, giving special consideration to the limitations and

problems of these schemes.

2.1 CONGESTION CONTROL MECHANISMS IN THE INTERNET

The Internet was originally designed to connect heterogeneous, time-sharing systems at several

locations (e.g., universities and military systems) using a connectionless, packet-switching tech-

nique. Packet-switching technology is both flexible and fault-tolerant, as data can be routed in

more than one direction, and it can be re-routed, as the need arises. The network can continue to

operate even when some parts fail or when it is faced with a military attack or a disaster. Infor-

mation sent as a message across the Internet may be broken up into several small chunks of data

packets, called datagrams. Each datagram is attached to the header of the message, which contains

information about where the packet is from, where it should be routed to, and other control details.

Each packet may be individually routed across a different sub-network before it reaches its ultimate

destination, where it is reunited with other packets and reassembled into a single message.
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Despite the advantages of connectionless, packet-switching technology, the network must be

well designed if it is to deliver good performance under high-load circumstances. If bandwidth

demands exceed available network resources, network performance will decline as packets are

dropped or delayed. Lost packets may require retransmission, especially for traffic under the con-

trol of a reliable transport protocol, such as TCP; this causes congestion from additional traffic on

the network. Figure4 depicts the problem of congestion. When the network load is light, most

packets will be delivered to their destinations properly, and the number of delivered packets will be

almost proportional to the number of packets sent from the senders. However, when the network

traffic load increases beyond a certain level, the number of delivered packets drops towards zero,

indicating that some network queues may be loaded with traffic beyond their capacity.
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Figure 4: When too much traffic occurs, congestion happens and performance degrades sharply

[69].

Unlike a telephone network, a best-effort network such as the Internet does not reserve network

resources such as bandwidth or buffer space prior to data transmission. It is not economically fea-

sible for a best-effort network to avoid congestion by over-dimensioning the network, especially

when traffic tends to be sporadic in nature. Therefore, the network can experience congestion

when many senders simultaneously transmit data at rates exceeding the network’s capacity. The

Internet’s congestion problem poses particular challenges due to the users’ widespread locations

the difficulty in observing the entire network, and the inability of end hosts to control the network.
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Based on the current congestion control paradigm, the network must provide some sort of feed-

back to its users in order to indicate that congestion has developed somewhere in the network.

In response, users should adjust their transmission rates appropriately. This feedback mechanism

is a fundamental concept of Internet congestion control architecture and has been the subject of

intense research study. A number of techniques have been proposed in the literature, and some

of them have became Internet standards. The following section presents major congestion control

mechanisms in the current Internet.

2.1.1 TCP congestion control mechanism

Transmission Control Protocol (TCP), the de facto standard reliable transport protocol, is designed

to provide reliable, in-order, connection-oriented communication between a pair of hosts, through

reliable and unreliable internetworks.

The TCP congestion control mechanism was developed by V. Jacobson in 1988 [33]. At that

time, a source could transmit as much data as advertised by the receiver, called theadvertised

window, without considering the network’s condition. However, use of an advertised window

alone is not enough to prevent a source from sending too much data into the network. Thus, a TCP

source was intentionally designed to have an ability to determine the network’s available capacity

and to use that information to limit its data transmission.

In this manner, the sender must maintain acongestion window(cwnd), which is the amount

of data that can be transmitted at a given time according to the network congestion level. The

maximum window size, indicating the maximum number of bytes of unacknowledged segments at

any given time, is then set to be a figure between thecongestion windowand theadvertised window

which reflects both the network capacity and the receiver capacity, respectively.

Generally, there is no direct way for the TCP source to have knowledge about a network.

Therefore, the sender slowly probes the network by setting a series of congestion windows until

either a timeout occurs or the advertised window is reached. During the exponentially increasing

period orslow-startphase, a source increases its window by 1 every time it receives an acknowl-

edgment packet (ACK) and sends two packets. In effect, the source doubles the congestion window

size with each round trip time (RTT ). Before or after a congestion window reaches the advertised
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window value, a packet may be lost and a timeout might occur. If the underlying links are reliable,

this is an implicit sign that congestion has occurred. In this instance, since the severity of the con-

gestion is unknown, a conservative approach dictates that the congestion window be set back to 1

segment and the slow-start phase be restarted.

In some situations, congestion may take a long time to resolve. In this case, the exponential

growth of the congestion window immediately after congestion has been detected may be overly

aggressive and may worsen the condition. Therefore, Jacobson proposed a new algorithm for

handling congestion. This algorithm begins with the slow-start phase, which is followed by a

linear or congestion-avoidancephase, in which the sender increases its congestion window by

1/(current congestion window) each time it receives an ACK. Once congestion occurs,the source

sets itsslow-start thresholdvalue to be half of the current congestion window, sets the congestion

window to a value of 1, and restarts the slow-start phase. When the congestion window reaches

the threshold value, the source switches to the linear phase, in which the congestion window is

increased linearly, as illustrated in Figure5 [65].

Figure 5:TCP slow-start and congestion-avoidance phases [65].

2.1.1.1 Adaptive retransmission timer As described in section2.1.1, a traditional TCP imple-

mentation uses a timeout mechanism to alert the TCP sender to the loss of data packets. After each
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packet is transmitted, the sender waits for an ACK from the receiver. If the ACK is not received

within a retransmission timeout(RTO) interval, the sent packet is considered to have been lost and,

therefore, to be in need of retransmission. The key factor here is the length of the RTO interval.

If the interval is set too long the sender may end up wasting time waiting for lost packets. If the

interval is too short, the packet may be retransmitted unnecessarily while its ACK is still in transit.

This situation implies that timeout interval is related to RTT; thus TCP utilizes a smoothed round

trip time (SRTT) to estimate a round trip delay time as:

In a traditional TCP implementation, TCP sender detects the loss of the packets using a timeout

mechanism. After transmitting each packet, the sender waits for an ACK from the receiver. If the

ACK is not received within aretransmission timeout(RTO) interval, a corresponding packet is

considered as a lost packet and hence needed to be retransmitted. The key factor here is the length

of RTO. If the value is too large, the sender may end up wasting time waiting for the lost packet.

If the interval is too small, the packet may be retransmitted unnecessary as its ACK may still be in

transit. This concern implies that timeout interval is related to RTT, thus TCP implements a SRTT

(smoothed round trip time) to estimate a round trip delay time as:

SRTT (K + 1) =
1

8
SRTT (K) +

7

8
RTT (K + 1) (2.1)

In the original implementation of TCP, the RTO timer is simply a multiplication of SRTT

and a constant value. However, this approach can result in poor network performance because a

connection may have a relatively high RTT variance. In a low variance environment, the RTO may

be too high, and in a high variance environment, it may not be able to guard against unnecessary

retransmissions. Taking into account RTT variance, Jacobson proposed a more effective approach

for estimating RTO. This approach, based on a mean deviation of the RTT, is as follows

SDEV (K + 1) =
1

4
| RTT (K + 1)− SRTT (K) | +3

4
× SDEV (K)

RTO(K + 1) = SRTT (K + 1) + 4× SDEV (K + 1) (2.2)

In this equation, the standard deviation of RTT is approximated by the mean deviation of the

RTT samples (SDEV). In addition, if the ACK of the retransmitted packet fails to arrive within the
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timeout interval, the TCP sender will double the RTO value every time it tries to retransmit the

packet. This technique is referred to as a binary exponential back-off.

2.1.1.2 Variants of TCP To date, there are three well-known variants of TCP, namelyTahoe,

RenoandVegas. TCP Tahoe, first implemented in 1988, has all the features of traditional TCP,

including a refined timeout calculation and theFast Retransmissionalgorithm [34] that helps to

expedite the retransmission process. Specifically, Fast Retransmission ensures that when a receiver

gets an out-of-order packet, it issues an ACK for the last in-order packet it received. Then, it

continues transmitting the ACK with the same sequence number for each incoming packet, until

an expected packet arrives. When the sender receives a duplicate ACK, it is able to assume that

an unacknowledged packet was either delayed or lost. To ensure that the packet was actually

lost rather than simply delayed, a sender may wait until it receives three duplicate ACKs, before

retransmitting the missing packet. Since the RTO timer is typically set to a much higher value than

a round trip time, it is likely Fast Retransmission speeds up retransmission efficiently.

TCP Reno, first implemented in 1990, behaves in much the same way as TCP Tahoe, but

it acts more aggressively with theFast Recoveryalgorithm. For fast recovery at the onset of

congestion, instead of reducing the congestion window to 1 and beginning a slow-start phase, the

sender cuts the congestion window to half of its current value and uses incoming duplicate ACKs

to send subsequent outgoing packets. The sender then proceeds with the linear growth congestion-

avoidance phase, without wasting time exponentially increasing the congestion window again.

TCP Vegas enhances the congestion avoidance of TCP Reno by adjusting the congestion win-

dow not only according to packet loss but also according to observation of RTTs of packets that

have been sent before. Larger RTTs indicate a congested network which results in a decreased

window size. On the other hand, smaller RTTs indicate a reduction in network congestion and sig-

nal that a traffic source can increase its congestion window size. Theoretically, congestion window

size will eventually converge on an appropriate value.

2.1.1.3 Mathematical models of TCP congestion control mechanismSeveral variants of

TCP have been proposed during the past decade, and most of these preserve two fundamental

components of the congestion control mechanism [47]:
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1. The TCP source uses a dropped packet as an indication of network congestion and responds

by decreasing the congestion window by at least half. This decrease is meant to reduce the

effective sending rate, thereby relieving network congestion.

2. In the congestion-avoidance phase, the TCP sender increases the congestion window by, at

most, one packet per round trip time.

TCP variants may differ in their responsiveness to congestion and aggressiveness in obtaining

available bandwidth. For example, TCP Tahoe decreases the congestion window down to one,

rather than by half as TCP Reno does. Some TCP variants send an ACK packet for every two data

packets, increasing the congestion window by less than one packet per round trip time during the

congestion avoidance phase. Nevertheless, these two components usually enable the determination

of the upper limit for the sending rate of TCP.

Several TCP models have been developed to explain TCP’s flow and congestion control mech-

anisms [49, 51, 3, 72, 61]. The simplest one,The Stationary Behavior of Ideal TCP Congestion

Avoidance[49], has been used as a fundamental concept in the development of several mechanisms

addressing the unfairness problem. This model assumes the following:

• Only a single packet is dropped when the congestion window reachesW packets.

• Uniform (non-bursty) average packet drop rate ofp.

• TCP segments are sizeB bytes.

• TCP runs over a path with sufficient bandwidth and a fairly constant round trip time of RTT

seconds.

• The sender always has data to transmit and the receiver has infinite buffers.

• The details of TCP data recovery and retransmission are neglected.

Under these assumptions the congestion window has a periodic saw-tooth shape, as shown in

Figure6.

As shown in the figure, once the congestion window reachesW packets, it is reduced by the

sender to half (W/2). If every segment is acknowledged, the congestion window increases by

one packet per round trip; therefore each cycle of the saw-tooth shape equalsW/2 round trips or

RTT * W/2 seconds. The total data delivered is depicted as the area under the saw-tooth, equal to

(W
2

)2+ 1
2
(W

2
)2 = 3

8
W 2 packets per cycle. An alternate way to calculate this number is by accepting
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Figure 6:TCP congestion window behavior in steady state of a simplified model.

that, in each cycle, the congestion window starts atW/2 and increases by at most one per round trip

time until it reachesW . Therefore, the sender transmits at leastW
2

+(W
2

+1)+(W
2

+2)+ ...+W ≈
3
8
W 2 packets per cycle. Hence, the fractionp of the packets that are dropped is then bounded by

p ≤ 8
3W 2 which yields:

W ≤
√

8

3p
. (2.3)

As Equation (2.3) demonstrates the upper bound of a congestion windowW for a TCP con-

nection in which single packets are dropped; in this situation, the maximum throughput over a

single cycle of the steady-state model then equals:

T =
Data per cycle
Time per cycle

=
B ∗ 3

8
W 2

RTT ∗ W
2

=
B/p

RTT
√

2
3p

=
1.5

√
2/3 ∗B

RTT ∗ √p
(2.4)

Padhye, et al. [51], use stochastic analysis in their proposal of a more precise model of TCP

congestion control behavior in steady state, including the effects of timeouts and retransmissions

as shown below:

T ≈ min


Wmax

RTT
,

1

RTT
√

2Bp
3

+ T0 min(1, 3
√

3Bp
8

)p(1 + 32p2)


 (2.5)
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In this case,T0 is a retransmission timeout, andWmax is the maximum congestion window as

limited by the receiver’s buffer size.

In a TCP connection with delayed acknowledgments, in which the receiver sends only one

ACK for every two received packets, the sender’s congestion window increases more slowly. Since

the ACK triggers the sender to increase its window and, in a delated-ACK situation, the sender

receives ACK packets at a slower rate, then there is a slower rate of congestion window increase.

In this case, the fractionp of the sender’s packet drop rate is:

p =
1

∑W
i=0(W/2 + i/2)

≈ 1

(3/4)W 2
(2.6)

Applying the same method to the throughput equation from Equation2.6, the upper bound for

the arrival rate when the receiver uses delayed-ACK is:

T =
1.5

√
1/3 ∗B

RTT ∗ √p
(2.7)

These models provide a way to calculate the theoretical throughput of a TCP connection for

a particular set of assumptions and compare it against the actual throughput of a specific flow as

measured to draw conclusions about its friendliness to TCP. Therefore, these formulas have been

used in the design of TCP-friendly protocols for streaming media applications [46, 27] as well

as the development of router-based mechanisms that provide fairness between TCP and non-TCP

traffic.

2.1.2 Active Queue Management

Traditionally, the Internet router uses drop-tail queueing to manage network traffic by accepting

packets until the queue is full, then dropping any additional arriving packets until there is available

space in the queue again. However, a disadvantage of drop-tail queueing is that a full queue is

sustained most of the time and feedback about congestion is sent to the end host (via a packet

drop) very late. Since packet dropping happens only once the queue is full, end hosts have no

opportunity reduce their transmission rate before congestion seriously develops. It is also possible

that packets from several sources are dropped at the same time when the queue overflows. These

traffic sources then reduce their transmission rates simultaneously, which could lead to periods
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of extreme link under-utilization alternating with periods of congestion. This phenomena,global

synchronization, is a serious problem of drop-tail queueing.

Active queue management is designed to solve this problem by detecting congestion before

the buffer overflows and providing feedback about congestion to the end hosts before a serious

problem occurs. Typical active queue management mechanisms mainly focus on reducing packet

transfer delay, keeping the steady state buffer size at low levels, and avoiding global synchroniza-

tion problem.

Random Early Detection (RED) is the most well-known active queue management. RED, de-

signed to detect the onset of congestion as indicated by average queue size, also aims to maintain

a low average queue size. RED requires no state information concerning bandwidth usage of in-

dividual flow. Arriving packets are randomly dropped, or marked, when the potential of a buffer

overflow is determined to exist according to monitoring of the average queue size. The dropping

of packets is a means of notifying the transport-level user about the impending congestion. RED

mechanisms also prevent a global synchronization problem by detecting congestion early and ran-

domly dropping the packets of various users. Since congestion is likely be caused by a burst of

traffic from one or few sources, the dropping of arriving packets by drop-tail queueing is biased

against bursty traffic over non-bursty traffic having the same average rate. RED avoids this bias.

To achieve these goals, the RED router must maintains two thresholds,maxth andminth, with

a weighted moving average formula that estimates the average queue size,avg. To detect the onset

of congestion, the average queue size is compared to two thresholds, as shown in Figure7. If the

average queue size is below the minimum threshold, minth, congestion is assumed to be minimal

and all packets are accepted. If the average queue size is greater than the maximum threshold,

maxth, congestion is assumed to be serious and all incoming packets are discarded. If the average

queue size is between the two thresholds, it might indicate developing congestion. In this case, the

arriving packets are discarded with a probabilityPa and accepted with probability1 − Pa. This

probability depends on two factors:

• The dropping probability increases as the average queue size approaches the maximum thresh-

old, maxth.

• When the average queue size is between the two thresholds, a countercount is incremented ev-

ery time an arriving packet is queued. The higher the value ofcount, the higher the probability
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Figure 7:RED Buffer. (Reproduced from [65])

of a packet being discard.

Determining dropping probabilityPa begins with the calculation of a temporary probability

Pb, where

Pb = Pmax(avg −minth)/(maxth −minth) (2.8)

This value increases linearly from 0, when the average queue size is equal tominth, to a

maximum value ofPmax when the average queue size is atmaxth. The final dropping probability

Pa is given as

Pa = Pb/(1− count · Pb) (2.9)

All incoming packets have the same dropping probability; thus, RED drops packets in propor-

tion to the connections’ share of the bandwidth. Through random dropping, RED is able to avoid

the global synchronization problem.

The average queue size is used to filter out transient congestion that may occur at the router.

The average queue size (avg) can be calculated using a weighted moving average formulaavg =

(1 − wq)avg + wq ∗ q, whereq is an instantaneous queue size andwq is a weight to determine

how fast the algorithm will respond to changes in the queue size. Ifwq is set too high, RED may

not filter out the transient congestion. Ifwq is too low,avg may respond too slowly to changes in

average queue size. Theminth should be set to a considerably large value if the incoming traffic

is bursty, in order to maintain high link utilization.
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2.1.3 Explicit Feedback Schemes

With TCP congestion control mechanism, the congestion is implicitly indicated to the source

through packet drops at the router. This model works well with best-effort traffic that requires

no delay or loss restriction. However, some applications, such as Telnet, are delay-sensitive, while

some applications, such as voice and video transfer, are loss-sensitive. In some situations, unnec-

essary packet drops may result in retransmissions and cause increasing delays for the users. This

could have a negative effect on both loss-sensitive and delay-sensitive applications. Consequently,

several explicit feedback schemes have been developed so that routers can detect incipient conges-

tion and provide explicit feedback to the source rather than just begin droping packets. In this way,

the delay-sensitive or loss-sensitive sender can adapt to network conditions without experiencing

the impact of dropped packets or delay from retransmissions [55]. Examples of such mechanisms

include ICMP (Internet Control Message Protocol) Source Quench messages, DECbit congestion

avoidance scheme [56], and ECN (Explicit Congestion Notification) [21, 55].

ICMP Source Quench messages were initially designed to inform data sources that they were

sending packets too fast to be processed. As the buffer at the router fills up, further arriving packets

are dropped and a source quench message is returned to the source. The source then slows down

its transmission rate. However, this technique is rarely used because the Source Quench messages

themselves consume addition bandwidth, thus increasing network congestion [64].

In the DECbit scheme [56], the router sends a congestion-indication bit in the packet header

to inform the sender about network congestion. When the packet arrives at the router, the router

computes the mean aggregate queue length of all sources. If the average queue size exceeds a

certain threshold, the router sends the bit in the packet header. The receiver copies the congestion-

notification bit into the header of its acknowledgment packet and sends it to the source, as illus-

trated in Figure8. In contrast to the ICMP Source Quench message, the amount of feedback caused

by congestion notification in the DECbit scheme is minimal. The sources use window flow control

in which the window size is adjusted dynamically according to the series of congestion-indication

bits it receives.

Based on the DECbit scheme, Explicit Congestion Notification (ECN) was introduced in 1994

[21] and proposed as RFC 2481 in 1999 [55]. ECN scheme mandates that routers provide conges-
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Figure 8:DECbit scheme [37].

tion indication for incipient congestion prior to the buffer overflows, such as is done by the RED

mechanism. Two bits of ECN data are needed in the IP header: theECN-Capable Transport(ECT)

bit, to indicate whether the end-points of the transport protocol are ECN-capable, and theConges-

tion Experienced(CE) bit, set by the router to notify the end nodes about incipient congestion.

The arriving packet can be either marked by setting a CE bit or dropped at the router in response

to the congestion. ECN, however, requires support from the transport protocol. At the present

time, the proposal defines new mechanisms for ECN operation only for TCP protocol and leaves

the modification of ECN for other transport protocols to further research. In ECN mechanisms

for TCP, the two endpoints have to verify that they are both ECN-capable during the connection

setup phase. In the TCP header, an ECN-Echo flag is reserved for the receiver to use when inform-

ing the source about congestion when a CE packet has been received. In addition, a Congestion

Window Reduced (CWR) flag is reserved to inform the receiver when the congestion window has

been reduced. Congestion is indicated by a single packet drop in non-ECN-Capable TCP. ECN

mechanisms have been tested and shown to improve throughput over NON-ECN Reno TCP for

bulk transfer as well as transactional transfer [59], due to the need for fewer retransmissions.
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2.2 ROUTER-BASED AQM MECHANISMS TO SOLVE THE UNFAIRNESS

PROBLEM

2.2.1 Taxonomy

During the past several years, a number of mechanisms have been proposed to solve the problem

of unfairness. Some of these mechanisms aim at solving the problem from inside the network, and

some focus on developing a responsive or TCP-congestion-control-compatible protocol for use at

traffic sources and destinations. These mechanisms can be classified in several possible ways. In

this research, the algorithms are classified as eitherrouter-basedor end-system-based, based on

their implementation placement.

Router-based algorithms are deployed inside networks (i.e., in the routers) to regulate the traf-

fic flow that causes the unfairness problem. Some of these schemes introduce a level of pun-

ishment that provides an incentive for a protocol implementer to deploy end-to-end congestion

control mechanisms, a crucial factor in solving the congestion collapse problem. End-system-

based algorithms are aimed at defining the end-to-end flow and congestion control mechanism to

be implemented by the end systems. In either case, if the protocol is designed to be compatible

with TCP, it is called a TCP-friendly protocol. Although both of these approaches are important,

having the Internet relying purely on end users’ decisions about flow and congestion control would

be a potential risk to network performance, at least in terms of the unfairness problem. Therefore,

development of a router-based mechanism which addresses a fairness problem becomes a crucial

and necessary task and is the main focus of this research.

Many different protocols and algorithms have been based on each approach. Several TCP-

friendly end-system-based solutions have been developed; these typically use Equations2.4or 2.5

to adjust the sender’s transmission rate or rely on other strategies to increase or decrease theconges-

tion windowof TCP. Some of the most important rate-based examples of TCP-friendly transport

layer protocols are TCP-Friendly Rate Control Protocol (TFRC) [27], Rate Adaptation Protocol

(RAP) [57], Loss-Delay Based Adaptation Algorithm (LDA) [63], and TCP Emulation At Re-

ceivers (TEAR)[58].

The main goal of each of these protocols is to transmit data smoothly in a TCP-friendly manner
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so that users of streaming applications perceive the handling of network traffic to be more effective

than when they are using TCP. Windows-based TCP-friendly end-to-end protocols have also been

devised, such as the family of Binomial algorithms, including Inverse-Increase/Additive-Decrease

(IIAD) and SQRT [6], and the General Additive Increase Multiplicative Decrease (GAIMD) [37]

algorithm. These generalize the same TCP protocol using different values for the parametersa and

b that define the increase and decrease strategy1. For a detailed description of these schemes, the

reader is directed to the references cited and survey papers that already exits in the topic, such as

has been written by Widmer and colleagues [70].

Router-based mechanisms are presented in a greater detail in this chapter2. The following

two sections address the main issues to consider when designing such algorithms and the most

important available schemes. In particular,TCP Model-based Identification Scheme[25], Longest

Queue Drop (LQD)[68], Fair Random Early Detection (FRED)[45], Balanced RED (BRED)[4],

Stabilized RED (SRED)[48], CHOose and Keep for responsive flows (CHOKe)[52], Stochastic

Fair Blue (SFB)[19], andCApture-REcapture (CARE)[8] are discussed.

2.2.2 Main Design Issues and Goals

One of the most important aspects of a router-based scheme is its ability to achieve fairness among

competing flows, particularly when unresponsive high-bandwidth flows share the bottleneck link.

For instance, these flows can be identified and some sort of preferential dropping policy or similar

active queue management scheme applied, or another unique technique may be employed, as will

be discussed in the following section. Some schemes provide a restriction or punishment for

identified unresponsive flows that consume more bandwidth than their fair share, either at the time

of congestion or during light loads, as a mean of promoting the use of end-to-end congestion

control mechanisms. From this discussion, it can be inferred that two important issues are the

identification of unresponsive flows and the calculation of fair share. Routers have to accurately

identify which flows should be regulated so that they do not accidentally punish well-behaved

flows; once identified, the flows in need of regulation should be penalized fairly. These and other

important issues to consider during router-based mechanism design are explained below.

1For TCP,a = 1 (additive increase) andb = 0.5 (multiplicative decrease).
2Most of the materials in this section are to be published in [10]
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• Ability to identify and regulate unresponsive flows. Identification of unresponsive flows

may or may not be necessary to solving the unfairness problem. Nonetheless, the identifica-

tion of traffic that is harmful to other traffic provides extra flexibility and, usually, better results

than when such identification does not occur. For example, a router may want to punish unre-

sponsive traffic as an incentive for a well-behaved end-to-end congestion control, and it may

wish not to punish well-behaved flows at all. As another example, one may want to arrange

flows in a less priority queue and to restrict them based on flow or another method so that they

can co-exist with good-behaved flows. Flow identification is not for free, though, and care

must be taken to make the identification scheme both simple and scalable.

• Fairness.Although fairness is a desirable goal for all of the schemes of this kind, its meaning

need not be as strict and complex as that of a fair scheduling mechanism. Since flows with

no end-to-end congestion control could gain increasing amounts of bandwidth and might even

completely shut down all responsive flows on the link, placing some regulation or preferential

dropping on these flows may be enough to limit the effect of this problem. This could be done

without using any complex scheduling algorithm. In other words, the degree of fairness could

be relaxed, allowing unresponsive flows that need more bandwidth to obtain the resources they

need as long as they are not harmful to other flows and the network is not congested.

