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ABSTRACT

Variance Components based models are commonly used for linkage and association mapping of

quantitative traits. Score Tests based on these models are generally more robust to various mod-

eling assumptions than the corresponding likelihood ratio tests. They are also computationally

much simpler than the likelihood ratio tests, making them the natural choice for whole genome

scans, which have become increasingly common with the emergence of high-throughput genotyping

technologies. However the popularity of score statistics have been limited, due to several practical

issues, such as lack of availability of software and guidelines for choice of score statistic variants.

In this dissertation, we develop novel score statistics for both linkage and association mapping,

elucidate the theoretical properties of these and of the existing variants, and also compare some of

the existing and proposed score variants using simulation. Analytical arguments and simulation re-

sults are used to develop guidelines for choice of appropriate score variants under different practical

situations.

In this dissertation, we are primarily concerned with identifying robust and powerful score

statistics for detecting genetic susceptibility loci for complex diseases by mapping underlying quan-

titative phenotypes. Unlike Mendelian disorders, complex diseases in humans typically have a large

number of modest genetic effects, which cumulatively have a significant impact on the disease. The

work in this dissertation is aimed at maximizing the power of genome scans to detect more of these

small genetic effects. This is of considerable public health significance, as the identified genetic

variants can be followed up to gain important insights into the etiology of the disease, which can

further lead to development of screening tests and preventive and therapeutic interventions for

complex diseases.
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1.0 INTRODUCTION

1.1 STRUCTURE OF THIS DISSERTATION.

The broad aim of this dissertation is to identify score statistics for linkage and association mapping

of quantitative trait loci (QTLs) that are powerful and at the same time robust to various model-

ing assumptions. It is broadly divided into four chapters. Below we briefly outline specific issues

discussed in each chapter.

In the present chapter 1 - “Introduction,” we give some background on QTL mapping and

on some of the standard approaches to linkage and association mapping of QTLs. We define score

statistics and discuss how they address some of the limitations in the existing approaches for QTL

mapping.

In chapter 2 - “Score Tests for QTL Mapping,” we describe some of the standard genetic

models used for quantitative traits, and discuss the validity of the assumptions required to moti-

vate these models. We also propose a new model that incorporates both linkage and association

parameters and as such allows the derivation of both linkage and association tests. We describe the

score tests under the standard genetic models as well as those under the proposed model. We also

demonstrate some robustness properties of score tests to genetic models and to selected sampling.

In chapter 3 - “Score Tests for Linkage Analysis,” we restrict our attention to the standard

Variance Components based score statistic for linkage. Several variants of this score have been pro-

posed in the literature with little or no guidelines regarding the best choice in any given scenario.

We categorize the existing variants as well as propose some new score variants. We conduct an ex-

1



tensive simulation study to compare the existing and the proposed variants, in terms of robustness

of type I error and power under different trait distributions, ascertainment schemes and genetic

models. Based on analytical arguments and simulations results we propose general guidelines for

choosing appropriate score variants based on study design, normality of phenotype and other con-

siderations.

In chapter 4 - “Score Tests for Association Analysis,” we develop novel score-based statistics

for family based association mapping of quantitative traits. These statistics try to use maximal in-

formation from a family while protecting against stratification. Using simulations, we compare the

proposed score statistics against some standard ones. We consider modifications of these statistics

to handle missing genotypes and the presence of “known linkage” and derive some recursive and

closed-form expressions for conditional genotype moments required in computing these statistics.

Finally, we discuss some preliminary ideas to construct score statistics for association that are free

of nuisance trait parameters.

In chapter 5 - “Discussion and Future Work,” we highlight some of the limitations of the

methods described in this dissertation and discuss possible directions of future research on mapping

of quantitative traits using score statistics.

1.2 QTL MAPPING BACKGROUND

A quantitative trait is any phenotype expressed as a continuum of values, as opposed to binary

traits, which take on two values (e.g., affected/unaffected or affected/unknown). Most methods

developed for mapping either kind of trait can be used for the other by assigning numerical codes to

the binary traits or dichotomizing the quantitative traits, although the specific assumptions of the

methods may not be appropriate in all cases. Typically, in humans, most gene mapping methods

adhere to the distinction rigorously and, in general neither approach can claim to be superior to

the other in all cases. Genes or susceptibility loci mapped using quantitative traits are termed

as Quantitative Trait Loci (QTLs), although the QTLs can possibly be identical to loci mapped

using the binary disease status, particularly when the disease is defined (or diagnosed) based on

2



the underlying quantitative trait(s). An important advantage of using the underlying quantitative

phenotype(s) (instead of the binary end-point trait) is that they are not affected by misdiagnoses due

to subjective diagnostic criteria. Also, coding of sub-clinically affected individuals as “unaffected”

or “unknown” can adversely affect the power to detect linkage or association, which can be a

concern particularly for late-onset diseases. Quantitative traits, on the other hand, allow modeling

of the complete observed variation of the phenotype without losing any information. Sometimes,

this comes with a price to pay in terms of too many parametric assumptions, for example about

the distribution of the phenotype. Another concern may be that modeling the full variation can

sometimes lead to genes that control normal variation in the phenotype and that are not involved

in the etiology of the disease. This is less of a concern when dealing with families ascertained

via affected probands than when dealing with randomly selected families. Sometimes multivariate

(quantitative) phenotypes can better approximate the true disease status than a single quantitative

trait. In this dissertation, we will confine our discussion to QTL mapping methods with a single

continuous phenotype. The phenotype under consideration can be a neutral one such as height, or

one underlying a disease such as blood sugar level.

In humans, QTL mapping methods can be classified into two broad classes, namely “linkage”

and “association” mapping methods. Linkage mapping tries to locate genes controlling the trait

by detecting the cosegregation (limited or no recombination events during meiosis) of a gene and

a nearby marker locus within a family. Association mapping, on the other hand, tries to detect

coincidence (linkage disequilibrium or LD) of a disease allele with a marker allele in a population,

caused by an interplay of historical events such as mutation, founder effects, recombination, admix-

ture etc acting on the population as a whole. While linkage by its definition can only be detected

using family data, association mapping can be both “population-based” and “family-based.” In

this dissertation, we will primarily be concerned with QTL mapping with family data, using both

“linkage” and “association” techniques.

Linkage disequilibrium usually operates over small distances, whereas linkage can theoret-

ically exist between loci located at opposite ends of a chromosome. Hence, association mapping

is usually perceived as a more powerful approach for localizing disease genes. But association (or

LD) can occur because of factors other than proximity with the disease locus, such as population

stratification, admixture or recent mutation or founder effects, which as a result can be potential

confounders. Presence of strong linkage, on the other hand, directly correlates with proximity of

disease loci. Also, linkage can be detected using fewer markers than association, which typically

3



requires a very dense marker map. This issue is becoming less and less important with emergence

of high throughput genotyping technologies. Still, dense genome-wide scans are not yet easily af-

fordable to all investigators. Hence, linkage analysis remains a popular way to narrow down regions

on the genome (particularly in absence of biological candidates), often followed by association map-

ping in the identified candidate regions. At the same time, genome-wide association (GWA) studies

have become practical for some investigators and have started to replace the two-step linkage fol-

lowed by association approach. GWA studies must ensure that the association mapping statistics

be designed to protect against confounding factors such as admixture, while being computation-

ally feasible. In this dissertation, we will attempt to identify “linkage” and “association” mapping

statistics that are computationally fast, protect against confounders, and are relatively robust to

modeling assumptions.

1.3 STANDARD METHODS FOR LINKAGE AND ASSOCIATION MAPPING

Linkage analysis methods for quantitative traits can be broadly classified into two categories namely

“likelihood-based” and “regression-based.” The most popular likelihood-based method performs a

likelihood ratio test assuming the Variance Components model (e.g., Lange et al. 1976; Falconer

1981; Hopper and Mathews 1982; Amos 1994; Almasy and Blangero 1998), and is known

as the Variance Components (VC) approach. This model is discussed in detail in Chapter 2. It

is a powerful and flexible approach, as the model can include additive and dominance effects of

the major gene as well as other random effects such as polygenic effects and other fixed effects

such as covariates. Because of the likelihood setup, arbitrary hypotheses can be tested. In spite of

the popularity of this method, it has some disadvantages, namely that it can be computationally

intensive, particularly for dense genome scans. More importantly, it is a valid test (i.e, has a correct

type I error) only when the assumption of normality is correct and also suffers from considerable

loss of power when that assumption is violated (Allison et al. 1999). The limitations of the VC

method are partly addressed by the regression-based methods. These methods usually exploit the

correlation between some function of the trait values and the estimated marker IBDs (e.g., Hase-

man and Elston 1972; Sham and Purcell 2001; Sham et al. 2002) in the presence of linkage

between the trait and the marker. These are generally computationally simple and are usually valid

tests irrespective of the trait distribution. Unlike the VC approach, these methods are also robust
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in terms of type I error to selected sampling and to misspecification of trait parameters. However

some of these methods such as the Haseman and Elston (HE) regression (Haseman and Elston

1972) are considerably less powerful than the VC, when the normality assumption holds.

Association mapping of QTLs can be population-based or family-based. Population based

designs sample unrelated individuals from the population. The most popular population-based

design is the “case-control” study design. In this design, the estimated frequency of the marker

allele is compared between case and control individuals. In presence of association, i.e. when the

marker allele controls the trait or is in LD with the trait predisposing allele, the estimated allele

frequencies are expected to be different. This design is more popular for binary disease traits but

can be applied to quantitative traits by assigning Case/Control status using thresholding of the

continuous trait (e.g., Hegele et al. 1999). Population-based approaches by contrast use the full

variation of the quantitative trait instead of thresholding (e.g., Allison 1997; Barrett 2002).

Population-based approaches are powerful, require small sample sizes and are computationally fast.

But since they may detect spurious association due to population substructure, it is not possible

to separate spurious associations from real ones in this design.

Family-based designs for association mapping can be constructed to guard against confound-

ing factors. The first family based design, the TDT (Transmission Disequilibrium Test) design, was

proposed in the context of binary traits (Terwilliger and Ott 1992; Spielman et al. 1993). Ever

since, most association mapping methods for QTL mapping have attempted to extend the TDT

design for quantitative traits. One such popular method uses a likelihood-based approach similar

to the VC (Fulker et al. 1999; Abecasis et al. 2000; Abecasis et al. 2001), implemented in the

software QTDT (Abecasis et al. 2000). The other popular approach is a non-parametric approach

originally proposed by Rabinowitz (1997) and implemented in the software FBAT (Horvath

et al. 2001). There have been various extensions of the FBAT procedure (e.g., Rabinowitz and

Laird 2000; Laird et al. 2000; Whittemore and Halpern 2003). These statistics are similar to

the regression-based linkage mapping approach and use the correlation between the marker allele

transmissions and the phenotype in a way that protects against population stratification effects.

Throughout this dissertation, we will use the abbreviations QTDT and FBAT for the methods of

Fulker et al. (1999) and Rabinowitz (1997), respectively, and their subsequent extensions.
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1.4 LIMITATIONS ADDRESSED BY SCORE STATISTICS

The score test (Rao and Poti 1946) is a computationally simpler alternative to the likelihood ratio

test (LRT), and is asymptotically as powerful as the LRT for local alternatives (i.e., alternatives

close to the null hypothesis). Since local alternatives are usually harder to detect, local optimality

almost always guarantees an overall powerful statistic. The computational simplicity of the score

statistic comes from the fact that it only involves the first derivative of the log-likelihood at the

null value of the parameter and does not require the Maximum Likelihood Estimate (MLE) of the

parameter. Hence, unlike the LRT, it does not involve maximization of the likelihood and can

often be expressed in simple algebraic form. The general form of the score test statistic for a single

parameter can be written as follows.

T =
S(X)√
n I(θ0)

=
∑n

i=1 S(xi)√
n I(θ0)

,

where S(X) =
∑
i

∂log(L(xi, θ))
∂θ

∣∣∣
θ=θ0

and I(θ0) = −E

[∑
i

∂2log(L(xi, θ))
∂θ2

]
θ=θ0

.

Here X = (x1, . . . , xn) denotes n independent data points, θ the unknown parameter, θ0 its null

value and L(x, θ) is the likelihood function for a single observation. S(X) is known as the “score”

and I(θ) is known as the “information.” The score statistic can be completely generalized to

multiple parameters including nuisance parameters (Rao 1948). If θ denotes a vector of parameters

of interest and ν denotes a vector of nuisance parameters, then the score test for H0 : θ = θ0 takes

the form

T = Sθ0,ν̂0(X)′ I−1(θ0, ν̂0) Sθ0,ν̂0(X),

where Sθ0,ν̂0(X) =
∂log(L(X, θ, ν))

∂θ

∣∣∣
θ=θ0,ν=ν̂0

and I(θ0, ν̂0) = −E
[
∂2log(L(X, θ, ν))

∂θ ∂ν

]
θ=θ0,ν=ν̂0

. (1.4.1)

Here ν̂0 is the MLE of ν under the constraint θ = θ0.
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Apart from the attractive properties mentioned above, score statistics also possess another

distinct advantage over the LRT, namely that they can be made robust to model violation. The

score test statistic T follows an asymptotically N(0, 1) distribution under the null hypothesis. This

follows from the specific form of the score statistic shown above and the Central Limit Theorem

(CLT). This asymptotic distribution also holds when the assumed model is wrong (by the CLT),

provided the denominator contains an empirically estimated variance of the score S(X) instead of

the theoretical information. So, the standard normal distribution is generally used to obtain cutoffs

or p-values for the score test with an empirical denominator. These cutoffs remain valid, irrespective

of the true model as long as the sample size is reasonably large. On the other hand, the significance

of the LRT is usually assessed using the fact that asymptotically −2 log(LRT ) ∼ χ2
1. But this fact

holds only when the assumed model is correct. Thus, the LRT has incorrect type I error whenever

the assumed model is wrong unless an empirical null distribution is used, which can further increase

its computational complexity. Score statistics however do not guarantee robustness of power; both

score and LRT can incur considerable loss of power when the assumed model is grossly violated.

Score statistics become even more useful in the context of disease gene mapping, where it

is often more powerful and convenient to sample affected individuals and their relatives. These

individuals are usually at the extremes of distribution of the underlying quantitative trait(s). This

distorts the distribution of the quantitative trait, making the LRT invalid even if the assumed model

correctly represents the overall distribution of the trait. Depending on objectiveness and simplicity

of the ascertainment criteria, it may or may not be possible to correct the LRT for ascertainment.

On the other hand, the score test can be constructed in a manner (to be discussed in later chapters)

such that they have correct type I error even for ascertained samples.
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2.0 SCORE STATISTICS FOR QTL MAPPING

Before describing the different score statistics used for QTL mapping, we discuss below some of the

genetic models under which these score statistics are generally derived.

2.1 GENETIC MODEL AT THE TRAIT LOCUS

2.1.1 Model Conditional on Trait Genotype

The main focus of this dissertation will be on variants of the score statistics, which were originally

derived as efficient scores using a decomposition of the components of the variance of the quanti-

tative phenotype. Below we outline a derivation of the variance-component decomposition using

similar ideas as discussed in Tang (2000). An alternative derivation for general multiallelic traits

can be found in Lange (2002).

Let us consider a quantitative trait Y controlled by a biallelic major gene having alleles “D”

and “d”. Let p and q = 1−p denote the frequencies of the “D” and “d” alleles. The trait genotype

gi is coded as 0, 1 and 2 for the genotypes “dd,” “dD” and “DD” respectively.

Let us assume the following model for phenotype conditional on the trait genotype.

yi = m+ a gi + d 1{gi=1} + εi, (2.1.1)

where m is the baseline effect of the “dd” genotype and “a” is the additive effect of one “D” allele

and “d” is the dominance effect. Let µ and σ2 denote the population mean and variance of the
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trait. The above model can be centered at the trait mean by rewriting it as

yi = m+ a gi + d 1{gi=1} + εi

=
[
m+ a E(gi) + d E(1{gi=1})

]
+ a [ gi − E(gi) ] + d

[
1{gi=1} − E(1{gi=1})

]
+ εi

= µ+ ag̃i + d1̃{gi=1} + εi

where g̃i and 1̃{gi=1} are centered versions of gi and 1{gi=1}. The residuals εi are assumed to be

uncorrelated with the genotypes and to have mean zero and constant variance σ2
ε . The residuals

can consist of polygenic effects, other major genes (unlinked and in linkage equilibrium with the

QTL modeled above) and environmental effects. We can orthogonalize the above model using a

Gram Schmidt orthogonalization procedure, with < X,Y >= Cov(X,Y ) = E(XY ) as follows.

yi = µ+

(
a+ d

< g̃i, 1̃{gi=1} >

< g̃i, g̃i >

)
g̃i + d

(
1̃{gi=1} −

< g̃i, 1̃{gi=1} >

< g̃i, g̃i >
g̃i

)
+ εi

By noting that under Hardy Weinberg Equilibrium, gi ∼ Bin(2, p), 1{gi=1} ∼ Ber(2pq) and

Cov(gi, 1{gi=1}) = 2pq(q − p), we obtain

yi = µ+ [ a+ d (q − p) ] g̃i + d
[

1̃{gi=1} − (q − p) g̃i
]

+ εi

= µ+ α g̃i + δ ˜̃1{gi=1} + εi, (2.1.2)

where α = a + d (q − p), δ = d and ˜̃1{gi=1} is 1̃{gi=1} − (q − p) g̃i, the orthogonal projection of

1̃{gi=1} onto the linear subspace generated by g̃i. This decomposition does not have any biological

interpretation, but provides a mathematically convenient way of extracting the complete variability

explained by a linear function of the number of trait alleles (i.e, g). The advantage of such a

decomposition is that because of the orthogonality, there is significant mathematical simplicity in

analyzing a joint model with both the additive and dominance parameters, as discussed later. It

also gives an estimate of the actual loss of information when the dominance is ignored.

The total phenotypic variance V ar(Y ) = σ2 can thus be decomposed into an additive genetic

variance σ2
a, a dominance variance σ2

d and a residual environmental variance σ2
ε as follows.

σ2 = σ2
a + σ2

d + σ2
ε ,

where σ2
a = α2 V ar(g̃i) = 2pq [a+ d(q − p)]2

and σ2
d = δ2 V ar(˜̃1{gi=1}) = 4p2q2d2.
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The last equality can be obtained by using the relation

V ar(X − E(X|Y ]) = V ar(X)− V ar[ E(X|Y ) ] = < X,X > −
(

1− < X,Y >

< X,X >< Y, Y >

)
.

Thus σ2
a, σ

2
d and σ2

ε are known as the variance components of Y . The conditional on genotype

model (2.1.2) is typically used in the context of association mapping of quantitative traits.

2.1.2 Model Conditional on Trait IBD

The variance components derived above can be used to decompose the phenotypic covariance con-

ditional on IBD sharing. To derive this model, let us first consider two relatives with phenotypes

(y1, y2), genotypes (g1, g2), environmental correlation r and IBD sharing proportion π. Using the

ITO matrices (Li and Sacks 1954), and the formula E[f1(g1)f2(g2)|π] = Eg2 [f2(g2)E(f1(g1) |

g2, π)], it can be shown that

Cov(g1, g2 | π) = 2pqπ (2.1.3)

Cov(1{g1=1}, g2 | π) = 2pq(q − p)π

Cov(1{g1=1}, 1{g2=1} | π) = 2pq[(q − p)2π + 2pq 1{π=1}.

Using the above results and the definitions of g̃, 1̃{g=1} and ˜̃1{g=1}, it is easy to show that

Cov(g̃1, g̃2 | π) = 2pqπ

Cov(˜̃1{g1=1}, g̃2 | π) = 0

Cov(˜̃1{g1=1},
˜̃1{g2=1} | π) = (2pq)2 1{π=1}.

Thus, the unconditional orthogonal decomposition g̃ and ˜̃1{g=1} of the genotypes remains orthogonal

after conditioning on IBD. Hence it follows from model (2.1.2) that

Cov(y1, y2 | π) = α2(2pqπ) + δ2(4p2q2)1{π=1} + Cov(ε1, ε2)

= σ2
a π + σ2

d 1{π=1} + r σ2
ε .

The above “conditional on IBD” model based on variance component decomposition is used in the

context of linkage analysis of quantitative traits.

Let us now introduce a superscript “t” to denote the trait locus. For a pedigree of size

k, let yi, gti denote the phenotype and trait genotype for individual “i.” Let πtij denote trait
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IBD (proportion of alleles shared IBD at the trait locus) between individuals “i” and “j.” Let

Y = (y1, y2, . . . , yk)′ and gt = (gt1, g
t
2, . . . , g

t
k) denote the vectors of genotypes and phenotypes for

the pedigree. Similarly let Πt = ((πtij)) denote the k×k matrix of pairwise IBD sharing proportions

for the pedigree. For any pair of individuals “i” and “j” in the pedigree, we have

Cov(yi, yj | πtij) = πtijσ
2
a + 1{πtij=1}σ

2
d + rijσ

2
ε , (2.1.4)

where the residuals εi are assumed to be independent of the genotypes and to follow a multivariate

normal distribution within the pedigree with mean 0 and dispersion Σε = ((σ2
ε rij)), where rij is the

environmental correlation between individuals “i” and “j.” The population mean and dispersion

matrix of Y are µY = µ 1 (1 being a vector of k 1’s) and ΣY = ((σ2ρij)). Subtracting the

expectation from both sides of the above equation, we get

Cov(yi, yj | πtij) = Cov(yi, yj) + σ2
a[π

t
ij − 2φij ] + σ2

d[1{πtij=1} − γ2
ij ], (2.1.5)

where φij is the kinship coefficient and γ2
ij is the Cotterman’s coefficient P (π = 1) for the pair

(i, j). Thus for a pedigree of size k , rewriting in matrix notation, the conditional on IBD model is

Cov(Y | Πt) = ΣY + σ2
a[Πt − 2Φ] + σ2

d[Π
(2)
t − Γ(2)], (2.1.6)

where Φ and Γ(2) are k × k matrices given by (Φ)ij = φij and (Γ(2))ij = γ2
ij . Note that, standard

notation for the Cotterman’s coefficient matrices are ∆(0), ∆(1) and ∆(2). We have used Γ(2) to

avoid confusion with the notation ∆ for LD.

Finally, it should be noted that the conditional on genotype model (2.1.2) and hence the con-

ditional on IBD model (2.1.6) can be extended to incorporate additional variance components

such as polygenic additive effects and polygenic dominance effects (see for example Almasy and

Blangero 1998). We ignore those components in this dissertation for reasons of clarity. However,

for most of the methods discussed here, it is straightforward to obtain extensions which incorpo-

rate those components using standard procedures. For the same reason, we will also ignore the

dominance component of the major QTL for most of the discussion.

Orthogonalization for Sibpairs

Since Πt and Π(2)
t are not orthogonal, we can orthogonalize model (2.1.6) similarly as we did for

genotypes. This orthogonalization would however vary with relationship between the pair of indi-

viduals. Hence it provides mathematical and computational simplicity for a two degree of freedom
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model only when the data consists of pairs with a single relationship type. For example, in case of

sibpair or sibship data, denoting π̃ti = πti − 1/2 and 1̃{πti=1} = 1{πti=1} − 1/4, and using the Gram

Schmidt orthogonalization procedure, we have the following orthogonal decomposition of model

(2.1.5).

Cov(yi, yj | πtij) = Cov(yi, yj) + σ2
a π̃

t
ij + σ2

d 1̃{πtij=1}

= Cov(yi, yj) + (σ2
a + σ2

d) π̃
t
ij + σ2

d (1̃{πtij=1} − π̃tij)[
∵ < 1{πtij=1}, π

t
ij >=< πtij , π

t
ij >= 1/8

]
= Cov(yi, yj) + (σ2

a + σ2
d) π̃

t
ij + σ2

d (1{πtij=1} − πtij + 1/4)

= Cov(yi, yj) + (σ2
a + σ2

d) π̃
t
ij + σ2

d [(−1/2)1{πtij=1/2} + 1/4][
∵ πtij = 1{πtij=1} + (1/2)1{πtij=1/2}

]
= Cov(yi, yj) + σ2′

a π̃tij + σ2′
d [(−1/2)1̃{πtij=1/2}]. (2.1.7)

Thus, Cov(Y | Πt) = ΣY + σ2′
a [Πt − 2Φ] + σ2′

d /2 [∆(1) −Π(1)
t ], (2.1.8)

where σ2′
a = σ2

a + σ2
d and σ2′

d = σ2
d are the additive and dominance variance under this new

parametrization. It is easy to verify that Πt and Π(1)
t are orthogonal for sibships. Although this

orthogonalization provides considerable simplicity in analyzing a 2 d.f. model for sibships, there

is one additional complication. The parameters σ2′
a and σ2′

d are constrained by σ2′
a ≥ σ2′

d . This

constraint has to be taken into account during model fitting. This is unlike the orthogonalization

for genotypes, where the parameters α and δ in model (2.1.2) (and consequently σ2
a and σ2

d) are

unconstrained, just like the initial parameters a and d in model (2.1.1). Nevertheless the orthogo-

nality is useful and can be utilized to obtain two degree of freedom statistics for sibship data (e.g.,

see Tang 2000 and chapter 3 in this dissertation).

2.2 GENETIC MODELS AT THE MARKER LOCUS

In this section, we will use the notation of the previous section. In addition, let gm, Πm denote

the genotype vector and IBD matrix at a marker (test) locus. We will assume that the marker is

biallelic with alleles “A” and “a” with frequencies pm and qm. Also the marker genotypes gmi are

coded as number of “A” alleles. Let vgt = 2pq and vgm = 2pmqm denote V ar(gti) and V ar(gmi )
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under HWE. Let θ denote the recombination fraction between the two loci and let ∆ denote the

linkage disequilibrium between the alleles “A” and “D” (i.e., ∆ = P (AD)− P (A)P (D)).

Most models at a marker locus do not model the parameters θ and ∆ directly. They use

surrogate parameters which implicitly model linkage and association. Below, we outline some of the

standard “implicit” models and also propose a new implicit model which is more general than the

standard models. This model yields score statistics similar to the standard implicit models under

specific assumptions. We will also outline an explicit model parametrized by θ and ∆ to obtain an

heuristic justification for the proposed implicit model.

2.2.1 Implicit Models

2.2.1.1 VC Model for Covariance The phenotypic covariance conditional on “trait IBD”

can be decomposed using variance components as shown in equation (2.1.6). In reality the trait

IBD can not be observed. We observe marker genotype data M at the test locus or at multiple

markers across the genome. The IBD at the test locus Πm can be calculated (or estimated by

Π̂m = E[Πm |M ]) based on the observed genotype data using singlepoint or multipoint methods.

The standard variance components method for linkage analysis of quantitative traits assumes

the following model at the marker locus.

[Y | Π̂m] ∼ N(µY ,ΣY + va[Π̂m − 2Φ] + vd[Π̂(2)
m −∆(2)]). (2.2.1)

Note that the covariance is exactly the same as (2.1.6), with Πt replaced by Π̂m and the parameters

(σ2
a, σ

2
d) replaced by implicit parameters (va, vd). It is assumed that va = vd = 0⇔ θ = 0.5. Hence

this model can be used to test for linkage (H0 : θ = 0 vs. H1 : θ < 0.5) indirectly by testing

H0 : va = vd = 0 vs H1 : va > 0 or vd > 0. Generally, however, it is assumed that the dominance

effect is negligible (δ = 0 and vd = 0) and the 1 d.f. test H0 : va = 0 vs H1 : va > 0 is used. It is

possible to give an heuristic justification for the implicit parameters va and vd (e.g. Amos 1994,

section 2.2.2.2). However the assumption of multivariate normality is not very realistic. In general

this distribution is expected to be skewed or multimodal (e.g., Amos 1994) at the trait locus and

the marker locus. In fact, the trait locus model (2.1.2) is

[Y | gt] ∼ N [µY + α (gt − Egt) + δ (g(1)
t − Eg

(1)
t ),Σε]. (2.2.2)

where (gt)i = gti , g
(1)
t i = 1{gti=1} ∀i = 1, . . . , k.
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Conditioning on IBD leads to the following mixture normal distributions at the trait and

the marker locus.

Trait Locus:

[Y | Πt] ∼
∑
gt

[Y | gt] P (gt | Πt).

Marker Locus:

[Y | Π̂m] ∼
∑
gt

∑
Πt

[Y | gt] P (gt | Πt) Pθ(Πt | Π̂m).

The distribution [gt | Πt] is expected to be skewed when the trait allele frequency is close to 1 or 0

and multimodal when it is close to 0.5. In spite of the incorrect multivariate normality assumption,

the VC model leads to powerful tests for linkage analysis, as discussed in chapter 3. This model

also assumes that all of the marker loci, including the test locus, are in linkage equilibrium with

the trait, which justifies conditioning on Π̂m as a sufficient statistic for modeling linkage. This

assumption is relaxed in the proposed implicit model described in section 2.2.1.4.

2.2.1.2 Model for the Mean The phenotypic mean conditional on “trait genotype” can be

decomposed as shown in equation (2.1.2). In reality the trait genotype cannot be observed. An

implicit model conditional on the marker genotypes is given by

[Y | gm] ∼ N [µY + β (gm − Egm) + γ (g(1)
m − Eg(1)

m ),Σe], (2.2.3)

where (gm)i = gmi , g
(1)
m i = 1{gmi =1} ∀i = 1, . . . , k. This model is same as the model (2.1.2) with

parameters (α and δ) replaced by implicit parameters (β, γ). It is assumed that β = γ = 0⇔ ∆ = 0.

Hence this model can be used to test for association (H0 : ∆ = 0 vs. H1 : ∆ > 0) indirectly by

testing H0 : β = γ = 0 vs H1 : β > 0 or γ > 0. Generally however the dominance effect is assumed

to be negligible (δ = 0 and δ′ = 0) and the 1 d.f. test H0 : β = 0 vs H1 : β > 0 is used. This model is

used by some standard association mapping methods for quantitative traits such as ANOVA based

methods (e.g., Barrett 2002; O’Donnell et al. 1998) and FBAT (Rabinowitz 1997; Horvath

et al. 2001). Although FBAT was originally proposed as a non-parametric approach, some of the

statistics implemented in FBAT are equivalent to score statistics derived under the above model

(Laird et al. 2000; Shih and Whittemore 2002). The implicit parameter β (and similarly γ)

can be motivated using an explicit model (see section 2.2.2.2). However model (2.2.3) ignores the
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observed IBD information at the marker locus. The QTDT model and the proposed implicit model

attempt to incorporate IBD information.

Apart from testing for association, a similar model is sometimes used to test for linkage (e.g.

Dupuis et al. 2007 and section 2.3.2 of this dissertation). These methods use the following mixture

normal distribution for [Y | Π̂m].

[Y | gm] ∼ N [µY + c g̃m,Σe], and (2.2.4)

[Y | Π̂m] ∼
∑
gm

[Y | gm] P (gm | Π̂m) (Assuming perfect IBD information), (2.2.5)

and test for linkage using the parameter c. Although the model assumptions are somewhat artificial,

this model can be shown to yield similar score statistics as the VC model (2.2.1) (e.g., see Dupuis

et al. 2007 and section 2.3.2 of this dissertation). Note that there is an implicit assumption of

linkage equilibrium (∆ = 0) in this model, as it uses only Π̂m as a sufficient statistic to test for

linkage. The genotypes g̃m are not used; they act as a latent dummy variable in this model. To see

that c = 0⇔ θ = 0.5, we note that the mean and covariance of this model are

E(Y | Π̂m) = E(µY + g̃m | Π̂m) = µY

Cov(Y | Π̂m) = c2vgmΠ̂m + Σe = ΣY + c2vgm(Π̂m − 2Φ).

These moments agree with the moments of the VC model (2.2.1) with va replaced by c2vgm . Thus

c2 has a similar interpretation as va in the VC model, which implies that a 2-sided test based on

model (2.2.5) can be an alternative for the VC model, with the advantage that it models [Y | Π̂m]

as a mixture-normal instead of a multivariate normal as in the VC model (2.2.1).

2.2.1.3 QTDT Model for Mean and Covariance The QTDT model (Fulker et al. 1999;

Abecasis et al. 2000) tries to incorporate both marker genotype and IBD information by combining

the covariance modeling of the VC approach and mean modeling of the FBAT. Assuming no

dominance (δ = 0), this model is

[Y | gm, Π̂m] ∼ N [µY + β (gm − Egm),ΣY + va(Π̂m − 2Φ)], (2.2.6)

where it is assumed that va = 0⇔ θ = 0.5 and β = 0⇔ ∆ = 0. The QTDT model is generally used

to test for “association” (using the parameter β), and sometimes for “linkage” (using the parameter

va). This model should in general be more powerful to detect association than model (2.2.3) when
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linkage is present. It should also be more powerful to detect linkage than model (2.2.1), whenever

an allele at the marker locus is in LD with the trait. However the mean and covariance of the above

model are not consistent with each other (see next section 2.2.1.4), which can be a reason for the

model not performing as well as expected (see chapter 4). The proposed implicit model described

below attempts to eliminate this inconsistency.

2.2.1.4 Proposed Model for Mean and Covariance There is an inherent distinction be-

tween statistical modeling at a trait locus and modeling at a marker locus, namely that at a trait

locus the phenotype only depends on the trait genotype and the environment. The IBD at the

trait locus, even if it is known, does not convey any information given the trait genotype. On the

other hand, when testing at a marker locus the phenotype is a function of the marker genotype, its

IBD sharing and the environment. The marker genotype is always directly observed and the IBD

sharing at the marker locus can be estimated based on marker data across the chromosome. Hence

ideally, both the genotype and the IBD information should be used for modeling at a marker locus.

Most of the standard methods for detecting linkage (or association), however use only the IBD or

(only the genotypes respectively), by making suitable assumptions such as no LD (or no linkage),

which makes the genotypes (or the IBD) non-informative.

The QTDT model attempts to incorporate both genotype and IBD information using an

ad-hoc approach, where the distribution [Y | gm, Π̂m] is assumed to have a mean depending on

the genotype E(Y | gm) and a covariance depending on the IBD Cov(Y | Π̂m). The modeling of

the mean is correct, as the IBD sharing does not affect the marginal distributions and hence the

means. However the covariance should be modeled as Cov(Y | gm, Π̂m). To obtain an estimate for

this covariance we note that

Cov(Y | Π̂m) = Egm|Π̂m [Cov(Y | gm, Π̂m)] + Covgm|Π̂m [E(Y | gm, Π̂m)]

⇒ ΣY + va(Π̂m − 2Φ) = Egm|Π̂m [Cov(Y | gm, Π̂m)] + Covgm|Π̂m [µY + β (gm − Egm)]

⇒ ΣY + va(Π̂m − 2Φ) = Egm|Π̂m [Cov(Y | gm, Π̂m)] + β2Cov(gm | Π̂m)

⇒ Egm|Π̂m [Cov(Y | gm, Π̂m)] = ΣY + va(Π̂m − 2Φ)− β2Cov(gm | Π̂m). (2.2.7)

Hence if we assume that the covariance Cov(Y | gm, Π̂m) is a constant (i.e., homoscedastic)

with respect to gm, then we can estimate that constant covariance by the right hand side of the
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last equation. This assumption basically means that for each IBD configuration, the covariance of

the phenotype is the same for all marker genotypes. The covariance estimate of the QTDT model

on the other hand assumes that the covariance is a constant over genotypes (homoscedastic) and

also that β = 0 (i.e. mean is constant over genotypes), which leads to the inconsistency between

the mean and covariance estimates when testing for association using β.

