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Görkem Saka, PhD

University of Pittsburgh, 2010

In 2009, almost 1,500 Americans died of end-stage liver disease (ESLD), which is the twelfth

leading cause of death in the U.S. As liver transplantation is the only possible therapy

for ESLD and there is a considerable difference between the number of donated organs

and patients, it is important to manage donor-patient match and investigate alternative

treatments to transplantation.

Every patient lists in at least one waiting list (OPO) in order to be eligible for a donated

organ. However, patients may list in additional OPOs. This practice is called multiple

listing. Currently, multiple listing is one of the most debated topics in organ allocation.

Although transplantation is a successful procedure, it may not be available on time due to

the massive shortage of donated organs. Therefore, an alternative therapy to transplantation

is needed. Liver Assist Devices (LADs) are an emerging therapy for ESLD that aim to

stabilize a patient until transplantation or her own organ recovers.

In this dissertation, we discuss three models that are related to ESLD. In the first model,

we optimize the three-stage decision process faced by a single patient. The patient decides

her geographic location, in which OPOs to multiple list, and which organ offers to accept.

This problem is formulated as a continuous-time Markov Decision Process (MDP). We derive

structural properties of this model and solve it using clinical data.

The second model analyzes multiple listing from the societal perspective. Utilizing an

existing simulation of the U.S. liver allocation system, we give every patient the flexibility

to multiple list. Therefore, we evaluate the effects of multiple listing on every wait-listed
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patient, rather than on a single patient. We also study the same problem where multiple

listing is a more widespread practice in the U.S.

The third model considers a hypothetical system in which an internal LAD is available.

So, in addition to the liver accept/reject decision, patients can decide to accept an LAD.

This model aims to help manufacturers by estimating potential demand for an LAD. We

model this problem as a discrete-time MDP and give sufficient conditions under which an

LAD will be worthwhile.

Keywords: End-stage liver disease, liver transplantation, multiple listing, liver assist device,

Markov decision processes.
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1.0 INTRODUCTION

The United States (U.S.) spends more on health per capita than any other country [121], and

health expenditures have been increasing as a percentage of gross domestic product (GDP)

(see Figure 1.1). Based on U.S. Bureau of Labor Statistics (BLS), health care is one of the

largest industries in the U.S.[21]

Figure 1.1: National health expenditures as a percentage of GDP [120]

Considering the health care industry’s increasing share of GDP, even a small increase

in the efficiency of the health care system, including an increase in the life expectancy

of patients, may result in a substantial improvement in the U.S. economy, thus making

informed medical decision making crucial. Optimization techniques have been applied to

different health care issues over the last few decades. According to the National Center for

Health Statistics [122], health measures provide essential information for assessing how the

nation’s resources should be directed toward improving its population’s health. Some health

care optimization models consider allocating or scheduling healthcare resources, and some

1



examples of these models include personnel scheduling [79, 111, 189], ambulance location [22,

24], operating room scheduling [16, 41] and emergency room scheduling [34, 95]. Therapeutic

optimization is another available stream of health care research. Operations research (OR)

studies in cancer treatment [14, 31, 53, 92, 98, 139, 200], HIV treatment [161], diabetes

treatment [89], sepsis treatment [88] and optimal organ allocation [3, 7, 8, 9, 38, 39, 65, 86,

143, 153, 173, 202, 203] are among the studies in this area.

This dissertation focuses on patient decisions in organ allocation. According to the U.S.

Organ Procurement and Transplantation Network (OPTN) and the Scientific Registry of

Transplant Recipients (SRTR), there were 183,222 persons living with a functioning trans-

planted organ in the U.S. as of the end of 2007 [198]. This number reflects an increase of

1.7% over the prior year and a 56.6% increase since 1999. Unfortunately, there were also

approximately 100,597 people registered on organ waiting lists at the end of 2008, a 3.8%

increase over the number of people waiting for an organ at the end of 2007 [198]. The per-

centage of patients who remain on the waiting list for multiple years is increasing, in large

part because of lack of availability of organs. Given the scarcity and perishability of donated

organs, and the increasing number of patients waiting for an organ transplant, policy making

about organ allocation is very controversial.

This dissertation will specifically focus on end-stage liver disease (ESLD), such as primary

biliary cirrhosis and hepatitis B, the twelfth-leading cause of death in the U.S. (see Table A1

in Appendix A). For patients with ESLD, liver transplantation is the only therapy that is

currently being used, unlike other diseases such as end-stage renal disease (ESRD), for which

dialysis is an alternative therapy. However, new liver assist devices may hold some promise

as alternative therapies. ESLD patients can obtain livers for transplantation through two

sources: living donors and cadaveric donors. Most patients, including many of those with

living donors, join one or more waiting lists in order to be eligible for cadaveric liver offers.

Currently, there are nearly 16,000 patients waiting for a liver in the U.S.

A comparison of Table 1.1 with Figure 1.2 reveals that, although the number of organ

donors and transplants increased between 2001 and 2009, the decrease in the number of

deaths could not keep pace with the number of waiting list registrations. Therefore, either

an allocation mechanism matching the donated organ and the ESLD patient or an alternative

2



Table 1.1: U.S. liver data between 2001 and 2007 [180]

2001 2002 2003 2004 2005 2006 2007 2008 2009

Donors 5,630 5,657 6,004 6,642 7,016 7,305 7,202 7,001 6,957

Cadaveric 5,106 5,294 5,682 6,319 6,693 7,017 6,936 6,752 6,738

Living 524 363 322 323 323 288 266 249 219

Transplants 5,196 5,332 5,673 6,171 6,444 6,651 6,494 6,319 6,320

Cadaveric 4,672 4,969 5,351 5,848 6,121 6,363 6,228 6,070 6,101

Living 524 363 322 323 323 288 266 249 219

therapy to transplantation is needed so that the organ wastage and the number of deaths

are reduced. The United Network for Organ Sharing (UNOS), a non-profit organization,

is responsible for managing the national organ donation and allocation system. UNOS

facilitates the organ-patient match, and develops organ transplantation policy.

Figure 1.2: Number of ESLD patients waiting for, registered to receive, and died while

waiting for a transplant between 2001 and 2007 [180]

3



1.1 CURRENT LIVER ALLOCATION SYSTEM

UNOS divides the U.S. into approximately 60 local organizations, called Organ Procurement

Organizations (OPOs), through which it administers the organ allocation process. OPOs are

responsible for identifying donors, retrieving organs for transplantation, encouraging organ

donation in their designated geographical areas, and maintaining local waiting lists. The

geographical area of an OPO varies in size, ranging from a certain part of a state to a

collection of states. Each ESLD patient must join at least one OPO waiting list in order to

be eligible for cadaveric liver offers.

UNOS divides the U.S. into 11 regions which are comprised of OPOs. These regions

are designed to facilitate organ allocation so as to decrease geographical disparities. Once

an OPO procures an organ, UNOS tries to find a potential recipient based on geographical

location (patient and organ OPO, as well as patient and OPO region), medical urgency of

the patient, blood type and waiting time. Physical proximity of the patient to the organ

is considered in addition to the medical urgency, since livers are perishable. Cold ischemia

time (CIT) is the time interval that begins when an organ is cooled with a cold perfusion

solution after organ procurement surgery and ends when the organ is implanted [165]. The

maximum CIT for a liver is 18-24 hours. Although 18-24 hours appears to be enough time to

be able to transport a liver anywhere within the U.S., a liver’s viability declines as it spends

more time outside of a human body [168]. Moreover, each refusal tends to increase the CIT.

UNOS classifies patients as either “Status 1” or assigns them a “Model for End-Stage

Liver Disease” (MELD) score for the purpose of allocating livers. Without a liver transplant,

Status 1 candidates have a life expectancy of less than seven days [73]. Status 1 candidates

constitute less than 1% of all liver transplant candidates [182]. MELD is a score for chronic

liver disease [77, 97, 197] that estimates the probability of candidate death and is derived

from a mortality risk score corresponding to the degree of medical urgency [133]. If a patient

is not classified as a Status 1, then she is assigned a MELD score, which is a function of

total bilirubin, creatinine and prothrombin time (INR). Bilirubin measures how effectively

the liver excretes bile, INR measures the liver’s ability to make blood clotting factors, and
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creatinine measures kidney function [182]. The following formula, adapted from Wiesner et

al. [197], is used by UNOS to calculate the MELD score of a patient:

MELD = 10 ∗ round
(
0.957 ∗ ln(creatinine mg/dL) + 0.378 ∗ ln(bilirubin mg/dL) +

1.120 ∗ ln(INR) + 0.643 + (constant based on liver disease etiology)
)
.

Laboratory values less than 1.0 are set to 1.0 for the purposes of the MELD score calcu-

lation. The maximum serum creatinine considered within the MELD score equation is 4.0

mg/dl [181]. For patients who have had dialysis twice within the last week, the creatinine

value is automatically set to 4.0 mg/dl [181]. The MELD score of a patient ranges between

6 and 40, with higher scores corresponding to sicker health states. MELD scores greater

than 40 are rounded down to 40. The liver policy based on MELD was approved by the

UNOS/OPTN Board of Directors in November 2001 and went into effect in February 2002

[182], although multiple modifications have been made since then.

UNOS has different liver allocation algorithms for adult and pediatric patients. This

dissertation considers the adult patients only, and therefore presents the three-tiered adult

liver allocation algorithm as follows [133]:

1. Local: Status 1 candidates,

2. Regional: Status 1 candidates,

3. Local: Candidates with MELD Scores ≥ 15 in descending order of MELD Scores,

4. Regional: Candidates with MELD Scores ≥ 15 in descending order of MELD Scores,

5. Local: Candidates with MELD Scores < 15 in descending order of MELD Scores,

6. Regional: Candidates with MELD Scores < 15 in descending order of MELD Scores,

7. National: Status 1 candidates,

8. National: All other candidates in descending order of MELD Scores.

Patients are stratified within each MELD score by blood type similarity. If two patients

cannot be distinguished by geography, medical urgency, or blood type, then waiting time at

the current health or sicker is used to break ties.

Once an organ offer is made, the potential recipient is given one hour to accept or reject

it without penalty. If a patient rejects an organ, it is then offered to other patients as long
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as the liver is viable. Organs are frequently declined due to low quality. Howard [66] reports

that 45% of livers are rejected by the first patients to whom they are offered.

UNOS allows ESLD patients to change the waiting list in which they are registered by

relocating. UNOS also allows ESLD patients to be registered in more than one waiting list.

In this case, if a patient receives a transplant or dies while waiting for a transplant, she

will be removed from all the waiting lists she joined. As mentioned before, there are very

few Status 1 candidates compared to MELD patients. Therefore, this study is restricted to

MELD patients.

1.2 AN EMERGING ALTERNATIVE THERAPY

Although liver transplantation improves patient survival, the number of patients dying while

waiting for a liver transplant increases due to the shortage of livers. In addition, many

patients with hepatic failure do not qualify for transplantation because of metastatic cancer,

concomitant infection, active alcoholism, drug abuse, or concurrent medical problems [78].

The regenerative capacity of the liver is substantial and some ESLD patients, especially

those with toxic insult and viral hepatitis, have the potential for spontaneous recovery [78].

Therefore, as an alternative to liver transplantation, researchers have been working toward

the goal of developing a fully functional artificial liver [117].

The development of an artificial liver is challenging, since the liver has multiple func-

tions essential to maintaining life, such as carbohydrate metabolism, synthesis of proteins,

amino acid metabolism, urea synthesis, lipid metabolism, drug biotransformation, and waste

removal. The development of an artificial heart, lung, or kidney is perhaps less demanding,

since each has only one primary mechanical function [78].

In the last two decades, a new generation of extracorporeal liver assist devices (LADs)

has been developed. Some of these devices are tested on animals, and some of them are tested

in clinical trials, providing encouraging results for the future [150]. Generally, internal organ

support devices are preferable to external devices [195]. An internal LAD has not been de-
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veloped yet [135]. We propose a model that can be used to estimate the clinical impact of a

hypothetical LAD.

1.3 PROBLEM STATEMENT

As noted above, patients have the right to relocate to change the waiting list in which they

are registered or to join the waiting lists of several OPOs, a practice referred to as “multiple

listing”. In Chapter 3, a single patient’s relocation, multiple listing, and organ offer accepting

decisions are optimized. The model described in this chapter gives patients the autonomy

to choose the waiting list(s) they join. This chapter analyzes the question of where a patient

should list in order to maximize expected life years subject to an upper bound on the number

of waiting lists she can join or total distance she is allowed to travel in order to multiple

list. The patient still faces the liver acceptance decision after she determines where she will

register, and this model captures this decision as well.

Historically, multiple listing has been a controversial topic because of its potential effects

on equity in access to transplantation. Indeed, multiple listing was prohibited during part of

1988 [107], and it is still forbidden for kidney transplant candidates in New York State [191].

There were legal disputes about proposed bans on multiple listing within UNOS in 1988

and again in 1994, but the issue never came to a final vote [183, 184, 185]. The controversy

stems from the fact that if multiple listing is prohibited, some patients may be obliged to

list at an OPO with poor access to organs [12], which might then increase the geographical

disparities. On the other hand, if multiple listing is allowed, patients who multiple list may

gain an unfair advantage, since multiple-listed patients have, on average, a 195% greater

transplantation rate than other patients [107]. Currently, every OPO in the U.S. accepts

multiple-listed ESLD patients. [107].

Surprisingly, only 3.3% of ESLD patients multiple list, either because they are not aware

of the option, or because of various costs and restrictions [107]. For example, third-party

insurers will usually provide coverage at only one OPO [159]. Also, since increased travel

time may result in a decrease in organ quality, the recipient must be able to reach the OPO

7



quickly once an organ is available. Therefore, geographical constraints may prevent some

patients from multiple listing. Lastly, most transplant centers require a personal visit from

the patient and a separate evaluation, which are both time-consuming and expensive. Some

centers require that all or part of the tests be repeated using their staff and equipment

[37]. White, younger, privately insured, and higher-educated patients are currently more

likely to multiple list in the U.S. [107]. In our analysis of multiple-listed patients, we cannot

differentiate whether all the multiple registrations correspond to multiple listing (patients

being actively registered at more than one waiting list) or to relocation (patients are removed

from one list and registered at another). According to our analysis, almost every multiple-

listed patient lists in two OPOs, and the maximum number of OPOs in which any ESLD

patient list is four. Among the multiple-listed patients, approximately 3.60% list in three

OPOs and 0.23% list in four OPOs. Also, 30% of all multiple-listed patients list only in one

region.

Opponents of multiple listing believe that it gives an unfair advantage to patients who do

so, and this advantage tends to benefit more educated, wealthier patients. In 2005, almost

20% of adults reported they did not receive needed health-related services in the past 12

months because they could not afford them [122]. However, having equal access to health

care services does not guarantee that necessary services will be received or that outcomes

will be optimal. Not everyone who has access to services receives them when needed, and

people who live in areas with few services may still obtain them, in spite of their scarcity

[72].

Chapter 4 investigates the multiple listing problem from the societal perspective. From

this perspective, it is not only possible to assess the benefit of multiple listing to multiple-

listed patients, but also to measure any of its drawbacks for single-listed patients. This

analysis builds on the U.S. liver allocation simulation model of Shechter et al. [162] by

probabilistically deciding whether an ESLD patient in the simulation chooses to multiple

list or not. Chapter 4 also performs sensitivity analysis on the percentage of patients who

multiple list.

Chapter 5 of this dissertation explores an emerging therapy in ESLD, the aforementioned

liver assist devices (LADs). This chapter investigates the optimal time to start using an LAD,
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and by doing this it adds insight to current LAD design efforts. This chapter also considers

a hypothetical, internal LAD. This model increases the number of actions available to the

patient. In addition to the simple liver accept/reject decision process, patients are given

the choice of an alternative therapy in each period. This study assumes that once a patient

chooses to be treated with an LAD, she stays on this therapy until she dies or receives a

transplant.

1.4 CONTRIBUTIONS

Models described in Chapters 3 and 5 contribute to the patient perspective in medical

decision making and generalize Alagoz et al.’s model [8] by adding additional decisions or

actions. The model described in Chapter 4 contributes to the societal perspective and

improves Shechter et al.’s [162] model by incorporating multiple listing into the current liver

allocation system.

The remainder of this dissertation is organized as follows: Chapter 2 provides background

information on the major modeling methodology used throughout this dissertation. It also

reviews the literature concerning primary application areas for the major modeling frame-

work, the organ allocation and organ support devices. Chapter 3 develops the optimization

problem faced by a single multiple-listed ESLD patient. Chapter 4 extends this model such

that it analyzes the multiple listing decision from a societal perspective, utilizing a simula-

tion framework. Chapter 5 considers an emerging technology in ESLD, an organ support

device, which would act like a bridge therapy to transplantation, or to liver regeneration.

We discuss conclusions, limitations, and future extensions of the dissertation in Chapter 6.
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2.0 LITERATURE REVIEW

2.1 MARKOV DECISION PROCESSES

The problems described in Chapters 3 and 5 are modeled as a Markov Decision Process

(MDP). An MDP is an appropriate technique to model sequential decisions under uncer-

tainty, considering both the outcomes of current decisions and future decision making op-

portunities [141]. The notation in this section is based on Puterman [141].

The five components of an MDP are sets of decision epochs, states, actions, rewards,

and transition probabilities. Decision epochs can be discrete (T = 1, · · · , N) or continuous

(T = [0, N ]). If N is infinite, the decision problem will be called a infinite-horizon problem

(T = [0,∞)). The system occupies a state (s) at each decision epoch. Throughout this

dissertation S denotes the set of states. The decision maker chooses an action a from As,

the set of actions available in state s. Based on the action taken in state s at decision epoch t,

the decision maker receives an immediate reward of rt(s, a) and the system transitions into a

subsequent state determined by the probability distribution Pt(·|s, a). We refer the collection

of objects {T, S,As, rt(s, a), Pt(·|s, a)} as an MDP [141]. A decision rule, dt, specifies the

action selection in each state at a specified decision epoch. It suffices to consider Markovian

(i.e., dt depends on previous system states and actions only through the current state of

the system) and deterministic (i.e., dt chooses an action with certainty) decision rules. A

policy specifies the decision rules to be used at all decision epochs. In other words, a policy

π, is a sequence of decision rules, π = {d1, d2, · · · , dN−1}. A policy is a stationary policy if

dt = d for all t ∈ T . At a specified point in time, upon observing the state of the system,

the decision maker either receives an immediate reward and leaves the system, or based on
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the decision maker’s action, the system transitions to a new state according to a probability

distribution [141].

In this dissertation we consider infinite-horizon, discounted MDPs, so that N = ∞ and

future rewards are discounted by a multiplier 0 ≤ λ ≤ 1. We focus on the expected total

discounted reward criterion, although other criteria may be used [141]. The objective of

an MDP is to find an optimal policy d∗ that maximizes one of these criteria. Let u(s)

be the total discounted expected reward obtained in state s. Then the following form will

characterize values and optimal policies in discounted infinite-horizon models, finite state

and action spaces, and an expected total discounted reward objective:

u(s) = max
a∈As

{
r(s, a) +

∑
j∈S

λP (j|s, a)u(j)

}
. (2.1)

(2.1) are referred to as the optimality equations or Bellman equations. It can also be shown

that there is a unique solution to the following optimality equations giving the optimal policy

[141].

V (s) = max
a∈As

(
r(s, a) +

∑
j∈S

λP (j|s, a)V (j)

)
for s ∈ S,

where V (s) is the optimal value of the MDP at state s. The policy maximizing this set of

equations is the optimal policy.

One use of MDPs is to establish the existence of optimal policies with appealing structure.

These policies are easy to implement and they enable efficient computation. Assuming an

ordered state space, a control limit policy is a deterministic Markov policy composed of

decision rules of the form

dt(s) =





a1, s < s∗,

a2, s ≥ s∗,

where s∗ is a control limit. If the state of the system is less than the control limit, then it is

optimal to take action a1. Otherwise, the decision maker should take action a2. In Chapter

5 we show the sufficient conditions for the existence of optimal control limit policies.

Value iteration [20, 141, 160], policy iteration [18, 67] and linear programming [42] are

the most common techniques used to solve MDPs. Other techniques include modified policy
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iteration [115], relative value iteration [192] and approximate methods such as neuro-dynamic

programming [19].

MDPs have been applied to various areas including maintenance and inspection [47,

48, 58, 63, 163, 193], inventory and production [25, 59, 76, 83], finance [26, 106, 128, 151],

agriculture [131], and sports [84, 127]. More applications of MDPs are discussed in a survey

by White [194].

MDPs have also been applied to different healthcare topics. Schaefer et al. [155] de-

scribe MDP modeling in the context of medical treatment and discuss when MDPs are an

appropriate technique. They review selected successful applications of MDPs to treatment

decisions in the literature. Lefevre [93] utilizes an MDP model in order to decide a quaran-

tine level and medical treatment level. The states at each decision epoch are the number in

the population who are infected and can transmit the disease. The new states at the next

decision epoch depend upon disease propagation rates and on the decisions made. Magni et

al. [96] model optimal timing of intervention for treating hereditary spherocytosis disease

as an MDP. They use an objective that maximizes Quality Adjusted Life Years (QALYs),

a class of utility functions widely used in the medical literature. Shechter et al. [161] uti-

lize MDPs to model the optimal timing of HIV therapy. Kreke et al. [88] model hospital

discharge policies of sepsis patients as an MDP. Kurt et al. [89] model the optimal time

to start therapy for diabetes patients and Chhatwal et al. [31] model optimal policies for

biopsy decision-making in breast cancer using MDPs. MDPs have been used to model organ

allocation decisions in literature [7, 8, 9, 86, 153]; these studies will be discussed in Section

2.2.

Another class of problems that is solved using MDPs is optimal stopping problems. They

describe situations in which the decision maker’s goal is to decide when to stop the process

so as to maximize the total expected reward or minimize the total expected cost [33]. If there

is more than one possible stop to the decision process, then the optimal stopping problem

is said to have multiple stops. In Chapter 5, we discuss an optimal stopping problem with

multiple stops and we model this problem as an MDP. Therefore, we summarize applications

of MDPs with multiple stops in different settings.
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Haggstrom [60] considers an optimal stopping problem in which the decision maker tries to

maximize her gain by observing a sequence of random variables and deciding when to stop

this sequence and start observing another one. Similarly, in the LAD model, the patient

should decide when to accept an LAD which stops a decision problem and starts another

decision problem. Allaart and Monticino [11] analyze optimal single and multiple stopping

rules for a class of correlated random walks that provides an elementary model for processes

exhibiting momentum or directional reinforcement behavior. Similar to transaction costs

complicating their simple buy/sell model, the nature of the decision of accepting a device

complicates our multiple stopping problem. The patient cannot simply accept/reject an

LAD at every decision epoch since she should also consider the fact that once she accepts

an LAD, she stays with an LAD. Other practical applications requiring a generalization of

the optimal stopping problem to possibly multiple stops include [27, 99, 104, 118, 166, 176].

2.2 ORGAN TRANSPLANTATION MODELS

In this dissertation, we develop organ transplantation models that consider either a societal

perspective similar to studies [39, 143, 148, 149, 167, 202, 203], or a patient’s perspective

similar to studies such as [3, 7, 8, 9, 38, 65, 66].

The societal perspective considers all of the patients and distributes organs to patients

according to some societal metric, but without considering patient preferences. Many papers

in this area make strong assumptions such as the number of organs is more than the number

of patients, organs are not offered to more than one patient and so on. Among examples from

the literature, Righter [143] considers a resource allocation problem with a finite number of

activities but does not consider the effect of the waiting list on the organ arrival rates and

does not provide any computational results. David and Yechiali [39] consider allocating

multiple organs to multiple patients, but assume that patient health is static and do not

consider the waiting list.

The patient’s perspective only considers a single patient and models how this patient

should accept/reject organs. Although patient’s perspective may be implementable right
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away given the necessary data, its impacts may be limited. Howard [66] models the problem

of when to decline a cadaveric liver and provides statistical results, but does not provide any

numerical solutions or structural insights. David and Yechiali [38] make limiting assumptions

such as the number of organs is equal to the number of transplant candidates, and that the

patient will receive less frequent organ offers as time progresses. Ahn and Hornberger [3],

and Hornberger and Ahn [65] use simple and static models of patient health and do not

consider the waiting list. Alagoz et al. [7, 9] consider the problem of optimally timing a

living-donor (cadaveric-donor) liver transplant to maximize a patient’s total life expectancy.

They seek a policy describing the health states in which the living-donor (cadaveric-donor)

liver transplantation should occur and those where waiting is the optimal action. Alagoz et

al. [8] consider a decision problem faced by the patient where possibly both a living-donor

and a cadaveric-donor are available. They are able to find optimal control-limit type policies

in all models. Although Alagoz et al. [7, 8, 9] models are the most relevant to our models,

they calibrate their models such that liver offers to a patient only depend on the region

in which she is listed. Sandikci et al. [153] model the optimal time to transplant using an

explicit model of the waiting list. By doing so, they are able to estimate the price of privacy

in liver transplantation. In our models, we assume an implicit model of the waiting list

similar to Alagoz et al.’s models [7, 8, 9].

There are a small number of studies that combine the societal and patient’s perspectives.

Su and Zenios [172, 173] integrate both perspectives where they consider the problem of

globally allocating kidneys to transplant candidates who have the right to refuse the organs.

Although they are able to integrate both perspectives, they make limiting assumptions such

as there are no patient arrivals, patients can’t die before a transplant, kidneys may be offered

to only one patient, patient health does not change, all patients are homogeneous and organs

do not deteriorate. We relax each of these assumptions in our models.

Alagoz et al. [10] present a detailed review of the kidney and liver allocation system

as well as previous research on organ allocation. Major differences of the models discussed

above from the models described in this dissertation are that they assume that patients are

singly listed and that an organ support device does not exist.
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2.3 PREVIOUS SIMULATION MODELS ON LIVER ALLOCATION

SYSTEM

In Chapter 4, we discuss and build on a previous simulation model on the U.S. liver allocation

system by Shechter et al. [162] in order to estimate the effect of multiple listing on the entire

waiting list. In this section, we present several other discrete-event simulation models that

have been developed to estimate the effect of various allocation policies.