• Need to estimate the number of active flows.Several schemes require a good estimate of the

number of active flows traversing the router without a large amount of memory space required

in order to calculate the fair share and achieve other goals. This is an important area of active

research closely related to router-based schemes. In Chapter4, a brief overview of the most

important mechanisms for estimating the number of active flows and an evaluation scheme are

provided.

• Simplicity of Operation. One approach to solving the unfairness problem is to use per-flow

scheduling mechanisms that separately regulate the bandwidth of each flow, as stated by Ke-

shav [37]. However, as demonstrated through a series of simulations conducted by Floyd

and Fall [25], while this mechanism may alleviate the problem of unfairness, the congestion

collapse problem can still occur, regardless of the scheduling type. Per-flow scheduling also

introduces a high cost in terms of state information and complexity in order to achieve fairness.

A simple, yet effective mechanism, rather than a computationally complex one, becomes one
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of the most important goals in a router-based approach. This is one of the main reasons why

most schemes still use FCFS (First-Come First-Serve) as the scheduling discipline.

• Scalability. Scalability is another important issue. Since these schemes are part of the packet

forwarding process and core routers handle thousands or even millions of flows, the mecha-

nisms must scale well. For instance, the complexity of the algorithm and the use of router

resources should not be proportional to the number of flows. Simplicity and scalability are

related and important issues to consider when implementing the algorithms in practice.

2.2.3 Description of the Most Important Schemes

Router-based AQM schemes can be categorized into schemes that need full per-flow state infor-

mation and schemes that do not need full per-flow state information. The latter can require no

per-flow state information, or they can require only partial state information. At the same time, the

schemes that need no per-flow state information can be further divided in two groups depending

on whether or not they need to estimate the number of active flows. Figure9 is a diagram showing

this classification. This research focuses on those mechanisms that do not need full state informa-

tion, primarily for scalability reasons. Even though the state-full AQM schemes usually have less

computational complexity than fair scheduling mechanisms, they still have high space complexity.

As a result, these mechanisms have rarely been implemented in high speed or backbone routers.

Note that there is another mechanism, called Core-Stateless Fair Queueing (CSFQ) [66], that

aims at providing fairness without maintaining full per-flow state information at the core routers.

However, the edge routers under this scheme need to calculate the arrival rate of every passing

flow and append this value to the header of every packet such that the core routers could provide

fairness based on this information. Because CSFQ’s implementation is much different from the

other schemes, i.e. the need for a tight coordination between edge routers and core routers, and

additional overhead in packet headers, which turn to be its drawbacks, CSFQ is thus not included

in this section.

The rest of this chapter provides a description of each of these AQM schemes. Table1 provides

a qualitative comparison of the main design issues discussed previously.
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Figure 9:Classification of router-based solutions.

2.2.3.1 TCP Model-based Identification SchemeFloyd and Fall’s ’Promoting the Use of

End-to-End Congestion Control in the Internet’ [25] is well-known for its extensive demonstra-

tion of the danger of unfairness and congestion collapse. The authors propose a router-based

solution to identify unresponsive flows and punish them by limiting their rates or putting them in a

low priority queue. Unresponsive flows are identified by comparing the flow’s arrival rate with the

throughput (T ) obtained from Equation2.10, which represents an approximation of the throughput

that a TCP connection would have received under the same circumstances as the considered flow.

T ≤ 1.5
√

2/3 ∗B

RTT ∗ √p
(2.10)

This equation is derived from a simple TCP model that captures the behavior of the TCP

congestion window in steady state, as shown in Figure6 [49] and previously discussed in Section

2.1.1.3. The variableW in the picture represents the size of the congestion window when a packet

is dropped with probabilityp. Notice that, in order to determine the TCP throughput from this

equation, the flow’s round-trip time (RTT ), packet size (B), and dropping probability (p) should

be known. If the flow’s arrival rate, as estimated from RED’s packet drop history, is greater than

that obtained from the equation, the flow is identified as being unresponsive, and it should be
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punished by putting it into another class of queue. In this case, the authors suggest Class Based

Queue (CBQ) as a method of partitioning the buffer space into a queue for responsive traffic and

a queue for unresponsive traffic. The flow’s rate restriction is then removed once the flow’s arrival

rate decreases to less than1.22B/(RTT ∗ √p) for a new packet drop probabilityp.

This mechanism is quite simple and can successfully identify unresponsive flows if the router

has accurate values for all parameters. Since monitoring all flows’ arrival rates may incur an ex-

cessive CPU processing overhead, the estimation of an arrival rate using RED packet drop history

is suggested [24]. This estimation results in a rough approximation that may be somewhat higher

or lower than the actual flow’s arrival rate. In addition, a router has no easy way to determine the

flow’s round trip time; hence, it is unlikely to determine expected throughput precisely. In many

circumstances, this leads to misidentification of unresponsive flows. Overall, the TCP model itself

is overly simplified and unrealistic for actual implementation.

2.2.3.2 Longest Queue Drop (LQD) Suter et al. propose Longest Queue Drop (LQD), a buffer

management scheme to solve the unfairness problem [68]. The basic concept of this scheme is that

the flow with the largest number of packets that is waiting in the queue should be the first flow

to be penalized or dropped. In LQD, buffer space is partitioned so that each flow has the same

normalized buffer in an effort to achieve a fair bandwidth share. If the size of the entire buffer is

noted asB, each connectioni has a nominal buffer allocationbi, which can be thought of as the

connectioni’s guaranteed buffer size. Initially,bi is set toB/n for all i, in whichn is the number

of backlogged connections.

When a connectioni needs more thanbi buffers, two scenarios are possible. First, if the

global buffer occupancy is less thanB, the connectioni is allocated part of the available buffer

space, as long as the new global buffer occupancy does not exceedB. Second, if the global buffer

occupancy at that time is equal toB and the connectioni has a current occupancyqi that is less

thanbi, LQD makes room for the incoming packet by dropping the front packet from a connection

with a current occupancy exceeding its allocation. The packets are dropped from the front instead

of the back because this triggers TCP’s retransmit/recovery mechanisms faster, helping TCP to

increase its throughput [43]. Three methods are proposed for selecting which connection packets

should be dropped from:
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1. Longest Queue Drop (LQD): This option selects the connection that uses the higher share of

the bandwidth. This can be done by choosing connectionj with the largest value of (qj − bj).

This method offers the router some level of isolation and protection, as if there is only one

misbehaving flow then it should experience a higher loss rate.

2. Dynamic Soft Partitioning with Random Drop (RND) : This option selects a connection at

random from amongst the connections for whomqj > bj. The goal of this scheme is to reduce

the amount of bursty loss, as some TCP versions (e.g., TCP Reno), are known to behave badly

in these circumstances.

3. Approximated Longest Queue Drop (ALQD): One drawback of the LQD method is that it

requires a search operation be run on the backlogged queues in order for the connection with

the longest queue to be identified. ALQD improves LQD by maintaining information about

the length and identity of the longest queue.

Simulation has shown that LQD performs quite well in terms of flow isolation even when TCP

flows have different round trip delays. Its drawback is that a router needs to keep state information

for every backlogged flow, otherwise a searching procedure must be performed on the entire buffer

space very time a push-out decision is necessary.

Although the ALQD method was designed to reduce this cost, it may lead to bursty loss since

it tends to drop packets only from the flow with the longest queue. In addition, LQD drops pack-

ets only when the global buffer is full. This results in a lack of early congestion notification, a

prominent feature of active queue management schemes such as RED and its derivations.

2.2.3.3 Fair Random Early Detection (FRED) Even though RED active queue management

has the ability to drop packets from connections in proportion to their bandwidth, the scheme does

not guarantee fair bandwidth sharing among multiple connections, nor does it have a mechanism

for handling unresponsive flow competing with adaptive flows such as TCPs. Fair Random Early

Detection (FRED) [45], a modification of RED, also aims to solve the unfairness issue. Essentially,

FRED operates similarly to RED but with additional features, explained below.

In FRED, two global parameters,minq andmaxq, maintain the minimum and maximum num-

bers of packets that may comprise each flow in a queue, respectively. For each active flow, two

variables must be maintained on a per-flow basis: the number of packets in the buffer (qlen) and the
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number of times the flow has failed to respond to congestion notification (strike). Additionally,

FRED has an extra global variable, average per-flow queue size (avgcq).

FRED guarantees a minimum buffer space (minq) to protect flows from having low-speed

connection. An arriving packet is buffered if the connection has fewer packets (qlen) thanminq

and if the average buffer size is less thanmaxth. In order to manage a non-adaptive flow, FRED

enforces a per-flow queueing limit. The flow buffer occupancy is maintained at a maximum leve

(maxq) and the number of times each flow tries to go beyondmaxq is noted as astrike variable.

The buffered packets from flows with highstrike values are not allowed to be more than average

per-flow queue size (avgcq), and this prevents unresponsive flows from consistently dominating

the entire buffer space.

Overall, FRED could achieve fairness in many situations as a result of its minimal differences

from RED. However, a main drawback of the scheme is the need to track per-flow information for

every active flow passing through the router, which is both costly and undesirable.

2.2.3.4 Balanced-RED (BRED) The fundamental idea of Balanced-RED or BRED [4] is to

provide fairness through a RED-like mechanism acting upon each active flow that passes through

the router. BRED maintainsqleni as the number of packets of each active flowi within the global

buffer of sizeB, and it maintainsNactive as the number of total active flows. Three thresholds

are determined for the size of eachqleni in order to perform their dropping policy as follows:

• l1: The minimum number of packets that may comprise a flow in the buffer before its packets

start being dropped with a probability ofp1.

• l2: The number of packets that may comprise a flow in the buffer before its packets start being

dropped with a probability ofp2, wherep2 > p1.

• Wm: The maximum number of packets that may comprise the flow in in the buffer.

If the flow state from each arriving packet is not present, it is initialized withqleni = 0, and the

number of active flows (Nactive) is incremented by one. If the information of this flow is already

in memory, then preferential dropping is applied to the arriving packet according to the number of

the flow’s packets already in the queue (qleni), as shown above. For any departing packets from
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flow i, theqleni is decremented by one packet. Ifqleni reaches zero, the number of active flows is

decreased by one.

BRED has a well-demonstrated ability to isolate unresponsive flows from responsive flows.

However, unresponsive flows are still able to claim much higher bandwidth than responsive flows.

This effect is significant when the buffer size is insufficient for making the effective buffer size

of each flow less than its bandwidth-delay product. There are many parameters that may ef-

fect the performance of BRED as they do RED. However, Anjum and Tassiulas did not explore

whether or not those parameters would have a significant impact on the different types of scenarios.

Lastly, BRED also requires per-flow state information to make decisions about which packet to be

dropped.

2.2.3.5 Stabilized RED (SRED) Stabilized RED (SRED) [48] aims to stabilize the occupancy

of an FCFS buffer, independently of the number of active flows. Therefore, the dropping probabil-

ity depends on both the buffer occupancy and the estimated number of active flows.

The TCP bandwidth equation (Equation2.10) shows that

cwnd ∼ p−
1
2 (2.11)

wherecwnd is the flow’s congestion window andp is the packet drop probability. WithN

flows, the sum of theN congestion windows is in the order ofN × p−
1
2 (MSSs, assuming all flows

have the same Maximum Segment Size). Ott and colleagues argue that the target buffer occupation,

Q0, must be of the same magnitude asN ×p−
1
2 , and they assumeQ0 = N ×p−

1
2 MSSs. Therefore,

p must be in the order ofN2. This becomes part of SRED’s dropping policy, as follows:

pzap = psred(q) ×min(1,
1

(256× (P (t))2
) (2.12)

with

psred(q) =





pmax if 1
3
B ≤ q < B,

1
4
× pmax if 1

6
B ≤ q < 1

3
B,

0 if 0 ≤ q < 1
6
B.

where1/P (t) is an estimate of the number of active flows in the time shortly before the arrival

of packett, B is the buffer size, andq is the instantaneous buffer occupancy. According to the
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SRED dropping policy, as long as the number of active flowsN does not exceed 256 (an arbitrary

number), the dropping probability is also dependent upon the number of active flows to maintain

the target buffer occupancy. That is

pzap =
psred

2562
× 1

(P (t))2
∼ psred

65, 536
× (number of flows)2.

OnceN exceeds 256, the dropping probability is equal topsred only in order to prevent TCP

sources from spending a great deal of time in a time-out status due to excessive dropping probabil-

ity.

Rather than maintaining per-flow state data, in order to estimate the number of active flows,

SRED maintains aZombie Listwhich includes theM recently seen flows. Each flow in the list

containsCount, a variable that represents how often its packets arrive. If the Zombie List is full,

it’s a packet’s flow identifier is added to the list as it arrives and theCount is set to zero. Then, the

packet is compared with a randomly chosen item in the Zombie List:

• If they match, theCount of that flow in the list is increased by one. This event is called aHit.

• If they don’t match, the flow identifier that was randomly picked from the list is replaced with

that of the arriving packet, and theCount is reset to zero, with a probability ofp. This event is

called aNo Hit.

When packett arrives, let

Hit(t) =





0 if nohit,

1 if hit

andP (t) be an estimate for the hit frequency around the time of arrival of thet-th packet at the

buffer, according to

P (t) = (1− α)P (t− 1) + αHit(t) (2.13)

with 0 < α < 1. Finally, according to Ott et al., the number of active flowsN is estimated by

1/P (t).

This estimation is based on the assumption that an arriving packet belongs to flowi with a

probability ofπi and that a zombie represents flowi with a probability ofπi. So, for each arriving

packet, the probability of causing a hitP (t) is
∑

iπ
2
i . For N flows with identical traffic intensity
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πi = 1
N

, for 1 ≤ i ≤ N , this means thatP (t) =
∑

iπ
2
i = 1

N
. In general, this estimation is accurate

if all flows have the same traffic intensity as1
N
≤ ∑N

i=1 π2
i ≤ 1.

One of the drawbacks of SRED is that it assumes that allN flows have the same traffic intensity.

In reality, this is not the case. In addition, although the SRED scheme can use its hit mechanism to

identify unresponsive flows, it does not provide an effective penalty.

2.2.3.6 CHOKe A design goal of CHOKe (CHOose and Keep for responsive flows, CHOose

and Kill for unresponsive flows) [52] is to offer a simple mechanism for controlling unresponsive

flows. To achieve this goal, a small modification is made to the plain FCFS queue with RED active

queue management. The CHOKe algorithm is illustrated in Figure10 in which extra functions of

CHOKe are shown in gray while RED functions are shown in white.

AvgQsize <= Minth ?

Both packets
from same flow?

AvgQsize <= Maxth ?

Draw a packet at
random from queue

Drop the new packet

Admit new packet

End

Drop both packets

End

End

Admit new packet with
a probability p

End

Arriving packet

y

y

y

n

n

n

Figure 10:The CHOKe algorithm [52].

When a packet arrives, if the average queue size is greater thanminth, CHOKe draws a packet

randomly from the buffer (drop candidate) and compares it to the arriving packet. If they are from

the same flow, then both are dropped; otherwise, the arriving packet is accepted into the queue with

a drop probability that is computed by RED. The basic idea behind CHOKe is that a FIFO queue

is more likely to have packets that belong to unresponsive flows than are other non-FIFO queues,

and they are more likely to be chosen for comparison. Therefore, packets from unresponsive flows
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are likely to be dropped more often.

This scheme works well if there is only one unresponsive flow in the network. Therefore, Pan,

et al. proposed a modification that would deal with multiple unresponsive flows. In their modifica-

tion, m > 1 packets are randomly chosen from the queue per each packet arrival. To minimize the

complexity of multiple random samplings per each packet arrival, the buffer is partitioned between

minth andmaxth into k regions, and the number of drop candidates (m) to be randomly chosen

from the buffer is set to2 · i(i = 1...k) according to the region of the average buffer occupancy

CHOKe is very simple to implement, maintains minimum state information and controls unre-

sponsive flows. However, it can control unresponsive flows only if there are enough packets from

the flows in the buffer at the time of congestion. Pan,et al. demonstrate in their simulation study

[52] that with CHOKe, the high-bandwidth UDP flows still consume much greater bandwidth than

do TCP flows. In addition, CHOKe operates on a per-packet basis; therefore, in some scenarios, a

flow with twice the packet size can consume almost twice the bandwidth of other flows [54].

2.2.3.7 Stochastic Fair Blue (SFB) The main novelty of the Stochastic Fair Blue (SFB) [19]

scheme is that it attempts to manage unresponsive flows without relying on queue occupancy statis-

tics. SFB maintains a set ofL hash tables that detail different hash functions, withN items in each

table. Each item, referred to as a bin, tracks both the number of times flows are hashed into that

item and a dropping probabilitypm. Each arriving packet is hashed, according to a string such as

the flow ID, into one of theN bins in each ofL hash tables, and the number of packets stored in

that bin is increased by one. If the number of packets in a particular bin is higher than a certain

number, the dropping probability (pm) for the bin increases by a certain amount. On the other

hand,pm is decreased when the number of packets in a bin drops to zero. In the SFB scheme, for

each flow, there areL values ofpm from theL tables to which it is hashed. The final dropping

probability is, however, determined as the minimum value of thesepm.

According to this algorithm, an unresponsive flow consuming high bandwidth would ramp up

pm to 1 in all of the bins ofL tables. In this way, the flow is then identified as a high-bandwidth

unresponsive flow that should be penalized with rate limitations. Because The use of multiple hash

tables makes it unlikely that two different flows would be hashed into the same items on every

table. In other words, a perfect hashing for every active flow that passes through the router is not
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Figure 11:Example of SFB [19].

required. Consequently, the possibility of penalizing a responsive flow that hashed into the same

item as any unresponsive flow is reduced.

Even with multiple hash tables, however, SFB can incorrectly identify a responsive flow as

an unresponsive one, if there are many unresponsive flows at the router. In this instance, the flow

would be continually penalized without being reclassified. In addition, an identified unresponsive

flow that later become responsive would also be penalized without being reclassified. To correct

these problems, Feng et al. propose that SFB have a moving hash in which the hash function is

changed and reset at regular intervals (e.g., every two seconds). The authors also suggest the use

of double sets of tables that work at different times, so that one set can warm up a mechanism

before another set is reset. This prevents unresponsive flows from getting more bandwidth during

the time after the reset.

Nonetheless, the size of the tables should be carefully pre-determined because the higher the

number of unresponsive flows, the higher the probability of misidentification. Also, the higher the

number of responsive flows - even short-lived ones - the higher the number of responsive flows

being hashed into the same bins as unresponsive flows and, therefore, penalized. In addition, the

identified unresponsive flows are punished by rate limits where the maximum rate allowed must be

manually determined and static. Since the mechanism is independent of queue occupancy, some

unresponsive flows could still be punished despite an ample amount of available buffer space.
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2.2.3.8 CApture-REcapture (CARE) CARE [8] is based on the Capture-Recapture (CR) model

that has been used widely by ecologists and biologists to estimate the number of animals in a

population and by software developers to estimate the number of defects in software during the

inspection process. The model is applied here to estimate the arrival rate of traffic flows and the

number of active flows using theM0 CR model and theMh CR model, respectively.

The basic idea of theM0 model is that the proportion of the number of packets from flowi

(m2) amongt captured packets is the same as the proportion of the number of packets from flow

i (n2) in a buffer of sizeB. If CARE capturest incoming packets, the incoming rate of flowi

can be estimated using the equationB ∗m2/t. On the other hand, theMh model is more suitable

to a scenario in which the captured probabilities are different among flows; thus, it is used for

estimating the number of active flows (N ). For this task, CARE uses theJackknife estimatorto

estimateN . Because the derivation of the Jackknife estimator is difficult, the estimation of the

number of active flows is briefly summarized as follows:

1. Capture an incoming packet with probabilitypcap and store it in thecapture list, which can

storet packets.

2. After capturingt packets, construct the capture frequency to see how many unique flows have

been seen once (f1), twice (f2), and more, up tot times (ft).

3. Based on these capture frequencies, use the Jackknife estimator to estimate the number of

active flows (NJK) using the following equation:

NJK = a(t, K)1f1 + a(t,K)2f2 + ... + a(t,K)tft (2.14)

wherea(t,K)i are the coefficients in terms of the number of capture occasions (t) and the

order of estimation (K). An optimum value ofK must be determined because asK increases,

the bias ofNJK decreases while the variance ofNJK increases. To determine the optimalK,

the coefficients forK = 1 to K = 5 must be derived. Then, combined with frequency data,

NJ1, NJ2, ..., NJ5 are calculated. Next, an interpolated estimator betweenm− 1 andm, where

m is the first order of estimation for the significance levelPm > 0.05 is computed. Ifm = 1,

thenNJ1 can be taken as the estimator; otherwise, the interpolation betweenNJ(m−1) andNJm

is used to estimate the number of active flows.
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Once the number of active flows has been estimated, CARE can drop packets from the flows

that consume more than a fair share of bandwidth with a dropping probability of1.0 − (t/(NJK ·
m2)).

CARE has several drawbacks. First, in order for the estimate to be more accurate, the model

must make a large number of captures (t) compared to the number of flows. This has a direct

impact on the scalability and simplicity of the scheme’s operation. The need for many captures

means running the capture processt times, building a capture frequency table of up tot values, and

calculating the coefficients to apply Equation2.14and find the estimated number of flows. This

might require a great deal of CPU processing power, making CARE unsuitable for high-speed

routers. Second, there is no mechanism described by Chan and Hamdi [8] to reduce the size of

the capture list, which can grow to the number of flows (not a scalable solution). Finally, that the

number of flows is considerably larger than the size of the capture list is assumed and no evaluation

is provided to assess CARE’s performance. In other words, CARE works well when the memory

space available is adequate, although it does not require full per-flow state information. Otherwise,

the estimate of the number of active flows could be inaccurate. Further discussion about estimating

the number of active flows is provided in Chapter4.

2.2.4 Summary

The characteristics of the existing router-based mechanisms presented in this chapter are summa-

rized in Table1 based on their design criteria.

Given the widespread nature of the current Internet architecture, deploying a router-based

mechanism that requires per-flow state information is impractical, since it would require exces-

sive memory resources and CPU processing overhead. In addition, it has been demonstrated that

a large amount of traffic is actually carried by a small number of connections, and the many re-

maining connections are short-lived or low-bandwidth flows [29, 38, 12]. Generally, short-lived

flows may be idle most of the time, and some flows may transmit only a few bytes of data. Holding

per-flow information to provide a fair share of bandwidth for every active flow (e.g., such as would

be done by LQD, FRED, and BRED), may result in wasted memory resources and unnecessary

CPU processes.
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Several schemes recently proposed focus instead on regulating only high-bandwidth flows so

as not to harm small or short-lived flows which are the majority of the Internet traffic. TCP model-

based identification schemes and CHOKe are examples of such schemes. In comparison, SRED,

SFB, and CARE attempt to solve the unfairness problem by using a data structure that holds partial

information about the flows and is used to identify unresponsive flows at the time of congestion.

However, as discussed in this section, these schemes have certain limitations.

To this end, none of the schemes presented offer a well-round solution, and a thorough research

investigation still is needed in this area.
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3.0 BLACK: A NEW FAIRNESS BUFFER MANAGEMENT SCHEME

As discussed in the previous chapter, when examined in light of the main design issues and goals of

router-based solutions provided in section2.2.2, the existing buffer management or AQM schemes

either fail to solve the unfairness problem, or they suffer from serious limitations, especially in

terms of scalability and simplicity. Several per-flow packet scheduling mechanisms originally

proposed to ensure fairness of network service have the same problem. These have not been

employed widely in high speed networks, but have been limited to premium services, as a result of

both the need to maintain per-flow state information and the computational complexity.

Packet dropping through AQM mechanisms such as those discussed in the previous chapter is

a more practical approach, as they are rather less complex and thus becomes a main research in

this field. Early fair AQM techniques such as LQD, FRED, and BRED alleviated the unfairness

problem effectively, but not efficiently; the techniques still required per-flow accounting of buffer

usage for every single active flow.

Rather than monitoring every active flow, several newer packet dropping schemes focus only

on high-bandwidth or misbehaving flows, tracking and regulating them to ensure that they do

not steal bandwidth or shut down small and short-lived flows. TCP Model-based Identification,

CHOKe and CARE are the examples of such schemes. Other packet dropping schemes, such as

SRED, SFB and CARE, hold partial information of traffic flows and rely on that information to

penalize unresponsive flows when congestion occurs. However, all of these schemes have several

limitations, such as penalizing misidentified flows, lacking protection for small flows, or needing

a high amount of memory and CPU processing power. Moreover, none of these schemes has

achieved fairness in handling TCP flows with varied implementations or round trip delay. These

limitations are discussed in Section2.2.
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The purpose of this chapter is to introduce BLACK1, a novel AQM mechanism that ensures

throughput fairness while keeping memory resource low by holding only partial per-flow state

information. In addition, BLACK eliminates all of the problems faced by the existing light-weight

fair AQM schemes. This discussion presents the basic idea of the new scheme, then explains the

structure and each component of the scheme in greater detail. A thorough evaluation comparing the

new scheme with existing schemes is also provided. The limitations of BLACK are summarized

at the end of this chapter.

3.1 PRELIMINARIES

The goal of the new scheme is to avoid holding per-flow state information for every passing flow.

However, tracking and penalizing flows that consume more resources than their fair share may

necessitate that partial flow state information be maintained. In order to manage memory resources

more efficiently, the proposed scheme is designed to keep only partial information about each

flow’s share of resource, such as its buffer occupancy information, and it is designed to keep this

information only for those flows that consume more than their fair share. When congestion occurs,

packets from these flows are subjected to preferential dropping, according to the proportion of

their consumed resource. Furthermore, according to this scheme, packet dropping occurs only

when necessary; the probability that dropping will occurs increases with the buffer size since the

latter is an indicator of the amount of network congestion that exists. As a result, not only do large

flows gain enough bandwidth when the network’s traffic load is light, but most of the small flows

are also protected. It is expected that managing the queue according strategie of fairly sharing

available buffer space reduces the bias against round trip time for TCP traffic. On the other hand,

those traffic flows that consume less buffer space than their fair share and are usually carried by a

responsive protocol like TCP are handled by a global active queue management, such as RED, that

is able to control the queue size and, thus, the delay. This active queue management function also

provides early notification of congestion to responsive TCP sources.