Based on the assumption of homoscedasticity of Cov(Y | gm, Π̂m), we propose the following

model for the phenotype Y conditional on marker genotype gm and estimated marker IBD Π̂m.

[Y | gm, Π̂m] ∼ N [µY + β (gm − Egm),ΣY + va(Π̂m − 2Φ)− β2vgmΠ̂m], (2.2.8)

where under HWE, Egm = 2pm and vgm = V ar(gm) = 2pmqm. This model is similar to the QTDT

except for the last term, β2vgmΠ̂m, which is subtracted from the covariance. This term follows

from equation (2.2.7) and from the fact that Cov(gm | Πm) = 2pmqmΠm = vgmΠm, as shown in

equation (2.1.3). To see how this model relates to mean and covariance models discussed above,

we note that

• When β = 0 (i.e., no LD) it reduces to the VC model (2.2.1) for covariance. Under this

assumption, the QTDT model (2.2.6) also reduces to the VC model.

• When va = 0 (i.e., marker unlinked) it reduces to the model

[Y | gm, Π̂m] ∼ N [ µY + β g̃m , ΣY − β
2vgmΠ̂m ]

which although different from the FBAT model (2.2.3), gives identical score statistics to that

model. This is shown in chapter 4. The essential difference between these models is that

the FBAT ignores the observed IBD information and assumes [Y | gm] has homoscedastic

errors with a constant covariance matrix. Under this assumption the covariance reduces to

Σe = ΣY − β2vgm(2Φ). On the other hand, model (2.2.8) incorporates the IBD information

and assumes homoscedasticity for the errors of [Y | gm, Π̂m] model, which is a slightly weaker

assumption for the covariances (i.e. the off-diagonal entries of the variance covariance matrix).

Under this assumption, the QTDT model reduces to

[Y | gm, Π̂m] ∼ N [ µY + β g̃m , ΣY ],

which once again gives identical scores statistics to the FBAT model (2.2.3).

• When va = σ2
a and β = α (i.e the test marker is the QTL ), it reduces to the trait locus

model (2.2.2), in which the covariance does not depend on IBD. This follows from the definition

σ2
a = vgmα

2 and the fact that ΣY −σ2
a(2Φ) = Cov(Y )−α2Cov(gt) = Σe, assuming no dominance.
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In this case, the QTDT model reduces to

[Y | gm, Π̂m] ∼ N [ µY + α g̃m , ΣY + σ2
a(Π̂m − 2Φ) ],

which is not identical to the trait locus model (2.2.2). In fact the above model depends on the

observed IBDs. Thus the parameter va of the QTDT model can not be interpreted as σ2
a when

the marker locus is the putative QTL.

Note that all of the above models assume that the marker genotype gm and the estimated marker

IBD Π̂m are sufficient for testing linkage and/or association. This assumption is essentially equiv-

alent to assuming that the markers are in linkage equilibrium with each other. When this assump-

tion is violated, one possible approach is to cluster markers (Abecasis and Wigginton 2005) into

groups of markers which are in LD with each other but in linkage equilibrium with other groups and

then to analyze each group of markers as a whole. Such approaches will not be discussed further

in this dissertation.

2.2.2 Model Assumptions

In this section, we look at some of the assumptions required to intuitively justify the implicit models

described in the previous section. We consider an explicit model parametrized by θ and ∆ relating

the trait and the marker locus, and show that implicit models can be derived from it. We start from

the model (2.2.2) at the trait locus, and model gt as a function of the observed data gm and Π̂m.

Note that the model below is based on heuristics and some of the assumptions are at best crude

approximations. But our objective in this section is primarily to obtain an intuitive motivation for

the implicit models described above.

2.2.2.1 Explicit Model To model [gt | gm, Π̂m], let us first assume the following model for

[Πt | Π̂m].

E(Πt − 2Φ) = (1− 2θ̃)(Π̂m − 2Φ) (2.2.9)

where θ̃ could be any monotonic function of θ such that θ̃ = 0 if θ = 0 and θ̃ = 0.5 if θ = 0.5. This

is an ad-hoc assumption, which is true for a data set consisting of pairs with only one relationship

type. For example for a sibship dataset, this function is θ̃ = θ − θ2, which follows from the joint
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distribution of [πt, πm] tabulated in Haseman and Elston (1972). For unilineal relative pairs,

the linearity E(Πt | Πm) obviously holds, as Πm can take only two values 0 and 1/2. The joint

distribution of [πt, πm] is given by

Πt

Πm
0 1/2 [Πt]

0 1− 4φ− f(θ) f(θ) 1− 4φ

1/2 f(θ) 4φ− f(θ) 4φ

[Πm] 1− 4φ 4φ 1

where φ is the kinship coefficient and f(θ) is a polynomial of the form
∑n

i=1 aiθ
i, such that f(0) = 0

and f(1/2) = 4φ(1 − 4φ). The conditional distribution [Πt | Πm] and hence the conditional

expectation can be obtained from the above table. The conditional expectation has the form of

model (2.2.9), with

θ̃ =
f(θ)

8φ(1− 4φ)
.

The function θ̃ for grandparent-grandchild, half sibling and avuncular pairs is θ̃ = θ, θ̃ = 2θ − 2θ2

and θ̃ = 5θ/2− 4θ2 + 2θ3 respectively, which can be obtained using the joint distribution tables in

Amos and Elston (1989). Thus for a general pedigree with multiple relationships, the assumption

of a single function θ̃ is essentially a convenient approximation.

The mean E(gt | gm, Π̂m) is free of Π̂m. Assuming HWE, at each locus, it can be shown that gt

has an exact linear regression on gm given by

E(gt | gm) = Egt + ∆̃ [gm − Egm],

where ∆̃ = ∆/(pmqm) is a monotonic function of ∆ with ∆̃ = 0⇔ ∆ = 0.

In general, V ar(gt | gm) is not free of gm. In fact, under HWE this variance can be shown

to be linear in gm with a slope of ∆̃2 (pm − qm) + ∆̃ (qt − pt), which is non-zero whenever there is

LD, except in the trivial cases pt = pm = 1/2 and ∆̃ = pt−qt
pm−qm . Thus the errors of the regression of

[gt | gm] are not in general homoscedastic. All the implicit models discussed in the previous section

assume homoscedastic errors as a convenient approximation.

To compute the covariance matrix, Cov(gt | gm, Π̂m), we use the crucial homoscedasticity

assumption as we did in section 2.2.1.4 and the conditional mean obtained above. We assume that
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Cov(gt | gm, Π̂m) is constant with respect to gm for each Π̂m. In other words, we assume that for

each IBD configuration, gm affects gt only through the mean (due to LD) but not the covariance.

Cov(gt | gm, Π̂m) = Egm|Π̂m [Cov(gt | gm, Π̂m)]

= Cov[gt | Π̂m]− Covgm|Π̂m [E(gt | gm)]

= EΠt|Π̂mCov[gt | Π̂t]− Cov[∆̃ gm | Π̂m]

= E(vgtΠt | Π̂m)− ∆̃2vgmΠ̂m

= vgt [2Φ + (1− 2θ̃)(Π̂m − 2Φ)]− ∆̃2vgmΠ̂m. (2.2.10)

The last equality follows by using equation (2.2.9). Let us define Z = gt − E(gt | gm, Π̂m). Then,

we can write g̃t = ∆̃ g̃m + Z, where Z has mean 0 and covariance ΣZ given by

ΣZ = Cov(gt | gm, Π̂m) = vgt [2Φ + (1− 2θ̃)(Π̂m − 2Φ)]−∆2vgmΠ̂m.

In the following explicit model we make the additional assumption that Z has a multivariate normal

distribution. In other words gt | gmΠ̂m has a multivariate normal distribution.

Explicit Model:

Here we model [Y | gm, Π̂m] as:

[Y | gm, Π̂m] =
∫
gt

[ Y | gt ] [ gt | gm, Π̂m ]

=
∫
gt

[ N(Y ; µY + α g̃t,Σe) ] [ N(gt; 2p+ ∆̃ g̃m,ΣZ) ] (2.2.11)

2.2.2.2 Derivation of Implicit Models The mean model (2.2.3) essentially models [gt | gm]

ignoring Π̂m. It assumes a linear mean E(gt | gm) = E(gt) + β g̃m, and a constant covariance for

Cov(gt | gm). Ghosh and De (2007) showed, using the exact distribution of [gt | gm], that this

implicit method has correct type I error (i.e β = 0⇔ ∆ = 0). However, they also showed that the

violation of the homoscedasticity assumption can lead to considerable loss of power.

Next we show that the proposed implicit model (2.2.8) can be derived from the explicit

model (2.2.11) described above. Defining β = α∆̃, we note that

E(Y | gm, Π̂m) = E(µY + α g̃t) = µY + β gm,

which is the mean of the implicit model and by definition β = 0 ⇔ ∆ = 0. Similarly defining
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va = (1− 2θ̃)σ2
a, the covariance is

Cov(Y | gm, Π̂m) = α2Cov(gt | gm, Π̂m) + Σe = α2ΣZ + Σe

= σ2
a

[
[2Φ + (1− 2θ̃)(Π̂m − 2Φ)

]
− β2vgmΠ̂m + Σe

= (Σe + σ2
a 2Φ) + σ2

a (1− 2θ̃)(Π̂m − 2Φ)− α∆̃2vgmΠ̂m

= ΣY + va (Π̂m − 2Φ)− β2vgmΠ̂m,

which is same as the covariance of the implicit model and by our definition va = 0⇔ θ = 0.5. The

multivariate normality of the proposed implicit model follows from our assumptions that [Y | gt]

and [gt | gm, Π̂m] are both normally distributed and the result “if X | Y and Y | Z are normally

distributed, then so is X | Z.”

Thus, we have shown that the explicit model above is one way to justify the implicit param-

eters in the proposed model (2.2.8). Note however, that the explicit model is only a special case

of the proposed implicit model with va = (1 − 2θ̃)σ2
a and β = α∆̃. In other words, the validity of

the assumptions (made in the explicit model above) provides a “sufficient” condition for the tests

using the implicit parameters to be direct (optimally powerful) tests for the parameters θ and ∆.

Even when these assumptions are violated, the tests using va and β may still capture most of the

information in these parameters indirectly.

2.3 SCORE TESTS UNDER IMPLICIT MODELS

The commonly used score test for linkage Tang and Siegmund 2001; Putter et al. 2002; Wang

2005 is based on the VC model (2.2.1) through the implicit linkage parameter va. The FBAT statis-

tic (Laird et al. 2000; Horvath et al. 2001) can also be thought of as a score based on the implicit

FBAT model (2.2.3) for the implicit parameter β. In fact, the statistic as originally proposed in

Rabinowitz (1997) for trio data, was motivated as a score statistic. Shih and Whittemore

(2002) also show that the FBAT statistic is equivalent to a score test under the assumption of no

residual correlation among non-founders.
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2.3.1 Scores for Proposed Implicit Model (2.2.8)

The score statistics under the standard implicit models (VC and FBAT) can be derived from the

proposed implicit model (2.2.8) under appropriate assumptions on the parameters va and β. These

and two new score statistics (with fewer assumptions on the parameters) are described below.

2.3.1.1 Tests for Linkage: H0 : va = 0 vs H1 : va > 0

• Assume No LD Under the assumption of no LD (β = 0), model (2.2.8) reduces to the usual

VC model (2.2.1). The score for this model has been derived by various authors (e.g., Tang

and Siegmund 2001; Putter et al. 2002; Wang 2005) and is given by

SV C = vec[Σ−1
Y

(Y − µY )(Y − µY )′Σ−1
Y
− Σ−1

Y
]′vec(Π̂m − 2Φ), (2.3.1)

where vec is an operator which vectorizes all the elements of a square matrix in a row-wise

order. This score is sometimes also derived under the implicit mixture normal model (2.2.5) as

outlined in section 2.3.2 below.

• Assume Possible LD In this case the score for model (2.2.8) can be derived in the same way

as SV C , and using the formula (1.4.1) for the score in the presence of a nuisance parameter,

SV C,LD = vec[Σ̃−1(Y − µY − β̂ g̃m)(Y − µY − β̂ g̃m)′Σ̃−1 − Σ̃−1]′vec(Πm − 2Φ), (2.3.2)

where Σ̃ = ΣY − β̂2 vgmΠ̂m and β̂ is the MLE of β under the null hypothesis of no linkage, i.e

under the model

[Y | gm, Π̂m] ∼ N [µY + β g̃m,ΣY − β
2vgmΠ̂m].

2.3.1.2 Tests for Association: H0 : β = 0 vs H1 : β 6= 0

• Assume No Linkage In this case the model (2.2.8) is same as that in the nuisance parameter

estimation model above. The score for this model is the same as that for the FBAT model

(2.2.3) (derived in chapter 4) given by:

SFBAT = (Y − µY )′Σ−1
Y
g̃m. (2.3.3)

A locally most powerful unbiased (LMPU) test for the two sided hypothesis H0 : β = 0 vs

H1 : β 6= 0 can be derived under this model. This test is derived in chapter 4 and is given by

SFBAT−lmpu = vec[Σ−1
Y

(Y − µY )(Y − µY )′Σ−1
Y
− Σ−1

Y
]′vec(g̃mg̃′m − vgmΠ̂m). (2.3.4)
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• Assume Possible Linkage Under the assumption of “possible linkage,” the score can be

derived in the same way as SFBAT and is given by

SFBAT,linkage = (Y − µY )′[ΣY + v̂a(Π̂m − 2Φ)]−1g̃m, (2.3.5)

where v̂a is the MLE of va under the VC model (2.2.1).

2.3.2 Score for the Mixture Normal Model (2.2.5)

The score statistic for linkage is usually derived under the VC model (2.2.1). Tang and Siegmund

(2001) outlined a proof that the VC based score test is also the score test under model (2.2.5).

But that proof only holds for sibpairs and is based on a Taylor series approximation. Also, they

tested the hypotheses H0 : σ2
a = 0 vs H1 : σ2

a > 0, although their likelihood was same as (2.2.5) and

parametrized by c. Dupuis et al. (2007) showed this without approximations and gave a general

proof of this fact for a class of error distributions (general exponential family). Below we outline an

alternative proof for the special case of normally distributed errors. We will show that the locally

most powerful unbiased (LMPU) score test for testing H0 : c = 0 versus H1 : c 6= 0 has the same

form as the VC based score test.

The likelihood of interest is

LY |Π̂m(c) = P (Y | Π̂m, c = c) =
∑
gm

LY |gm(c)P (gm | Π̂m), (2.3.6)

where LY |gm(c) is given by equation (2.2.4). We want to test the 2-sided hypotheses H0 : c = 0

against H1 : c 6= 0. The LMPU statistic for linkage (Rao 2002, pp 453-455) is given by

S
linkage

LMPU
=
L′′
Y |Π̂m

(0)

LY |Π̂m(0)
,

which after simple algebra (see Appendix A) becomes

S
linkage

LMPU
= V argm|Π̂m [l′Y |gm(0)] + Egm|Π̂m [l′′Y |gm(0)].

Using the expressions for l′Y |gm(0) and l′′Y |gm(0) as given in Appendix A, we get

Egm|Π̂m [l′Y |gm(0)] = Ỹ ′ Σ−1
Y

E[g̃m | Π̂m] = 0.
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Therefore we have

S
linkage

LMPU
= V argm|Π̂m [l′′Y |gm(0)]

= [Ỹ Σ−1
Y

Σgm|Π̂mΣ−1
Y

Ỹ ] + [−Ỹ Σ−1
Y

ΣgΣ−1
Y

Ỹ + trace(Σ−1
Y

Σg)− trace(Σ−1
Y
E(g̃mg̃m′ | Π̂m))]

= Ỹ Σ−1
Y

[Cov(gm | Π̂m)− Σg]Σ−1
Y

Ỹ − trace[Σ−1
Y

(Cov(gm | Π̂m)− Σg)]

= vec[Σ−1
Y

Ỹ Ỹ ′ Σ−1
Y
− Σ−1

Y
]′vec[Cov(gm | Π̂m)− Σg].

Under HWE, Cov(gm | Π̂m) = 2pmqmΠ̂m and Σg = 4pqΦ, where Φ is the matrix of pairwise kinship

coefficients for the pedigree. Hence the above statistic can be further simplified to

S
linkage

LMPU
= vec[Σ−1

Y
Ỹ Ỹ ′ Σ−1

Y
− Σ−1

Y
]′vec[Π̂m − 2Φ]. (2.3.7)

(Ignoring constants)

From equation (2.3.7) we note that the LMPU statistic for linkage under the mixture normal model

(2.2.5) is identical to the commonly used (LMP) score statistic under the variance components(VC)

model.

2.3.3 Score Tests for the Explicit Model

For the explicit model (2.2.11) or more generally whenever the parameters va and β can be expressed

as f1(σ2
a)f2(θ) and f3(α) f4(∆) respectively (where f2 and f4 are monotonic functions of θ and ∆),

direct score tests for f2 and f4 would be identical to the corresponding score test for implicit models

described above. For example, in case of the VC score test, f1 can be absorbed inside [Π̂m − 2Φ]

and the final score would be f1 SV C , making the standardized score statistic free of the nuisance

parameter f1. Similarly it can be shown that the score for ∆̃ = 0 under “no-linkage” would be

f3 SFBAT .
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2.4 SELECTED SAMPLING

Most family studies for linkage and and association mapping of quantitative traits, particularly

traits related to diseases, are conducted using selected sampling designs. Individuals with a disease

condition or extreme values of a quantitative trait are ascertained as probands and their families

are recruited. This strategy helps to increase the power of the study and also helps to ensure that

the sample includes affected individuals with familial disease instead of sporadic disease. Hence,

selected sampling designs such as affected sibpairs, extreme discordant and/or extreme concordant

sibpairs are common for linkage studies. Similarly, nuclear families with single or multiple affected

offspring are frequently used for family-based association studies. Some of the traditional likelihood

ratio based methods such as the VC and the QTDT are not robust to selected sampling unless

the ascertainment scheme is exactly known and corrected for. This is particularly difficult for

quantitative traits if the ascertainment is based on the disease status and hence difficult to translate

in terms of the quantitative trait values, even if the scheme is simple and objective. The robustness

problem is aggravated when the ascertainment criteria are subjective and complex.

Likelihood ratio based methods can provide biased MLEs and LRT statistics if the ascer-

tainment is ignored. Moreover, the asymptotic χ2 thresholds for LRT fail to work, resulting in

incorrect type I error rates unless empirical or permutation based thresholds are used. Score tests

on the other hand do not require the knowledge of the ascertainment scheme for computing the

numerator score function, provided nuisance parameter estimates are available. Various authors

including Lebrec et al. (2004), Wang (2005) and Peng and Siegmund (2006), have shown that

the VC model-based score test for linkage, although derived under a “conditional on IBD” model, is

identical to the score test under a selective sampling framework. Lebrec et al. (2004) proved that

the scores of the joint model are same as those for the “conditional on trait” model and the “condi-

tional on IBD” model. However they did not consider an ascertainment scheme in their likelihood.

Wang (2005) and Peng and Siegmund (2006) showed that the scores of the joint model with

and without ascertainment are identical, however they did not consider “conditional on trait/IBD”

models. In other words, they showed that the ascertainment scheme can be ignored for deriving

the scores. These results taken together prove that the scores for the “correct” likelihood model

[Y, Π̂m | Y ∈ A] (based on the sampling scheme) or a conditional on trait likelihood L(Π̂m | Y ) can

be derived under the forward VC model [Y | Π̂m]. Below we derive similar results for the likelihood

[Y, gm, Π̂m | Y ∈ A] under the proposed implicit and explicit models.
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2.4.1 Implicit Model

All the score statistics outlined in section 2.3 are based on the “forward” likelihood L(Y | gm, Π̂m).

Ideally, based on the study design the likelihood of interest should be L(Y, gm, Π̂m | Y ∈ A), where

A is the ascertainment scheme. Below, we show that the scores (numerators of the score tests) can

be derived by ignoring the ascertainment scheme. Moreover, the score based on the joint model,

[Y, gm, Π̂m], is identical to the score under forward model, [Y | gm, Π̂m] (under which the scores

are derived) and the “conditional on trait” model, L(gm, Π̂m | Y ) (which is often used used to

standardize the scores). We also prove the invariance of the LMPU statistic (2.3.4) under the joint

and conditional models (ignoring the ascertainment scheme). From section (1.4), we recall that in

the presence of nuisance parameters, scores can be derived by starting from a likelihood with null

hypothesis estimates of the nuisance parameters plugged in. Thus, we will assume that the nuisance

parameters µ̂Y and Σ̂Y are either available or have been estimated under the null hypothesis and

plugged in to the likelihood.

We assume that the ascertainment scheme is based only on the phenotype (Peng and Sieg-

mund 2006) and that the distribution of [gm, Π̂m] does not depend on the implicit parameters

va and β (Lebrec et al. 2004). The scores are derived by differentiating the forward likelihood

L(Y | gm, Π̂m) with respect to one of the parameters va/β and holding the other parameter fixed

at either 0 or at its MLE under the null. In the latter case, the scores would not be free of the

ascertainment scheme, as the obtaining MLE would require knowledge of the ascertainment scheme.

So, we will prove the results for β, fixing va = 0 as follows. The results for va (fixing β = 0) can be

proved similarly.

1. Scores for “forward” likelihood P (Y | gm, Π̂m) and “joint” likelihood P (Y, gm, Π̂m) are identical.

This follows from the fact that

P (Y | gm, Π̂m, β, va = 0) =
P (Y, gm, Π̂m | β, va = 0)

P (gm, Π̂m)

by our assumption that the denominator is free of the parameters. Hence the score (both LMP

and LMPU) for the denominator of the right side is zero.

2. Scores for the “ conditional on trait” likelihood P (gm, Π̂m | Y ) and “joint” likelihood P (Y, gm, Π̂m)
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are identical. As before, we note that

P (gm, Π̂m | Y, β, va = 0) =
P (Y, gm, Π̂m | β, va = 0)

P (Y | β, va = 0)
.

It suffices to show that the score for the denominator likelihood P (Y | β, va = 0) is zero. This

likelihood can be rewritten as a mixture likelihood as follows.

P (Y | β, va = 0) =
∑

P (Y | gm, Π̂m, β, va = 0) P (gm, Π̂m)

LY |va=0(β) =
∑

LY |gm,Π̂m,va=0(β) P (gm, Π̂m).

Using the results in Appendix A, the LMP and LMPU scores for the mixture likelihood are

given by

SLMP = l′Y |va=0(0) =
∑

l′
Y |gm,Π̂m,va=0

(0) P (gm, Π̂m)

= Egm,Π̂m [Ỹ Σ−1
Y
g̃m]

= 0

SLMPU = l′′Y |va=0(0) + [l′Y |va=0(0)]2 = V argm,Π̂m [l′
Y |gm,Π̂m,va=0

(0)] + Egm,Π̂m [l′′
Y |gm,Π̂m,va=0

(0)]

= V argm,Π̂m [Ỹ Σ−1g̃m] + Egm,Π̂m [−Ỹ ′Σ−1
Y

ΣgΣ−1
Y
Ỹ + trace(Σ−1

Y
Σg)− g̃′mΣ−1

Y
g̃m].

= 0

Thus both the LMP and LMPU scores for the denominator are zero, proving that the score for

the “conditional on trait” model is identical to the score for the joint model. (1) and (2) together

imply that the LMP and LMPU scores for the “conditional on trait” model are identical to those

of the proposed forward implicit model.

3. Ascertainment can be ignored, i.e., score (LMP) for joint model is same irrespective of condi-

tioning. We note that

P (Y, gm, Π̂m | Y ∈ A, β, va = 0) =
P (Y, gm, Π̂m | β, va = 0)1P (Y ∈A)

P (Y ∈ A | β, va = 0)
. (2.4.1)

Peng and Siegmund (2006) showed that the score for the denominator likelihood is zero for

the linkage problem starting with a “conditional on IBD” likelihood. Below, we use similar

ideas as outlined in their proof to show that the score for the denominator of (2.4.1) is zero.
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∂

∂β
logP (Y ∈ A | β) =

∂

∂β
logEY (1

Y∈A | β)

=
∂

∂β
log
∫

Y

1
Y∈A P (Y | β) dY

=
∂

∂β
log
∫

Y

∑
gm,Π̂m

P (Y, gm, Π̂m | β)
P (Y, gm, Π̂m | β = 0)

1
Y∈A P (Y, gm, Π̂m | β = 0)

P (Y ∈ A, gm, Π̂m | β = 0)
P (Y ∈ A, gm, Π̂m | β = 0) dY

=
∂

∂β
logEY,gm,Π̂m

[
P (Y, gm, Π̂m | β)

P (Y, gm, Π̂m | β = 0)
P (Y ∈ A, gm, Π̂m | β = 0)

∣∣ Y ∈ A, β = 0

]

= EY,gm,Π̂m

[
l′
Y,gm,Π̂m

(β)
∣∣ Y ∈ A, β = 0

]

=
EY,gm,Π̂m

[
1

Y∈A . l′
Y,gm,Π̂m

(β)
∣∣ Y ∈ A, β = 0

]
P (Y ∈ A | β = 0)

=
EY,gm,Π̂m

[
1

Y∈A . l′
Y |gm,Π̂m

(β)
∣∣ Y ∈ A, β = 0

]
P (Y ∈ A | β = 0)

, (2.4.2)

where the last step follows from (1), i.e., the score for the joint model is same as that for the

forward model. In this proof, we have used the fact that the logarithmic derivative can be

taken inside the expectation for the normal distribution. The numerator expectation in the last

expression can be seen to be zero by conditioning on Y . In this case,

E(1Y ∈A Ỹ ′Σ−1
Y
g̃m) = EY [1Y ∈A Ỹ ′Σ−1

Y
Eβ=0(g̃m | Y )] = 0.

Thus the score for the joint model can be obtained by ignoring the ascertainment scheme. Note

that result (2) can also be obtained as a special case of (3) with G = A. Also note that by

differentiating equation (2.4.2) with respect to β again and carrying the derivative inside the

integral we get

∂2

∂β2
logP (Y ∈ A | β) = EY,gm,Π̂m

[
1Y ∈A . l

′′
Y,gm,Π̂m

(β)
∣∣Y ∈ A, β = 0

]
,

This implies that the LMPU score given by l′(β = 0)2 + l′′(β = 0) is not zero, as the expectation

of the second derivative (expression given in Appendix A) is non-zero. Thus the ascertainment

scheme can not be ignored for the second derivative and hence for the LMPU score.
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2.4.2 Explicit Model

The scores under the implicit model can also be motivated as scores for the parameters θ̃ and ∆̃

under the explicit model. More generally they are also the scores for a subclass of the implicit

models for which the parameters va and β can be interpreted as a product of a linkage/association

parameter and a segregation parameter. In these cases the joint, forward and “conditional on trait”

likelihoods are all proportional to the likelihood L(Y, gm, Π̂m | Y ∈ A), as shown below

P (Y, gm, Π̂m | Y ∈ A, µ̂0, Σ̂0, θ̃, ∆̃) =
P (Y, gm, Π̂m | µ̂0, Σ̂0, θ̃, ∆̃) 1Y ∈A

P (Y ∈ A | µ̂0, Σ̂0)

∝ P (Y, gm, Π̂m | µ̂0, Σ̂0, θ̃, ∆̃)

= P (Y | gm, Π̂m, µ̂0, Σ̂0, θ̃, ∆̃)P (gm, Π̂m)

= P (gm, Π̂m | Y, µ̂0, Σ̂0, θ̃, ∆̃)P (Y | µ̂0, Σ̂0),

Thus, LY,gm,Π̂m|Y ∈A(θ̃, ∆̃) ∝ LY,gm,Π̂m(θ̃, ∆̃) [Ascertainment can be ignored]

∝ LY |gm,Π̂m(θ̃, ∆̃) [Forward Model]

∝ Lgm,Π̂m|Y (θ̃, ∆̃) [Conditional on Trait model].

The proportionality of the likelihoods follow from the fact that the marginal distributions [Y ] and

[gm, Π̂m] are free from the parameters θ̃ and ∆̃. Note that the parameters α and σ2
a appear in all

of the above likelihoods but they have been suppressed, as the final standardized scores would be

free of them (they act as proportionality constants). Further, the proportionality of the likelihoods

implies the identity of the first and second derivatives at any parameter value, including the null

hypothesis value. Thus, in this case, the invariance of the scores (LMP and LMPU) to ascertainment

scheme and to conditioning on trait or marker data follows simply on the basis of the assumptions

that the marginals distribution of the phenotype (and the marker data) are free from the linkage

and association parameters and that the ascertainment only depends on one of the variables (in

this case the phenotype).

In sections 2.4.1 and 2.4.2 above, we demonstrated the invariance of the numerators of

the score statistics under minimal assumptions. Score statistics should be standardized by the

variance computed (or estimated) under the appropriate likelihood to obtain the desired score

test. Typically, for selected samples, empirical estimates of the “conditional on trait” variance

V ar(Score | Y ) are used instead of V ar(Score | Y ∈ A). This strategy of using a sufficient
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statistic Y generally leads to some loss of power unless the ascertainment scheme is completely

arbitrary. When the ascertainment scheme is such that a minimal sufficient statistic T (Y ) can be

obtained (for example, T (Y ) = |Y1−Y2| for an EDAC sibpair design), using conditional variance on

T (Y ) can improve power. The numerator is however invariant to the choice of T (Y ). One way to

avoid conditioning on sufficient statistics is to use a completely empirical variance, which accounts

for arbitrary sampling schemes while being robust. But for small sample sizes, empirical variance

estimates may be conservative (see chapter 3).

The null hypothesis estimates µ̂0 and Σ̂0 are essential in evaluating the scores. They should

ideally be obtained by maximizing the likelihood

P (Y | µY ,ΣY , va = 0, β = 0)
P (Y ∈ A | µY ,ΣY , va = 0, β = 0)

=
N(Y ;µY ,ΣY )∫
AN(Y ;µY ,ΣY )

.

Sometimes, the exact ascertainment scheme may be complicated but the probands may be known.

Peng and Siegmund (2006) suggested just conditioning on the probands to obtain the CPMLE

(Conditional on Proband MLE) instead of the CMLE (Conditional MLE) above. However in some

cases, probands may also be ill-defined. In such cases estimation of the trait parameters is an

open issue. See section 3.5 and chapter 5 for a discussion of possible ways to obtain estimates

under arbitrary ascertainment schemes. When the nuisance parameters are estimated wrongly (for

example when the ascertainment scheme or probands are specified wrongly), both the LRT and

score tests would suffer loss in power but the score test would have correct type I error using

asymptotic thresholds, while the LRT would not. Similarly, when the likelihood model is wrong

(e.g., normality is violated) the LRT gives incorrect type I error (with asymptotic thresholds),

whereas the score test remains robust as the asymptotic normality of the score statistic is based on

the Central Limit Theorem.

2.5 DISCUSSION

In this chapter, we described some of the genetic models that are used to derive the score tests

for linkage and association that are discussed in this dissertation. In section 2.1, we derived an

orthogonal decomposition of the trait mean “conditional on genotype” at a biallelic trait locus.

Based on this orthogonal decomposition we obtained the variance component decomposition of the

trait variance and the trait covariance “conditional on IBD.” We discussed orthogonalization of
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the covariance decomposition for sibships, which is useful in obtaining a two degree of freedom

score statistic (e.g., Tang and Siegmund 2001, chapter 3 of this dissertation). Because of the

orthogonality these scores can be computed essentially as a simple sum of squares of one degree of

freedom scores for the additive and dominance coefficients.

In section 2.2.1, we discussed some of the standard approaches for association and linkage,

which model the mean and the covariance of the trait respectively. Most linkage methods tend to

assume a model for [Y | Π̂m], ignoring LD, whereas association methods typically model [Y | gm]

ignoring the IBD information. The assumption of “no LD” in linkage studies may be reasonable

and hence the marker genotype data can be ignored. However for association studies the marker

IBD information always provides some information through Cov(gm | Π̂m), irrespective of linkage.

In the presence of linkage, the IBD information becomes even more relevant. We proposed an

implicit model that uses all of the observed data by modeling the distribution [Y | gm, Π̂m], and

discussed how it relates to some of the standard approaches under special cases. All of these models

use implicit parameters to indirectly model linkage and association. In section 2.2.2 we analyzed

some of the assumptions that are required to motivate the implicit parameters starting from an

explicit model relating the two loci, parametrized by θ and ∆.

The explicit model highlights some of the crude approximations required to justify the im-

plicit models. In equation (2.2.11), the normal approximation for [gt | gm, Π̂m] may not be appropri-

ate as this distribution is discrete. Similarly the homoscedasticity assumption of V ar(gt | gm, Π̂m)

and the assumption of a uniform linear regression slope for E(Πt | Π̂m) for all relative types are

unrealistic. A more accurate (or even exact) modeling of the discrete distribution [gt | gm, Π̂m]

may lead to more powerful statistics, but is generally avoided due to computational complexity

and the possibility of confounding due to nuisance parameters. The scores for the parameters θ

and ∆ under the explicit model 2.2.11 would be proportional to those under implicit models (for

parameters va and β) and hence free of nuisance parameters. However, this may not be be true if a

different explicit model or an exact one is used. Implicit modeling avoids the nuisance parameters α

(additive genetic effect) and pt (trait allele frequency) by using the confounded parameters (in this

case va = 2ptqtα2(1−2θ̃) and β =
√

2ptqtα2/2pmqm). However, in doing so, they lose the ability to

estimate the effect size of the locus σ2
a = 2ptqtα2, except under complete linkage and/or complete

LD. This is in contrast to parametric linkage analysis methods for binary traits, which model θ

directly and maximize or search over possible values of nuisance parameters like trait penetrances

or prevalence (or equivalently relative risks).
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In section 2.3, we described a standard score test for linkage, SV C , that assumes “no LD”

and a standard score test for association SFBAT that assumes “no linkage.” We proposed a score

test SV C,LD for linkage that uses the marker genotype information allowing for the possibility of

LD. This score test would in general be difficult to compute as estimating the LD parameter β

under null would require a computationally intensive technique such as MLE or Iteratively Re-

weighted Least Squares. We also proposed a score test SFBAT,linkage for association that uses the

IBD information. It requires an estimate of the linkage parameter v̂a under the null, which can

be obtained by maximizing the VC likelihood. In many practical situations, association studies

may be conducted on data already used for a previous linkage study using a VC approach. In such

cases the nuisance parameter estimates v̂a are already available. When the association study is

conducted on a dense genome scan and linkage parameter estimates are only known for a sparser

subset of the markers, obtaining v̂a from the closest marker for which it is known may provide a

reasonable approximation, while maintaining the computational efficiency. However, estimates of

v̂a from the VC model may be biased for selected samples when the ascertainment correction is not

possible or inadequate. In such cases, SFBAT should be preferred.

The discussion in the subsequent chapters focuses on the scores SV C and SFBAT for linkage

and association mapping respectively. However most of the variants discussed can be easily ex-

tended to the scores SV C,LD and SFBAT,linkage, provided the nuisance parameters can be estimated

under the null. These parameter estimates can be difficult to obtain under complex ascertainment

schemes, as they are based on MLE.