The UNOS Liver Allocation Model (ULAM) is a simulation of the cadaveric liver alloca-

tion system in the U.S. ULAM permits the comparison of multiple liver allocation policies in

the proposal phase so that policies can be tested prior to implementation [61]. ULAM uses

either historical or simulated data streams for both patient listings and donor arrivals. An-

other liver allocation simulation is developed by the CONSAD Corporation [36]. A potential

flaw in both of these modeling efforts is that the description of natural history was estimated

entirely through probability distributions that describe how patients move through the ex-

isting priority scheme for allocation, preventing an unbiased analysis of any organ allocation

scheme significantly different than the current mechanism [87].

Shechter et al. [162] describe a discrete event simulation model of the national liver

allocation system that differs from previous modeling efforts in that it considers the natural

history of the disease independently of any particular patient priority scheme. The model

provides various outputs such as patient survival, and the number of wasted organs. Alagoz

et al. [6] create a discrete-event simulation model that represents the biology of end-stage

liver disease and the health care organization of transplantation in the U.S. They design

the simulation model to test proposed changes in allocation policies. At the individual level,

Alagoz et al. [6] use mathematical models of disease progression and post-transplant survival

to track patients health.
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2.4 HOW CAN A PATIENT OVERCOME GEOGRAPHIC DISPARITIES

IN ORGAN ALLOCATION?

As described in Chapter 1, UNOS considers the geographic location as well as the medical

urgency of patients when offering organs. Geographic location of a patient is important

since the viability of organs decrease by time. However, prioritizing patients based on their

location causes geographical disparities. Among patients who received a transplant in San

Francisco bay area between July 1, 2008 and June 30, 2009, 35% of them had a MELD score

between 31-40 at the time of the transplant. However, all of the patients who received a

transplant in Sacramento between July 1, 2008 and June 30, 2009 were healthier at the time

of transplant. Indeed 37.5% of patients in Sacramento had a MELD score between 21-30

at the time of transplantation [165]. In general, there is a significant disparity in MELD

scores in liver transplant recipients in small versus large OPOs [196]. According to Trotter

and Osgood [179], of the 4,798 cadaveric-donor liver transplantations performed between

February 28, 2002, and March 31, 2003, 8.3% were transplanted in small OPOs. Also, the

rate of transplantation was 2.5-fold higher for patients listed in small OPOs [179]. Although

there is an apparent geographical disparity within organ allocation, there are several ways

through which an ESLD patient can change the geographical disparity to her benefit. In

this section, we elaborate on two autonomies that are available to ESLD patients.

2.4.1 Relocating in Organ Allocation

In Chapter 3, we construct a model that gives an ESLD patient the autonomy to relocate and

register at another OPO. There are ESLD patients who utilize this opportunity available

to them. For example, ELSD patients move from Massachusetts to Florida in order to

increase their chances of receiving organ offers [57, 105, 126, 130]. This is a reasonable

decision because in terms of harvesting livers, New England is chronically short on organs

but Florida has a relatively large supply [57]. One would assume that it is better for an

ESLD patient to live in a city renowned for its hospitals, and especially transplant centers
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like Boston. However, because of the long waiting times in Boston, it is better for ESLD

patients to move to Jacksonville and live next to Mayo Clinic in Jacksonville, Florida [57,

105, 130].

Medical literature in relocation for an organ transplant is limited and mostly considers

the psychological aspects of relocation such as putting life on hold, experiencing dimin-

ished emotional support, and worrying about money [44, 171, 188]. Although the relocation

choice is currently being practiced by patients [57, 105, 126, 130, 140, 177], according to our

knowledge of the literature, there is no study in the OR literature that focuses on it.

2.4.2 Multiple Listing in Organ Allocation

We construct models of multiple listing in liver transplantation in Chapters 3 and 4. We

present previous studies form the medical literature because there does not exist an OR

model that focuses on multiple listing in organ transplantation. Although there are several

studies about multiple listing in kidney transplantation [13, 107, 112, 134, 190, 191], to the

best of our knowledge, Merion et al. [107] is the only existing study on multiple listing in

liver transplantation.

The ethics of multiple listing have been a focus of several studies in literature such as

[12, 32]. According to Ankeny [12], although the organ allocation system appears to be a

national system, it actually is a complex regionalized system that in turn causes disparities

for candidates under certain conditions. Therefore, Ankeny [12] believes that the debate

over multiple listing shouldn’t be perceived as competing principles such as autonomy and

equity. Rather, it should be recognized as a problem of inequity of the allocation system.

Childress [32] provides an ethical analysis and assessment of various actual and proposed

policies of organ procurement and distribution. Concentrating on policies being developed

in the UNOS, Childress [32] examines the point system for cadaveric kidneys, the access of

foreign nationals to organs donated in the U.S., and the multiple listings of patients seeking

transplants. The ethics of multiple listing has also been a focus in the popular media recently

[125]. A wealthy candidate receiving a transplant through relocating and multiple listing

arisen concerns on the moral principles of U.S. allocation policy.
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Other studies in the literature quantify the effects of multiple listing in access to transplanta-

tion. Miller [112] explores the social and ethical issues raised by multiple listing, contrasting

policies adopted at the national level with those implemented in New York State. (Recall

that multiple listing is prohibited in New York State for kidney candidates). He examines

the implications of the debate for broader questions about entitlement and access to health

care. White et al. [191] study the effectiveness of a 1990 ban by New York State on multiple

listing for a cadaver kidney transplant, and the impact of the ban on equity in access to

transplantation. They use multivariate hazard models to estimate the impact of the ban on

the overall odds of multiple listing and on the odds of multiple listing at instate and out-

of-state transplant centers. They also utilize simulation techniques to estimate the effects

of a complete multiple listing ban on group waiting time differentials. They conclude that

although the ban reduced the number of multiple-listed patients, the results suggest that

banning multiple listing is not likely to result in large improvements in equity in access to

transplantation. Merion et al. [107] examine the practices and outcomes of multiple listing

using data on 26,260 liver candidates registered over a five-year period. They develop a logis-

tic regression model to evaluate candidate and OPO characteristics associated with whether

or not a candidate was ever multiple listed. They assume that every ESLD patient is listed

in at most two OPOs and consider a static waiting list. They use a Kaplan-Meier approach

to determine the expected time until liver transplant and establish time-dependent Cox re-

gression models of access to liver transplantation and waiting list mortality. Our studies are

more similar to the studies by White et al. [191] and Merion et al. [107] since we quantify the

effects of multiple listing on a particular multiple-listed patient, as well as on the entire wait-

ing list. The modeling framework we use and the additional decisions we model distinguish

our models from theirs.

2.5 ORGAN SUPPORT DEVICES

Medical researchers have been trying to develop artificial organs for the last few decades. An

increasing number of patients waiting for an organ transplant and the scarcity of cadaveric
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donors are common to all organs. Organ devices can be classified into external and internal

devices. In this section, we review various organ support devices and the current stage of

liver assist devices.

Many patients with end-stage congestive heart failure who are awaiting transplantation

receive mechanical circulatory-support devices. (See [17, 23, 35, 43, 50, 74, 108, 145, 201]

for technical descriptions of various artificial hearts). DeVries et al. [43] report their first

experience with the use of an artificial heart in a human being, a 61 year-old male with

chronic congestive heart failure. In their study, the patient survives for 112 days and the

artificial heart functions well for the entire postoperative course. Zareba [201] discusses

a successful implantation of a fully implantable replacement heart, called AbioCor. It is

an advanced medical system developed to fully sustain the body’s circulatory system and

closely mimic the function of the human heart it replaces. Copeland et al. [35] conduct a

nonrandomized, prospective study in order to assess the safety and efficacy of an artificial

heart called CardioWest Total Artificial Heart in transplant-eligible patients. The authors

note that implantation of the total artificial heart improves the rate of survival to cardiac

transplantation and survival after transplantation. Rose et al. [145] experiment the long-term

use of a left ventricular assist device and conclude that the use of this device in patients with

advanced heart failure results in a clinically meaningful survival benefit and an improved

quality of life.

The development of an artificial kidney has a great importance since dialysis is still

suboptimal in terms of morbidity and mortality for patients with acute renal failure [69, 103].

An artificial kidney was developed as early as 1926 [94]. According to Kolff [85], the artificial

kidney increases the lives of experimental animals and of human beings lacking renal function.

More contemporary studies in this area include [68, 70, 71, 152, 178, 187]. Vanholder [187]

discusses some of the problems for artificial kidney, such as dialysis patients’ being prone to

vascular disease and being immobilized throughout the treatment. Humes [68] summarizes

the current state of a renal tubule assist device and a cell therapy device development that

have the promise to be combined to produce a wearable or implantable bioartificial kidney

for full renal replacement therapy. Humes et al. [70] develop an extracorporeal bioartificial

kidney. The durability of their device is sustained for up to 24 hours of continuous use.
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Humes et al. [71] also discuss the development of a tissue-engineered bioartificial kidney for

patients in the intensive care unit. They are able to demonstrate maintenance of cell viability

and functionality and also cardiovascular stability. Lee and Zenios [91] model the problem

of optimal dialysis initiation from a policy-maker’s perspective. They model the problem

as an MDP and they examine both equity-based and efficiency-based criteria. They use an

approximate policy iteration algorithm to solve the model numerically. Although dialysis is

not an artificial organ, this study is similar to ours as it considers the optimal timing of an

alternative therapy to transplantation using an MDP framework.

Although clinical trials are underway, artificial and bioartificial livers as either bridge

or permanent interventions are not yet clinical reality. Also, clinical research for an artifi-

cial liver is not yet as advanced as other artificial organ support devices since unlike other

organs, the liver has multiple functions. Attempts to develop an artificial liver started in

the 1950s [81, 82, 90, 129, 156]. These earlier studies (nonbiologic support) are analogous

to hemodialysis in patients with acute renal failure [157], however they do not show any

improvement of survival [75, 81]. Extracorporeal liver support have been performed since

the 1960s [1, 2, 29, 49, 52]. These devices are connected to the circulation of the patient and

they even have bridged several patients to recovery or transplantation.

Matsumura et al. [101] develop a clinically applied bioartificial liver device, which uses

rabbit liver cells. The Extracorporeal Liver Assist Device (ELAD) [64, 169, 174, 175] is the

only liver assist device in which human liver cells are used. Several patients are successfully

bridged to transplantation within a phase I trial. There are other artificial livers such as the

HepatAssist System [40, 170], the TECA-Hybrid Artificial Liver Support System [30, 199],

the Bioartificial Liver Support System [102, 138], the Radial Flow Bioreactor [113, 114],

the Liver Support System [56, 116], The AMC-Bioartificial Liver [51, 164], the Bioartificial

Hepatic Support system [46], and the Hybrid-Bioartificial Liver [45]. More detailed infor-

mation on the characteristics of eight different artificial liver systems, the associated clinical

outcomes and recent advances in clinical practice are available in [28, 80, 158].
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3.0 IN WHICH OPOS SHOULD AN END-STAGE LIVER DISEASE

PATIENT LIST?

3.1 INTRODUCTION

As discussed in Chapter 1, each ESLD patient joins a waiting list in an OPO in order to

be eligible for cadaveric liver offers, and an ESLD patient may list in more than one OPO.

The set of OPOs that a patient joins determines the quality and frequency of organs offered

to her. Furthermore, as illustrated in Figure 3.1, the volume of transplants, waiting list

additions, and sizes of the waiting lists differ across the 11 regions. These observations raise

an important question from the patient’s perspective, namely, “In which OPOs should she

list?”

We model the decision problem faced by the patient in three stages. The “home OPO”

refers to the original waiting list in which the patient is listed. In other words, home OPO

refers to the geographic location of the patient. In the first stage, the patient chooses her

home OPO. That is, in the first stage, the patient is allowed to relocate, and therefore, join

the waiting list at any OPO. The first-stage problem is called the “home OPO selection”

problem. If relocation is not an option for a patient, then we can fix the home OPO and decide

optimal policies for this patient in subsequent stages. In the second stage, called the “listing”

problem, the patient chooses additional OPOs in which to list. These additional OPOs may

depend on the home OPO. We use a cardinality constraint and a budget constraint to restrict

multiple listing. In the third stage, after the patient has listed in a specific set of OPOs, she

decides to accept or reject organ offers as they are made. The third-stage problem is called

the “liver acceptance” problem and was studied by Alagoz et al. [9]. The differences of our

model from Alagoz et al.’s are presented in Section 3.2.
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Figure 3.1: Transplant volumes and the number of waiting list additions per U.S. region in

2006

This chapter’s approach considers patient perspective decision making in organ alloca-

tion, which is similar to existing studies such as [7, 8, 9] that are discussed in Chapter 2.

These models, however, only consider the third-stage organ acceptance problem. Among

them, Alagoz et al. [9] is the most relevant to this study. They model the third-stage deci-

sion as a discrete-time Markov decision process (MDP). They calibrate their model such that

the frequency and quality of organ offers to a patient are determined based on the (single)

region and not the OPO in which she is listed. However, OPOs belonging to the same region

may have very different organ harvesting frequencies. A comparison of the number of organs

harvested in Norcross,GA and Metairie,LA between the years 2003 and 2008 reveals that

Norcross,GA harvested 30% more livers than Metairie,LA [132], despite the fact that both

OPOs belong to Region 3. Therefore, estimating the frequency of organ offers to a patient

based on her region is not a reliable representation of the current liver allocation system.

Moreover, other studies do not consider neither the practice of multiple listing nor relocation

in their models. They also assume that a patient receives only one offer during any time

period. Our model relaxes all of these assumptions.
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Section 3.2 formulates a mathematical model of the three-stage decision problem faced by

the patient under a cardinality constraint and a total distance (budget) constraint. Section

3.3 establishes several structural properties of the cardinality-constrained model described

in Section 3.2. Section 3.4 is a discussion of the computational approach for the cardinality-

constrained model, and Section 3.5 is an analysis of the numerical results. Section 3.6 draws

conclusions and presents ideas for future research.

3.2 MODEL FORMULATION

In the first stage of the decision process, the patient selects a home OPO b ∈ I, where I
represents the entire set of OPOs.

In the second stage, the patient selects a set of additional OPOs in which to list based on

the home OPO picked in the first stage. As discussed in Chapter 1, there are geographical

and other constraints that prohibit the patient from being listed in every OPO in I. We

model the second-stage listing problem first by using a cardinality constraint, and then by

using a total distance constraint to represent those restrictions.

In the third stage of the decision process, the patient either accepts or rejects the organs

offered to her over time. If she accepts an offer, she is removed from every waiting list she

has joined and she quits the process. Otherwise, she stays in the process with the hope of

receiving future organ offers. The process may also terminate with the pre-transplant death

of the patient.

Although the patient faces the decision problems in consecutive stage order, we consider

them in the opposite order. That is, we begin by solving the liver acceptance problem that

is farthest downstream and then move upstream.

3.2.1 Liver Acceptance Problem

3.2.1.1 Continuous-time MDP Formulation Similar organ acceptance decision mod-

els, such as [7, 9], consider organ offers to patients in a single OPO or in a region, and model
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the liver acceptance decision as a discrete-time MDP. However, we consider the organ offers

to patients listed in different sets of OPOs. Therefore, there is a need to calculate the total

organ offer frequency that a patient would see when listed in a set of OPOs. Modeling the

third-stage liver acceptance problem in continuous time facilitates the estimation of the total

organ offer frequency at a set of OPOs, as shown in Section 3.5.2.

The objective of the continuous-time MDP is to maximize the patient’s total expected

discounted reward (e.g., the patient’s expected survival in terms of life days). We denote

the set of OPOs in which the patient is listed by O. R(i) represents the region to which

OPO i belongs and R(O) stands for the set of regions to which OPOs in set O belong, i.e.

R(O) =
⋃

i∈OR(i) . According to this definition, R(I) represents the entire set of regions.

States, actions, rewards and transition rates of the continuous-time MDP are as follows:

States : We characterize the state s ∈ S of the process as the health state of the pa-

tient, h ∈ SH , and the quality of the liver currently being offered to the patient, ` ∈ SL;

SH = {1, . . . , H + 1}, where H + 1 represents death, H < ∞, and SL = {1, . . . , L + 1},
where L + 1 represents the case that no liver is currently being offered, L < ∞, so that

S = SH ⊗ SL. We define S ′H = SH \ {H + 1} and S ′L = SL \ {L + 1}. We assume that there

exists a complete ordering of patient health states as well as of liver qualities.

Actions : The patient can either reject the current offer and continue the process (action

‘W’) or she can accept the offer and quit the process (action ‘T’). We define a∗(s) as the

optimal decision in state s and As as the action space for state s; i.e.,

As =





{T, W}, if h ∈ S ′H , ` ∈ S ′L,

{W}, if h ∈ S ′H , ` = L + 1,

∅, if h = H + 1.

Rewards : The patient receives an expected post-transplant lump sum reward rT (h, `) if she

accepts a liver of type ` while in health state h. We assume that rT (h, L+1) = rT (H+1, `) =

0. Note that although rT (h, `) is also a function of the patient type (gender and blood type),

we suppress this dependency for notational convenience as these factors are fixed. The

patient accrues reward at rate rW (h) while in health state h. Similarly, we assume that

rW (H + 1) = 0. We assume that the reward functions are stationary.

Transition rates : A transition in the process occurs when either the health state of the
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patient changes or the patient is offered an organ. We assume that the transition rates are

stationary. Let µ(h′|h) be the transition rate from health state h to health state h′. Let

νO(`|h) be the type ` organ offer rate to a patient in health state h who is listed in OPO set

O and ωj(`|h) be the type ` organ offer rate to a singly-listed patient in health state h who

is listed in OPO j.

We refer to the rate of an organ offer arrival as “local”, if the donor and the recipient are in

the same OPO; “regional”, if the donor and the recipient are not in the same OPO but in the

same region; or “national” if the donor and the recipient are in different regions. The national

sharing of livers is very low compared to local and regional sharing. According to Gerber et al.

[55], the local, regional and national sharing of transplanted livers is approximately 69.03%,

23.36% and 7.61%, respectively. Also, the percentage of national sharing has been decreasing.

Moreover, the national organ offer arrival rate complicates our model immensely due to

extensive data needs. Consequently, we do not consider national offers in this dissertation.

From every OPO in every region in which the patient is listed, she receives either a

stream of local offers or a stream of regional offers. Let ξi(`|h) be the rate of a type ` organ

offer from OPO i to a patient in MELD score h, who is listed in OPO i, and θi(`|h) be the

rate of a type ` organ offer from OPO i to a patient in MELD score h, who is listed in one

of the OPOs in region to which OPO i belongs. In other words, ξi(`|h) (θi(`|h)) represents

the rate of local (regional) offers of organs harvested in OPO i. Therefore, we characterize

νO(`|h) and ωj(`|h) as a function of ξi(`|h) and θi(`|h) as follows:

νO(`|h) =
∑

R∈R(O)





 ∑

i∈O,R(i)=R

ξi(`|h) +
∑

j /∈O,R(j)=R

θj(`|h)





 , (3.1)

and

ωj(`|h) = ξj(`|h) +
∑

m∈I,R(m)=R(j)

θm(`|h). (3.2)

According to (3.1) and (3.2), the arrival rate of organ offers to a patient depends not

only on the OPOs in which she is listed but also on the other OPOs in the region(s) in which

she is listed.
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Figure 3.2: Continuous-time Markov chain governing the third-stage liver acceptance decision

faced by the patient.

Note that states (h, `), h 6= H + 1 and ` 6= L + 1, are instantaneous states [146] and im-

mediately return the patient to state (h, L+1) or transition the patient to state “transplant”

after an action is taken. If a∗(s) =‘T’, the patient accepts the organ offer and instantly quits

the process. Otherwise, a∗(s) =‘W’, the patient rejects the offer and instantly enters state

(h, L + 1). One or the other of these events occurs each time an offer is received. Figure 3.2

demonstrates the possible transitions in the process.

Because the transition rate out of an instantaneous state is infinitely large and the

transition rate out of the terminal death state is zero, we only specify the total transition

rates out of the remaining states as follows:

γO(h, L + 1) =
∑

`′∈S′L

νO(`′|h) +
∑

h′∈SH\{h}
µ(h′|h), h ∈ S ′H .

Discount rate: We denote the continuous discount rate by α > 0.
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3.2.1.2 Uniformizing the continuous-time MDP An equivalent discrete-time MDP

model can be formulated through uniformization of the continuous-time model. Based on

Bertsekas’ [19] definitions, additional notation is presented in order to formulate the equiva-

lent discrete-time problem. We define a uniform transition rate λmax as the maximum total

transition rate out of any non-instantaneous state, λmax = maxh∈SH
γO(h, L + 1). The dis-

count rate of the uniform process, α̃, is therefore α̃ = λmax

λmax+α
. We uniformize the rate of

reward associated with waiting in health state h by defining r̃W (h) = rW (h)
λmax+α

. We determine

the transition probability matrix as follows:

P̃O(h′, `′|h, `) =





νO(`′|h)
λmax

, h′ = h, h ∈ S ′H , `′ ∈ S ′L,

µ(h′|h)
λmax

, h′ ∈ S ′H \ {h}, `′ = L + 1,

1−∑
h′∈SH\{h}

µ(h′|h)
λmax

−∑
`′∈S′L

νO(`′|h)
λmax

, h′ = h, h ∈ S ′H , `′ = L + 1,

0, otherwise.

Optimality equations : The patient can either accept or reject the organ offer in state (h, `).

If she accepts the offer, she receives a reward of rT (h, `) and leaves the process. If she rejects

the offer, she receives an intermediate reward of r̃W (h) and transitions into state (h′, `′) with

probability P̃O(h′, `′|h, `). Let VO(h, `) be the maximum total expected discounted reward

that the patient can attain when her health state is h, the current liver offered to her is `,

and she is listed in OPOs specified by O. The optimal solution to this problem can be found

by solving Bellman’s equations [141] as follows:

VO(h, `) = max



rT (h, `), r̃W (h) + α̃

∑

(h′,`′)∈S

P̃O(h′, `′|h, `)VO(h′, `′)



 ∀(h, `) ∈ S. (3.3)

The optimality equations (3.3) are analogous to those of Alagoz et al.’s [9].

3.2.2 Listing Problem

3.2.2.1 Cardinality-constrained listing problem In this section, we use a cardinal-

ity-constrained framework to model the second-stage listing decision. Restricting the number

of OPOs in which a patient can list is justifiable given that no patient has ever listed in more

than four OPOs.
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In the cardinality-constrained model, geographical restrictions on multiple listing are

captured using an admissible set. An admissible set Ab for home OPO b is the set of OPOs,

including b, in which the patient can list. The model allows a flexible characterization of

the admissible set in practice. It could be comprised of the OPOs in which the patient has

family or OPOs that have a direct flight from the home OPO or OPOs that are within a

prescribed distance of b. If there were no other costs or restrictions associated with multiple

listing besides the geographical constraints, then the patient would list in every OPO in the

admissible set. To reflect the additional costs and restrictions discussed in Chapter 1, we

impose an upper bound K on the number of waiting lists the patient can join. This model

is called the “cardinality-constrained multiple listing problem”. The patient’s cardinality-

constrained listing decision is represented by O(b,K), which is the set of OPOs in which she

has decided to list.

The second-stage listing problem is solved for a specific home OPO and the corresponding

admissible set. In this stage, we compare different subsets of K admissible OPOs. The OPO

set that yields the highest total life expectancy corresponds to the optimal listing decision.

For an initial state (h, L + 1) and home OPO b, the patient chooses a set of OPOs in

which to list (O) based on the following optimization problem:

max
O∈Ab

{
VO(h, L + 1)

}
(3.4)

|O| ≤ K. (3.5)

b ∈ I. (3.6)

3.2.2.2 Total distance constrained listing problem In the cardinality-constrained

model, we define an admissible set to represent the geographical restrictions on multiple

listing and impose a cardinality constraint to capture the rest of the restrictions. In the

total distance constrained model, we characterize all of the restrictions on multiple listing

(geographical and non-geographical) through a budget-type framework. In other words, we

relax the admissible set restriction, and we impose a restriction on the total cost (distance)

of being listed in a certain OPO set. Instead of differentiating between those OPOs which

are in the admissible set and those which are not, we associate a cost (cbi) with every OPO
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(i) based on its distance from the home OPO b. The patient can list in any OPO set as

long as the cost of being listed in that set does not exceed her limited budget (B). In other

words, rather than comparing individual OPOs within the home OPO’s admissible set for

every upper bound K, we compare OPO sets such that the cost of being listed in them is

within a certain budget for a fixed home OPO.

For an initial state (h, L + 1) and home OPO b, the patient chooses a set of OPOs in

which to list (O) based on the following optimization problem:

max
O∈I

{
VO(h, L + 1)

}
(3.7)

∑
i∈O

cbi ≤ B, (3.8)

b ∈ I. (3.9)

The budget-constrained model captures the essence of the multiple listing problem better

than the cardinality-constrained model, because it is a more general model. If we assume

B = K, cbi = 1 for those OPOs in the admissible set, and cbi = K + 1 for those OPOs that

are not in the admissible set, the budget model transforms to the cardinality-constrained

model. However, the budget-constrained model requires more data and it is harder to solve.

3.2.3 Home OPO Selection Problem

Although the home OPO selection problem does not apply to the majority of patients on the

waiting list, there are patients who wish to relocate, as described in Chapter 2, in order to

decrease their waiting times. Our model optimizes the home OPO selection decision for these

patients. However, our model might also ignore the first-stage decision problem for patients

who cannot change their home OPOs and optimize the second- and third-stage decisions of

such patients.

In order to determine the best home OPO, we solve the optimization problems (3.4)-(3.6)

and (3.7)-(3.9) for every OPO b ∈ I and take the maximum. In other words, we add maxb to

the objective functions (3.4) and (3.7). Figure 3.3, modified from the Institute of Medicine’s

Organ Procurement and Transplantation report [73], illustrates potential outcomes of home

OPO selection and listing problems for the cardinality-constrained model.
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Figure 3.3: Two examples of the home OPO selection and listing decisions.

3.3 STRUCTURAL PROPERTIES FOR THE

CARDINALITY-CONSTRAINED MODEL

In this section, we develop some structural properties of the model described in Section 3.2.