One concern about keeping limited per-flow state information relates to how the router deter-

mines the fair share that each flow should be granted. This research addresses the question as it

1Most of the materials in this chapter were published in [9]
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seeks a mechanism to approximate each flow’s fair share at the time of congestion. One way this

is done is by estimating the number of active flows. With this information, a theoretical dropping

policy functioning at the router is developed to achieve fairness among active flows.

3.2 BLACK

The idea of a new fairness scheme that reduces use of memory space by holding data only for large

flows results from several studies which show that most of the bytes of Internet traffic are actually

carried by a small number of connections and that the remaining large number of connections

are low-bandwidth flows. This phenomenon is referred to asmice and elephants, with the mice

being the small flows and the elephants being the large flows that contribute the most bytes to the

network. Using data collected from OC-12 links in the core of the Sprints Tier-1 IP backbone

network, Papagiannaki et al. find that the proportion of large flows to total flows is approximately

60% [53]. These findings are shown in Figure12. Kim’s analysis of 20 traces of length 60-120

seconds shows that 50% of all flows are single packet flows and 80% of the flows contain less than

20 packets [38], and this conclusion is similar to that of other studies [29, 30]. Figure13shows the

cumulative sum of per flow throughput where the top three flows total 50% of all bytes counted

and the top 12 flows produce 67% of all bytes counted. Kim also suggests that the amount of

memory space allocated to control the congestion could be greatly reduced by accounting for this

phenomenon [38].

From these results, only few large flows contribute to most portions of bytes in the network and

they are usually a cause of congestion. In addition, several streaming media applications usually

consume large amount of bandwidth while providing no end-to-end congestion control mechanism,

or very limited, and become the main factor of unfairness problem because they do not reduce the

transmission rate on the advent of congestion. Therefore, dropping the packets from these types of

flows at the router could reduce the level of congestion more effectively than dropping the small

flows. And because those large flows are small in number, the number of per-flow state information

could be greatly reduced by keeping track of and control only this type of flows that feed a larger

portion of traffic to the queue. When the congestion occurs, these flows should be more responsible

and thus their packets should be dropped first. On the other hand, small flows usually come from
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Figure 12:Proportion of large flows to the total traffic [53].
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Figure 13:Cumulative sum of per-flow throughput from traffic traces [38].
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the delay sensitive applications like HTTP or Telnet, where packet dropping is not preferable.

These types of flows are also typically not the main factor of the congestion and should not be

the first priority to be dropped. The idea of blacklisting and control those unresponsive or high-

bandwidth flows becomes a name of the new fairness scheme –BLACK (Blacklisting unresponsive

flows).

These results show that only a few large flows contribute most of the bytes in the network

and that they are usually the cause of congestion. In addition, several streaming media applica-

tions usually consume a large amount of bandwidth while providing no - or limited - end-to-end

congestion control mechanism, and these applications become the main cause of the unfairness

problem because they do not reduce their transmission rates on the onset of congestion. Therefore,

the router’s dropping of packets from these types of flows could reduce the level of congestion

more effectively than dropping packets from the small flows. In addition, because there are few

large flows, the amount of per-flow state information could be reduced greatly by tracking and

controlling data for only the flows that feed a large proportion of traffic into the queue. When con-

gestion occurs, these flows are likely more responsible; thus, their packets should be dropped first.

Also, small flows usually come from delay-sensitive applications like HTTP or Telnet, in which

packet dropping is not preferable. Since these types of flows are typically not the main cause of

congestion, they should not be the first priority to be dropped. The strategy of blacklisting and

controlling unresponsive and high-bandwidth flows is the source of the name of the new fairness

scheme:BLACK (Blacklisting unresponsive flows).

The basic approach of BLACK is to provide a fair bandwidth allocation mechanism that aims

to achieve fairness among responsive and unresponsive flows as well as among responsive TCP

flows with different round trip delays. It does this by tracking and controlling high bandwidth

flows. The information BLACK keeps includes the amount of buffer consumed by these flows, or

a buffer occupancy fraction, as an indicator of a flow’s bandwidth share at a network link. Suter

et al. and Laksham and Madhow have shown that, at a FIFO router, the bandwidth allotted to

different active connections is roughly proportional to their share of buffer space. Hence, if the

router allocates the buffer evenly among all active flows, fair bandwidth allocation can be achieved

at a high degree [68, 42].

In one of our the pilot studies, five constant-bit-rate (CBR) traffic flows with arrival rates of
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1 Mbps, 2 Mbps, 3 Mbps, 4 Mbps, and 5 Mbps were fed into a single link with a bandwidth of

5 Mbps. The queueing discipline applied was a modified version of tail dropping. In this case,

the router kept track of all five traffic flows and controlled them so as not to allow any one flow

to consume more buffer space than its fair share according to the buffer occupancy fraction. Even

though the arrival rates of these five flows were different and the sum of the arrival rates was

much greater than the bottleneck link bandwidth, the throughput achieved by these flows was well

controlled at the fair rate at 1 Mbps, as shown in Figure14. An intuitive reason for this result is

that, under a FIFO system in which no packets in the queue are dropped, the amount of the packets

queued in the buffer is the amount of the packets that would be served eventually, if the queue

were never empty. Therefore, the fair amount of buffer occupancy indicates the fair amount of

achievable throughput.
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Figure 14:Simulation result showing fair throughput achieved by controlling the fair buffer occu-

pancy fraction.

However, instead of directly counting the exact amount of packets that enter and leave the

queue for all the flows, a sampling technique should be used to approximate a buffer occupancy

fraction for the flows that are recorded. This information of only high bandwidth flows are man-

aged to be stored, using some memory management, in a limited cache memory calledHBF cache
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memory. The packets from the flows that occupy more than their fair share of buffer space should

be dropped according to the proportion of buffer space they consume relative to their fair share.

Furthermore, packet dropping should be performed only when necessary, such as with the increase

of dropping probability according to the buffer size. In this way, large flows gain additional band-

width when the network has a light load and most of the small flows are also protected. When

the queue is managed according to fair share of buffer space, it is expected that the bias against

round-trip time experienced by TCP traffic also is reduced, too.

In addition, to keep both the average queue size and the queueing delay low, while provid-

ing early congestion notification to responsive traffic sources, a global active queue management

scheme should work in conjunction with BLACK. RED [28] is a good choice for this task since

it is one of the most well-known schemes and has been implemented by a large number of router

manufacturers already. In this scenario, all packets pass through the preferential packet dropping

policy of BLACK before going to the RED function for the benefits discussed above.

The design of BLACK then requires four components as shown in the Figure15. These will

be discussed in detail in the following sections.

1. Buffer occupancy fraction approximation.

2. Packet dropping function.

3. HBF cache memory management.

4. Estimation of the number of active flows.

3.2.1 Buffer occupancy fraction approximation

It is desirable to keep as few per-flow states as possible. Therefore, only an approximation of what

fraction of buffer space each flow occupies or a list of possible high-bandwidth flows is needed.

To meet this goal, a sampling technique has been developed.

When each packet arrives, if the queue size exceeds a certain threshold, the router randomly

selects one packet from the queue. A flow ID2 of the randomly chosen packet is recorded. When

2A flow ID could be a combination of source and destination address, source port and destination port, or only a
FlowID field for an IPv6 packet.
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Figure 15:Components of BLACK.

this happens, aHit (ĥ) for that flow is declared. Next time, if the randomly selected packet is from

the same flow, the value of itŝh is increased by one.

After m packet samplings, the router checks a number ofHits or ĥ for each recorded flow

ID. For flow i, a result of the number ofi divided bym is called aHitFraction (Hi), which is an

approximation of the average flow’s buffer occupancy fraction.

To reduce an approximation error ofHi, an exponential weighted moving average can be used

to smooth out the value ofHi for flow i over multiple sampling periods as

Hi = (α ∗Hi) + (1− α) ∗ Ĥi (3.1)

whereα < 1 andĤi is an instantaneous value ofHit Fraction on the last sampling period. A

flow that has a largerHitFraction than a fair buffer occupancy fraction (Bf ) is considered to be a

possible high-bandwidth flow.

The advantage of theHitFraction method is that it is simple enough to identify the buffer

occupancy fraction of multiple high-bandwidth flows throughm random packet selections. In

addition, because packets from high-bandwidth flows in the queue are more likely to be picked up,

partial information can be collected and there is no need to maintain per-flow states for all active

flows. This protects small or short-lived flows from being penalized as well.
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Figure 16:Example of oscillation in dropping probability according to Equation3.2.

3.2.2 Packet dropping function to control high-bandwidth flows

Once buffer occupancy fraction information is obtained, the flows withHitFractionsgreater than

their fair buffer fraction (Bf ) are subject to dropping. The dropping probability is set to the per-

centage of extra buffer space that each flow consumes in excess ofBf , which is

pi = min
(
1,

Hi−Bf

Bf

)
if Hi > Bf

0 if Hi ≤ Bf (3.2)

However, if the dropping probability is set according to the Equation3.2 for the entire next

sampling period, it may result in an oscillation of the flow’s achievable throughput.

For example, assume that unresponsive flowi, with an arrival rate that is much greater than its

fair share, is fed into the queue using a dropping policy according to the Equation3.2. At the end

of the current sampling periodt, the queue would have information about buffer occupancy of flow

i, or Hi, which is much greater thanBf , and the dropping probability calculated using Equation

3.2 is set to 1. In the next period,t + 1, no packets from flowi are allowed to get into the queue

due to their high dropping probability. This blocking is in effect for the entire periodt + 1. As a

result, the probabilitypi at the end of periodt + 1 would be zero, leading to no packet dropping

in periodt + 2, and this fluctuation would repeat endlessly as long as flowi maintains its traffic

stream. This problem is illustrated in Figure16.
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3.2.3 Fine tuning buffer occupancy approximation for adaptive packet dropping

The oscillation of achievable throughput may occur because the dropping probability is set purely

according to buffer occupancy information in the past and does not reflect an instantaneous fraction

from the current period.

To minimize the oscillation, the dropping probability should be adjusted periodically so that

rather than being constant after each sampling period, it is dynamically adjusted according to the

current buffer occupancy fraction. Instead of using theHitFraction parameter as calculated based

on past information alone, the number ofHit (ĥτ ) collected in the current period also can be used

to calculate the dropping probability through the averageHitFraction (H̄i) that accounts for both

past and current information, as follows:

H̄i =
ĥτ + (Hi ∗m)

mτ + m
, (3.3)

wheremτ is the number of sampling packets so far in the current period, andmτ ≤ m. In

this manner, ifH̄i is higher than the fair buffer fraction, then this packet will be dropped with a

probability of

p̂i = min
(
1,

H̄i−Bf

Bf

)
if H̄i > Bf

0 if H̄i ≤ Bf (3.4)

This strategy is used in place of Equation3.2. Note that the term (Hi∗m) in Equation3.3is the

average number ofHit (ĥ) from the past sampling periods. A mathematical derivation confirming

the correctness of Equation3.3 is provided in an Appendix A.

3.2.4 HBF cache memory management

HBF cache memory is designed to hold only information about some connections that are likely

to consume more bandwidth than their fair share. Thus, BLACK needs some mechanism to keep

only large flows in the limited cache memory size. In this way, it does not need to hold the per-flow

state information of every single passing flow. The HBF cache memory management is adapted

from the LRU mechanism [38, 39] as follows.
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This type of memory management is based on a web-caching technique in which frequently

accessed web objects are stored in cache memory so as to be more accessible to web clients in the

future. In general, if the web clients request those objects that are in the cache memory, they have

shorter delays because the objects are sent from the memory rather than from a web server further

away. The key mechanism of web-caching is web cache replacement which determines which

objects should stay in the memory for future access and which objects should be swapped out of

this limited memory. Least Recently Used (LRU) mechanism is one of the simplest and widely

used web cache replacement strategies. LRU is based on the assumption that the least recently

used objects are not likely to be used again in the near future and, therefore, should be swapped

out of the memory.

Figure 17:HBF cache memory management.

The modified LRU mechanism provided by Kim and, separately, Kim and Whang is adapted

from the LRU web cache replacement mechanism in order to identify and track long-lived high

bandwidth flows using a limited cache memory [38, 39]. Having analyzed the traffic trace, the

authors found that most bytes were from only 1-2% of all flows. In addition, they determined that

once a flow’s packet arrives at the router, there is a very high probability that the next packets from

the same flow will reach the router in the near future. These results show a good situation for

web caching to be used as a mechanism for tracking long-lived high bandwidth traffic. With this

approach, a flow ID, rather than a web object, may be kept in the memory. Once a flow’s packet
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arrives at the queue, the router looks through the cache, arranged as a linked list, to determine if

the flow ID has been recorded. If a match is found, a counter tracking the number of packets from

this flow is increased by one and the item is moved to the top of the cache. If no record of this

flow exists in the memory, the item’s counter which had been set to zero is replaced with a flow

ID of the incoming packet’s flow. However, if no match is found and no item has a counter set to

zero, then the last item will be replaced, since it is the one that was least recently seen. If a counter

exceeds a certain threshold, the flow associated with that counter is declared to be a long-term

high-bandwidth flow.

HBF cache memory management in BLACK is adapted from the above operation to track the

approximation of the buffer occupancy fraction. For each packet arrival, one packet is sampled

from the queue and the router looks up in the cache to determine if the packet’s flow ID has been

recorded. If a match is found, itsHit value will be increased by one and the item will be moved to

the top of the cache. If no record of the flow is found, then the last item will be replaced with the

record of the incoming packet and this will be moved to the top of the cache. However, in order

to prevent the record of a large flow being removed from memory, such a replacement will occur

only if the Hit Fraction of the last item is less thanBf .

In addition, as described by Kim, to improve accuracy by filtering out small flows, or which

previously refferred to as mice flow, a random decimator is added [38]. If the cache size is full

and no match is found, the last item in the cache is replaced by the incoming packet with a prob-

ability of pr. A small value, such as 0.05, is suggested forpr; this implies that only about one of

twenty packets would be able to make a replacement. Hence, it is more difficult for short flows

to overwhelm the cache. As Kim explains, use of this random decimator increases the accuracy

of identifying long-lived high bandwidth flows, or elephant flows, from 76.36% and 48.67% to

92.55% and 81.73%, respectively, in two experiments [38]. In BLACK, the last item is replaced

with the probabilitypr only if the last item has aHitFraction of less than Bf.

3.2.5 Estimation of the number of active flows

One of the parameters necessary for networks to provide fair service is the value of each flow’s

fair share of network resource. In BLACK, the buffer occupancy fraction is kept in the HBF
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cache memory and used by the preferential packet dropping function. Therefore, the fair buffer

occupancy fraction is estimated. One estimate of the fair fraction is based on the number of active

flows (Nact). In other words, the fair fraction (Bf ) is simply1/Nact.

Because per-flow state information should be minimized, an exact count of the number of

active flows passing through the router is both undesirable and impossible, especially for high

speed routers. BLACK estimates the number of active flows using a simple operation based on the

information provided by the packet sampled during the first stage, as follows.

Upon a packet’s arrival, BLACK compares its flow ID to that of a packet randomly sampled

from the buffer. If the arriving packet and the sampled packet are from the same flow, then amatch

is declared.

AssumingN flows arrive at the router, labeled as flows numbered1, 2, ..., N . Let Pa,i be the

probability that an arriving packet belongs to flowi, and let it be equal toπi. If the incoming flows

have the same traffic intensity, thenπi = 1
N

for all 1 ≤ i ≤ N .

S0

S1

S2

S3

S4

R1 R2

N0

N1

N2

N3

N4

10 Mbps

TCP
Sources

TCP
Sinks

Figure 18: Simulation topology for pilot experiment on the estimation of the number of active

flows.

Let Ps,i be the probability that a randomly chosen packet from the buffer belongs to flowi. In

a similar manner toPa,i, Ps,i is approximatelyπi = 1
N

. Based on the definition of amatchevent,

the probability that amatchwill occur for an arriving packet from flowi, Pmatch,i, is then equal to

Pmatch,i = Pa,i × Ps,i

=
1

πi

× 1

πi
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Figure 19:Results from a pilot study of BLACK’s estimation of the number of active flows.

=
1

π2
i

=
1

N2
(3.5)

given thatPa,i andPs,i are independent of each other. As a result, that probability that amatch

will occur for an arriving packet from any of theN flows, Pmatch, if the N flows have the same

traffic intensity, is

Pmatch =
N∑

i=1

Pmatch,i =
N∑

i=1

1

N
=

1

N
. (3.6)

Form arrival packets, a probabilityPmatch can be estimated by simply counting the number of

matchesevents overm packet arrivals. Hence the estimated number of active flows is

Nact = E[N ] = E
[

1

Pmatch

]
=

m

(a number ofmatchevents)
(3.7)

during them arriving packets interval.

In a pilot study, BLACK’s estimation of the number of active flows was tested in a simulation

based on the topology shown in Figure18. Two sets of experiments were conducted with 25 TCP
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flows and 50 TCP flows, respectively. The results are plotted in the Figure19 and show a close

approximation of the actual number of passing flows.

One of the problems encountered by the above simplified method is a decrease in accuracy

when traffic intensity varies greatly. To relieve this effect, this estimation must be performed after

the packet dropping function. Since the queue accepts packets from active connections in a rather

fair manner through the dropping policy, it is expected that variance of the traffic intensity can be

minimized.

3.3 COMPARATIVE EVALUATION OF BLACK

In this section, several scenarios are used to evaluate BLACK and some of the other important

AQM schemes listed in Chapter2.2. The mechanisms that require full per-flow state information

are not included here because of the practical limitations posed by scalability problems, as is espe-

cially the case for high-speed routers handling several thousands of flows. Specifically, CHOKe,

SFB, BLACK and CARE, are evaluated. SRED and the TCP Model-based Identification mecha-

nism are not evaluated because, although both could identify misbehaving flows, SRED does not

provide a mechanism to control them and the TCP Model-based Identification requires an addi-

tional mechanism (e.g., a separate CBQ queue) to handle them. For cpmparative purposes, RED is

included, since it is the most widely used AQM scheme.

3.3.1 Simulation setup

NS-2 [1] is used as a simulation tool with the dumbbell topology shown in Figure20 to assess the

performance of RED, SFB, CHOKe, BLACK and CARE under four different scenarios. The first

scenario is a comparison of the effectiveness of the AQM schemes in achieving fairness when TCP

sources compete with one unresponsive flow. In the second scenario, the first scenario is repeated

but includes multiple unresponsive flows. In the third set of simulations, only TCP sources are

considered but with different round-trip times. The fourth scenario compares the effect of the

AQM mechanisms on TCP-friendly protocols. Common simulation settings are as follows.

Constant-bit-rate UDP flows compete against a number of TCP flows over a 5-Mbps R1-R2

53



Figure 20:Simulation topology for an evaluation of BLACK.

link with a propagation delay of 10 ms. End nodes are connected to the routers at 100 Mbps with

2 ms delay. Both UDP and TCP flows transmit data with a packet size of 1 Kbyte. The maximum

buffer space at the router R1 is set to 300 packets. Each experiment lasts for 200 seconds of

simulation time, and it is repeated 20 times. The statistics are collected from 50 seconds to 200

seconds of simulation time.

SFB is set with a default configuration of two levels of hash functions of 23 bins with double

set of hash tables for moving hash functions (total of46 × 2 bins) using the NS code provided

by [2]. The minth andmaxth threshold settings for BLACK, CHOKe, and RED are 50 and 150

packets respectively which are the Gentle RED parameters [23]. For the case of CARE, the number

of capture occasions (t) is 200, where 50 out of 200 can be used for the estimation of the number

of flows, and the probabilitypcap is 0.04 according to [8]. BLACK uses the sample size (m) of

3,000 packets and the size of HBF cache memory of 20. The choice of BLACK parameters are

discussed in Section3.3.5and3.3.6. The parameter settings are summarized in Table2.
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RED minth = 50 packets,maxth = 150 packets.

CHOKe minth = 50 packets,maxth = 150 packets.

SFB Two levels of hash functions of 23 bins with double set of hash

tables for moving hash functions (total of46× 2 bins).

CARE Capture occasion (t) = 200 with 50 of this value is used for the

estimation of the number of active flows

BLACK minth = 50 packets,maxth = 150 packets, sample size (m) =

3,000 packets, HBF cache size = 20.

Common parameters Maximum buffer size = 300 packets.

Table 2:Parameters of different queues for the evaluation of BLACK.

3.3.2 Single unresponsive flow

In the first experiment, only one UDP source transmits packets at the rate of 5 Mbps from node N5

to S5. The R1-R2 link is set with a low rate of 5 Mbps with 10 ms delay. When the UDP’s arrival

rate is equal to the R1-R2 link bandwidth, the R1-R2 link becomes a severe bottleneck link. An

amount of 100 TCP traffic is randomly selected to originate from one of the source nodes N0 - N4

and flow to one of the respective sink nodes S0 - S4. The transmission delay of the access links

are set to 10 ms. BLACK queue is equipped at the router R1 with the HBF cache size of 20, a size

roughly equal to only 1/5 of the number of long-lived flows. For SFB, according according Feng

et al. [19], the suggested mechanism for handling misbehaving flow is to limit the rate so that it

would not exceed a certain defined level. Thus, three rate limit thresholds for SFB are set – twice

the fair rate, half of the fair rate, and at the fair rate.

The individual throughput of each of the 100 TCP traffic and UDP traffic under RED, CHOKe,

SFB, and CARE are summarized in Table3.

As shown in the Table, for RED, the unresponsive UDP flow grasps almost all of the band-

width leaving the remaining TCP connections with an extremely low throughput of 5.046 Kbps,

compared to the fair share of 49.5 Kbps (5 Mbps divided by 101 as the number of flows). The result

is not unexpected. Although RED is designed to drop packets from the flows in proportion to their
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Average UDP

throughput

(Kbps)

Average TCP

throughput

(Kbps)

Jain’s fairness

index among

TCP flows

RED 4,374.82 5.046 0.5551

CHOKe 1187.301 38.160 0.9842

SFB, rate limit≈
twice the fair rate

98.99 49.046 0.9836

SFB, rate limit≈
fair rate

49.57 49.538 0.9826

SFB, rate limit≈
half the fair rate

24.95 49.78 0.9817

BLACK 74.04 49.033 0.9871

CARE 172.66 48.307 0.9862

Table 3: Results from the single unresponsive flow scenario. Bottleneck link speed of 5 Mbps.

UDP has a constant bit rate of 5 Mbps and competes with 100 TCP flows.
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arrival rates, it can only deal with responsive traffic according to its dropping policy. Traffic flows

that do not back off in response to the packet drops continue to pass through the queue with a very

small drop rate until the queue is full or the average queue length reaches the maximum threshold.

This is why RED could not prevent high bandwidth unresponsive traffic from consuming almost

all of the bandwidth and leaving only a small portion for responsive traffic.

CHOKe, although it utilizes RED as a core mechanism, uses its own packet matching and

dropping mechanism to provide better throughput for those TCP flows than does RED, by reducing

the bandwidth of unresponsive UDP traffic. However, with a UDP throughput of 1187.301 Kbps,

CHOKe still fails to achieve fair sharing since there are not enough packet matches to control the

unresponsive flows effectively.

CARE is another mechanism that provides better fairness than both RED and CHOKe. How-

ever, the estimation of the number of active flows was not as good in the scenario with a high

bandwidth UDP source3. Therefore, the UDP throughput is still relatively higher than the fair

share of bandwidth in this case with high bandwidth UDP traffic. In addition, CARE needs more

memory resources and computational complexity than the other schemes. Smaller capture size

would affect the performance of CARE as demonstrated using the experimental setup above and

shown in Figure23, plotted with 95% confidence interval.

For SFB, the UDP connection receives a fair throughput only with a good adjustment of the

rate limiting threshold. Note that, in practice, an inability to automatically set the fair rate limit is

a big disadvantage of SFB. In addition, with the simulation code provided by the authors of SFB

[19], the rate limiting is performed through a single parameter that controls how long the packets

from the unresponsive flows are prevented from getting into the queue once detected. Setting up

this parameter to achieve the fair rate, which is assumed to be known, is difficult since the flow’s

arrival rate was not known in advance.

The effect of the UDP arrival rate on the performance of these schemes is illustrated in Fig-

ure 22. RED has almost no control over UDP throughput when the bandwidth allotted to the

connection is about the same as the arrival rate. CHOKe has better control of UDP throughput, but

clearly is still far from the fair share of 49.5 Kbps. BLACK has the best overall control over UDP

traffic even when its arrival rate is twice as much the bottleneck link. CARE also provides good

3A detail analysis of different methods to estimate the number of active flows will be discussed in Chapter4.

57



fairness when the portion of UDP traffic is low, but its performance is not prolonged under a high

load of UDP traffic due to the inaccuracy of the estimation of the number of active flows under this

condition.

On the other hand, BLACK provides the UDP’s with throughput that much closer to their

fair share of 49.5 Kbps. In addition, while it provides more than adequate bandwidth to the TCP

connections, the UDP throughput is bounded at some level regardless of its arrival rate, as shown

in the Figure21 (plotting with 95% confidence interval). For comparison, this figure is replotted

with RED, CHOKe, and CARE as Figure22.