Finally, in section 2.4 we demonstrated the invariance of the score statistics to arbitrary

ascertainment schemes. The invariance guarantees that the score statistics derived by ignorning

ascertainment, remain optimally powerful for arbitrary ascertainment schemes, provided the nui-

sance parameter estimates are correct. These parameters can either be esimated by taking the

ascertainment into account or obtained independently from a random population sample. Fur-

ther, using appropriate empirical variance estimate in the denominator ensures that even when the

nuisance parameter estimates are biased, the score tests preserve correct type I error.
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3.0 SCORE STATISTICS FOR LINKAGE

This chapter has been published in American Journal of Human Genetics, volume 82, pages 567-

582, March 2008 issue (Bhattacharjee et al. 2008). A few minor changes and additions have

been made to the text that was published in the journal. The journal grants the authors rights to

include the article in full or in part in a thesis or a dissertation. I have also obtained the necessary

permissions from the the publisher Elsevier to reporoduce the article with modifications.

3.1 INTRODUCTION

Recently, a number of new methods have been developed for Quantitative Trait Locus (QTL) map-

ping in humans using general pedigrees. Most of these are based on score statistics or regression-

based statistics, and attempt to achieve the power of the variance component likelihood-based

methods (Amos 1994; Almasy and Blangero 1998) while retaining the robustness and compu-

tational simplicity of the original Haseman Elston regression (Haseman and Elston 1972). In

principle, these methods should be preferred over the traditional Variance Components (VC) ap-

proach, which is extremely sensitive to the normality assumption (e.g., Allison et al. 1999). These

new methods are theoretically expected to be relatively robust to non-normality of the trait distri-

bution and also to selected sampling. QTL mapping in humans is typically employed for studying

disease-related traits and hence selected sampling schemes are common, making score statistics the

obvious choice. However the literature on these statistics has mostly focused on theoretical devel-

opment with less attention given to practical issues and implementation. In this paper we address

several of the most important practical issues in the computation and use of these statistics.

The score test is a computationally faster, locally most powerful and robust alternative to the

likelihood ratio test. In the context of QTL mapping, this test was proposed by a number of authors
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(e.g., Tang and Siegmund 2001; Wang 2002; Putter et al. 2002; Lebrec et al. 2004; Wang

2005). The score test statistic is simply the partial derivative of the VC likelihood with respect to

the “linkage parameter” evaluated under the null hypothesis (no linkage) and standardized by its

null standard deviation or an estimate thereof. In this article, we refer to the unstandardized score

as the “score function” or the “numerator,” and the standardizing factor as the “denominator”. The

aforementioned authors used slightly different parameterizations of the VC likelihood to arrive at

the same general formula of the score function for an arbitrary pedigree. The score function remains

the same under a broad class of ascertainment schemes, namely, ascertainment through phenotype

only (Wang 2005; Peng and Siegmund 2006). For sibling pairs the score function reduces to other

statistics like the statistic of Sham and Purcell (2001), which were derived independently as direct

ways to improve the power of the Haseman-Elston method by incorporating trait squared sums.

Similarly, for general pedigrees, an apparently novel statistic (Sham et al. 2002) was derived using

a reverse regression approach (regression of IBD on trait information). A number of the statistics,

including the VC method, score statistics and the reverse regression method (Sham et al. 2002) were

unified into a common GEE-based framework (Chen et al. 2004; Chen et al. 2005) . In particular,

their calculations imply the exact equivalence of the numerators of the reverse regression statistic

(Sham et al. 2002) and the score statistic. They also considered the issue of non-Gaussian traits,

and proposed a numerator incorporating higher moments, which was shown to be robust to non-

normality. They considered some higher moment based statistics in their simulation study, among

a number of other statistics including the VC, score statistics and the reverse regression statistic

(Sham et al. 2002). Although their simulations indicate the superiority of higher moment-based

methods for population samples (of Gaussian and non-Gaussian traits), it is not clear whether the

higher-moment versions should be preferred over the usual score statistic numerator for selected

samples, where accurate trait parameter estimates may not be available.

For the score test to be robust to distributional assumptions, an empirical variance estimate

should be used in the denominator to standardize it. This is because using empirical variances en-

sures that the statistic follows an asymptotically normal distribution (by the central limit theorem)

and hence preserves correct type I error even if the assumed model is wrong. A number of different

denominator variants have been proposed (e.g., Wang 2005; Sham et al. 2002), ranging from partly

to fully empirical variance estimates. Some of these are consistent estimators for the null variance

of the score statistic, whereas others are consistent for the true variance. Some condition on the

trait values whereas others condition on the identity by descent (IBD) information. The choice of
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an appropriate denominator is an extremely important issue as it directly affects the power of the

linkage statistics. There have been some simulation studies, for selected sibling pairs (T.Cuenco

et al. 2003; Szatkiewicz et al. 2003), to investigate denominator variants. For population samples

of sibships, some simulations have been conducted (Chen et al. 2005), in which, a few denomina-

tor variants were considered, among other issues. Here again, a comprehensive evaluation of the

denominators is required - particularly for selected samples - to identify the best combinations of

numerator and denominator in terms of power and robustness.

Traditionally, most QTL mapping methods neglect the effect of dominance. This is partly

because of the computational simplicity under an additive assumption and also because including

dominance leads to a loss of power unless the dominance effect is large enough. Two degree of

freedom (2 d.f.) score statistics to incorporate dominance have been suggested by a number of

authors (e.g., Tang 2000; Wang 2002). The recent simulation study (Chen et al. 2005) included

a 2 d.f. variance component statistic but not the score statistic. The results of that study indicated

that the gain in power of the 2 d.f. VC statistic for a model exhibiting strong dominance may be

more than the loss of power when the model is additive. Similar results were reported for a 2 d.f.

score statistic in a previous study(Wang 2002). Appropriately constructed 2 d.f. score statistics

would allow for dominance, and would retain other attractive properties such as robustness to

selected sampling and non-normality. Here we study the performance of 2 d.f. score statistic vis a

vis their 1 d.f. counterparts using simulation across a variety of models.

Like most linkage mapping statistics, score statistics require some nuisance parameters,

namely the population trait mean, variance and correlation between relative pairs. The higher

moment score statistics require two extra nuisance parameters, the skewness and kurtosis of the

trait distribution. These parameters, often called the “segregation parameters”, are independent

of the “linkage parameters,” but specifying incorrect values for these parameters may affect the

power of the linkage statistic adversely. In a selected sampling situation, or when the sample sizes

are small, it is difficult to obtain reliable estimates of these parameters. There have been a few

studies (e.g., T.Cuenco et al. 2003; Szatkiewicz et al. 2003; Peng and Siegmund 2006) on

the effect of misspecification of these parameters on the performance of the score statistics. These

studies have generally concluded that some statistics are more sensitive than others to parameter

misspecification. They also noted that misspecification of parameters (particularly the trait mean)

can have a significant effect on the power of the score statistics. Here we conduct simulations to

identify statistics robust to parameter misspecification.
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An important issue that has not been dealt with in the literature at all is how to combine

pedigrees of different types in an overall score statistic for a dataset. Pedigrees of different sizes

and structures have different powers to detect linkage, and thus it is natural to think about giving

different weights to different pedigrees in an overall statistic. Also in presence of mixed ascertain-

ment schemes (for example the extreme discordant and concordant sib pair design), there may be

gain in power by using higher weights on a part of the data set ( say discordant pairs). Theoreti-

cally, score statistics for individual pedigrees should simply be added (not weighted) to get a score

statistic for the entire data set. This is because the non-standardized scores are on the same linear

scale in terms of local power. However in reality, when conducting a genome scan for a QTL, it

would be best to get as much power as possible even for non-local alternatives (which the likelihood

ratio variance component test achieves at the cost of computational complexity and robustness).

A weighted linear combination of pedigree scores may achieve improvement in power for non-local

alternatives, while preserving close to optimal power for local alternatives. We address this issue

with some analytical calculations as well as limited number of simulations. All of the simulations in

this paper focus on nuclear families, but most of the conclusions generalize to extended pedigrees

as well (see discussion).

3.2 THEORY

3.2.1 Notation

Let us consider a dataset consisting of K types of pedigrees with nk pedigrees of type k for

k = 1, . . . ,K, each having sk pedigree members. Let yki, Mki and Πki denote respectively the

vector of phenotypes, the marker data and the matrix of estimated pairwise IBD sharing pro-

portions, for the i’th family of type k. Let µk, σ2
k and Σk0 denote the population mean vector,

variance vector and dispersion matrix of the phenotype for the pedigrees of type k. Let Φk denote

the matrix of kinship coefficients for a family of type k. We also assume that each pedigrees of

type k are selected according to selection criterion Ak defined purely through its phenotypic data

(Wang 2005). Throughout this section, we have omitted the subscript i from expressions such as

V ar(vec(Πki)) which do not depend on i, but only on the structure of the pedigree.
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3.2.2 Numerators

A number of authors (e.g., Wang 2005) have shown that the score statistic for the null hypothesis

of “no additive effect of the QTL” under the standard variance components model (for selected and

unselected samples) is

Ski = v′kivec(Πki − 2Φki), (3.2.1)

where

vki = vec[Σ−1
k0 (yki − µk)(yki − µk)′Σ−1

k0 − Σ−1
k0 ],

and vec is an operator which vectorizes the super-diagonal elements of a square matrix in a row-

wise order. Under the null hypothesis of no additive variance, the scores Ski have mean zero and

variance E[v′kV ar(vec(Πk))vk | yk ∈ Ak]. This variance can be estimated using the “conditional

on trait value” approach (Lebrec et al. 2004) by v′kiV ar(vec(Πk))vki. Thus the score test for no

additive variance is a one-sided test based on the standardized statistic:

T =
∑K

k=1

∑nk
i=1 v

′
kivec(Πki − 2Φki)∑K

k=1

∑nk
i=1 v

′
kiV ar(vec(Πk))vki

, (3.2.2)

which has a standard normal distribution under the null. The V ar(vec(Πk)) in the denominator

can be estimated either empirically or using simulation, or using partially empirical methods such

as the “imputation” method (Sham et al. 2002). This test statistic can also be expressed as a

GEE-based score test (Chen et al. 2005). As in equation (7) of Chen et al. (2005),

T =
∑K

k=1

∑nk
i=1D

a′
kiG
−1
k0 U

0
ki∑K

k=1

∑nk
i=1 U

0′
kiG

−1
k0

 0 0

0 V ar(vec(Πk))

G−1
k0 U

0
ki

, (3.2.3)

where

U0′
ki =

[
(yki − µk)′ {(yki − µk)2 − σ2

k}′ vec{(yki − µk)(yki − µk)′ − Σk0}′
]
,

Da′
ki =

[
0′ 0′ vec(Πki − 2Φk)′

]
,
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and Gk0 is the null Gaussian working covariance matrix of U0
ki. By comparing equations (3.2.2)

and (3.2.3), we note that vki consists of the last
(
sk
2

)
elements of G−1

k0 U
0
ki. Thus vki is a transformed

version of the original phenotype vector, using the Gaussian working covariance matrix. We call

vki as the lower moment transformed phenotype.

The GEE formulation was used to construct a new GEE-based robust alternative to the

score test (Chen et al. 2005), which uses a covariance matrix involving higher moments (skewness

and kurtosis) of the phenotype. In analogy with vki, we define hki, as the last
(
sk
2

)
elements of

M−1
k0 U

0
ki , where Mk0 is the higher moment working covariance matrix (Chen et al. 2005). Then a

higher moment score test statistic, as in equation (11) of Chen et al. (2005) may be simply written

as,

T =
∑K

k=1

∑nk
i=1 h

′
kivec(Πki − 2Φki)∑K

k=1

∑nk
i=1 h

′
kiV ar(vec(Πk))hki

, (3.2.4)

We call hki the higher moment transformed phenotype.

3.2.3 Denominators

For both the lower moment transformed phenotype vki and the higher-moment transformed phe-

notype hki, we can conceive of different test statistic denominators, depending on how the null

variance of the numerator is estimated. The score function for the unconditional likelihood of the

data is same as that based on the likelihood conditioned on trait value or that conditioned on the

IBD information (e.g., Lebrec et al. 2004). This means that the statistic remains a valid score

statistic (for the appropriate likelihood) irrespective of whether a conditional or unconditional vari-

ance estimator is used. The unconditional variance of the score function can be decomposed in two

ways as shown below. Note that we have dropped all the family subscripts in the expressions below

for clarity. Conditioning on trait values we get

V ar[v′vec(Π− 2Φ) | y ∈ A]

= V ary|y∈A[E{v′vec(Π− 2Φ) | v, y ∈ A}] + Ey|y∈A[V ar{v′vec(Π− 2Φ) | v, y ∈ A}]

= V ary[v′E{vec(Π− 2Φ) | v, y ∈ A} | y ∈ A] + Ey[v′V ar{vec(Π− 2Φ) | v, y ∈ A}v | y ∈ A]

Under null this reduces to:

= 0 + Ey[v′V arΠ{vec(Π)}v | y ∈ A] (3.2.5)

(Variance Conditional on Trait)
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On the other hand, conditioning on the IBD vector gives

V ar[v′vec(Π− 2Φ) | y ∈ A]

= V arΠ|y∈A[E{v′vec(Π− 2Φ) | Π, y ∈ A}] + EΠ|y∈A[V ar{v′vec(Π− 2Φ) | Π, y ∈ A}]

= V arΠ[vec(Π− 2Φ)′E{v | Π, y ∈ A} | y ∈ A] + EΠ[vec(Π− 2Φ)′V ar{v | Π, y ∈ A}vec(Π− 2Φ) | y ∈ A]

Under null this reduces to:

= V arΠ[vec(Π− 2Φ)′E{v | y ∈ A}] + EΠ[vec(Π− 2Φ)′V ar{v | y ∈ A}vec(Π− 2Φ)]

Further, under “no selection” this reduces to:

= 0 + EΠ[vec(Π− 2Φ)′V arΠvvec(Π− 2Φ)] (3.2.6)

(Variance Conditional on IBD)

Note that equation (3.2.5) always gives the correct null variance, whereas equation (3.2.6) gives

an under-estimate of the null variance (and hence inflated type I error) under selected sampling.

Depending on which variable is conditioned upon, there can be a number of approaches for con-

structing the denominator. Also in each case, the means and variances appearing in Equations

(3.2.5) and (3.2.6) can be estimated in different ways, leading to different denominator variants as

summarized below.

1. Conditional on Trait Value Approach.

In this approach, the variance of the score function is computed conditional on the trait values

as in Equation (3.2.5). This makes the statistic robust to selected sampling. The variance of

vec(Πki) in the denominator can be estimated in a number of different ways, as follows.

• SCORE.NULL.CT (Variance Conditional on Trait under NULL) This statistic uses a con-

ditional on the trait approach with an empirical variance of vec(Πki) centered at its null

expectation:

σ2
NULL.CT =

K∑
k=1

nk∑
i=1

v′kiΣ̂
NULL.CT
k vki

where

Σ̂NULL.CT
k =

1
nk

nk∑
i=1

vec(Πki − 2Φk)vec(Πki − 2Φk)′.
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• SCORE.CT (Variance Conditional on Trait) This statistic also uses a conditional on the

trait approach with empirical variance of vec(Πki) centered at its sample mean. By its

construction, SCORE.CT is expected to have higher power than SCORE.NULL.CT, for

samples ascertained using multiple probands, i.e., whenever E(Πk | y ∈ Ak) 6= 2Φk under

the alternative:

σ2
CT =

K∑
k=1

nk∑
i=1

v′kiΣ̂
CT
k vki (3.2.7)

where

Σ̂CT
k =

1
nk − 1

nk∑
i=1

vec(Πki −Πk)vec(Πki −Πk)′.

We also considered a higher moment version, HM.CT, of this statistic. This statistic uses

the higher moment numerator as in Equation (3.2.4) and the following denominator:

σ2
HM.CT =

K∑
k=1

nk∑
i=1

h′kiΣ̂
CT
k hki

Note that the above definitions of SCORE.CT and HM.CT don’t work when there is only

one pedigree of a particular type in a dataset. In that case, the sample variance of vec(Πki)

around its sample mean is zero for that pedigree type. To overcome this problem an empir-

ical variance around the null expectation, i.e., Σ̂NULL.CT
k is used for such pedigree types.

Thus SCORE.CT reduces to SCORE.NULL.CT when there is one pedigree of each type

in the dataset.

• SCORE.MERLIN (MERLIN-REGRESS type denominator) This statistic uses the im-

puted variance estimate of the IBD (Sham et al. 2002) as implemented in the software

MERLIN-REGRESS (i.e., difference of the prior and posterior variances):

σ2
MERLIN =

K∑
k=1

nk∑
i=1

v′kiΣ̂
MERLIN
ki vki

where

Σ̂MERLIN
ki = V ar(vec(Π̃k))− V ar(vec(Π̃ki) |Mki)
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where Π̃ki denotes the (unobserved) true IBD matrix. We also included the higher mo-

ment version HM.MERLIN of this statistic discussed as “HM-R” in Chen et al. (2005).

This statistic uses the higher moment numerator as in Equation (3.2.4) and the following

denominator:

σ2
HM.MERLIN =

K∑
k=1

nk∑
i=1

h′kiΣ̂
MERLIN
ki hki

• SCORE.MERLIN.AV (MERLIN-REGRESS type denominator with an Averaged Variance)

We considered a modified version of the SCORE.MERLIN estimator (iii):

σ2
MERLIN.AV =

K∑
k=1

nk∑
i=1

v′kiΣ̂
MERLIN.AV
k vki

where

Σ̂MERLIN.AV
k = V ar(vec(Π̃k))−

1
nk

nk∑
i=1

V ar(vec(Π̃ki) |Mki),

=
1
nk

nk∑
i=1

Σ̂MERLIN
ki .

Both SCORE.MERLIN and SCORE.MERLIN.AV are motivated by the decomposition:

V ar(vec(Π̃k)) = V ar[E(vec(Π̃ki) |Mki)] + E[V ar(vec(Π̃ki) |Mki)]

= V ar(vec(Πk)) + E[V ar(vec(Π̃ki) |Mki)]

Hence, note that the averaged-variance estimate is expected to give a more accurate es-

timate of V ar(vec(Πk)) in general, but reduces to the usual estimate when there is ex-

actly one pedigree of each type in the sample (i.e., nk = 1, ∀ k = 1, . . . ,K). Also,

note that the denominator variance estimates of vec(Πki) for both SCORE.MERLIN and

SCORE.MERLIN.AV can theoretically turn out to be negative for the individual pedigree

types, particularly when there are few pedigrees of that type in the sample. However,

except in the case of extremely small sample size, the overall denominator would turn out

to be positive.
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2. Unconditional Variance approach

In this approach, the variance of the score function is computed unconditionally, i.e., without

conditioning on trait or IBD information.

• SCORE.NULL.EV (Fully Empirical Variance of the score function around its NULL mean,

i.e., 0). It was discussed as “score-R” in Chen et al. (2005):

σ̂2
NULL.EV =

K∑
k=1

nk∑
i=1

S2
ki.

• SCORE.EV (Fully Empirical Variance of the score function around its sample mean.) This

is expected to have slightly higher power than SCORE.NULL.EV:

σ̂2
EV =

K∑
k=1

nk
(nk − 1)

nk∑
i=1

(Ski − Sk)2.

When there is only one pedigree of a particular type, the empirical variance for that pedi-

gree type is computed around the null mean (0) of the score. Thus, SCORE.EV reduces

to SCORE.NULL.EV when there is exactly one pedigree of each type.

3. Variance Conditional on IBD Approach

• SCORE.NAIVE (Näıve Estimator of Variance) This statistic uses a näıve estimator of

variance for the GEE-based score test. It was discussed as “score” in Chen et al. (2005).

This statistic uses conditioning on IBD as in Equation (3.2.6) with theoretical variance

of vk. It is expected to have incorrect type I error for selected samples and also for non-

Gaussian traits:

σ̂2
NAIV E =

K∑
k=1

nk∑
i=1

Da′
kiG
−1
k0 D

a
ki.

We also considered the higher moment version HM.NAÏVE of this statistic discussed as

“HM” in Chen et al. (2005). It is expected to be slightly more robust in terms of both

type I error and power for non-normal traits, but would still have incorrect type I error for

selected samples.
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This statistic uses a higher moment numerator as in Equation (3.2.4) and the following

denominator:

σ̂2
HM.NAIV E =

K∑
k=1

nk∑
i=1

Da′
kiM

−1
k0 D

a
ki.

• SCORE.CIBD (Empirical Variance Conditional on IBD) This statistic uses the conditional

on IBD approach, with variance of the transformed trait V ar(vki) estimated empirically

centered at the sample mean. This variance is expected to be relatively robust to distribu-

tional assumptions (more specifically to misspecification of the working covariance matrix

for GEE). However, it can still have incorrect type I error for selected samples:

σ2
CIBD =

K∑
k=1

nk∑
i=1

vec(Πki − 2Φk)′Σ̂CIBD
k vec(Πki − 2Φk)

where

Σ̂CIBD
k =

1
nk − 1

nk∑
i=1

(vki − vk)(vki − vk)′.

Note that as for SCORE.CT, the denominator empirical estimate of V ar(vki) for a partic-

ular pedigree type becomes zero when there is one pedigree of that type. In such cases, the

null expectation of vki (i.e., 0) is used to center the empirical variance for that pedigree

type.

4. Approach 4: Minimum Variance Approach

• SCORE.MAX (Maximum of SCORE.CT and SCORE.EV) We note that all the denomi-

nators considered above (except σ̂2
EV ) are consistent estimators of the null variance of the

numerator (provided each nk tends to infinity). σ̂2
EV being fully empirical, it estimates the

true variance of the numerator. In general, the smaller the denominator of the test statistic

(under the alternative), the higher is the power of the statistic. It is difficult to decide a

priori whether the null or alternative variance is smaller, as this depends on the genetic
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model. We propose the statistic SCORE.MAX with a standard numerator as in Equation

(3.2.3) and the denominator

σ̂2
MAX = min(σ̂2

CT , σ̂
2
EV ).

This statistic is effectively a simple maximum of SCORE.CT and SCORE.EV whenever

the numerator score is positive. In particular it is equivalent to the simple maximum in

terms of both type I error and power any level of significance smaller than 0.5.

Note that this statistic is expected to have correct type I error asymptotically, as the null

and true variances are equal under the null. At the same time, it should maintain optimal

power under all genetic models. However, for small sample sizes, it is expected to have

slightly elevated type I error.

3.2.4 Dominance

For sibship data, because of the orthogonality of π (true IBD between a pair of sibs) and 1π=0.5

(indicator that the pair shares one allele IBD), two orthogonal scores may be obtained and com-

bined easily to form a 2d.f. statistic (Tang 2000; Tang and Siegmund 2001). Following Tang

(2000), we define a 2 d.f. score statistic for sibships, as follows. Let Z1 and Z2 be the Z-scores

corresponding to the scores for the additive variance (α) and dominance variance (δ) respectively.

Thus,

Z1 =
∑K

k=1

∑nk
i=1 v

′
kivec(Πki − 2Φk)√∑K

k=1

∑nk
i=1 v

′
kiΣ̂

CT
k vki

and Z2 =
∑K

k=1

∑nk
i=1 v

′
kivec(∆k −Π(1)

ki )√∑K
k=1

∑nk
i=1 v

′
kiΣ̂

CT (1)
k vki

,

where Π(1)
ki and ∆k are the estimated and expected matrix of pairwise probabilities of sharing 1

allele IBD, for the ith pedigree of type k.

Σ̂CT
k is given by Equation (3.2.7) as before and Σ̂CT (1)

k is given by:

Σ̂CT (1)
k =

1
nk − 1

nk∑
i=1

vec(Π(1)
ki −Π(1)

k )vec(Π(1)
ki −Π(1)

k )′.
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Combining these two Z-scores, subject to the constraint 0 ≤ δ ≤ α, gives the 2 d.f. statistic

SCORE.2DF.CT, defined as

SCORE.2DF.CT =



Z2
1 + Z2

2 if 0 ≤ Z2 ≤ (1/
√

2)Z1

Z2
1 if Z2 ≤ 0 ≤ Z1

(
√

2/3Z1 +
√

1/3Z2)2 if (−1/
√

2)Z2 ≤ Z1 ≤
√

2Z2

0 otherwise

The higher moment version, HM.2DF.CT, of this statistic can be analogously defined with the

higher moment transformed phenotype hki in the numerator instead of vki. For extended pedigrees,

the orthogonal decomposition does not hold, so a two-parameter score statistic would be needed.

The information matrix would involve Cov(Πk,Π
(2)
k ), which can be estimated empirically.

Note that SCORE.2DF.CT and HM.2DF.CT can run into similar problems as SCORE.CT

and HM.CT when the sample consists of only one pedigree of a type, in which case they are modified

similarly.

3.2.5 Weighting of Pedigrees

Real data often includes pedigrees of different sizes and structures. In such cases, it may be desirable

to give appropriate weights to each pedigree type so as to obtain maximum power. The advantage of

the likelihood ratio test statistic (Variance Components) is that the weighting is automatic, since

the likelihood ratio is evaluated at the maximum likelihood alternative. The score statistic, by

contrast, is designed to be locally optimal near the null hypothesis, and under the null hypothesis

all pedigrees are weighted equally (or equivalently, standardized scores are weighted in proportion

to their null standard deviations). Hence in most of the score statistic literature, equal weighting of

pedigree-wise score statistics has been suggested. However, under alternatives away from the null it

is quite possible that more power can be obtained by using a score statistic with unequal weighting

of different pedigrees. For purists who might object that a weighted score statistic is no longer

a score statistic, we point out that the object we call the “score statistic” is only approximately

the true score anyway. Strictly speaking, the score function (3.2.1) is derived under a normal

model (conditional on IBD). This is not a very realistic model (as the trait should have a mixture

distribution when conditioned on IBD), but it is used as a convenient approximation. The same

score function can be shown to have some optimality properties under a mixture-normal model
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(Tang 2000; Dupuis et al. 2007, Section 2.3.2), and is hence generally accepted. Still however

in most circumstances the assumption of “normal” or “mixture normal” would fail and hence the

statistic (3.2.1) is no longer technically the score function. Similarly the higher moment score

function is based on a GEE with an arbitrarily chosen working covariance matrix. When the data

violate the higher moment working covariance structure, this statistic is no longer a “GEE-based

score statistic.” Lastly, when population trait parameters are misspecified (e.g., for an ascertained

sample) the above statistics are no longer score statistics and may no longer be additive. Weighting

of score statistics may be useful even when the distributional assumption holds. Local optimality

ensures that the statistic has optimal power to detect weak effects. The variance component (VC)

test is optimal for all alternatives (when the assumed model holds). However it has the disadvantage

of being computationally complex and non-robust. By weighting pedigrees, it may be possible to

increase the non-local power of the score statistic while retaining most of the local power and

robustness properties.

Notation: Let σ2
a denote the additive variance and let α = σ2

a/2. Let us consider n1 pedigrees

of type 1 and n2 pedigrees of type 2. Letµ0i, µα,i, σ2
0i and σ2

α,i be the null (H0 : σ2
a = 0) and

alternative (H1 : σ2
a > 0) means and variances of the score function respectively for pedigrees of

type i = 1, 2. Similarly, we define mα,i, v2
α,i to be the means and variances of the standardized

score statistic (i.e., centered and scaled to have mean 0 and variance 1). Then, provided n1 and n2

are large, the asymptotic optimal weight for linearly combining the standardized Z-scores from the

two types of pedigrees is given by the following expression (Sengul et al. 2007):

w =
mα,2/v

2
α,2

mα,1/v2
α,1

(3.2.8)

=
(µα,2 − µ0,2)σ0,2σ

2
α,1

(µα,1 − µ0,1)σ0,1σ2
α,2

Therefore the optimal weight for the non-standardized score functions is given by:

w′ =
(µα,2 − µ0,2)σ2

α,1

(µα,1 − µ0,1)σ2
α,2

=
µα,2σ

2
α,1

µα,1σ2
α,2

=
m2

2 + 2αm3
2 + α2m4

2 + (α2/2)s2
2

m2
2

× m2
1 + 2αm3

1 + α2m4
1 + (α2/2)s2

1

m2
1

(3.2.9)

where mj = E{trace[(Σ−1Aπ)j ]} and sj = V ar{trace[(Σ−1Aπ)j ]} and subscripts 1 and 2 denote

pedigrees of type 1 and 2 respectively. The matrices Σ and Aπ have been defined in Appendix B. The

above expressions for moments of the score function under population sampling have been derived
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in Appendix B. Note that the above formula converges to w′ = 1 for local alternatives (α close to

0) but not in general. The two weights w and w′ defined above are termed as the“standardized

optimal weight” and the “non-standardized optimal weight” respectively in the rest of this article.

3.3 METHODS

3.3.1 Simulation

We conducted a simulation study to compare the performance of score statistic variants for nuclear

sibships. Our simulation scheme is similar to that described in T.Cuenco et al. (2003). A single

biallelic quantitative trait and a single marker with 8 equifrequent alleles were simulated. The

recombination distance between the two loci was taken as θ = 0.5 and θ = 0 for simulations under

the null and alternative hypothesis respectively.

Genetic models: The genetic models used are similar to those in T.Cuenco et al. (2003) with a

decreased locus specific heritability of 0.15. The details of the models are summarized in Tables

3.1 and 3.2. For the first five models (1 − 5), the trait has a mean depending on genotype plus a

normally distributed environmental component. The models 1′ − 5′ and 1′′ − 5′′ are non-Gaussian

models simulated by subjecting the traits simulated under models 1 − 5 to the transformations

x|x| and x3 respectively. Both these sets of models as well as model 3 (rare recessive trait) are

expected to depart substantially from the normality assumption. Note that our genetic models do

not incorporate polygenic effects explicitly. For our purposes, polygenes can be considered to be a

part of the shared environment within the family and hence their effect is modeled by considering

environmental correlation between relatives.

Selection Schemes: We simulated samples under the following ascertainment schemes - POP (pop-

ulation sampling), SINGLE (single proband sampling with one sib in the top 10% of the trait

distribution), ED (extreme discordant sampling with one sib in the top 10% and one in the bottom

10%), EC (extreme concordant sampling with two sibs in the top 10%), EDAC3 (3-corner extreme

discordant & concordant sampling with every sibship having a discordant pair at a 12% thresh-

old or a “high concordant” pair at a 4% threshold), MDAC3 (same as EDAC3 with thresholds of

24% and 8% for discordant and concordant pairs respectively). Thus, we defined a “discordant”

(or “concordant”) sibship as one having at least one discordant (or concordant) sib pair. These
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Table 3.1: Genetic Models: Defining Parameters.

Model Parameters: Model 1 Model 2 Model 3 Model 4 Model 5

Type of inheritance Additive Dominant Recessive Additive Dominant
Locus heritability 0.15 0.15 0.15 0.15 0.15
Allele frequency 0.1 0.1 0.1 0.5 0.5
Trait means -1,0,1 0,1,1 0,0,1 -1,0,1 0,1,1
Environmental SD 1.010 0.934 0.237 1.683 1.031
Environmental correlation 0.25 0.25 0.25 0.25 0.25

Table 3.2: Genetic Models: Population Trait Parameters.

Models Parameters

Mean SD Correlation Skewness Kurtosis

Normal Models

1 -0.80 1.095 0.288 0.110 0.058
2 0.19 1.013 0.286 0.092 0.011
3 0.01 0.257 0.257 0.572 2.138
4 0.00 1.826 0.288 0.000 -0.023
5 0.75 1.118 0.275 -0.067 -0.015

Non-normal: x|x|
1’ -1.49 6.758 0.244 -1.660 6.419
2’ 0.33 3.379 0.247 1.151 9.094
3’ 0.01 0.023 0.241 5.821 65.848
4’ 0.00 32.531 0.250 -0.069 8.001
5’ 1.41 6.894 0.234 1.726 6.257

Non-normal: x3

1” -3.22 55.940 0.182 -3.783 26.989
2” 0.69 18.719 0.191 3.649 48.395
3” 0.01 0.022 0.222 12.387 207.990
4” 0.06 524.930 0.180 0.051 36.345
5” 3.11 58.087 0.180 3.759 28.926
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ascertainment schemes have been discussed before in the context of sibpairs (T.Cuenco et al.

2003; Szatkiewicz et al. 2003). It is possible to define other notions of concordant and discordant

sibships, such as by standard deviation of the sibship trait values (Tang 2000), but we consider

the above definitions to be more realistic, as sibships are often ascertained through an affected sib

or an affected sib-pair.

Family Sizes: Most of our simulations were done using sibships of size 4 without parental phenotype

information. Parental genotype information was used to estimate IBD sharing between siblings.

We did limited simulations with sibships of size 2 and 6, but there were no qualitative differences in

the results, except for the expected effects of the increased and decreased sample size respectively.

Hence we report only results for sibships of size 4.

Sample Sizes: As the objective of our simulation experiments was to compare the statistics to

each other, the absolute value of power was not considered to be relevant. We chose the sample

sizes arbitrarily to keep the power within a reasonable range (i.e., not too high or low) to facilitate

comparison across statistics. The sample sizes for the normally distributed data were 450 families

for POP samples, 100 for SINGLE, 150 for MDAC3 and 50 each for ED, EC and EDAC3. The

corresponding sample sizes for data transformed using x|x| were 750 (POP), 200 (SINGLE), 300

(MDAC3) and 100 (ED, EC and EDAC3) and those for data transformed using x3 were 1000

(POP), 300 (SINGLE), 500 (MDAC3) and 200 (ED, EC and EDAC3).

We used 1,000 and 10,000 replicates to estimate the power and type I error respectively at a

significance level of 0.01. For computing the analytical thresholds, the asymptotic null distributions

of the statistics were used. The null distribution of the 1 d.f. statistics is asymptotically , which

was used to obtain two-sided p-values. The null distribution of the 2 d.f. statistics is asymptotically

a mixture of χ2
2, χ2

1 and 0 in the ratio ψ0/2π : 1/2 : (π − ψ0)/2π, where ψ0 = tan−1(1/
√

2) (Tang

2000), which was used to obtain one-sided p-values. For all the type I error and power simulations,

the trait parameters were set at their known true values (as given in Table 3.2). The estimated

type I errors for the schemes POP and ED have been summarized in Table 3.4(A-B). The type I

errors for the other sampling schemes have been summarized in the Supplementary Table F1 in

Appendix F. The estimated powers of some of the above statistics have been summarized in Tables

4.3(A-F). The powers of all the statistics have been summarized in the Supplementary Table F2 in

Appendix F.
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Table 3.3: Sensitivity Analysis: Misspecified Parameters

Model 2 Model 2’ Model 2” Model 4 Model 4’ Model 4”
Parameter: True Lower Upper True Lower Upper True Lower Upper True Lower Upper True Lower Upper True Lower Upper
Mean 0.19 -0.80 1.20 0.33 -2.70 3.30 0.69 -3.30 4.70 0.00 -2.00 2.00 0.00 -10.00 10.00 0.06 -40.00 40.00
Variance 1.03 0.03 2.03 3.38 0.40 6.40 18.72 3.70 33.70 3.33 0.33 6.33 32.53 12.53 52.53 524.93 324.93 724.93
Correlation 0.29 0.10 0.50 0.25 0.10 0.40 0.19 0.05 0.35 0.29 0.10 0.50 0.25 0.10 0.40 0.18 0.05 0.35
Skewness 0.09 -0.90 1.10 1.15 -2.80 3.20 3.65 -16.40 23.60 0.00 -1.00 1.00 -0.07 -5.00 5.00 0.05 -25.00 25.00
Kurtosis 0.01 -2.00 2.00 9.09 3.10 15.10 48.40 -11.60 108.40 -0.02 -2.00 2.00 8.00 -2.00 18.00 36.35 -13.70 86.30

3.3.2 Sensitivity Analysis

To evaluate the robustness of the statistics to misspecification of population trait parameters, we

carried out sensitivity analysis using simulation. For these simulations, we chose four selection

schemes (POP, ED, EC and EDAC) and 6 models (2, 2′,2′′ and 4, 4′,4′′). The five trait parameters

(namely mean, variance, correlation, skewness and kurtosis) were in turn set at two arbitrary

wrong guesses on either side of the true value, while holding the other four parameters fixed at

their true values. The misspecified parameter values have been listed in Table 3.3. Power was then

estimated based on the same 1,000 replicates of data, for each combination of parameter values. This

process was repeated for all the combinations of models and selection schemes. SCORE.NAÏVE and

HM.NAÏVE have theoretically incorrect type I error when parameters are incorrect. SCORE.CIBD

has theoretically incorrect type I error for selected samples. So, these three statistics were dropped

from this analysis. The results of the sensitivity analysis have been summarized in Figures 3.1 and

3.2.