We define SL(O, h, T ) as the set of livers a patient should optimally accept uniquely given

that she is listed in OPO set O, i.e., SL(O, h, T ) =
{

` ∈ S ′L
∣∣∣a∗(h, `) = ‘T ′

}
. We also assume

that rT (h, `) is nonincreasing in h and ` (Assumption 1). That is, as the patient gets sicker

or as the quality of the liver offered to her decreases, her post-transplant reward does not

increase.

Remark 3.1 states that given O, the maximum total expected discounted reward that

the patient can attain in state (h, `) is greater than or equal to the total expected discounted

reward she can receive in that health state when no organ is offered to her. Another result

that follows from Remark 3.1 is that if the post-transplant reward associated with accepting

the offer is less than the total expected discounted reward in health state h when no organ

is offered to the patient, then it is optimal for her to reject the offer.
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Remark 3.1 If we use the value iteration algorithm to solve the optimization problem (3.3),

at any step n of the algorithm V n
O (h, `) ≥ V n

O (h, L + 1), ∀` ∈ SL holds.

Proof. V n
O (h, L + 1) is defined as the total expected discounted reward the patient can

attain when she is not offered an organ or she rejects an organ offer. Therefore, V n
O (h, `) =

max
{

rT (h, `), V n
O (h, L + 1)

}
. So, V n

O (h, `) ≥ V n
O (h, L + 1). Note from this definition that, if

rT (h, `) < V n
O (h, L + 1), then V n

O (h, `) = V n
O (h, L + 1). 2

Definition 3.1 modifies the dominance relationship characterized by Alagoz et al. [7] in

order to compare the uniformized organ offer arrival rates at different OPO sets.

Definition 3.1 Let O1 and O2 be sets of OPOs. O2 dominates O1 if

L+1∑

`=k

νO2(`|h)

λmax

≤
L+1∑

`=k

νO1(`|h)

λmax

, 1 ≤ k ≤ L + 1, 1 ≤ h ≤ H + 1.

According to Definition 3.1, the following equations follow:

k−1∑

`=1

νO2(`|h)

λmax

≥
k−1∑

`=1

νO1(`|h)

λmax

, 1 ≤ k ≤ L + 1, 1 ≤ h ≤ H + 1.

If k = L + 1, then

L∑

`=1

νO2(`|h)

λmax

≥
L∑

`=1

νO1(`|h)

λmax

, 1 ≤ h ≤ H + 1,

=⇒
∑

`∈S′L

νO2(`|h) ≥
∑

`∈S′L

νO1(`|h), 1 ≤ h ≤ H + 1.

Proposition 3.1 Let O1, O2 and O3 be sets of OPOs. If O1 dominates O2, and O2 domi-

nates O3, then O1 dominates O3.

Proof. Let

λmax = max
h∈SH

(
γO1(h, L + 1), γO2(h, L + 1), γO3(h, L + 1)

)
.

From Definition 3.1, if O1 dominates O2, and O2 dominates O3, then the following equations

hold for k ∈ SL, h ∈ SH :

L+1∑

`=k

νO1(`|h)

λmax

≤
L+1∑

`=k

νO2(`|h)

λmax

, (3.10)
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L+1∑

`=k

νO2(`|h)

λmax

≤
L+1∑

`=k

νO3(`|h)

λmax

, (3.11)

⇒
L+1∑

`=k

νO1(`|h)

λmax

≤
L+1∑

`=k

νO3(`|h)

λmax

. (3.12)

From Definition 3.1 and (3.12), O1 dominates O3. In other words, the dominance relationship

is transitive. 2

Proposition 3.2 Let i, j, k be OPOs in the same region and O1 = {i}, O2 = {i, j}, O3 =

{i, k}, O4 = {i, j, k}. If O2 dominates O1, then O4 dominates O3.

Proof. As i, j, and k belong to the same region, organ offer arrival rates at OPO sets

O1, O2, O3, and O4 can be written as follows:

νO1(`|h) = ωi(`|h), h ∈ SH , ` ∈ S ′L,

νO2(`|h) = ωi(`|h) + ξj(`|h)− θj(`|h), h ∈ SH , ` ∈ S ′L,

νO3(`|h) = ωi(`|h) + ξk(`|h)− θk(`|h), h ∈ SH , ` ∈ S ′L,

νO4(`|h) = ωi(`|h) + ξj(`|h) + ξk(`|h)− θj(`|h)− θk(`|h), h ∈ SH , ` ∈ S ′L.

Let λmax = maxh∈SH

(
γO4(h, L + 1)

)
. If O2 dominates O1, then the following equations hold

for k ∈ SL, h ∈ SH :

L+1∑

`=k

ωi(`|h) + ξj(`|h)− θj(`|h)

λmax

≤
L+1∑

`=k

ωi(`|h)

λmax

, (3.13)

⇒
L+1∑

`=k

ωi(`|h) + ξj(`|h)− θj(`|h)− ωi(`|h)

λmax

≤ 0, (3.14)

⇒
L+1∑

`=k

ξj(`|h)− θj(`|h)

λmax

≤ 0. (3.15)

If O4 dominates O3, then the following equations hold for k ∈ SL, h ∈ SH :

L+1∑

`=k

ωi(`|h) + ξj(`|h) + ξk(`|h)− θj(`|h)− θk(`|h)

λmax

≤
L+1∑

`=k

ωi(`|h) + ξk(`|h)− θk(`|h)

λmax

,(3.16)

⇒
L+1∑

`=k

ωi(`|h) + ξj(`|h) + ξk(`|h)− θj(`|h)− θk(`|h)− ωi(`|h)− ξk(`|h) + θk(`|h)

λmax

≤ 0,(3.17)
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⇒
L+1∑

`=k

ξj(`|h)− θj(`|h)

λmax

≤ 0. (3.18)

As apparent from (3.13)-(3.15) and (3.16)-(3.18), if O2 dominates O1, then the condition

for O4 to dominate O3 is satisfied automatically. Therefore, if O2 dominates O1, then O4

dominates O3. 2

Theorem 3.1 proves that a patient’s total life expectancy does not decrease as she lists

in additional OPOs.

Lemma 3.1 VO(h, `) is monotonically nonincreasing in `, ` ∈ S ′L, h ∈ SH .

Proof. To show that VO(h, `) is monotonically nonincreasing in `, we consider the two values

VO(h, ` + 1) can obtain. If VO(h, ` + 1) = rT (h, ` + 1), then VO(h, `) ≥ VO(h, ` + 1) because

VO(h, `) ≥ rT (h, `) ≥ rT (h, ` + 1) by Assumption 1 and (3.3). If VO(h, ` + 1) = VO(h, L + 1),

then VO(h, `) ≥ VO(h, ` + 1) because VO(h, `) ≥ VO(h, L + 1) by (3.3). 2

Theorem 3.1 Consider any two sets of OPOs, O1 ⊆ O2 ⊆ I. If O2 dominates O1, then

VO1(h, `) ≤ VO2(h, `), for all (h, `) ∈ S.

Proof. We apply the value iteration algorithm to solve the two problems simultaneously

and also show that at any iteration of the algorithm V i
O1

(h, `) ≤ V i
O2

(h, `) is preserved for all

(h, `) ∈ S. Since the value iteration algorithm converges [141], the result will then follow.

For the base case, assume that the value iteration algorithm starts with a value of 0 for

each state for both problems. Then:

V 1
O1

(h, `) = max
{

rT (h, `),
rW (h)

λmax + α

}
,∀(h, `) ∈ S,

V 1
O2

(h, `) = max
{

rT (h, `),
rW (h)

λmax + α

}
,∀(h, `) ∈ S.

So, the result holds for the base case.

Now assume that for iterations 2 through n the result holds, i.e., V i
O1

(h, `) ≤ V i
O2

(h, `),

∀(h, `) ∈ S, i = 2, . . . , n. Then, for any state (h, `) ∈ S,

V n+1
O1

(h, `) = max

{
rT (h, `),

rW (h)

λmax + α
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+
λmax −

∑
h′∈SH\{h} µ(h′|h)−∑

`′∈S′L
νO1(`

′|h)

λmax + α
· V n

O1
(h, L + 1)

+
∑

h′∈SH\{h}

µ(h′|h) · V n
O1

(h′, L + 1)

λmax + α
+

∑

`′∈S′L

νO1(`
′|h) · V n

O1
(h, `′)

λmax + α



 , (3.19)

and

V n+1
O2

(h, `) = max

{
rT (h, `),

rW (h)

λmax + α

+
λmax −

∑
h′∈SH\{h} µ(h′|h)−∑

`′∈S′L
νO2(`

′|h)

λmax + α
· V n

O2
(h, L + 1)

+
∑

h′∈SH\{h}

µ(h′|h) · V n
O2

(h′, L + 1)

λmax + α
+

∑

`′∈S′L

νO2(`
′|h) · V n

O2
(h, `′)

λmax + α



 . (3.20)

If rT (h, `) ≥

rW (h)

λmax + α
+

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO1(`
′|h)

λmax + α
· V n

O1
(h, L + 1)

+
∑

h′∈SH\{h}

µ(h′|h) · V n
O1

(h′, L + 1)

λmax + α
+

∑

`′∈S′L

νO1(`
′|h) · V n

O1
(h, `′)

λmax + α

then, V n+1
O1

(h, `) = rT (h, `) and because V n+1
O2

(h, `) ≥ rT (h, `) by (3.3), and the result follows.

Otherwise, as a result of Remark 3.1 we can replace V n+1
O1

(h, `) with V n+1
O1

(h, L+1) to obtain

the following:

V n+1
O2

(h, `)− V n+1
O1

(h, `) = V n+1
O2

(h, `)− V n+1
O1

(h, L + 1)

≥
λmax −

∑
h′∈SH\{h} µ(h′|h)−∑

`′∈S′L
νO2(`

′|h)

λmax + α
V n

O2
(h, L + 1)

−
λmax −

∑
h′∈SH\{h} µ(h′|h)−∑

`′∈S′L
νO1(`

′|h)

λmax + α
V n

O1
(h, L + 1)

+
∑

h′∈SH\{h}

µ(h′|h)V n
O2

(h′, L + 1)

λmax + α
−

∑

h′∈SH\{h}

µ(h′|h)V n
O1

(h′, L + 1)

λmax + α

+
∑

`′∈S′L

νO2(`
′|h)V n

O2
(h, `′)

λmax + α
−

∑

`′∈S′L

νO1(`
′|h)V n

O1
(h, `′)

λmax + α
, (3.21)

≥
λmax −

∑
h′∈SH\{h} µ(h′|h)−∑

`′∈S′L
νO2(`

′|h)

λmax + α
V n

O1
(h, L + 1)
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−
λmax −

∑
h′∈SH\{h} µ(h′|h)−∑

`′∈S′L
νO1(`

′|h)

λmax + α
V n

O1
(h, L + 1)

+
∑

h′∈SH\{h}

µ(h′|h)V n
O1

(h′, L + 1)

λmax + α
−

∑

h′∈SH\{h}

µ(h′|h)V n
O1

(h′, L + 1)

λmax + α
+

+
∑

`′∈S′L

νO2(`
′|h)V n

O1
(h, `′)

λmax + α
−

∑

`′∈S′L

νO1(`
′|h)V n

O1
(h, `′)

λmax + α
, (3.22)

=

∑
`′∈S′L

(
νO2(`

′|h)− νO1(`
′|h)

)(
V n

O1
(h, `′)− V n

O1
(h, L + 1)

)

λmax + α
, (3.23)

≥ 0.

We replace V n
O2

(h, `) by V n
O1

(h, `),∀(h, `) ∈ S in (3.21) without violating the inequality

because V n
O2

(h, `) ≥ V n
O1

(h, `),∀(h, `) ∈ S by the induction hypothesis. As
∑

`′∈S′L

(
νO2(`

′|h)

−νO1(`
′|h)

)
≥ 0 by Definition 3.1, V n

O1
(h, `′) is nondecreasing in `′ by Lemma 3.1 and

V n
O1

(h, `′) ≥ V n
O1

(h, L + 1) by Remark 3.1, (3.23) ≥ 0 is a direct result from Lemma 4.7.2 in

Puterman [141]. 2

Satisfaction of Theorem 3.1 depends on the super OPO set (O2) dominating the sub OPO

set (O1). According to the organ offer arrival rate definition, a patient sacrifices regional

offer arrival rates in order to benefit from local offer arrival rates, if she is listed in OPOs

that belong to the same region. However, if she is listed in OPOs in different regions, she

does not sacrifice any regional offers; i.e., she is offered organs as if she is singly listed in

all of the OPOs in which she is listed. Therefore, the dominance condition in Theorem 3.1

holds trivially when OPOs in O2 \O1 belong to regions to which OPOs in O1 do not belong.

Hence, we are interested in investigating instances where regions to which OPOs in O2 \O1

belong include at least one of the regions in R(O1).

From Proposition 3.2 and without loss of generality, O2 dominates O1 if {(O2 \O1) ∪ i}
dominates {i}, i ∈ O1. From Proposition 3.1, {(O2 \ O1) ∪ i} dominates {i}, i ∈ O1 if

{i, k} dominates {i} and {(O2 \ O1) ∪ i} dominates {i, k}, i ∈ O1, k ∈ (O2 \ O1). Again

from Proposition 3.2 {(O2 \ O1) ∪ i} dominates {i, k} if {(O2 \ O1) ∪ i} \ {k} dominates

{i}, i ∈ O1, k ∈ (O2 \O1). Iteratively utilizing Propositions 3.2 and 3.1 as above leads to the
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observation that ensuring if the dominance relationship holds between two OPO sets such

that O1 = {i}, O2 = {i, j},R(i) = R(j) represents checking if the dominance relationship

holds between all possible pairs of OPO sets such that O1 ⊆ O2. In other words, the

numerical experiments in which O1 = {i}, O2 = {i, j},R(i) = R(j) are representative of

the dominance relationships between all possible OPO sets based on Proposition 3.1 and

Proposition 3.2. There are 103 instances in which O1 = {i}, O2 = {i, j},R(i) = R(j).

The dominance condition is satisfied approximately 96% of those instances. Therefore, we

conclude that assuming that an OPO set dominates its subsets is valid.

For the rest of this chapter, we assume that if O1 ⊆ O2, then O2 dominates O1. Therefore,

we assume that Theorem 3.1 holds for the rest of this chapter.

Corollary 3.1 shows that the patient becomes more selective if she lists in additional

OPO(s). That is, if a patient receives more frequent, higher-quality liver offers from a

particular OPO, then being listed in that OPO, she accepts fewer higher-quality livers.

Corollary 3.1 Consider any two sets of OPOs, O1 ⊆ O2 ⊆ I. Then SL(O1, h, T ) ⊇
SL(O2, h, T ).

Proof. Note that SL(O1, h, T ) =
{

` ∈ S ′L
∣∣∣rT (h, `) > VO1(h, L + 1)

}
and that

SL(O2, h, T ) =
{

` ∈ S ′L
∣∣∣rT (h, `) > VO2(h, L + 1)

}
. From Theorem 3.1, VO1(h, L + 1) ≤

VO2(h, L + 1) because O1 ⊆ O2. So, if ` ∈ SL(O2, h, T ), then ` ∈ SL(O2, h, T ). There-

fore, SL(O1, h, T ) ⊇ SL(O2, h, T ). 2

3.3.1 Submodularity

In this section, we explore the submodularity of the value function. Definition 3.2 presents

the definition of submodularity [124] in terms of value functions attained through being listed

in different OPO sets. Theorem 3.2 establishes a submodularity result for the value function

under certain conditions.

Note that submodularity (subadditivity) is defined differently for MDPs in general. Put-

erman [141] defines submodularity in terms of the states of the MDP. However, in this

dissertation, we study the submodularity of the value function for different listing decisions

rather than for different health states and liver qualities. In other words, we consider the
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notion of submodularity as it is defined in the context of discrete optimization [124]. It is in

a sense a discrete analogue of convexity.

Definition 3.2 Let O be a set of OPOs. VO(h, `) is submodular if VO∪{j}(h, `)− VO(h, `) ≥
VO∪{j,k}(h, `)− VO∪{k}(h, `) for all (h, `) ∈ S.

Intuitively, submodularity can be regarded as the diminishing returns property; and

therefore, it states that the patient’s life expectancy would increase more by listing in an

additional OPO if she is currently listed in a smaller OPO set.

VO(h, `) is not submodular in general. This can be shown by illustrating that it may

be optimal to transplant when the patient is listed in O,O ∪ {j} and/or O ∪ {k} but it is

optimal to wait when she is listed in O ∪ {j, k}, an OPO set that is a superset of O,O ∪ {j}
and O ∪ {k}. We show these cases numerically in Section 3.5.3.

Lemma 3.2 Consider any set of OPOs O ⊂ I and j, k ∈ I \O. Then

νO∪{j}(`|h) + νO∪{k}(`|h) ≥ νO(`|h) + νO∪{j,k}(`|h), h ∈ SH , ` ∈ S ′L. (3.24)

Proof. Recall the following definitions for an OPO set O, OPO j, health state h ∈ SH and

liver type ` ∈ S ′L:

νO(`|h) =
∑

R∈R(O)





 ∑

i∈O,R(i)=R

ξi(`|h) +
∑

m/∈O,R(m)=R

θm(`|h)





 , (3.10)

ωj(`|h) = ξj(`|h) +
∑

m∈I,R(m)=R(j)

θm(`|h). (3.11)

Based on the regions to which OPOs i and j belong, there are five cases to consider.

Case 1: R(j),R(k) /∈ R(O) and R(j) 6= R(k) : In this case, by adding OPO j and/or OPO

k to OPO set O, a patient receives organ offers from OPO j and/or OPO k as if she is singly

listed in those OPOs. This is due to the fact that neither OPO j nor OPO k belong to one

of the regions in which she is listed and also OPO j and OPO k belong to different regions.

Therefore,

νO∪{j}(`|h) = νO(`|h) + ωj(`|h), h ∈ SH , ` ∈ S ′L,
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νO∪{k}(`|h) = νO(`|h) + ωk(`|h), h ∈ SH , ` ∈ S ′L,

νO∪{j,k}(`|h) = νO(`|h) + ωj(`|h) + ωk(`|h), h ∈ SH , ` ∈ S ′L.

So, νO∪{j}(`|h) + νO∪{k}(`|h)− νO(`|h)− νO∪{j,k}(`|h)

= νO(`|h) + ωj(`|h) + νO(`|h) + ωk(`|h)

−νO(`|h)−
(
νO(`|h) + ωj(`|h) + ωk(`|h)

)
, h ∈ SH , ` ∈ S ′L,

= 0.

Case 2: R(j),R(k) /∈ R(O) and R(j) = R(k) : In this case, by adding OPO j(k) to OPO

set O, a patient receives organ offers from OPO j(k) as if she is singly listed in OPO j(k).

Suppose the patient lists in O ∪ {j} (O ∪ {k}). Then, by listing in OPO k (j) additionally,

she will sacrifice the regional offers she used to receive from OPO k (j). Note that since

OPO j and OPO k are in the same region, by adding OPO k (j) to her listing set, she is

additionally eligible for organs harvested locally in OPO k (j). So,

νO∪{j}(`|h) = νO(`|h) + ωj(`|h), h ∈ SH , ` ∈ S ′L,

νO∪{k}(`|h) = νO(`|h) + ωk(`|h), h ∈ SH , ` ∈ S ′L,

νO∪{j,k}(`|h) = νO(`|h) + ωj(`|h) + ωk(`|h)− θj(`|h)− θk(`|h)

−
∑

m/∈{j,k},R(m)=R(j)

θm(`|h), h ∈ SH , ` ∈ S ′L.

So, νO∪{j}(`|h) + νO∪{k}(`|h)− νO(`|h)− νO∪{j,k}(`|h)

= νO(`|h) + ωj(`|h) + νO(`|h) + ωk(`|h)

−νO(`|h)−
(
νO(`|h) + ωj(`|h) + ωk(`|h)− θj(`|h)− θk(`|h)

−
∑

m/∈{j,k},R(m)=R(j)

θm(`|h)
)
, h ∈ SH , ` ∈ S ′L,

≥ 0.

Case 3: R(j) ∈ R(O),R(k) /∈ R(O) : In this case, by adding OPO j to OPO set O, a patient

receives organ offers from OPO j with a local rate, instead of a regional rate, because OPO

j is in one of the regions in which she is listed. However, if she lists in OPO k in addition to
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OPO set O, then she receives organ offers from OPO k as if she is singly listed in OPO k.

So, the organ offer arrival rates at different OPO sets are characterized as follows:

νO∪{j}(`|h) = νO(`|h) + ξj(`|h)− θj(`|h), h ∈ SH , ` ∈ S ′L,

νO∪{k}(`|h) = νO(`|h) + ωk(`|h), h ∈ SH , ` ∈ S ′L,

νO∪{j,k}(`|h) = νO(`|h) + ξj(`|h) + ωk(`|h)− θj(`|h), h ∈ SH , ` ∈ S ′L.

Therefore, νO∪{j}(`|h) + νO∪{k}(`|h)− νO(`|h)− νO∪{j,k}(`|h)

= νO(`|h) + ξj(`|h)− θj(`|h) + νO(`|h) + ωk(`|h)

−νO(`|h)−
(
νO(`|h) + ξj(`|h)− θj(`|h) + ωk(`|h)

)
, h ∈ SH , ` ∈ S ′L,

= 0.

Case 4: R(j) /∈ R(O),R(k) ∈ R(O) : This case is identical to Case 3 and therefore omitted.

Case 5: R(j),R(k) ∈ R(O) : If both OPOs are in one of the regions to which OPOs in O

belong, then by listing in OPO j and/or OPO k, a patient receives organ offers from OPO

j and/or OPO k with a local rate instead of a regional rate. Therefore,

νO∪{j}(`|h) = νO(`|h) + ξj(`|h)− θj(`|h), h ∈ SH , ` ∈ S ′L,

νO∪{k}(`|h) = νO(`|h) + ξk(`|h)− θk(`|h), h ∈ SH , ` ∈ S ′L,

νO∪{j,k}(`|h) = νO(`|h) + ξj(`|h) + ξk(`|h)− θj(`|h)− θk(`|h), h ∈ SH , ` ∈ S ′L.

So, νO∪{j}(`|h) + νO∪{k}(`|h)− νO(`|h)− νO∪{j,k}(`|h)

= νO(`|h) + ξj(`|h)− θj(`|h) + νO(`|h) + ξk(`|h)− θk(`|h)

−νO(`|h)−
(
νO(`|h) + ξj(`|h)− θj(`|h) + ξk(`|h)− θk(`|h)

)
, h ∈ SH , ` ∈ S ′L,

= 0. 2

Lemma 3.3 Consider any set of OPOs O ⊂ I. Then

VO(h, L + 1) ≥ B(h), h ∈ SH , (3.25)
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where,

B(h) =
rW (h) +

∑
`′∈S′L

νO(`′|h)rT (h, `′)∑
h′∈SH\{h} µ(h′|h) +

∑
`′∈S′L

νO(`′|h) + α
.

Proof. From Equation (3.3) and Remark 3.1, VO(h, L + 1) =

rW (h)

λmax + α
+

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO(`′|h)

λmax + α
VO(h, L + 1)

+

∑
h′∈SH\{h} µ(h′|h)VO(h′, L + 1)

λmax + α
+

∑
`′∈S′L

νO(`′|h)VO(h, `′)

λmax + α
, (3.26)

So,
(
1− λmax−

∑
h′∈SH\{h} µ(h′|h)−∑

`′∈S′
L

νO(`′|h)

λmax+α

)
VO(h, L + 1) =

rW (h)

λmax + α
+

∑
h′∈SH\{h} µ(h′|h)VO(h′, L + 1)

λmax + α
+

∑
`′∈S′L

νO(`′|h)VO(h, `′)

λmax + α
, (3.27)

⇒
(α+

∑
h′∈SH\{h} µ(h′|h)+

∑
`′∈S′

L
νO(`′|h)

λmax+α

)
VO(h, L + 1) =

rW (h)

λmax + α
+

∑
h′∈SH\{h} µ(h′|h)VO(h′, L + 1)

λmax + α
+

∑
`′∈S′L

νO(`′|h)VO(h, `′)

λmax + α
, (3.28)

Therefore, VO(h, L + 1) =

rW (h) +
∑

h′∈SH\{h} µ(h′|h)VO(h′, L + 1) +
∑

`′∈S′L
νO(`′|h)VO(h, `′)

∑
h′∈SH\{h} µ(h′|h) +

∑
`′∈S′L

νO(`′|h) + α
, (3.29)

≥
rW (h) +

∑
`′∈S′L

νO(`′|h)VO(h, `′)
∑

h′∈SH\{h} µ(h′|h) +
∑

`′∈S′L
νO(`′|h) + α

(3.30)

≥
rW (h) +

∑
`′∈S′L

νO(`′|h)rT (h, `′)∑
h′∈SH\{h} µ(h′|h) +

∑
`′∈S′L

νO(`′|h) + α
= B(h). (3.31)

As removing nonnegative terms do not increase the overall value, (3.29) ≥ (3.30). From

Equation (3.3), VO(h, `) ≥ rT (h, `), so (3.31) follows. 2

Theorem 3.2 Consider any set of OPOs O ⊂ I and j, k ∈ I \O. VO(h, `) is submodular if

the following condition holds:

rT (h, `) ≤ λmax −
∑

h′∈SH\{h} µ(h′|h)

λmax + α
B(h) +

∑
h′∈SH\{h} µ(h′|h)B(h′)

λmax + α
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+
rW (h)

λmax + α
, h ∈ SH , ` ∈ SL. (3.32)

where B(h) is the ratio of total reward in health state h (sum of the immediate reward and the

expected post-transplant reward over all liver qualities) to the total rate out of state (h, L+1).

Proof. We apply the value iteration algorithm to solve MDPs corresponding to all OPO

sets (O,O ∪ {j}, O ∪ {k}, O ∪ {j, k}) simultaneously, and show that at any iteration of the

algorithm VO∪{j}(h, `)−VO(h, `) ≥ VO∪{j,k}(h, `)−VO∪{k}(h, `) is preserved for all (h, `) ∈ S.

We assume that λmax = maxh∈SH
γO∪{j,k}(h, L + 1).