For calculating fairness of TCP connections, Jain’s fairness index [35] is used as an indicator

with the following formula:

Fairness =
(
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

(3.8)

wherexi is the effective throughput of thei− th TCP flow andn is the number of connections,

where the scheme with better fairness would have a fairness index closer to 1. From the results

in the table for this scenario, the fairness among TCP connections for CHOKe, SFB, BLACK,

and CARE are about the same under this symmetric topology with a little impact from single

unresponsive UDP flow. In the case of SFB, the result also indicates that setting the rate limit to

different value does not interfere with the fairness of TCP throughput.

Another experiment is conducted to see the comparative performance of BLACK in a high

speed network under single unresponsive scenario. The same topology in Figure20 is used but

with a bottleneck link rate of 45 Mbps. Single CBR traffic is generated from node UDP1 to node

UDP-s1 with an arrival rate of 10 Mbps. Hundred TCP traffic are configured in the same way in

the previous experiment. The maximum buffer size is set to 800 packets, where theminth and

maxth are set to 200 packets and 400 packets respectively according to Gentle RED parameters

setting. The result is shown in Table4.

Even with a CBR rate of roughly 22% of the bottleneck link rate, the results is having the

same trend as those obtained in the previous experiment shown in Table3. With SFB (with fair

rate limit), and BLACK, both UDP and TCP traffic gain the bandwidth of almost equal to the fair

share of 445 Kbps. CARE could control UDP at some level where the UDP connection obtains

the throughput of less than twice the fair share. However, for CHOKE and RED, each TCP traffic
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Figure 21:UDP throughput vs. arrival rate for BLACK; plotted with 95% confidence interval.
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Average UDP

throughput

(Kbps)

Average TCP

throughput

(Kbps)

Jain’s fairness

index among

TCP flows

RED 9,768.23 352.77 0.9952

CHOKe 6,632.55 384.12 0.9964

SFB, rate limit≈
twice the fair rate

909.85 450.37 0.9792

SFB, rate limit≈
fair rate

454.92 445.91 0.9815

SFB, rate limit≈
half the fair rate

222.39 448.15 0.9807

BLACK 426.21 446.19 0.9948

CARE 825.80 442.19 0.9944

Table 4: Results from the single unresponsive flow scenario. Bottleneck link speed of 45 Mbps.

UDP has a constant bit rate of 10 Mbps and competes with 100 TCP flows.
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achieve only 86% and 79% respectively of what they should have been obtained based on the fair

share (a lost of about 100 Kbps and 70 Kbps), leaving the bandwidth of 21.9 and 14.9 times the

fair share to the UDP connection.

3.3.3 Multiple unresponsive flows

To demonstrate how well each different scheme could handle multiple unresponsive flows which

is more similar to a real word scenario, the experiments with multiple CBR traffic are conducted

based on the same simulation topology from Figure20. Five unresponsive UDP flows are fed into

network through the bottleneck R1-R2 link which has the capacity of 5 Mbps. Two experiments

are arranged for high bandwidth CBRs and low bandwidth CBRs where each of five UDP traffic

has a constant bit rate of 500 Kbps and 5 Mbps respectively. In addition, CHOKe is implemented

with its self adjusting mechanismto handle multiple unresponsive flows. With this mechanism, the

region between the minimum threshold (minth) and the maximum threshold (maxth) are divided

into 8 subregions (k) and the number of packet matching in CHOKe’s dropping policy performs

2 × i times per each packet arrival wherei = 1..k is the region where the current average queue

size is falling into.

The results are tabulated in the Table3.3.3and Table3.3.3. The average throughput shown in

each column is average per-flow throughput. Both CHOKe and RED clearly show an inability to

protect responsive TCP flows in either case. For the case of low bandwidth CBRs, each of the TCP

connections gains only 71% and 60% of the fair share of 48 Kbps. In the case with high bandwidth

CBR traffic, TCP traffic are completely shut out in the case of RED and receive only 5.1 Kbps per

connection in the case of CHOKe. These results show that even CHOKe is equipped with the self

adjusting mechanism, with the expense of up to eight packet samplings and matchings per single

packet arrival, it could reduce the UDP throughput at some level and still hardly achieve fairness.

For the rest of the schemes, SFB, BLACK, and CARE still perform well under the scenario

with low bandwidth CBRs. Although the average per-flow throughput of UDP connection is higher

than the fair share of 48 Kbps, it is bounded to some small value leaving enough bandwidth for

each of the TCP connections that receive around 97%. This performance, however, is no longer

achieved with CARE under multiple high bandwidth CBRs case. The data from the simulation
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(not shown) indicates that the precision of CARE’s estimation of the number of active flows is

altered by a heavy load of multiple unresponsive flows. On the other hand, BLACK still maintain

a good performance under the heavy load from these unresponsive flows, even with a small HBF

cache memory size of only 20. The Jain fairness index shown in the third column of the table also

demonstrates that the fairness among TCP connections is unaltered under this extreme condition

in the BLACK scheme.

3.3.4 TCP with different round-trip times

It is well known that even with cooperation among TCP sources exercising congestion control

mechanism, fairness among TCP can be deteriorate when the connections have different round-trip

times (RTTs). A TCP connection with a smaller round-trip time can grasp larger portion of band-

width because it usually receives acknowledgment packets faster which results in an increasing of

congestion window more rapidly. [47, 50] illustrate this fact through a model of TCP congestion

control behavior, which shows that the achievable throughput of TCP is inversely proportional to

RTT .

It is expected that the use of BLACK would reduce unfairness among TCP connections even

without full per-flow state information. Connections with smaller round-trip times consume larger

portions of buffer space, but they are more likely to be captured by the HBF cache memory and

have a higher probability of being dropped, so they do leave some buffer space for smaller con-

nections. In this manner, bias against connections with shorter round-trip times can be reduced.

Figure24shows a simulation topology illustrating this advantage of BLACK, with different values

of propagation delay denoted. In this experiment, two hundred TCP traffic flows were randomly

selected to originate from nodes N0, N1, N2, N3 or N4 and traverse through a 45-Mbps link to

randomly selected sink nodes S0, S1, S2, S3 and S4.

To conduct a fair comparison with SFB maintaining two levels of hash function of 23 bins, the

BLACK scheme is configured at router R1 with a cache size of23 × 2 or 46, and CARE is still

set with a capture size of 200. The results are shown in Figure26 with plotting at 95% confident

interval. As shown, BLACK achieves better fairness than do RED, SFB, CHOKe, and CARE.

Table7 shows the standard deviation and Jain’s fairness index [35] achieved by each of the
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Average UDP

throughput

(Kbps)

Average TCP

throughput

(Kbps)

Jain’s fairness

index among

TCP flows

RED 420.32 29.021 0.9565

CHOKe 318.52 34.107 0.9836

SFB, rate limit≈
twice the fair rate

100.01 45.032 0.8863

SFB, rate limit≈
fair rate

42.23 47.920 0.8595

SFB, rate limit≈
half rate

17.66 49.150 0.8611

BLACK 67.60 46.653 0.9901

CARE 107.92 44.241 0.9852

Table 5:Results from the multiple unresponsive flow scenario. Bottleneck link speed of 5 Mbps.

Each of the five UDPs has a constant bit rate of 500 Kbps and compete with 100 TCP flows.
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Average UDP

throughput

(Kbps)

Average TCP

throughput

(Kbps)

Jain’s fairness

index among

TCP flows

RED 1000.00 0.000 N/A

CHOKe 841.29 5.092 0.1108

SFB, rate limit≈
twice the fair rate

95.29 45.285 0.9594

SFB, rate limit≈
fair rate

47.84 47.658 0.9611

SFB, rate limit≈
half rate

22.94 48.903 0.9593

BLACK 65.02 46.378 0.9967

CARE 1000.00 0.000 N/A

Table 6:Results from the multiple unresponsive flow scenario. Bottleneck link speed of 5 Mbps.

Each of the five UDPs has a constant bit rate of 5 Mbps and compete with 100 TCP flows.

Figure 24:Simulation topology for TCP with different round-trip times.
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four schemes. These standard deviation values are also plotted with 95% confidence interval over

multiple runs in Figure25. It can be seen that the BLACK scheme presented better fairness results

than the other schemes, with a smaller standard deviation and higher fairness index. Note that SFB

did not provide the good fairness for TCP traffic flows that was stated by Feng et al. [19].

3.3.5 Effect of the sample size

The sample size (m) or the number of packets to be sampled during each period effects how well

BLACK can estimate the flows’ buffer occupancy fractions. If the sample size is too small, not

enough data is captured for a precise estimate to be made. In Section3.2.3, the flow’s buffer

occupancy fraction is modeled as a binomial proportion withm trials of packet samplings. In this

way, the minimum value ofm can be chosen to be100(1 − α) percent confident that the error is

less than a specified valueE, through

m = H(1−H)

[
z(α/2)

E

]2

(3.9)

whereH is the buffer occupancy fraction. The value ofH can vary from a very small fraction

up to as large as 1 depending on the proportion of the flow’s sampled packets over the number

of total sampled packets in the period. Based on the fact that the value ofH(1 − H) reaches a

maximum whenH = 0.5, the value ofH = 0.05 can then be used to obtain the upper bound ofm.

Therefore, if we want to be 95% confident that the error in usingH to estimate the buffer

occupancy fraction is less thanE, the required sample size (m) is

m = H(1−H)

[
z(α/2)

E

]2

= H(1−H)
[
1.96

0.02

]2

= (0.5)(1− 0.5)
[
1.96

E

]2

.

The required size (m) under this condition according to the different values ofE is shown in

Table8. For100(1 − α)% confidence, whereα = 0.01, 0.05, and 0.1, the required sample size is

plotted as a function of errorE, as shown in Figure27.
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Figure 26:Per-flow TCP throughput for 200 TCP connections with different RTTs over a 45-Mbps

link; plotted with 95% confidence interval.

68



Flow throughput (Kbps) RED CHOKe SFB BLACK CARE

Standard deviation 43.725 38.268 41.996 22.054 30.194

Jain’s fairness index 0.9769 0.9721 0.9665 0.9905 0.9815

Table 7:TCP connections in the different round-trip times scenario.

As shown in Table8, if we want to be 95% confident that the error in usingH to estimate the

buffer occupancy fraction is less than 0.02, the sample size should be at least 2,401. An experiment

using the same simulation setting as is described at the end of Section3.2.3 was conducted to

visualize what accuracy the estimation of the buffer occupancy fraction could achieve at different

sample sizes. Results for sample sizes of 100, 600, 2,000, and 4,000 are depicted in Figure28and

29.

The sample size in all of the experiments described in this chapter was chosen to be 3,000

because this was more than the minimum sample size required to be 95% confident that the error

of the estimation would be less than 0.02, a reasonable range of tolerable error. As an example,

another experiment was performed using the simulation settings for a single CBR traffic flow as is

described in Section3.3.2and the same topology as is shown in Figure20. The performance of

BLACK was measured for two scenarios of 1-Mbps and 5-Mbps CBR arrival rates. The results in

Figure30 show clearly that when the sample size is small, BLACK does not have enough data to

perform good bandwidth control on CBR traffic as well as it does when the sample size is at least

3,000 packets.

3.3.6 Determining the size of HBF cache memory

The size of HBF cache memory should be large enough to ensure that the records of high band-

width flows are contained in the memory according to the LRU operation. Two approaches are

possible.

The first approch is a probabilistic approach based on an observation of measured data. Sup-

pose the proportion of the rate of unresponsive flow over an aggregate arrival rate is known asγ,

then the probability that any arrival packet is from the unresponsive flow isγ. Therefore, the cache
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E m

0.02 2,401

0.03 1,067

0.04 600

0.05 384

Table 8:Sample size (m) as a

function ofE with 95% con-

fidence.
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Figure 27:Sample size (m) as a function ofE with

100(1− α) confidence.

size should be approximately1/γ. In practice,γ could be observed from measured data in advance

by a network operator to determine an appropriate cache size.

To demonstrate this strategy, a simulation is set up with one CBR traffic competing with 100

TCP traffic over a 5-Mbps link. Three experiments are conducted for three different arrival rates

of CBR traffic – 200 Kbps, 500 Kbps, and 1 Mbps. The result is illustrated in Figure31. For 1-

Mbps traffic, the arrival rate is roughly around 1/4 of the aggregate arrival rate, thereforeγ ≈ 1/4.

Consequently, a cache size of about1/γ or 4 would be enough to regulate the 1-Mbps traffic

effectively. From the figure, even a size of three is enough to make BLACK performed as designed.

On the other hand, with the same calculation, a cache size of three is not enough for 200-Kbps and

500-Kbps traffic and CBR traffic gain much higher bandwidth than the fair share (dashed line).

For a second approch to set the size of HBF cache, if the memory is not scarce, the size could

be dynamically allocated using to the number of long-lived active flows. Note that in this manner

the cache size is still small comparing to the total number of active flows due to the fact that

most bytes from the Internet is from only the small number of flows [53, 38, 29, 30] and BLACK

only manages to regulate those elephant (large) flows rather than mice (small) flows, according
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Figure 28:The effect of sample sizes (m) on approximation of the buffer occupancy fraction.
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Figure 29: The effect of sample sizes (m) on approximation of the buffer occupancy fraction

(continue).
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to mice and elephantmodel described in Section3.2. In this way, it is still scalable and practical

to dynamically allocate the cache size equals to the number of large flows. In addition, not only

unresponsive traffic is regulated, fairness among long-lived TCP connections with different round-

trip delays would be improved.

3.4 LIMITATIONS OF BLACK

Throughout the series of simulation experiments described in this chapter, BLACK has shown an

ability to both protect responsive TCP traffic from high bandwidth unresponsive flows and improve

fairness among TCP connections with different round-trip times. It requires a very small amount

of per-flow state information and is relatively less computationally complex than other schemes.

Upon the arrival of each packet, BLACK samples a packet from the queue and updates some

information in an HBF cache, which could be a high speed memory. Less frequently, it calculates

the buffer occupancy fraction and number of active flows. Only a packet from a flow that is

consuming more buffer space than its fair share is subjected to dropping, as shown in Equation3.4.

However, BLACK still has some limitations, as described below.

1. BLACK’s estimation of the number of active flows could be inaccurate in some scenarios, such

as when the size of the queue buffer is small or when the intensity of traffic is largely unequal.

high bandwidth unresponsive traffic could be out of control if BLACK underestimated the

number of active flows.

This problem implies that BLACK needs a better estimation of the number of active flows.

This problem is analyzed in greater detail and alternative methods for estimating the number

of active flows are discussed in the following chapter.

2. BLACK could not perform well in the scenario in which different packet sizes are injected

into the queue from different flows. Two problems could occur. The first problem is with

the way BLACK estimates the number of active flows when the estimation assumes equal

traffic intensity. Different packet sizes from incoming traffic flows imply different possibilities

of matchevents for flows. In this way, two connections with different packet sizes could be

perceived as having different traffic intensities, and this estimation would be inaccurate.
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The second problem could occur because BLACK collects information about each sample

packet through aHit variable without accounting for the packet size. Smaller packets have a

higher possibility of being sampled than do larger packets, which may appear to have a higher

buffer occupancy fraction even through the number of bytes from these connections are the

same. As a result, BLACK could over-penalize a traffic flow whose packets have a higher

tendency to be sampled from the queue because of their small packet sizes. The inferiority of

fairness performance due to different packet sizes is not unique to BLACK; it is also a problem

for CHOKe and CARE. For CHOKe, it is clear that a flow with smaller packet sizes would

have more packet matches than a flow with larger packet sizes, assuming the same arrival rate.

A flow with more packet matches would be penalized more. For CARE, the mechanism only

accounts for the number of packets, regardless of the packet sizes.

This problem could be illustrated by the same simulation experiment as discussed in Sec-

tion 3.3.2. However, instead of one CBR traffic flow, two 2.5-Mbps CBRs with packet sizes of

500 bytes and 1,000 bytes are fed to the queue. The results, plotted in Figure32, show that the

CBR traffic with 500-byte packet size receives about only half of the bandwidth gained by the

CBR traffic with 1000-byte packet size even through they have the same arrival rate.

3. 3. CBR throughput fluctuates more after passing through a BLACK queue. This occurs even if

the arrival rate of CBR is not very high. Adapting the simulation setting described in Section

3.3.2so that the CBR arrival rate is only 1 Mbps (20% of total bandwidth), the throughput of

CBR over time is shown to have a lot of fluctuation in Figure33. This behavior is not less than

preferable, especially for media applications.

Despite these limitations, BLACK exhibits superior fairness performance with low overhead

and is preferable to the other lightweight fair AQM schemes in various environments. However, the

problem of the estimation of the number of active flows may significantly degrade the performance

of BLACK in some scenarios. In the next chapter, this problem is addressed in greater detail and

alternate mechanisms that could replace BLACK’s original estimation mechanism are discussed.

75



 0

 100

 200

 300

 400

 500

 600

 700

 800

CHOKe BLACK CARE

T
hr

ou
gh

pu
t (

K
bp

s)

Queue type

CBR1 = 2.5-Mbps CBR with packet size of 500 bytes 
 CBR2 = 2.5-Mbps CBR with packet size of 1,000 bytes

CBR1
CBR2

Figure 32:Average throughput of two CBR traffic flows with packet sizes of 500 bytes and 1,000

bytes, under CHOKe, BLACK, and CARE.

 0

 50

 100

 150

 200

 250

 300

 60  80  100  120  140  160  180  200  220  240

T
hr

ou
gh

pu
t (

K
bp

s)

Time (sec.)
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4.0 THE ESTIMATION OF THE NUMBER OF ACTIVE FLOWS

The estimation of the number of active flows is an important component of BLACK in order to

effectively provide a fair share of bandwidth. As shown through a pilot experiment in Section3.2.5

and a series of simulation experiments in the previous chapter, BLACK’s estimation of the number

of active flows has shown the promising results in several scenarios. However, there are some sit-

uations, which are not rare, that the mechanism could not produce an accurate estimation. This in-

accuracy could lead to an inferior performance of BLACK as it might under-punish or over-punish

the misbehaving traffic or even a responsive traffic. A degree of performance penalty depends on

the inaccuracy obtained the estimation.

The problems of the mechanism that BLACK incorporates to estimate of the number of active

flows are covered in great details in the following section. Then, the alternative mechanisms to

estimate the number of the active flows available in the literatures are reviewed and discussed in

the rest of this chapter1.

4.1 PROBLEMS OF BLACK’S ESTIMATION OF THE NUMBER OF ACTIVE FLOWS

An inaccuracy of BLACK’s mechanism to estimate the number of active flows could occur in a

number of situations which is basically a result of two fundamental factors below:

1. Small buffer size: An inaccuracy occurs when a buffer size is not large enough, comparing to

a bandwidth-delay product, where there could be a correlation between a sampled packet and

an incoming packet. Under this circumstance, at a given instantaneous time, packets from one

or few connections may occupy large portion of a buffer space due to a relatively large pipe

1Some parts of the materials in this chapter are to be published in [10]
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of transmission line, giving a higher chance that the sampled packet from the buffer and an

incoming packet are from the same connection.

2. Unequal traffic intensity: The estimation model assumes the same traffic intensity for those

N flows, an inaccuracy can occur when the traffic intensity is very different.

Both factors are discussed along with the supporting simulation results as follows.

4.1.1 Problem of small buffer size

The problem of small buffer size can demonstrated through a following experiment. Using a ten-

node dumbbell topology as shown in Figure34, A hundred TCP traffic are randomly assigned to

originated from one of the five source nodes on the left associated with one of the five destination

nodes on the right. These TCP connections inject the packets, each of 1,000 bytes in size, to a

bottleneck link (R1−R2) of 5 Mbps with 5 ms delay. All the access links have 2 ms delay.

Figure 34:Ten-node dumbbell Topology.

With a setting for a maximum buffer size of 300 packets, it is more than enough to get an

estimation that comes close to the actual number of active flows, for the pipe of 10Mbps∗ 5ms=

6.25 packets in bandwidth-delay product, as shown in Figure35.

Now, when the bandwidth-delay product of the link is increased with the link bandwidth of

45 Mbps and a delay of 20 ms, the same buffer space of 300 packets becomes too small for an

accurate estimation. In this scenario, a bandwidth-delay product becomes 45 Mbps∗ 20ms =

112.5 packets. With a buffer size of at most 300 packets and a larger burst of traffic at high speed
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Figure 35:BLACK’s estimated number of active flows for 100 TCP flows over a 10-Mbps link

with 5ms delay. Maximum buffer size of 300 packets.

in nature, it provides a higher chance of having a correlation between a sampled packet and an

incoming packet. Consequently, a probabilityPmatch is higher than the actual value. With an

estimated number of active flowsNact that is proportional to1/Pmatch according to Equation3.7,

the result is then underestimated as shown in Figure36.

To relief this problem, the maximum buffer size should be set with a higher value to cope with

a higher bandwidth-delay product. With a new setting of 3000 packets of maximum buffer size,

the estimation provides a much more accurate value of the number of active flows. This new result

is illustrated in Figure37.

Although this problem could be resolved by using a large buffer size, the solution introduces a

higher queueing delay. As a large buffer size becomes a requirement of BLACK’s estimation of the

number of active flows, it is not advised to use this method when queueing delay is a critical factor.

One way to overcome this buffer space requirement is to employ a virtual buffer that records a flow

ID of the packets that have been queued in the actual buffer, where a virtual buffer size is much

larger than an actual buffer, as depicted in Figure38. If the virtual buffer is full, the packet at the

head of the virtual buffer will be discarded leaving one available slot at the end for a new record.
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Figure 36:BLACK’s estimated number of active flows for 100 TCP flows over a 45-Mbps link

with 20ms delay. Maximum buffer size of 300 packets.

In this way, a small buffer space problem should be kept minimized, given that memory space is

not scarce.

4.1.2 Problem of unequal traffic intensity

Even with a large buffer size, BLACK’s estimation method could still be suffered when the traffic

intensity is much different. This problem could occur when the round trip delay are largely dif-

ferent among TCP connections or when packet sizes are different which would bias the value of

Pa,i ·Ps,i, where flowi is a flow with smaller packet size. The effect of this problem becomes more

compelling when high-bandwidth UDP connections co-exist with TCP traffic. This situation can

be demonstrated through a simulation as described below.

Using the same symmetric topology in Figure34 with the bottleneck link of 10MBps band-

width and 20ms delay, 100 TCP traffic are now competing with 10 UDP traffic with aggregate

arrival rate equal to half of a bottleneck link bandwidth. UDP traffic starts at 300 seconds of sim-

ulation time. The buffer size is set to 3,000 packets to avoid the problem of small buffer size.

Without any bandwidth fairness control mechanism, the estimation is shown to be largely distorted
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Figure 37:BLACK’s estimated number of active flows for 100 TCP flows over a 45-Mbps link

with 20ms delay. Maximum buffer size of 3,000 packets.

in Figure39.

Without any queueing mechanism or dropping policy for traffic rate control, traffic with dis-

tinctively higher intensity such as UDP traffic in this scenario would have a higher chance of being

sampled from the buffer (Ps,i) as well as a higher chance of arriving at the buffer (Pa,i) at any given

time. SincePmatch =
∑N

i=1 Pa,i · Ps,i and estimated number of active flows (Nact) is proportional

to 1/Pmatch, Nact would be underestimated and approach a value of one as the proportion of bot-

tleneck bandwidth consumed by UDP traffic approaches 100%. This phenomenon is illustrated

Figure 38:BLACK with virtual buffer to resolve small buffer problem.
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Figure 39:BLACK’s estimated number of active flows for 100 TCP flows and 10 UDP flow over a

10-Mbps link with 20ms delay. UDP traffic start at 300 seconds and consume half of the bottleneck

link bandwidth.

in Figure40 through the same simulation settings but with varying UDP arrival rate, plotted with

95% confidence interval.

Consequently, an alternative method to improve the accuracy of estimation with no requirement

of huge buffer space and equal traffic intensity is advised.

4.2 ALTERNATIVE METHODS TO ESTIMATE THE NUMBER OF ACTIVE FLOWS

In this section, two alternative approaches for estimating the number of active flows are discussed

and evaluated –(1) Bitmap Approach [15, 16] and (2) Capture-Recapture (CR) model ap-

proach [8].

Bitmap approach replies on a probabilistic algorithm in conjunction with hashing at bit level.

As a flow ID of an incoming packet hashes into only a single bit of memory size combined with

its own hashing technique to reduce a size of hash table, Bitmap approach is claimed to be able to

estimate the number of active flows with relatively small amount of memory space requirement.
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Figure 40:BLACK’s estimated number of active flows for 100 TCP flows and 10 UDP flow over

a 10-Mbps link with 20ms delay. UDP arrival rate varies from 10% to 100% of bottleneck link

bandwidth.
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The simplest form of bitmap scheme is known asDirect Bitmap technique is included in this

section.

On the other hand, CR model approach borrows an estimation technique from Capture-Recapture

model that is widely used to estimate the number of animals in a population by ecologists and to

estimate the number of defects in software inspection process. By constructing a frequency his-

togram containing which flow IDs have been seen once, twice, and up tot times, after capturing

a certain amount of incoming packets,Jackknife Estimator[7] can then be used as an estimator to

calculate an approximated number of active flows for this CR model. CR model with Jackknife

Estimator is the estimation mechanism that is utilized by CARE as discussed in Section2.2.3.8.

In addition, according to an evaluation of different estimators for CR model in [36], apart from

Jackknife estimator,First-order Sample Coverageand Second-order Sample Coverage[44] are

shown to have superior performance in their estimation of number of females yellowstone grizzly

bear population. Therefore, in this section, both Sample Coverage techniques will be applied to

the problem of estimating the number of active flows through a CR model and compare with the

other schemes.