3.3.3 Weighting

As described in the previous section, Equation (3.2.9) can be used to derive optimal weights for

sibships of various sizes for different alternative values of the parameter (under population sam-

pling.) We plotted the optimal weights, as a function of heritability (h2) for sibships of sizes 3, 4,

5 and 6 with respect to sibpairs (Figure 3.3). For sibships of size 3 versus sibpairs, we also plotted

the behavior of the analytical power curve (Sengul et al. 2007) of SCORE.NAÏVE for different

values of h2 (Figure 3.4). When we have an ascertained sample (for example, an EDAC sample),

Equation (3.2.9) no longer holds. But Equation (3.2.8) can be used to derive the optimal weight
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for discordant pairs with respect to concordant pairs, where the means and variances are condi-

tional on the ascertainment scheme and can be obtained by numerical integration. Alternatively,

power can also be estimated using simulation over a grid of different weights. Figure 3.5 shows the

simulation-based power of SCORE.CT for a mixed sample of 20 extreme discordant pairs (one sib

in each of higher and lower 10% tails) and 30 extreme concordant pairs (both sibs in the top 10%

tail), as a function of the non-standardized weight of a discordant pair with respect to a concordant

pair.

3.4 RESULTS

3.4.1 Simulation Results

The type I errors for the Population and Extreme Discordant sampling schemes have been tabulated

in Table 3.4(A-B) and for other sampling schemes in the Supplementary Table F1 in Appendix F.

Most of the statistics have close to correct type I error even for the smallish sample sizes that we

used. The type I errors for SCORE.NAIVE and HM.NAVE are highly inflated for non-normal as

well as selected samples. Similarly, in some cases, the type I error of SCORE.CIBD are inflated for

selected samples. Theoretically, all three of these statistics have inflated type I error for selected

samples. On the other hand, SCORE.NULL.EV and SCORE.EV have highly conservative type I

error. The SCORE.MAX statistic has negligibly inflated type I errors, compared to SCORE.CT.

All the statistics except HM.CT and HM.MERLIN have slightly incorrect type I error, in most

cases, for the highly skewed models 3′ and 3′′. The higher moment statistics in general give better

type I errors than their lower moment counterparts particularly for the non-normal models. In

most cases however, the difference is marginal.

The estimated power for all the models and sampling schemes are summarized in Table 4.3(A-F).

SCORE.NAÏVE, HM.NAÏVE and SCORE.CIBD have been dropped from the power tables 4.3(B-

F), as they have theoretically incorrect type I error for selected samples. To facilitate comparison,

we have also dropped SCORE.NULL.CT, SCORE.NULL.EV and SCORE.MERLIN.AV from the

power tables 4.3(B-F). SCORE.CT and SCORE.EV are consistently (and sometimes significantly)

more powerful than SCORE.NULL.CT and SCORE.NULL.EV respectively, while the type I errors

are negligibly higher. SCORE.MERLIN.AV has also been dropped, as it fails to provide significant
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Table 3.4: Type I Error

(A) Population
Genetic Model

1 1′ 1′′ 2 2′ 2′′ 3 3′ 3′′ 4 4′ 4′′ 5 5′ 5′′

SCORE.NAÏVE 0.011 0.026 0.063 0.01 0.029 0.087 0.033 0.209 0.295 0.011 0.024 0.065 0.012 0.026 0.072
SCORE.CIBD 0.011 0.011 0.011 0.009 0.012 0.013 0.014 0.015 0.015 0.011 0.011 0.012 0.012 0.013 0.012
SCORE.NULL.CT 0.011 0.011 0.011 0.009 0.012 0.013 0.014 0.015 0.015 0.011 0.011 0.012 0.012 0.013 0.012
SCORE.CT 0.011 0.011 0.011 0.009 0.012 0.013 0.014 0.015 0.015 0.011 0.011 0.012 0.012 0.013 0.012
SCORE.NULL.EV 0.007 0.007 0.005 0.005 0.005 0.004 0.006 0.002 0.001 0.006 0.006 0.005 0.008 0.007 0.006
SCORE.EV 0.007 0.007 0.005 0.006 0.005 0.005 0.006 0.002 0.001 0.007 0.007 0.005 0.008 0.008 0.006
SCORE.MERLIN 0.011 0.011 0.011 0.009 0.012 0.012 0.013 0.016 0.013 0.011 0.011 0.011 0.012 0.013 0.012
SCORE.MERLIN.AV 0.011 0.011 0.011 0.009 0.012 0.013 0.014 0.016 0.015 0.011 0.012 0.012 0.012 0.012 0.012

HM.NAÏVE 0.011 0.025 0.061 0.01 0.031 0.073 0.033 0.22 0.299 0.011 0.021 0.055 0.012 0.024 0.066
HM.MERLIN 0.011 0.011 0.01 0.009 0.011 0.01 0.013 0.012 0.013 0.011 0.011 0.011 0.012 0.013 0.012
HM.CT 0.011 0.012 0.01 0.009 0.011 0.01 0.013 0.012 0.014 0.011 0.011 0.011 0.012 0.013 0.011
SCORE.MAX 0.011 0.011 0.012 0.009 0.013 0.015 0.015 0.016 0.015 0.011 0.013 0.014 0.012 0.014 0.014
SCORE.2DF.CT 0.011 0.011 0.011 0.01 0.012 0.012 0.013 0.018 0.015 0.01 0.012 0.011 0.011 0.012 0.012
HM.2DF.CT 0.011 0.012 0.011 0.01 0.011 0.014 0.014 0.017 0.019 0.01 0.012 0.012 0.011 0.012 0.013

(B) Extreme Discordant

SCORE.NAÏVE 0.178 0.148 0.133 0.174 0.179 0.155 0.225 0.314 0.341 0.168 0.191 0.155 0.164 0.145 0.125
SCORE.CIBD 0.015 0.015 0.015 0.016 0.015 0.012 0.016 0.017 0.015 0.015 0.015 0.013 0.013 0.014 0.013
SCORE.NULL.CT 0.011 0.011 0.011 0.012 0.012 0.011 0.013 0.016 0.014 0.011 0.012 0.011 0.01 0.01 0.01
SCORE.CT 0.012 0.012 0.012 0.013 0.013 0.011 0.014 0.016 0.014 0.012 0.012 0.012 0.011 0.01 0.011
SCORE.NULL.EV 0.005 0.006 0.005 0.005 0.007 0.005 0.002 0.002 0.001 0.005 0.006 0.005 0.004 0.005 0.005
SCORE.EV 0.007 0.007 0.006 0.008 0.009 0.005 0.005 0.002 0.002 0.008 0.008 0.006 0.007 0.007 0.005
SCORE.MERLIN 0.012 0.012 0.012 0.013 0.013 0.01 0.015 0.016 0.016 0.013 0.011 0.012 0.011 0.01 0.01
SCORE.MERLIN.AV 0.012 0.012 0.011 0.012 0.012 0.011 0.014 0.016 0.015 0.013 0.012 0.012 0.011 0.01 0.011

HM.NAÏVE 0.178 0.109 0.065 0.174 0.139 0.085 0.212 0.295 0.312 0.169 0.144 0.092 0.164 0.114 0.06
HM.MERLIN 0.012 0.01 0.011 0.013 0.012 0.011 0.014 0.016 0.012 0.013 0.012 0.01 0.011 0.011 0.011
HM.CT 0.012 0.011 0.012 0.013 0.013 0.011 0.014 0.015 0.012 0.013 0.012 0.01 0.011 0.011 0.011
SCORE.MAX 0.012 0.013 0.014 0.014 0.015 0.013 0.015 0.017 0.016 0.013 0.014 0.014 0.012 0.012 0.012
SCORE.2DF.CT 0.01 0.011 0.011 0.013 0.012 0.01 0.014 0.016 0.015 0.012 0.011 0.009 0.01 0.011 0.011
HM.2DF.CT 0.01 0.011 0.011 0.013 0.013 0.011 0.015 0.018 0.016 0.012 0.012 0.009 0.01 0.011 0.012

Note: Type I error values departing by 0.005 or more, from the nominal value 0.01 are highlighted in bold.

improvement of power over SCORE.MERLIN under most genetic models and selection schemes.

In fact, it has slightly reduced power in many cases. The detailed results with all the statistics are

given in the Supplementary Table F2 in Appendix F.

For all the models and schemes, the unconditional empirical variance denominator SCORE.EV

performs poorly. It has low power and a conservative type I error, which can be attributed to

the smallish sample sizes. In their simulations, Chen et al. (2005) observed similar behavior for

SCORE.NULL.EV (denoted as “score-R” in their paper).

For population samples, under normal models (1, 2, 4 and 5) all the statistics perform

essentially identically. SCORE.NAÏVE, HM.NAÏVE and SCORE.CIBD have similar power to the

other statistics. As noted previously (Chen et al. 2005), the higher moment (HM) statistics perform

at par with the lower moment (LM) statistics in this case.

For population samples under non-normal models, SCORE.NAÏVE and HM.NAÏVE have

inflated type I error. The HM statistics show improvement in power for only some cases, which

disagrees with the previous conclusion of Chen et al. (2005) that HM statistics are always better
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Table 3.5: Power Results

(A) Population Genetic Model
1 1′ 1′′ 2 2′ 2′′ 3 3′ 3′′ 4 4′ 4′′ 5 5′ 5′′

SCORE.NAÏVE 0.74 0.73 0.65 0.75 0.74
SCORE.CIBD 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.96 0.94 0.76 0.69 0.31 0.74 0.44 0.15
SCORE.CT 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.96 0.94 0.76 0.69 0.31 0.74 0.44 0.15
SCORE.EV 0.67 0.35 0.11 0.68 0.73 0.4 0.24 0.75 0.73 0.7 0.65 0.32 0.7 0.41 0.11
SCORE.MERLIN 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.97 0.95 0.75 0.68 0.31 0.74 0.44 0.16

HM.NAÏVE 0.74 0.73 0.62 0.75 0.74
HM.MERLIN 0.74 0.37 0.14 0.73 0.74 0.48 0.51 0.92 0.91 0.75 0.67 0.34 0.75 0.42 0.16
HM.CT 0.74 0.36 0.14 0.73 0.74 0.49 0.51 0.9 0.91 0.76 0.67 0.33 0.74 0.42 0.16
SCORE.MAX 0.74 0.41 0.16 0.74 0.81 0.5 0.53 0.98 0.96 0.76 0.71 0.37 0.75 0.46 0.18
SCORE.2DF.CT 0.71 0.37 0.14 0.72 0.75 0.43 0.62 0.98 0.97 0.72 0.66 0.29 0.76 0.45 0.15
HM.2DF.CT 0.71 0.34 0.12 0.72 0.7 0.45 0.58 0.93 0.91 0.72 0.62 0.32 0.76 0.42 0.16

(B) Single Proband Ascertainment
SCORE.CT 0.69 0.78 0.54 0.7 0.78 0.53 0.79 0.99 0.99 0.38 0.43 0.24 0.2 0.19 0.12
SCORE.EV 0.59 0.71 0.49 0.59 0.74 0.52 0.4 0.93 0.92 0.29 0.37 0.18 0.13 0.16 0.09
SCORE.MERLIN 0.69 0.78 0.53 0.69 0.78 0.55 0.8 1 0.99 0.38 0.43 0.23 0.2 0.19 0.12
HM.MERLIN 0.69 0.81 0.66 0.69 0.73 0.58 0.78 0.99 0.99 0.38 0.38 0.22 0.2 0.17 0.11
HM.CT 0.69 0.8 0.65 0.69 0.73 0.57 0.76 0.98 0.98 0.38 0.37 0.22 0.2 0.17 0.11
SCORE.MAX 0.7 0.81 0.61 0.7 0.8 0.61 0.79 1 0.99 0.39 0.45 0.28 0.21 0.2 0.13
SCORE.2DF.CT 0.66 0.76 0.52 0.65 0.75 0.51 0.85 1 0.99 0.36 0.4 0.21 0.21 0.2 0.11
HM.2DF.CT 0.66 0.78 0.63 0.65 0.7 0.53 0.83 0.99 0.99 0.36 0.35 0.21 0.22 0.18 0.11

(C) Extreme Discordant
SCORE.CT 0.59 0.78 0.74 0.59 0.81 0.85 0.15 0.77 0.92 0.25 0.77 0.87 0.53 0.68 0.7
SCORE.EV 0.48 0.7 0.72 0.52 0.78 0.85 0.04 0.43 0.75 0.18 0.73 0.85 0.46 0.64 0.7
SCORE.MERLIN 0.6 0.79 0.74 0.59 0.81 0.85 0.15 0.78 0.93 0.23 0.77 0.87 0.52 0.67 0.69
HM.MERLIN 0.59 0.82 0.84 0.59 0.81 0.9 0.14 0.7 0.89 0.15 0.77 0.91 0.52 0.69 0.77
HM.CT 0.59 0.81 0.85 0.59 0.8 0.9 0.15 0.68 0.87 0.14 0.77 0.91 0.52 0.7 0.76
SCORE.MAX 0.6 0.79 0.79 0.6 0.83 0.89 0.15 0.82 0.95 0.25 0.79 0.89 0.55 0.71 0.76
SCORE.2DF.CT 0.55 0.75 0.71 0.56 0.79 0.85 0.18 0.88 0.97 0.22 0.74 0.84 0.54 0.69 0.71
HM.2DF.CT 0.55 0.79 0.81 0.56 0.77 0.88 0.17 0.77 0.91 0.15 0.73 0.89 0.54 0.7 0.77

(D) Extreme Concordant
SCORE.CT 0.61 0.75 0.69 0.55 0.68 0.57 0.81 0.99 1 0.23 0.26 0.22 0.12 0.1 0.09
SCORE.EV 0.48 0.63 0.61 0.4 0.62 0.55 0.46 0.88 0.98 0.13 0.18 0.18 0.07 0.07 0.07
SCORE.MERLIN 0.6 0.74 0.69 0.53 0.68 0.58 0.81 0.99 1 0.22 0.26 0.23 0.11 0.1 0.09
HM.MERLIN 0.6 0.76 0.74 0.53 0.63 0.65 0.81 0.99 1 0.22 0.25 0.25 0.12 0.1 0.11
HM.CT 0.6 0.75 0.73 0.53 0.63 0.65 0.79 0.98 1 0.22 0.25 0.24 0.11 0.1 0.11
SCORE.MAX 0.62 0.77 0.75 0.55 0.7 0.64 0.81 0.99 1 0.23 0.28 0.27 0.13 0.11 0.1
SCORE.2DF.CT 0.57 0.71 0.65 0.51 0.65 0.54 0.86 1 1 0.19 0.25 0.21 0.12 0.11 0.09
HM.2DF.CT 0.57 0.72 0.69 0.51 0.61 0.61 0.85 0.99 1 0.19 0.23 0.23 0.12 0.11 0.12

(E) EDAC-3 Corner
SCORE.CT 0.6 0.73 0.66 0.55 0.71 0.64 0.78 0.99 1 0.44 0.57 0.45 0.38 0.29 0.18
SCORE.EV 0.49 0.66 0.62 0.46 0.65 0.61 0.48 0.92 0.98 0.35 0.51 0.42 0.3 0.24 0.14
SCORE.MERLIN 0.6 0.73 0.66 0.55 0.71 0.63 0.78 1 1 0.44 0.56 0.46 0.37 0.29 0.18
HM.MERLIN 0.61 0.77 0.8 0.54 0.66 0.62 0.79 0.99 1 0.44 0.5 0.4 0.37 0.22 0.13
HM.CT 0.61 0.76 0.8 0.55 0.66 0.61 0.79 0.99 1 0.45 0.5 0.4 0.38 0.22 0.13
SCORE.MAX 0.61 0.74 0.71 0.56 0.74 0.71 0.78 1 1 0.46 0.59 0.51 0.39 0.32 0.2
SCORE.2DF.CT 0.56 0.7 0.61 0.52 0.68 0.59 0.85 1 1 0.42 0.51 0.41 0.4 0.29 0.17
HM.2DF.CT 0.56 0.74 0.77 0.52 0.63 0.56 0.84 0.99 1 0.42 0.45 0.37 0.4 0.22 0.13

(F) MDAC-3 Corner
SCORE.CT 0.74 0.73 0.5 0.69 0.85 0.64 0.59 0.98 0.98 0.63 0.68 0.44 0.56 0.42 0.2
SCORE.EV 0.66 0.69 0.48 0.62 0.81 0.62 0.25 0.86 0.92 0.56 0.64 0.41 0.5 0.38 0.17
SCORE.MERLIN 0.74 0.73 0.5 0.68 0.85 0.65 0.58 0.98 0.99 0.63 0.68 0.44 0.57 0.42 0.19
HM.MERLIN 0.73 0.8 0.67 0.68 0.79 0.64 0.59 0.98 0.98 0.63 0.64 0.44 0.57 0.38 0.17
HM.CT 0.73 0.79 0.65 0.69 0.8 0.63 0.59 0.97 0.97 0.63 0.65 0.44 0.57 0.38 0.17
SCORE.MAX 0.74 0.75 0.56 0.7 0.86 0.72 0.59 0.98 0.99 0.63 0.7 0.5 0.57 0.44 0.22
SCORE.2DF.CT 0.71 0.69 0.48 0.67 0.83 0.61 0.66 0.99 0.99 0.6 0.65 0.41 0.58 0.43 0.19
HM.2DF.CT 0.71 0.75 0.62 0.67 0.76 0.6 0.66 0.97 0.97 0.6 0.6 0.4 0.58 0.38 0.17

Note: For each model, power values within 3% of the maximum are highlighted in bold.
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for non-normal models. Generally, for the x|x| models, which can be thought of as being “relatively

less non-normal”, the higher moments statistics are worse than their lower moment counterparts.

For the “relatively more non-normal” x3 models, there is a marked improvement in the performance

of the HM statistics in all the cases.

The relative performance of the statistics follows a similar general pattern for popula-

tion and selected sampling. The conditional on trait variance SCORE.CT performs as well as

SCORE.MERLIN, neither of them being consistently better than the other. The two-degree-of-

freedom statistics show some improvement in the dominant model 5 and the recessive model 3,

and the transformed versions of these models, but are worse for all the other models. The higher

moment extensions of SCORE.CT, SCORE.MERLIN and SCORE.2DF.CT usually perform worse

for x|x| models (except 1′) and better for the x3 models (except 3′). This is true for all the sampling

schemes except EDAC3 and MDAC3, in which the HM statistics are worse for both x|x| and x3

models. The SCORE.MAX statistic is close to optimal in most cases, except for a few cases when

the higher moment statistics or the two-degree-of-freedom statistics have higher power.

3.4.2 Sensitivity Analysis Results

In Figures 3.1 and 3.2, we have plotted the sensitivity analysis results for the models 2, 2′ and

2′′ and all four selection schemes, POP, ED, EC and EDAC. The results for the models 4, 4′ and

4′′ were similar. As seen in Figure 3.1, misspecification of the variance does not affect the power

significantly. However, misspecification of the mean or the correlation seems to affect the power

of all the statistics considerably. Also as seen in Figure 3.2, misspecification of the skewness and

the kurtosis can reduce the power of the higher moment statistics drastically in some cases. There

was no perceivable difference in sensitivity among the different LM statistics (or among the HM

statistics).

For normal models, power always decreases when parameters are misspecified, as the true

parameter values give the optimally powered score statistics. But for non-normal models, in some

cases (e.g., under-specification of correlation in model 2′′ for population sampling) power may

increase by using wrong parameter values, true scores are not necessarily optimal under these

models.

For normal models (e.g., model 2), under population sampling, the effects of mean and

correlation are symmetric. In other words, over-specification and under-specification have roughly
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Figure 3.1: Sensitivity analysis results for mean, variance and correlation.

Black line gives power for true parameter values. Solid and dashed lines are for over and under specification of

parameters respectively. Line colors red, yellow and blue stand for misspecified mean, variance and correlation in

that order. Note that the black line roughly coincides with yellow line in almost all cases.
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equal effect. However, for non-normal models (e.g., 2′ and 2′′) or under selected sampling, the

effects can be asymmetric. The direction of asymmetry can also change across selection schemes.

Also, under-specification of mean and correlation seems to be better than over-specification for LM

statistics whereas the order reverses for HM statistics.

For normal models (e.g., model 2), the LM and HM statistics are equally sensitive to mean

and correlation. However, the HM statistics have the additional dependence on the skewness

and kurtosis parameters, to which they are highly sensitive for these models. For slightly non-

normal models (e.g., 2′), both the LM and HM statistic are highly sensitive to the mean. The HM

(respectively LM) statistics are more sensitive to the mean for the ED (respectively EC) scheme.

The HM statistics are highly sensitive to skewness and kurtosis, especially to under-specification

of these parameters.

For highly non-normal data (e.g., 2′′), the LM statistics are highly sensitive to mean and

correlation, especially to over-specification of these parameters. Under-specification can sometimes

provide increase in power. In some cases (e.g., EC and EDAC3), the HM statistics are relatively

less affected by mean and correlation. For the ED scheme, the HM statistics are strongly affected

by misspecification of mean. However, they are quite stable with respect to skewness and kurtosis

for all sampling schemes, under these models.

In summary, misspecification of mean or correlation can have significant effect on the power

of both LM and HM statistics. Effects can be asymmetric for skewed models or under selected

sampling and the direction of asymmetry is generally different for LM and HM statistics. Misspec-

ification of skewness and kurtosis can have drastic effect on the power of HM statistics particularly

for normal and slightly non-normal models. However for highly non-normal models, the HM statis-

tics are stable with respect to skewness and kurtosis and also, in some cases, less sensitive than LM

statistics to specification of mean and correlation.

3.4.3 Weighting Results

The results of the weighting experiments are summarized in the Figures 3.3, 3.4 and 3.5. As

shown in Figure 3.3, for population samples, the optimal weights for the larger sibships (with

respect to sibpairs) decrease with increase of heritability. The non-standardized optimal weight

also decreases with increasing sibship size. However, as expected, the standardized optimal weights
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Figure 3.2: Sensitivity analysis results for skewness and kurtosis.

Black line gives power for true parameter values. Solid and dashed lines are for over and under specification of

parameters respectively. Line colors cyan and magenta stand for misspecified skewness and kurtosis in that order.

Note that, the black line coincides with the cyan and magenta lines for lower moment statistics.
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are all greater than 1 and increase with sibship size (larger sibships are more informative and hence

the corresponding standardized Z-scores receive higher weight.)

Figure 3.4 shows that the power curves are usually flat to the right of the optimal weight.

Since 1 lies on the flatter side of the peak, using a non-standardized weight of 1 does not lead to

much loss of power even for large effect sizes.

The power curve in Figure 3.5 is similar to those of Figure 3.4, but the peaks cluster closer to

1. Hence even for EDAC samples there is no obvious gain by using unequal weights on the non-

standardized scores for discordant and concordant pairs. Our experiments with mixtures of random

pairs and concordant/discordant pairs gave similar results (Data not shown).

3.5 DISCUSSION

3.5.1 Denominator Variants

We have conducted a comprehensive simulation study of some of the existing variants of score

statistics as well as some novel ones. Our study attempted to identify the most robust score-based

statistics under various genetic models and sampling schemes. The proposed conditional on trait

variance (SCORE.CT) outperformed the empirical variance denominator (SCORE.EV), which has

been suggested by many articles on score statistics. SCORE.EV appears to have a highly conser-

vative type I error for small sizes and hence low power. This fact, also observed previously (Chen

et al. 2005) is probably due to the fact that the scores (being a quadratic function of the trait val-

ues) are considerably skewed and hence it requires large sample sizes for the Central Limit Theorem

to apply. Whereas when we condition on the trait, the IBD vector has a symmetric distribution

around its expectation (under the null) and hence the Central Limit Theorem is applicable for

smaller sample sizes. SCORE.CT also matches the power of SCORE.MERLIN in most cases and

sometimes exceeds it. These two statistics differ only in the computation of the variance of the IBD

vector in the denominator. SCORE.MERLIN uses the method of imputation (Sham et al. 2002)

and requires the joint distribution of pair-wise IBDs for its computation. Limited experiments sug-

gested that computation of SCORE.MERLIN can be slow for large pedigrees with uninformative

markers or many ungenotyped individuals (data not shown). On the other hand, SCORE.CT is

easier and much faster to compute as it involves a simple empirical variance.

58



0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

Heritability

W
ei

gh
ts

3sib vs 2sib
4sib vs 2sib
5sib vs 2sib
6sib vs 2sib

Non−standardized

Standardized

Figure 3.3: Analytical optimal weights for sibships.

Plot of asymptotic optimal weights (analytical) for sibships of sizes 3, 4, 5 and 6 (with respect to sibship of size 2)

as a function of heritability. The lower cluster of plots shows the optimal weights for non-standardized scores while

the upper shows those for standardized scores.
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Figure 3.4: Analytical power curves (of SCORE.NAÏVE) for 3sibs.

Approximate analytical power curves for a population sample with 100 sibships of size 3 and 100 sibpairs. Power is

plotted as a function of non-standardized weight of 3sibs with respect to 2sibs. Curves are shown for five different

values of heritability (h2). The vertical lines show asymptotic optimal weights for each value of h2.
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Figure 3.5: Empirical power curves (of SCORE.CT) for EDAC pairs.

Plot of simulation-based power for a combined sample of 20 discordant pairs and 30 concordant pairs. Power is

plotted as a function of non-standardized weight of discordant with respect to concordant pairs. Curves are shown

for five different values of heritability (h2). The vertical lines show the actual optimal weights based on simulation,

for each value of h2.
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The conditional on IBD statistics, SCORE.NAÏVE and HM.NAÏVE, were shown to have

incorrect type I error under most circumstances. In the cases when they have correct type I

error (normal traits and population samples) they dont provide any perceivable improvement in

power over the conditional on trait statistics. Conditioning on IBD may be used only for population

samples and in that case, SCORE.CIBD should be preferred over these two statistics as it maintains

correct type I error for non-normal samples and close to optimal power. We do not in general

recommend the use of any of these statistics.

Although the SCORE.EV statistic has sub-optimal power, it can be used to construct the

SCORE.MAX statistic, which is the best overall statistic in our simulations. It gives significant

improvement in power over SCORE.CT in many cases, with negligible inflation in type I error. We

did limited simulations with empirical cutoffs (data not shown) to confirm that the power increase

is sustained even after correcting for the slightly inflated type I error rate. It was outperformed only

in some cases by the 2DF statistics and the higher moment statistics. It would be easy to construct

higher moment and 2DF versions of the SCORE.MAX statistic and use them when appropriate.

3.5.2 Numerator Variants

Chen et al. (2005) proposed the higher moment numerator for score statistics and performed a

similar simulation study for population samples. In this study, we were able to validate some of their

results for population samples and test them for selected samples as well as a number of different

non-normal models. They concluded that higher moment (HM) statistics were always as good

as the lower moment (LM) ones and significantly better for all non-normal samples. Our results

contradicted this conclusion. For the models we considered, the HM statistics were better than the

LM versions only in some cases for the highly non-normal models. Also, their performance is quite

unstable because of their dependence on two additional parameters (skewness and kurtosis). In

practical situations, the HM statistics should be used only when the data are highly non-Gaussian

and reasonably good estimates of skewness and kurtosis parameters are available.

The dominance based 2 d.f. statistics usually have lower power than the 1 d.f. statistics

except for completely dominant or recessive models. It has been previously noted that the increase

in power (by incorporating dominance) for dominant models is more than the decrease in power for

additive models (Wang 2002; Chen et al. 2005). There is not enough evidence in our simulations

to support this. It holds for the recessive model (3) but not for the dominant models (2 and 5). We
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recommend that these statistics be used in practice only when there is reason to suspect presence

of highly dominant or recessive genetic variants.

3.5.3 Parameter Sensitivity

Parameter sensitivity is an extremely important issue for QTL mapping statistics. Although the

trait parameters are nuisance parameters (with respect to the hypothesis of linkage), they can have

a significant influence on power. They can be estimated fairly accurately for population samples,

using a Maximum Likelihood estimation (MLE) approach. For selected samples, if the selection

scheme is simple and the proband is known, the MLE can still be used. When the selection scheme

is slightly complicated but the proband or probands are known, the Conditional MLE (CMLE)

approach (Peng and Siegmund 2006) can be used. However, in reality many studies involve

complicated ascertainment criteria with multiple and ill-defined probands. In such cases, we have

no way to obtain parameter estimates and we need the statistics to be as robust as possible to

wrongly specified parameters.

Our sensitivity analysis results suggest that for normal traits as well as slightly skewed

traits, lower moment statistics should be preferred over higher moment ones, because of the latter’s

strong dependence on the two additional parameters: skewness and kurtosis. On the other hand,

for highly non-Gaussian traits, the HM statistics have higher power in most cases and are stable

with respect to skewness and kurtosis. Hence, for these models, HM statistics should be preferred.

The asymmetric effects in many cases suggest the use of over-estimates or under-estimates of the

parameters. But the direction of asymmetry may vary according to sampling scheme and direction

of skewness of the model. Hence, proper formulation of these strategies would require a more

exhaustive study of different non-Gaussian models and ascertainment schemes.

Note that, for our sensitivity analysis, we used extreme deviations from the true parameters

values. This was done to consider a worst-case practical scenario when there is no prior information

on the trait and the sample consists only of ascertained pedigrees. However, because of the wide

fluctuations of power range under such extreme misspecification, we might have missed subtler

differences in sensitivity among the individual LM (and HM) statistics.
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3.5.4 Weighting of Pedigrees

The results of our weighting experiments show that for population samples, equal weighting of

sibships of different sizes gives close to optimal power irrespective of the effect sizes. Similarly, for

EDAC samples, equal weighting of non-standardized scores for discordant and concordant pairs is

adequate. The results may not be completely generalizable to bigger and more complex pedigrees,

or to other sampling schemes and non-normal traits. However, the methods outlined here are quite

general, and can be used to study the effects of weighting more exhaustively. For example, this

method can be used to study the possibility of weighting for non-normal samples or misspecified

parameters. In fact, the formula (3.2.8) for optimal weight always holds for any statistic. The

alternative means and variances of the statistic can be derived using the GEE form (as in the

numerator of Equation (3.2.3)) for a general misspecified working covariance matrix.

The optimal weights as obtained above would be a function of the true size of the genetic

effect, which is completely unknown. Hence, the best one can do is to select a weight that seems

to work well for all or most alternatives. Also, this approach has the disadvantage of depending on

the model (or working covariance matrix) assumed for calculating the moments. Another option,

when sample size for each kind of pedigree is reasonably large is to use a part of the data (for

each pedigree type) to estimate the alternative means and variances of the score function (using

empirical estimates at each marker). This gives an optimally weighted statistic at each marker,

which has increased power for detecting linkage. Similar empirical approaches could also be used

to obtain parameter values that maximize power of the statistics. These approaches would work

even in complicated ascertainment scenarios or when normality or higher moment assumption is

deemed inaccurate. However there would be a simultaneous reduction in sample size, which would

tend to reduce power. Which of these effects would dominate would depend among other factors

on the sample size.

3.5.5 Limitations

There are of course some limitations in this study. Our simulation study considered only nuclear

phenotypes without parental phenotype information. Although we expect the broad conclusions for

the different groups of statistics (conditional on trait or IBD or unconditional) to hold for extended
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pedigrees as well, the specific details may vary. For example, in the case of datasets with larger

pedigrees, SCORE.CT may reduce to SCORE.NULL.CT, as each pedigree type may be represented

by a single pedigree. Also the parameter dependence of all the statistics would increase for larger

pedigrees, with pairwise correlations between relatives being required. The relative performance of

higher moment statistics with respect to lower moment ones may change in that scenario. Also,

most of our results were based on simulations with moderately informative markers (8 equifrequent

alleles). However, we did limited experiments (data not shown) for markers with very high and low

informativity (20 and 2 equifrequent alleles respectively), and observed similar results.

Some score-based statistics in the literature have been omitted from our study. For example,

we did not consider the sibship score variance (Wang 2002), discussed in Chen et al. (2005) as

“score-S.” This variance assumes the independence of sibpair IBDs, which holds only for perfectly

informative markers. Because of computational limitations we were not able to consider some

variance component (VC) based statistics such as Conditional VC statistic (Sham et al. 2000)

and the semiparametric VC approach (Diao and Lin 2005). Note however that the former is not

applicable for non-normal models while the latter would fail for selected samples.

The non-normal models we used were based on the hypothesis that the original trait has a

mixture normal distribution and we observe the trait on a different scale. Hence, the final trait

value was transformed. We considered this model to be realistic although some authors prefer to

use models with non-normal errors. For example in the Chen et al. (2005) only the unshared

environmental component was squared. We conducted limited simulations with chi-square residual

models (data not shown) and got similar results to those of Chen et al. (2005). Also, one approach

to dealing with non-normal traits is to apply a normalizing transformation (e.g., Wang 2002) to

the traits and then apply variance components or standard score based approaches. We have not

included this approach in our comparison as it does not fit into the score statistic framework.

However as indicated by the results of Chen et al. (2005), this is a promising approach and

deserves further investigation, particularly for population samples. For selected samples, such

an approach can be used if a normalizing transformation for the trait is known a-priori from a

previous population-based study.
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3.5.6 Software

Currently there is a dearth of publicly available software implementing the score based statistics,

which, because of their inherent robustness should be the method of choice for linkage mapping

of quantitative traits. We have implemented most of the statistics discussed here and also other

sibpair-specific statistics (some of which are discussed in T.Cuenco et al. 2003) in the user-friendly

software QTL-ALL (QTL Analysis and Linkage Library). QTL-ALL recommends appropriate

statistics based on the study design. Figure 3.6 shows a decision tree for choosing appropriate

score statistics for sibships under different scenarios. The software implements some methods

to increase speed by avoiding inversion of large matrices. These are outlined in Appendix C.

QTL-ALL (Mukhopadhyay et al. , unpublished data) is available freely from our website (http:

//watson.hgen.pitt.edu/register/).
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Figure 3.6: Choice of Score Statistics for QTL Linkage Analysis with Sibships.
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4.0 SCORE STATISTICS FOR ASSOCIATION

Most family-based tests of association for quantitative traits are extensions of the Transmission

Disequilibrium Test (Spielman et al. 1993; Terwilliger and Ott 1992). They condition upon

parental genotypes to protect against population stratification and generally ignore parental phe-

notypes. Both of these factors contribute to loss of power of these tests relative to population-based

or unconditional family-based tests. To improve power, all the available data including parental

phenotypes should be used when confounding factors such as age or cohort specific differences are

not suspected. We derive novel likelihood-based score statistics which have improved power to

detect association in families, while protecting against population sub-structure and phenotype-

based ascertainment. We discuss possible modifications of these statistics for incorporating IBD

information and handling non-normally distributed traits and compare the performance of the pro-

posed statistics to some of the standard family-based tests of association. We also address some

computational issues arising in constructing the proposed statistics.