For the base case, assume that the value iteration algorithm starts with a value of 0 for

each state for all problems, i.e.,:

V 1
O(h, `) = max

{
rT (h, `),

rW (h)

λmax + α

}
, (h, `) ∈ S,

V 1
O∪{j}(h, `) = max

{
rT (h, `),

rW (h)

λmax + α

}
, (h, `) ∈ S,

V 1
O∪{k}(h, `) = max

{
rT (h, `),

rW (h)

λmax + α

}
, (h, `) ∈ S,

V 1
O∪{j,k}(h, `) = max

{
rT (h, `),

rW (h)

λmax + α

}
, (h, `) ∈ S.

So, the result holds for all (h, `) ∈ S for the base case.

Now assume that V i
O∪{j}(h, `) − V i

O(h, `) ≥ V i
O∪{j,k}(h, `) − V i

O∪{k}(h, `),∀(h, `) ∈ S, i =

2, . . . , n. Then, there are two cases based on the optimal decision in O ∪ {j, k}.

Case 1: V n+1
O∪{j,k}(h, `) = rT (h, `) (i.e. transplant in O ∪ {j, k} on iteration n+1 of value

iteration)

For any (h, `), if V n+1
O∪{j,k}(h, `) = rT (h, `), then V n+1

O (h, `) = V n+1
O∪{j}(h, `) = V n+1

O∪{k}(h, `) =

rT (h, `), because rT (h, `) ≥ V n+1
O∪{j,k}(h, L + 1) by Remark 3.1 and V n+1

O∪{j,k}(h, L

+1) ≥ V n+1
O (h, L+1), V n+1

O∪{j,k}(h, L+1) ≥ V n+1
O∪{j}(h, L+1), V n+1

O∪{j,k}(h, L+1) ≥ V n+1
O∪{k}(h, L+1)

by Theorem 3.1. So, VO(h, `) is submodular.
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Case 2: V n+1
O∪{j,k}(h, `) = V n+1

O∪{j,k}(h, L + 1) (i.e. wait in O ∪ {j, k} on iteration n+1 of value

iteration)

By Remark 3.1,

V n+1
O∪{j}(h, `)− V n+1

O (h, `)− V n+1
O∪{j,k}(h, `) + V n+1

O∪{k}(h, `)

= V n+1
O∪{j}(h, `)− V n+1

O (h, `)− V n+1
O∪{j,k}(h, L + 1) + V n+1

O∪{k}(h, `)

Now there are two cases to consider based on the optimal decision in O.

Case 2.1: V n+1
O (h, `) = V n+1

O (h, L + 1) (i.e. wait in O on iteration n+1 of value iteration)

In this case, V n+1
O∪{j}(h, `) = V n+1

O∪{j}(h, L + 1) because V n+1
O∪{j}(h, L + 1) ≥ V n+1

O (h, L + 1) ≥
rT (h, `). Similarly, V n+1

O∪{k}(h, `) = V n+1
O∪{k}(h, L + 1). Therefore,

V n+1
O∪{j}(h, `)− V n+1

O (h, `)− V n+1
O∪{j,k}(h, L + 1) + V n+1

O∪{k}(h, `)

= V n+1
O∪{j}(h, L + 1)− V n+1

O (h, L + 1)− V n+1
O∪{j,k}(h, L + 1) + V n+1

O∪{k}(h, L + 1)

=
rW (h)

λmax + α
+

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO∪{j}(`′|h)

λmax + α
V n

O∪{j}(h, L + 1)

+

∑
h′∈SH\{h} µ(h′|h)V n

O∪{j}(h
′, L + 1)

λmax + α
+

∑
`′∈S′L

νO∪{j}(`′|h)V n
O∪{j}(h, `′)

λmax + α
(3.33)

− rW (h)

λmax + α
−

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO(`′|h)

λmax + α
V n

O (h, L + 1)

−
∑

h′∈SH\{h} µ(h′|h)V n
O (h′, L + 1)

λmax + α
−

∑
`′∈S′L

νO(`′|h)V n
O (h, `′)

λmax + α
(3.34)

− rW (h)

λmax + α
−

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO∪{j,k}(`′|h)

λmax + α
V n

O∪{j,k}(h, L + 1)

−
∑

h′∈SH\{h} µ(h′|h)V n
O∪{j,k}(h

′, L + 1)

λmax + α
−

∑
`′∈S′L

νO∪{j,k}(`′|h)V n
O∪{j,k}(h, `′)

λmax + α
(3.35)
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+
rW (h)

λmax + α
+

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO∪{k}(`′|h)

λmax + α
V n

O∪{k}(h, L + 1)

+

∑
h′∈SH\{h} µ(h′|h)V n

O∪{k}(h
′, L + 1)

λmax + α
+

∑
`′∈S′L

νO∪{k}(`′|h)V n
O∪{k}(h, `′)

λmax + α
(3.36)

We rewrite νO∪{j}(`|h) = νO∪{j}(`|h)−νO(`|h)+νO(`|h), νO∪{k}(`|h) = νO∪{k}(`|h)−νO(`|h)+

νO(`|h), and νO∪{j,k}(`|h) = νO∪{j,k}(`|h)− νO(`|h) + νO(`|h) and rearrange terms to obtain

the following:

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO(`′|h)

λmax + α

(
V n

O∪{j}(h, L + 1)− V n
O (h, L + 1)

−V n
O∪{j,k}(h, L + 1) + V n

O∪{k}(h, L + 1)
)

(3.37)

+

∑
h′∈SH\{h} µ(h′|h)

λmax + α

(
V n

O∪{j}(h
′, L + 1)− V n

O (h′, L + 1)− V n
O∪{j,k}(h

′, L + 1)

+V n
O∪{k}(h

′, L + 1)
)

(3.38)

+

∑
`′∈S′L

νO(`′|h)
(
V n

O∪{j}(h, `′)− V n
O (h, `′)− V n

O∪{j,k}(h, `′) + V n
O∪{k}(h, `′)

)

λmax + α
(3.39)

+

∑
`′∈S′L

(
νO∪{j}(`′|h)− νO(`′|h)

)(
V n

O∪{j}(h, `′)− V n
O∪{j}(h, L + 1)

)

λmax + α
(3.40)

+

∑
`′∈S′L

(
νO∪{k}(`′|h)− νO(`′|h)

)(
V n

O∪{k}(h, `′)− V n
O∪{k}(h, L + 1)

)

λmax + α
(3.41)

−
∑

`′∈S′L

(
νO∪{j,k}(`′|h)− νO(`′|h)

)(
V n

O∪{j,k}(h, `′)− V n
O∪{j,k}(h, L + 1)

)

λmax + α
. (3.42)

Due to the inductive hypothesis (3.37)+(3.38)+(3.39) ≥ 0. Therefore, we get rid of these

equations without violating the inequality. So, (3.37)-(3.42)

≥
∑

`′∈S′L

(
νO∪{j}(`′|h)− νO(`′|h)

)(
V n

O∪{j}(h, `′)− V n
O∪{j}(h, L + 1)

)

λmax + α
(3.43)

+

∑
`′∈S′L

(
νO∪{k}(`′|h)− νO(`′|h)

)(
V n

O∪{k}(h, `′)− V n
O∪{k}(h, L + 1)

)

λmax + α
(3.44)

−
∑

`′∈S′L

(
νO∪{j,k}(`′|h)− νO(`′|h)

)(
V n

O∪{j,k}(h, `′)− V n
O∪{j,k}(h, L + 1)

)

λmax + α
. (3.45)
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We decompose (3.43),(3.44) and (3.45) into two sets of summations as ` ∈ SL(O∪{j, k}, h, T )

and ` /∈ SL(O ∪ {j, k}, h, T ). Note that if ` /∈ SL(O ∪ {j, k}, h, T ), then V n
O∪{j,k}(h, `) =

V n
O∪{j,k}(h, L + 1). If ` ∈ SL(O ∪ {j, k}, h, T ), then V n

O∪{j,k}(h, `) = rT (h, `), and therefore,

V n
O∪{j}(h, `) = V n

O∪{k}(h, `) = rT (h, `) by Remark 3.1 and Theorem 3.1. Therefore, (3.43)-

(3.45) is rewritten as:

=

∑
`′ /∈SL(O∪{j,k},h,T )[νO∪{j}(`′|h)− νO(`′|h)]

(
V n

O∪{j}(h, `′)− V n
O∪{j}(h, L + 1)

)

λmax + α
(3.46)

+

∑
`′ /∈SL(O∪{j,k},h,T )[νO∪{k}(`′|h)− νO(`′|h)]

(
V n

O∪{k}(h, `′)− V n
O∪{k}(h, L + 1)

)

λmax + α
(3.47)

−
∑

`′ /∈SL(O∪{j,k},h,T )[νO∪{j,k}(`′|h)− νO(`′|h)]

λmax + α

(
V n

O∪{j,k}(h, L + 1)− V n
O∪{j,k}(h, L + 1)

)
(3.48)

+

∑
`′∈SL(O∪{j,k},h,T )[νO∪{j}(`′|h)− νO(`′|h)]

(
rT (h, `′)− V n

O∪{j}(h, L + 1)
)

λmax + α
(3.49)

+

∑
`′∈SL(O∪{j,k},h,T )[νO∪{k}(`′|h)− νO(`′|h)]

(
rT (h, `′)− V n

O∪{k}(h, L + 1)
)

λmax + α
(3.50)

−
∑

`′∈SL(O∪{j,k},h,T )[νO∪{j,k}(`′|h)− νO(`′|h)]
(
rT (h, `′)− V n

O∪{j,k}(h, L + 1)
)

λmax + α
. (3.51)

As (3.48) = 0 and (3.46) ≥ 0, (3.47) ≥ 0 by Equation (3.3), these terms can be removed with-

out violating the inequality. Let V̄ n(h, L + 1) = max
{

V n
O∪{j}(h, L + 1), V n

O∪{k}(h, L + 1)
}

,

h ∈ SH . In (3.49) and (3.50), V n
O∪{j}(h, L + 1) and V n

O∪{k}(h, L + 1) can be replaced with

V̄ n(h, L + 1). Then it is clear that (3.52) ≤ (3.49)+(3.50). Therefore, (3.46)-(3.51)

≥
∑

`′∈SL(O∪{j,k},h,T )[νO∪{j}(`′|h) + νO∪{k}(`′|h)− 2νO(`′|h)]
(
rT (h, `′)− V̄ n(h, L + 1)

)

λmax + α
(3.52)

−
∑

`′∈SL(O∪{j,k},h,T )[νO∪{j,k}(`′|h)− νO(`′|h)]
(
rT (h, `′)− V n

O∪{j,k}(h, L + 1)
)

λmax + α
(3.53)

From Lemma 3.2, [νO∪{j}(`′|h) + νO∪{k}(`′|h) − 2νO(`′|h)] ≥ [νO∪{j,k}(`′|h) − νO(`′|h)], h ∈
SH , ` ∈ SL(O ∪ {j, k}, h, T ) and

(
rT (h, `′)− V̄ n(h, L + 1)

)
≥

(
rT (h, `′)− V n

O∪{j,k}(h, L + 1)
)

because V̄ n(h, L + 1) ≤ V n
O∪{j,k}(h, L + 1) by Theorem 3.1. Then (3.52) + (3.53) ≥ 0. So,

the value function is submodular in this case.
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Case 2.2: V n+1
O (h, `) = rT (h, `) (i.e. transplant in O on iteration n+1 of value iteration)

Note that if V n+1
O∪{j}(h, `) = rT (h, `) and/or V n+1

O∪{k}(h, `) = rT (h, `), then the value function is

not submodular. Therefore, we need to impose a strong condition for the value function to

be submodular in this case.

V n+1
O∪{j}(h, `)− V n+1

O (h, `)− V n+1
O∪{j,k}(h, L + 1) + V n+1

O∪{k}(h, `)

≥ V n+1
O∪{j}(h, L + 1)− rT (h, `)− V n+1

O∪{j,k}(h, L + 1) + V n+1
O∪{k}(h, L + 1)

=
rW (h)

λmax + α
+

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO∪{j}(`′|h)

λmax + α
V n

O∪{j}(h, L + 1)

+

∑
h′∈SH\{h} µ(h′|h)V n

O∪{j}(h
′, L + 1)

λmax + α
+

∑
`′∈S′L

νO∪{j}(`′|h)V n
O∪{j}(h, `′)

λmax + α
(3.54)

−rT (h, `)− rW (h)

λmax + α
−

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO∪{j,k}(`′|h)

λmax + α
V n

O∪{j,k}(h, L + 1)

−
∑

h′∈SH\{h} µ(h′|h)V n
O∪{j,k}(h

′, L + 1)

λmax + α
−

∑
`′∈S′L

νO∪{j,k}(`′|h)V n
O∪{j,k}(h, `′)

λmax + α
(3.55)

+
rW (h)

λmax + α
+

λmax −
∑

h′∈SH\{h} µ(h′|h)−∑
`′∈S′L

νO∪{k}(`′|h)

λmax + α
V n

O∪{k}(h, L + 1)

+

∑
h′∈SH\{h} µ(h′|h)V n

O∪{k}(h
′, L + 1)

λmax + α
+

∑
`′∈S′L

νO∪{k}(`′|h)V n
O∪{k}(h, `′)

λmax + α
(3.56)

=
rW (h)

λmax + α
− rT (h, `) +

λmax −
∑

h′∈SH\{h} µ(h′|h)

λmax + α

(
V n

O∪{j}(h, L + 1)

−V n
O∪{j,k}(h, L + 1) + V n

O∪{k}(h, L + 1)
)

(3.57)

+

∑
h′∈SH\{h} µ(h′|h)

(
V n

O∪{j}(h
′, L + 1)− V n

O∪{j,k}(h
′, L + 1) + V n

O∪{k}(h
′, L + 1)

)

λmax + α
(3.58)

+

∑
`′∈S′L

νO∪{j}(`′|h)
(
V n

O∪{j}(h, `′)− V n
O∪{j}(h, L + 1)

)

λmax + α
(3.59)
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+

∑
`′∈S′L

νO∪{k}(`′|h)
(
V n

O∪{k}(h, `′)− V n
O∪{k}(h, L + 1)

)

λmax + α
(3.60)

−
∑

`′∈S′L
νO∪{j,k}(`′|h)

(
V n

O∪{j,k}(h, `′)− V n
O∪{j,k}(h, L + 1)

)

λmax + α
. (3.61)

Equations (3.59), (3.60), (3.61) can be decomposed into two sets of sums as ` ∈ SL(O ∪
{j, k}, h, T ) and ` /∈ SL(O ∪ {j, k}, h, T ). Similarly to Case 1, (3.59)+(3.60)+(3.61) is

nonzero because νO∪{j}(`|h) +νO∪{k}(`|h) ≥ νO∪{j,k}(`|h), h ∈ SH , ` ∈ S ′L by Lemma 3.2

and V n
O∪{j}(h, L + 1) ≤ V n

O∪{j,k}(h, L + 1), V n
O∪{k}(h, L + 1) ≤ V n

O∪{j,k}(h, L + 1) by Re-

mark 3.1. In Equation (3.57),
(
V n

O∪{j}(h, L + 1) − V n
O∪{j,k}(h, L + 1) + V n

O∪{k}(h, L + 1)
)

can be replaced with V n
O (h, L + 1) by the inductive argument. Similarly, in Equation (3.58),(

V n
O∪{j}(h

′, L+1)−V n
O∪{j,k}(h

′, L+1)+V n
O∪{k}(h

′, L+1)
)

can be replaced with V n
O (h′, L+1).

So, (3.57)-(3.61)

≥ rW (h)

λmax + α
− rT (h, `)

+
λmax −

∑
h′∈SH\{h} µ(h′|h)

λmax + α
V n

O (h, L + 1) +

∑
h′∈SH\{h} µ(h′|h)V n

O (h′, L + 1)

λmax + α
(3.62)

≥ rW (h)

λmax + α
− rT (h, `)

+
λmax −

∑
h′∈SH\{h} µ(h′|h)

λmax + α
B(h) +

∑
h′∈SH\{h} µ(h′|h)B(h′)

λmax + α
(3.63)

≥ 0. (3.64)

Equation (3.63) follows from Lemma 3.3 and (3.64) follows from Condition (3.32).2

3.3.2 Complexity

We are interested in exploring the complexity of the multiple listing problem as it is a large-

scale combinatorial optimization problem. In this section, we show the NP -hardness of a

slight variant of the problem described in Section 3.2. In this modification, the regional offer

arrival rates are estimated based on the harvesting OPO as well as the OPO to which the

organ is offered.
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3.3.2.1 NP -hardness Proof of the Multiple Listing Problem The decision problem

version of the optimization problem (3.4)-(3.6) with a different representation of regional offer

arrival rates can be written as follows. We refer to this problem as MULTIPLE LISTING

(ML).

MULTIPLE LISTING (ML)

INSTANCE: Given a set of OPOs I, a set of regions R, sets of health states and liver

qualities SH , SL, a set of coefficients R(i) ∈ ZZ
|I|
+ for each i ∈ I, which indicates the region to

which OPO i belongs, health state transition rates µ(h, h′) ∈ IR
|SH |∗|SH |
+ for each h, h′ ∈ SH ,

organ arrival rates ωij(`|h) ∈ IR
|I|∗|I|∗|SH |∗|SL|
+ for each i, j ∈ I, h ∈ SH , ` ∈ SL, an admissible

set Ai for each i ∈ I, post-transplant rewards rT (h, `) for each h ∈ SH , ` ∈ SL, immediate

rate of rewards rW (h) for each h ∈ SH and K, M ∈ ZZ1
+.

QUESTION: Is there a selection of a home OPO b ∈ I and a set of OPOs O ∈ I of cardinality

at most K such that b ∈ O, j ∈ Ab for j ∈ O and the total life expectancy, VO(h, `) given by

(3.3), is at least M?

Proposition 3.3 ML is NP -complete.

Proof. We reduce the MAX BISECTION problem, which is known to be NP -complete [54],

to solving SML (which is shown to be a restricted version of ML in Appendix B).

SIMPLIFIED MULTIPLE LISTING (SML)

INSTANCE: Given a set I of indices with |I| even, and ωij ∈ IR
|I|∗|I|
+ of coefficients for each

i, j ∈ I such that ωii = ωjj, ωjj > maxi

∑
k 6=i ωik, and ωjk = ωkj, i, j, k ∈ I, rewards rT , rW

such that rT > (rW /α) and M ∈ ZZ+.

QUESTION: Is there is a partition of I into disjoint sets I1, I2 such that |I1| = |I2| and
∑

i∈I2

∑
i∈I1

ωij is at least M?

MAX BISECTION

INSTANCE: Graph G = (V , E) with |V| even, weight w(e) ∈ ZZ+ for each e ∈ E , and

M ∈ ZZ+.

QUESTION: Is there a partition of V into disjoint sets V1 and V2 such that |V1| = |V2|, and

the sum of the weights of the edges from E that have one endpoint in V1 and other endpoint

in V2 is at least M?
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It is easy to see that MAX BISECTION remains NP -complete if w(e) ∈ IR1
+ for each

e ∈ E . Consider an instance of MAX BISECTION. If there is no edge (i, j), then we

create an edge (i, j) with a zero weight. The solution of a MAX BISECTION instance is

independent of the weights of the edges that describe a self-loop. Therefore, changing the

diagonal entries in the weight matrix does not change the solution. Consequently, we set

weights of all of the edges that describe a self-loop the same and higher than the maximum

weight among all edges that do not describe a self-loop. As a result, the weight matrix of

the MAX BISECTION instance becomes diagonally dominant. This transformation of the

weight matrix is polynomial. We then construct an instance of SML such that I is the set

of indices that correspond to the vertices in V , set of coefficients ωij = w(e), and consider

the same positive integer M . This transformation is also polynomial.

Given a bisection V1,V2 that solves MAX BISECTION, create I1, I2 such that I1 = V1

and I2 = V2. Since |V1| = |V2| from the definition of MAX BISECTION, |I1| = |I2|.
The weight of an edge w(e) in set E will correspond to the coefficients ωij. Note that
∑

i∈I2

∑
i∈I1

ωij ≥ M .

Given a partition of OPOs I1, I2 that solves SML, create V1,V2 such that V1 = I1 and

V2 = I2. Since |I1| = |I2| from the definition of SML, |V1| = |V2|. The arrival rate of organ

offers, ωij, will correspond to coefficients w(e) in MAX BISECTION. Note that the sum of

coefficient w(e) such that one endpoint (vj) of e is in V1 and other (vi) in V2 is at least M .

So, SML decision problem is NP -complete. SML decision problem is a restricted version

of ML decision problem (See Appendix B) and it is NP -complete. Therefore, ML is NP -

complete.

ML decision problem is no harder than the ML optimization problem (3.4)-(3.6). There-

fore, (3.4)-(3.6) is NP -hard [54]. 2

3.3.2.2 Greedy Algorithm Nemhauser and Wolsey [123] show that among different

algorithms, the greedy algorithm is the best suited for maximizing a nondecreasing submod-

ular function subject to a cardinality constraint. Therefore, by Theorem 3.1 and Theorem

3.2 under Condition (3.32), the greedy algorithm should work well for (3.4)-(3.6). Moreover,

the previous section proves that it is extremely difficult to find a computationally efficient
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algorithm that captures the specific structure of our model. Both of these ideas suggest that

the greedy solution should be a very good approximation of the optimal solution.

The greedy algorithm makes the locally optimal choice at every stage and never recon-

siders its previous choices. In that sense, the greedy solution for this model is achieved by

selecting the best OPO given the OPOs selected so far. As listing in an additional OPO

provides positive life expectancy to the patient, she always chooses to list in more OPOs if

she can. Therefore, O(b, k) ⊂ O(b, k + 1), k < K is true for the greedy solution constructed

for this model. However, this is not necessarily true for the optimal solution. The patient

might optimally list in a completely different set of OPOs if she is allowed to list in one more

OPO. Intuitively, if a patient is already listed in a bigger OPO set, then the marginal benefit

of listing in one more OPO should be smaller. The submodularity maximization supports

this intuition. Therefore, we believe that the greedy solution should perform well compared

to the optimal solution and will discuss it further in Section 3.5.3.

3.4 COMPUTATIONAL APPROACH FOR THE

CARDINALITY-CONSTRAINED MODEL

We structure the second-stage listing decision faced by the patient as a branch-and-bound

tree. Recall that the patient has selected b as her home OPO in the first stage and therefore

Ab is the admissible set of OPOs (including OPO b) in which she can list.

The number of OPOs in which the patient lists beyond the home OPO is the depth of a

node in the branch-and-bound tree. That is, there are at most |Ab| − 1 levels including the

root node where the level of the root node is assumed to be 0. The root node represents the

case that the patient is listed only in the home OPO (i.e., she is singly listed). A node at level

k represents the selection of a particular OPO to be listed in as kth OPO in addition to the

home OPO. We index OPOs from 0, · · · , (|I|−1) arbitrarily, with the home OPO’s index at

0. Every node of the branch-and-bound tree corresponds to the set of OPOs selected so far,

and the index of the node is the same as the index of the OPO selected most recently. Each

node of the branch-and-bound tree constitutes a different instance of the liver acceptance
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problem faced in the third stage, i.e., a different set of OPOs. Figure 3.4 illustrates the listing

decision by an example branch-and-bound tree. In this figure, the admissible set includes

4 OPOs, and therefore the highest level of the branch-and-bound tree is 3. The figure also

shows that different nodes of the tree are different OPO sets. Therefore, a different MDP is

developed for every node. We use value iteration [141] to solve the decision problem at each

node.

Figure 3.4: Branch-and-bound tree constructed for A0 = {0, 1, 2, 3}.

During the branch-and-bound algorithm, we employ a depth-first strategy due to its

relatively low memory requirements. Every node in the admissible set is indexed from 0

(home OPO) to |Ab| − 1, and lower indexed nodes are explored earlier in the branch-and-

bound algorithm.

A general upper bound for the second-stage listing problem is the solution to the opti-

mization problem in (2) with choosing O = Ab where b is the home OPO. While there is

a single upper bound, we calculate a general lower bound for each level. The value of the

parent node will be a lower bound on the value of its child nodes by Theorem 3.1.

Let n(k) refer to node n at level k and P j(n(k)) refer to n(k)’s ancestor at level j.

According to this definition, P 0(n(k)) = 0 (home OPO), P k(n(k)) = n (the OPO itself).

Recall that the set of OPOs in which the patient lists changes her total life expectancy.

Given n(k), OUB(n(k)) is defined as the OPO set which maximizes the total life expectancy
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of the patient who lists in it. OLB(n(k)) is the set of OPOs the patient is listed in so far at

n(k). UB(n(k)) (LB(n(k))) represents the upper (lower) bound on n(k).

Proposition 3.4 An upper bound for node n(k) is obtained by solving the MDP attained

through a set of OPOs specified by OUB(n(k)). Therefore, we set UB(n(k)) = VOUB(n(k))
(h, L+

1) where:

OUB(n(k)) =

{
k⋃

j=0

P j(n(k))

} ⋃



|Ab−1|⋃
i=n+1

i



 . (3.65)

Proposition 3.5 A lower bound for node n(k) is obtained by solving the MDP attained

through a set of OPOs specified by OLB(n(k)). Therefore, we set LB(n(k)) = VOLB(n(k))
(h, L+1)

where:

OLB(n(k)) =

{
k⋃

j=0

P j(n(k))

}
. (3.66)

Let n′(k), n(k) be two nodes such that their ancestors are the same up to level k − 1,

i.e., P j(n(k)) = P j(n′(k)) for j = 0, · · · , k − 1. If the upper bound on n(k) is less than the

lower bound on n′(k), then n(k) will be explored no further. According to the fathoming

rule, two MDPs are solved (lower and upper bounds) at each node.

Lemma 3.4 Let n(k), n′(k) be nodes such that their ancestors are the same up to level k−1.

If n(k) > n′(k), then upper bound on n(k) is less than upper bound on n′(k).

Proof. From the definitions of OPO sets that facilitate the upper bounds:

OUB(n(k)) =

{
k−1⋃
j=0

P j(n(k))

} ⋃ {
n, n + 1, · · · , |Ab − 1|

}
,

OUB(n′(k)) =

{
k−1⋃
j=0

P j(n′(k))

} ⋃ {
n′, n′ + 1, · · · , |Ab − 1|

}
,

because their ancestors are the same up to level k−1,
{⋃k−1

j=0 P j(n(k))
}

=
{⋃k−1

j=0 P j(n′(k))
}

.