Therefore, the following four estimating techniques will be discussed in details below and

evaluated through a series of simulation in Section4.3:

• Direct Bitmap

• CR model with Jackknife estimator

• CR model with First-order Sample Coverage

• CR model with Second-order Sample Coverage

4.2.1 Direct Bitmap

Direct Bitmap [15, 16] is the simplest form of Bitmap approach to estimate the number of active

flows that are passing through to a network node. The idea of Direct Bitmap is to probabilistically

count the number of bits that are hashed according to the flow ID, and calculate the number of

active flows at the end of a measurement interval according to the formula developed from the

probability that the hashed collisions would occur.
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Direct Bitmap begins with resetting all the bits in a bitmap of sizeb bits to zero. For each

incoming packet, a hash function is applied on the flow ID to map each flow to a bit of the bitmap.

In this way, once a packet arrives, a bit that the flow ID hashes to is set to 1. Note that the method

assumes that the hash function distributes the flows randomly.

At the end of a measurement interval, an estimation of the number of active flows during that

period is calculated using a formula that takes into account collisions from hashing. For a bitmap

of sizeb bits, the probability that a given flow hashes to a particular bit isp = 1/b. Assuming

thatN is an actual number of the number of active flows, the probability that no flow hashes to a

particular bit is thereforepz = (1− p)N ≈ (1/e)N/b. Then, the expected number of bits not set in

the bitmap at the end of the measurement interval can be calculated byE[z] = bpz ≈ b(1/e)N/b.

Here,z is the number ofzero bits found in the hash table during the interval. Finally, the estimated

number of active flowŝN is then equal to

N̂ = b ln
(

b

z

)
labeleq : directbitmap (4.1)

The advantage of this scheme, apart from using only small amount of memory space, is that

the estimation is not effected by the intensity of incoming traffic as all packets belonging to the

same flow map to the same bit.

There are several variants of Direct Bitmap –Virtual Bitmap, Multiresolution Bitmap, Adaptive

Bitmap, andTriggered Bitmap– that require much less memory space. However, the fundamental

concepts of these variants are basically the same as Direct Bitmap, thus only Direct Bitmap is

included for evaluation.

4.2.2 CR model with Jackknife estimator

CR model has been widely used to estimate the number of animals in a population by ecologists

and biologists, and to estimate the number of defects in software inspection process. Later it has

been adapted to estimate the number of active flows having their packets in a queue [8]. The basic

idea of CR model, in terms of estimating the number of animal population, begins with an inspector

randomly captures a small amount of animals from its habitat. Then he counts the number of these

captured animals, marks and releases them. Later, he captures a small amount of animals again,
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and counts the number of captured animal and the marked animals that are recaptured. Finally,

using these capture-recapture data, an estimated number of animals is calculated.

Three basic models provided in capture-recapture method are (1) ModelMb: assume that the

probabilities of capture among animals vary with the behavioral response of these animals, (2)

Model Mh: allow the variance of the probability of capture for individual animals, and (3) Model

Mt: assume that the probabilities of capture varies by time. In this manner,Mh model is suitable

to estimate the number of active flows where the capture probability are different among traffic

flows.

BecauseMh model can have as many asn + 1 parameters:N andp1, p2, ..., pn, wherepi is the

capture probability for an individual flowi andN is the actual number of active flows, whileN is

the only value needed to be known, the authors in [8] suggest theJackknife estimatoras a method

to estimateN without having to estimate all thepi [7].

For simplicity, the algorithm ofMh model will be shown through an example of estimating the

number of animals in a population as follows:

1. Suppose animals are captured in 18 days with one capture occasion per day, so there are total

18 capture occasions (t).

2. Construct a capture frequency (fi) for these animals as shown in the table below. In this table,

i represents the number of times an animal has been (re)captured during these 18 days, while

fi represents the number of animal for eachi. In this case, there are 43 animals that have been

captured only once, 16 animals that have been captured twice, etc.

i 1 2 3 4 5 6 7 8

fi 43 16 8 6 0 2 1 0

3. Then, based on these capture frequencies, use a Jackknife estimator to estimate the number of

total population using the following equations:

NJK = a(t, K)1f1 + a(t,K)2f2 + ... + a(t,K)tft (4.2)

wherea(t,K)i are the coefficients in terms of the number of capture occasions (t) and the

order of estimation (K). An optimum value ofK has to determined because asK increases,

the bias ofNJK will decrease while the variance ofNJK will increase. An estimated number of
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animals in population along with a method to choose an optimumK are shown in the following

procedure:

a. CalculateNJK for K = 1 − 5, based on the capture frequencies in Table 1, using these

equations

S =
t∑

i=1

fi

NJ1 = S +
t− 1

t
f1

NJ2 = S +
2t− 3

t
f1 − (t− 2)2

t(t− 1)
f2

NJ3 = S +
3t− 6

t
f1 − 3t2 − 15t + 19

t(t− 1)
f2

(t− 3)2

t(t− 1)(t− 2)
f3

NJ4 = S +
4t− 10

t
f1 − 6t2 − 36t + 55

t(t− 1)
f2

+
4t3 − 42t2 + 148t− 175

t(t− 1)(t− 2)
f3 − (t− 4)4)

t(t− 1)(t− 2)(t− 3)
f4

NJ5 = S +
5t− 15

t
f1 − 10t2 − 70t + 125

t(t− 1)
f2

+
10t3 − 120t2 + 485t− 660

t(t− 1)(t− 2)
f3 − (t− 4)5 − (t− 5)5

t(t− 1)(t− 2)(t− 3)
f4

+
(t− 5)5

t(t− 1)(t− 2)(t− 3)(t− 4)
f5

In this example, calculatedNJK for K = 1 to 5 are tabulated below.

Order(K) Jackknife estimator (NJK)

S 76

NJ1 116.6

NJ2 141.5

NJ3 158.6

NJ4 170.3

NJ5 176.5
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b. Compute an interpolated estimator betweenm − 1 andm, wherem + 1 is the first order

that the significance levelPm > 0.05. This calculation begins with calculating the statistic

Tm =
NJm+1 −NJm

ˆvar(NJm+1 −NJm/S)1/2
(4.3)

where

ˆvar(NJm+1 −NJm/S) =
S

S − 1

[
t∑

i=1

(bi)
2fi − (NJm+1 −NJm)2

S

]
(4.4)

andbi = a(t,m + 1)i − a(t, m)i · Tm. Then each of these statistic (Tm) will be evaluated

at α = 0.05 usingPm values determined from the standard normal distribution. For the

first indexm that the significance levelPm > 0.05, if m = 1, NJ1 is then taken as the

estimator of the number of active flows. Ifm > 1, then compute an interpolated estimator

betweenm− 1 andm asNJ = cNJm + (1− c)NJ(m−1), where

c = (0.05− Pm−1)/(1− Pm) (4.5)

In this example,m is calculated as three, such that the interpolation is performed onNJ2

andNJ3 with the resultant estimator of 142.

The example above ofMh model can be adapted to estimate the number of active flows. Instead

of capturingn packets for each capture occasion (out oft capture occasions), only one packet is

captured for each capture occasion for simplicity. Note that the accuracy then depends ont asn is

reduced to one. The estimation process is as follows:

1. Capturet packets from a queue buffer.

2. Construct a set of capture frequency data by observing the flow ID of the captured packets.

3. Estimate the total number of active flows in the buffer using the Jackknife estimator.

The authors further modify the algorithm so that the capture is performed on the incoming

packets instead of the packets from the buffer. Now assume that the estimation is performed on

the number of flows having their packets in a virtual buffer of sizeB so each incoming packet is

captured with a probability ofpcap for the total oft packets and store in a linked-list calledcapture
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list. Hence, in this case,pcap = t/B and the size of the liked-list can be reduced to onlyt instead

of B. The modified procedure is as follows.

1. Capture an incoming packet with the probabilitypcap and store the packet in thecapture list.

2. Construct a set of capture frequency data by observing the flow ID of the captured packets in

thecapture list.

3. Estimate the total number of active flows in the buffer using the jackknife estimator.

Note that the accuracy of the estimation decreases with the decrease ofpcap.

4.2.3 CR model with First-order and Second-order Sample Coverage

Sample coverage estimator [44, 13] is an alternative estimator to the Jackknife estimator which can

be used inMh model to estimate the number of active flows. Both First-order and Second-order

Sample Coverage begins with the same technique to capture packets and construct frequency data

as in Section4.2.2. After obtaining the frequency data, instead of using the Jackknife estimator,

the estimation of number of active flows,N̂SC1 andN̂SC2, however continue with these equations:

• First-order sample coverage:

N̂SC1 =
S + f1γ̂

2

Ĉ1

(4.6)

whereĈ1 = 1− f1

t
and

γ̂2 = max

[
S

Ĉ1

t∑

j=2

j(j − 1)fj

t(t− 1)
, 0

]
. (4.7)

• Second-order sample coverage:

N̂SC2 =
S + f1γ̂

2

Ĉ2

(4.8)

whereĈ2 = 1− (f1−2f2/(t−1))
t

and

γ̂2 = max

[
S

Ĉ2

t∑

j=2

j(j − 1)fj

t(t− 1)
, 0

]
. (4.9)
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4.3 EVALUATION OF ALTERNATIVE METHODS

Alternative methods for an estimation of the number of active flows are evaluated through a simu-

lation as described in this section.

A simulation is setup with a ten-node dumbbell topology as shown in Figure34. There aren

TCP flows competing for the bandwidth of 10-Mbps bottleneck bandwidth. All the access links

are 2ms and the bottleneck link is 5ms in delay. The queueing discipline is simply tail dropping.

Four alternative methods for an estimation of the number of active flows are compared:

1. Direct Bitmap

2. CR Model with Jackknife estimator

3. CR Model with First-order Sample Coverage

4. CR Model with Second-order Sample Coverage

with BLACK estimation also shown in the results for comparison.

Due to the fluctuation of the estimation using CR-model as shown in Figure41, the estimated

number of active flows is further averaged over time with a factor of 0.3 to smooth out these values.

At the end, computation complexities of these methods are briefly discussed.
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Figure 41:Estimated number of active flows for the experiment with 30, 90, and 60 flows over 600

seconds.
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4.3.1 Different number of TCP flows with about the same traffic intensity

In this section,n TCP flows with very large received window are competing for the bandwidth at

the bottleneck link. At the simulation time from 0 - 200 seconds, only 1/3 of total connections are

active. For 200 - 400 seconds, all of then connections are active. And from 400 - 600 seconds

of simulation time, 1/3 of the total connections are terminated leaving 2/3 of connections being

active.

Memory space for CR model estimation are set tot = 100 capture records. For Direct Bitmap,

b = 100 bits are reserved as a bit map for the estimation.

The performance of the estimation methods are evaluated forn of less than 100, higher than

100, and much higher than 100 as shown in Table9.

Set Number of TCP flows at simulation time

0-200, 200-400, 400-600 seconds

1 30, 90, 60

2 60, 180, 120

3 150, 450, 300

Table 9:Number of TCP traffic in different simulation sets.

The results from Figure42, 43, and44 show that all of these methods perform well, when the

number of actual flows are not much larger than the required memory space – that is whent ≤ n

andb ≤ n. The estimation begins to be unstable whent andb are larger thann, and the results are

unpredictable whent ¿ n andb ¿ n. Several other sets of simulations were also conducted and

show a similar trend.

The result of Direct Bitmap is consistent with [15, 16] that Direct Bitmap requires a bitmap size

(b) that scales almost linearly with the number of flows (n) in order to get an accurate estimation

of number of active flows (̂n), where the average error is bounded to Standard Deviation(n̂)/n =

(
√

b/n)
√

en/b − 1. This bound is tighter with largen which implies a much lower estimation error

when the number of flows is large, whenb of about the same order of magnitude asn.

For CR model, there is no significant different between the Jackknife estimator and Sample

Coverage in this case, where both estimators require larget for accurate estimation. A series of
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Figure 42:Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

over 600 seconds.
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Figure 43:Estimated number of active flows for the experiment with 60, 180, and 120 TCP flows

over 600 seconds.
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Figure 44:Estimated number of active flows for the experiment with 150, 450, and 300 TCP flows

over 600 seconds.
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extensive experiment in [36] also shows that a performance could be improved with highert/n and

recommendst to be relatively large compared ton. As a result, the memory required is quite high

to have an accurate estimation.

If t ¿ n, the performance is unpredictable and this also happens with Direct Bitmap. However,

CR model needs more memory space than Direct Bitmap as each captured record stores a flow ID

which could be a combination of source address, destination addresses, source port and destination

port, while Direct Bitmap needs only one bit for an incoming flow to hash into.

4.3.2 Different number of TCP flows with different round-trip delay

To see any effect as a result of TCP with different round-trip delay to the accuracy of estimation,

the topology in Figure45 is used instead. The set of experiment is the same as shown in Table9 in

the previous section.

Figure 45:Ten-node dumbbell Topology with different access links’ delay.

As can be seen from Figure46, 47, and48, when then is not much larger thant or b all of these

methods produce quite a good estimation. More variance is more noticeable whenn becomes much

larger thant in the case of CR model. With appropriate size oft andn, both Direct Bitmap and

CR model show no problem with different traffic intensity as BLACK estimation as demonstrated

in Section4.1.2.

4.3.3 Different number of TCP flows with large UDP flow

A big difference in estimation accuracy appears when UDP traffic is presented. For comparison,

the ten-node topology with 10-Mbps bottleneck link as used in Section4.3.1, or as shown in Figure
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Figure 46:Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

with different RTT over 600 seconds.
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Figure 47:Estimated number of active flows for the experiment with 60, 180, and 120 TCP flows

with different RTT over 600 seconds.
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Figure 48:Estimated number of active flows for the experiment with 150, 450, and 300 TCP flows

with different RTT over 600 seconds.
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34, is maintained but with UDP running as a background traffic. Because the effect of UDP traffic

is the only concern, so the number of TCP traffic is set not to be too large fort = 100 records

in CR model andb = 100 bits in Direct Bitmap, with two different arrival rates of UDP traffic as

shown in Table10. UDP traffic start at 300 seconds of simulation time.

Set Number of TCP flows UDP arrival rate

at simulation time

0-200, 200-400, 400-600 seconds

1 30, 90, 60 33% of bottleneck link bandwidth

2 30, 90, 60 66% of bottleneck link bandwidth

Table 10:Number of TCP traffic and UDP arrival rate in two simulation sets.

In Figure49, even when UDP arrival rate is equal to 33% of the bottleneck link bandwidth,

Sample Coverage show an extreme over-estimation of the number of active flows at after 300 sec-

onds, which is contrasting to an extreme under-estimation from BLACK as explained in Section

4.1.2. On the other hand, both Jackknife estimator and Direct Bitmap are torelant to the interfer-

ence of UDP background traffic.

For Sample Coverage,j-order Sample Coverage estimatedN is

N̂SCj =
m

Ĉj

+
f1

Ĉj

γ̂2 ; j = 1 or 2

wherem/Ĉj is an initial estimator that assumesn flows with equal traffic intensity. A bias

correction term(f1γ̂
2/Ĉj) that increases with heterogeneity is added for a more accuracy when

traffic intensity are unequal. In fact,̂γ is an estimated coefficient of variation (C.O.V.) of the

probabilityp = (p1, p2, p3, ..., pn), wherepi is a probability that flowi’s packet being caught. The

estimationNSCj works well with small actual C.O.V. and provides less error than the Jackknife

estimation as reported in [44]. However, when C.O.V. becomes large an inaccuracy appears and

increases with C.O.V, as can be observed from Equation4.7and4.9 that γ̂ is calculated based on
∑n

j=1 j(j − 1)fj. In this experimental environment, C.O.V. ofp is very large, i.e. 6.3335 for 60

identical TCP traffic and one UDP traffic consuming 33% of bottleneck link bandwidth, resulting

in a large margin of error.
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For another set of experiment, once the UDP arrival rate becomes 66% of the bottleneck link

bandwidth, the Jackknife estimator can no longer provide an accurate estimation as illustrated in

Figure50. However, a better estimation from the Jackknife estimator can be obtained only ift

is larger, however. Besides, in practice, it is a very rare chance that any one or two traffic would

consume as much as 66% of an actual link bandwidth. On the other hand, direct Bitmap shows a

superior performance even with a presence of large UDP traffic because a bit that a flow hashes to

is irrelevant to the number of packets injected to the network by this flow.

4.3.4 Presence of short-lived background traffic

Performance of different estimation methods under a scenario with a presence of short-lived back-

ground traffic are evaluated through the same ten-node topology with 10-Mbps bottleneck link in

Figure34, but with five web-client and web-server nodes. Total of 250 HTTP sessions are setup

as background traffic according to a parameter setting . Number of (long-term) TCP traffic are set

according to set 1 in Table10– 30 flows at 0 - 200 seconds, 90 flows at 200 - 400 seconds, and 60

flows at 400 - 600 seconds of simulation time.

The results in Figure51 show fairly good estimation for the number of long-term TCP traffic

for the Jackknife estimator and both Sample Coverage methods. However, Direct Bitmap does not

perform as well because it was designed to estimate the number ofall active flows including even

a flow with one packet arrived at the queue during the estimating period. Besides, additional error

is also contributed from a small bitmap sizeb, which is set to 100, comparing to the number of all

traffic (TCP and short-lived background traffic).

The problem of Direct Bitmap in estimating the number of long-term traffic can be solved with

a trade off of larger memory space required. Instead of arranging a memory space as a bitmap of

sizeb bits, a modified version of this scheme arranged memory space intob hash items, where each

of them holds one small-size integer as a counter. Two alternative methods can be applied:

• Direct Bitmap with low-pass filter: A flow ID of an incoming packet hashes into an item in

this memory space and increase its integer value by one. In this way, each hash item records

the number of packets from a flow during the estimating period. Those short-lived flows can be

filtered out by setting a minimum threshold ofd packets on each counter. After an estimating
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Figure 49:Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

over 600 seconds, with UDP traffic consuming 33% of bottleneck link bandwidth starting at 300

seconds.
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Figure 50:Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

over 600 seconds, with UDP traffic consuming 66% of bottleneck link bandwidth starting at 300

seconds.
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Figure 51:Estimated number of active flows for the experiment with 30, 90, and 60 TCP flows

over 600 seconds, with 250 HTTP sessions as background traffic.
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period,z′, the number of hash items that holds the number of packets more thand packets,

is counted. The value ofz′ is nearly equivalent to the number of 1 bits in the original Direct

Bitmap method. Therefore,z is simplyb minus byz′, and the estimated number of active flows

can be determined using the same equation,b ln( b
z
).

• Direct Bitmap with packet removals: In the same way, a flow ID of an incoming packet

hashes into a hash item and increase its counter by one. However, when a packet is removed

from the queue, the counter is decremented. If a queue is empty, all counters hold a value of

zero. In this manner, the flows that have their life time shorter than an estimating period would

be filtered out automatically. Only the zero bits are counted asz and the estimated number of

active flows is simplyb ln( b
z
) as the other methods. This approach is an extended version by

the authors from the original Direct Bitmap paper [15, 16].

The results for both methods, illustrated in Figure52 and53 respectively, show a huge im-

provement as opposed to the performance of original Direct Bitmap in this circumstance shown in

Figure51. Although setting a threshold ofd packets to decide which flows are long-lived traffic is

somehow not difficult, Direct Bitmap with packet removals is easier to deploy because it involves

no additional parameter tuning. However, the packet removals approach may have a little higher

variance due to the backlogging packets in the queue from short-lived traffic at the time of estima-

tion, especially when the queue is large as shown in Figure54. Nonetheless, this problem should

be minimized if a router is equipped with an active queue management that is usually designed to

keep an average queue size low to achieve low delay.

4.3.5 Algorithm complexity

Since all of the estimation methods perform an estimation periodically, algorithm complexity can

be considered based on per-packet arrival processing and estimation processing.

1. Direct Bitmap: For each incoming packet, perform a flow ID hashing to a bitmap. At the

end of estimating period, count the number of zero bits (z) and determine the number of active

flows fromb ln(b/z).

2. CR Model: For each incoming packet, record a flow ID with a probabilitypcap. After t flow

ID have been recorded, construct frequency data (how many distinct flow IDs have seen once,
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Figure 52:Estimated number of active flows using Direct Bitmap with low-pass filter for the ex-

periment with 30, 90, and 60 TCP flows over 600 seconds, with 250 HTTP sessions as background

traffic.
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Figure 53:Estimated number of active flows Direct Bitmap with packet removals for the exper-

iment with 30, 90, and 60 TCP flows over 600 seconds, with 250 HTTP sessions as background

traffic. Max. buffer size = 300 packets.
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twice, and up tot times). Then perform a series of calculation using either the Jackknife

estimator or Sample coverage as discussed in Section4.2.2and4.2.3.

It is clear that CR model consumes much higher processing power since the first step of con-

structing frequency data. This complexity increases as a size of capture list (t) becomes larger,

which is needed if the number of actual flows is large. Although the estimation can be performed

as a background task, it is still not as suitable as Direct Bitmap for a high speed router with very

large number of flows passing through.

4.4 SUMMARY

According to the evaluation results through a series of simulation experiment, with a considera-

tion of algorithm complexity, it is clear that Direct Bitmap requires least memory space with low

computational complexity. For CR model, the Jackknife estimator is more robust than Sample

Coverage in different scenarios, especially when a C.O.V. is high. Direct Bitmap does not suffer

with a presence of large UDP traffic but may have a problem when there is a large number of short-

lived background traffic as all of these flows are taken into account instead of only those long-lived

ones. In this case, Direct Bitmap with low-pass filter or Direct Bitmap with packet removals can be

used to filter out those small flows from the estimation, with the expense of higher memory usage.

In the present days, however, memory becomes cheaper. Thus, the memory requirement of both

modified versions of Direct Bitmap would not be a problem. In some cases that memory might be

scarce, the amount of memory required can be dramatically reduced with variants of Direct Bitmap

such as Virtual Bitmap, Multiresolution Bitmap, Adaptive Bitmap, and Triggered Bitmap.
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Figure 54:Estimated number of active flows Direct Bitmap with packet removals for the exper-

iment with 30, 90, and 60 TCP flows over 600 seconds, with 250 HTTP sessions as background

traffic. Max. buffer size = 1000 packets.
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5.0 AFC: ACHIEVING FAIRNESS USING A CREDIT-BASED MECHANISM

At the end of Chapter3.3, the limitations of BLACK mechanism were addressed – unfairness

due to inaccuracies in the estimation of the number of active flows, unfairness when packets are

of different sizes, and fluctuations (high variance) in the throughput of the flows. These prob-

lems, which might cause a serious degradation of fairness performance in some circumstances,

lead to a development of new a scheme proposed in this chapter calledAFC, Achieving Fairness

using a Credit-based mechanism. Although sharing several conceptual ideas as BLACK, AFC

contains several newly designed components. Apart from using Direct Bitmap, a more accurate

method to estimate the number of active flows discussed in Chapter4, AFC includes a new design

of HitFraction approximation, dropping function, and a newcredit-based mechanism. AFC not

only overcomes these limitations but also provides a better fairness performance in a wide rage of

scenarios, however, with some overhead expense over BLACK.

Also included in this chapter is the comparative evaluation of AFC, for its fairness performance

and robustness, with the other fair AQM schemes appeared in Chapter3 i.e. RED, CHOKe, SFB,

CARE, and BLACK. The simulation scenarios are expanded to new cases with traffic with different

packet sizes, short-flows, and TCP-friendly traffic. In these experiments, BLACK is also equipped

with Direct Bitmap rather than its original estimation of the number of active flows, for a fair

comparison. The performance metrics are average per-flow UDP and TCP throughput and fairness

among TCP traffic. At the end, complexity of these schemes are briefly discussed which shows

that AFC has a higher overhead than BLACK and it is a choice of a network operator to choose

BLACK or AFC for implementation.

This chapter is organized as follows. The first half of this chapter, covered in Section5.1,

reviews the limitations of BLACK and discusses the solutions proposed by AFC along with its

components. Then, the performance evaluation of AFC along with the other fair AQM schemes
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are given in Section5.2. The chapter summary is provided in Section5.4.

5.1 AFC MECHANISM

Although BLACK has shown the promising results through a series of simulation experiments

in providing throughput fairness in Chapter3.3, there are still some limitations of BLACK as

described in Section3.4as summarized below. In addition, because these limitations are not unique

to BLACK, the AQM schemes that contain similar limitations are also discussed here.

1. Inaccuracy in the estimation of the number of active flows:This problem comes from the fact

that simplistic assumptions are made to compromise the performance of the algorithms. For

example, this is the case of BLACK, which bases the estimation on a simple probability model

that assumes an equal traffic intensity of the incoming flows. As a result, the estimation could

be inaccurate and high bandwidth unresponsive flows could be out of control. The estimation

mechanism utilized in CARE, even with a complex model, has also been found to fail under

certain scenarios especially with a presence of a traffic whose arrival rate is relatively large

comparing to a link bandwidth.

2. Unfairness due to traffic with different packet sizes:Most performance evaluations of fair

AQM schemes have been performed assuming packets of equal sizes and several schemes fail

to achieve their promised goals otherwise. For instance, this is the case of BLACK, CHOKe

and CARE. BLACK collects the information of each sample packet at packet level, not byte

level. Smaller packets have a higher possibility to be sampled from the queue than larger

packets, which may appear to have higher buffer occupancy fraction even through the number

of bytes are equal, and over-penalizing could occur. In the case of CHOKe, it is clear that a

flow with smaller packet sizes would have more number of packet matchings than a flow with

larger packet sizes, given that they have the same arrival rate, and would be penalized more.

Also for CARE, the mechanism only takes into account the number of packets regardless of

the packet sizes and thus fairness in this case would not occur.

3. Throughput fluctuation:No performance evaluation of fair AQM schemes has looked at the

traffic characteristics of the flows after passing through the scheme. Not only BLACK, as
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it will be shown later, most schemes make the throughput of CBR flows to fluctuate more

after passing through them. This behavior is not preferable especially by streaming media

applications.