4.1 INTRODUCTION

In this section we give some background on two commonly used family-based association mapping

methods for quantitative traits, FBAT and QTDT, and discuss some of the outstanding practical

issues in the applicability of these statistics.

4.1.1 FBAT

The FBAT is a class of family-based tests of association that is robust to population stratification.

It is quite general and can handle different kinds of phenotypes including binary, quantitative,
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censored and multiple traits. The FBAT statistic is motivated as an extension to the Transmission

Disequilibrium Test or TDT (Spielman et al. 1993). Like the TDT, FBAT conditions on founder

genotypes to protect against population stratification. The statistic was originally proposed for trio

data by Rabinowitz (1997) and subsequently extended to handle nuclear families and extended

pedigrees (e.g., Laird et al. 2000; Rabinowitz and Laird 2000; Lange et al. 2004) in the software

packages FBAT and PBAT. The FBAT statistic has the following general form (Laird and Lange

2006) ∑
family:i

∑
non−founder:j T

′
ij [Xij − E(Xij |Si)]∑

i

∑
j

∑
j′ TijTij′Cov(Xij , Xij′ | Si, Tij , Tij′)

,

where Tij and Xij are coded versions of the phenotype and genotypes of the jth non-founder in

the ith family and Si is a sufficient statistic for the genetic information in the founders. For

quantitative traits, the phenotypes are usually coded as Tij = E(Yij − µij), where µij are offsets

usually chosen as the phenotype mean. The marker genotypes are usually coded according to a

hypothesized genetic model (for example a coding of {aa,Aa,AA} → {0, 1, 2} would correspond to

an additive model). Conditioning on the sufficient statistic for the founder genotypes makes the

statistic robust (in terms of type I error) to population stratification as well as misspecification

of the genetic model. Further, conditioning on the phenotype makes it robust to ascertainment.

However, the conditioning on phenotypes and founder genotypes only guarantee robustness of type

I error. Typically FBAT is considerably less powerful compared to population-based association

studies, such as matched case-control studies which also protect against stratification to a certain

extent. In this chapter, we investigate the possibility of improving the power of the FBAT statistic

by changing the form of the numerator and/or by relaxing the conditioning on sufficient statistics.

Originally the FBAT numerator was motivated as a score function (Rabinowitz 1997),

under certain models for trio data. For nuclear families or extended pedigrees, the above form of

the numerator is usually motivated as a natural measure of association between the trait and the

genotype. Note that the numerator simply measures the sample covariance between the trait and

the genotype, which implicitly assumes “no residual environmental correlation.” But except for

trio data (for which the FBAT was originally proposed), this assumption is generally unrealistic.

For example, if we use a normal model for [Y | gm], the scores have the same form as above with

Ti = Σ−1
Y (Yi − µY ) (e.g., Laird et al. 2000; Whittemore and Halpern 2003 and section 4.2.1

of this dissertation) instead of Ti = Yi − µY as usually recommended by FBAT. Thus the usual

coding is optimal only under the assumption of uncorrelated environments. The FBAT software

69



(Horvath et al. 2001) suggests using the Gaussian scores Σ−1
Y (Yi − µY ), but this coding is not

implemented in the software. For ascertained samples it may be difficult to obtain reliable estimates

of the population mean and dispersion matrices of the phenotype. However, in this chapter, we

have restricted our attention to this form of the numerator, assuming those parameter estimates

are available (possibly from a previous population sample).

The choice of the offsets µij is also an extremely important issue. FBAT allows different

choices of the offsets, including the (weighted) sample mean of the phenotype. As mentioned

above, the score function based on a Gaussian likelihood uses µ = µY , the true population mean.

In general, when the true population mean is known and the assumed model is correct, the score

test gives a more powerful test than the FBAT (with µij = Y ). Note however that, for population

samples, these two tests would be equivalent (as Y ≈ µY ). Also, for selected samples, the trait

mean may often be difficult to estimate. In section 4.2.8, we discuss how the choice of the offset

affects the FBAT statistic and possible ways to construct statistics free of the trait parameters.

The numerator of the FBAT statistic is Y ′i (gi−E(gi | Si). It is designed to detect the alterna-

tive HLA of “linkage AND association.” The null hypothesis for the test can be H00 (no linkage and

no association), HL0 (linkage but no association) or H0A (association but no linkage). The choice

of the null hypothesis affects the choice of the sufficient statistic Si. When testing against H00 or

H0A, the sufficient statistic can be the founder genotypes. Under both of these null hypotheses, the

phenotype does not affect the mean of gi, conditional on the founder genotypes. However, when

testing against HL0 , the null hypothesis expectation E(gi | gF , Y ) (where gF denotes the founder

genotypes) would in general depend on the recombination fraction θ which is unknown. As a way

to get rid of the dependence on θ, FBAT uses the expectation E(gi | gF , Π̂m), where Π̂m is the

estimated IBD at the marker locus. Thus, when testing against HL0 , Si should consist of founder

genotypes as well as estimated marker IBDs. The choice of the null hypothesis should generally

depend on the design of the study. For a de novo genome scan H00 may be appropriate. But under

certain situations, it is known a priori that the marker is linked (e.g., fine mapping under a linkage

peak) or associated (e.g., validation of an association signal obtained using a population-based

study). Ideally one should condition on gF and Π̂m as this guarantees correct type I error under all

three null hypotheses, but more conditioning usually means less power. Hence it is customary to

use the type-1 null hypothesis H00 ∪H0A (no linkage) for most purposes, except for fine mapping

under a linkage peak, in which case the type-2 null hypothesis H00 ∪HL0 ∪H0A (no linkage or no

association) is used. In the following sections, we propose statistics for testing both the type-1 and
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type-2 null hypothesis. However, our simulation studies are restricted to statistics that test the

type-1 null hypothesis.

The FBAT statistic, like the TDT, ignores founder phenotype information. One of the

reasons for this is that in many cases founders belong to a different age group or cohort. If the

distribution of the phenotype varies with generation or age, analyzing all the phenotypes jointly

may lead to spurious associations or to attenuation of an existing association. Nevertheless, for

some phenotypes, the investigator may be able to rule out confounding due to generation effects

or remove these effects for example by regressing out age. Also, in a multigenerational pedigree,

founders who marry-in generally belong to the same cohort as their spouses and should probably

be used. When founder phenotype information is available and generational biases are absent or

removed, it may be possible to improve the power of the FBAT statistic by incorporating that

information. This is because founders convey information through their environmental correlation

with the non-founders. The FBAT statistic ignores the correlation structure of the family, and as

a result founder phenotypes are non-informative.

Similarly, the FBAT always conditions on all the founder genotypes to protect against pop-

ulation stratification. In some situations, we may have some information regarding the nature of

stratification in the population. We consider one such situation, in which there are possibly multi-

ple strata in the population but there is strong assortative mating within each stratum. We show

that, in this case, it is possible to improve the power of the FBAT statistic substantially by incor-

porating the founder genotype information partially instead of conditioning on all the information.

Although this comes at the price of detecting certain types of markers that are associated but not

linked to the trait, this is not a significant shortcoming considering that such markers if any are

expected to be rare (see section 4.4 for a discussion of this issue).

Sometimes it may be reasonable to assume that there is no population stratification, but we

may still want to use a family-based association test. In this case, using an FBAT type test that

conditions on founder genotypes leads to considerable loss of power. Hence an unconditional score

test should be used in this case. We propose extensions of the FBAT for the above mentioned

scenarios in section 4.2 and compare some of those using simulations in section 4.2.9.
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4.1.2 QTDT

Unlike the FBAT, the QTDT (Fulker et al. 1999; Abecasis et al. 2000; Abecasis et al. 2000)

is a likelihood ratio test for association using family data that protects against stratification. The

FBAT model just uses the marker genotype information, ignoring the IBD information at the locus.

QTDT on the other hand incorporates both the genotypes and IBD, and as such should be more

powerful. It uses a likelihood ratio test (LRT) based on the likelihood

[Y | gm, Π̂m] ∼ N [µY + ab gb + aw gw,ΣY + va (Π̂m − 2Φ)],

where gb = E(gm | gF ) and, gw = gm − E(gm | gF ),

and where the mean is “conditional on genotype” and the variance is “conditional on IBD.” Here

gb and gw constitute an orthogonal decomposition of the marker genotypes into between family and

within family components. The aw parameter can be used to test for association, whereas a test of

ab = aw can be used to test for presence of stratification. Being an LRT, it can easily accommodate

other parameters such as dominance effects, polygenic effects and environmental covariates. Also,

the model is quite flexible in that it can test for any of the four null hypotheses discussed in the

previous section as it separates the linkage and association parameters. Usually, the type-2 null

hypothesis is tested using the parameter aw, while estimating the linkage parameter va under both

the null and alternative.

In spite of its flexibility, QTDT has a number of disadvantages compared to FBAT. It

protects only against “between family stratification,” unlike FBAT, which is robust to arbitrary

ascertainment schemes. This is because it uses the founder genotype information (gb) as a surrogate

for the stratum, with the implicit assumption that founders in the same family come from the

same stratum. Also, it is quite computationally intensive, particularly for selected samples as the

asymptotic chi-square thresholds fail. In such cases, permutations conditional on the observed

inheritance vectors are used to obtain the null distribution of the statistic. Also, unlike the FBAT

and the score tests it is not robust to non-normality of the phenotype. Permutation-based thresholds

would be required for non-normal traits. Also the construction of the model is slightly ad-hoc

and has some inconsistency (see section 2.2.1.4). Nevertheless QTDT is a popular approach for

quantitative traits because of its flexibility. We used the QTDT statistic as implemented in the

“qtdt” software (Abecasis et al. 2000; Abecasis et al. 2001) for some of the simulation comparisons

in section 4.2.9.
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Purcell et al. (2005) proposed likelihood ratio tests similar to QTDT that attempt to

incorporate parental phenotypes. Unlike the QTDT, their procedure was only proposed for nu-

clear families and it does not attempt to incorporate IBD information. The method was further

extended to binary traits using a liability threshold model, which is currently implemented in the

“–parenTDT” option of the PLINK software package (Purcell et al. 2007; Purcell 2008). The

original model as proposed for quantitative traits uses similar ideas as those in the next section to

incorporate parental phenotypes and parental “genotype-phenotype” correlation (see section 4.2.4

for a comparison with the statistics proposed here). However the method has not been implemented

for quantitative traits and hence could not be included in our simulation study.

4.2 METHODS

4.2.1 Score Tests for Type-I Null Hypothesis

In this section we derive four different score statistics for “type-I” null hypotheses, i.e., under

the assumption of “no linkage”. Because of this assumption, these statistics do not require IBD

information. Score statistics incorporating IBD information will be discussed in section 4.2.2.

4.2.1.1 Model and Notation In this section we will use the notation of chapter 2. We

consider the implicit mean model (2.2.3) for vector of quantitative traits Y and marker genotypes

gm observed on a pedigree of size k, with the additional assumption that the dominance effect is

negligible (i.e., d = 0). We use the type-1 null hypothesis H0 : No linkage.

Y = µY + β (gm − Egm) + e , where e ∼ N(0,Σe). (4.2.1)

Σe is the unknown environmental covariance matrix, which can be written as Σe = ΣY − β2Σgm .

Under HWE, we have Egm = 2pm1 and Σgm = 4pqΦ. Further, let us assume that the pedigree

has L “founders” and Q “non-founders.” We partition the phenotype and genotype vectors into

“founder” and “non-founder” parts as Y = (Y ′
F
, Y ′

N
)′ and gm = (g′

F
, g′

N
)′. Let (YF , YN ) ∈ A be the

ascertainment scheme. Let us also partition the covariance matrices into founder and non-founder
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parts as

ΣY =

 ΣFF ΣFN

ΣNF ΣNN

 , Σgm =

 Σ
g

FF
Σ
g

FN

Σ
g

NF
Σ
g

NN

 , Σe =

 Σ
e

FF
Σ
e

FN

Σ
e

NF
Σ
e

NN

 .

Let Σ
N/F

denote the Schur complement of ΣY of the non-founder covariance matrix with respect

to the founder covariance matrix, i.e., Σ
N/F

= ΣNN − ΣNFΣ
−1

NN
ΣFN . Finally we define “corrected”

non-founder phenotype and genotype vectors as follows

Y
N/F

= YN − ΣNFΣ
−1

NN
YF and, g

N/F
= gN − E(gN | gF ).

Below we derive four different score statistics that protect against different types of population

stratification.

4.2.1.2 No Stratification: SCORE.NS This statistic does not protect against any stratifi-

cation. In this case, the likelihood model of interest is L(Y, gm | A). As shown in section 2.4, the

score for this likelihood can be obtained from the likelihood L(gm | Y ), which does not require

knowledge of the ascertainment scheme A. Thus, by conditioning on a sufficient statistic Y for the

ascertainment, we protect the score statistic against arbitrary ascertainment. As shown before in

section 2.4, the score for the reverse likelihood L(gm | Y ) is same as the score obtained from the

forward likelihood,

LY |gm(β) ∝
exp {−1

2(Ỹ − β g̃m)′[ΣY − β2 Σgm ]−1 (Ỹ − β g̃m)}
|ΣY − β2 Σgm |

1
2

.

As shown in Appendix A, the score for this likelihood is given by

l′Y |gm(0) = Ỹ ′ Σ−1
Y

g̃m. (4.2.2)

The standardized score statistic SCORE.NS is constructed using the above score function stan-

dardized by a “conditional on trait” variance. Thus, if we have observed data (Yi, gmi), for i =

1, . . . , n for n pedigrees having the same structure, then we define

SCORE.NS =
∑

i Ỹ
′
i Σ−1

Y
g̃mi√∑

i Ỹ
′
i Σ−1

Y
Σgm Σ−1

Y
Ỹi

, (4.2.3)

where we have used the fact that under the null, assuming HWE, Cov(g | A) = Σgm = 4pmqmΦ.

When pedigrees of different sizes and structures are present, the definition of the statistic can be

modified as done in chapter 3 for score statistics for linkage analysis. Note that SCORE.NS easily
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extends to handling general data sets with either families or unrelated individuals or both. All

unrelated individuals in a sample can be thought of as a big pedigree where all individuals are

independent i.e ΣY = Σgm = 0. If a data set contains unrelated individuals only, SCORE.NS

essentially reduces to a linear regression of the phenotype on the marker genotypes, centered at the

population means µY and 2pm.

4.2.1.3 Arbitrary Stratification: SCORE.AS In the presence of unknown stratification in

the sample, the minimal sufficient statistic for the allele frequencies in the population is the vector

of founder genotypes gF . Using a likelihood conditional on gF thus leads to score statistics that

are protected against arbitrary stratification. The likelihood of interest is L(Y, gN | gF ,A). Ideally,

to obtain the score under this likelihood we should condition on a minimal sufficient statistic for

the ascertainment scheme A. When A is completely unknown, the minimal sufficient statistic is

Y . Conditioning on Y leads to some loss of information in this case because of the simultaneous

conditioning on gF (unlike the no stratification case, where the score conditional on A is identical

to that conditional on Y ). The score for L(gN | gF , Y ) leads to SCORE.FP , which is discussed

in the next section. Here we discuss SCORE.AS which, like FBAT, uses the idea of conditioning

on gF but ignores the founder phenotype data. This approach should be used whenever founder

phenotypes are unknown or there are possible generation specific differences in the phenotype. In

this case, the likelihood of interest is L(gN | gF , YN ), as YN are minimal sufficient for unknown

ascertainment scheme A. The score for this likelihood can be derived as follows

Lg
N
|g
F
,YN (β) = P (gN | gF , YN )

=
P (YN , gF , gN )
P (YN , gF )

=
P (YN | gN )P (gN | gF )∑
g
N
P (YN | gN )P (gN | gF )

∝
LYN |gN (β)∑

g
N
LYN |gN (β)P (gN | gF )

lg
N
|g
F
,YN (β) = lYN |gN (β)− log{

∑
g
N

LYN |gN (β)P (gN | gF )}

Score(gN | gF , YN ) = Score(YN | gN )− {
∑
g
N

Score(YN | gN )P (gN | gF )},

where we have used P (x) to denote p.m.f or p.d.f for discrete and continuous variables respectively.

The last step uses the fact that score for a mixture likelihood is a mixture of the scores, which can
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be shown easily by differentiating the log-likelihood for the mixture distribution. The score for the

likelihood [YN | gN ] is Ỹ ′
N

Σ−1
NN

g̃N (analogous to 4.2.2). Thus the score function simplifies to

Score(gN | gF , YN ) = Ỹ ′
N

Σ−1
NN

[ g̃N −
∑
g
N

g̃N P (gN | gF ) ]

= Ỹ ′
N

Σ−1
NN

[ gN − E(gN | gF ) ].

The standardized score SCORE.AS, is obtained by standardizing the above score function using

a “conditional on trait” variance. Thus, for a dataset (Yi, gmi), for i = 1, . . . , n on n pedigrees of

the same type, we define:

SCORE.AS =

∑
i Ỹ
′
Ni

Σ−1
NN

[gNi − E(gNi | gFi )]√∑
i Ỹ
′
Ni

Σ−1
NN

Cov(gNi | gFi ) Σ−1
NN

Ỹ ′Ni

, (4.2.4)

where we have used the fact that under the null, assuming HWE, Cov(gN | gF , YN ) = Cov(gN | gF ).

The computation of Cov(gN | gF ) will be discussed in section 4.2.5.

4.2.1.4 Arbitrary Stratification: SCORE.FP When founder phenotypes are available, they

can be used to improve the power of SCORE.AS. In this case we consider the likelihood L(gN |

gF , Y ) as discussed in the previous section. gF and Y = (YN , YF ) serve as minimal sufficient

statistics for marker allele frequencies (assuming unknown stratification) and selection (assuming

unknown ascertainment scheme) respectively. The score for this likelihood is obtained as follows

Lg
N
|g
F
,Y (β) = P (gN | gF , Y )

=
P (Y, gF , gN )
P (Y, gF )

=
P (Y | gm)P (gm | gF )∑
gm
P (Y | gm)P (gm | gF )

∝
LY |gm(β)∑

gm
LY |gm(β)P (gm | gF )

lg
N
|g
F
,Y (β) = lY |gm(β)− log{

∑
gm

LY |gm(β)P (gm | gF )}

Score(gN | gF , Y ) = Score(Ym | gm)− {
∑
gm

Score(Y | gm)P (gm | gF )}.
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The score for the likelihood [Y | gm] is Ỹ ′ Σ−1
Y

g̃m (from 4.2.2). Thus the score function simplifies

to

Score(gN | gF , Y ) = Ỹ ′ Σ−1
Y

[ g̃m −
∑
gm

g̃m P (gm | gF ) ]

= Ỹ ′ Σ−1
Y

[ gm − E(gm | gF ) ].

Note that the founder component of [gm − E(gm | gF )] is [gF − E(gF | gF )] = 0. By partitioning

Y and ΣY into founder and non-founder components and using the standard inversion formula for

inverse of partitioned matrix ΣY , the score can be simplified to

Score(gN | gF , Y ) = Ỹ ′
N/F

Σ−1
N/F

[ gN − E(gN | gF ) ],

which is similar to SCORE.AS, but with the non-founder phenotypes regressed on the founder

phenotypes. The residuals Y
N/F

and the residual covariance matrix Σ
N/F

are used instead of the

uncorrected non-founder phenotype YN and covariance matrix ΣNN . Thus the founder phenotypes

act as covariates in reducing the variability of the non-founder phenotypes due to environmental

factors. Thus SCORE.FP is expected to have higher power than SCORE.AS. However, the

increase in power tends to be modest (see simulation results in section 4.3). The power improvement

is expected to increase with increase in number of founders in the family or increase in environmental

correlation between founder and non-founders.

The standardized score SCORE.FP is obtained by standardizing the above score function

using a “conditional on trait” variance. Thus, for a dataset (Yi, gmi), for i = 1, . . . , n on n pedigrees

of the same type, we define

SCORE.FP =

∑
i Ỹ
′
i Σ−1

Y
[gmi − E(gmi | gFi )]√∑

i Ỹ
′
i Σ−1

Y
Cov(gmi | gFi ) Σ−1

Y
Ỹi

, (4.2.5)

where we have used the fact that under the null, assuming HWE, Cov(gm | gF , Y ) = Cov(gm | gF ).

Also note that Cov(gm | gF ) has zeros except for the last Q×Q block of non-founder covariances

Cov(gN | gF ).

4.2.1.5 Between Family Stratification: SCORE.FPG Here we assume that founder phe-

notypes are known and also that stratification is “between family” only. In such a case, and if

both founder phenotypes and genotypes can be used construct a score test that derives information

from founder genotype-phenotype correlation and is, as a result, significantly more powerful than
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SCORE.AS and SCORE.FP . Such an assumption may be reasonable when there are possibly

multiple strata in the population but there is strong assortative mating, so that founders in each

family come from the same stratum. In this case the founder marker genotypes in a family are in-

dependently distributed as Bin(2, pm,s), where pm,s is the marker allele frequency in the stratum s

to which the family belongs (assuming HWE in each stratum). Thus the minimal sufficient statistic

for the stratum allele frequency is the founder genotype mean g
F

. The ascertainment scheme is

again assumed to be unknown, so that all phenotypes Y constitute the minimal sufficient statistic.

Thus the likelihood of interest in L(gm | Y, gF ). The score for this likelihood is given by

Lgm|g
F
,Y (β) = P (gm | gF , Y )

=
P (Y, gm, gF )
P (Y, g

F
)

=
P (Y | gm)P (gm | gF )∑
gm
P (Y | gm)P (gm | gF )

∝
LY |gm(β)∑

gm
LY |gm(β)P (gm | gF )

lgm|g
F
,Y (β) = lY |gm(β)− log{

∑
gm

LY |gm(β)P (gm | gF )}

Score(gm | gF , Y ) = Score(Ym | gm)− {
∑
gm

Score(Y | gm)P (gm | gF )}.

The score for the likelihood [Y | gm] is Ỹ ′ Σ−1
Y

g̃m. (from 4.2.2). Thus the score function simplifies

to

Score(gm | gF , Y ) = Ỹ ′ Σ−1
Y

[ g̃m −
∑
gm

g̃m P (gm | gF ) ]

= Ỹ ′ Σ−1
Y

[ gm − E(gm | gF ) ]

= Ỹ ′ Σ−1
Y

[ gm − gF 1 ],

where we have used the fact that E(gmi | gF ) = g
F

for all individuals “i” in the pedigree (proved

in section 4.2.5). The standardized score SCORE.FPG is obtained by standardizing the above

score function using a “conditional on trait” variance. For a dataset (Yi, gmi), for i = 1, . . . , n on

n pedigrees of the same type, we define:

SCORE.FPG =
∑

i Ỹ
′
i Σ−1

Y
[ gmi − E(gmi | gFi) ]√∑

i Ỹ
′
i Σ−1

Y
Cov(gmi | gFi) Σ−1

Y
Ỹi

, (4.2.6)

where we have used the fact that under the null, assuming HWE, Cov(gm | gF , Y ) = Cov(gm | gF ).

The computation of Cov(gm | gF ) will be discussed in section 4.2.5.
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It can be shown that the additional information captured by SCORE.FPG is essentially a

measure of the “genotype-phenotype correlation” among the founders in each family.

4.2.2 Incorporating IBD information

Most approaches for association mapping ignore the IBD information at the marker locus that may

be available from other markers across the chromosome. As discussed in section 2.2.1.4, ideally

all the available information, i.e., Y , gm and Π̂m should be modeled, irrespective of the type of

test (linkage or association). IBD information helps in reducing the variability of gm by modeling

Cov(gm | Π̂m) even in absence of linkage with the trait locus. Below, we discuss two ways of

incorporating IBD information in the score tests for association described above.

4.2.2.1 Testing Type-2 Null Hypothesis The four score statistics discussed in the previ-

ous section can be modified to include the null hypothesis HL0 : Linkage but No association by

additionally conditioning on the observed IBD Π̂m to obtain the null mean and variance of each

statistic. This is because (Y, Π̂m) is sufficient for the linkage parameter, and so the mean and vari-

ances become free of the coefficient of recombination θ. This approach is recommended by FBAT,

but only for the purposes of fine mapping under a linkage peak, as the additional conditioning leads

to loss of information and power. The modified versions of the score statistics described above to

test for the type-2 null hypothesis are

SCORE.IBD.NS =
∑

i Ỹ
′
i Σ−1

Y
g̃mi√∑

i Ỹ
′
i Σ−1

Y
Cov(gm | Π̂m) Σ−1

Y
Ỹi

SCORE.IBD.AS =

∑
i Ỹ
′
Ni

Σ−1
NN

[gNi − E(gNi | gFi , Π̂mi)]√∑
i Ỹ
′
Ni

Σ−1
NN

Cov(gNi | gFi , Π̂mi) Σ−1
NN

ỸNi

SCORE.IBD.FP =

∑
i Ỹ
′
i Σ−1

Y
[gmi − E(gmi | gFi , Π̂mi)]√∑

i Ỹ
′
i Σ−1

Y
Cov(gmi | gFi , Π̂mi) Σ−1

Y
Ỹi

SCORE.IBD.FPG =
∑

i Ỹ
′
i Σ−1

Y
[ gmi − E(gmi | gFi , Π̂mi) ]√∑

i Ỹ
′
i Σ−1

Y
Cov(gmi | gFi , Π̂mi) Σ−1

Y
Ỹi

,

where we have used the fact that [gN | gF , Y, Π̂m]= [gN | gF , Π̂m] under the null hypothesis of

no association (irrespective of linkage). The computation of the conditional means and variances

involved in the above formulas will be discussed in section 4.2.5.
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4.2.2.2 Modeling IBD information The four score statistics derived in section 4.2.1 assume

the mean model (4.2.1), which ignores IBD information and models the distribution [Y | gm]. The

reverse likelihoods used to derive the scores are L(gm | Y ), L(gN | gF , YN ), L(gN | gF , Y ), L(gm |

g
F
, Y ). Instead of ignoring the observed IBD information, scores can be derived by considering the

likelihoods L(gm, Π̂m | Y ), L(gN , Π̂m | gF , YN ), L(gN , Π̂m | gF , Y ), L(gm, Π̂m | gF , Y ). Let us first

consider the likelihood L(gN , Π̂m | gF , Y ). We note that

L(gN , Π̂m | gF , Y ) ∝ L(gN | gF , Y, Π̂m) L(Π̂m | Y, gF ).

Under “no linkage,” the second component, L(Π̂m | Y, gF ) becomes L(Π̂m). So, the likelihood is

essentially proportional to the first component, L(gN | gF , Y, Π̂m). The score for this likelihood is

given by

Lg
N
|g
F
,Y,Π̂m

(β) = P (gN | gF , Y, Π̂m)

=
P (Y, Π̂m, gN , gF )
P (Y, Π̂m, gN )

=
P (Y | Π̂m, gN , gF ) P (gN | gF , Π̂m)∑
g
N
P (Y | Π̂m, gF , gN ) P (gN | gF , Π̂m)

∝
L(Y |Π̂m,gN ,gF )(β)∑

g
N
L(Y |Π̂m,gN ,gF )(β)P (gN | gF , Π̂m)

.

Score(gN | gF , Y, Π̂m) = Score(Y | Π̂m, gN , gF )− Eg
N
|g
F
,Π̂m

(Y | Π̂m, gN , gF ). (4.2.7)

The model [Y | Π̂m, gN , gF ] is essentially the proposed implicit model (2.2.8) under the assumption

of no linkage. The score for this model is

LY |gm,Π̂m(β) ∝
exp {−1

2(Ỹ − β g̃m)′[ΣY − β2 vgmΠ̂m]−1 (Ỹ − β g̃m)}
|ΣY − β2 vgmΠ̂m|

1
2

lY |gm,Π̂m(β) ∝ −1
2

(Ỹ − β g̃m)′ [ΣY − β
2 vgmΠ̂m]−1 (Ỹ − β g̃m)− 1

2
log |ΣY − β

2 vgmΠ̂m|

l′
Y |gm,Π̂m

(β) = β trace
(

[ΣY − β
2 vgmΠ̂m]−1 vgmΠ̂m

)
+ (Ỹ − β g̃m)′[ΣY − β

2 vgmΠ̂m]−1 g̃m +

1
2

(Ỹ − β g̃m)′ [ΣY − β
2 vgmΠ̂m]−1 (β vgmΠ̂m) [ΣY − β

2 vgmΠ̂m]−1 (Ỹ − β g̃m)

l′
Y |gm,Π̂m

(0) = Ỹ ′ Σ−1
Y

g̃m,

which is the same as the usual score from the mean model (4.2.1), which ignores IBD information.

The score in equation (4.2.7) is then given by

Score(gN | gF , Y, Π̂m) = Ỹ ′ Σ−1
Y

g̃m − Eg
N
|g
F
,Π̂m

(Ỹ ′ Σ−1
Y

g̃m)

= Ỹ ′ Σ−1
Y

[gm − E(gm | gF , Π̂m)],
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which is same as the numerator of SCORE.IBD.FP . Similarly it can be shown that the numer-

ators of L(gN , Π̂m | gF , YN ) and L(gm, Π̂m | gF , Y ) are the same as those of the “type-2 statistics”

SCORE.IBD.AS and SCORE.IBD.FPG respectively. For the likelihood L(gm, Π̂m | Y ) the

numerator is same as that for SCORE.NS and SCORE.IBD.NS, as this likelihood is propor-

tional to L(Y | gm, Π̂m). However, under the type-1 null hypothesis, the denominators should be

evaluated as variance of the scores conditional on gF , similar to the type-1 statistics and unlike

the denominators in the type 2 statistics, which use conditioning on gF and Π̂m. The standardized

score test for testing the type-1 null, under “no stratification” is thus the same as SCORE.NS.

The standardized score test (that models IBD) corresponding to SCORE.FP , has the form

∑
i Ỹ
′
i Σ−1

Y
[gmi − Egmi | gFi , Π̂mi ]√∑

i Ỹ
′
i Σ−1

Y
{Cov(gmi | gFi )− CovΠ̂m

[E(gmi | gFi , Π̂mi)]} Σ−1
Y

Ỹi

,

which has a different denominator from both SCORE.FP and SCORE.IBD.FP . Similar formulas

can be obtained for scores corresponding to type-1 statistics SCORE.AS and SCORE.FPG.

However, the denominator variances involve Cov(Π̂m) (shown in section 4.2.5), which has to be

computed empirically.

Score statistics incorporating linkage such as those derived from the implicit model assuming

“possible linkage,” would generally require the MLE of va (as in equation 2.3.5). Obtaining the

MLE is computationally intensive and also requires knowledge of the exact ascertainment scheme.

Although the above statistics are derived ignoring the IBD information (or assuming “no link-

age”) they are reasonably powerful to detect association in presence of linkage. In fact, the type-1

statistics have similar power to QTDT (see simulation results in 4.3), a model which incorporates

IBD explicitly and estimates the linkage parameters. However, the power of these statistics would

depend on the type of null distribution used to obtain the means and variances required to stan-

dardize the scores. The choice of the type of null hypothesis is an important issue as it has an effect

on the power to detect the alternative of interest “linkage AND association.” The FBAT software

(Horvath et al. 2001) recommends using the type-1 statistics for most purposes except for fine

mapping under a linkage peak, as conditioning on IBD tends to reduce power (Rabinowitz and

Laird 2000). Also, it is not obvious how the power of the scores that model IBD (derived in this

section) would compare with respect to that of type 1 and type 2 statistics. We will not address

these issues in this dissertation, and restrict our simulation comparisons to the type-1 statistics

described in section 4.2.1.
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4.2.3 Statistic Summary

Below we comparate the properties of the type-1 and type-2 statistics described in this section, as

well as standard approaches FBAT and QTDT. The properties are also summarized in Table 4.2.3.

• SCORE.NS and SCORE.IBD.NS give measures of total association in a sample, and are com-

parable in power to a population-based study with the same number of individuals, provided

the phenotype mean and covariance matrix (for a family) are specified correctly. SCORE.NS

uses the null hypothesis H00 while SCORE.IBD.NS uses H00∪HL0. Both of them have power

to detect association irrespective of linkage (i.e H0A or HLA).

• FBAT (and its type 2 equivalent) measure association “within a family” due to linkage. In

fact, these statistics do not have any power to detect association in absence of linkage (H0A).

The type-1 statistic uses the null hypothesis of “no linkage” (with or without association). The

type-2 statistic uses the type-2 null hypothesis Hc
LA (i.e either no association or no linkage).

• SCORE.AS and SCORE.FP (and their type-2 equivalents) are similar in spirit to the FBAT

type-1 and type-2 statistics, with two differences. Firstly, FBAT takes an offset parameter

µ and assumes residual environmental correlation among non-founders is zero. SCORE.AS

and SCORE.FP , on the other hand, require the population trait mean µY and covariance

ΣY parameters. Secondly, while the FBAT statistics ignore founder phenotypes, SCORE.FP

provides a way of incorporating them when they are available and generation-specific biases are

not suspected.

• QTDT measures association “within a family” due to linkage. It uses the type-2 null hypothesis

Hc
LA i.e., it has correct type I error irrespective of whether linkage is present. However, unlike

FBAT, it is only protected against between family stratification. It estimates nuisance param-

eters µY and ΣY . For selected samples QTDT gives correct type I error only if permutations

are used to obtain the empirical distribution.

• SCORE.FPG (and SCORE.IBD.FPG) measure “total association within a family,” unlike

SCORE.AS and SCORE.FP which measure only the part of the “within family association”

that is due to linkage. In particular, it derives information from founder genotype-phenotype

correlation from each family. Like SCORE.NS, SCORE.FPG uses the null hypothesis H00

while SCORE.IBD.FPG uses H00 ∪HL0. Both of them have power to detect association in

the presence or absence of linkage.
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Table 4.1: Comparison of Statistics

SCORE.NS SCORE.AS FBAT SCORE.FP SCORE.FPG QTDT

Formula Ỹ ′Σ−1
Y
g̃ Ỹ ′

N
Σ−1

NN
g

N/F
Ỹ ′

N
[gN − E(gN | gF )]Ỹ ′Σ−1

Y
[gm − E(gm | gF )]Ỹ ′Σ−1

Y
[gm − gF

]
N [µ̂

Y
+âb gb+âw gw,Σ̂Y

+v̂a (Π̂m−2Φ)]

N [µ̂
Y

+âb gb,Σ̂Y
+v̂a (Π̂m−2Φ)]

Stratification None Arbitrary Arbitrary Arbitrary Between Family Between Family
Protection

Null T1: H00 T1:H00 ∪H0A T1: H00 ∪H0A T1: H00 ∪H0A T1: H00 H00 ∪HL0

Hypothesis T2:H00 ∪HL0 T2: Hc
LA T2: Hc

LA T2: Hc
LA T2: H00 ∪HL0

Condition on Y YN , gF YN , gF Y, gF Y, g
F

gF

Uses Founder Yes No No Yes Yes No
Phenotypes

Founder Measures Conditions Conditions Conditions Measures Conditions
Genotypes gF − YF on gF on gF on gF gF − YF on gF

correlation correlation

Measures Total Association Association Association Total Association
Association due to linkage due to linkage due to linkage Association due to linkage
in sample within family within family within family within family within family

Detects Association Association Association Association Association Association
& Linkage & Linkage

4.2.4 Comparison with parenTDT

Purcell et al. (2005) proposed a model similar to QTDT that can incorporate parental phenotypes

and parental genotype-phenotype correlation. They considered the likelihood [Y | gm] ∼ N [µ̃,ΣY ],

where

µ̃ =

 u+ c g
F

+ d (gF − gF )

m+ b g
F

+ w (gN − gF )

 . (4.2.8)

The parameters u and m are overall trait means allowing for a generational difference. The pa-

rameters b and c capture stratum effects assuming between family stratification and also allow for

a generational difference. These parameters can be used to test for presence of stratification. d

and w together capture total within family association (similar to SCORE.FPG) allowing for a

generational difference. If parental phenotypes are ignored, only parameters m, b and w are mod-

eled thus making the mean model identical to QTDT. They also considered regressing out founder

phenotypes and using the QTDT type mean model (similar to QTDT − FP ). They proposed

several tests (Tests A-G, Purcell et al. 2005, pp 251) based on constraints on the parameters b, c,
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w and d. The score statistics discussed above can be thought of as corresponding to the following

likelihood ratio tests under the parenTDT model (4.2.8).