Also, because n > n′,
{

n, n + 1, · · · , |Ab − 1|
}
⊆

{
n′, n′ + 1, · · · , |Ab − 1|

}
. So, OUB(n(k)) ⊆

OUB(n′(k)). Then UB(n(k)) ≤ UB(n′(k)) because VOUB(n(k))
(h, L + 1) ≤ VOUB(n′(k))

(h, L + 1)

by Theorem 3.1. 2
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Theorem 3.3 states that if a node will not be explored further due to the fathoming rule,

then the remaining nodes that have the same ancestors at the same level and higher indices

also will not be explored further.

Theorem 3.3 Let n(k), n′(k), n′′(k) be nodes such that their ancestors are the same up to

level k − 1 and n′′ > n′. Then, if lower bound on n(k) is greater than upper bound on n′(k),

the branch following n′(k) and n′′(k) can be fathomed.

Proof. From Lemma 3.4, UB(n′′(k)) ≤ UB(n′(k)) because n′′ > n′. According to the

theorem, LB(n(k)) ≥ UB(n′(k)), so that n′(k) can be fathomed. Because UB(n′′(k)) ≤
UB(n′(k)), n′′(k) can be fathomed as well. 2

The home OPO corresponds to the root node of the branch-and-bound tree. Therefore,

the root node differs for every home OPO. In other words, a different branch-and-bound tree

is constructed for each possible home OPO. Any OPO can potentially be the home OPO.

Therefore, we execute a branch-and-bound algorithm |I| times where the root node (and

therefore the admissible set) changes each time; i.e., we perform an exhaustive enumeration.

We implement the bounds described in this section. In order to calculate the bounds,

we solve an extra MDP at every node of the branch-and-bound tree. The savings in the

computational time gained by the fathoming rule should exceed the additional time it takes

to solve the extra MDP at each node for the bounds to be implemented. Unfortunately,

the bounds are ineffective based on the computational experiments performed. It is possible

that this is due to our implementation, and more sophisticated data structures would render

these bounds effective. We leave this for future research.

3.5 NUMERICAL RESULTS

3.5.1 Data Sources

There are four data sources utilized in the computational experiments. We use the post-

transplant rewards estimated by Roberts et al. [144]. In their study, Roberts et al. [144] use a
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publicly available dataset from UNOS (UNOS1). In order to estimate health state transition

rates, we employ the health state transition probabilities of Alagoz et al. [5], which are

estimated using a dataset obtained from the Thomas E. Starzl Transplantation Institute

at the University of Pittsburgh Medical Center (UPMC). We transform the probabilities

estimated by Alagoz et al. [5] to health state transition rates by the method described in

Section 3.5.2. The third data source (UNOS2) is also a publicly available dataset provided

by UNOS. This data was collected between February 1, 2002, and March 31, 2005. UNOS2

includes more up-to-date data of more patients than UNOS1. There are 44,930 patients in

UNOS2.

UNOS2 includes patient information such as region, OPO, MELD scores, age, blood

type, gender, race, and disease type and organ information such as gender, cause of death,

age, region number, and the date of the offer. UNOS2 is used to estimate organ offer rates.

The fourth data source (UNOS3) is also provided by UNOS. It includes all organs that

are transplanted in the U.S. between the years 1996 and 2003. The number of transplants

performed in an OPO by the OPO in which the organ is harvested is available from UNOS3.

UNOS3 is used as a substitute for the number of organ offers made in an OPO by the

harvesting OPO. Therefore, UNOS3 is utilized to determine the proportion of local and

regional organs offered to patients in each OPO.

3.5.2 Parameter Estimation

Post-transplant rewards, health state transition rates, the offer arrival rates at the OPO level

as well as the intra-regional level are estimated using the above-mentioned four clinical data

sets. Alagoz et al. [7, 9, 10] give a detailed description of post-transplant reward and health

state transition probability estimations.

In their models, Alagoz et al. [7, 9, 10] consider the expected intermediate reward of

waiting as 1 day given the lack of quality-adjusted data. Similarly, we assume that the rate

of immediate reward of rejecting an organ offer or not being offered an organ is one day per

day.
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To facilitate the estimation of health state transition rates, we exploit the study under-

taken by Alagoz et al. [7, 9, 10] and utilize the health state transition probabilities estimated

by them. Miller et al. [110] showed how to convert a probability over a period of time to a

(constant) instantaneous rate by using the following formula:

r = −[ln(1− p)]/t, (3.67)

where r is the rate, p is the probability and t is the time period that the probability is

calculated over. In their studies, Alagoz et al. [7, 9, 10] calculate daily probability of health

state transitions, and therefore t is 1. In summary, we use probabilities estimated by Alagoz

et al. [7, 9, 10] and adopt Miller et al.’s [110] method to convert health state transition

probabilities to health state transition rates. Health state transition probabilities achieved

through uniformization is different from that of Alagoz et al.’s [7, 9, 10], because Alagoz

et al. [7, 9, 10] estimate daily health state transition probabilities whereas the health state

transition probabilities obtained by uniformization depend on λmax.

The continuous discount rate is calculated by setting eα = λ, where λ denotes the

discrete-time discount rate [141].

In order to estimate offer arrival rates, we discretize the liver quality and classify the liver

types similarly to [4]. As a result, there are a total of 28 categories for liver types. Because

the data are sparse, we aggregate the liver types and MELD scores so that we use 14 and

18 categories for livers and MELD scores, respectively. Liver Type 1 (14) corresponds to

the highest (lowest) quality liver. Employing UNOS2, we count the number of days each

patient who is listed in a given OPO spends in a given MELD score, and for each MELD

score and OPO, we count the number of times a specific liver type is offered. In other words,

we consider as if a patient is singly listed in every OPO in which she is listed. This is a

reasonable assumption as very few patients multiple list in practice [107]. Let W k
i (h) and

Nk
i (h, `) be the number of days patient k waits in MELD score h in OPO i and the number

of times liver ` is offered to patient k at MELD score h who is listed in OPO i, respectively.
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Then the liver ` offer arrival rate to a singly-listed patient in OPO i, with MELD score h is

obtained using the following formula:

ωi(`|h) =

∑
k Nk

i (h, `)∑
k W k

i (h)
, h ∈ S ′H , ` ∈ S ′L. (3.68)

Recall our assumption that the patient does not benefit from offers at the national level,

since national offers are very few compared to local and regional offers. Therefore, we

assume that this rate includes offers of organs harvested in all OPOs in the same region as

OPO i as well as the organs harvested in OPO i. In order to differentiate between offers of

organs harvested in OPO i and those harvested in other OPOs in the same region, we define

P (j, i) and operationalize ξi(`|h), which is defined in Section 3.2.1.1. The fraction of liver

transplants in OPO i involving an organ harvested in OPO j is represented by P (j, i), and

the rate of offers from OPO i to a patient listed in OPO i (local offers) is represented by

ξi(`|h). Then ξi(`|h) can be calculated as follows:

ξi(`|h) = P (i, i) · ωi(`|h), h ∈ S ′H , ` ∈ S ′L. (3.69)

It would be ideal for P (j, i) to represent the fraction of organ offers rather than the fraction of

organ transplants in OPO i involving an organ harvested in OPO j. However, the fraction of

organ offers is not available and the UNOS dataset (UNOS3) contains the number of organs

transplanted in the U.S. between the years 1996 and 2003 by the harvest and transplant

OPOs.

Let nR be the number of OPOs in region R. Regional organ offer arrival rate for a specific

(h, `), h ∈ SH , ` ∈ S ′L for OPOs in region R (|nR| unknowns) could be calculated by solving

the following |nR| equations:

ωi(`|h) = ξi(`|h) +
∑

j 6=i,R(i)=R(j)

θj(`|h), i ∈ I,R(i) = R. (3.70)

Equations (3.70) yield the following formula for the regional organ offer arrival rates for a

specific (h, `), h ∈ SH , ` ∈ S ′L:

θi(`|h) =

∑
j 6=i,R(j)=R(ωj(`|h)− ξj(`|h))− (nR − 2)(ωi(`|h)− ξi(`|h))

nR − 1
,

i ∈ I,R(i) = R. (3.71)
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The estimation of ξi(`|h) and θi(`|h) are shown numerically in Appendix C.1. As demon-

strated in this appendix, solving equations (3.71) may yield negative estimates of regional

organ offer arrival rates. We believe that this is due to employing the fraction of transplants

performed as a proxy for the fraction of organ offers made.

3.5.2.1 LP model: As the data on the fraction of organ offers made is not available

and utilizing the fraction of transplants performed does not act as a good alternative for

every OPO and (h, `), we perturb the P (i, i) estimates as less as possible that leads to

nonnegative estimates of regional organ offer arrival rates. Consequently, for region R and

an (h, `), h ∈ S ′H , ` ∈ S ′L, we solve the following LP:

min
∑

i∈I,R(i)=R

|x(i, i, h, `)− P (i, i)|

x(i, i, h, `)ωi(`|h) +
∑

j 6=i

θj(`|h) = ωi(`|h), R(i) = R(j) = R, i, j ∈ I,

0 ≤ x(i, i, h, `) ≤ 1, R(i) = R, i ∈ I,

θi(`|h) ≥ 0, R(i) = R, i ∈ I,

ε ≥ 0.

where x(i, i, h, `) corresponds to the fraction of liver offers made in OPO i involving an organ

harvested in OPO i for state (h, `). We define two sets of variables αi, βi, i ∈ I,R(i) = R

where x(i, i, h, `)− P (i, i) = αi − βi and the objective is αi + βi. So, the LP is rewritten as

follows:

min
∑

i∈I,R(i)=R

(αi + βi)

αiωi(`|h)− βiωi(`|h) +
∑

j 6=i

θj(`|h) = (1− P (i, i))ωi(`|h), R(i) = R(j) = R, i, j ∈ I,

αi − βi ≤ 1− P (i, i), R(i) = R, i ∈ I,

βi − αi ≤ P (i, i), R(i) = R, i ∈ I,

θi(`|h) ≥ 0, R(i) = R, i ∈ I,

αi ≥ 0, R(i) = R, i ∈ I,

βi ≥ 0, R(i) = R, i ∈ I.
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We use the optimal solutions attained through solving the LPs constructed above as the

estimates for local and regional offer arrival rates. An example LP is built numerically in

Appendix C.2.

3.5.2.2 Solving the LP Model: We solve the LP model described in Section 3.5.2.1

and obtain the fraction of local offers, that are closest to the fraction of local transplants, for

every OPO and (h, `). Table 3.1 displays the average percentage perturbation in the fraction

of local transplants required in order to achieve nonnegative regional rates for every OPO

and (h, `). The average percentage perturbation in P (i, i) is defined as follows:

∑
i∈I

∑
h∈S′H

∑
`∈S′L

(
|P (i, i)− x(i, i, h, `)|/P (i, i)

)

|I| ∗ |S ′H | ∗ |S ′L|
∗ 100. (3.72)

Average perturbation for region R is defined as:

∑
i∈I,R(i)=R

∑
h∈S′H

∑
`∈S′L

(
|P (i, i)− x(i, i, h, `)|/P (i, i)

)

|nR| ∗ |S ′H | ∗ |S ′L|
∗ 100. (3.73)

From Table 3.1, Regions 3, 8, 10 and 11 have higher percentage perturbations than the

remaining regions. An analysis of the OPOs in these regions suggest that Gainesville in

Region 3, Omaha in Region 8, Cincinnati in Region 10 and Memphis in Region 11 are the

OPOs that cause high percentage perturbations. It is interesting that the fraction of local

transplants performed in these OPOs are much lower than other OPOs. In other words, a

high percentage of the transplants performed in these OPOs involve an organ harvested in

another OPO. However, it is not necessarily true that among all offers made to patients listed

in these OPOs, offers of organs harvested in other OPOs have a much higher percentage than

local organs. According to the allocation policy of UNOS, organs are offered to local patients

first. Therefore, we believe that the reason for high values of perturbation is due to higher

differences between the offers made to local patients and the transplants performed with

local organs.
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Table 3.1: Average percentage change in P (i, i).

Region Number of OPOs Perturbation

1 2 0.00

2 5 4.76

3 6 19.13

4 4 2.10

5 6 4.69

6 3 0.93

7 4 0.84

8 5 15.28

9 2 0.00

10 6 29.75

11 7 28.02

ALL 50 12.65

3.5.3 Optimal Policy Examples for the Cardinality-Constrained Model

In this section, we investigate the optimal liver acceptance, listing, and home OPO selection

strategies of two patients for the cardinality-constrained model. Patient 1 is a 45-year-old

female hepatitis patient who has blood type A. Patient 2 is a 45-year-old female patient with

biliary cirrhosis disease, who has blood type O. Initially, we consider that both patients are

from Chicago, IL. Therefore Chicago, IL is the home OPO of both patients. Both patients

have cytomegalovirus (CMVGR), no encephalopathy and no previous transplant. In the

numerical examples, we use an annual discount rate of 0.99, and therefore the continuous

discount rate is 0.01005.

3.5.3.1 Liver Acceptance In this section, we conduct analysis and draw conclusions

on optimal liver acceptance decisions.
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Recall that the liver acceptance decision is modeled as a continuous-time MDP and then

uniformized. The uniformized discrete-time MDP is equivalent to the problem explored in

Alagoz et al.[9]. Figure 3.5 presents the optimal liver acceptance policy for a 40 year-old

female patient with blood type A, no previous transplant, who is listed in every OPO in

Region 1 and has hepatitis disease. We compare the optimal liver acceptance policy of this

patient provided in Alagoz et al. [9] to that of ours, in order to check whether the optimal

policy attained in our model is consistent with the optimal policy achieved by Alagoz et al.

[9].

Figure 3.5: Optimal liver acceptance decisions of a 40 year-old female patient with hepatitis.

Liver acceptance policies in Figure 3.5 suggest that the patient is less willing to accept

offers if our model is utilized. This difference can be partially explained by the fact that the

dataset we use to estimate organ arrival rates is newer and bigger than the dataset Alagoz

et al. [9] use. In order to compare the organ arrival rates in our model to organ arrival

probabilities in Alagoz et al., we convert Alagoz et al.’s organ arrival probability estimates

for Region 1 to rates using (3.67). For every MELD score (h ∈ S ′H), we compare the

maximum rate of receiving an offer over all liver types (max`∈S′L νO(`|h)). The comparison

demonstrates that in 67% of MELD scores, our estimates yield a higher maximum rate of

receiving an offer than that of Alagoz et al’s and at the same time the offer corresponds to

a higher-quality liver. This result is reasonable as Alagoz et al. assume that a patient is
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offered at most one organ on any given day. In other words, they do not consider multiple

offers to a patient. However, we do not ignore any organ offer. Therefore, the patient waits

for higher-quality livers in more health states according to our optimal policy because she

is being offered higher-quality organs with higher frequency. Consequently, the difference in

the optimal liver acceptance policies depicted in Figure 3.5 is expected.

Figure 3.6 displays the optimal liver acceptance policies, under our model, of Patient 1

and Patient 2 when the patients are singly listed in Chicago, IL. According to this figure,

Patient 2 starts accepting organs sooner. That is, Patient 2 accepts lower quality organs

compared to Patient 1, whereas Patient 1 waits for higher quality organs.

Figure 3.6: Optimal liver acceptance decisions of Patient 1 and Patient 2 when they are

singly listed in Chicago, IL.

Different etiologies for ESLD can result in different liver acceptance policies. For Pa-

tient 1, the etiology is hepatitis, and cirrhosis causes ESLD in Patient 2. We compare

the health state transition rates for hepatitis and cirrhosis. We compute the mean sojourn

time in every health state
(
t(h) = 1∑

h′∈SH\{h} µ(h′|h)
, h ∈ S ′H

)
. Utilizing the MELD score

distribution at a random point in time on the waiting list, that is specific to disease type

(p(h)) from UNOS [180], we calculate the weighted average of transition rate into a sicker

health state
(∑

h∈S′
H

∑
h′>h p(h)·µ(h′|h)·t(h)

|S′H |

)
and the weighted average of transition rate to death
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(∑
h∈S′

H
p(h)·µ(H+1|h)·t(h)

|S′H |

)
for both diseases. According to these calculations, the weighted

average of transition rate into a sicker health state is approximately 4.05% higher if the un-

derlying cause of ESLD is cirrhosis than it is if the cause is hepatitis. Similarly, the weighted

average of transition rate to death is approximately 57.14% higher if the underlying cause

of ESLD is cirrhosis. Therefore, we conclude that cirrhosis is a more aggressive disease than

hepatitis. For the remainder of this chapter, we will refer to these differences between the

health transition rates as Patient 2 having a more aggressive disease than Patient 1.

Another explanation for the different liver acceptance policies emerges due to the diverse

post-transplant rewards. On average, when a same quality liver is offered in the same health

state, Patient 2 has a total post-transplant life expectancy that is 63% longer than Patient

1. Therefore, it is reasonable for Patient 2 to accept livers that Patient 1 does not accept.

Figure 3.7 exhibits the optimal liver acceptance policies of Patient 1 and Patient 2 for

different OPO sets. Based on this figure, the optimal liver acceptance policies appear to be

different for different OPO sets. It is optimal for Patient 1 to reject a Type 2 organ offer in

MELD score 18 when she is listed in Chicago and Louisville. However, it is optimal for her

to accept the same offer in that MELD score when she is listed in Chicago only. In general,

Figure 3.7 leads us to the conclusion that if a patient accepts a particular liver offer in a

particular MELD score when she is listed in Chicago and Louisville, she will accept the offer

when she is listed in Chicago only. In other words, Figure 3.7 illustrates Corollary 3.1 for

both patients. Also, patients’ liver acceptance policy changes with their listing decision.

The optimal liver acceptance decision of Patient 2 when she is listed in Chicago and

Louisville exemplifies a nonmonotonic policy. According to this policy, for MELD score 32,

the worst quality liver that Patient 2 would accept is a Type 10 liver and for MELD score

34, the worst quality liver that she would accept is a Type 9 liver. In other words, she

accepts higher quality livers even if her health gets worse. As Alagoz et al. [9] convey, it is

an intuitive result due to the U.S. allocation policy. Allocation policy states that the likeli-

hood of receiving a liver offer increases as a patient gets sicker. Therefore, if the frequency

that a patient receives an organ offer increases in a considerable amount as she gets sicker,

then it may be optimal to wait until she gets higher quality livers. For every home OPO

and K = 1, 2, 3, 4, we compare the worst quality liver patients would accept in health state
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Figure 3.7: Optimal liver acceptance decisions of Patient 1 and Patient 2 for different OPO

sets.

h to that of h + 1. According to this analysis, Patient 1 (Patient 2) has a nonmonotonic

liver acceptance policy approximately 4.64% (10.36%) of the instances tested. Patient 2 has

more nonmonotonic policies than Patient 1 and this might be a result of the fact that her

underlying disease is more aggressive.

Submodularity of the Value Function: In this section, we demonstrate numerically that

VO(h, `) is not submodular in general. Let O be the home OPO, Chicago, OPO j be St.

Louis and OPO k be Maumee (Figure 3.8). When being offered a Type 2 liver in MELD

score 12, it is optimal for Patient 2 to accept the offer if she is listed in {Chicago}, {Chicago,

St. Louis} or {Chicago, Maumee} (life expectancy is 5590 days). However, if the patient

is listed in {Chicago, St. Louis, Maumee}, then it is optimal for her to wait as the total

life expectancy she attains by waiting is 5633 days. When being offered a Type 3 liver in

MELD score 14, it is optimal for Patient 2 to accept the offer if she is listed in {Chicago}
or {Chicago, Maumee} (life expectancy is 5411 days). However, if the patient is listed in

{Chicago, St. Louis} (life expectancy is 5425 days) or {Chicago, St. Louis, Maumee} (life

expectancy is 5485 days), then it is optimal for her to wait. When being offered a Type 7 liver

in MELD score 24, it is optimal for Patient 2 to accept the offer if she is listed in {Chicago}
or {Chicago, St. Louis} (life expectancy is 4549 days). However, if the patient is listed in

62



{Chicago, Maumee} (life expectancy is 4584 days) or {Chicago, St. Louis, Maumee} (life

expectancy is 4702 days), then it is optimal for her to wait. All of these numerical examples

yield a negative value for VO∪{j}(h, `)− VO(h, `)− VO∪{j,k}(h, `) + VO∪{k}(h, `), and therefore

VO(h, `) is not submodular.

Figure 3.8: Optimal liver acceptance decisions of Patient 2.

According to Theorem 3.2, VO(h, `) is submodular under condition (3.32). We numer-

ically test 270 states (18 health states, 14 liver qualities as well as a no offer state) for 36

sets of OPOs (Table D2). The OPO sets in Table D2 are constructed such that O is the

home OPO, Chicago, and j and k are OPOs that are within 350 miles of Chicago. Results

indicate that (3.32) is satisfied in approximately 20.36%, and the value function (VO(h, `))

is submodular in approximately 84.20% of the instances tested.

As the objective is to maximize VO(h, L + 1), it would be interesting to investigate the

submodularity of VO(h, L + 1). We inspect OPO sets such that O is any home OPO and

i and j are OPOs that are within 350 miles of the home OPO (Table D3). As there are

679 such sets of OPOs, and 18 health states (we only consider the no offer state, L + 1),

we examine the submodularity of VO(h, L + 1) for 12,222 instances. Among those instances,

VO(h, L + 1) is submodular approximately 99% of the time. Another appealing fact that

worths mentioning is that (3.32) is satisfied for (h, L + 1) states, because rT (h, L + 1) = 0.
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3.5.3.2 Listing Decision In this section, we discuss and compare the optimal listing

decisions for both patients when the admissible set includes OPOs that are within 350 miles

of Chicago. We present the optimal listing policies when the admissible set includes OPOs

within 250 miles of Chicago in Appendix E. The admissible sets include the OPOs specified

in Table 3.2.

Table 3.2: Different admissible sets for Chicago, IL (Region 7).

OPOs within (0,250] miles OPOs within (250,350] miles

Indianapolis, IN (Region 10) Ann Arbor, MI (Region 10)

Madison, WI (Region 7) Cincinnati, OH (Region 10)

Milwaukee, WI (Region 7) Louisville, KY (Region 11)

North Liberty, IA (Region 8) Maumee, OH (Region 10)

St. Louis, MO (Region 8)

We compute the optimal decisions for every MELD score in general. However, as the

median MELD score when a patient joins the list is 10-12 [147], MELD score 12 is one of the

initial MELD scores for which the optimal multiple listing policies are displayed in Tables

E1, 3.3, E2 and 3.4. Home OPOs in Tables E1, 3.3, E2 and 3.4 are italicized and fixed to

Chicago, because the home OPO selection decision has already been made.

It is worth mentioning conclusions that apply to both patients first. Those conclusions

include that the optimal OPO sets in which patients list differ for different initial health

states, K and admissible set. Another observation reveals that higher total life expectancies

are attained in healthier initial states and with a relaxed geographical constraint. Patients’

total life expectancies also increase as they are allowed to list in more OPOs. However, the

average increase in total life expectancy, over initial MELD scores, by listing in an additional

OPO decreases if patients are currently listed in more OPOs. This is an intuitive result as

it ties back to submodularity and the diminishing returns ideas discussed in Section 3.3.

A further conclusion is that, as the upper bound on the number of OPOs patients can

list in (K) increases, patients mostly list in OPOs that belong to one of the regions in which

they have not listed yet. This reflects the fact that patients are not only offered organs
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harvested in one of the OPOs in which they are listed, but also those harvested in other

OPOs in one of the regions in which they are listed.

Table 3.3 illustrates the optimal listing decisions for Patient 1, when she can list in

OPOs within 350 miles of Chicago. According to this table, when K is 2, the patient lists

in Louisville in addition to Chicago when her initial MELD score is 12. However, she lists

in Cincinnati in addition to Chicago when her initial MELD score is 30.

Louisville is in Region 11 and Chicago is in Region 7. Therefore, the rate of additional

offers Patient 1 receives by listing in Louisville beyond Chicago is equal to the rate of offers

she would receive if she were singly listed in Louisville. In other words, the patient does not

sacrifice any regional offers by listing in Louisville, because Louisville and Chicago do not

belong to the same region. Same argument holds for Cincinnati and Chicago. Therefore,

we compare the organ offer arrival rates to a singly-listed patient in Louisville to that of

Cincinnati’s.

The arrival rate of the highest quality liver to a singly-listed patient in MELD score 12

(i.e., ωi(1|12)) in Louisville is approximately 53.04% higher than that of a singly-listed patient

in Cincinnati. However, in MELD score 30, a singly-listed patient in Cincinnati is offered an

organ of any type with approximately 52.74% higher rate on average
(∑

`∈S′
L

ωi(`|30)

|S′L|

)
than

a singly-listed patient in Louisville. These results suggest that it is more reasonable for a

patient to list in a riskier OPO, an OPO that has a higher offer arrival rate of organs of the

highest-quality but a lower overall offer arrival rate of any liver type, if she is healthier and

in a safer OPO if she is sicker.

The average increase based on the distribution of the initial MELD scores for hepatitis,

over initial MELD scores and every home OPO, in total life expectancy Patient 1 achieves

by listing in an additional OPO is 7.02%, 2.16%, and 1.07% when she is currently listed in

1,2, and 3 OPOs respectively and she is allowed to list in OPOs that are within 350 miles

of the home OPO.

Comparison of Listing Decisions: In this section, we compare the optimal listing de-

cisions of Patient 1 and Patient 2. Table 3.4 depicts the optimal listing decisions for Patient

2, when she can list in OPOs within 350 miles of Chicago.
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Table 3.3: Optimal listing decisions for Patient 1 for different initial health states, K, and

when admissible set includes OPOs within 350 miles of Chicago.