As a result, AFC, a new fair AQM scheme that addresses the limitations of the well-known

schemes listed above is proposed, and discussed in the following sections. Although AFC shares

similar conceptual idea as BLACK, it contains several newly designed components and incorpo-

rates a new concept,Credit-based Mechanism, which would enhance the fairness achieved by the

scheme. These components are explained as follows.

5.1.1 The estimation of the number of active flows

The solution for the first problem has been addressed along with the comparative evaluation in

the previous chapter whereDirect Bitmapis chosen as the mechanism to estimate the number of

active flows due to its computational simplicity and very small amount of memory requirement.

The simulation results in various types of scenarios show that Direct Bitmap provides a high accu-

racy for the estimation with the computational complexity that is far less than the other schemes.

There are also several variants of Direct Bitmap such asVirtual Bitmap, Multiresolution Bitmap,

Adaptive Bitmap, andTriggered Bitmapwhich require much less memory space while keeping low

estimating error; for example 2 Kbytes of memory is needed for Adaptive Bitmap to estimate the

number of active flows up to 100 million flows with an average error of less than 1% [15, 16].

However, only Direct Bitmap is used because of its lower complexity. The other variants are left

as a choice of the service providers if smaller amounts of memory are preferred at the expense of

a little higher complexity.

5.1.2 Handling traffic with different packet sizes

Most fair AQM schemes fail to provide fairness when flows send packets of different sizes. For

example, this is the case of BLACK since it computes a flow’s buffer fraction based on the number

of packets of that flow over the number of total sampled packets, rather than a byte count. To

solve this problem, instead of counting the number of packets for the candidate flows in the cache

memory, the information is updated with the size of the sampled packet.
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In details, rather than increasing theHit variable by one each time the flow ID of the sampled

packet is found in the HBF cache memory, theHit variable (̂h) is updated with the size of the

sampled packet. Furthermore, the total number of bytes are counted in each period rather than the

number of packets being sampled (m). In this way, botĥh andm have a unit of byte. At the end

of a sampling period, theHitFraction of a flow is calculated bŷh (in bytes) divided by the number

of bytes being sampled (m in bytes). TheHitFraction obtained using the byte count then has no

problem even when the passing traffic have different packet sizes.

Note that CHOKe cannot prevent this problem without breaking a large packet into smaller

packets about the same size as suggested by the authors of CHOKe in [54]. As CHOKe relies

purely on packets matching, between a packet that is sampled from the queue and the arriving

packet, a flow that has smaller packet size would be penalized more with the higher probability of

matching.

5.1.3 Reducing throughput fluctuation

The trace of the results from the experimentation set in Chapter3.3 indicates that throughput

fluctuation under BLACK occurs mainly from a dropping function and adds up by a sampling

error. A sampling error causes an inaccuracy inHitFraction approximation and thus over- or

under-penalization of high-bandwidth unresponsive flows from time to time. This issue will be

explained in this section while the throughput fluctuation due to a dropping function will be covered

in the next section.

In BLACK, packets are sampled from a queue buffer, using packet arrival as a trigger event for

each sampling. Afterm sampled packets, we can estimate a fraction of packets from a particular

flow occupying a buffer space, which referred to asHitFraction. However, it is possible that a

sample size (m) could be greater than a maximum buffer size (B) to collect enough statistics for

the estimation. In this way, aHitFraction could be interpreted as a fraction of packets occupied

in a virtual buffer of sizem, as shown in Figure55.

However, the way BLACK samples packets does not always resemble the idea of a sampling

from a virtual queue. BLACK samples one packet as triggered by an arrival of a packet, no matter

whether that arriving packet will be dropped or enqueued. At the advent of congestion, an ag-
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Figure 55:Virtual buffer idea to estimate aHitFraction.

gregate arrival rate might be high, and so a high level of packet drops, which is different from a

serving rate. While packets are backlogging in the buffer, it is possible that the high sampling rate,

due to high packet arrival rate, may cause the same packet(s) to be sampled more than once.

To reduce this possible error, AFC directly collects theHitFraction statistics from the packets

that are enqueued and tread them in the same way as sampled packets in BLACK. After a sampling

period, aHitFraction of each flow could be determined using the same idea of sampling packets

from a virtual queue. Furthermore, since the statistics is now collected in byte according to Sec-

tion 5.1.2, the variablem becomes the aggregate byte count of all packets entering the queue. In

BLACK, a guide line of the value ofm is 3,000 in a unit of packets for a single period. Thus, for

AFC, the value ofm becomes3, 000× B whereB is an average packet size in byte. The average

packet sizeB is normally between 576 bytes - 1,500 bytes for the connections that tend to generate

long term traffic or most bytes to the network. It is, however, up to the service providers to choose

a value ofB as they can directly measure an average packet size for the traffic that pass through

their network.

In this manner, the components of AFC along with a flow path of packets that pass through the

queue is illustrated in Figure56.

In addition, this new sampling method decreases the complexity in two ways. First, randomly
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Figure 56:AFC components and a flow of packets that pass through the queue (shown in a solid

arrow line).

sampling packet from the queue is no longer required as the information is directly collected from

the packet that is enqueued. Second, the update frequency tends to be less because AFC collects the

statistics only when there is a packet enqueued excluding those dropped packets, unlike BLACK

that the statistics are collected per each packet arrival.

5.1.4 Dropping function

In BLACK, packets are dropped by the percentage of an extra buffer space the flow occupying

more than a fair share, or as shown in a form of

pdrop =
HitFraction− FairFraction

FairFraction
(5.1)

according to Equation3.2.

Thorough experiments show that even though the exact number of active flows is known, which

yields a perfect value of aFairFraction, unresponsive flows could still achieve somewhat higher

bandwidth than a fair share. This problem could be explained through a following example.

For simplicity, assume an unresponsive flowi is a CBR traffic feeding its packets to the queue.

If the currentHitFraction of this flow (HitFractioni) is about the same as aFairFraction,
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according to Equation5.1 the dropping probability is zero. Now, if theHitFractioni becomes

1.25×FairFraction, the dropping probability turns to be 0.25. That means 25% of the incoming

packets from flowi would be dropped. When theHitFractioni becomes1.5 × FairFraction,

half of the incoming packets would be dropped. And when theHitFractioni becomes twice

theFairFraction or more, all of the incoming packets are dropped. This behavior is illustrated

through a dropping probability showing in Figure57.
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Figure 57:Dropping probability as a function ofHitFraction/FairFraction of BLACK.

Now, suppose theHitFractioni is 1.5× FairFraction, which means that flowi is currently

having more number of packets occupying the (virtual) queue than a fair share by as much as 50%.

Intuitively, packets from flowi should be prevented from entering the queue for a while so that

the queue could drain these extra 50% packets. However, because BLACK drops new incoming

packets with a dropping probability of 0.5, at least 50% of the incoming packets would still occupy

the buffer, whether or not the queue has drained the extra packets from the previous sample period

yet.

If the queue is not capable of draining the old extra packets and the new extra packets, the

new HitFractioni would go beyond1.5 × FairFraction iteratively and end up at twice the

FairFraction. At this point, no more packets are allowed to be enqueued, and the real draining

of the cumulative extra packets occurs here. After a short while, theHitFractioni would come

down to about theFairFraction, and a new period of this fluctuation will continue.
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It could be observed that this fluctuating behavior results in

1. By average, unresponsive CBR could gain more bandwidth than a fair share periodically, de-

pending on the value of theHitFractioni, from the extra packets that the dropping function

lets them pass through the queue.

2. The throughput of CBR at the destination may be highly fluctuated.

Therefore, the dropping function should be more aggressive to the unresponsive traffic. Ideally,

once theHitFractioni is higher than theFairFraction, no more incoming packets from flow

i should be enqueued, which implies a dropping probability of one, until the extra packets are

drained and theHitFractioni becomes lower than theFairFraction. This approach requires

that the mechanism should be able to keep track of theHitFractioni fast enough so that the flow

with higherHitFraction than theFairFraction would not be penalized longer than necessary.

Since, aHitFraction is dynamically adjusted with a mechanism that takes into account both past

and current information according to Equation3.3, so the queue does not have to wait for the end

of the sampling period to update theHitFraction and the new dropping policy should contain no

problem in terms of responsive action.

However, dropping all the packets when aHitFraction becomes higher than aFairFraction

might have a problem with responsive traffic like TCP traffic that backs off when its packets are

dropped. As a demonstration, once theHitFraction of TCP traffic reaches aFairFraction,

its incoming packets are dropped which triggers a back-off period at a TCP source. After a

short while, as the queue has drained some packets, theHitFraction becomes lower than a

FairFraction once again and incoming packets are allowed to get in. However, the TCP source

may still be backing off its data transmission, thus no or only few packets would arrive at the

queue causing itsHitFraction to be even lower. Later, after the TCP source expands its conges-

tion window, a burst of packets once again arrives at the queue and theHitFraction eventually

reaches theFairFraction again. In other words, theFairFraction becomes an upper limit of

theHitFraction of TCP traffic which has a sawtooth behavior, giving the averageHitFraction

to be less than theFairFraction, as roughly illustrated to aid this explanation in Figure58.

From the figure, it is clear that the averageHitFraction over time could be lower than the

FairFraction which should be the target for a long termHitFraction. Under this circumstance,
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Figure 58:SimplifiedHitFraction behavior of responsive traffic under AFC dropping policy with

no credit-based mechanism.

an underutilization of the responsive traffic and the queue could occur if the HBF cache size is

large comparing to the number of active flows (Nact).

To prevent this problem, acredit-based mechanismis introduced in AFC, so that a flow’s

HitFraction can be higher than theFairFraction if it has a credit available, e.g. a credit from a

back-off period of responsive flows. Note that AFC’s credit-based mechanism has no relationship

with a large number of papers in the literature about credit-based flow control in ATM network

such as that appeared in [41].

5.1.5 Credit-based mechanism

The idea of acredit-based mechanismin AFC is to allow aHitFraction to go beyond aFairFraction

if a flow has a credit available, so that an averageHitFraction over time is about the same as a

FairFraction. Here, a credit is defined as an area under theHitFraction curve above or below

theFairFraction in Figure58, which is referred to as∆A. Precisely, a credit of any given flow

can be approximated every time aHitFraction is updated according to

∆At = ∆At− +
[
(HitFractiont − FairFractiont) ∗ (t− t−)

]
, (5.2)

as roughly illustrated in Figure59, wheret indicates a current update time andt− indicates a

previous update time. Obviously, the value of∆At should be kept as close to zero as possible.

However, when a responsive flow is backing off, there is usually not enough packets to fill up
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Figure 59:SimplifiedHitFraction behavior of responsive traffic under new AFC dropping policy.

the queue to raise itsHitFraction to be as much as aFairFraction, and thus its∆At would

become negative. The negative value of∆At means that this flow have this amount of credit for

AFC to allow the packets of this flow to enter the queue even if its currentHitFraction is greater

than theFairFraction. This dropping policy is contrast to the refined dropping function intro-

duced in the previous section where the packets are dropped when aHitFraction is greater than

a FairFraction only. By allowing aHitFraction of a flow to be higher than aFairFraction

if it has available credit, e.g. from its previous back-off period that causes∆At to be negative, an

underutilization of a responsive flow such as that in Figure58 is prevented.

A simulation is setup, to see the evolution of aHitFraction over time, with the same settings

of 200 TCP traffic and the asymmetric topology in Section3.3.4except that the HBF cache is large

enough to hold every passing flow and the number of active flows is assumed to be known. The

result in Figure60 shows that theHitFraction of this sample flow could swing above or below

the FairFraction, as its upper bound is not restricted to theFairFraction when the method

described in the previous section is used or that shown in Figure58. Nevertheless, the fairness

among these TCP connections with different round trip delays is also achieved with a standard

deviation of only 6.17 Kbps around the average throughput of 225 Kbps, in this ideal case.
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Figure 60:Evolution ofHitFraction over time of a sample flow under AFC with a credit-based

mechanism.

5.2 PERFORMANCE EVALUATION

In this section, an evaluation of AFC begins with the same set of experiments conducted in Chap-

ter 3.3 which is composed of (1) single unresponsive flow scenario, (2) multiple unresponsive

flows scenario, and (3) TCP with different round-trip delays scenario. Because one of the design

goals of AFC is to solve the problem of throughput fluctuation in BLACK, not only the throughput

fairness is used as a performance metric but the instantaneous throughput over time of CBR traffic

is also considered and compared with BLACK. Then, the more diverse scenarios are conducted to

examine fairness and robustness of the fair AQM schemes, including a scenario with traffic with

different packet sizes, a scenario with short-lived and bursty traffic, and a scenario when TCP-

friendly traffic and TCP traffic sharing the same bottleneck link. In general, the scenarios could be

categorized into four parts according to the types of traffic in consideration – long-lived unrespon-

sive traffic, TCP with different round-trip times1, short-lived traffic, and TCP-friendly traffic – as

shown in Table11. In addition, at the end of this section, the complexities of these schemes are

1This is the only category that only TCP traffic with the same settings are sharing the same bottleneck link.
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also discussed.

Long-lived unresponsive traffic

• Single unresponsive flow versus TCP traffic

• Multiple unresponsive flows versus TCP traffic

• Traffic with different packet sizes

TCP traffic with different round-trip times

Short-lived traffic

• Effect of short-lived responsive traffic in background

• Bursty unresponsive traffic

TCP-friendly traffic versus TCP traffic

Table 11:Simulation scenarios.

Network Simulator 2 (NS-2) [1] is again used as a simulation tool. BLACK queue is re-

evaluated usingDirect Bitmapas the estimation algorithm of the number of active flows. The

results of RED, CHOKe, SFB, and CARE from Chapter3.3are shown or replotted for comparison

purposes. All the parameters are set according to the respective experiments in Chapter3.3, which

are resummarized in each of the sections. Because AFC contain the same parameters as BLACK,

all the settings are the same as BLACK, as previously discussed in Section3.3.5and3.3.6. Each

experiment runs for 200 sec. and it is repeated 20 times. The statistics are collected from 50 sec.

to 200 sec. of the simulation time. The analysis of the other AQM schemes, except AFC, are not

repeated in this chapter unless necessary.

5.2.1 Single unresponsive flow

A single unresponsive flow experiment utilizes the symmetric dumbbell topology shown in Fig-

ure 20. A large unresponsive CBR traffic shares the same bottleneck link with 100 TCP traffic.

Two experiments were set up – (1) 5-Mbps bottleneck link rate with 5-Mbps CBR traffic (2) 45-

Mbps bottleneck link rate with 10-Mbps CBR traffic. All the access links are 100 Mbps. The

parameters of different queue types are set according to Table12. The results of the simulation are
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RED minth = 50 packets,maxth = 150 packets.

CHOKe minth = 50 packets,maxth = 150 packets.

SFB Two levels of hash functions of 23 bins with double set of hash

tables for moving hash functions (total of46× 2 bins).

CARE Capture occasion (t) = 200 with 50 of this value is used for the

estimation of the number of active flows

BLACK and AFC minth = 50 packets,maxth = 150 packets, sample size (m) =

3,000 packets, HBF cache size = 20.

Common parameters Maximum buffer size = 300 packets.

Table 12:Parameters of different queues in the single unresponsive flow experiment.

tabulated in Table13and14 for both experiments respectively.

The last row of Table13 shows the per-flow throughput of different flows under AFC, in

comparison to the per-flow throughput obtained from the other schemes in the upper rows. AFC

is, not only better than BLACK in terms of per-flow throughput fairness, but also better than

the other schemes and very close to SFB with the rate limit being set to the fair rate. In another

experiment with varying CBR arrival rate, AFC still showing a superior performance in controlling

unresponsive traffic be close to the fair throughput, even with the arrival rate of twice the bottleneck

link rate, as shown with BLACK in Figure61 and shown with the other schemes in62. Note that

although it is unlikely to have the unresponsive flows that consume this large portion of a link

bandwidth for high-speed core routers, however it is possible that similar situation could happen

on one of the end-to-end links that the traffic traverse through. The second experiment with the

bottleneck link speed of 45 Mbps fed with 10-Mbps CBR and 100 TCP traffic also exhibits the

same trend as shown in Table14. Under AFC, per-flow throughput of both CBR and TCP traffic

are about the fair rate, comparing to the other schemes, while the fairness among TCP traffic is not

distorted as shown through Jain’s fairness index in the third column.

In addition, in terms of CBR’s throughput fluctuation that occurs with BLACK, this phe-

nomenon is greatly reduced under AFC, as shown in Figure63 from the first experiment (5-Mbps

CBR with 5-Mbps link) which illustrates the throughput over time of the CBR traffic. Because of
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Average UDP

throughput

(Kbps)

Average TCP

throughput

(Kbps)

Jain’s fairness

index among

TCP flows

RED 4,374.82 5.046 0.5551

CHOKe 1187.301 38.160 0.9842

SFB, rate limit≈
twice the fair rate

98.99 49.046 0.9836

SFB, rate limit≈
fair rate

49.57 49.538 0.9826

SFB, rate limit≈
half the fair rate

24.95 49.78 0.9817

CARE 172.66 48.307 0.9862

BLACK 73.20 49.301 0.9918

AFC 50.46 49.529 0.9925

Table 13:Results from the single unresponsive flow scenario including AFC. Bottleneck link speed

of 5 Mbps. UDP has a constant bit rate of 5 Mbps competing with 100 TCP flows.
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a large difference in UDP throughput obtained from different schemes, the UDP throughput over

time of CHOKe is plotted on different vertical (throughput) scale. The figure clearly shows that

CBR throughput is much smoother under AFC. Only SFB provides smooth throughput comparable

to AFC, while the other schemes result in highly fluctuated throughput. For the second experiment

with 10-Mbps CBR with 45-Mbps link, because of a high difference among CBR throughput under

different schemes, only CBR throughput of BLACK and AFC are illustrated in Figure64 to show

the improvement of AFC in providing smoother transfer rates for the unresponsive flows.

Average UDP

throughput

(Kbps)

Average TCP

throughput

(Kbps)

Jain’s fairness

index among

TCP flows

RED 9,768.23 352.77 0.9952

CHOKe 6,632.55 384.12 0.9964

SFB, rate limit≈
twice the fair rate

909.85 450.37 0.9792

SFB, rate limit≈
fair rate

454.92 445.91 0.9815

SFB, rate limit≈
half the fair rate

222.39 448.15 0.9807

CARE 825.80 442.19 0.9944

BLACK 426.21 446.19 0.9948

BLACK 511.45 445.24 0.9945

AFC 445.54 445.99 0.9956

Table 14:Results from the single unresponsive flow scenario including AFC. Bottleneck link speed

of 45 Mbps. UDP has a constant bit rate of 10 Mbps competing with 100 TCP flows.
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Figure 63:CBR throughput over time after passing through different fair AQM schemes. Bottle-

neck link rate is 5 Mbps and CBR arrival rate is 5 Mbps.
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Figure 64: CBR throughput over time after passing through BLACK and AFC. Bottleneck link

rate is 45 Mbps and CBR arrival rate is 10 Mbps.
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5.2.2 Multiple unresponsive flows

In this section, the experiments with multiple unresponsive flows, which are closer to a real world

scenario, are set up using the same topology with 5-Mbps and 10-ms delay of the bottleneck link

as in the first experiment in the previous section. Two sets of experiments are conducted – (1) five

CBRs (each of 500 Kbps) sharing the link with 100 TCP traffic, and (2) five CBRs (each of 5 Mbps)

sharing the link with 100 TCP traffic. All the queue parameters are the same as those shown in

Table12except that CHOKe is now equipped with itsself adjusting mechanismto handle multiple

unresponsive flows as discussed in Section3.3.3.

Average UDP

throughput

(Kbps)

Average TCP

throughput

(Kbps)

Jain’s fairness

index among

TCP flows

RED 420.32 29.021 0.9565

CHOKe 318.52 34.107 0.9836

SFB, rate limit ≈
twice the fair rate

100.01 45.032 0.8863

SFB, rate limit ≈
fair rate

42.23 47.920 0.8595

SFB, rate limit ≈
half rate

17.66 49.150 0.8611

CARE 107.92 44.241 0.9852

BLACK 66.34 46.716 0.9904

AFC 49.33 47.567 0.9908

Table 15:Results from the multiple unresponsive flow scenario including AFC. Bottleneck link

speed of 5 Mbps. Each of five UDP has a constant bit rate of 500 Kbps competing with 100 TCP

flows.

The results of the two experiments with different CBR arrival rates in Table15 and17 show a

superior fairness performance of AFC over the other schemes. Here, although SFB also achieves
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CBR per-flow throughput (Kbps)

Queue type flow 0 flow 1 flow 2 flow 3 flow 4

SFB, rate limit ≈
fair rate

18.08 96.90 16.37 104.69 6.61

AFC 47.08 48.05 48.74 48.00 47.52

Table 16:A sample result from a single run comparing per-flow throughput of CBR traffic under

SFB and AFC. Each CBR arrival rate is 500 Kbps. Bottleneck link is 5 Mbps with 100 TCP traffic

in background.

about the same level of fairness, a network operator needs to manually set a rate limit threshold

as SFB has no prior knowledge of a fair throughput nor the number of active flows. Besides,

without a special per-flow treatment or a separate queue to serve the unresponsive flows, although

the average per-flow throughput of unresponsive traffic is limited to about the rate limit threshold,

SFB cannot guarantee fairness among these unresponsive flows. With the code for NS simulator

provided by the authors of SFB [18], all the misbehaving traffic, once detected with its hashing

technique, are prevented from entering the queue for a certain period of time (orhold time) to

achieve a desired throughput. Basically, a concept of hold time has been introduced since its

predecessor, BLUE [20], in a form of time interval between the updates of a dropping probability.

In one of the simulations of SFB under this scenario, even through the average per-flow throughput

of the five CBR traffic is about the about the fair share, the individual throughput are extremely

varied as shown in comparison with AFC in Table16. This result indicates that the SFB’s double

moving hash function alone is not enough to provide fairness, but a special per-flow treatment is

needed in order to improve its fairness performance.

Again, even with multiple large unresponsive flows, AFC still provide very small fluctuation

of CBR throughput. Figure65 show the results from one of the run in the multiple unresponsive

flows experiment with CBR arrival rate of 5 Mbps each.
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Average UDP

throughput

(Kbps)

Average TCP

throughput

(Kbps)

Jain’s fairness

index among

TCP flows

RED 1,000.00 0.000 N/A

CHOKe 841.29 5.092 0.1108

SFB, rate limit ≈
twice the fair rate

95.29 45.285 0.9594

SFB, rate limit ≈
fair rate

47.84 47.658 0.9611

SFB, rate limit ≈
half rate

22.94 48.903 0.9593

CARE 1,000.00 0.000 N/A

BLACK 77.04 46.181 0.9903

AFC 48.81 47.609 0.9972

Table 17:Results from the multiple unresponsive flow scenario including AFC. Bottleneck link

speed of 5 Mbps. Each of five UDP has a constant bit rate of 5 Mbps competing with 100 TCP

flows.
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Figure 65:CBR throughput over time after passing through AFC. Bottleneck link rate is 5 Mbps

and CBR arrival rate is 5 Mbps each.
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5.2.3 Traffic with different packet sizes

As described with the pilot study in Section3.4at the end of Chapter3.3, most fair AQM schemes

were not designed to provide fairness for traffic with different packet sizes. Some schemes such

as CHOKe currently has no better solution rather than breaking a large packet into few smaller

packets of the same size to handle this situation [54]. AFC is designed to solve this problem

by having a byte count, as opposed to aHit count in BLACK, to provide a better fair share of

throughput under this circumstance.

An experiment was set up with the same symmetric topology shown in Figure20with a bottle-

neck link of 5 Mbps and 10-ms delay. One hundred TCP traffic are competing with three 1-Mbps

CBR traffic. However, these three CBR traffic have different packet sizes where CBR1 has a packet

size of 100 bytes, CBR2 has a packet size of 500 bytes, and CBR3 has a packet size of 1,000 bytes.

The average per-flow throughput of CBR traffic under different fair mechanisms are plotted along

with a fair share of bandwidth in Figure66. The figure clearly shows much superior fairness per-

formance of AFC over the other schemes where the per-flow throughput of three CBR with totally

different sizes of packets are provided in a fair manner.
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Figure 66:Average per-flow throughput of CBR traffic with different packet sizes.
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5.2.4 TCP with different round-trip times

With the same simulation settings as in Section3.3.4, 200 TCP traffic are randomly assigned to

originate from node N0, N1, N2, N3 or N4 which are linked to the randomly selected sink node

S0, S1, S2, S3 and S4 with the asymmetric topology in Figure24. The cache size of BLACK and

AFC is 46 which is the same as SFB, or only a quarter of the number of these long-lived TCP

traffic. The result of the simulation under AFC is presented in Figure68; in this figure, the results

from the other schemes are repeated for a purpose of comparison. The standard deviation values

and Jain’s fairness indexes from these this same experiment are tabulated in Table18, while these

standard deviations are also separately plotted with 95% confidence interval over multiple runs in

Figure67. It is clear that AFC still achieves good fairness performance among TCP connection

with different round-trip times, apart from providing fairness when unresponsive traffic exist. SFB

shows much larger standard deviation among TCP throughput, which is about double of those

under BLACK and AFC. The reason is that SFB provides rate limit only on those flows that are

detected as unresponsive traffic, or when the dropping probability in all the bins that these flows

hashed to reach one. All the other flows would be controlled by a dropping function similar to its

predecessor, BLUE [20], which provides no fairness guarantee.

Flow throughput RED CHOKe SFB CARE BLACK AFC

(Kbps)

Standard deviation 43.725 38.268 41.996 30.194 20.308 16.149

Jain’s fairness index 0.9769 0.9721 0.9665 0.9815 0.9917 0.9948

Table 18:TCP connections with different round-trip time scenario.