• SCORE.NS - H0 : u = m, b = c = w = d = 0 vs H1 : u = m, b = c = w = d > 0

• SCORE.AS - Use only offspring phenotypes, H0 : m, b, w = 0 vs H1 : m, b, w > 0

• SCORE.FP - Same as SCORE.AS, regress out parental phenotypes.

• SCORE.FPG - H0 : u = m, b = c, w = d = 0 vs H1 : u = m, b = c, w = d > 0

This method, as originally proposed, does not incorporate IBD information but extension to a

QTDT type model or the proposed implicit model (2.2.8) is straightforward. Also, this method was

proposed for nuclear families but can be easily extended to handle general pedigrees. In spite of the

generality and flexibility of this method, it has not been implemented into software for quantitative

traits to our knowledge. An extension to binary traits is available using the “–parenTDT” options

in the PLINK software package (Purcell et al. 2007; Purcell 2008). PLINK currently uses an

ad hoc procedure “QFAM” (Purcell 2008) for family based association mapping of quantitative

traits that corrects for family relationships using permutations.

4.2.5 Computing Conditional Moments

For nuclear families, FBAT uses an exhaustive enumeration of all transmissions consistent with

Mendelian segregation to obtain the null distribution under no linkage, i.e., [gN | gF ]. To gener-

ate the empirical distribution of [gN | gF , Π̂m], FBAT uses a permutation-based algorithm. The

algorithm randomly chooses neither, one or both of the parents and switches, in all offsprings, the

transmitted alleles from those parents. The exact distributions thus obtained are then used to

obtain the mean and variance of the denominator of the statistic. Extended pedigrees are broken

up into nuclear families by FBAT. PBAT (Lange et al. 2004) uses the permutation-based R-L

(Rabinowitz-Laird) algorithm (see Rabinowitz and Laird 2000, section 4.2.6 of this dissertation)

to obtain these distributions exactly. This algorithm is quite general, in that it can handle miss-

ing founder genotypes, but at the same time it is computationally intensive. In sections 4.2.5.1

through 4.2.5.3, we derive some closed form expressions for the means and covariances under these

distributions under the assumption of no missing founders. These formulas do not require the exact

conditional distributions and therefore offer considerable efficiency in the computation of the null

means and variances of the FBAT and the score statistics described in the previous section for
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situations where all the founders are genotyped. In section 4.2.6, we consider the case of missing

founder genotypes and discuss possible modifications of the R-L algorithm to obtain the conditional

distributions. We will assume a non-inbred pedigree with kinship coefficient matrix Φ. Let Πm and

Π̂m = E(Πm | M) denote the true unobserved IBD and the estimated IBD at the marker locus.

We partition Φ, Πm and Π̂m into founder and non-founder blocks as

Φ =

 ΦFF ΦFN

ΦNF ΦNN

 , and Πm =

 ΠFF ΠFN

ΠNF ΠNN

 , Π̂m =

 Π̂FF Π̂FN

Π̂NF Π̂NN

 .

Also, for the nth non-founder and f th founder, we will use the lower case symbols φ, π and π̂ along

with the subscripts fN , nF and nf to denote respectively the f th row (written as column vector),

the nth column and the (n, f)th entry of these matrices.

4.2.5.1 Conditional Means: Below we compute the conditional means required for computing

the numerators of the score statistics proposed in section 4.2.1 and 4.2.2.1.

E(gN | gF)

It is known (e.g., Abecasis et al. 2000) that

E(gn | gF ) = 2φ′
nF
gF and

E(gN | gF ) = 2ΦNF gF .

This relation is easy to prove recursively for each member of a pedigree assuming it holds for that

person’s parents.

E(gN | gF
)

To obtain the mean conditional on g
F

we note that g
f
s are iid binomial random variables. As a

result, [gF | gF ] has a multivariate hypergeometric distribution HG(gF ;m = Lg
F
, N = 2L, n = 2).

We know that mean of the multivariate hypergeometric distribution is given by E(gfi) = (nm/N).

Therefore,

E(gf | gF ) = g
F

and,

E(gn | gF ) = Eg
F
|g
F

[E(gn | gF )]

= 2φ′
nF

(g
F

1)

= g
F

(∵ φ′
nF

1 = 1/2).
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E(gN | gF ,Πm)

Conditioning on “true IBD” gives

E(gn | gF ,Πm) = π′
nF
gF and,

E(gN | gF ,Πm) = ΠNF gF . (4.2.9)

When the true IBD Πm is unknown, we use the fact that [gN | gF ,M ] = [gN | gF , Π̂m], which follows

from our assumption that all the markers are in linkage equilibrium with each other.

E(gn | gF , Π̂m) = E(gn | gF ,M)

= EΠm|M [E(gn | gF ,Πm)]

= π̂′
nF
gF and

E(gN | gF , Π̂m) = Π̂NF gF .

The formulas 4.2.9 can be justified intuitively by the fact that the two founders who transmit

their alleles to a non-founder act as that person’s parents. To prove it more rigorously, let f1

and f2 denote the two founders who transmitted their alleles to “n”. Also suppose f1 and f2

transmit the ith1 and ith2 alleles, where (i1, i2) ∈ {1, 2}. The probability of each such transmission is

(1/8)1πnf1=πnf2=1/2. Thus summing over all possible transmissions we have

E(gn | gF ,Πm) =
∑
f1

∑
f2 6=f1

2∑
i1=1

2∑
i2=1

(g
f1,i1

+ g
f2,i2

)((1/8)1πnf1=πnf2=1/2)

= (
1
2

)
∑
f1

∑
f2 6=f1

2∑
i1=1

g
f1,i1

1πnf1=πnf2=1/2 (By symmetry)

= (
1
2

)
∑
f1

g
f1

1πnf1
∑
f2 6=f1

1πnf2=1/2

= (
1
2

)
∑
f1

g
f1

1πnf1=1/2 (Only two founders share an allele IBD)

=
∑
f1

g
f1
πnf1

= π′
nF
gF .

E(gN | gF
,Πm)

E(gn | gF ,Πm) and E(gn | gF , Π̂m) can be obtained similarly as E(gn | gF ) using the hypergeometric
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distribution. We condition on gF and use the facts that E(gF | gF ) = g
F
1 and π′

nF
1 = 1, to get

E(gn | gF ,Πm) = g
F
1

E(gn | gF , Π̂m) = g
F
1.

4.2.5.2 Conditional Variances: Here we derive expressions for the conditional variances of

the scores some of which can be derived as special cases of the expressions for covariance derived

in the next section.

Var(gN | gF)

Let us first derive the conditional variance V ar(gn | gF ). For a trio pedigree, if “p” and “m” denote

the two parents of “n,” then we know that [gn | gp, gm] ∼ Ber(gp/2) + Ber(gm/2), a sum of two

independent Bernoulli random variables (namely the indicators of the “A” allele being transmitted

from each parent). Hence we get

V ar(gn | gp, gm) = gp(2− gp)/4 + gp(2− gp)/4

E(g2
n | gp, gm) = V ar(gn | gp, gm) + (gp + gm)2/4

=
1
2

(gp + gm + gpgm)

E(g2
n | gF ) =

1
2
E[(gp + gm + gpgm) | gF ]

= 2φ′nFpgFp + 2φ′nFmgFm + 8 φ′nFpgFp φ
′
nFmgFm ,

where, Fp and Fm denote the founders of “n” in the paternal and maternal sides respectively. In

the last step, we used the fact that φpf = φmf = 2φnf . Using the above relation and the formula

for the conditional mean in the previous section, we get

V ar(gn | gF ) = E(g2
n | gF )− E2(gn | gF )

= {2φ′nFpgFp + 2φ′nFmgFm + 8 φ′nFpgFp .φ
′
nFmgFm} − {4(φnFpgFp + φnFmgFm)2}

= {4φ′nFpgFp .φ
′
nFp2 + 4φ′nFmgFmφ

′
nFm2} − {4φ′nFpgFp .φnFpg

′
Fp + 4φ′nFmgFm .φ

′
nFmgFm}

= 4g′FpφnFpφ
′
nFp(2− gFp) + 4g′FmφnFmφ

′
nFm(2− gFm)}, (4.2.10)

where we have used the fact that φ′
nF

1 = 1/2 (total kinship coefficient with founders), which follows

from the definition of kinship coefficient.
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Var(gN | gF ,Πm)

Next let us derive the conditional variance given the true IBD, i.e., V ar(gn | gF ,Πm). As before,

summing over all possible transmissions from founders, we get

E(g2
n | gF ,Πm) =

∑
f1∈F

∑
f2 6=f1

2∑
i1=1

2∑
i2=1

(gf1,i1 + gf2,i2)2((1/8)1πnf1=πnf2=1/2)

= E(gn | gF ,Πm) + (
1
4

)
∑
f1∈F

∑
f2 6=f1

2∑
i1=1

2∑
i2=1

gf1,i1gf2,i21πnf1=πnf2=1/2

(∵ g2
fi

= gfi)

= g′
F
πnF + {(1/2)

∑
f1∈F

gf11πnf1=1/2 (1/2)
∑
f2∈F

gf21πnf2=1/2 − (1/4)
∑
f1∈F

g2
f1

1πnf1=1/2

= g′
F

ΠnF + E2(gn | gF ,Πm)− (1/2) g′
F
Diag(ΠnF ) gF

V ar(gn | gF ,Πm) = g′
F

ΠnF − (1/2) g′
F
Diag(ΠnF ) gF

= g′
F
Diag(Π2

nF
)(2)− g′

F
Diag(Π2

nF
) gF

= g′
F
Diag(Π2

nF
) (2− gF ),

where we have used the fact that 2π2
nf

= π
nf
, ∀f ∈ F . When the true IBD Πm is unknown, we use

the fact [gn | gF ,M ] = [gn | gF , Π̂m] and the identity V ar(Y ) = V ar[E(Y | X)] + E[V ar(Y | X)],

to get

V ar(gn | gF , Π̂m) = V ar(gn | gF ,M)

= EΠm|M [V ar(gn | gF ,Πm)] + V arΠm|M [E(gn | gF ,Πm)]

= g′
F

Π̂m − (1/2) g′
F
Diag(Π̂nF ) gF + g′

F
Cov(πnF |M) gF .

4.2.5.3 Conditional Covariances: Here we derive expressions for the conditional covariance

of genotypes of two relatives that are required for computing the denominators of the score statistics

proposed in sections 4.2.1 and 4.2.2.1.

Cov(gN | gF)

Let us first derive the conditional covariance Cov(gn1 , gn2 | gF ) for two non-founders n1 and n2.

Let FC , F1 and F2 denote the common ancestors of (n1 and n2), the unique ancestors of n1 (i.e
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not common with n2) and the unique ancestors of n2 respectively. For each common ancestor in

FC , there is a unique “Most Recent Common Ancestor” (MRCA) in the pedigree (possibly same

as that ancestor). Two common ancestors can share the same MRCA, but a common ancestor can

not have two MRCAs. Let MC denote the set of MRCAs for n1 and n2. Then gn1 and gn2 are

independent of gFC and of each other conditional on gMC
. Hence,

Cov(gn1 , gn2 | gF ) = CovgMC |gFC
[E(gn1 | gMC

, gF1), E(gn2 | gMC
, gF2)]

= CovgMC |gFC
[(2φ′n1F1

gF1 + 2φ′n1MC
gMC

) (2φ′n2F2
gF2 + 2φ′n2MC

gMC
)]

= CovgMC |gFC
[2φ′n1MC

gMC
, 2φ′n2MC

gMC
]

= 4φ′n1MC
Cov(gMC

| gFC )φn2MC

= 4φ′n1MC
Diag[V ar(gMC

| gFC )]φn2MC
. (4.2.11)

The last step follows from the fact that the MRCAs are independent of each other, as each MRCA

corresponds to a distinct founder or set of founders. Equation (4.2.11) gives a recursive formula

for the conditional covariance Cov(gn1 , gn2 | gF ). To get a closed-form non-recursive expression, we

substitute the expression for V ar(gMC
| gFC ) as derived before in equation (4.2.10). For each MRCA

c, let Fp(c) and Fm(c) denote the founders of c, in the paternal and maternal sides respectively. Also

note that V ar(gc | gFC ) = 0, if c itself is a founder. Equation (4.2.10) can be written as

Cov(gn1 , gn2 | gF ) = 4
∑
c∈Mc

φ′n1c[V ar(gc | gFp(c) , gFm(c)
)]φn2c

= 4
∑
c∈Mc

[1c/∈F ]φn1c[4φ
′
cFp(c)

gFp(c)(2− gFp(c))
′φcFp(c) + 4φ′cFm(c)

gFm(c)
(2− gFm(c)

)′φcFm(c)
]φn2c

= 4
∑
c∈Mc

[1c/∈F ]4φ′n1Fp(c)
gFp(c)(2− gFp(c))

′φn2Fp(c) + 4φ′n1Fm(c)
gFm(c)

(2− gFm(c)
)′φn2Fm(c)

( ∵ φn1Fp(c) = 2φn1cφn1Fp(c) , etc)

= 4
∑
c∈Mc

[1c/∈F ]
L∑

fi∈Fp(c)

L∑
fj∈Fp(c)

[φn1figfi(2− gfj )φn2fj ] +
L∑

fi∈Fp(c)

L∑
fj∈Fp(c)

[φn1figfi(2− gfj )φn2fj ]

= 4
L∑
i=1

L∑
j=1

M(i,j)(n1, n2).φn1figfi(2− gfj )φn2fj

= 4 φ′n1FDiag(gF ) M(n1, n2) Diag(2− gF )φn2F (4.2.12)

= 4 g′
F
Diag(φn1F ) M(n1, n2) Diag(φn2F ) (2− gF ) (4.2.13)
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where M(n1, n2) is the L× L matrix with (i, j)th entry given by

Mi,j(n1, n2) =

 1 if paths fi → n1 and fj → n2 share at least one meiosis,

0 otherwise.

In the above derivation, we have used the fact that two ancestors are on the paternal (or

maternal side) of an MRCA (who is not a founder) if and only if the paths from the founders

share at least one meiosis. In fact, one such meiosis is from the MRCA’s father (or mother) to the

MRCA. Thus, equation (4.2.13) gives a closed form formula for obtaining the genotype covariances

conditional on the founders. But is should be noted that the matrix M(n1, n2) changes with n1

and n2, which can be precomputed for a particular pedigree structure. For example, if (n1, n2) are

siblings in a nuclear family the matrix M has all zero entries, whereas if a pair of grandparents are

available then that pair contributes to M , making the covariance non-zero. This can also be seen

from the recursive expression (4.2.11). In the former case all MRCA’s (i.e parents) are founders,

so the sibs are uncorrelated, whereas in the latter case one parent is an MRCA but not a founder,

and has positive variance, resulting in a positive covariance between the sibs. Figure 4.1 illustrates

this idea.

Cov(gN | gF
)

To obtain the covariances conditional on g
F

, we use that fact the multivariate hypergeometric

distribution with parameters HG(gF ;n = Lg
F
, N = 2L,m = 2) has variance and covariance given

by

V ar(gfi | gF ) =
nm(N −m)(N − n)

N2(N − 1)

=
g
F

(2− g
F

)(L− 1)
2L− 1

Cov(gfi , gfj | gF ) = −nm
2(N − n)

N2(N − 1)

= −
g
F

(2− g
F

)
2L− 1

.

In matrix notation, we can rewrite the above as

Cov(gF | gF ) =
g
F

(2− g
F

)
(2L− 1)

[LI − J ]

= h (LI − J) (where, h =
g
F

(2−g
F

)

(2L−1) )

Also, E[gF (2− gF ) | g
F

] = E[gF | gF ]E[(2− gF )′ | g
F

]− Cov(gF | gF )

= h (2L− 1)J − h(LI − J) = h (2LJ − LI),
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where J = 11′. To obtain Cov(gn1
, gn2

| g
F

) we use the relation Cov(X,Y ) = EZ [Cov(X,Y |

Z) + CovZ [E(X | Z), E(Y | Z)] by conditioning on gF .

Cov(gn1
, gn2

| g
F

) = Covg
F
|g
F

(2φ′
n1F

gF , 2φ
′
n2F

gF ) + Eg
F
|g
F

(g′
F
Diag(φn1F

) M Diag(φn1F
)(2− gF ))

= 4φ′
n1F

[h (LI − J)]φn2F
+ 4 trace{Diag(φn1F

) M φn1F
h (2LJ − LI)}

= 2Lh

∑
f∈F

2φn1fφn2f +
∑
f1∈F

∑
f2∈F

Mf1,f2(n1, n2)4φn1fφn2f −
∑
f∈F

Mf,f (n1, n2)2φn1fφn2f

− hJ
= 2Lh

∑
f∈F

[1−Mf,f (n1, n2)] 2φn1fφn2f +
∑
f1∈F

∑
f2∈F

Mf1,f2(n1, n2)4φn1fφn2f

− hJ,

where we have used the facts φ′
nF

1 = 1/2 and trace[ADiag(B)] = trace[Diag(A)Diag(B)]. The

last expression can be simplified to ΦNN (see appendix D), so that Cov(gN | gF ) is given by

Cov(gN | gF ) = 2Lh ΦNN − hJ

=
g
F

(2− g
F

)
(2L− 1)

[2L ΦNN − J ].

Cov(gN | gF ,Πm)

In general it is difficult to obtain an expression for Cov(gN | gF ,Πm) in terms of the pairwise IBDs

Πm. However, if the true IBD configuration (inheritance vector) Cm is known, it can be shown

that

Cov(gn1
, gn2

| gF , Cm) = π′
n1F

Diag(gF ) M̃(n1, n2) Diag(2− gF )πn2F

= g′
F
Diag(πn1F

) M̃(n1, n2) Diag(πn2F
) (2− gF ),

where M(n1, n2) is the L× L diagonal matrix with (i, i)th entry given by

M̃i,i(n1, n2) =

 +1 if founder fi transmits the same allele to n1 and n2,

−1 otherwise.

A proof of this result has been outlined in Appendix E. Note that in many cases pairwise IBDs

would be sufficient to infer the matrix M̃ , however this may be difficult for founders who are also

MRCA. For example, in the case of a sibling pair family, if the sibs share 1 allele IBD, it would

not be possible to infer which of the two parents (MRCAs) transmitted the same allele to both of
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the sibs. When Cm is unknown, we can use the estimated distribution of the inheritance vectors

conditional on the marker data M to obtain

Cov(gn1 , gn2 | gF ,M) = ECm|M [Cov(gn1 , gn2 | gF , Cm)] + CovΠm|M [E(gn1 | gF ,Πm), E(gn2 | gF ,Πm)]

= g′
F
E
[
Diag(πn1F

) M̃(n1, n2) Diag(πn2F
) |M

]
(2− gF ) + g′

F
Cov(πn1F

, πn2F
|M) gF .

Cov(gN | gF
,Πm)

To obtain Cov(gn1 , gn2 | gF , Cm), we use similar ideas as for Cov(gn1 , gn2 | gF ). As before, using

the moments of the hypergeometric distribution we have

Cov(gn1
, gn2

| g
F
, Cm) = Covg

F
|g
F

(π′n1F gF , 2π
′
n2F gF ) + Eg

F
|g
F

[g′
F
Diag(πn1F ) M̃ Diag(πn2F )(2− gF )]

= π′n1F [h (LI − J)]πn2F + trace{Diag(πn1F ) M̃ Diag(πn2F ) h (2LJ − LI)}

= Lh

∑
f∈F

πn1fπn2f +
∑
f∈F

M̃f,f (n1, n2)πn1fπn2f

− hJ.
Defining K(n1, n2) as the matrix M̃ with +1 and −1 on the diagonal replaced by 1 and 0 respec-

tively, and noting that M̃ + 1 = 2K, we get

Cov(gn1
, gn2

| g
F
, Cm) = Lh

∑
f∈F

2 Kf,f (n1, n2)πn1fπn2f − hJ

= Lh πn1 ,n2
− LJ

Cov(gN | gF ,Πm) = Lh ΠNN − hJ

=
g
F

(2− g
F

)
(2L− 1)

[L ΠNN − J ],

where we have used the fact that

πn1 ,n2
=
∑
f∈F

2 Kf,f (n1, n2)πn1fπn2f ,

which follows from the definition of πn1 ,n2
. When ΠNN can not be inferred exactly the estimated

matrix Π̂NN can be used.

4.2.6 Missing Data

The score statistics discussed in this chapter can handle missing (founder or non-founder) pheno-

types and missing non-founder genotypes just by restricting Y and gm (when constructing the statis-

tics) to individuals for which both genotypes and phenotypes are available. However, SCORE.FP
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can use phenotypes of founders that are not genotyped, as founder phenotypes can be thought of as

covariates. In either case, the conditional mean and variance of gm should be computed based on

genotypes of all the founders including those that are not phenotyped. When some founder geno-

types are missing, the conditional moments are computed conditional on all the available genotypes

in the pedigree or a function thereof (as discussed below), including those of founders and non-

founders with missing phenotypes. In this section, we focus on partly or completely missing founder

genotypes and discuss possible modifications of the score statistics in such cases.

The formulas described in the sections 4.2.5.1 through 4.2.5.3 are useful when all the founders

in a pedigree are genotyped. When some or all of the founder genotypes are missing, one possible

approach is to impute the missing founder genotypes based on the observed genotypes, the flanking

markers and the IBD information. If imputed founder genotypes are used, the formulas described

above can be used to obtain the required conditional moments. QTDT uses a rough estimate

(average of available siblings) to impute E(gn | gF ). FBAT, on the other hand, uses an exact

approach of conditioning on the minimal sufficient statistic based on the available data. Below, we

give a brief motivation and outline of this approach and discuss possible modifications.

4.2.6.1 Arbitrary Stratification Let gA denote the available genotype data in a pedigree,

which includes some non-founders and possibly some founders. Let pm denote the allele frequencies

in the founders, which can be possibly different for each founder in the case of extreme stratification.

Ideally we should use conditioning on the minimal sufficient statistic for pm based on the observed

incomplete data gA. We recall that gF is minimal sufficient for the complete data. Hence, when gF

is partly or fully missing, one natural and intuitive way of obtaining a minimal sufficient statistic for

[gA | pm] is to obtain a minimal sufficient statistic for gF (which is unknown) based on the likelihood

[gA | gF ]. Rabinowitz and Laird (2000) showed that such a strategy would (by transitivity) lead

to the desired minimal sufficient statistic (for [gA | pm]), provided that the full data minimal

sufficient statistic (in this case gF ) is also “complete.” The completeness would hold only in

the case of completely arbitrary stratification. If we restrict to “between family stratification”

or “admixture,” gF is still sufficient but not complete. For example, in these cases the function

gP − gM (where gP and gm are the paternal and maternal genotypes in a nuclear family) would

have expectation zero for all pm, thus violating the definition of completeness. Thus, if we possess

some knowledge (“restriction”) of the stratification scheme, the R-L algorithm may not generate
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the desired conditional distribution of gA | pm. Nevertheless, even for restricted stratification

schemes like admixture, whenever gF is minimal sufficient for the complete data, this algorithm is

expected to provide a good approximation to the actual minimal sufficient statistic. However, in

case of “between family stratification,” the full data minimal sufficient statistic is g
F

(in stead of

gF ) and hence the R-L algorithm would have to be modified to use the minimal sufficient statistic

for [gA | gF ].

• Type-1 Null Hypothesis To motivate the R-L algorithm, let T (·) and T (gA) = t0 denote the

minimal sufficient statistic and its observed value respectively. Let STA denote the set T−1(t0)

of possible outcomes which give the same value of the minimal sufficient statistic as the observed

data. To obtain the mean E(gA | t0) and covariance matrix Cov(gA | t0), we need to compute

the probability P (ga | T (ga) = t0) for all outcomes ga in the set STA . Let SFA denote the set

{gF : P (gA | gF ) > 0} of patterns of founder genotypes that are compatible with gA . Let gF0

denote one such pattern in SFA . We recall that by definition of the minimal sufficient statistic,

the following two conditions are satisfied.

{gF : P (ga | gF ) > 0} = SFA ∀ ga ∈ STA (By sufficiency)

P (ga | gF )
P (gA | gF )

=
P (ga | gF0

)
P (gA | gF0

)
∀ gF ∈ SFA and ∀ ga ∈ STA . (4.2.14)

The above two conditions can be used to identify STA the support of the required distribution

[ga | T (ga) = t0 ]. For any ga in this support, the probability is computed as follows

P (ga | T (ga) = t0) =
∑

g
F
∈SFA

P (ga | gF , t0)P (gF | t0)

= P (ga | gF0
, t0) =

P (ga | gF0
)

P (ga ∈ STA | gF0
)

∝ P (ga | gF0
),

where the second step follows due to the fact that P (ga | gF , t0) is a constant for all gF in SFA ,

under the assumptions of equation (4.2.14). Thus the required conditional distribution can be

obtained by assigning an arbitrary compatible pattern gF0
to the founders and using Mendelian

transmission rules to compute P (ga | gF0
). However, obtaining the support of the distribution

is computationally more difficult. It is not simply “all outcomes compatible with gF0 .” The R-L

algorithm exhaustively computes the SFa = {gF : P (ga | gF ) > 0} for each ga compatible with
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SFA and selects the subset that satisfies SFa = SFA and equation (4.2.14). The search space

can be significantly restricted by considering each ga compatible with gF0 . Also wherever the

pedigree contains a genotyped-couple the pedigree underneath that couple can be pruned out.

This would lead to a number of independent sub-pedigrees Pi, with disjoint sets of founders Fi.

Minimal sufficient statistics Ti can be obtained for each Pi based on the observed data gAi in

that pedigree. Then P (gai | T (gai = T0i) can be computed for each sub-part and multiplied to

obtain the joint probabilities. Note that the couples used for pruning are not counted in two

likelihoods, as the likelihood of the pedigree beneath them conditions on their genotypes.

• Type-2 Null Hypothesis Under the type-2 null hypothesis, we need the distribution P (ga |

t0 , Cm), where Cm is the (true) inheritance vector. When the marker data are not fully infor-

mative the mean E(gA | t0 ,M) and covariance Cov(gA | t0 ,M) can be obtained by using the

formulas

E(gA | t0 ,M) = E
Cm|M

[E(gA | t0 , Cm)]

Cov(gA | t0 ,M) = E
Cm|M

[Cov(gA | t0 , Cm)] + Cov
Cm|M

[E(gA | t0 , Cm)].

To obtain P (ga | t0 , Cm), let T (·, Cm) and T (gA, Cm) = t0 be the minimal sufficient statistic

and its observed value. Let STA,Cm denote the set T−1(t0) of outcomes that give the same

value of the minimal sufficient statistic as the observed value. We define SFA,Cm as the set

{gF : P (gA | gF , Cm) > 0} of patterns of founder genotypes that are compatible with gA and

Cm. Let gF0,Cm
be one such pattern. The conditional genotypes can be obtained as before,

using the formula

P (ga | t0 , Cm) ∝ P (ga | gF0,Cm
, Cm).

The support of this distribution can be obtained by searching over ga compatible with gF0,Cm

and Cm, that satisfies the conditions

{gF : P (ga | gF , Cm) > 0} = SF
A,Cm ∀ ga ∈ STA,Cm

P (ga | gF , Cm)
P (gA | gF , Cm)

=
P (ga | gF0

, Cm)
P (gA | gF0

, Cm)
∀ gF ∈ SFA,Cm and ∀ ga ∈ STA,Cm .

Note that this formulation is different from that used by the RL-algorithm. To compute condi-

tional distributions in the presence of linkage when some founders are missing, the RL-procedure

outlined in Rabinowitz and Laird (2000) ignores the IBD information (if available) and uses

the minimal sufficient statistic for gF and Cm (treating them as missing) based on the observed

genotypes gA . The above procedure on the other hand assumes that the IBD pattern Cm is
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known. When Cm is not available, the distribution [Cm | M ] (computed by multipoint meth-

ods) can be used to weight the means and covariances accordingly. Thus the above procedure

uses more of the available marker information for computing the means and variances at each

locus, except in the case of single-point IBD estimation. Even for single point analysis, the two

procedures differ. The RL-algorithm conditions on the minimal sufficient statistic for IBD (by

treating it as missing), so that the distribution under linkage becomes free of IBD. This extra

conditioning possibly explains the low power of Type-2 statistics with variances estimated using

the RL-algorithm. Lake et al. (2000) observed that nuclear families with ambiguous IBD are

not used in the RL-algorithm, resulting in substantial loss of information. Currently, FBAT and

PBAT use the mean based on “no linkage” (i.e., under type-1 null) and an empirical variance

to avoid this loss of information. The procedure proposed above may provide significant im-

provement in power for type-2 statistics, although because of the computational burden under

ambiguous IBD information, computing the mean under type-1 null and using an empirical

covariance “conditional on trait” may still be preferable.

4.2.6.2 Between Family Stratification In this case, the full data minimal sufficient statistic

is given by g
F

. When some or all of the founders are untyped, we condition on the minimal sufficient

statistic for g
F

. Let T (·) and T (gA) = t0 denote the minimal sufficient statistic for g
F

, and its

observed value. Let STA denote the set T−1(t0). We define SFA as the set {g
F

: P (gA | gF , Cm) > 0}

of founder genotype means that are compatible with gA. Let g
F0

be one such mean. The conditional

genotypes can be obtained as before, using the formula

P (ga | t0) ∝ P (ga | gF0
).

The support of this distribution can be obtained by searching over ga compatible with g
F0

that

satisfies the conditions:

{g
F

: P (ga | gF ) > 0} = SFA ∀ ga ∈ STA
P (ga | gF )
P (gA | gF )

=
P (ga | gF0

)

P (gA | gF0
)

∀ gF ∈ SFA and ∀ ga ∈ STA .

Note that the probabilities P (ga | gF ) can be computed using the fact that

P (ga | gF ) =
∑
g
F

P (ga | gF ) P (gF | gF ),

where the second term inside the summation is computed based on the hypergeometric distribution.
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Under the type-2 null hypothesis, the algorithm above can be modified similar to the proposal

above for arbitrary stratification. To avoid the computational complexity of the above approach,

we can use an imputation approach, where the missing g
F

is estimated by its best linear unbiased

estimator (e.g., Bourgain et al. 2003):

ĝ
F

= (1′Φ−1
AA

1)−1(1′Φ−1
AA
gA),

where ΦAA is the kinship coefficient matrix for the genotyped individuals. The imputed value of

g
F

can then be plugged into the mean and covariance formulas, derived in section 4.2.5 for both

type-1 and type-2 null hypothesis.

4.2.7 Handling Non-normal Traits

In this section we propose a novel score test for association mapping using second derivatives of

the likelihood function that is similar to the standard score test for linkage. This statistic can be

easily extended to incorporate higher moments (Chen et al. 2005) as analogous to linkage scores.

However, this statistic was found in limited simulations (data not shown) to be considerably less

powerful than the first derivative based score tests.

In association analysis, we are interested in testing the hypotheses H0 : β = 0 against

H1 : β 6= 0. We know that the score test gives a locally most powerful (LMP) test for testing

a one-sided alternative hypothesis. In general an LMP test for testing a 2-sided hypotheses can

not be guaranteed. However, it can be shown that a locally most powerful unbiased (LMPU) test

exists, which imposes the additional “unbiasedness” restriction on the test, i.e., all tests for which

the power function has a local minimum at the null value β = 0. The assumption of “unbiasedness”

is not very restrictive, as any reasonable test in this case would have a smooth symmetric power

function, with a unique global minimum at β = 0.

It follows from section 2.4 that the LMPU score for the reverse likelihood [gm | Y ] is same

as that for the forward likelihood

LY |gm(β) ∝
exp {−1

2(Ỹ − β g̃m)′[ΣY − β2 Σg]−1 (Ỹ − β g̃m)}
|ΣY − β2 Σg|

1
2

. (4.2.15)

As shown in Rao (2002) (pp453-455), the LMPU statistic for association is given by

S
assoc

LMPU
=
L′′Y |gm(0)

LY |gm(0)
,
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which, after some simple algebra (see appendix A)becomes,

S
assoc

LMPU
= l′′Y |gm(0) + [l′Y |gm(0)]2. (4.2.16)

Substituting expressions for l′Y |gm(0) and l′′Y |gm(0), given in Appendix A, we get

S
assoc

LMPU
= − Ỹ ′ Σ−1

Y
ΣgΣ−1

Y
Ỹ + trace(Σ−1

Y
Σg)− trace(Σ−1

Y
g̃mg̃m

′) + Ỹ ′ Σ−1
Y
g̃mg̃m

′Σ−1
Y

Ỹ

= Ỹ ′ Σ−1
Y

[g̃mg̃m′ − Σg]Σ−1
Y

Ỹ − trace[Σ−1
Y

(g̃mg̃m′ − Σg)]

= vec[Σ−1
Y

Ỹ Ỹ ′ Σ−1
Y
− Σ−1

Y
]′vec[g̃mg̃m′ − Σg].

Under the biallelic model (4.2.1), assuming random union of gametes (random mating) it can be

shown that Egm = 2pm and Σg = 4pmqmΦ. Hence the LMPU statistic can be written as

S
assoc

LMPU
= vec[Σ−1

Y
Ỹ Ỹ ′Σ−1

Y
− Σ−1

Y
]′ vec[(gm − 2pm)(gm − 2pm)′ − 4pmqmΦ]. (4.2.17)

Note that this statistic closely resembles the standard VC model based score statistic for linkage

(equation 2.3.1), with the marker IBD matrix Π̂m being replaced by a direct measure of genotype

similarity (gm − 2pm)(gm − 2pm)′. Chen et al. (2005) described a class of GEE based score tests

for linkage - the higher moment tests, which allow violation of normality to some extent in that

they allow the trait distribution to have non-zero skewness and kurtosis. These methods have been

discussed in detail in chapter 3. The form of the LMPU association test being similar to that

of the linkage score tests, it can be extended to handle non-normal traits using higher-moment

transformation of phenotypes (Chen et al. 2005), in an analogous way to the higher moment based

linkage scores (3.2.2).

Although the LMPU statistic is derived under the “conditional on genotype” likelihood, it is

still optimal (LMPU) under the joint likelihood model or under selected sampling (this is proved in

section 2.4), as long as it is standardized by null variance computed under the appropriate model-

joint model or “conditional on trait” or “conditional on IBD.”

To combine data from independent pedigrees, the individual pedigree scores cannot be added.