Initial health K Optimal Optimal Total life Gain in life

state OPO region expectancy expectancy

(MELD score) set set (days) (Percentage)

12 1 Chicago, IL {7} 2759

Chicago, IL

2 Louisville, KY {7,11} 3041 10.22

Chicago, IL

Louisville, KY

3 Ann Arbor, MI {7,10,11} 3101 1.97

Chicago, IL

Louisville, KY

Ann Arbor, MI

4 Madison, WI {7,10,11} 3141 1.29

30 1 Chicago, IL {7} 1356

Chicago, IL

2 Cincinnati, OH {7,10} 1585 16.89

Chicago, IL

Cincinnati, OH

3 Louisville, KY {7,10,11} 1665 5.05

Chicago, IL

Cincinnati, OH

Louisville, KY

4 North Liberty, IA {7,8,10,11} 1698 1.98
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For initial MELD score 30, when K is 4, and admissible set includes OPOs within 350

miles of Chicago, the first patient lists in Cincinnati, Louisville, and North Liberty, IA in

addition to Chicago and the second patient lists in Cincinnati, Louisville, and Indianapolis

in addition to Chicago. In other words, when her MELD score is 30, the first patient chooses

North Liberty, IA, whereas the second patient chooses Indianapolis. The region to which

North Liberty, IA belongs is not one of the regions to which Cincinnati, Louisville and

Chicago belong. However, Indianapolis belongs to the same region with Cincinnati. So, by

listing in Indianapolis, the second patient sacrifices the regional offers from Indianapolis.

Consequently, we compare the organ offer arrival rate to a singly-listed patient in North

Liberty, IA (ωNorth Liberty(`|h)) to the tradeoff between the local and regional organ offer

arrivals in Indianapolis (ξIndianapolis(`|h)− θIndianapolis(`|h)).

Comparison of organ offer arrival rates at North Liberty, IA to that of the tradeoff rate

at Indianapolis reveals that the rate of receiving the highest-quality liver in MELD score 30

(i.e., ωNorth Liberty(1|30)) is approximately 50.78% higher in North Liberty, IA. However, the

average rate of receiving an offer of any organ type in MELD score 30 is approximately 27.02%

higher in Indianapolis
(∑

`∈S′
L

(ξIndianapolis(`|30)−θIndianapolis(`|30))

|S′L|

)
. In summary, we conclude that

the patient with a more aggressive disease (Patient 2) lists in a safer OPO, which promises

more offers in any quality. However, the patient with a less aggressive disease (Patient 1)

lists in a riskier OPO, which promises more offers of the highest quality organ but less offers

in general.

Similar to Patient 1, we conduct an analysis on the average increase based on the dis-

tribution of the initial MELD scores for cirrhosis, over initial MELD scores and every home

OPO, in total life expectancy by listing in an additional OPO for Patient 2, when she can

list in OPOs that are within 350 miles of the home OPO. According to this analysis, the

average increase in total life expectancy by listing in an additional OPO is 7.09%, 1.88%,

and 0.94% when she is currently listed in 1,2, and 3 OPOs respectively.

Performance of the Greedy Solution: In this section, we compare greedy and op-

timal listing strategies with a specific example and present numerical analysis on how the

greedy algorithm performs in general.
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Table 3.4: Optimal listing decisions for Patient 2 for different initial health states, K, and

when admissible set includes OPOs within 350 miles of Chicago.

Initial health K Optimal Optimal Total life Gain in life

state OPO region expectancy expectancy

(MELD score) set set (days) (Percentage)

12 1 Chicago, IL {7} 5338

Chicago, IL

2 Louisville, KY {7,11} 5644 5.73

Chicago, IL

Louisville, KY

3 St. Louis, MO {7,8,11} 5692 0.85

Chicago, IL

Louisville, KY

St. Louis, MO

4 Ann Arbor, MI {7,8,10,11} 5715 0.40

30 1 Chicago, IL {7} 3529

Chicago, IL

2 Cincinnati, OH {7,10} 4168 18.11

Chicago, IL

Cincinnati, OH

3 Louisville, KY {7,10,11} 4341 4.15

Chicago, IL

Cincinnati, OH

Louisville, KY

4 Indianapolis, IN {7,10,11} 4425 1.94
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Table 3.5 compares the first patient’s optimal multiple listing strategy to her greedy

multiple listing strategy in MELD score 12 if her home OPO were Milwaukee.

Table 3.5: Optimal and greedy listing decisions for Patient 1 when admissible set includes

OPOs within 350 miles of Milwaukee.

Initial health K Optimal Optimal Total life Gain in life

state OPO region expectancy expectancy

(MELD score) set set (days) (Percentage)

12 2 Milwaukee, WI {7,10} 3001

Ann Arbor, MI

3 Milwaukee, WI

Indianapolis, IN

Maumee, OH {7,10} 3076 2.50

Initial health K Greedy Greedy Total life Gain in life

state OPO region expectancy expectancy

(MELD score) set set (days) (Percentage)

12 2 Milwaukee, WI {7,10} 3001

Ann Arbor, MI

3 Milwaukee, WI

Ann Arbor, MI

Madison, WI {7,10} 3069 2.27

Table 3.5 shows that the greedy approach does not always produce the optimal solution.

When K is 2, it is optimal for the patient to list in Milwaukee and Ann Arbor. However, if

the patient is allowed to list in an additional OPO, then it is not optimal for her to simply add

another OPO to the set of OPOs in which she is already listed. Instead, it is optimal for her

to unregister from Ann Arbor and list in Indianapolis and Maumee. Although it is obvious

from Table 3.5 that the greedy algorithm does not always provide the optimal solution, the

observations presented in Tables E1, 3.3, E2 and 3.4 lead to the conclusion that the greedy

solution is a very good approximation of the optimal solution. This is an expected result as
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Nemhauser and Wolsey [123] show that the greedy algorithm is a very good approximation

for maximizing a nondecreasing submodular function subject to a cardinality constraint, and

we numerically show that the value function (VO(h, L+1)) is almost always submodular and

we maximize the nondecreasing value function based on a cardinality constraint.

We analyze the optimal listing decisions of Patient 1 and Patient 2 for every initial MELD

score and potential home OPO, when the admissible set includes OPOs that are within 250

or 350 miles of the home OPO. We assume that the home OPO is fixed because the patient

has already made the home OPO selection decision in the previous stage. Therefore, we do

not compare the optimal listing decisions when K is 1 to K is 2. However, we compare the

listing decisions when K is 3 to K is 2 and K is 4 to K is 3. The number of comparisons is

determined based on the home OPO, and the number of OPOs in the admissible set depend-

ing on the admissible set. For example, there are 4 (5) OPOs in Birmingham’s admissible

set of 250 (350) miles. Note that the admissible sets include Birmingham. Therefore, we are

able to compare listing decisions when K is 3 to K is 2 and K is 4 to K is 3 for the 350 mile

admissible set. However, we are only able to compare listing decisions when K is 3 to K is

2 if the admissible set includes OPOs within 250 miles of Birmingham. Table 3.6 presents

the percentage of instances for which the greedy solution is optimal.

Table 3.6: Percentage of instances for which the greedy solution is optimal.

250 miles 350 miles

Patient 1 Patient 2 Patient 1 Patient 2

Comparing K = 3 to K = 2 77.27% 55.88% 73.53% 50.00%

Comparing K = 4 to K = 3 46.67% 57.14% 46.43% 53.33%

Overall 64.86% 56.45% 61.29% 51.35%

According to Table 3.6, the greedy solution is optimal approximately 65% (%61) and 56%

(%51) of the time for Patient 1 and Patient 2 respectively, when the admissible set includes

OPOs within 250 (350) miles of the home OPO. As the cardinality constraint is relaxed, the

admissible set includes more OPOs, and therefore the number of greedy solutions decrease.

For both patients, the total expected discounted reward attained by listing in the greedy
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OPO set is within 1% of the total expected discounted reward attained by listing in the

optimal OPO set.

3.5.3.3 Home OPO Selection In this section, we convey the optimal home OPO se-

lection decisions for both patients when the admissible set includes OPOs that are within

350 miles of the home OPO. We display the optimal home OPO selection policies when the

admissible set includes OPOs within 250 miles of the home OPO in Appendix E. We use the

terms optimal home OPO and best home OPO interchangeably. The best home OPOs are

italicized.

As shown in Tables E3, 3.7, E4 and 3.8, the optimal home OPO patients choose differ

for different initial health states, K and admissible set. Similar to conclusions reached at

the previous section, we can mention here that higher total life expectancies are attained

in healthier initial states and with a relaxed geographical constraint. Patients’ total life

expectancies also increase as they are allowed to list in more OPOs.

Table 3.7 represents the optimal home OPO selection decisions for Patient 1 for different

initial health states, K, and when the admissible set includes OPOs within 350 miles of the

home OPO. In this table, when K is 2, both OPOs in which the patient is listed could be the

optimal home OPO. Therefore, there are multiple optimal home OPOs. However, when K

is 4, Gainesville for initial MELD score 12 is the unique optimal home OPO. This is due to

the fact that the distances between Norcross and Tampa, and Norcross and Miami, exceed

350 miles. Note that the patient relocates in order to increase her total life expectancy.

Table 3.8 displays the optimal home OPO selection decisions for Patient 2 for different

initial health states, K, and when the admissible set includes OPOs within 350 miles of the

home OPO. Similar to the optimal home OPOs for Patient 1, when K is 2, both OPOs in

which the patient is listed could be the optimal home OPO, because the distance between

these OPOs is less than 350 miles. In Table 3.8, when K is 4 and initial MELD score is 30,

all OPOs in {Cincinnati, Louisville, Indianapolis, Ann Arbor} could be an optimal home

OPO. We reach this conclusion because the distance between every pair of OPOs in this set

is less than 350 miles. In Table E4, Cincinnati is the unique home OPO among the same set

of OPOs because the admissible set includes OPOs within 250 miles of the home OPO.
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Table 3.7: Home OPO selection decision for Patient 1 for different initial health states, K,

and when admissible set includes OPOs within 350 miles of the home OPO.

Initial health K Best Total life % gain in life

state (MELD) home OPO expectancy expectancy

in best over worst

home OPO home OPO

12 1 Tampa, FL 3053 12.28

2 Tampa, FL 3123 8.97

Gainesville, FL

3 Tampa, FL 3154 5.61

Gainesville, FL

Miami, FL

4 Gainesville, FL 3169 4.99

Tampa, FL

Miami, FL

Norcross, GA

30 1 Cincinnati, OH 1522 33.38

2 Cincinnati, OH 1642 19.98

Louisville, KY

3 Cincinnati, OH 1676 10.92

Louisville, KY

Indianapolis, IN

4 Indianapolis, IN 1701 10.29

Cincinnati, OH

Louisville, KY

Madison, WI
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Table 3.8: Home OPO selection decision for Patient 2 for different initial health states, K,

and when admissible set includes OPOs within 350 miles of the home OPO.

Initial health K Best Total life % gain in life

state (MELD) home OPO expectancy expectancy

in best over worst

home OPO home OPO

12 1 Westwood, KS 5673 7.16

2 Westwood, KS 5704 4.56

St. Louis, MO

3 St. Louis, MO 5739 2.84

Westwood, KS

Louisville, KY

4 St. Louis, MO 5749 2.64

Westwood, KS

Louisville, KY

Memphis, TN

30 1 Cincinnati, OH 3984 47.14

2 Cincinnati, OH 4273 21.34

Louisville, KY

3 Cincinnati, OH 4386 10.08

Louisville, KY

Indianapolis, IN

4 Cincinnati, OH 4440 9.01

Louisville, KY

Indianapolis, IN

Ann Arbor, MI
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In Table 3.7 and Table 3.8, we quantify the difference, in terms of total life expectancy,

between listing in the best and the worst home OPOs. As K increases and the initial MELD

score decreases, the percentage gain attained by selecting the best home OPO instead of the

worst home OPO decreases. In these tables, the worst home OPO has at least K OPOs in

its admissible set. In other words, the worst home OPO at level K is selected among those

OPOs that have at least K OPOs in their admissible sets. However, if we consider every

OPO when selecting the worst home OPO, then the percentage gain attained by selecting

the best home OPO instead of the worst home OPO increases. For example, if a patient

ichooses Denver as the home OPO, then she can not list in an additional OPO since Denver’s

admissible set includes only itself. In this case, for every level K, we compare the total life

expectancy attained by listing in the best home OPO set (of cardinality K) to the total life

expectancy attained by listing in Denver only. As K increases, the the total life expectancy

attained by listing in the best home OPO set increases, but the total life expectancy attained

by listing in Denver stays the same. Therefore, the difference between the corresponding total

life expectancies increase.

For every initial MELD score, we consider optimal home OPOs when K is 1,2,3, and 4

and when the admissible set includes OPOs that are within 350 miles of the home OPO.

According to our results, Gainesville and Louisville appear to be the best home OPOs, as at

least one of them is selected as an optimal home OPO approximately 38% and 32% of the

instances tested for Patient 1 and Patient 2 respectively. Gainesville is the best OPO in terms

of the overall rate of an organ offer to a singly-listed patient. More specifically, we compute

the overall rate of an offer arrival to a singly-listed patient for all OPOs. Gainesville is the

OPO with the highest overall offer arrival rate according to this comparison. Therefore, it

is reasonable for patients to choose Gainesville as one of the best home OPOs. Based on

this comparison, Louisville is the eighth best. This result alone, it is not very intuitive why

patients select Louisville as one of the best home OPOs.

In Appendix G, we present the map of U.S. transplant regions, transplant OPOs as well

as the set of regions that are within 350 miles of Louisville. As apparent from Figure G3,

Louisville is close to the border of Region 11 and therefore patients listed in Louisville have

close proximity to organs harvested in other regions. That is, once listed in Louisville and
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allowed to list in OPOs that are within 350 miles of Louisville, patients have a chance to

list in OPOs in regions 7, 8, 10, and 11. There are 10 OPOs in Louisville’s admissible set.

Although it would have been preferable to list in other OPOs if patients were singly listed,

according to the optimal policies we consider, Louisville emerges as one of the best home

OPOs because patients can list in as many as 4 OPOs.

3.5.4 Optimal Policy Examples for the Total Distance Constrained Model

In this section, we investigate the optimal listing and home OPO selection strategies of the

same two patients considered in the previous section.

We represent the cost of being listed in an OPO (cbi) by the distance of that OPO from

the home OPO. Consequently, the budget is the upper bound on the sum of the distances

of individual OPOs in an OPO set from the home OPO.

3.5.4.1 Listing In this section, we discuss optimal policies when the maximum total

distance patients can travel from the home OPO is 800 miles. We present optimal listing

results for a total distance of 400 miles for both patients in Appendix F. The home OPOs

are italicized and fixed to Chicago, because the home OPO selection decision has already

been made.

Tables 3.9 and F1 illustrate the optimal listing decisions of Patient 1 for different total

distances traveled. Similarly, Tables 3.10 and F2 report the optimal listing decisions for

Patient 2. Initial assessment of these tables reveal that the optimal OPO sets that the

patients list in differ by initial health state and the total distance traveled. Higher total

life expectancies are attained in healthier initial states and with a higher maximum total

distance. In other words, as the total distance the patient is allowed to travel in order to

multiple list increases, so does her total life expectancy. However, similar to the cardinality-

constrained model, the increase diminishes for higher budgets. Another observation is that

as the maximum total distance increases, patients mostly list in OPOs that belong to regions

in which they have not listed yet.
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Table 3.9: Optimal OPO sets for Patient 1 for different initial health states, and when the

total distance traveled from Chicago cannot exceed 800 miles.

Initial Optimal Total life Percentage gain

health OPO Region expectancy attained in life expectancy

state set by a total distance attained over

(MELD) of 800 miles a total distance

(days) of 700 miles

12 Chicago, IL 7 3141 0.35

Ann Arbor, MI 10

Louisville, KY 11

Madison, WI 7

30 Chicago, IL 7 1693 0.95

Cincinnati, OH 10

Louisville, KY 11

Madison, WI 7
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Table 3.9 summarizes the optimal listing decisions for Patient 1, when she can travel at

most 800 miles in total from Chicago. According to this table, Patient 1 lists in O1={Chicago,

Ann Arbor, Louisville, Madison} when her MELD score is 12 and she lists in O2={Chicago,

Cincinnati, Louisville, Madison} when her MELD score is 30. In order to understand the

rationale behind her listing decision, we compare the organ offer arrival rates to a multiply-

listed patient in O1 to that of O2. This comparison suggests that the average probability

of receiving an organ offer in MELD score 12
(
i.e.,

∑
`∈S′

L
νO(`|12)

|S′L|

)
is approximately 3.85%

higher if the patient is listed in the first set and the average probability of receiving an organ

offer in MELD score 30
(
i.e.,

∑
`∈S′

L
νO(`|30)

|S′L|

)
is approximately 25.38% higher if the patient

is listed in the second set. Therefore, in addition to Chicago, Louisville, and Madison, it is

reasonable for Patient 1 to list in Ann Arbor when her MELD score is 12 and in Cincinnati

when her MELD score is 30.

The patient’s total life expectancy increases 12.29% for the first 500 miles she is allowed

to travel in total in order to multiple list, if her initial MELD score is 12. However, the

additional increase is only 1.94% if she is allowed a total distance of 1,000 miles rather than

500 miles. If the patient is sicker, she benefits more by increasing total distance. Namely, in

initial MELD score 30, her total life expectancy increases by 20.50% and 5.26%, if the total

distance is 500 and 1,000 miles, respectively. Figure 3.9 depicts the total life expectancies

that both patients attain by listing in OPOs that are within 100 to 1,000 miles of the home

OPO. A budget of zero miles refers to the case where a patient is singly listed.

Table 3.10 displays the optimal listing decisions for Patient 2, when she can travel a

total of 800 miles from Chicago. Similar to Patient 1, we calculate the increase in the second

patient’s total life expectancy by a 500 mile increase in the total distance. In initial MELD

score 12, her total life expectancy increases approximately 6.20% and 1.23% for the first

and the second additional 500 miles in total distance. If her initial MELD score is 30, the

corresponding percentages are 20.88% and 4.74%. That is, the patient’s total life expectancy

increases more by multiple listing if she is sicker.

Comparison of the optimal listing decisions of both patients when their initial MELD

score is 12 reveals that Patient 1 lists in O1={Chicago, Ann Arbor, Louisville, Madison}
and Patient 2 lists in O2={Chicago, Louisville, Maumee, North Liberty}. We evaluate the
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Figure 3.9: Total life expectancy for different budgets.

average rate of receiving an organ of any type in MELD score 12
(
i.e.,

∑
`∈S′

L
νO(`|12)

|S′L|

)
for

a patient multiply listed in both sets. According to this evaluation, the average rate is

approximately 3.58% higher for the second set. However, the rate of receiving the highest-

quality liver in MELD score 12 (i.e., νO(1|12)) in O1 is approximately 14.33% higher. In

other words, we attain the same conclusion as in the cardinality-constrained model. That

is, as Patient 2 has a more aggressive disease, she prefers to list in an OPO set that has a

higher overall organ offer arrival rate. By listing in this safer set, Patient 2 sacrifices the

higher rate of receiving the highest-quality liver.

Comparison of optimal listing decisions in Table 3.3 to those in Table 3.9, as well as

comparison of optimal listing decisions in Table F2 to those in Table E2 reveal that given

the same initial MELD score and K, the cardinality-constrained and the budget-constrained

models yield different optimal policies.

3.5.4.2 Home OPO Selection In this section, we touch on the optimal home OPO

selection decisions for both patients, when patients can travel a total of 800 miles from

the home OPO. Similar to the previous section, the optimal policies corresponding to the
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Table 3.10: Optimal OPO sets for Patient 2 for different initial health states, and when the

total distance traveled from Chicago cannot exceed 800 miles.

Initial Optimal Total life Percentage gain

health OPO Region expectancy attained in life expectancy

state set by a total distance attained over

(MELD) of 800 miles a total distance

(days) of 700 miles

12 Chicago, IL 7 5713 0.11

Louisville, KY 11

Maumee, OH 10

North Liberty, IA 8

30 Chicago, IL 7 4404 0.57

Cincinnati, OH 10

Indianapolis, IN 10

North Liberty, IA 8
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maximum total distance of 400 are displayed in Appendix F. The best home OPOs are

italicized.

Optimal home OPO selection decisions shown in this section as well as those presented

in Appendix F exhibit that initial health state and the total distance patients are allowed

to travel in order to multiple list change their home OPO selection decision. As expected,

patients achieve higher total life expectancies in healthier states and as they are allowed to

travel higher maximum total distances.

Table 3.11: Optimal home OPO selection decision for Patient 1 for different initial health

states, and when the total distance traveled from the home OPO cannot exceed 800 miles.

Initial health Best home OPO Total life Gain in life

state and optimal Region expectancy expectancy over

MELD score OPO set in best worst home

home OPO OPO (%)

12 Gainesville, FL 10 3159 11.55

Tampa, FL 10

Charleston, SC 11

30 Louisville, KY 11 1720 36.40

Cincinnati, OH 10

Indianapolis, IN 10

Memphis, TN 11

Nashville, TN 11

In Table 3.11, in order to determine if there is more than one home OPO in which the

patient can optimally multiple list, we calculate the total distance between a particular OPO

and the remaining OPOs in which the patient lists. If it does not exceed the total distance

the patient is allowed to travel, then that OPO can be an optimal home OPO. Based on

this rationale, in Table 3.11, Gainesville and Tampa are optimal home OPOs when the first

patient’s MELD score is 12. Also, Louisville is the unique optimal home OPO when the

patient’s initial MELD score is 30.
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Table 3.12: Optimal home OPO selection decision for Patient 2 for different initial health

states, and when the total distance traveled from the home OPO cannot exceed 800 miles.

Initial health Best home OPO Total life Gain in life

state and optimal Region expectancy expectancy over

MELD score OPO set in best worst home

home OPO OPO (%)

12 St. Louis, MO 8 5749 5.97

Louisville, KY 11

Memphis, TN 11

Westwood, KS 8

30 Louisville, KY 11 4486 40.76

Cincinnati, OH 10

Indianapolis, IN 10

Memphis, TN 11

Nashville, TN 11
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Table 3.12 represents the optimal home OPO selection decisions for Patient 2. According

to this table, Patient 2 has to relocate to St. Louis so as to reach the highest total life

expectancy in MELD score 12. Moreover, she has to relocate to Louisville in MELD score

30.

For every initial MELD score and total distances 100 through 1,000, we consider the

optimal home OPOs for both patients, including the multiple optimal ones. For Patient 1

(Patient 2), at least one of Cincinnati or Gainesville is selected as an optimal home OPO

for approximately 45% (35%) of the instances tested. As discussed before, Gainesville is

the best OPO in terms of the average rate of receiving an organ offer. Therefore, it is

selected as one of the best home OPOs in the budget-constrained model as well. In the

cardinality-constrained model, we just consider the number of OPOs in a particular home

OPOs’s admissible set. In this section, the distance of an OPO from a particular home OPO

has more importance. Therefore, we calculate the average distance from a particular home

OPO b over all OPOs in I \ {b}. According to this evaluation, the average distance from

Cincinnati is the lowest. Recall from our previous discussions that listing in an OPO from

another region is important. Therefore, we compute the average distance from a particular

home OPO b over all OPOs that are in another region. In other words, we are looking for a

home OPO that is closest to OPOs in other regions. This computation yields that Cincinnati

is the fourth best in terms of average distance from an OPO in another region. We believe

that the results discussed here set the reason why these two OPOs are selected as a best

home OPO more frequently.

3.6 CONCLUSIONS

The model described in this chapter increases and optimizes patient autonomy in liver trans-

plantation by giving patients the flexibility to relocate, choose the waiting list(s) they join

and accept or reject organ offers. This model is the first OR model which considers relocation

and multiple listing aspects of U.S. organ allocation scheme. Another aspect of this model

that differentiates it from other OR models of liver transplantation in the literature is that
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it models the liver acceptance decision as a continuous-time MDP. This enables us to relax

several unrealistic assumptions made in those other models.

An important finding of this chapter is that the liver acceptance value function for

different cardinality-constrained listing decisions is nondecreasing and submodular under

certain restrictions. Moreover, we prove that a slight variation of the cardinality-constrained

listing decision is NP -hard. Therefore, greedy algorithm is a very good approximation to

the optimal listing decision under the cardinality-constrained model.

Illustration of our model using clinical data demonstrates that patients with a more

aggressive disease and higher expected post-transplant rewards start accepting organ offers

sooner and the organ offers that they accept are of lower quality.

Numerical results also indicate that patients should practice multiple listing if they can,

because it increases total life expectancy. Also, as patients list in more OPOs, they tend to

decline more organ offers in the hope of receiving better offers in the future. According to

the numerical results, each patient should list in OPOs based on her individual needs and

demographics. For example, a patient with a less aggressive disease increases her total life

expectancy more by listing in a riskier OPO. That is, those patients should list in OPOs

that do not promise a high offer arrival rate, but give patients a higher chance of receiving

good quality offers.

Our results also suggest that when selecting the home OPO, patients should consider the

frequency of organ offers at OPOs as well as the proximity of the home OPO to other OPOs,

especially OPOs from other regions. Based on our results, Gainesville is one of the best

alternatives for the home OPO because it has the highest average frequency of organ offers.

Other good candidates for being the best home OPO are Louisville and Cincinnati. Both

Louisville and Cincinnati are close to many other OPOs, both in the region to which they

belong and in other regions. According to our numerical results, OPOs in California (Region

5) are never selected as a home OPO. Therefore, it is especially important for patients in

California to either relocate or to multiple list, preferably in Regions 10 or 11. Recently,

Steve Jobs of Apple Inc. received a liver transplant in Memphis, TN (Region 11), although

he was originally located in California (Region 5). It is argued that listing in Tennessee in

addition to or instead of listing in California decreased his waiting time [125]. Steve Jobs’
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decision is also very reasonable based on the numerical results of the decision model built in

this dissertation.

In summary, the decisions made in all three stages are important, because the life ex-

pectancy of patients depend on the home OPO they choose, where they multiple list, and

which organ offers they accept. The total life expectancy of patients increase as they are

allowed to list in more distant OPOs or they are given a higher total distance to travel.