5.2.5 Effect of short-lived traffic

In all of the previous experiments in this Chapter and in Chapter3, the fairness performance is

evaluated under the ideal scenarios where all of the sources transmit only long-lived traffic. In this

section, short-lived traffic are introduced in two different types of scenario – (1) low-bandwidth
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Figure 68:Per-flow TCP throughput for 200 TCP connections with different RTTs over a 45-Mbps

link; plotted with 95% confidence interval. The result from AFC is included.
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short-lived traffic such as web traffic (2) bursty traffic or high-bandwidth short-lived traffic such

as a malicious traffic that aims to saturate a link by sending an impulse of traffic to escape a fair

mechanism of an AQM scheme. A number of experiments are set up to see whether these short-

lived traffic have any negative effect on the fairness performance of the AQM schemes.

5.2.5.1 Low bandwidth short-lived traffic The first set of experiments are conducted to eval-

uate how well the AQM scheme could still provide fairness when there are a different loads of web

traffic in background (or mice flows according to mice and elephants model discussed in Section

3.2). The same dumbbell topology in Figure20 is set up with a bottleneck link of 10 Mbps and 10

ms delay. Five CBR traffic of 2.5 Mbps each and 100 TCP traffic are sharing the same bottleneck

link along withw sessions of web traffic. Each web session contains default parameters recom-

mended in the NS2 script [1] where the traffic model is based on [17]. A Pareto distribution is used

for flow lengths of web traffic where the average number of packets per flow is 15 with a shape

parameter of 1.2. Starting time of each ofw web sessions are randomly set during 250 seconds of

simulation time. With a fixed simulation time, largew implies high web traffic load scenarios or

more number of web traffic that would arrive at the queue than smallw. In this experiments, the

number of web sessions (w) are set to 0, 2,500, 5,000, 7,500 and 10,000 sessions to be generated

during this 250 seconds of simulation time. CHOKe, SFB (with rate limit set to the fair fraction),

CARE, and AFC are evaluated whether their fairness performance is interfered with different web

traffic loads.

The results of this experiment are shown in Figure69 in a form of an average per-flow CBR

throughput over an average per-flow TCP throughput. The average per-flow CBR throughput is an

average over five CBR traffic and over 20 runs of simulations. Ideally, an average CBR throughput

over an average TCP throughput should be close to one to ensure fairness among CBR traffic and

long-lived TCP traffic. The upper image in Figure69 shows that AFC, CARE, and SFB could

achieve their fairness performance with minimal interference from different web traffic loads. In

this case, average CBR throughput under CARE is higher than AFC and SFB because of multiple

CBR traffic with a high arrival rate that causes an underestimation of the number of active flows,

however the average CBR throughput comparing to average TCP throughput is only slightly higher

with more number of background web sessions. On the other hand, CHOKe shows a different
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Figure 69:Average per-flow CBR throughput over average per-flow TCP throughput (average over

20 runs) at different background web traffic loads.
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Figure 70:Jain’s fairness index among long-lived TCP connections at different background web

traffic loads. The legend represents the lines in the figure from top to bottom respectively.

result in the lower image of Figure69. When there is no background web traffic exists, the average

per-flow CBR throughput is about 50 times the average long-lived TCP throughput. However,

the average CBR throughput are getting significantly higher than the average TCP throughput

as the number of web sessions increases, or approximately 80 times higher when the number of

web sessions becomes 10,000 sessions. The rationale behind this poorer performance of CHOKe

under high a load situation is that when more number of packets from the web traffic get in to

the queue, with the average length that is controlled by underlying RED mechanism, less number

of packets from the same CBR connection are in the queue at the same time which leads to less

chance of a packet matching and less control of unresponsive traffic. On the other hand, in terms

of the fairness among only long-lived TCP connections, AFC, BLACK, and CARE (top three lines

respectively) perform well regardless of the web traffic load according to Jain’s fairness index

showing in Figure70. SFB provides less fairness to long-lived TCP traffic, and this value is

degraded as more number of web sessions turn on. For CHOKe, fairness on TCP traffic is highly

interfered with higher load of background web traffic.
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5.2.5.2 High bandwidth short-lived traffic or bursty traffic Although several fair AQM

mechanisms achieve average long-term fairness in different scenarios, none has been evaluated

in terms of their performance to detect and control short-lived misbehaving traffic or bursty traffic.

In a real network, not all of high bandwidth traffic are CBR, which have been used as a misbe-

having traffic in all of the previous experiments. There are a number of media applications that

feed traffic that is bursty to a network. Providing an average long-term fairness for bursty traffic or

high bandwidth short-lived traffic may not be perfect for the light-weighted fair AQM schemes that

do not maintain flows state information and might not have enough long term information about

average arrival rate. Some AQM schemes need some amount of time to collect some information

before identifying and controlling misbehaving traffic, and may erase those information after a

short while. Although not common, it is possible that some bad people may use this fundamental

knowledge to generate high-bandwidth short-lived traffic that might escape a fair AQM mechanism

to saturate a link by pumping high speed impulse traffic. A key question here is how well the fair

AQM schemes can detect and control these types of traffic.

A series of experiment are set up with the misbehaving traffic are represented by a very high-

bandwidth short-lived UDP traffic with fixed ON and OFF periods or bursty traffic with ON and

OFF periods are drawn from exponential distribution. Again, 100 long-lived TCP traffic are pass-

ing through the same bottleneck link of 10 Mbps. Different settings of short-lived traffic are shown

in Table19. Two types of ON and OFF periods are tested – (1) traffic with equal mean ON and

OFF period, and (2) traffic with longer OFF period. A purpose of the latter type is to see if there is

any different fairness performance when a traffic is paused for a longer period of time. Peak rate

during an ON period also comes with two settings – 1 Mbps and 10 Mbps. A 1-Mbps peak rate

is used in an environment with low bandwidth bursty traffic. A peak rate of 10 Mbps is used to

simulate a scenario with an attack of short-lived high bandwidth traffic.

Because the results of fixed ON-OFF traffic and exponential ON-OFF traffic are very similar,

only those obtained from the experiments with exponential ON-OFF traffic are exhibited. The

results under different queue types are separately tabulated in Table20, 21, 22, 23, 24, and25, for

RED, CHOKe, CARE, BLACK, and AFC respectively.

Even through the average per-flow throughput of both CBR and TCP traffic are shown, the

fairness performance could be compared by the average per-flow throughput of TCP traffic alone
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Peak rate 10 Mbps 1 Mbps

Mean ON/OFF period = 1 sec./1 sec. = 2 sec./4 sec. = 1 sec./1 sec. = 2 sec./4 sec.

Number of UDP traffic 5 15 5 15 5 15 5 15

Table 19:A combination of the experiments on high-bandwidth short-lived traffic. These bursty

traffic share the same bottleneck link with 100 long-lived TCP traffic.

as it indicates how well the AQM schemes could protect responsive flows. As a guideline, a fair

throughput under the scenarios with 5 bursty traffic is 95.2 Kbps, and a fair throughput under the

scenarios with 15 bursty traffic is 86.9 Kbps.

For bursty traffic with 10-Mbps peak rate, RED mechanism, a scheme that provides least fair-

ness, obviously cannot protect TCP traffic at all in all the scenarios that the peak rate of bursty

traffic is 10 Mbps (Table20). All TCP connections receive about 10 Kbps, or even shut out in two

cases of fifteen 10-Mbps bursty traffic. CHOKe (Table21) and CARE (Table23) could provide

some protection when there are five bursty flows, but cannot prevent fifteen 10-Mbps bursty traffic

from grasping almost all of the bandwidth. It is not unexpected for CHOKe as the results in the

previous experiments so far show that CHOKe does worse in providing fairness under a higher

number of unresponsive flows. CARE, however, is a little worse than CHOKe and the reason be-

hind this behavior is its inability to estimate the number of active flows correctly with a presence

of unresponsive traffic with higher rate. BLACK could provide some level of protection as it could

reserve about 60% - 70% of a fair throughput to each TCP connection by average (column 1 and

3), when there are five 10-Mbps bursty traffic. A trace file indicates that BLACK’s HitFraction

mechanism, that randomly samples packets from the queue, could not perform as well as when

the unresponsive traffic is non-bursty. On the other hand, AFC which utilizes a direct counting of

HitFraction provides much better fairness as each TCP connection gains more than 92% of the fair

share. However, both BLACK and AFC performance are degraded when there are fifteen 10-Mbps

bursty traffic coming to the queue because of the cache size of only 20. In this case, bursty traffic

does have an impact on the mechanism of BLACK and AFC. When the number of bursty traffic is

comparable to the cache size, those traffic could be replaced easily during the OFF period of the
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traffic. So their HitFraction statistics has to be restarted once the traffic is in the ON period again.

BLACK turns to be largely distorted as each TCP connection receives only around 30% - 40% of

the fair share (column 2 and 4). AFC, however, is still far better as each TCP connection gains 72%

- 90% of the fair share. On the other hand, SFB performs very well in these scenarios (Column 1-4

of Table22, but with a fine tuning of the rate limit threshold given that the arrival rates of bursty

traffic must be known in advance.

For a low-bandwidth bursty traffic case (column 5-8), although all of the schemes leave the

bandwidth to each bursty traffic at least 1.8 - 3 times the fair share, all of the schemes still provide

some level of protection to TCP connections, particularly when there are less number of bursty

traffic. However, when there are fifteen bursty traffic, RED, as the based line for a comparison,

clearly provides least fairness as all bursty traffic altogether take up to 60% of total bandwidth and

leave each TCP connection with a bandwidth equals to only about half of the fair throughput. Note

that there are 100 long-lived TCP connections sharing the portion of the bandwidth left from UDP,

and if there are less number of TCP connections, a proportion of per-flow TCP throughput to a

fair share would be even less. CHOKe (Table21) also provides similar fairness performance to

RED even with lower-bandwidth bursty traffic. CARE, BLACK and AFC (Table23, 24, and25)

achieve better fairness than RED and SFB on both five bursty flows case and fifteen bursty flows

case. Here, CARE estimates the number of active flows much better when the bursty traffic has a

peak rate of 1 Mbps, as opposed to 10 Mbps. Nevertheless, even with the best case of AFC, CBR

still grasp 1.8 times the fair share of bandwidth. SFB case (Table22) is different from the other

schemes because SFB needs to know a rate limit threshold in advance which should be manually

configured. Using the same setting that achieves very good fairness performance in the 10-Mbps

peak rate case (column 1-4), SFB turns to provide poor fairness performance in 1-Mbps peak rate

case (column 5-8). This result shows that although SFB could detect unresponsive traffic, it cannot

use the same setting to provide fairness for different scenarios.

5.2.6 Fair AQM schemes with TCP-friendly traffic

In this section, the problem is moved from the fairness between TCP traffic and the traffic that is

not responsive or non-TCP-friendly traffic, to the fairness between TCP traffic and TCP-friendly
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Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1 sec./1 sec. = 2 sec./4 sec. = 1 sec./1 sec. = 2 sec./4 sec.

Number of UDP 5 15 5 15 5 15 5 15

Average UDP 1698.9 666.3 1651.5 665.9 456.9 405.0 297.6 287.4
throughput (Kbps)

Average TCP 9.8 ≈ 0.0 13.3 ≈ 0.0 77.2 39.4 85.1 56.9

throughput (Kbps)

Jain fairness 0.975 0.895 0.937 0.788 0.993 0.978 0.976 0.971

index for UDP

Jain fairness 0.849 0.221 0.461 0.168 0.990 0.883 0.992 0.977

index for TCP

Table 20:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic

under RED.

Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1 sec./1 sec. = 2 sec./4 sec. = 1 sec./1 sec. = 2 sec./4 sec.

Number of UDP 5 15 5 15 5 15 5 15

Average UDP 893.9 653.3 880.3 645.0 385.2 364.4 254.3 245.16
throughput (Kbps)

Average TCP 55.3 1.9 56.0 3.3 80.8 45.5 87.3 63.2

throughput (Kbps)

Jain fairness 0.987 0.980 0.976 0.967 0.996 0.979 0.975 0.970

index for UDP

Jain fairness 0.962 0.364 0.963 0.353 0.992 0.928 0.992 0.986

index for TCP

Table 21:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic

under CHOKe.
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Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1 sec./1 sec. = 2 sec./4 sec. = 1 sec./1 sec. = 2 sec./4 sec.

Number of UDP 5 15 5 15 5 15 5 15

Average UDP 86.1 115.6 86.0 102.4 321.1 375.6 206.9 232.6
throughput (Kbps)

Average TCP 95.7 82.7 95.7 84.7 84.0 43.8 89.7 65.1

throughput (Kbps)

Jain fairness 0.984 0.958 0.984 0.969 0.993 0.978 0.974 0.966

index for UDP

Jain fairness 0.969 0.808 0.974 0.854 0.943 0.682 0.964 0.889

index for TCP

Table 22:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic

under SFB.

Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1 sec./1 sec. = 2 sec./4 sec. = 1 sec./1 sec. = 2 sec./4 sec.

Number of UDP 5 15 5 15 5 15 5 15

Average UDP 1098.7 666.4 995.8 664.8 213.0 264.8 182.0 189.5
throughput (Kbps)

Average TCP 44.4 ≈ 0.0 49.5 ≈ 0.0 89.4 60.4 90.9 71.6

throughput (Kbps)

Jain fairness 0.989 0.925 0.981 0.868 0.994 0.986 0.984 0.981

index for UDP

Jain fairness 0.989 0.235 0.888 0.235 0.990 0.973 0.989 0.990

index for TCP

Table 23:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic

under CARE.
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Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1 sec./1 sec. = 2 sec./4 sec. = 1 sec./1 sec. = 2 sec./4 sec.

Number of UDP 5 15 5 15 5 15 5 15

Average UDP 595.7 385.7 774.8 452.5 257.1 264.2 220.1 214.1
throughput (Kbps)

Average TCP 68.9 37.2 59.4 26.1 87.2 60.5 89.0 67.9

throughput (Kbps)

Jain fairness 0.760 0.572 0.753 0.775 0.924 0.835 0.937 0.921

index for UDP

Jain fairness 0.928 0.540 0.890 0.617 0.968 0.925 0.963 0.962

index for TCP

Table 24:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic

under BLACK.

Peak rate 10 Mbps 1 Mbps

Mean ON/OFF = 1 sec./1 sec. = 2 sec./4 sec. = 1 sec./1 sec. = 2 sec./4 sec.

Number of UDP 5 15 5 15 5 15 5 15

Average UDP 231.4 191.1 150.2 130.9 265.7 245.1 170.8 156.4

throughput (Kbps)

Average TCP 87.7 68.4 92.1 78.7 86.7 63.4 91.5 76.5

throughput (Kbps)

Jain fairness 0.981 0.963 0.960 0.939 0.986 0.959 0.972 0.968

index for UDP

Jain fairness 0.989 0.971 0.991 0.981 0.992 0.956 0.993 0.991

index for TCP

Table 25:A result of high-bandwidth short-lived UDP traffic sharing a link with 100 TCP traffic

under AFC.
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traffic2. As previously discussed in section2.2, TCP-friendly protocol or TCP-compatible protocol

is an end-system-based approach which is an alternative way to combat the unfairness problem,

given that all of the end users would eventually deploy these protocols. These TCP-friendly proto-

cols have been recently proposed as alternative protocols that are responsive to network congestion

and more suitable for media applications as they provide much smoother traffic, but are also aimed

to achieve the same long term throughput as TCP. Because these TCP-friendly protocols are rather

new, the fair AQM mechanisms that have been focused in this chapter so far have never been eval-

uated in scenarios with TCP traffic and TCP-friendly protocols, which utilize different back-off

mechanisms to cope with network congestion. For example, because TCP-friendly protocols are

designed to provide a smoother congestion control, they usually react in a less responsive manner

to individual packet drops. Unfairness has been reported in a number of scenarios such as IIAD

versus TCP but using drop-tail queueing [6]. Furthermore, these TCP-friendly protocols may get

penalized unfairly by the various AQM schemes and sometimes may even impose a negative im-

pact in terms of fairness; however, this aspect has not been studied yet.

However, the key question considered in this section is therefore whether the fair AQM mecha-

nisms, which fall under a router-based approach in solving the unfairness problem, actually provide

fairness when different variants of TCP compete with TCP-friendly traffic.

Well known TCP-compatible protocols include GAIMD [71], Binomial Algorithms [6], and

TFRC [27]. These protocols are used for evaluation of the fair AQM mechanisms in this section,

and are briefly described as follows.

• GAIMD or Generalized AIMD is based on the same additive increase multiplicative decrease

(AIMD) window-based mechanism of TCP provided in section2.1.1. However, the congestion

window is adjusted through an increase parametera and a decrease parameterb, and denoted as

AIMD( a,b). Under no packet loss conditions, the congestion window increases fromW toW +

a packets per round-trip time. On the other hand, in response to a packet loss, the congestion

window decreases fromW to (1− b)W . With this notation, current TCP implementations can

be referred to as AIMD(1,1/2). Since TCP’s halving of the congestion window as a result of a

single packet drop is not suitable for media applications, GAIMD variants has been proposed

to provide a smoother change in the sending rate through a decreasing parameterb of less than

2Most of the materials in this section are to be published in [11]
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1/2 such as GAIMD(1/5,1/8) or GAIMD(1,1/8).

• The family of Binomial algorithms are TCP variants that use nonlinear congestion control

by means of four control parametersk, l, a and b. Both k and l are additional parameters

introduced to express TCP-compatible congestion control such that the congestion window is

increased fromW to W + a/W k and decreased fromW to W − bW l in the case of no loss

and a single loss respectively. It has been shown that as long ask + l = 1, all Binomial

algorithms will achieve fairness with competing TCP. Two Binomial algorithm examples that

are well-suited to multimedia applications are IIAD (k = 1, l = 0) and SQRT (k = l = 0.5).

• TFRC (TCP Friendly Rate Control), a rate-based TCP-compatible protocol, utilizes TCP’s

throughput equation to adjust the sender’s rate based on feedback from the receiver. TFRC

changes the sender’s rate in a much smoother manner than TCP. Upon detecting a packet loss,

the receiver estimates and sends back a loss event rate back to the sender. With this information

combined with the calculated round-trip time (R), TCP retransmission timeout value (tRTO),

and the packet sizes, the sender can adjust the transmission rate according to the steady-state

TCP bandwidth equationT = s/(R
√

2p/3 + tRTO(3
√

3p/8)p(1 + 32p2)) [51].

Figure 71:Simulation topology for TCP-friendly traffic experiment.

For a simulation setting to evaluate fairness performance of the fair AQM mechanisms when

TCP variants compete with these TCP-compatible traffic, an asymmetric topology shown in Figure

71 has a bottleneck link has a bandwidth of 15 Mbps with a propagation delay of 20 ms. All the

traffic, with 1-Kbyte packets, are originated randomly from one of the source nodes N0 - N4 to

one of the sink nodes S0 - S4. All of the access links are connected to the routers R1 and R2 at 100

Mbps with the delay denoted in the figure. Maximum buffer space at the router R1 is set to 300
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packets. A simulation script and the settings are adapted from [27] which evaluates TFRC with

TCP traffic under RED queue.

The AQM mechanisms under evaluation are RED, CHOKe, SFB, CARE, BLACK and AFC.

Drop Tail scheme is also included as a baseline case for comparison. SFB is configured with double

sets of two levels of hash functions, each of 23 bins, which comes to a total of 46 bins. BLACK

and AFC are equipped with a cache size of 46. Theminth andmaxth threshold settings for RED,

CHOKe, BLACK, and AFC are 50 and 150 packets respectively3. CHOKe is implemented with

its self adjusting mechanism, where the region betweenminth andmaxth are divided intok=8

subregions and the number of drop candidates is set tof(i) = 2 · i (i = 1..k).

The TCP-friendly protocols included in the evaluation are TFRC, representing the case of rate-

based TCP-friendly protocols, and the window-based protocols IIAD, SQRT, and GAIMD. Since

the fair AQM schemes are designed to combat unfairness, our experiments then focus on a less

responsive GAIMD(1,1/8), which has been reported to achieve about 2.23 times the bandwidth of

competing TCP flows [26]. In this experiment, variants of TCP, i.e. Tahoe, Reno, Newreno, and

Sack TCP are included, to see an interaction between several types responsive traffic.

From the total combination of the experiments, the most important results are illustrated as

follows.

5.2.6.1 TCP vs. aggressive TCP-friendly protocol Figure72 shows simulations ofn Sack

TCP traffic competing withn GAIMD(1,1/8) under the different AQM mechanisms. The graphs

illustrate the flows’ throughput over the last 60 seconds of the total simulation time. Each mark

on the graph represents the throughput of one flow normalized to the value of the fair share of the

bottleneck link. As both types of traffic have an equal number of flows on each set run, the x-axis

only shows the number of flows for each type of traffic.

The results with Drop Tail and RED show that GAIMD(1,1/8) receives much higher band-

width than SACK. Under CHOKe, BLACK, and AFC fair AQMs, both the mean and the variance

of the normalized throughput among flows are narrower indicating a better fairness over RED.

The reason behind this observable performance is from the fact these AQMs drop packets from

large flows according to the buffer space occupied by these flows. As GAIMD(1,1/8) reduces its

3These are the Gentle RED parameters [23].
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window size at a much slower pace on each packet drop (to smooth the congestion control for me-

dia applications) than TCP(1,1/2), GAIMD(1,1/8) tends to feed more packets into the buffer than

TCP, and thus faces higher packet drop probability. However, GAIMD(1,1/8) still gains a slightly

higher share of the bandwidth than competing TCP flows even under CHOKe or BLACK, due to

the lack of complete knowledge of per-flow information. In one of the experiments (not shown

here) when BLACK is assumed to have a large enough cache size to maintain state of every flow,

almost perfect long-term fairness between GAIMD(1,1/8) and TCP can be achieved.

An interesting point is the fairness performance of SFB. Although the mean normalized through-

put of both types of traffic under SFB are close to 1.0, the variance among all flows are spread out

rather widely. One observation we found was that, even though SFB can attain fairness among the

same type of TCP traffic with or without unresponsive flows [19], it is very difficult to tune SFB’s

parameters to achieve close-to-fairness among different TCP-congestion control flows. The results

shown in Figures72, 73, and74 were obtained using the suggested parameter settings in [2, 18].

A better tuning of the parameters that updates the dropping probability more rapidly provides bet-

ter results as shown in the last image in Figure73. However, this difficulty occurs in the entire

set of our simulation experiments. Therefore, we do not recommend using SFB without having a

sensitivity analysis on the tunable parameters of the environment under consideration.

In addition, because SFB was designed to provide fairness by controlling high-bandwidth un-

responsive traffic, we could not expect to see a high degree of fairness among different type of

responsive flows. According to the SFB mechanism [19], it is rare that any responsive flow would

be classified as a misbehaving traffic. In this way, the fairness performance of TCP-friendly traffic

and TCP variants under SFB falls under the control of the packet dropping function and the hashing

which does not guarantee fairness.

5.2.6.2 TCP vs. comparable TCP-friendly protocol In contrast to an aggressive protocol,

TCP achieves about the same long-term throughput than the Binomial protocols IIAD and SQRT.

In Figure 73, it is shown that with the exception of Drop Tail and SFB, TCP and comparable

TCP-friendly protocols receive their fair share no matter the AQM scheme utilized.

A queue with a fair AQM mechanism usually allows similar flows to experience similar drop

rates, which is the basic assumption for the TCP equation model at steady state. Hence, TCP and
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Figure 72:Normalized throughput under the scenario of Sack vs. GAIMD(1,1/8), with drop-tail

queueing, RED (first row), CHOKe, SFB (second row), CARE, BLACK (third row), and AFC

(bottom) where x-axis shows the equal number of flows for each type of traffic.
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Figure 73:Normalized throughput under the scenario of Sack vs. IIAD, with drop-tail queueing,

RED (first row), CHOKe, SFB (second row), SFB with tuned parameters and CARE (third row),

BLACK and AFC (fourth row) where x-axis shows the equal number of flows for each type of

traffic.
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Binomial protocols can share the same bottleneck link in a fair manner as expected. From the

figure, it can be seen how CHOKe, BLACK and AFC improve fairness over Drop Tail and RED.

SFB however can provide good fairness only if its parameters are well tuned, otherwise a poor

fairness performance close to Drop Tail could occur. In the case of the rate-based TFRC protocol,

TCP variants receive about the same bandwidth share as TFRC under RED, CHOKe and BLACK

AQM schemes, except some cases of Reno TCP which will be explained in the following section.

5.2.6.3 Negative impact of AQM’s aggressive dropping Although fair AQM schemes could

provide fairness when responsive TCP traffic compete for the bandwidth with unresponsive traffic,

some of these schemes could provide a much inferior results when some TCP variants share a

bottleneck link with TCP-friendly traffic.

It is well known that TCP Reno typically suffers performance problems when multiple packets

are dropped from the same window of data [22]. AQM mechanisms using aggressive dropping

policies may introduce multiple packet drops which will deteriorate TCP Reno’s performance.

The simulation results shown in Figure74show that CHOKe, although gaining better fairness than

RED in various scenarios, can lead us back to the unfairness problem when Reno competes with

some TCP-friendly traffic. This degraded performance occurs because CHOKe dropsboth the

incoming packet and the sampled packet from the buffer if they are from the same flow, therefore

resulting in a higher tendency of multiple packet drops from a single window, and eventually

timeouts. In Figure77 when Reno TCP is replaced with Sack, although the problem of CHOKE

exists but the effect is not as negative as in the case of Reno TCP.

Figure75illustrates this problem comparing the congestion window behavior of a sample Reno

TCP connection under RED, CHOKe and CARE during 40 - 60 seconds of simulation time. Al-

though increasing the number of sampled packets (drop candidates) per each packet arrival provide

a better handling of multiple unresponsive flows as suggested in [52], it does the opposite for TCP

Reno. Another experiment, as shown in Figure76, confirms that unfairness between TCP Reno

and TFRC increases with the number of drop candidates. This behavior also occurs even under

Sack TCP vs. TFRC, but with much less degree of severity.