The first part of the expression (4.2.16) being the second derivative is additive over pedigrees, but

the second part is not. Thus, in general l′′Y |gm(0) and [l′Y |gm(0)]2 need to be computed separately

and added to get the LMPU statistics. However, in most cases, the departure from additivity will

be small, as the cross product terms in between pedigrees for [l′Y |gm(0)]2 are uncorrelated.
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In spite of these advantages, this statistic may not be very useful in practice. Preliminary

simulations indicated that this statistic is considerably less powerful than an FBAT type statistic

based on [l′Y |gm(0)]2, and was not pursued further. Limited simulations also indicated that for

the normal distribution, LMPU scores for most problems are highly suboptimal for most non-local

alternatives. For example, the LMPU test for the mean (H0 : µ = 0 vs H1 : µ 6= 0) is based on∑
X2
i − σ2, which is known to be a poor test compared to |X|. The power approaches optimality

for alternatives extremely close to the null but drops sharply as the alternative becomes non-local.

This may not be true for other families of distributions; hence, properties of the LMPU test for

other distributions would need further investigation.

4.2.8 Parameter Dependence

In this section, we discuss possible approaches to extend the FBAT statistic to make it free of the

population trait parameters, for the simple case of a trio data set. The form of the FBAT statistic

in this case is ∑
trio:i (Yi − µi)[gi − E(gi|Si)]√∑
i (Yi − µi)2 V ar(gi | Si, Yi)

.

Ewens et al. (in press), have shown that choosing the offset µi as the sample mean essentially

reduces the FBAT statistic to a test of “slope” of the regression of Wi = gi − E(gi | Si) on Yi.

They noted that such a statistic is completely different from the TDT statistic which measures

the “intercept” of the same regression. In particular, they showed that for a trio data set, the

TDT statistic is exactly equal to W
SD(W )

. The dependence of W on Y can be measured either

using the intercept or the slope (as under the null, both are expected to be zero). The original

TDT for binary traits can only measure the intercept as Y is constant (only affected offspring are

sampled). On the other hand, for a random population sample, the intercept test would not have

any information and a “slope test” (e.g., FBAT with an offset of sample mean) would be optimal.

The score test provides an optimally weighted linear combination of these two tests, with data

dependent (self-adjusting) weights, as shown below for trios.
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Figure 4.1: MRCA Founders

Covariance conditional on founder genotypes. In the first pedigree both the MRCAs of individuals 1 and 2 are

founders, whereas in the second pedigree one MRCA (shaded) is a non-founder resulting in a positive covariance.
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Score Test =
∑

i {(Yi − µY ) Wi}√∑
i (Yi − µY )2 1

n

∑
iW

2
i

= w1.

∑
i {(Yi − Y ) Wi}∑

i (Yi − Y )2 1
n

∑
iW

2
i

+ w2.
W√

1
n

∑
iW

2
i

= w1 Slope Test + w2 Mean Test ,

where the weights w1 and w2 are given by

w1 =

√ ∑
i (Yi − Y )2∑
i (Yi − µY )2

and, w2 =
∑

i n(Y − µY )√∑
i (Yi − µY )2

,

where w2
1 + w2

2 = 1. Note that under population sampling Y ≈ µY , so the score reduces to

the slope test (w2 = 0). On the other hand, when the offspring have extreme phenotypes (e.g.,

affected proband sampling) Yi ≈ Y , so the score test reduces to the intercept test or TDT (w2 =

1). This trade off between slope and intercept tests is analogous to the relationship between

“correlation-based” and “IBD-sharing based” tests for linkage (Forrest and Feingold 2000;

Szatkiewicz et al. 2003; T.Cuenco et al. 2003). As in this case, score statistics for linkage

provide an optimally weighted linear combination (Szatkiewicz and Feingold 2004), when the

population trait parameters are known. When µY is unknown or cannot be estimated, the choice

of the offset becomes important. For discordant sampling schemes, the slope tests (µi = Y ) would

tend be powerful, whereas for extremely concordant sampling schemes, conducting simple TDT

like tests (ignoring the quantitative trait) may be better.

It is also possible to construct intercept tests that take the observed phenotypes into account.

The test based on W , is strictly speaking, a test of the mean and is equivalent to a test of the

intercept only under the assumption that the slope of the regression is zero. An intercept test that

takes the slope into account could be obtained by plugging in a slope estimate under the null (i.e.

zero intercept) into the regression model. The form of such an intercept test for trios would be

n
[
W − β̂ Y

]
√
V̂ ar(W )− Y 2

V̂ ar(β̂)
=

n
[
W − β̂ Y

]
√

σ̂2
e
n [

P
i (Yi−Y )2P

i Y
2
i

]
where, β̂ =

∑
iWi Yi∑
Y 2
i

and σ̂2
e =

∑
iWi − β̂ Yi
n− 1

.

Note that, like the the mean test, the intercept test is free of the trait mean µY . This gives a

possible natural extension of the TDT (an intercept test) for quantitative traits.
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It is not obvious whether a slope test or an intercept test would have more power to detect

association. The score test provides a compromise between the two, but it depends on the trait

mean µY , which is often difficult to estimate reliably in selected sample settings. Another possible

compromise would be to conduct a (regression-based) two degree of freedom test for both the slope

and the intercept. The higher degrees of freedom would tend to reduce the power, particularly

when either the intercept or the slope is non-informative (such as population sampling or affected

proband sampling). However, the 2df test would have the advantage of being free of the trait mean.

For example, in the case of trios, a 2df score test (based on a normal pseudo-likelihood of [W |Y ])

for the two parameter regression of Wi on Yi is given by

w

[
{
∑

iWi(Yi − Y )}2

(Yi − Y )2 1
n

∑
iW

2
i

]
+

[
n2 W

2∑
iW

2
i

]
= w (Slope Test)2 + (Mean Test)2, (4.2.18)

where w =
P
i (Wi−W )2P

iW
2
i

. Note that this statistic has a χ2
2 distribution asymptotically under the null.

w is a decreasing function of the mean of W and an increasing function of its variance. Thus, the

2df statistic puts higher weight on a mean test, when the mean is high, but downweights it when

the variability increases. This is in contrast to the score test which weights the tests based on the

distortion of the phenotype (Y − µY ) due to ascertainment.

Thus intercept-based tests and 2df tests provide ways to construct family based tests of

association that are free of the population trait parameters. The mean test can be easily extended

for bigger pedigrees as n W
′
Cov(W )−1W , where Cov(W ) can be estimated using the formulas

derived in section 4.2.5. Similarly, the 2df test proposed here can also be extended to bigger

pedigrees using equation (4.2.18). Each of the three parts of the 2df test, namely the slope test

statistic, the mean test statistic and the weight w would involve Cov(W ). Note that these extensions

are free of the trait mean as well as the dispersion matrix, as they model the distribution [W | Y ],

for which the correlation structure is known. The Gaussian pseudo-likelihood assumption used for

the 2df test may not be a good approximation for this discrete distribution. On the other hand,

the intercept test is completely non-parametric and does not require the Gaussian assumption.

4.2.9 Simulation

We conducted a simulation study with nuclear families to compare the score statistics proposed in

section 4.2.1 with some standard approaches, in terms of power to detect departures form the type-

1 null hypothesis “No linkage and no association.” The statistics compared were SCORE.NS,
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SCORE.AS, SCORE.FP , SCORE.FPG, QTDT (Abecasis et al. 2000) and QTDT − FP

(QTDT with founder phenotypes regressed out as covariates). QTDT and QTDT − FP were

both computed using the software “qtdt” with the command line options “-1 –p-values -wea” and

“-1 –p-values -wea –cp” respectively. We implemented the other four statistics in the “R” program-

ming language (R Development Core Team 2008). We did not use the statistics implemented

in the “FBAT” software, as the statistic “SCORE.AS” is essentially equivalent to the standard

FBAT statistic for quantitative traits. In fact, it is expected to be strictly superior to the FBAT,

as it uses the true family correlation structure, while the FBAT assumes “no environmental cor-

relation.” Similarly, the parenTDT approach (Purcell et al. 2005) could not be included in our

simulations as it has not been implemented in publicly available software for quantitative traits.

However, our simulation results for the score statistics were roughly consistent with those of Pur-

cell et al. (2005) for the corresponding likelihood ratio tests. Below we give an outline of the

simulation scheme.

4.2.9.1 Model Parameters We simulated a biallelic trait locus “t” with alleles “D” and

“d”(with allele frequencies pt, qt) and a biallelic marker locus “m” with alleles “A” and “a” (with

allele frequencies pm, qm). The recombination distance between the two loci (θ) and linkage dise-

quilibrium between the “D” and “A” alleles (∆) were fixed at different values corresponding to the

four different hypothesis, as shown below

No Association Association

No Linkage H00 : θ = 0.5, ∆ = 0 H0A : θ = 0.5, ∆ = 0.05

Linkage HL0 : θ = 0.01, ∆ = 0 HLA : θ = 0.01, ∆ = 0.05

The phenotypes were generated using the trait locus model Y = m + a gt + e, with m = 4 and

a = 3. Thus, the phenotypic means for the three genotype classes were E(Y | DD) = m+ 2a = 10,

E(Y | Dd) = m+ a = 7 and E(Y | dd) = m = 4 (i.e. dominance=0). The environmental variance

(σ2
e), the parent-sibling, the sib-sib and the parental environmental correlations (rps, rss and rfm)

were fixed at 9, 0.25 and 0.25 and 0.1 respectively. The trait and marker allele frequencies were

varied according to “stratification scheme” as follows.

1. No Stratification: Two strata with same trait allele frequency pt = 0.2 but different marker

allele frequencies pm = (0.4, 0.6). All the founders in each family come from the same stratum.
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Equal number of families from each stratum. Note that, although there are two marker allele

frequency “strata,” this scheme is equivalent to a scheme with no strata, as the phenotype

distribution is identical in the two strata.

2. Between Family Stratification: 2 strata with disease allele frequencies pt = (0.1, 0.3) and

marker allele frequencies pm = (0.4, 0.6). All founders in each family come from the same

stratum. Equal number of families from each stratum.

3. Admixture: Two ancestral populations with disease allele frequencies pt = (0.1, 0.3) and

marker allele frequencies qt = (0.4, 0.6). Each founder in the sample is randomly assigned to

one of the ancestral populations with equal probability.

For each combination of the above parameters and stratification scheme, families were simulated

using the following design.

4.2.9.2 Simulation Design For simulating genotypes, each parent was assigned a stratum

membership according to one of the three ascertainment schemes above. For each parent, haplo-

types were generated independently using haplotype frequencies for that stratum determined by ∆

(P (AD) = ptpm+∆, etc) and then haplotypes were dropped in the families according to Mendelian

transmission rules using a recombination frequency of θ for each meiosis. Thus a vector of trait

genotypes gti and marker genotypes gmi were simulated for the ith family. For each family, the envi-

ronment was simulated as multivariate normal e ∼ N(0,Σe) with constant correlations (within and

across strata) as defined before. The simulated genotypes and environments were then combined

as Y = 4 + 3 gt + e to obtain to obtain the phenotypes.

For all the three stratification schemes, 200 nuclear families were simulated, each having three

offspring. All the simulated families were ascertained (i.e population sampling). It is important to

note that, in our simulation model, ∆ refers to the LD within each stratum, and not to the overall

LD in the population. Thus, ∆ does not capture spurious LD due to population stratification. It

is positive only in the presence of true genetic association.

4.2.9.3 Nuisance Parameters The nuisance parameters µY , ΣY are required for computing

all the score statistics, and the marker allele frequency pm is required for computing SCORE.NS.

The phenotype mean µY and covariance matrix ΣY were empirically estimated from all observed

families. The marker allele frequency pm was estimated from from all the founders in the sample.
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This would not be possible for selected samples, as the estimate of pm in that case would be

biased causing SCORE.NS to have incorrect type I error even if there is no stratification in the

sample. Similarly, biased estimates of µY and ΣY would reduce the power of all the score tests,

but type I error would be unaffected as all the statistics condition on the phenotypes. Parameter

misspecification was not addressed in our limited simulations.

4.2.9.4 Power Estimation 1000 replicates were simulated to estimate the power (or type I

error) under all four hypotheses. For the four score statistics, we considered absolute values of the

standardized statistics (defined in section 4.2.1) and asymptotic two sided p-values were obtained

using the normal distribution. For QTDT and QTDT − FP , we used the asymptotic thresholds

(i.e., without the “-m” option) based on χ2 distribution. As we used population samples for our

simulations, the asymptotic thresholds are expected to be correct. Power was computed for each

statistic as the proportion of replicates with p-values less than the nominal threshold of 0.05.

4.3 RESULTS

The type-I error and power results under each of the four hypotheses are summarized in Table

4.3 for all the stratification schemes. Figures 4.2, 4.3 and 4.4 show comparison of power across

statistics for the stratification schemes (1), (2) and (3) respectively. Below, we outline the results

under the three ascertainment schemes. Note that for each statistic we have used the words “power”

and “type I” error according to the type of hypothesis it is designed to detect. For example, the

rejection rate under H0A is referred to as power for SCORE.FPG or SCORE.NS while the same

rejection rate gives type I error for the other four statistics.

4.3.0.5 No Stratification The power results under no-stratification and population sampling

are compared in Figure 4.2. All the score statistics including SCORE.NS have correct type-I error

under H00 . As they are based on the type I null hypothesis they have slightly elevated type-I errors

under HL0. The QTDT statistics are slightly conservative for these hypotheses. Under H0A , all

the statistics except SCORE.NS and SCORE.FPG show close to nominal type-I error, as these
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Table 4.2: Type I Error and Power Results

No Stratification

SCORE.NS SCORE.AS SCORE.FP SCORE.FPG QTDT QTDT-FP
H00 0.042 0.055 0.051 0.05 0.015 0.035
HL0 0.06 0.062 0.071 0.067 0.033 0.045
H0A 0.458 0.048 0.041 0.184 0.018 0.027
HLA 0.944 0.615 0.657 0.829 0.557 0.622

Between Family Stratification
H00 0.132 0.044 0.039 0.06 0.021 0.035
HL0 0.121 0.059 0.061 0.058 0.032 0.049
H0A 0.744 0.053 0.057 0.18 0.022 0.039
HLA 0.987 0.61 0.657 0.846 0.53 0.609

Admixture
H00 0.133 0.034 0.038 0.052 0.028 0.055
HL0 0.131 0.066 0.072 0.058 0.028 0.055
H0A 0.772 0.05 0.047 0.195 0.136 0.153
HLA 0.991 0.626 0.662 0.837 0.551 0.617

Type I Error and Power Results for all the statistics under the 3 ascertainment schemes.

statistics can detect association only in presence of linkage. SCORE.NS has the highest power to

detect H0A , while SCORE.FPG is also reasonably powerful. Under HLA , SCORE.NS followed by

SCORE.FPG are most powerful statistics. SCORE.AS, SCORE.FP and the QTDT statistics

have similar power. The QTDT statistics, in spite of being likelihood ratio tests and incorporating

IBD information are slightly less powerful than the two score statistics. This is probably due to the

inconsistency in QTDT model as discussed in section 2.2.1.4. The statistics incorporating founder

phenotypes provide noticeable improvement in power. SCORE.NS is the best overall statistic in

this case.

4.3.0.6 Between Family Stratification Power results for between family stratification are

shown in Figure 4.3. All the statistics except SCORE.NS have correct type-I error under H00.

SCORE.NS has inflated type-I error as it detects spurious associations due to allele frequency

differences across strata. SCORE.NS also has inflated type-I error under HL0, while the other

score statistics have slightly elevated type I errors as before. QTDT and QTDT −FP have slightly

conservative type I errors. SCORE.FPG detects the alternative H0A, as it derives power from

106



Figure 4.2: Power comparison under no stratification.

Power comparison for 200 sibships (of size 3) from a single stratum under the four different hypotheses.

founder genotype-phenotype correlation, which can be detected irrespective of linkage. Under HLA,

as before, SCORE.AS and SCORE.FP have similar power to the QTDT statistics, with founder

phenotypes giving slight improvement in power. SCORE.NS gives the highest power followed by

SCORE.FPG which provides considerable power improvement while maintaining correct type I

error rates. Thus, SCORE.FPG is the best overall statistic under between family stratification.

4.3.0.7 Admixture Power results under admixture are summarized in Figure 4.4. In this case,

all the statistics except SCORE.NS give close to nominal type I error rate under H00 and HL0.

SCORE.FPG was expected to have incorrect type I error in this case. But our sample size may

have been too small to detect the elevation of type I error. Under our design, the effective sample

size for SCORE.FPG to detect spurious association is half the total number of founders, as half of

the founder pairs come from the same ancestral population. SCORE.NS has the highest power to

detect H0A, followed by SCORE.FPG. The QTDT statistics show incorrect type I error under this

hypothesis, as they are designed to protect against between family stratification but not against

admixture. Under HLA, as before SCORE.NS and FPG have highest power while the other four

statistics have similar power. SCORE.AS and SCORE.FP are slightly more powerful than the
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Figure 4.3: Power comparison under between family stratification.

Power comparison for 100 sibships (of size 3) each from two strata under the four different hypotheses. Parents in

each family come from the same stratum.

Figure 4.4: Power comparison under admixture.

Power comparison for 200 sibships (of size 3) from an admixed population under the four different hypotheses.

Parents in each family belong to either of the two strata with probability 1/2.
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QTDT statistics. Founder phenotypes provide modest power improvement. It is not clear whether

SCORE.FPG should be preferred in this case. Further simulations may be required to understand

the effect of admixture on SCORE.FPG. For the hypothesis of HLA , SCORE.FP has the highest

power with theoretically correct type I error rate.

4.4 DISCUSSION

In this chapter, we proposed novel score statistics for association mapping of quantitative traits and

compared some of them with two of the standard approaches for family based association mapping

of quantitative traits, QTDT and FBAT. Family-based tests of association are designed to protect

against population substructure, unlike population-based association tests such as ANOVA-based

methods. However, in gaining that robustness, they suffer considerable loss of power to detect

association compared to the population-based tests. This power loss can be mostly attributed to

the fact that these tests condition on founder genotype information and ignore founder phenotype

information. Both of these factors imply that family-based tests can only detect cotransmission of

alleles due to linkage as they do not make use of genotype-phenotype correlation among founders

which contains most of the LD information.

Ignoring founder phenotypes is often justified, as there may be age or generation specific

differences in the phenotypic distribution. However, in many situations this may not be a concern,

particularly for founders who marry into a multi-generational pedigree. When founder phenotypes

are available and it is reasonable to use them, we proposed two extensions of the FBAT-type test

(SCORE.AS) that attempt to retrieve the LD information in founders partially. The first of

these, SCORE.FP , just uses the founder phenotypes, while not making any assumptions about

the nature of stratification. As such, it is protected against arbitrary stratification, while providing

modest improvement in power due to environmental correlation between founders and non-founders.

The second, SCORE.FPG, makes the additional assumption that there is only between family

stratification (an assumption that is also made by QTDT), and derives information from founder

genotype-phenotype correlation (within families) to significantly improve the power to detect as-

sociation (irrespective of linkage). This statistic is protected against allele frequency differences

across strata, as long as all founders in each family come from the same stratum. However, using
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the genotype-phenotype correlation also means that this statistic has power to detect markers on a

different chromosome or those placed far from the QTL on the same chromosome, that are still in

LD with the trait. The proposed unconditional score test SCORE.NS as well as population-based

methods such as case-control studies also detect markers that are in LD but are not linked to the

trait (even when there is no stratification). Such markers are generally undesirable to most investi-

gators, but they are extremely rare. Such associations can be a result of a recent mutation/founder

effect, joint selection or due to some unknown epigenetic factors. Arguably, the primary objective

of family based association tests is to protect against spurious associations due to systematic allele

frequency differences across strata. By measuring only “association in the presence of linkage,”

they rule out both kinds of spurious association those due to stratification and also those due to

unknown genetic factors. However, in doing so, these statistics lose a part of association information

that is independent of the linkage information. On the other hand, by relaxing the requirement to

protect against these rare markers, considerable power is gained (as seen in our simulations), for

detecting markers of interest, i.e., those that are linked and in LD with the trait.

Assuming, that the “no within family stratification” assumption remains valid, SCORE.FPG

thus provides a way to significantly improve power of family-based association, while protecting

against spurious associations caused by the differing allele frequencies (and disease prevalence)

across strata. When it is important to strictly guard against markers that are in LD but are not

linked, one possible strategy may be to apply SCORE.FPG for an initial genome scan, and then

screen the resulting marker list by SCORE.AS or SCORE.FP to identify and drop the unlinked

markers. This strategy preserves higher power at the first stage, while ensuring that the markers

retained after the second stage are both linked and associated.

Thus, our simulation results indicated that when founder phenotypes can be used, SCORE.NS

and SCORE.FPG should be the preferred statistics provided the assumptions of “no stratifica-

tion”or “between family stratification only” respectively, are reasonable. SCORE.FPG provides

higher power than QTDT , which also protects only against between family stratification. When

this assumption can not be made, modest improvement can be gained by using SCORE.FP ;

QTDT − FP can not be used in that circumstance as it has inflated type I error. Under “admix-

ture”, SCORE.FPG did not show detectable type I error inflation in our simulations. Limited

experiments with strongly disassortative mating (parents always come from separate strata), showed

significant type I error inflation. This suggests that larger sample sizes (which would increase the

number of discordant couples) may lead to incorrect type I errors. An increase in the number of
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founders in each family may also inflate type I error. Further simulations would be required to

judge the extent of the impact of admixture on SCORE.FPG.

There were many limitations in our simulation study. We considered population sampling

and only a few stratification schemes. Selected sampling can have a significant impact on the per-

formance of the statistics as the nuisance parameter estimates or input values may be biased. Our

stratification schemes were based on varying the trait allele frequency parameter. Stratification

may be caused by change in trait prevalence with any of the other parameters m (environmental

mean), a (relative risk) or σ2
e (environmental variance). It is possible that the statistics would

compare differently when strata are generated by changing those parameters. Similarly, a better

understanding of the performance of the statistics under admixture would require a realistic simu-

lation from an admixture model using multiple loci. Also, we could not compare the performance

of our statistics with the “parenTDT” approach of Purcell et al. (2005) owing to lack of software

implementation. We expect that the score statistics would be roughly equivalent in terms of power

to some of the LRT statistics proposed in Purcell et al. (2005) and more robust to ascertained

sampling, but a detailed simulation study would be required to confirm this.

In many practical scenarios, if the assumption of strong assortative mating holds, it is likely

that stratum membership would be known for each family. In such cases, SCORE.FPG can

be improved even further by conditioning on the “stratum founder genotype mean” instead of

restricting to each family. Such a statistic would measure total association “within strata” and

would be almost as powerful as an unconditional population-based test. However, SCORE.FPG

would not work if there is admixture, or even in the simple case where there are two strata but the

condition of strong assortative mating does not hold. However, it should be noted that different

scores can be used for different families in a data set. For example, if a subset of the families are

from an admixed population, then SCORE.FP can be used for those families and SCORE.FPG

for the other families; variances of all the families are added together to obtain the denominator of

the standardized score statistic.

In this chapter we also derived formulas for conditional moments required to compute the

proposed score statistics. When founder genotypes are available, these formulas can provide quick

estimates of mean and variances of the score statistics for bigger pedigrees without resorting to

gene dropping. When the founder genotypes are completely missing, the R-L algorithm or one

of its modifications proposed in section 4.2.6 can be used to derive the distribution (and the mo-
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ments) of the numerators conditional on the minimal sufficient statistic for the missing genotypes.

This algorithm is quite intensive computationally, particularly for the type-2 null hypothesis. Al-

though imputation is generally not recommended, it is becoming increasingly popular with dense

genomic scans and LD maps being available. Imputing missing founder genotypes based on the

available genotypes in the pedigree at one or multiple loci can help in fast calculation of the score

statistics using the formulas derived here. Also, the proposed modification of the R-L algorithm

for SCORE.FPG is highly computationally intensive. When some of the founders are available,

SCORE.FPG can be constructed by conditioning on the mean genotype of the available founders,

thus retrieving the genotype-phenotype correlation in that subset of founders.

Although the type-1 score statistics assume “no linkage” for computing the null distribution,

our simulations indicated that the type I error inflation under HL0 is not appreciable. Thus it may

be adequate to use the type-1 null hypothesis for the proposed score tests as well as FBAT for most

purposes. This is particularly relevant in presence of missing founders, for which the R-L algorithm

increases the computational burden substantially. Another shortcoming of the R-L algorithm for

type-2 statistics as used by FBAT (Rabinowitz and Laird 2000) is that it leads to considerable

reduction of power due to loss of nuclear families not informative for IBD. This problem stems from

the fact that when IBD information is not perfect, the R-L algorithm conditions on all possible

IBD configurations without weighting them based on posterior probabilities of the configuration.

Due to this power loss, FBAT and PBAT currently use an empirical variance estimate. The power

reduction problem may be remedied by using the modified version of the R-L algorithm for type-2

null hypothesis proposed in section 4.2.6. Simulation studies with different kinds of missing data

and IBD configurations would be required to verify this claim and also compare its performance to

the empirical variance approach.

Finally, we studied the relationship between score statistics and slope and intercept tests as

defined by Ewens et al. (in press) and used this distinction to suggest an intercept test for trios

that parallels the TDT while incorporating the quantitative traits. We also discussed the possibility

of deriving joint 2 d.f slope and intercept tests that would be free of trait nuisance parameters.

Decision trees for choice of family-based association mapping statistics are shown in Figures

4.5 and 4.6 for pedigrees with and without founder phenotype information respectively. Note

that we have included only the score statistics and the QTDT-type statistics, as these can handle

general pedigrees. For specific types of data sets such as trios, sibpairs and nuclear families there
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Figure 4.5: Choice of Statistics for Family Based Association Mapping when Parental

Phenotypes are Known.
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are other specialized methods that we did not consider in our flowcharts. These flowcharts give

tentative guidelines based on expected theoretical behavior of these statistics. Further simulations

would be required to arrive at more precise recommendations. For selected samples with nuisance

parameters unavailable, none of the methods considered here are ideal. Hence the corresponding

boxes in the flowchart have been marked with a “?”. All the score statistics discussed here as well

as QTDT (with permutations) would have robust type I error with arbitrary parameter estimates.

However, power would be sub-optimal and may be highly sensitive to choice of some of these

parameters. FBAT ignores the within family residual correlations and requires only the offset

parameters, making it an attractive statistic for these situations. However, it can be argued that

FBAT essentially misspecifies the family correlation matrix as the identity matrix, which makes it

a sub-optimal statistic. Also, it should be noted that in most cases, choice of “sample mean” as the

offset parameter is likely to be a bad choice in selected sampling scenarios (see section 4.2.8). A

detailed parameter sensitivity study would be required to assess whether FBAT with a reasonable

offset choice is an efficient statistic for selected sampling scenarios when parameter estimates are

unknown or unreliable.
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Figure 4.6: Choice of Statistics for Family Based Association Mapping when Parental

Phenotype are Unknown.
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5.0 DISCUSSION AND FUTURE WORK

In this dissertation, we discussed a number of different existing score statistics and proposed some

novel score statistics for linkage and association mapping mapping of quantitative traits. Most

of these score statistics are based on one of the implicit models discussed in Chapter 2. The

implicit models intuitively capture the parameters of interest, namely linkage and association,

using the assumption of a normal distribution for the phenotype which allows mathematical and

computational simplicity. In reality, quantitative traits may be skewed or multimodal. There has

not been significant progress in the literature for mapping of non-normal traits. When dealing

with highly non-Gaussian traits, the likelihood ratio as well as score tests based on a normal

assumptions should be used with care. Score statistics should be preferred when the data cannot

be transformed to approximate normality, as they guard against false positives. But even when the

normality assumption for the phenotype holds, the implicit models may not adequately capture

the linkage or association information and suffer loss of power. Methods for linkage mapping of

binary traits often model θ explicitly up to a few nuisance parameters; this is usually difficult for

quantitative traits because of the continuity of the trait distribution.

Even under a normal model, the nuisance parameters include relative pair correlations which

grow in number with pedigree size. As seen in chapter 2, the variance components model or the

proposed implicit model possibly require some unrealistic assumptions such as uniform linearity of

E(Πt | Πm) and homoscedasticity of gt | gm. For a given normal distribution (of the phenotype),

the validity of the implicit models can be checked by obtaining the exact (explicit) distribution of

[gt | gm,Πm] computationally using Mendelian transmission rules. Explicit models that maximize

over nuisance parameters may provide considerable improvement in power to detect linkage or

association and also provide direct estimates of the parameters. Often, because of the confounding

of multiple nuisance parameters, it is difficult to interpret estimates under implicit models. For
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example, the estimate for “additive genetic variance” under a variance component model for linkage

is a valid estimate of that parameter only when there is perfect linkage.

Our proposed implicit model 2.2.8, combines the implicit linkage and association parameters

into a single model similar to the VC model used by QTDT. It was used to derive a score statistic for

linkage that allow for presence of LD, which has become increasingly relevant with linkage studies

being conducted with high density markers. However this score statistic may be computationally

intensive, even for a single marker. Similarly it also allows for an association test that incorporates

the extent of linkage of a marker. Such tests (e.g., QTDT) should be more powerful than tests that

are derived under models assuming no linkage such as the FBAT and its modifications discussed

here. However in our simulations in chapter 4, QTDT was consistently less powerful than FBAT.

The power may be improved by using model 2.2.8 which is possibly a more consistent model with

fewer assumptions than the QTDT model 2.2.6.

Family based association tests are considerably less powerful than population-based tests

such as case-control tests, as they do not attempt to incorporate genotype-phenotype correlation.

In chapter 4, we proposed some score tests that improve on the power of family-based tests, when

founder phenotypes are available and can be used. An important outstanding issue in family based

association tests is handling missing founder genotypes in a computationally tractable way. The

algorithms currently used, as well the modifications we proposed, are computationally inefficient.

Breaking of pedigrees into independent parts as suggested in section 4.2.6 may provide substantial

computational speed up in most cases, but requires further study.

Score statistics for both linkage and association that condition on traits lose some power

due to conditioning on a sufficient statistic Y that is not minimal sufficient. The numerator of the

scores are invariant up to the nuisance parameters. The denominator is V ar(Score|A), where A

is the ascertainment scheme. Ideally the variance should be computed conditional on a minimal

sufficient statistic: V ar(Score|T (Y )), where T (Y ) is minimal sufficient for A. For most practi-

cal ascertainment schemes it may be difficult to obtain a minimal sufficient statistic. Peng and

Siegmund (2006) suggested using probands phenotypes as a sufficient statistic for most “regular”

ascertainment schemes. It may be possible to obtain similar sufficient statistics specific for each

scheme that may not be minimal sufficient but contain less information than Y . However even if

such statistics are as simple as “range of Y” or “maximum of Y,” it may be difficult to derive the

theoretical conditional variances of the scores, or empirical estimates for them. If the sample size is
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sufficiently large, an empirical variance of the numerator can give a reasonably accurate estimate of

this variance. In chapter 3, we found empirical variances to be conservative under our simulations.

Further experiments with sample size are required decide whether empirical variance estimates are

reasonably correct for practical sample sizes.

We did not consider combined “linkage and association” studies (i.e. linkage AND/OR

association) in this dissertation. These may be very relevant for investigators who have family data

originally collected for linkage studies, but with high density genotypes for all family members.

Often, the disease or trait of interest has not been mapped in detail previously, and there is

little or no prior information about possible location of genetic susceptibility variants. In such

circumstances, the investigator has no reason to prefer either linkage or association methods. A

combined linkage and association study may be preferred to get an idea of the regions of interest

if any. It is possible to construct 2 d.f. scores for combined linkage and association (i.e H0 :

β = 0, va = 0) simply by squaring and adding the standardized scores for linkage and association

derived under the same model (e.g., the proposed implicit model), fixing the other parameter at

the null value. This is because the linkage and association scores are orthogonal, which can be seen

by observing that

Cov(SL, SA) = E[Cov(f1(Y )g̃m, f2(Y ) ˜vec(Πm) | Y )] = f(Y ) Cov(g̃m, ˜vec(Πm))

= f(Y ) Cov(E(g̃m | Πm), vec(Π̃m))

= 0

where f1, f2 and f are some functions of the phenotype, SL and SA are the linkage and association

scores. It is not clear, how such a statistic would compare in terms of power to 1 d.f. linkage or

association scores. However it avoids making assumptions such as no association or no LD, typically

used to a certain extent by linkage and association statistics (as the scores for each parameter are

derived fixing the other at the null value). However in the presence of population stratification, the

association score would involve [g−f(gF )] and would not be orthogonal to the linkage score. Hence

it may be necessary to use empirically estimated information matrices to combine the scores. An

alternative strategy to deal with stratification may be to do an “association”( such as SCORE.NS)

or “combined linkage and association” scan followed by a linkage scan such as VC or a “linkage

AND association” scan (such as FBAT) to prune out the spurious associations.

One of the most important outstanding issues for quantitative traits mapping is dealing with

non-normal traits. The higher moment score tests (Chen et al. 2005) provide a way to improve
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power of linkage score statistics by incorporating skewness and kurtosis information. However

this introduces two additional nuisance parameters to which the power is highly sensitive. These

parameters are very difficult to estimate accurately even from population samples with small sample

size. Nevertheless when these parameter estimates are available a-priori, they provide significant

power improvement. We attempted to construct an association score that could be extended to

use higher moment extension, but it turned out to be grossly under-powered. The semiparametric

approach of Diao and Lin (2005) can handle arbitrary distributions of traits under a VC model for

linkage. Diao and Lin (2006) proposed semiparametric extensions of the family based association

tests QTDT, FBAT and PDT (Monks and Kaplan 2000; Martin et al. 2000) that can handle

arbitrary trait distributions. However the semiparametric approach cannot handle selected samples

as it is based on a likelihood ratio test. Further work is needed in this area to develop score tests

that retain high power under a large class of trait distributions.

All the score tests discussed in this dissertation depend on the trait distribution parameters

µY and ΣY . The estimation of these nuisance parameters for selected samples is an important

issue for all linkage and association score statistics as well as likelihood ratio tests. Score tests are

robust to the specification of these parameters, but suffer considerable loss of power when these are

wrongly specified as seen in our sensitivity analysis (chapter 3). Estimation of these parameters

using conditional likelihoods are feasible only for very simple ascertainment schemes. In reality

ascertainment schemes are generally complex and almost always impossible to specify in terms

of quantitative traits, as probands are usually ascertained based on disease status. Considering

the importance of nuisance parameter estimation, ideally population-based pilot studies of the

phenotype should be conducted prior to linkage or association studies using ascertained samples.

When this is not feasible, a portion of the data may be used to estimate nuisance parameters as

suggested in section 3.5. This approach provides a way of obtaining nuisance parameters estimates

from selected samples (with arbitrary unknown ascertainment scheme) that are designed to optimize

the power of the relevant statistic. Simulation studies would be required to assess whether such a

strategy provides enough power improvement to balance the power loss due to reduction of sample

size.
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APPENDIX A

DERIVATIVES OF THE LIKELIHOOD FOR THE MEAN MODEL

Here we obtained the derivatives of the likelihood for the mean model 2.2.3, which are required

for obtaining the SCORE.NS in section 4.2.1 and the linkage score for the mixture normal model

(2.2.5). Here we denote gm and Π̂m by g and Π for clarity. For any likelihood function Lg(a), we

have the identities

l′g(0) =
L′g(0)
Lg(0)

l′′g (0) =
L′′g(0)
Lg(0)

−
[L′g(0)]2

[Lg(0)]2

and hence
L′′g(0)
Lg(0)

= l′′g (0) + [l′g(0)]2.