In this dissertation, we consider in which OPOs a patient should list, but we do not

consider when should a patient list in an additional OPO. This question remains as an

interesting future work. Moreover, we do not consider the organs shared at the national

level when estimating the organ offer arrival rates. Inclusion of national sharing of offers

requires solving |nR| equations of type (3.70) for region R with |I| unknowns, and therefore

complicates the current organ offer arrival rate estimation. This is also left for future research.
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4.0 ASCERTAINING THE SOCIETAL EFFECT OF MULTIPLE LISTING

4.1 INTRODUCTION

The model formulated in Chapter 3 analyzes the multiple listing problem from a single

patient’s perspective, assuming the equilibrium doesn’t change. That is, the model optimizes

the patient’s multiple listing decision under the assumption that her multiple listing does

not change the optimal policies of other patients in the waiting list. However, this is a

restrictive assumption, because the nature of the liver allocation process is competitive. In

this chapter, we relax this assumption and investigate the liver allocation process from the

societal perspective. We only consider the listing and liver acceptance decisions.

The problem discussed in this chapter could be modeled as a stochastic game. However,

given the number of players, it is extremely challenging to calculate the equilibria numerically.

In other words, we would like to determine an optimal multiple listing and a liver acceptance

policy simultaneously for every patient, but it is unrealistic to represent the problem as a

stochastic game because there are approximately 16,000 ESLD patients. As more patients

list at a certain OPO, the organ offer rates to patients listed in that OPO will decrease,

making this problem very complex. The other difficulties associated with this model are that

it is nonzero-sum and asymmetric. Such a large-scale, discounted, nonzero-sum stochastic

game is likely to remain intractable for the foreseeable future. Recent studies included in

the literature can solve various stochastic games for only three [204, 205], four [100] or six

players [62]. Therefore, we utilize the simulation model of Shechter et al. [162] in order to

simulate the waiting list and the allocation process. We model the problem in which every

patient in the waiting list multiple lists under a certain probability distribution, given that

the waiting list is dynamic.
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In Section 4.2 we discuss the history of multiple listing in the U.S., and in Section 4.3,

we review Shechter et al.’s [162] simulation model. Section 4.4 presents the incorporation

of multiple listing to the existing simulation model. Section 4.5 studies the computational

approach. Section 4.6 exhibits the computational results. We state our concluding remarks

in Section 4.7.

4.2 HISTORY OF PATIENTS WHO MULTIPLE LIST

In this section, we touch on the specific facts about patients who multiple list. The UNOS

data set (UNOS4) we use is available at UPMC and covers a time frame from the year 1988

to the year 2002. UNOS4 includes data for 89,364 patients who listed in one or more OPOs

to receive cadaveric liver offers between the specified years. UNOS4 consists of patient char-

acteristics such as age, gender, race, employment status, home OPO, disease type, number

of previous transplants, and insurance type.

We assume that patients who appear to be multiple listed are actually patients who

relocated and relisted at another OPO if the distance between the OPOs in which they were

listed is at least 1,500 miles. We make this assumption because 1,500 miles is presumably

too far to travel in the time required to respond to an organ offer, and we do not have data

identifying patients who leave one OPO and register at another. Therefore, these patients

are regarded as single listed. According to UNOS4, 2.99% of all ESLD patients multiple list.

Among them, 96.17% list in two OPOs, 3.60% list in three OPOs, and 0.23% list in four

OPOs. No patient lists in more than four OPOs. The average age of patients who multiple

list is 43. 3.24% of all female ESLD patients and 3.56% of all male ESLD patients multiple

list. The average distance patients travel in order to multiple list is about 500 miles.

Patients who are originally listed in Pennsylvania, New York, and California are most

likely to multiple list. Regionwise, patients from Region 1 (Connecticut, Maine, Mas-

sachusetts, New Hampshire and Rhode Island), Region 4 (Oklahoma and Texas), and Region

10 (Indiana, Michigan and Ohio) have a higher propensity for multiple listing.
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Table 4.1 shows the pairs of OPOs in which patients multiple list the most, including the

number of patients listed in these OPO sets and the regions in which these OPOs are located.

Table 4.1: Most popular OPO pairs in terms of multiple listing.

OPO pair Region set Number of patients

Sacramento, CA; San Francisco, CA {5} 97

Arlington, VA; Baltimore, MD {2} 85

Boston, MA; New York,NY {1, 9} 59

Los Angeles,CA; San Francisco, CA {5} 52

Jersey City, NJ; New York, NY {2, 9} 51

New York City, NY; Pittsburgh, PA {2, 9} 40

Miami, FL; Pittsburgh, PA {2, 3} 37

Miami, FL; New York City, NY {3, 9} 36

Charlotte, NC; Pittsburgh, PA {2, 11} 35

Boston, MA; Hartford, CT {1} 31

4.3 EXISTING SIMULATION MODEL OF THE LIVER ALLOCATION

PROCESS

Shechter et al. [162] build a biologically based discrete event simulation model of the na-

tional liver allocation system. Their simulation model includes a patient generator, an organ

generator, pre-transplant natural history, matching algorithm, and post-transplant survival.

With these modules, they are able to simulate the complex allocation process in which pa-

tients and organs arrive with certain characteristics and patient health changes over time.

Throughout the simulation model, a patient either receives a transplant, dies while waiting

for a transplant, is discharged because her health gets better, is removed from the model

due to other reasons (such as a living-donor liver transplant), or remains in the waiting list.
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If the patient receives a transplant, she then either dies post-transplant or she is relisted de-

pending on the graft and patient survival. That is, if the expected survival time of the graft

is shorter than the expected survival time of the patient, then she is relisted. Otherwise,

the patient dies post-transplant. Shechter et al. [162] represent the current liver allocation

policy of UNOS by offering organs generated locally, then regionally, and then nationally.

4.4 INCORPORATING PATIENTS’ MULTIPLE LISTING CHOICES INTO

THE SIMULATION

Although the existing simulation model is a good illustration of the current allocation process,

it does not give patients the autonomy to multiple list. In the Shechter et al. [162] model,

patients are assigned a home OPO when they are generated, and it is assumed that they

will only be listed in this home OPO throughout the process. According to our analysis of

historical data, approximately 3% of all ESLD patients multiple list. Also, based on our

numerical results in Chapter 3, a patient can increase her life expectancy by multiple listing.

Therefore, we give the flexibility to multiple list to every patient generated in the simulation.

The patient generator module of Shechter et al. [162] assigns several characteristics to

each patient, such as race, gender, region, OPO, disease group, and MELD score. In our

model, additionally, we determine if the generated patient multiple lists; and if so, in which

OPOs. We do not utilize the optimization model described in Chapter 3 to decide in which

OPOs a generated patient lists. Instead, we define a probability distribution, as described

in more detail in Section 4.5.2. We associate new variables for the second, third, and fourth

OPOs in which the patient lists accordingly. Since no ESLD patient lists in more than four

OPOs, patients generated in the simulation list in four OPOs or fewer. A generated patient

is eligible for local and regional offers through each of the OPOs in which she is listed. If

the patient leaves the model for any of the reasons discussed in Section 4.3, we delete her

from every waiting list she joined.

If a patient is offered an organ that is harvested in neither her original OPO nor in one

of the other OPOs in her original region, but either in one of the additional OPOs in which
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she is listed or in one of the other OPOs in the additional regions, then the offered organ will

possibly wait for her for a longer time. In other words, the travel time required to reach the

harvesting OPO is longer for the patient, which increases CIT. The viability of the organ,

i.e., the expected survival time of the graft, decreases as the CIT increases. However, the

simulation model, and therefore our results, do not reflect the fact that the CIT increases

and the viability of the organ decreases if the patient is not offered an organ that is harvested

in her original OPO.

By incorporating the patient’s choice of multiple listing into the simulation model, we

are able to investigate the effect of multiple listing on the entire waiting list. Comparing the

expected number of transplants and pre-transplant deaths, as well as the expected survival

of patients after receiving a transplant within our model to those same expectations within

that of Shechter et al. [162] enables us to assess the influences of multiple listing on both

single- and multiple-listed patients.

We modify the simulation model for different percentages of patients who multiple list.

That is, we conduct a sensitivity analysis on the percentage of patients who multiple list

in order to evaluate the potential outcomes if multiple listing becomes a more widespread

practice in the U.S. As more patients multiple list, as an expected outcome, patient hetero-

geneity among OPO waiting lists would decrease. In an extreme case, if every ESLD patient

lists in every OPO, there would be in effect a single, national waiting list. Also in that case,

some patients would benefit from the single national list, but not from multiple listing. If

a single patient decided not to multiple list, then she would be disadvantaged. Based on

this rationale, we expect the benefit of multiple listing to decrease as more patients choose

that option. Since multiple listing is a problem which is currently under debate within the

organ allocation community, the results from this model could potentially help UNOS with

its policy decisions.
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4.5 COMPUTATIONAL CONSIDERATIONS

In this section, we discuss the computational approach undertaken in order to determine the

OPO set in which every generated patient lists. To facilitate this, we first determine the

probability that a particular patient generated within the simulation multiple lists, and we

then establish which OPO list(s) she joins.

4.5.1 Constructing Patient Groups

According to Merion et al. [107], the probability that a patient multiple lists depends on

race, gender, insurance type, and education level, but does not depend on age. When

determining the probability of multiple listing for every generated patient, we consider the

patient’s gender, and race. We also consider her disease type, because a patient’s disease type

is a significant determinant in predicting whether she multiple lists or not (Appendix H).

However, we do not consider education level and insurance type, because UNOS4 does not

include values corresponding to them for many patients. Also, education level and insurance

type are not features assigned to a patient upon generation within the simulation model.

Altogether, then, we construct patient groups based on gender, race, and disease group and

we determine the probability of multiple listing for each group. Since there are two possible

genders, and race codes and diseases are grouped into five classes, there are a total of 50

patient groups.

4.5.2 Determining the Probability to Multiple List

We calculate the probability that a generated patient multiple lists by building a logistic

regression model. We run the logistic regression model using SAS 9.1 [154] and UNOS4 as

our input data. We define binary variables for gender (female), every race category, and

every disease group as predictor variables of the logistic regression model. As every patient

belong to only one disease group, for a particular patient, only one of the binary variables

that correspond to disease groups is one. The same is true for binary variables corresponding

to race categories. There are five race categories. White patients constitute race category
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1 (de1), black patients are in race category 2 (de2). Race category 3 (de4) corresponds to

Hispanic patients, race category 4 (de5) corresponds to Asian patients, and race category

5 (de8) incudes all other patients. There are five disease groups. Disease group 1 (dd1)

includes primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and

autoimmune disorder. Disease group 2 (dd2) includes hepatitis C virus, and hepatitis B

virus. Acute liver failure is referred to as disease group 3 (dd3). All cancers are included

in disease group 4 (dd4). Disease group 5 (dd5) consists of metabolic disorders and other

chronic diseases. We run the logistic regression model with only one predictor variable and

with combinations of predictor variables present. A patient’s gender does not appear to

be significant. When considered alone, every disease group and every ethnicity category

is significant in predicting the multiple listing indicator. When all ethnicity categories are

present, the category “white” predicts the multiple listing indicator alone. In Appendix H,

p-values of the logistic regression models are presented.

We include the binary variables for gender, every disease group, and ethnicity category

in the logistic regression model. That is, we define 11 predictor variables. Let β0 be the

intercept and β1, · · · , β11 be the predictor coefficients of x1(gender), · · · , x11 (disease group

five) respectively. Further, let µ(g, r, d) be the probability that a patient multiple lists, such

that she belongs to patient group (g, r, d), where g represents gender, r represents race, and

d represents disease group. Then:

µ(g, r, d) =
1

1 + e−z
where z = β0 + β1x1 + · · ·+ β11x11.

Based on µ(g, r, d), we determine if the generated patient multiple lists or not. In order

to increase the probability of multiple listing associated with every patient group, so as

to increase the number of multiple-listed patients, we multiply the predictor coefficients

β0, β1, · · · , β11 with the same constant.

4.5.3 Establishing the Set of OPO(s) for Multiple Listing

If the generated patient multiple lists, then we find out which additional OPO(s) in which

she should list within the simulation model. For every home OPO, we create a probability
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distribution of the additional OPOs in which patients multiple list based on UNOS4. So

once a generated patient decides to multiple list, based on her home OPO and the historical

data of patients who multiple listed from the same home OPO, we determine the additional

OPOs in which she lists. If UNOS4 does not include a record of a multiple listing from a

certain home OPO, then we assume that a generated patient from this home OPO single

lists.

4.6 COMPUTATIONAL RESULTS

In its original form, the model simulates the national liver allocation system between the

years 1999 and 2002. However, more than 30% of patients who are generated between those

years remain in the waiting list at the end of 2002. Therefore, we model a “cool down”

period, at the end of which approximately 1% of the patients who are generated between

1999 and 2002 remain in the waiting list.

We run the simulation model in this case where multiple listing is prohibited and where

it is allowed. We compare the rates of transplantation, the number of patients who die while

waiting for an organ, the number of of patients who survive at least one and five years after

receiving a transplant. We also compare the average time to death while waiting for an

organ, the average time to receive a transplant for a transplanted patient, and the average

post-transplant survival of transplanted patients.

Our results correspond to the average of 20 replications of the simulation. Recall that

patients leave the simulation model if they die, receive a transplant, are discharged or if

they are removed for other reasons. Therefore, the average percentages of the number of

patients transplanted and the number of patients who die while waiting for an organ do not

add up to the number of patients generated. The number of discharges and removals in

the simulation add up to approximately 20%, which is substantially high. Also, since the

expected remaining lifetime is unknown for patients who are discharged or removed, or for

those who stay in the waiting list at the end of the cool down period, we do not consider

those patients when calculating the statistics. A patient may receive multiple transplants
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within the simulation, similar to the actual liver allocation system. However, we only collect

the statistics for the first transplant.

Table 4.2: Percentage of patients as an average of 20 replications when 2.48% of all ESLD

patients multiple list.

ML = multiple listing, sl = single-listed, ml=multiple-listed

ML prohibited ML allowed

all patients all patients sl patients ml patients

generated 97.52% 2.48%

transplanted 57.12% 56.99% 56.58% 73.13%

died while waiting 23.89% 24.00% 24.21% 15.75%

survived 1 year 83.44% 83.59% 83.55% 84.94%

survived 5 years 48.36% 48.50% 48.46% 49.78%

Table 4.2 illustrates two cases where multiple listing is prohibited, and when 2.48% of

all ESLD patients in the waiting list multiple list. The average percentage of transplanted

patients do not seem to be equal for the two cases. However, we perform a paired t-test for

the average number of patients transplanted for 20 replications, and the average percentages

are not equal for a type 1 error of 0.01. So there is no evidence that the average percentage

of patients transplanted under these two cases is different. However, the difference between

the percentage of multiple- and single-listed patients transplanted is considerable. When

multiple listing is allowed, we observe a slight overall increase in the average percentage

of patients who die while waiting for a transplant. However, the average percentage of

multiple-listed patients who die while waiting for an organ is far less than the that of single-

listed patients. In other words, although multiple-listed patients benefit in terms of survival

while waiting for an organ, single-listed patients, and society as a whole are disadvantaged.

Although multiple-listed patients appear to be at an advantage in terms of one-year and

five-year survivals, the benefit they gain by multiple listing is not substantial.

Table 4.3 demonstrates the average post-transplant survival of transplanted patients,

average time to death before a transplant, and average time to transplant for transplanted
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Table 4.3: Average time in years when 2.48% of ESLD patients multiple list.

ML = multiple listing, sl = single-listed, ml=multiple-listed

ML prohibited ML allowed (2.48%)

all patients all patients sl patients ml patients

post-transplant survival 7.22 7.24 7.23 7.45

time to death while waiting 3.22 3.20 3.21 2.22

time to transplant 2.75 2.75 2.78 1.93

patients. According to Table 4.3, although multiple listing benefits patients in terms of their

post-transplant survival, that benefit is not statistically significant. Multiple-listed patients

die much earlier than those who are single listed. There may be several reasons for this

result. For one, it may suggest that sicker patients tend to multiple list, a conclusion which

Merion et al. [107] mentioned as well. Also, the results mentioned in Table 4.3 show the

average time to death of patients who died while waiting; i.e., they are conditional averages.

Therefore, a smaller average time to death for multiple-listed patients might be due to the

fact that their transplants occur sooner. Table 4.3 also shows that the average time to

transplant is much shorter for multiple-listed patients. There are two possible causes for

this. One, since multiple-listed patients are registered in more than one waiting list, they are

eligible for organs harvested in more than one OPO, which possibly increases their chances

of receiving a transplant. Also, since sicker patients may be more likely to multiple list, they

are more likely to be offered organs than healthier patients.

4.6.1 What if More Patients Multiple List?

The probability that a patient who belongs to patient group µ(g, r, d) multiple lists when

more patients multiple list is calculated as follows for k > 0:

µ(g, r, d) =
1

1 + e−z
where z = k ∗ β0 + k ∗ β1x1 + · · ·+ k ∗ β11x11.
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Tables 4.4 and 4.5 depict the average percentages of patients who were transplanted, died

while waiting for an organ, and survived for at least one and five years, when the number

of multiple-listed patients increase. We obtained the increased percentages of multiple-

listed patients by augmenting the regression coefficients. On average, as more patients

multiple list, fewer single- and multiple-listed patients receive a transplant, and multiple-

listed patients still receive more transplants. A similar statement can be made about the

number of deaths while waiting for an organ. As before, there is no significant difference

between the percentage of patients who survive for at least one and five years. Similar to

the previous case, we perform paired t-tests for the average number of patients transplanted

in both cases, where 5.79% and 12.61% of patients multiple list for 20 replications, and the

average percentages are not equal for a type 1 error of 0.05.

Table 4.4: Percentage of patients as an average of 20 replications when 5.79% of all ESLD

patients multiple list.

ML = multiple listing, sl = single-listed, ml=multiple-listed

ML allowed

all patients sl patients ml patients

generated 94.21% 5.79%

transplanted 56.97% 56.06% 71.77%

died while waiting 24.06% 24.54% 16.29%

survived 1 year 83.42% 83.33% 84.51%

survived 5 years 48.53% 48.48% 49.12%

Tables 4.6 and 4.7 demonstrate the different times associated with multiple listing when

it becomes a more prevalent practice. As more patients multiple list, the average time to

transplant for transplanted patients increases for single- and multiple-listed patients. This

is an intuitive result since, as mentioned before, as more patients multiple list, the waiting

list converges to a single national list. We do not observe a greater difference related to with

regard to the average post-transplant time for transplanted patients.
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Table 4.5: Percentage of patients as an average of 20 replications when 12.61% of all ESLD

patients multiple list.

ML = multiple listing, sl = single-listed, ml=multiple-listed

ML allowed

all patients sl patients ml patients

generated 87.39% 12.61%

transplanted 56.97% 55.12% 69.77%

died while waiting 23.97% 24.91% 17.44%

survived 1 year 83.63% 83.46% 84.54%

survived 5 years 48.41% 48.29% 49.09%

4.6.2 Statistical Averaging of Multiple-Listed Patients

In this section, we consider all patients in UNOS4, rather than just the multiple-listed ones.

We calculate statistical averages for the percentage of single- and multiple-listed patients, and

for all patients who were generated, transplanted, died while waiting for an organ, survived

for one year and survived for five years. We also calculate statistical averages for post-

transplant survival time, time to death while waiting for an organ, and time to transplant

Table 4.6: Average time in years when 5.79% of ESLD patients multiple list.

ML = multiple listing, sl = single-listed, ml=multiple-listed

ML allowed (5.79%)

all patients sl patients ml patients

post-transplant survival 7.24 7.23 7.30

time to death while waiting 3.21 3.24 2.39

time to transplant 2.75 2.81 2.00
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Table 4.7: Average time in years when 12.61% of ESLD patients multiple list.

ML = multiple listing, sl = single-listed, ml=multiple-listed

ML allowed (12.61%)

all patients sl patients ml patients

post-transplant survival 7.22 7.20 7.34

time to death while waiting 3.20 3.27 2.49

time to transplant 2.75 2.87 2.13

for transplanted patients. Tables 4.8 and 4.9 show the corresponding results.

Table 4.8: Percentage of patients as a statistical average of patients in UNOS4.

sl = single-listed, ml=multiple-listed

all patients sl patients ml patients

generated 96.57% 3.43%

transplanted 57.72% 57.18% 73.06%

died while waiting 17.26% 17.41% 13.13%

survived 1 year 70.02% 69.65% 80.44%

survived 5 years 26.14% 26.16% 25.47%

The percentage of multiple-listed patients in Table 4.2 is lower than that in Table 4.8.

Recall that a patient designated as multiple listed based on the probability distribution is

assumed to be single listed if a history of multiple listing from a multiple-listed patient’s home

OPO does not exist. The number of patients transplanted are similar in Tables 4.2 and 4.8.

According to these two tables, simulation overestimates the number of deaths while waiting

for an organ and the number of patients survived for one and five years after transplantation.

Comparing the post-transplant survival time and time to transplant of single- and multiple-

listed patients in Tables 4.3 and 4.9, we realize that the corresponding times are longer in

Table 4.3.

97



Table 4.9: Average time in years as a statistical average of patients in UNOS4.

sl = single-listed, ml=multiple-listed

all patients sl patients ml patients

post-transplant survival 3.68 2.16 3.74

time to death while waiting 0.86 0.83 1.72

time to transplant 3.68 3.74 2.16

4.7 CONCLUSIONS

In this chapter, we study the consequences of the practice of multiple listing among ESLD

patients. Our research is motivated by the current debates about multiple listing within

UNOS [183, 184, 185]. According to our knowledge of the literature, our model is the first

one that analyzes possible outcomes of multiple listing as more patients are educated about

multiple listing and list in additional OPOs.

The primary contribution of this chapter is its conclusion that, in the current form of

practice where only approximately 3% of all ESLD patients multiple list, multiple-listed

patients have a much higher transplantation rate and a much lower mortality rate while

waiting for an organ than single-listed patients. However, the post-transplant mortality

rates and the post-transplant survival do not differ significantly when patients multiple list.

These observations agree with the conclusions reached by Merion et al. [107].

Another conclusion we reach through the computational results is that, as more patients

multiple list and it becomes a more widespread practice in the U.S., advantageous patients

would be those who gain more benefit from a single national waiting list than from multiple

listing. Multiple listing has a small overall effect when we consider all patients on the waiting

list, without classifying them as single-listed or multiple-listed.

There are some restrictions regarding the model described in this chapter. We proba-

bilistically determine which patients multiple list based on historical data. This restricts

the simulation to the current OPO sets rather than optimal OPO sets of different patients.
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Solving a game-theoretic framework of the liver allocation system where patients are allowed

to multiple list is left for future research.
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5.0 INVESTIGATING THE DEMAND FOR A LIVER ASSIST DEVICE

5.1 INTRODUCTION

New technological advances can prevent, treat, or ameliorate conditions and diseases that

were once thought untreatable [122]. Although liver transplantation is currently the only

therapy for ESLD patients and it has an overall successful survival rate, it may not always

be available due to organ shortages. Because of the increasing waiting times and mortality

rates, there has been interest in techniques for providing liver support to stabilize patients

[80].

An external liver assist device (LAD) serves as liver support for a patient with ESLD,

keeping her alive until her own liver can recover or until a suitable organ becomes available

for transplantation [186]. This type of therapy involves connecting external LADs to the

circulation of a patient, and it is predicated upon the idea that acute liver failure can be

stabilized or reversed with active detoxification [137]. So far, very few different external

LADs have been applied clinically. However, the persistence of survival with external LADs

has been shown in animal studies, increasing expectations for their clinical application [80].

Unlike with other artificial organ technologies, external LAD development is in its infancy;

therefore, engineering requirements for an external LAD have yet to be understood, identified

or developed [136]. There are also several disadvantages of an external LAD. For instance,

the patient cannot resume her daily activities while she is on the therapy, and infection may

develop in the areas that are connected to the device [201]. Because of these disadvantages,

an implantable internal LAD is preferred for patients; however, an internal LAD has not

been developed yet [135].
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In this chapter, we consider the optimal timing of an LAD. Our model may serve as a tool

for manufacturers to use to understand the demand for a device. To determine the type of

the LAD to model, we assume that an internal LAD possesses similar features to an external

LAD, although as an internal LAD has not been developed yet. Although an external LAD

keeps an ESLD patient alive until her own liver can recover or until a suitable organ becomes

available for transplantation, we assume that an internal LAD only keeps the patient alive

until transplantation. Since an internal LAD would be implantable in the patient and would

not help the patient’s own organ to recover, once a patient accepted an internal LAD, it

would remain implanted until she died or received a transplant. Therefore, an internal LAD

implant would be a one-time decision, whereas a patient might be treated with an external

LAD at multiple times (similar to dialysis treatment for patients with renal disease). Hence,

a model that is uniquely applicable to an internal LAD is a special case of a model that

is applicable to an external LAD. The study described in this chapter is the first one to

consider mathematical modeling of an LAD. We assume that the priority of a patient on the

waiting list does not change after accepting an LAD in our model. That is, even if a patient

accepts an LAD, she is still regarded as a MELD patient. This assumption contradicts

UNOS’s heart allocation rule, because according to that rule, a patient with a ventricular

assist device (VAD) is considered in the highest urgency status [142], and the longer she has

the VAD, the more her priority in the waiting list increases [142]. In other words, an earlier

heart transplantation of VAD patients is encouraged. Similarly, we assume that an LAD

behaves in a nonstationary manner. That is, once an LAD is implanted in a patient, her

health improves for a while and then her health gets worse. Therefore, her priority in the

waiting list should eventually increase. However, we do not consider this fact for simplicity.

Since an internal LAD has not been developed yet, we continue to utilize known facts

about an external LAD when modeling a hypothetical internal LAD. Although initial clinical

trials confirm the positive effect of an external LAD, patient tolerance for external LAD

therapy is not well understood. In other words, the fact that external LADs have been shown

to support patients does not necessarily confirm that they should accept the devices early.

Although the patient’s health typically improves while using an external LAD, the benefit of

using it might be worse than not using it, since a patient’s tolerance to continuous external
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LAD therapy is largely unknown at this time [136]. Also, there may be other complications

associated with using both types of LADs, similar to dialysis patients’ predisposition to

vascular disease [187] and the increased incidence of complications ranging from clotting to

stroke in patients with artificial hearts [201]. We assume that these characteristics of an

external LAD apply to the internal LAD discussed in our model. Our model considers this

tradeoff and considers the conditions under which an ESLD patient should start or stop

using an internal LAD. Therefore, our model will help manufacturers estimate the demand

for a particular internal LAD.

The remainder of the chapter considers only internal LADs. We present the formulation

of this model in Section 5.2 and discuss the structural properties we analyze in Section 5.3.