CARE faces another problem as TFRC increases and decreases its data rate at much slower

pace than TCP traffic. CARE performs the calculation of flows’ arrival rate and set a dropping
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probability only at the end of a measuring period (after the capture list is full). If a flow consumes

more bandwidth than a fair share, a high dropping probability is set for that flow for a whole next

measuring period. On the other hand, if a flow consumes the bandwidth that is less than a fair

share, almost all of its packets could enter the queue in the whole next measuring period. TFRC

has no problem with this behavior as it decreases and increases its data rate in a slower pace, and it

considers a burst of packet drops as a single loss event. However, TCP is not only more responsive

and more sensitive to a burst of packet drops. For example, from the Reno-TFRC experiment,

if Reno TCP has an arrival rate that is greater than a fair share calculated through the Jackknife

estimator, a high dropping probability is set for this flow for the next whole measuring period.

Because of the high drop probability, a congestion window of the flow in the figure is dropped

sharply after 45 seconds. During this period, new packets from this flow could hardly get into

the queue becuase the high dropping probability is set constantly during the whole period of time,

causing a decline of TCP throughput. After this period, the number of packets from this flow

collected in the capture list would be small, resulting in a very low dropping probability calculated

for the next period. Consequently, the congestion window is expanded until the queue is full or a

new dropping probability is set, as shown in the period of 48 - 56 seconds, and the cycle repeats.

On the other hand, BLACK drops packets less aggressively and the dropping probability is

dynamically adjusted according to a flow’s HitFraction. This type of performance degradation does

not occur under BLACK, except in the case of BLACK mechanism when it highly overestimates

the number of active flows and over-punishes multiple packets. However, with the modification that

incorporates Direct Bitmap, AFC controls the fairness performance very well. AFC also achieves

similar fairness performance in this case because of the dynamically adjusted dropping function.

In conclusion, the results in this TCP-friendly section show the better performance of CHOKe,

BLACK and AFC even when traffic with less responsive congestion control such as GAIMD

(1,1/8) co-exist with TCP, despite the fact that GAIMD still gains a slightly larger portion of the

bandwidth. For TCP-friendly protocols with congestion control comparable to TCP, the fair AQM

mechanisms provide only a small improvement over RED if at all, in a number of cases. This

shows that RED is sufficient to maintain adequate fairness for a number of TCP-compatible pro-

tocols. However, with little extra complexity, better fairness is obtained by deploying CHOKe,
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Figure 74:Normalized throughput under the scenario of Reno vs. TFRC, with drop-tail queueing,

RED (first row), CHOKe, SFB (second row), CARE, BLACK (third row), and AFC (bottom)

where x-axis shows the equal number of flows for each type of traffic.
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Figure 75:Congestion window behavior of TCP Reno flow number 5 under RED, CHOKe, and

CARE during a time frame of 40-60 seconds.
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Figure 77:Normalized throughput under the scenario of Sack vs. TFRC, with drop-tail queueing,

RED (first row), CHOKe, SFB (second row), SFB with tuned parameters and CARE (third row),

BLACK and AFC (fourth row) where x-axis shows the equal number of flows for each type of

traffic.
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BLACK, and AFC, especially in the case of the less responsive AIMD protocol. In addition, these

AQM mechanisms shield the system against unresponsive traffic. Care should be taken in those

scenarios where TCP variants sensitive to a burst of losses are used, such as TCP Reno. CHOKe

and CARE are found to be too aggressive in dropping packets, since it drops multiple packets at

the same time, and introduces bursts of losses. Lastly, the fairness performance obtained with SFB

is sensitive to the parameters chosen. Without proper parameter tuning, SFB produces unexpected

inferior results, even in a scenario with TCP-friendly protocols with congestion control comparable

to TCP. The results in this section indicate that an AQM scheme must be chosen not only based on

its performance or capability to deal with unresponsive flows as usually done but also considering

its performance when other types of flows are included, such as TCP-friendly sources.

5.2.7 Complexity

In terms of space complexity, although AFC requires additional fields to store credit information

and more memory to store byte values rather than packet values, overall it still needs only small

size of a HBF cache memory to hold the candidates of high bandwidth unresponsive flows, in

a similar way as BLACK. The experiments show that with a small memory, enough to hold the

information of 20 long-lived flows, AFC could achieve very good fairness performance even with

the presence of 10,000 web sessions in background (Section5.2.5.1).

Computational complexity is also not high and practical to be deployed. Rather than searching

through the HBF cache memory to access any recorded item, the cache memory can be imple-

mented as a linked list with a hash table as an external index. In this manner the complexity to

access the item in the cache memory would be only O(1). All the computations, i.e.HitFraction

and a dropping probability, are only performed once per an arrival of a packetthat only are from a

flow whose record is stored in the cache memory. This could be less complex than multiple hash-

ing with different functions of SFB and significantly less complex than the calculation of CARE.

For AFC, it requires one extra computation for the credit information according to Equation5.2.

However, because the calculation is only needed for those flows that have their information stored

in the HBF cache memory which is, in general, merely a fraction of the total number of active

flows in the real network.
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Besides, with the Direct Bitmap method, the number of active flows is calculated with small

amount of memory as previous described in Chapter4 and low CPU overhead using one simple

equation (Equation??) once after each period.

For SFB, substantial amount of memory is required, although relatively low, as not only mul-

tiple levels of hash tables are required, double moving hash function that prevents high-bandwidth

traffic from being classified as misbehaving traffic forever would double the amount of memory.

SFB also requires a search through multiple levels of hash tables for the minimum dropping prob-

ability to be dropped for each flow. On the other hand, CARE is the most complex scheme. As

discussed in the previous chapter, CARE requires a large amount of memory (large capture size)

to store enough information in order to have an accurate estimation of the number of active flows.

In addition, a large capture size implies a much higher complexity in order to build the capture fre-

quency table and calculate the coefficients with complex equations using the Jackknife estimator.

5.3 MULTI-HOP FAIRNESS

This section provides a brief discussion that BLACK or AFC not only provide per-hop fairness

discussed in all of the previous sections, but also provide fairness in multi-hop scenario. Multi-hop

fairness is to ensure that when different traffic flows are from different sources and to different

destinations, a fair AQM scheme does not blindly regulate traffic flows to a fair share while re-

sources may be plentiful in some link of the end-to-end paths associated to those flows. A parking

lot scenario according to RIAS (Ring Ingress-Aggregated with Spatial Reuse) fairness reference

model [40] can be used to demonstrate multi-hop fairness.

A parallel parking lot scenario is shown in Figure78. The flows in dash line share the band-

width of the same bottleneck link from node 4 to node 5, thus each of them receive an equal share

or 25% of the link bandwidth. Since one of these flows to node 5 is originated from node 1, it

shares the link connecting node 1 and node 2 with the traffic showing in a solid line flowing from

node 1 to node 2. If node 1 strictly provides fairness to these two flows (one from node 1 to node

5 and another one from node 1 to node 2) without considering the available resource, the flow in a

solid line should also receive only 25% of the 1-2 link bandwidth. However, providing fairness in

that way would only result in a link underutilization. Ideally, a flow in a solid line should receive
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Figure 78:Parallel parking lot scenario.

75% of a link bandwidth.

BLACK’s and AFC’s operation fit well in this scenario as both of them only exercise their

fairness mechanism only when congestion occurs; no packets are dropped if the link is not fully

utilized or with empty queue. To support this statement, a simulation is set up using the parking

lot scenario showing in Figure78, where the links’ bandwidth are set to 10 Mbps. A flow from

node 1 to 5 has an arrival rate of 2.5 Mbps, or 25% of the link bandwidth. A flow from node 1

to 2 has an arrival rate of 10 Mbps or 100% of the link bandwidth. The result in Figure79 shows

that with AFC, the flow from node 1 to 2 receive a bandwidth of approximately 7.5 Mbps, or 75%,

according to the ideal case described above4. This experiment is to show that BLACK and AFC

could perform effectively, not only in terms of per-hop fairness, but also multi-hop fairness.

5.4 SUMMARY

In this chapter, AFC is proposed as an alternative fair AQM solution apart from BLACK scheme

previously discussed in Chapter3. AFC aims to provide better fairness and overcome the limita-

tions of BLACK, and the other schemes, by including several newly designed components. First,

AFC collects the packet size information so a byte count is performed rather than aHit count,

so that the unresponsive flows with different packet sizes would receive an equal amount of band-

width. Second, Direct Bitmap or its variants, an alternative light-weighted estimator for the num-

ber of active flows discussed in Chapter4, is used to improve the estimation accuracy. Third, the

buffer occupancy fraction approximation is improved by collectingHitFraction statistics when

4BLACK achieves the same result as AFC, so only the result of AFC is shown here.
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Figure 79:Simulation result of the parallel parking lot scenario; showing the throughput obtained

by the flow from node 1 to node 2 (10 Mbps) and the flow from node 1 to node 5 (2.5 Mbps).

the packets enter the queue, rather than sampled from the queue. Lastly, a new dropping policy

using a credit-based mechanism is introduced to provide a better fairness. With the credit-based

mechanism, the packets are allowed to enter the queue even if aHitFraction is higher than a

FairFraction, if a flow has available credit left, such as from a previous back-off period of a re-

sponsive traffic. In this way, responsive flows would not be over-penalized with a more aggressive

dropping function, while fairness is achieved.

The second half of this chapter presents the the simulation study on the performance of AFC

comparing to the other AQM schemes including RED, CHOKe, SFB, CARE, and BLACK. Here,

BLACK is modified such that the estimation of the number of active flows is replaced with Direct

Bitmap, for a fair comparison with AFC. The comparison was conducted under different scenarios

and the results can be summarized as follows.

In a scenario with streaming unresponsive traffic, AFC outperforms all the other AQM schemes

in providing throughput fairness when high-bandwidth unresponsive traffic compete with long-

lived TCP traffic over a bottleneck link. Even when the queue is attacked by multiple high-

bandwidth unresponsive traffic, AFC still protect TCP traffic from being shut down and in fact
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give each TCP connection a bandwidth approximately equal to a fair throughput. CHOKe and

CARE could only provide some level of fairness when the arrival rate of unresponsive is mild or

moderate. CARE’s estimation of a number of active flows is inaccurate when an arrival rate of

unresponsive traffic is high comparing to the aggregate arrival rate. SFB, on the other hand, could

achieve fairness only when its rate limit threshold is well adjusted which could only be done man-

ually, or a separate queue is needed to treat the detected misbehaving traffic. Although BLACK

provides similar fairness performance as AFC, its dropping policy usually causes detected flows

to gain somewhat more than a fair share of bandwidth. In contrast, AFC provides better fairness

and does not introduce high throughput fluctuation to streaming traffic, particularly CBR traffic.

Besides, AFC is the only scheme that could provide fairness when different unresponsive traffic

come with different packet sizes.

For the unfairness problem among TCP connections with different round-trip delay, BLACK

and AFC help reducing per-flow throughput difference among flows. However, SFB does the

opposite because its mechanism provides a rate limit only to those flows that are detected as being

unresponsive. Undetected flows would be controlled by a dropping function that does not guarantee

fairness.

For a short-lived traffic scenario, SFB, CARE, BLACK and AFC fairness performance are not

interfered with different web traffic loads in the background. In other words, different elephant

(large) flows (both unresponsive and responsive flows) receive equal share of bandwidth without

any interference from mice (small) flows, according to mice and elephants model previously dis-

cussed in Section3.2. CHOKe, on the other hand, has inferior performance as not only CBR

traffic gain higher throughput with more web traffic load, but fairness among TCP traffic are also

significantly degraded. The results for high-bandwidth short-lived traffic show that all of these

schemes cannot keep the bursty traffic down to a fair share because of their limited memory space

and the way they keep flow information. However, these AQM schemes could still protect TCP

traffic by providing adequate amount of bandwidth if the arrival rate of the bursty traffic is not very

high. This experiment also confirms the problems of CARE and SFB – CARE’s estimation of the

number of active flows is inaccurate when the arrival rate of unresponsive traffic is high, and SFB

needs a manual adjustment of a rate limit threshold for each scenario, which is more difficult for

bursty traffic, in order to provide a good fairness performance.
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In the last section of experiment, many TCP-friendly protocols which aims to achieve about the

same amount throughput as TCP connection, while providing less throughput fluctuation for media

applications, the fair AQM schemes work well in their design environment such as under RED or

Tail Dropping. But under some schemes, fairness between TCP-friendly traffic and TCP traffic

may not be achieved. SFB has a problem selecting an appropriate setting for its parameters under

different scenarios to provide good fairness. CHOKe and CARE have found to be too aggressive

for some sensitive TCP variants such as Reno TCP, and thus TCP-friendly traffic which is usually

more robust gain much higher bandwidth under these AQM schemes.

In summary, BLACK with Direct Bitmap and AFC are the best overall fair AQM schemes

that provide throughput fairness in a large number of different scenarios, both per-hop and multi-

hop case. Comparing to BLACK, AFC provides better fairness in almost all scenarios, much less

throughput fluctuation, and an ability to handle bursty traffic and traffic with different packet sizes.

Nevertheless, AFC requires higher overhead than BLACK as it needs to calculate a flow’s credit

and needs an additional field to hold this information for the flows that are stored in the HBF

cache. An implementer has a choice to deploy BLACK or AFC based on the trade-off between the

advantages of AFC and its overhead.
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6.0 CONCLUSIONS

6.1 CONTRIBUTIONS

In this dissertation, the Internet’s current problems of potential bandwidth unfairness and conges-

tion collapse have considered. Without any network mechanism to prevent it, unresponsive traffic

can gain much more bandwidth than is a fair share, and it could even shut down responsive traffic

sharing the same bottleneck link. To avoid high complexity and memory consumption, Active

Queue Management (AQM) with no or partial state information is considered. Existing fair AQM

schemes of this type have limitations which could be problematic for the provision of fairness in

any of several scenarios or if widely deployed. To address the drawbacks of these mechanisms,

two AQM schemes are proposed – BLACK and AFC. Both of them utilize only a small amount

of memory to handle high-bandwidth unresponsive flows and keep their bandwidth usage to about

a fair share. The superiorit of the two schemes have been demonstrated through a wide range of

simulation experiments. Specifically, the major contributions of this dissertation are as follows:

• This paper provides an investigation of the existing fair AQM schemes that combat the un-

fairness problem using no or partial state information. These schemes provide some level of

fairness in some scenarios, but they fail to achieve anything close to fairness in others. Both

qualitative and quantitative information are provided in this examination of their limitations

[10].

• This paper develops a novel fair AQM mechanism, called BLACKlisting unresponsive flows

(BLACK). This mechanism aims to provide fairness by enabling equitable sharing of buffer

space by the active flows. Based on the fact that most Internet traffic is carried by a small num-

ber of flows, BLACK uses only a small amount of memory to detect and control unresponsive
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traffic as well as to achieve better fairness among TCP traffic flows with different round-trip

delays [9].

• This paper presents a comparative study of the means of estimating the number of active flows.

This estimation is crucial for some fair AQM schemes, including BLACK. In a large number

of simulation experiments performed for several estimation algorithms, Direct Bitmap utilizes

the lowest amount of memory with very low computational complexity. The results of this

study could apply not only to a fair AQM scheme; it would also benefit other applications that

operate with low memory resource and CPU overhead [10].

• This paper develops the Achieve Fairness using a Credit-based (AFC) mechanism. While AFC

shares some of the concepts of BLACK, it has several newer components that overcome draw-

backs and limitations of existing schemes including BLACK. Not only does AFC handle heavy

unresponsive flows better, it also improves fairness of network bandwidth distribution among

TCP connections through different round-trip delays. It achieves good fairness even under con-

ditions of bursty traffic and when handling traffic with different packet sizes. In addition, AFC

provides smoother transfer rates for unresponsive flows that are usually transmitting real-time

traffic.

• This paper presents the first comprehensive performance evaluation of the fairness of different

fair AQM schemes for TCP-compatible protocols and TCP variants. We found that several

AQM schemes that provide good fairness performance when unresponsive traffic co-exists

with TCP traffic might cause inferior fairness performance when TCP-friendly traffic designed

to fairly share the bandwidth with TCP traffic are included [11].

6.2 SUMMARY

At present, TCP is the de facto standard protocol that is widely deployed on the Internet due to

the success of its congestion control mechanism which enables end hosts to cooperatively adjust

their transmission rates according to network conditions and, thus, share the available bandwidth

fairly among a large number of users. However, streaming media traffic is experiencing tremendous

growth. Real-time applications using the UDP protocol are typically considered to beunresponsive

traffic because UDP provides no end-to-end congestion control. These applications tend not only to
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generate more traffic, but they also do not back off in response to network congestion. As a result,

when TCP and UDP-based applications share the same bottleneck link, the unfairness problem

may arise. In a severe case, a congestion collapse problem can occur [25].

Recently, a wide variety of applications and congestion control mechanisms have emerged, and

these may create an uncooperative environment for end hosts. As a result, the Internet’s reliance

on end-host mechanisms to prevent unfairness and congestion is potentially risky for network per-

formance and stability. Consequently, router-based mechanisms that address the fairness problem

have been widely investigated over the past several years.

Several mechanisms have been proposed to ensure fair shares of bandwidth to competing flows.

Among the most important ones are fair scheduling mechanisms or fair per-flow packet dropping

techniques such as Longest Queue Drop (LQD) [68], Fair Random Early Detection (FRED) [45],

and Balanced-RED (BRED) [4]. These schemes are based on per-flow information. However, they

usually require a considerable amount of memory and CPU processing power; these demands have

prevented them from being widely deployed due to scalability and complexity concerns.

Instead, recent trends to solve the unfairness problems focus on fair active queue management

(FAQM) schemes that maintain no or partial state information in order to track and regulate high-

bandwidth or misbehaving flows. Keeping only partial state information is possible due to the fact

that most of the Internet traffic is carried by only a small number of connections, while the remain-

ing large number of connections are low bandwidth flows [29, 38]. Recently, several lightweight

fair AQM schemes have been proposed. These have low computational and space complexity,

and they don’t need extra cooperation from the devices at the edges of the network in order to

achieve long-term fairness. These schemes include CHOKe [52], Stochastic Fair Blue (SFB)[19],

and CARE [8]. Although the literature suggests that most of these schemes provide good fairness,

they still present several problems in different scenarios.

BLACK is the first AQM scheme proposed in this research that provides good fairness perfor-

mance using a small amount of memory, while overcoming the limitations of the existing schemes.

As explained separately by Suter et al. [68] and Laksham and Madhow [42], by controlling the

share of buffer space used by the active flows, throughput fairness can be achieved through a FIFO

queueing discipline using a memory management mechanism similar to LRU technique [38]. In

the BLACK scheme, only large flows such as those that usually cause congestion are tracked. The
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fraction of buffer space used by these flows, referred to asHitFraction, is monitored. If a flow

utilizes a more than a fair share of, the packets of the flow are dropped according to how much extra

buffer space is occupied by the flow. A fair proportion of the bandwidth is an inverse value of the

number of active flows calculated by the estimation and this is determined by one of the modules in

the BLACK scheme. The results from the simulation experiments show that BLACK outperforms

the other schemes ( i.e. CHOKe, SFB, and CARE) in terms of throughput fairness performance,

especially in a scenario in which unresponsive traffic has a high arrival rate compared to the link

bandwidth. BLACK also reduces unfairness among TCP connections with different round-trip

delays.

Nevertheless, BLACK still has some limitations of achieving fairness in some scenarios, such

as unfairness due to an inaccuracy in the estimation of the number of active flows, unfairness when

packets are of different sizes, and high variance in the throughput of the flows. These problems,

which are not unique to BLACK but also the other schemes, might cause a degradation of their

fairness performance. These issues lead to an alternative mechanism to estimate the number of

active flows and a development of another fair AQM scheme, AFC.

BLACK’s original estimation of the number of active flows is derived from a false assumption

that all incoming traffic is of similar intensity. Besides, small buffer size could add up more inaccu-

racy. Two alternative approaches were recently proposed in the literature: the bitmap approach and

the CR-model approach. In extensive experiments that have been conducted, the bitmap approach

has been shown to be reliable under a wider range of scenarios than the CR-model approach, which

is used by the CARE mechanism. In addition, the bitmap approach is far less complex and uses

much less memory space than the CR-model approach.

AFC, Achieve Fairness using a Credit-based mechanism, has been developed to overcome the

limitations of BLACK and the other schemes while requiring only a little more overhead than

BLACK. AFC includesDirect Bitmap, a simple bitmap approach to estimating the number of ac-

tive flows, and it is enhanced with other new components, such as thecredit-based mechanism.

This mechanism helps AFC provide better fairness in a wide range of scenarios without being

overly aggressive to responsive traffic. Simulation results show that AFC not only provide better

fairness than other schemes, even when handling multiple high-bandwidth traffic. AFC also pro-

vides smoother transfer rates for unresponsive flows that are usually transmitting real-time traffic.
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While the other schemes cannot achieve fairness for traffic flows with different packet sizes, AFC

approaches the problem collectingHitFraction statistics at byte level rather than at packet level.

Another experiment shows that AFC and BLACK can also reduce the unfairness among long-lived

TCP connections with different round-trip delays. Other schemes, such as SFB, provide good fair-

ness with unresponsive traffic when there is a well-tuned rate limit, but fail to reach good fairness

performance in this case. In a realistic scenario, a variety of web traffic in the background does not

interfere with the fairness performance of AFC and BLACK, but it does significantly degrade the

performance of CHOKe. In the case of bursty traffic, although these AQM schemes may not be

able to provide perfect service since they do not maintain long-term state information, AFC still

manages to provide a reasonably fair share of bandwidth, even in this case. Overall, AFC has been

shown to be the most effective fair AQM scheme in terms of providing fairness under a wide range

of scenarios.

This research is also the first comprehensive performance evaluation of the fairness of different

fair AQM schemes in the presence of TCP-compatible protocols and TCP variants. While aggres-

sive TCP-compatible traffic flows obtain substantially higher bandwidth than TCP traffic flows

when they co-exist under RED or droptail, the shares of bandwidth are much more equal under

BLACK and AFC than under other fair AQM schemes. For TCP-friendly protocols with conges-

tion control mechanisms comparable to TCP, the fair AQM mechanisms provide, at best, only a

small improvement over RED in a number of cases. Inferior fairness performance can occur for

CHOKe, CARE, and SFB. CHOKe has been found to be too aggresive in dropping packets, since

it drops multiple packets at the same time and might create more unfairness for responsive traffic

flows that are sensitive to multiple drops. CARE has a similar problem. Without a proper parameter

tuning, SFB produces unexpectedly inferior results, even in a scenario with TCP-friendly protocols

with congestion control comparable to TCP. In other words, some fair AQM schemes might cause

even poorer fairness performance than RED or droptail in the presence of TCP-friendly traffic

flows that were originally designed to share bandwidth with TCP traffic in a fair manner. However,

with little extra complexity, much better fairness is obtained with BLACK or AFC. In conclusion,

an AQM scheme must be chosen not only based on its performance or capability to deal with un-

responsive flows, but also based on its performance when other types of flows are included, such

as TCP-friendly sources.
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In addition, Appendix B includes a brief discussion of an alternative method of controlling

traffic in a best-effort IP network. BLACK with a little modification is shown to be capable of

providing service with a different policy - such as lower packet drops - to high-bandwidth traffic

flows given that they do not utilize a bandwidth over a certain threshold.

6.3 FUTURE RESEARCH

In this dissertation, BLACK and AFC have demonstrated superior performance over existing non-

perflow fair AQM schemes in a large number of scenarios. However, it would be interesting to

find out if further performance improvement is possible. For example, these fair AQM schemes

cannot achieve the same level of fairness with bursty traffic flows as they can with the other types

of traffic. An additional mechanism might be needed to better detect bursty traffic flows; alterna-

tively, keeping the flows in a cache memory may be a smarter way to handle the difficult ON-OFF

behavior of this type of traffic.

Underlying AQM mechanisms of BLACK and AFC could also be replaced by a scheme bet-

ter than RED. RED has several advantages over the drop-tail mechanism in its ability to signal

congestion to responsive sources at an early stage, thus preventing a problem of global synchro-

nization and keeping the average queue size low. However, the way RED estimates the average

queue size can cause instability in the network, as detailed by Arce et al. [5]. These drawbacks

could be overcome either by a technique in the authors suggest [5] or by replacing the underlying

RED queue with another AQM scheme, such as PI Controller [31], that provides better control of

queue lengths. The performance of BLACK and AFC with new underlying AQM mechanism may

or may not be better because the characteristics of the traffic after passing through their dropping

policies could be much different than the traffic model assumed by control-theoretical based AQM

schemes such as PI Controller.

It would also be interesting to apply BLACK or AFC to a best-effort class in a DiffServ net-

work. Even though DiffServ architecture provides guarantee services in EF and AF classes and

non-guaranteed service in a best-effort class, a network operator may not want to leave a best-

effort service entirely unregulated. As traffic flows in AF class have higher priority for gaining

available bandwidth, congestion can easily occur in a best-effort class. In this circumstance, high
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bandwidth unresponsive traffic can still gain a high proportion of bandwidth, leaving responsive

traffic to suffer with even more severe congestion. Thus, the problem of unfairness could occur

in a best effort class. Some side problems are also possible. For example, with the incentive that

unresponsive traffic could gain as much bandwidth as possible and the ability of newer streaming

media applications to adapt to network congestion, some traffic flows that should be in AF class

may class themselves in a best-effort class in order to grasp most of the bandwidth and avoid pos-

sible higher billing cost in AF class. These problems of unfairness, and whether or not BLACK

and AFC could be good answers to them, should be further investigated.
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