Next let us consider the “conditional on IBD” likelihood (2.2.5). Note that the identities also hold

for the conditional likelihood LΠ(a). Directly taking logarithms and differentiating we get

l′Π(0) =
∑
g

l′g(0)P (g | Π)

= Eg|Π[l′g(0)]

l′′Π(0) =
L(0)

∑
g L
′′
g(0)P (g | Π)− [

∑
g L
′
g(0)P (g | Π)]2

L2(0)

=
∑
g

[l′′g (0) + l′g(0)2]P (g | Π)− [
∑
g

l′g(0)P (g | Π)]2

= Eg|Π[l′′g (0)] + V arg|Π[l′g(0)].
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Next, we derive l′g(a) and l′′g (a) explicitly. The likelihood and log-likelihood functions are

Lg(β) ∝
exp {−1

2(Ỹ − β g̃)′[ΣY − β2 Σg]−1 (Ỹ − β g̃)}
|ΣY − β2 Σg|

1
2

lg(β) ∝ −1
2

(Ỹ − β g̃)′ [ΣY − β
2 Σg]−1 (Ỹ − β g̃)− 1

2
log |ΣY − β

2 Σg|.

We will need the following matrix identities (Tang 2000), for invertible matrix G and scalar x :

∂G−1

∂x
= −G−1∂G

∂x
G−1 and

∂log | G |
∂x

= trace(G−1∂G

∂x
). (A.0.1)

Using these identities and the usual chain rule of derivatives, the first and second derivatives of the
log likelihood are obtained to be

l′g(β) = β trace
(
[Σ

Y
− β2 Σg]−1 Σg

)
+ (Ỹ − β g̃)′[Σ

Y
− β2 Σg]−1 g̃

−(Ỹ − β g̃)′ [Σ
Y
− β2 Σg]−1 (β Σg) [Σ

Y
− β2 Σg]−1 (Ỹ − β g̃)

l′′g (β) = trace
(
[Σ

Y
− β2 Σg]−1 Σg

)
+ 2β2 trace

(
[Σ

Y
− β2 Σg]−1 Σg [Σ

Y
− β2 Σg]−1 Σg

)
− g̃′ [Σ

Y
− β2 Σg]−1 g̃

+ 2β (Ỹ − β g̃)′ [Σ
Y
− β2 Σg]−1 Σg [Σ

Y
− β2 Σg]−1 g̃ + 2(Ỹ − β g̃)′ [Σ

Y
− β2 Σg]−1 (β Σg) [Σ

Y
− β2 Σg]−1 g̃

− (Ỹ − β g̃)′ [Σ
Y
− β2 Σg]−1 Σg [Σ

Y
− 2β2 Σg]−1 (Ỹ − β g̃)− 4β2 (Ỹ − β g̃)′ [Σ

Y
− β2 Σg]−1 Σg

[Σ
Y
− β2 Σg]−1 Σg [Σ

Y
− β2 Σg]−1 (Ỹ − β g̃)

Substituting β = 0, we get

l′g(0) = Ỹ ′ Σ−1
Y

g̃

l′′g (0) = −Ỹ ′Σ−1
Y

ΣgΣ−1
Y
Ỹ + trace(Σ−1

Y
Σg)− g̃′Σ−1

Y
g̃.
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APPENDIX B

MOMENTS OF THE SCORE STATISTIC

Here we derive the null and alternative means and variances of the score statistic for an extended

pedigree. It provides an alternative to the more complicated derivation outlined previously in Tang

and Siegmund (2001).

Let Y be the phenotype vector for a pedigree with mean 0 (for simplicity) and variance

covariance matrix Σ. Let Aπ be the matrix given by

(Aπ)ij = 2(Πij − 2Φij),

where Πij and Φij are the estimated IBD and kinship coefficient between the ith and ith individuals

of the pedigree. The assumed model is Y ∼ N(0,Σ) where Σπ = Σ + αAπ, with α = σ2
a/2, and

dominance is assumed to be zero. The score statistic can be written as (Tang and Siegmund

2001),

S = −1
2

[trace(Σ−1Aπ)− trace(Σ−1AπΣ−1Y Y ′)].

It is easy to see that null and alternative means are given by µ0 = 0 and

µα = E[E(S | π)] = (α/2)E{trace[(Σ−1Aπ)2]}.

The variance can be computed as follows.
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V arα(S | π) =(1/4)V ar[trace(Σ−1AπΣ−1Y Y ′)]

= (1/4)V ar(Y ′Σ−1AπΣ−1Y ) [∵ Trace is commutative]

= (1/4)V ar(Y ′CC ′AπCC ′Y ) [∵ Σ is positive definite, Σ = B′B and Σ−1 = CC′, C = B−1].

= (1/4)V ar(Y ′CP ′DλPC
′Y ) [C′AπC = P ′DλP using spectral decomposition of C′AπC ]

= (1/4)V ar(Z ′DλZ) [defining Z = PC′Y ].

= (1/4)
∑s

i=1 V ar(λiZ
2
i )

= (1/4)
∑s

i=1 λ
2
i .2(1 + αλi)2 [∵ Z ∼ N(0, I + αDλ) i.e., Zi’s are independent N(0, 1 + αλi) ].

= (1/4)
∑s

i=1 2(λ2
i + 2αλ3

i + α2λ4
i )

= (1/2){trace[(Σ−1Aπ)2] + 2α trace[(Σ−1Aπ)3] + α2 trace[(Σ−1Aπ)4]} .

Therefore,

σ2
α = V ar(S) = V ar[E(S | π)] + E[V ar(S | π)]

= (α2/4)V ar{trace[(Σ−1Aπ)2]}+ (1/2){trace[(Σ−1Aπ)2] + 2α trace[(Σ−1Aπ)3] + α2 trace[(Σ−1Aπ)4]}

Substituting α = 0, gives

σ2
0 = (1/2)E{trace[(Σ−1Aπ)2]}.

For sibships Σ has a simple form (all diagonal elements equal and all off-diagonal elements equal).

Thus, a simple expression for Σ−1 and hence the moments of the score statistic can be obtained

(e.g., see Tang 2000).
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APPENDIX C

LARGE MATRIX INVERSION

Let us consider a pedigree of size s. The computation of the MERLIN-REGRESS (SCORE.MERLIN),

as originally defined, involves an inversion of a s(s+1)/2 × s(s+1)/2 matrix, of trait squared sums

and differences. However, as suggested by the calculations in the appendix of (Chen et al. 2005),

it suffices to invert the a s × s dispersion matrix. If Ω denotes the s × s trait dispersion matrix,

then following the notation of Chen et al. (2005), the inverse of the Gaussian working covariance

matrix is given by:

(G0)−1 =


Ω−1 0 0

0 1
2 (Ω−1

ij )2 Ω−1
il Ω−1

im

0 Ω−1
uj Ω−1

vj Ω−1
ul Ω−1

vm + 2 Ω−1
um Ωvl

 where,

G0 =


Ω 0 0

0 2 (Ωij)2 2 Ωil Ωim

0 2 Ωuj Ωvj Ωul Ωvm + 2 Ωum Ωvl



where Ωij and Ω−1
ij are the elements in the ith row and jth column of Ω and Ω−1 respectively. Direct

symbolic multiplication can be used to verify this inverse. This offers significant improvement in

computational speed for large pedigrees. Additionally for sibships, the Ω matrix can be inverted

analytically as it has a simple form (all diagonal elements equal the trait variance and all off-diagonal

elements equal the sibling trait covariance).
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The higher moment working covariance matrix M0 is also a s(s+ 1)/2 × s(s+ 1)/2 matrix.

This matrix can be inverted by inverting at most one 2s × 2s matrix. This matrix is defined as

follows.

M0 =


Ω m3 I 0

m3 I 2 (Ωij)2 +m4 I 2 Ωil Ωim

0 2 Ωuj Ωvj Ωul Ωvm + 2 Ωum Ωvl

 , where m3 = γ̂3σ̂
3 and m4 = γ̂4σ̂

4.

Here γ̂3, γ̂4 and σ̂2 denote the estimated trait skewness, kurtosis and variance. It can be shown

that M0 = G0 +BDB′, where

B =


m3 I 0

0 I

0 0

 , D =

 0 I

I m4 I

 and D−1 =

 −m4 I I

I 0

 .

Using the following identity (e.g., Rao 2002),

(A+BDB′)−1 = A−1 −A−1B[B′A−1B +D−1]−1B′A−1,

it suffices to invert the 2s× 2s matrix

B′ (G0)−1 B +D−1 =

 m2
3 Ω−1 − m4 I I

I 1
2 (Ω−1

ij )2

 .

For sibships, the matrices in the diagonal blocks again have the same simple form as Ω (diagonal

elements equal and off diagonal elements equal). Hence, using the theory of partitioned matrices,

this matrix (and hence M0) can be inverted analytically.
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APPENDIX D

CONDITIONAL COVARIANCE FOR SCORE.FPG

Here we prove the following identity used in the derivation of Cov(gN | gF ) in the section 4.2.5

(required to obtain denominator of SCORE.FPG):

φn1n2 =
∑
f∈F

[1−Mf,f (n1, n2)] 2φn1fφn2f +
∑
f1∈F

∑
f2∈F

Mf1,f2(n1, n2)4φn1fφn2f .

To prove this, we consider 1 − φn1n2 the probability that two alleles a1 and a2 drawn randomly

from n1 and n2 are not IBD. This event can occur if either (a) a1 and a2 come from two different

founders f1 and f2 respectively or (b) a1 and a2 come from the same founder f , but are not IBD.

In case (a), all founder pairs can contribute except those with Mf1,f2(n1, n2) = 1 (i.e., those for

which the paths to n1 and n2 have a common meiosis). For any such founder pair, the probability

of transmitting the two alleles is 4φn1fφn2f (product of the two path length as the paths don’t

coincide in any meiosis). In case (b), note that f has to be an MRCA-founder (if not, the paths

from f to n1 and n2 would coincide in all the meioses starting from that founder to the MRCA). For

any such founder, the probability of transmitting two non-IBD alleles is 2φn1fφn2f i.e., the product

of path lengths times 1/2, as there is an equal probability that the same allele (IBD) would be

transmitted to both n1 and n2. Therefore, we can write 1− φn1n2 as

1− φn1n2 =
∑
f1∈F

∑
f2∈F,f2 6=f1

[1−Mf1,f2(n1, n2)]4φn1fφn2f +
∑
f∈F

[1−Mf,f (n1, n2)] 2φn1fφn2f

=
∑
f1∈F

∑
f2∈F

[1−Mf1,f2(n1, n2)]4φn1fφn2f −
∑
f∈F

[1−Mf,f (n1, n2)] 2φn1fφn2f .

Subtracting both sides from 1, and using the fact that
∑

f1∈F
∑

f2∈F 4φn1fφn2f = 1, we get the

required identity.
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APPENDIX E

COVARIANCE CONDITIONAL ON IBD

Here we prove the result 4.2.14. To derive Cov(gn1 , gn2 | gF ,Πm), we first note that the gn1 can be

written as gf1,i1 + gf2,i2 , where f1 and f2 are two founders who transmit there it1h and it2h alleles

respectively to n1. Similarly gn2 = gf3,i3 + gf4,i4 . Also, we note that [gf,1 | gf ] and [gf2 | gf ] have

hypergeometric distributions HG(2, gf , 1) and hence have mean gf/2, variance (gf/2)(1 − gf/2)

and covariance −(gf/2)(1 − gf/2). The transmitted and non-transmitted allele have Bernoulli

distributions with success probability gf/2 and hence have the same moments. To see that result

4.2.14, we verify it explicitly for all possible IBD configurations for the pair n1 and n2.

Case-1: πn1,n2 = 1

In this case, we must have (f1, i1) = (f3, i3) and (f2, i2) = (f4, i4)

Cov(gn1 , gn2 | gF ,Πm) = V ar(gf1,i1 + gf2,i2 | gF )

= V ar(gf1,i1 | gf1) + V ar(gf2,i2 | gf2)

= [gf1(2− gf1)/4] + [gf2(2− gf2)/4] .

Note that gf1,i1 and gf2,i2 are independent, as the paths f1 → n1 and f2 → n1 (and similarly the

paths f1 → n1 and f2 → n1) cannot intersect, due to our assumption that f1 and f2 transmit 2

distinct alleles to n1 (similarly n2).

Case-2: πn1,n2 = 1/2 (One founder common).

In this case, we have (f1, i1) = (f3, i3).

Cov(gn1 , gn2 | gF ,Πm) = Cov(gf1,i1 + gf2,i2 , gf1,i1 + gf4,i4 | gF )

= V ar(gf1,i1 | gf1)

= gf1(2− gf1)/4 .
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Note that the transmissions from f2 and f4 are independent of the transmissions from f1, as (f1 and

f2) are coancestors of n1, and (f1 and f4) are coancestors of n2. f2 and f4 can however intersect

at an MRCA, who then transmits different alleles independently to n1 and n2 (by our assumption

that πn1,n2 = 1/2).

Case-3: πn1,n2 = 1/2 (Both founders common).

In this case, we have (f1, i1) = (f3, i3) and (f2, i2) = (f4, 2− i4).

Cov(gn1 , gn2 | gF ,Πm) = Cov(gf1,i1 + gf2,i2 , gf1,i1 + gf2,2−i2 | gF )

= V ar(gf1,i1 | gf1) + Cov(gf2,i2 , gf2,2−i2 | gf2)

= [gf1(2− gf1)/4]− [gf2(2− gf2)/4] .

Here again the transmissions from f1 and f2 are independent, as the paths to n1 and n2 can not

intersect (f2 in this case must be an MRCA).

All the covariances derived above satisfy equation 4.2.14. The remaining three cases corre-

sponding to πn1,n2 = 0 can be verified similarly.
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APPENDIX F

LINKAGE: SUPPLEMENTARY TABLES

Table F1: Detailed Type I Error Results

Single Proband
Genetic Model

1 1′ 1′′ 2 2′ 2′′ 3 3′ 3′′ 4 4′ 4′′ 5 5′ 5′′

SCORE.NAÏVE 0.058 0.013 0.008 0.058 0.171 0.266 0.16 0.353 0.408 0.049 0.107 0.17 0.048 0.16 0.247
SCORE.CIBD 0.013 0.012 0.012 0.011 0.013 0.013 0.015 0.015 0.018 0.012 0.01 0.013 0.011 0.012 0.012
SCORE.NULL.CT 0.013 0.012 0.011 0.01 0.013 0.012 0.015 0.015 0.018 0.011 0.01 0.013 0.011 0.011 0.011
SCORE.CT 0.013 0.012 0.011 0.01 0.013 0.012 0.015 0.015 0.018 0.012 0.01 0.013 0.011 0.011 0.012
SCORE.NULL.EV 0.006 0.005 0.003 0.004 0.007 0.005 0.004 0.002 0.002 0.005 0.005 0.004 0.005 0.006 0.005
SCORE.EV 0.007 0.005 0.004 0.005 0.007 0.006 0.004 0.003 0.002 0.006 0.005 0.004 0.006 0.007 0.005
SCORE.MERLIN 0.013 0.012 0.011 0.01 0.013 0.012 0.015 0.016 0.018 0.012 0.01 0.012 0.011 0.011 0.012
SCORE.MERLIN.AV 0.012 0.012 0.011 0.01 0.013 0.012 0.014 0.015 0.018 0.012 0.01 0.013 0.011 0.011 0.012

HM.NAÏVE 0.059 0.009 0.005 0.059 0.192 0.275 0.165 0.37 0.425 0.05 0.116 0.172 0.047 0.177 0.254
HM.MERLIN 0.013 0.012 0.012 0.011 0.011 0.01 0.014 0.012 0.014 0.012 0.01 0.011 0.011 0.01 0.011
HM.CT 0.012 0.012 0.012 0.011 0.012 0.011 0.014 0.012 0.014 0.012 0.009 0.011 0.011 0.011 0.011
SCORE.MAX 0.014 0.013 0.012 0.011 0.014 0.014 0.016 0.016 0.019 0.013 0.011 0.015 0.011 0.012 0.012
SCORE.2DF.CT 0.014 0.01 0.012 0.011 0.014 0.015 0.015 0.017 0.019 0.012 0.011 0.012 0.012 0.012 0.011
HM.2DF.CT 0.014 0.011 0.015 0.011 0.012 0.014 0.016 0.017 0.02 0.012 0.011 0.015 0.011 0.012 0.013

Extreme Concordant

SCORE.NAÏVE 0.085 0.017 0.008 0.077 0.224 0.308 0.208 0.389 0.435 0.065 0.16 0.213 0.066 0.222 0.293
SCORE.CIBD 0.016 0.015 0.016 0.014 0.014 0.013 0.016 0.014 0.014 0.014 0.016 0.013 0.013 0.013 0.01
SCORE.NULL.CT 0.015 0.012 0.012 0.013 0.013 0.013 0.015 0.014 0.013 0.013 0.015 0.012 0.012 0.012 0.01
SCORE.CT 0.015 0.013 0.013 0.013 0.014 0.013 0.016 0.015 0.014 0.014 0.016 0.013 0.013 0.012 0.01
SCORE.NULL.EV 0.004 0.004 0.005 0.004 0.006 0.006 0.002 0.002 0.002 0.004 0.008 0.005 0.003 0.006 0.005
SCORE.EV 0.007 0.005 0.006 0.006 0.007 0.006 0.004 0.002 0.002 0.006 0.009 0.005 0.006 0.007 0.005
SCORE.MERLIN 0.014 0.013 0.012 0.013 0.013 0.013 0.016 0.016 0.013 0.013 0.016 0.013 0.013 0.013 0.01
SCORE.MERLIN.AV 0.014 0.012 0.013 0.013 0.013 0.013 0.016 0.016 0.014 0.013 0.016 0.013 0.013 0.012 0.01

HM.NAÏVE 0.09 0.012 0.006 0.08 0.251 0.323 0.224 0.405 0.451 0.066 0.186 0.233 0.064 0.253 0.317
HM.MERLIN 0.014 0.012 0.01 0.012 0.012 0.011 0.014 0.012 0.012 0.013 0.015 0.01 0.013 0.012 0.01
HM.CT 0.014 0.012 0.011 0.013 0.012 0.011 0.015 0.012 0.012 0.013 0.014 0.01 0.013 0.012 0.01
SCORE.MAX 0.016 0.014 0.015 0.014 0.015 0.015 0.017 0.016 0.014 0.014 0.018 0.015 0.014 0.013 0.011
SCORE.2DF.CT 0.016 0.012 0.011 0.014 0.016 0.014 0.016 0.017 0.014 0.013 0.017 0.012 0.014 0.012 0.011
HM.2DF.CT 0.015 0.013 0.013 0.014 0.013 0.015 0.016 0.017 0.015 0.013 0.017 0.013 0.014 0.013 0.013

EDAC-3 Corner

SCORE.NAÏVE 0.138 0.103 0.08 0.145 0.222 0.309 0.235 0.382 0.426 0.134 0.202 0.245 0.133 0.216 0.296
SCORE.CIBD 0.011 0.012 0.012 0.014 0.012 0.013 0.015 0.013 0.016 0.013 0.012 0.012 0.013 0.01 0.012
SCORE.NULL.CT 0.01 0.01 0.011 0.012 0.012 0.012 0.013 0.013 0.015 0.012 0.011 0.012 0.012 0.009 0.012
SCORE.CT 0.011 0.011 0.011 0.013 0.012 0.012 0.014 0.013 0.015 0.012 0.011 0.012 0.013 0.01 0.012
SCORE.NULL.EV 0.004 0.005 0.004 0.005 0.005 0.004 0.004 0.002 0.002 0.004 0.006 0.005 0.005 0.006 0.005
SCORE.EV 0.006 0.005 0.005 0.007 0.006 0.005 0.005 0.003 0.002 0.007 0.007 0.005 0.008 0.007 0.006
SCORE.MERLIN 0.011 0.011 0.011 0.013 0.011 0.013 0.015 0.013 0.015 0.013 0.012 0.011 0.012 0.01 0.012
SCORE.MERLIN.AV 0.011 0.011 0.011 0.013 0.012 0.012 0.015 0.013 0.015 0.012 0.012 0.012 0.012 0.01 0.012

HM.NAÏVE 0.139 0.078 0.039 0.146 0.24 0.323 0.238 0.395 0.442 0.135 0.205 0.256 0.133 0.236 0.32
HM.MERLIN 0.011 0.01 0.011 0.013 0.012 0.011 0.014 0.012 0.012 0.013 0.011 0.011 0.012 0.012 0.011
HM.CT 0.011 0.009 0.011 0.013 0.012 0.012 0.014 0.013 0.013 0.012 0.011 0.011 0.012 0.011 0.011
SCORE.MAX 0.011 0.011 0.013 0.014 0.013 0.014 0.015 0.014 0.016 0.013 0.012 0.013 0.014 0.012 0.014
SCORE.2DF.CT 0.01 0.01 0.01 0.013 0.012 0.013 0.015 0.015 0.018 0.012 0.011 0.014 0.013 0.012 0.013
HM.2DF.CT 0.011 0.01 0.012 0.013 0.013 0.013 0.015 0.015 0.016 0.012 0.011 0.014 0.013 0.013 0.014

MDAC-3 Corner

SCORE.NAÏVE 0.067 0.042 0.037 0.068 0.107 0.19 0.122 0.308 0.38 0.063 0.081 0.119 0.061 0.112 0.178

Continued on next page
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Table F1 – continued from previous page

1 1′ 1′′ 2 2′ 2′′ 3 3′ 3′′ 4 4′ 4′′ 5 5′ 5′′

SCORE.CIBD 0.014 0.012 0.013 0.012 0.013 0.011 0.011 0.017 0.015 0.012 0.01 0.013 0.011 0.013 0.011
SCORE.NULL.CT 0.013 0.012 0.013 0.012 0.013 0.011 0.01 0.017 0.015 0.011 0.01 0.013 0.011 0.012 0.011
SCORE.CT 0.014 0.012 0.013 0.012 0.013 0.011 0.01 0.017 0.015 0.011 0.01 0.013 0.011 0.012 0.011
SCORE.NULL.EV 0.008 0.006 0.005 0.006 0.007 0.004 0.004 0.003 0.002 0.007 0.006 0.007 0.006 0.007 0.006
SCORE.EV 0.009 0.006 0.005 0.007 0.007 0.005 0.005 0.003 0.002 0.007 0.007 0.007 0.007 0.007 0.006
SCORE.MERLIN 0.013 0.012 0.014 0.012 0.013 0.01 0.01 0.016 0.014 0.012 0.01 0.013 0.011 0.013 0.011
SCORE.MERLIN.AV 0.014 0.012 0.013 0.011 0.013 0.011 0.011 0.018 0.015 0.012 0.01 0.013 0.011 0.013 0.011

HM.NAÏVE 0.067 0.024 0.014 0.069 0.114 0.197 0.122 0.328 0.388 0.063 0.078 0.117 0.061 0.116 0.188
HM.MERLIN 0.014 0.012 0.011 0.011 0.01 0.01 0.011 0.013 0.012 0.012 0.01 0.012 0.01 0.011 0.011
HM.CT 0.014 0.011 0.011 0.012 0.01 0.009 0.011 0.013 0.012 0.012 0.01 0.012 0.011 0.011 0.01
SCORE.MAX 0.014 0.012 0.014 0.012 0.014 0.013 0.011 0.018 0.016 0.012 0.011 0.016 0.011 0.013 0.013
SCORE.2DF.CT 0.012 0.01 0.013 0.011 0.013 0.011 0.012 0.017 0.016 0.011 0.009 0.014 0.012 0.013 0.012
HM.2DF.CT 0.012 0.011 0.013 0.011 0.011 0.013 0.013 0.017 0.018 0.011 0.01 0.014 0.012 0.012 0.011

Note: Type I error values departing by 0.005 or more, from the nominal value 0.01 are highlighted in bold.

Table F2: Detailed Power Results

Population
Genetic Model

1 1′ 1′′ 2 2′ 2′′ 3 3′ 3′′ 4 4′ 4′′ 5 5′ 5′′

SCORE.NAÏVE 0.74 0.52 0.36 0.73 0.87 0.76 0.65 1 1 0.75 0.78 0.57 0.74 0.56 0.38
SCORE.CIBD 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.96 0.94 0.76 0.69 0.31 0.74 0.44 0.15
SCORE.NULL.CT 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.96 0.94 0.76 0.69 0.31 0.74 0.44 0.15
SCORE.CT 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.96 0.94 0.76 0.69 0.31 0.74 0.44 0.15
SCORE.NULL.EV 0.67 0.34 0.11 0.67 0.73 0.4 0.23 0.75 0.72 0.69 0.65 0.32 0.69 0.41 0.11
SCORE.EV 0.67 0.35 0.11 0.68 0.73 0.4 0.24 0.75 0.73 0.7 0.65 0.32 0.7 0.41 0.11
SCORE.MERLIN 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.97 0.95 0.75 0.68 0.31 0.74 0.44 0.16
SCORE.MERLIN.AV 0.74 0.38 0.14 0.73 0.78 0.45 0.53 0.96 0.94 0.76 0.69 0.31 0.74 0.44 0.15

HM.NAÏVE 0.74 0.46 0.31 0.73 0.83 0.75 0.62 0.99 0.99 0.75 0.74 0.57 0.74 0.53 0.35
HM.MERLIN 0.74 0.37 0.14 0.73 0.74 0.48 0.51 0.92 0.91 0.75 0.67 0.34 0.75 0.42 0.16
HM.CT 0.74 0.36 0.14 0.73 0.74 0.49 0.51 0.9 0.91 0.76 0.67 0.33 0.74 0.42 0.16
SCORE.MAX 0.74 0.41 0.16 0.74 0.81 0.5 0.53 0.98 0.96 0.76 0.71 0.37 0.75 0.46 0.18
SCORE.2DF.CT 0.71 0.37 0.14 0.72 0.75 0.43 0.62 0.98 0.97 0.72 0.66 0.29 0.76 0.45 0.15
HM.2DF.CT 0.71 0.34 0.12 0.72 0.7 0.45 0.58 0.93 0.91 0.72 0.62 0.32 0.76 0.42 0.16

Single Proband

SCORE.NULL.CT 0.69 0.78 0.53 0.69 0.78 0.53 0.79 0.99 0.99 0.38 0.43 0.24 0.2 0.19 0.12
SCORE.CT 0.69 0.78 0.54 0.7 0.78 0.53 0.79 0.99 0.99 0.38 0.43 0.24 0.2 0.19 0.12
SCORE.NULL.EV 0.55 0.71 0.48 0.56 0.72 0.51 0.37 0.91 0.91 0.27 0.36 0.17 0.11 0.15 0.08
SCORE.EV 0.59 0.71 0.49 0.59 0.74 0.52 0.4 0.93 0.92 0.29 0.37 0.18 0.13 0.16 0.09
SCORE.MERLIN 0.69 0.78 0.53 0.69 0.78 0.55 0.8 1 0.99 0.38 0.43 0.23 0.2 0.19 0.12
SCORE.MERLIN.AV 0.68 0.78 0.53 0.69 0.78 0.54 0.79 0.99 0.99 0.38 0.43 0.23 0.2 0.19 0.12
HM.MERLIN 0.69 0.81 0.66 0.69 0.73 0.58 0.78 0.99 0.99 0.38 0.38 0.22 0.2 0.17 0.11
HM.CT 0.69 0.8 0.65 0.69 0.73 0.57 0.76 0.98 0.98 0.38 0.37 0.22 0.2 0.17 0.11
SCORE.MAX 0.7 0.81 0.61 0.7 0.8 0.61 0.79 1 0.99 0.39 0.45 0.28 0.21 0.2 0.13
SCORE.2DF.CT 0.66 0.76 0.52 0.65 0.75 0.51 0.85 1 0.99 0.36 0.4 0.21 0.21 0.2 0.11
HM.2DF.CT 0.66 0.78 0.63 0.65 0.7 0.53 0.83 0.99 0.99 0.36 0.35 0.21 0.22 0.18 0.11

Extreme Discordant

SCORE.NULL.CT 0.58 0.78 0.74 0.58 0.81 0.85 0.15 0.77 0.92 0.24 0.76 0.87 0.52 0.67 0.7
SCORE.CT 0.59 0.78 0.74 0.59 0.81 0.85 0.15 0.77 0.92 0.25 0.77 0.87 0.53 0.68 0.7
SCORE.NULL.EV 0.42 0.67 0.7 0.46 0.75 0.84 0.03 0.38 0.74 0.15 0.7 0.85 0.39 0.61 0.69
SCORE.EV 0.48 0.7 0.72 0.52 0.78 0.85 0.04 0.43 0.75 0.18 0.73 0.85 0.46 0.64 0.7
SCORE.MERLIN 0.6 0.79 0.74 0.59 0.81 0.85 0.15 0.78 0.93 0.23 0.77 0.87 0.52 0.67 0.69
SCORE.MERLIN.AV 0.59 0.78 0.73 0.59 0.81 0.85 0.16 0.77 0.92 0.23 0.77 0.86 0.52 0.68 0.69
HM.MERLIN 0.59 0.82 0.84 0.59 0.81 0.9 0.14 0.7 0.89 0.15 0.77 0.91 0.52 0.69 0.77
HM.CT 0.59 0.81 0.85 0.59 0.8 0.9 0.15 0.68 0.87 0.14 0.77 0.91 0.52 0.7 0.76
SCORE.MAX 0.6 0.79 0.79 0.6 0.83 0.89 0.15 0.82 0.95 0.25 0.79 0.89 0.55 0.71 0.76
SCORE.2DF.CT 0.55 0.75 0.71 0.56 0.79 0.85 0.18 0.88 0.97 0.22 0.74 0.84 0.54 0.69 0.71
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Table F2 – continued from previous page

1 1′ 1′′ 2 2′ 2′′ 3 3′ 3′′ 4 4′ 4′′ 5 5′ 5′′

HM.2DF.CT 0.55 0.79 0.81 0.56 0.77 0.88 0.17 0.77 0.91 0.15 0.73 0.89 0.54 0.7 0.77

Extreme Concordant

SCORE.NULL.CT 0.6 0.75 0.69 0.54 0.68 0.57 0.8 0.99 1 0.21 0.26 0.22 0.12 0.1 0.09
SCORE.CT 0.61 0.75 0.69 0.55 0.68 0.57 0.81 0.99 1 0.23 0.26 0.22 0.12 0.1 0.09
SCORE.NULL.EV 0.4 0.6 0.6 0.33 0.59 0.54 0.37 0.85 0.98 0.11 0.17 0.17 0.06 0.06 0.06
SCORE.EV 0.48 0.63 0.61 0.4 0.62 0.55 0.46 0.88 0.98 0.13 0.18 0.18 0.07 0.07 0.07
SCORE.MERLIN 0.6 0.74 0.69 0.53 0.68 0.58 0.81 0.99 1 0.22 0.26 0.23 0.11 0.1 0.09
SCORE.MERLIN.AV 0.6 0.75 0.68 0.53 0.68 0.57 0.8 0.99 1 0.22 0.26 0.22 0.11 0.1 0.08
HM.MERLIN 0.6 0.76 0.74 0.53 0.63 0.65 0.81 0.99 1 0.22 0.25 0.25 0.12 0.1 0.11
HM.CT 0.6 0.75 0.73 0.53 0.63 0.65 0.79 0.98 1 0.22 0.25 0.24 0.11 0.1 0.11
SCORE.MAX 0.62 0.77 0.75 0.55 0.7 0.64 0.81 0.99 1 0.23 0.28 0.27 0.13 0.11 0.1
SCORE.2DF.CT 0.57 0.71 0.65 0.51 0.65 0.54 0.86 1 1 0.19 0.25 0.21 0.12 0.11 0.09
HM.2DF.CT 0.57 0.72 0.69 0.51 0.61 0.61 0.85 0.99 1 0.19 0.23 0.23 0.12 0.11 0.12

EDAC: 3-Corner

SCORE.NULL.CT 0.59 0.72 0.66 0.54 0.71 0.64 0.78 0.99 1 0.43 0.56 0.45 0.37 0.28 0.17
SCORE.CT 0.6 0.73 0.66 0.55 0.71 0.64 0.78 0.99 1 0.44 0.57 0.45 0.38 0.29 0.18
SCORE.NULL.EV 0.43 0.64 0.61 0.41 0.63 0.59 0.39 0.91 0.98 0.29 0.47 0.41 0.25 0.21 0.14
SCORE.EV 0.49 0.66 0.62 0.46 0.65 0.61 0.48 0.92 0.98 0.35 0.51 0.42 0.3 0.24 0.14
SCORE.MERLIN 0.6 0.73 0.66 0.55 0.71 0.63 0.78 1 1 0.44 0.56 0.46 0.37 0.29 0.18
SCORE.MERLIN.AV 0.6 0.73 0.66 0.54 0.71 0.63 0.78 0.99 1 0.45 0.56 0.45 0.38 0.29 0.17
HM.MERLIN 0.61 0.77 0.8 0.54 0.66 0.62 0.79 0.99 1 0.44 0.5 0.4 0.37 0.22 0.13
HM.CT 0.61 0.76 0.8 0.55 0.66 0.61 0.79 0.99 1 0.45 0.5 0.4 0.38 0.22 0.13
SCORE.MAX 0.61 0.74 0.71 0.56 0.74 0.71 0.78 1 1 0.46 0.59 0.51 0.39 0.32 0.2
SCORE.2DF.CT 0.56 0.7 0.61 0.52 0.68 0.59 0.85 1 1 0.42 0.51 0.41 0.4 0.29 0.17
HM.2DF.CT 0.56 0.74 0.77 0.52 0.63 0.56 0.84 0.99 1 0.42 0.45 0.37 0.4 0.22 0.13

MDAC: 3-Corner

SCORE.NULL.CT 0.74 0.73 0.5 0.69 0.85 0.64 0.58 0.98 0.98 0.63 0.68 0.44 0.56 0.42 0.2
SCORE.CT 0.74 0.73 0.5 0.69 0.85 0.64 0.59 0.98 0.98 0.63 0.68 0.44 0.56 0.42 0.2
SCORE.NULL.EV 0.64 0.68 0.48 0.6 0.81 0.61 0.23 0.85 0.91 0.53 0.63 0.41 0.48 0.37 0.16
SCORE.EV 0.66 0.69 0.48 0.62 0.81 0.62 0.25 0.86 0.92 0.56 0.64 0.41 0.5 0.38 0.17
SCORE.MERLIN 0.74 0.73 0.5 0.68 0.85 0.65 0.58 0.98 0.99 0.63 0.68 0.44 0.57 0.42 0.19
SCORE.MERLIN.AV 0.73 0.74 0.5 0.68 0.85 0.64 0.58 0.98 0.97 0.63 0.69 0.44 0.56 0.42 0.19
HM.MERLIN 0.73 0.8 0.67 0.68 0.79 0.64 0.59 0.98 0.98 0.63 0.64 0.44 0.57 0.38 0.17
HM.CT 0.73 0.79 0.65 0.69 0.8 0.63 0.59 0.97 0.97 0.63 0.65 0.44 0.57 0.38 0.17
SCORE.MAX 0.74 0.75 0.56 0.7 0.86 0.72 0.59 0.98 0.99 0.63 0.7 0.5 0.57 0.44 0.22
SCORE.2DF.CT 0.71 0.69 0.48 0.67 0.83 0.61 0.66 0.99 0.99 0.6 0.65 0.41 0.58 0.43 0.19
HM.2DF.CT 0.71 0.75 0.62 0.67 0.76 0.6 0.66 0.97 0.97 0.6 0.6 0.4 0.58 0.38 0.17

Note: For each model, power values within 3% of the maximum are highlighted in bold.
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