We provide a numerical example in Section 5.4, and we present conclusions in Section 5.5.

5.2 MODEL FORMULATION

We formulate this model as two nested optimal stopping problems. The first one (OSP1)

corresponds to the decision problem faced by the patient before accepting an LAD, and the

second one (OSP2) corresponds to the decision problem faced by the patient while she is

using an LAD. Both problems are formulated as discrete-time, infinite-horizon MDPs, with

an objective of maximizing expected discounted reward (e.g., patient’s expected survival

in terms of life days). In the discrete-time MDP models, we assume the set of stages to

be infinite, {1, · · · ,∞}. We define λ as the discount factor with 0 < λ < 1. States,

actions, rewards, transition probabilities and optimality equations of the discrete-time MDP

corresponding to the first optimal stopping problem are as follows:

States of OSP1 : We identify state of the process at time t, st ∈ S as the health state of

the patient at time t, ht ∈ SH , and the quality of the liver offered to the patient at time t,

`t ∈ SL. SH = {1, · · · , H +1} where H +1 represents death, H < ∞, SL = {1, · · · , L, L+1}
where L + 1 represents the “no offer” state, L < ∞. Therefore, S = SH ⊗SL. Note that the

state space is the same as that of Alagoz et al. [7]. We assume that there exists a complete

ordering of both the patient health states and liver qualities.
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Actions of OSP1 : At any time period, the patient can accept the offer and quit the process

(action ‘T’), or she can reject the current offer but accept an LAD and continue the process

with an implanted LAD (action ‘D’), or she can reject both the current offer and an LAD

and continue the process (action ‘W’). We define a∗(st) as the optimal decision in state s

at time t and Ast as the action space for state s at time t for the first optimal stopping

problem; i.e.,

Ast =





{T, D,W}, if s = (h, `) s.t. h 6= H + 1, ` 6= L + 1,

{D, W}, if s = (h, L + 1) s.t. h 6= H + 1,

∅, if s = (H + 1, `).

Rewards of OSP1 : We assume that the rewards are stationary. The patient receives an

expected post-transplant reward rT (h, `) if she accepts a liver of type ` while in health state

h. We assume that rT (h, L + 1) = rT (H + 1, `) = 0. That is, the patient does not receive

a post-transplant reward if she dies or if she does not receive an organ offer. The patient

receives an expected immediate reward rD(h) if she rejects the current organ offer but accepts

an LAD in health state h, and the patient accrues an expected immediate reward of rW (h)

while in health state h if she rejects the current offer and an LAD. (Recall that currently

she is not using an LAD.) Similarly, we assume that rD(H + 1) = rW (H + 1) = 0.

Transition probabilities of OSP1 : Unless a patient either accepts an organ offer or dies, her

health changes during the process based on the health state transition probability matrices

HD (if she accepts an LAD) and HW (if she rejects an LAD). HD = [HD(h
′ |h)] is the

probability that the patient will be in health state h
′
at time t+1, given that her health state

is h at time t, and she accepts an LAD at time t, h
′
, h ∈ SH . Similarly, HW = [HW (h

′|h)]

is the probability that the patient will be in health state h
′

at time t + 1, given that her

health state is h at time t, and she rejects an LAD at time t, h
′
, h ∈ SH . We define

HD(H + 1|H + 1) = HW (H + 1|H + 1) = 1, indicating that death is an absorbing state.

We assume that the probability of an organ offer to a patient depends only on her current

health state. We define L as the organ arrival probability matrix, i.e., L = [L(`|h)] is the

probability that the patient will receive liver offer ` at time t, given that her health state is

h at time t. We set L(L + 1|H + 1) = 1, so that the patient does not receive any liver offer

after she dies. Then the transition probability matrix of the process is P = [P(s′|h)], s′ ∈ S,
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and h ∈ SH where P((h′, `′)|h) = HD(h
′|h)L(`′|h′), h, h′ ∈ SH , ` ∈ SL if the patient rejects

the organ offer and accepts an LAD. P((h′, `′)′|h) = HW (h
′|h)L(`′|h′), h, h′ ∈ SH , ` ∈ SL if

the patient rejects the organ offer and rejects an LAD.

Optimality equations of OSP1 : In state (h, `) the patient selects one of at most three actions

available to her: she may accept the liver offer to transplant, reject the liver offer but accept

an LAD, or reject both the liver offer and an LAD. Figure 5.1 represents the state transition

diagram of the LAD model.

Figure 5.1: State transition diagram of the LAD Model.

We define V (h, `) as the maximum total discounted expected reward that the patient

can attain when her current health state is h, the quality of the current liver offer is `, and

the patient is not currently using an LAD. If the patient accepts the organ offer, she receives

a reward of rT (h, `) and leaves the process. If she rejects the offer but accepts an LAD,

she receives an expected reward of rD(h) and transitions into state (h′, `′) with probability

HD(h
′|h)L(`′|h′). If she rejects both options and decides to wait for another period, she

receives an intermediate reward of rW (h) and transitions into state (h′, `′) with probability

HW (h
′|h)L(`′|h′). If the patient dies without receiving a transplant, she transitions to the

terminal death state.

There are multiple stops to the first optimal stopping problem. If the patient accepts

the current liver offer, the first optimal stopping problem ends without the second optimal
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stopping problem being reached. If the patient accepts an LAD, the wait action is no longer

available to her, since she has to stay with an LAD. Therefore, accepting an LAD terminates

the first optimal stopping problem and initiates the second one.

States of OSP2 : States are the same as those of OSP1.

Actions of OSP2 : The patient is currently using an LAD, so she cannot take action ‘W’

anymore. We define b∗(st) as the optimal decision in state s at time t and Bst as the action

space for state s at time t for OSP2; i.e.,

Bst =





{T, D}, if s = (h, `) s.t. h 6= H + 1, ` 6= L + 1,

{D}, if s = (h, L + 1) s.t. h 6= H + 1,

∅, if s = (H + 1, `)

Rewards of OSP2 : Although the patient cannot receive the immediate reward rW (h), the

definition of rD(h) and rT (h, `) stay the same.

Transition probabilities of OSP2 : Transition probabilities that correspond to ‘W’ action are

not applicable in this case.

Optimality equations of OSP2 : In state (h, `), the patient can either accept the organ offer

or she can reject the organ offer and stay with an LAD implanted. We define U(h, `) as the

maximum total discounted expected reward that the patient can attain when her current

health state is h, the quality of the current liver offer is `, and she is currently using an LAD,

where

U(h, `) = max

{
rT (h, `), rD(h) + λ

( ∑

h′∈SH

∑

`′∈SL

HD(h′|h)L(`′|h′)U(h′, `′)

)}
,

h = 1, · · · , H + 1, l = 1, · · · , L + 1. (5.1)

Then the optimality equations of OSP1 can be written as:

V (h, `) = max

{
rT (h, `), rD(h) + λ

( ∑

h′∈SH

∑

`′∈SL

HD(h′|h)L(`′|h′)U(h′, `′)

)
,

rW (h) + λ

( ∑

h′∈SH

∑

`′∈SL

HW (h′|h)L(`′|h′)V (h′, `′)

)}
,

h = 1, · · · , H + 1, l = 1, · · · , L + 1. (5.2)
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We set V (H+1, `) = U(H+1, `) = 0 for ` ∈ SL because the total expected reward associated

with the death state is 0.

From (5.1) and (5.2), V (h, `) can be rewritten as:

V (h, `) = max

{
max

{
rT (h, `), rD(h) + λ

( ∑

h′∈SH

∑

`′∈SL

HD(h′|h)L(`′|h′)U(h′, `′)

)}
,

rW (h) + λ

( ∑

h′∈SH

∑

`′∈SL

HW (h′|h)L(`′|h′)V (h′, `′)

)}
,

h = 1, · · · , H + 1, l = 1, · · · , L + 1, (5.3)

or

V (h, `) = max

{
U(h, `), rW (h) + λ

( ∑

h′∈SH

∑

`′∈SL

HW (h′|h)L(`′|h′)V (h′, `′)

)}
,

h = 1, · · · , H + 1, l = 1, · · · , L + 1. (5.4)

(5.4) is equivalent to the model described in Alagoz et al. [9] with rT (h, `) replaced by

U(h, `). Although the patient faces the first stopping problem (OSP1) and then the second

stopping problem (OSP2), we solve the system in the reverse order. That is, we solve OSP2

first, as output of it is an input to OSP1.

5.3 STRUCTURAL PROPERTIES

5.3.1 Definitions

Definition 5.1 [15] A Markov chain is said to be increasing failure rate (IFR) if its rows

are in increasing stochastic order; that is,

z(i) =
H+1∑

j=h

P (j|i)

is nondecreasing in i for all h = 1, · · · , H + 1.
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Definition 5.2 The reward of continuing the first optimal stopping problem is defined as:

RW (h, `) = rW (h) + λ

(∑

h′

∑

`′
HW (h′|h)L(`′|h′)V (h′, `′)

)
(5.5)

The reward of initiating/continuing the second optimal stopping problem is defined as:

RD(h, `) = rD(h) + λ

(∑

h′

∑

`′
HD(h′|h)L(`′|h′)U(h′, `′)

)
(5.6)

According to Definition 5.2, V (h, `) and U(h, `) are

V (h, `) = max
{

rT (h, `), RD(h, `), RW (h, `)
}

, (h, `) ∈ S, (5.7)

U(h, `) = max
{

rT (h, `), RD(h, `)
}

, (h, `) ∈ S. (5.8)

5.3.2 Assumptions

In order to derive the structural properties of the LAD model, we make use of the following

assumptions:

As1: rT (h, `) is nonincreasing in h and `. That is, as the patient gets sicker or as the quality

of the liver offered to her decreases, her post-transplant discounted quality-adjusted expected

life days do not increase.

As2: rD(h) and rW (h) are nonincreasing in h. That is, as the patient gets sicker, the imme-

diate reward she receives by waiting and using an LAD do not increase.

As3: rW (h) ≥ rD(h) for all health states. That is, there is a discomfort level associated with

using an LAD, and therefore the immediate reward of waiting is greater than the immediate

reward of using an LAD for every health state.

As4: HD and HW are IFR. That is, as the patient gets sicker, the probability of her moving

to sicker health states increases if she waits or uses an LAD.
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5.3.3 Monotonicity and Control-Limit Theorems

Remark 5.1 (a) RW (h, `) = RW (h, ` + 1), ` = 1, · · · , L.

(b) RD(h, `) = RD(h, ` + 1), ` = 1, · · · , L.

The proof of Remark 5.1 is obvious, and therefore omitted. According to this remark,

RW (h, `) and RD(h, `) do not depend on `. Therefore, we will refer to them as RW (h) and

RD(h) respectively for the rest of the chapter.

Lemma 5.1 states that, for both optimal stopping problems, the maximum total expected

discounted reward that the patient can attain in state (h, `) is at least as high as the total

expected discounted reward she can receive in health state h when no organ is offered to her.

The proof of this lemma is very similar to the proof of Remark 3.1 and is therefore omitted.

Lemma 5.1 (a) If we use the value iteration algorithm to solve the optimization problem

(5.7), at any step n of the algorithm V n(h, `) ≥ V n(h, L+1) holds. Also, if rT (h, `) < RW (h)

and RD(h) < RW (h) hold for state (h, `), then V n(h, `) = V n(h, L + 1).

(b) If we use the value iteration algorithm to solve the optimization problem (5.8), at any

step n of the algorithm Un(h, `) ≥ Un(h, L + 1) holds. Also, if rT (h, `) < RD(h) holds for

state (h, `), then Un(h, `) = Un(h, L + 1).

Theorem 5.1 provides the sufficient conditions to establish the monotonicity of the value

functions of both optimal stopping problems (V (h, `) and U(h, `)) in `. That is, the total life

expectancy of the patient does not increase as the quality of the liver offer decreases both

before and after accepting the device therapy under assumption As1. Alagoz et al. [9] also

show the monotonicity of the value function of their model in the quality of liver offered to

the patient. Although Alagoz et al.’s [9] model is a special case of (5.2), by rewriting it as

two different optimal stopping problems, we are able to represent both (5.7) and (5.8) as

special cases of Alagoz et al.’s model [9]. Therefore, V (h, `) and U(h, `) are also monotonic

in the quality of liver offered to the patient.

Theorem 5.1 Under As1, the value functions V (h, `) and U(h, `) are monotonically non-

increasing in `, ` ∈ SL \ {L + 1}, ∀h ∈ SH .
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Proof. To show that U(h, `) is monotonically nonincreasing in `, ` ∈ SL \{L+1}, ∀h ∈ SH ,

we consider the two values U(h, ` + 1) can obtain. If U(h, ` + 1) = rT (h, ` + 1), then

U(h, ` + 1) ≤ U(h, `) because rT (h, ` + 1) ≤ rT (h, `) by As1 and rT (h, `) ≤ U(h, `) by (5.8).

If U(h, ` + 1) = RD(h), then U(h, ` + 1) ≤ U(h, `) because RD(h) ≤ U(h, `). The proof of

the monotonicity of V (h, `) in ` is similar and omitted. 2

Theorem 5.2 gives sufficient conditions for the monotonicity of value functions of both

optimal stopping problems (V (h, `) and U(h, `)) in the health state of the patient. Theorem

5.2 makes use of As2 and As4. We present two lemmas before presenting Theorem 5.2.

Alagoz et al. [9] show the monotonicity of value function of their model by assuming

that the health state transition matrix is IFR and Condition (5.9) is satisfied. Although

the action space of our model includes more actions than Alagoz et al.’s, we are able to

show monotonicity of both value functions in the health state of the patient under the same

conditions. As Alagoz [4] interprets it, Condition (5.9) means that for any given liver type,

as the patient gets sicker, the increase in the probability of receiving a liver offer must be

smaller than the reduction in the benefit of total expected discounted post-transplant reward.

Lemma 5.2 Let V i(h, `) and U i(h, `) be the value functions of the first and second opti-

mal stopping problems at the ith iteration of the value iteration algorithm. Let zi(h) =
∑

`∈SL
L(`|h)V i(h, `). If V i(h, `) is nonincreasing in h and ` and

L(`|h + 1)

L(`|h)
≤ rT (h, `)

rT (h + 1, `)
for h = 1, · · · , H − 1 and ` = 1, · · · , L. (5.9)

Then zi(h) is nonincreasing in h under As2 and As4.

Proof. Let Si
LT1

= {` ∈ SL : a∗i(h + 1, `) = ‘T ′,L(`|h + 1) ≥ L(`|h)}, Si
LT2

= {` ∈
SL : a∗i(h + 1, `) = ‘T ′,L(`|h + 1) < L(`|h)}, Si

LD
= {` ∈ SL : a∗i(h + 1, `) = ‘D′}, and

Si
LW

= {` ∈ SL : a∗i(h + 1, `) = ‘W ′}. Then

zi(h)− zi(h + 1) =
∑

`∈Si
LT1

[L(`|h)V i(h, `)− L(`|h + 1)V i(h + 1, `)] (5.10)

+
∑

`′∈Si
LT2

[L(`′|h)V i(h, `′)− L(`′|h + 1)V i(h + 1, `′)] (5.11)
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+
∑

`′′∈Si
LD

∪Si
LW

[L(`′′|h)V i(h, `′′)− L(`′′|h + 1)V i(h + 1, `′′)](5.12)

We can eliminate (5.10) by Condition (5.9), and (5.11) can be replaced with

∑

`′∈Si
LT2

[L(`′|h)V i(h + 1, L + 1)− L(`′|h + 1)V i(h + 1, L + 1)]

without increasing the right-hand side value because V i(h, `) is nonincreasing in h, ` and

L(`′|h + 1) < L(`′|h) by definition. Then

zi(h)− zi(h + 1) ≥
∑

`∈Si
LT2

[L(`|h)V i(h + 1, L + 1)− L(`|h + 1)V i(h + 1, L + 1)] (5.13)

+
∑

`′∈Si
LD

∪Si
LW

L(`′|h)V i(h, `′) (5.14)

−
∑

`′′∈SLD

L(`′′|h + 1)V i(h + 1, `′′) (5.15)

−
∑

`′′′∈SLW

L(`′′′|h + 1)V i(h + 1, `′′′) (5.16)

In (5.14), V i(h, `′) can be replaced with V i(h+ 1, L+1) because V i(h, `) is nonincreasing in

h and `. In (5.15), V i(h + 1, `′′) can be replaced with U i(h + 1, L + 1) because the patient

accepts the device. It can further be replaced with V i(h+1, L+1) because V i(h+1, L+1) ≥
U i(h + 1, L + 1). In (5.16) V i(h + 1, `′′′) can be replaced with V i(h + 1, L + 1) because the

patient decides to wait. Then we obtain

zi(h)− zi(h + 1) ≥
∑

`∈Si
LT2

[L(`|h)V i(h + 1, L + 1)− L(`|h + 1)V i(h + 1, L + 1)] (5.17)

+
∑

`′∈Si
LD

∪Si
LW

[L(`′|h)− L(`′|h + 1)]V i(h + 1, L + 1) (5.18)

=
∑

`/∈Si
LT1

[L(`|h)− L(`|h + 1)]V i(h + 1, L + 1) (5.19)
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(5.19) is nonnegative by the definition of Si
LT1

and nonnegativity of V i(h+1, L+1). Therefore,
∑

`∈SL
L(`|h)V i(h, `) is nonincreasing in h.

Lemma 5.3 [4] Let H be an IFR transition probability matrix and V (h) be a nonincreasing

function. Then the following hold:

∑

h′≤h

[
H(h′|h)−H(h′|h + 1)

]
V (h′) ≥

∑

h′≥h

[
H(h′|h)−H(h′|h + 1)

]
V (h),

∑

h′′>h

[
H(h′′|h)−H(h′′|h + 1)

]
V (h′′) ≥

∑

h′′>h

[
H(h′′|h)−H(h′′|h + 1)

]
V (h + 1).

Theorem 5.2 If As4 and (5.9) hold, then the value functions V (h, `) and U(h, `) are mono-

tonically nonincreasing in h, h ∈ SH , ∀` ∈ SL.

Proof. The monotonicity of U(h, `) in h, h ∈ SH , ∀` ∈ SL follows from Theorem 6.2 of

Alagoz [4] because HD is an IFR matrix (by As4 ) and (5.9) holds.

We show the monotonicity of V (h, `) in h, h ∈ SH , ∀` ∈ SL by induction. Let V i(h, `)

be the total life expectancy of the patient in state (h, `) at ith iteration of the value iteration

algorithm. We show that if we apply the value iteration algorithm to solve the problem, at

any iteration of the algorithm V i(h, `) ≥ V i(h+1, `) is preserved for h ∈ SH \{H+1}, ` ∈ SL.

The result follows from the convergence of the value iteration algorithm [141].

For the base case, assume that the value iteration algorithm starts with a value of 0

for each state for both problems, i.e., V 1(h, `) = max
{

U(h, `), rW (h)
}

and V 1(h + 1, `) =

max
{

U(h + 1, `), rW (h + 1)
}

, for h ∈ SH \ {H + 1}, ` ∈ SL. Then the result holds for the

base case, because U(h, `) ≥ U(h + 1, `) by the monotonicity of U(h, `) in h and rW (h) ≥
rW (h + 1) ∀h ∈ SH \ {H + 1} by As2.

Now assume that for iteration n, the result holds, i.e., V n(h, `) ≥ V n(h + 1, `), h ∈
SH \ {H + 1}, ` ∈ SL. If V n+1(h + 1, `) = U(h + 1, `), then V n+1(h, `) ≥ V n+1(h + 1, `),

because U(h, `) ≥ U(h + 1, `) and V n+1(h, `) ≥ U(h, `). Otherwise,

V n+1(h, `)− V n+1(h + 1, `) ≥ rW (h) + λ
∑

h′∈SH

∑

`′∈SL

HW (h′|h)L(`′|h′)V n(h′, `′)

−rW (h + 1)− λ
∑

h′∈SH

∑

`′∈SL

HW (h′|h + 1)L(`′|h′)V n(h′, `′) (5.20)
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≥ λ
∑

h′≤h

[
HW (h′|h)−HW (h′|h + 1)

]
zn(h′)

+λ
∑

h′′>h

[
HW (h′′|h)−HW (h′′|h + 1)

]
zn(h′′) (5.21)

(5.21) follows from As2. From the induction assumption and Lemma 5.2, zn(h) is monotonic.

So, we can replace zn(h′) with zn(h) for h′ ≤ h and zn(h′′) with zn(h + 1) for h′′ > h, by

Lemma 5.3. Then we obtain the following inequality:

≥ λ

(∑

h′≤h

[
HW (h′|h)−HW (h′|h + 1)

]
zn(h) +

∑

h′′>h

[
HW (h′′|h)−HW (h′′|h + 1)

]
zn(h + 1)

)

= λ

(∑

h′≤h

[
HW (h′|h)−HW (h′|h + 1)

][
zn(h)− zn(h + 1)

])
(5.22)

≥ 0.

zn(h) − zn(h + 1) ≥ 0 by the induction assumption and Lemma 5.2,
∑

h′≤h

[
HW (h′|h) −

HW (h′|h + 1)
]

is nonnegative by As4. Therefore, V (h, `) is monotonic in h. 2

Definition 5.3 [4] A liver-based control limit policy establishes a threshold liver quality `

for a particular health state h such that if the optimal action is to “accept” the liver offer for

the threshold liver quality `, then the optimal action stays the same if the quality of the liver

offered is 1, 2, . . . , ` − 1. Furthermore, if the optimal action is either to “wait” or “accept

an LAD” for the threshold liver quality, then the optimal action is still “wait” or “accept an

LAD” for the states corresponding to liver qualities ` + 1, . . . , L.

Theorem 5.3 proves that a threshold liver quality exists for both optimal stopping prob-

lems ((V (h, `)) and (U(h, `))) such that the optimal action is to accept the organ offer if the

quality of the liver is higher than the threshold and reject the liver otherwise. Theorem 5.3

is an immediate consequence of Remark 5.1 and As1, and therefore the proof is omitted.

Theorem 5.3 There exists a liver-based control limit policy for both optimal stopping prob-

lems (V (h, `) and U(h, `)) for a fixed health state, h = 1, · · · , H and ` = 1, · · · , L− 1 if As1

holds.
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Definition 5.4 [4] A health-based control limit policy establishes a health state h for a par-

ticular liver quality ` such that if the optimal action is to “transplant” (accept the liver offer

of quality `) for the threshold health state h, then the optimal action stays the same for sicker

health states, i.e., h + 1, h + 2, . . . , H.

Theorem 5.4 proves the existence of an optimal health-based control limit policy for the

first optimal stopping problem. Theorem 5.4 makes use of As2 and As4. Alagoz et al. [9]

prove the existence of an optimal health-based control limit policy for their problem under

conditions similar to (5.23) and (5.25). However, our model includes two different health

state transition probability matrices. Therefore, we need two sets of each condition Alagoz

et al. [9] define.

Conditions (5.23) and (5.24) state that for both health transition probability matrices

(HD,HW ), the sum of health transition probabilities to sicker states are higher if the pa-

tient’s current health state is sicker. Conditions (5.25) and (5.26) state that for both health

transition probability matrices (HD,HW ), as the patient gets sicker, the decrease in the ex-

pected post-transplant reward is less than the increase in her probability of death. In order

to prove this theorem, we use techniques similar to those of Alagoz [4].

Theorem 5.4 If As2, As4 and (5.9) hold,

H∑

k=j

HD(k|h) ≤
H∑

k=j

HD(k|h + 1), j = h + 1, · · · , H, h = 1, · · · , H, (5.23)

H∑

k=j

HW (k|h) ≤
H∑

k=j

HW (k|h + 1), j = h + 1, · · · , H, h = 1, · · · , H, (5.24)

rT (h, `)− rT (h + 1, `)

rT (h + 1, `)
≤ λ {HD(H + 1|h + 1)−HD(H + 1|h)} , h = 1, · · ·H, (5.25)

and

rT (h, `)− rT (h + 1, `)

rT (h + 1, `)
≤ λ {HW (H + 1|h + 1)−HW (H + 1|h)} , h = 1, · · ·H, (5.26)
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hold, then a health-based control limit policy exists for the first optimal stopping problem for

a fixed liver state.

Proof. In order to prove this theorem, we consider two cases:

Case 1: Suppose there exists a state (h, `) such that a∗(h, `) = ‘T ′ but a∗(h + 1, `) is

uniquely ‘W ′:

As a∗(h, `) = ‘T ′,

rT (h, `) ≥ rW (h) + λ
∑

h′∈SH

∑

`′∈SL

HW (h′|h)L(`′|h′)V (h′, `′), (5.27)

and a∗(h + 1, `) = ‘W ′ uniquely,

rT (h + 1, `) < rW (h + 1) + λ
∑

h′∈SH

∑

`′∈SL

HW (h′|h + 1)L(`′|h′)V (h′, `′). (5.28)

Then

rT (h, `)− rT (h + 1, `) > rW (h)− rW (h + 1) +

λ
∑

h′∈SH

∑

`′∈SL

[
HW (h′|h)−HW (h′|h + 1)

]
L(`′|h′)V (h′, `′) (5.29)

≥ λ

(∑

h′≤h

HW (h′|h)z(h′) +
∑

h′′>h

HW (h′′|h)z(h′′)

)

−λ

(∑

h′≤h

HW (h′|h + 1)z(h′) +
∑

h′′>h

HW (h′′|h + 1)z(h′′)

)
, (5.30)

= λ

(∑

h′≤h

[
HW (h′|h)−HW (h′|h + 1)

]
z(h′)+

+
H∑

h′′=h+1

[
HW (h′′|h)−HW (h′′|h + 1)

]
z(h′′)

)
, (5.31)
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(5.30) follows from As2. (5.31) follows by z(H + 1) = 0. By Lemma 5.3, z(h′) can be

replaced with z(h) and z(h′′) can be replaced with z(h + 1) because HW is IFR and z(h) is

nonincreasing in h by Condition (5.9).

≥ λ

([
1−

H∑

h′′=h+1

HW (h′′|h)−HW (H + 1|h)

]

−
[
1−

H∑

h′′=h+1

HW (h′′|h + 1)−HW (H + 1|h + 1)

])
z(h)

+λ

(
H∑

h′′=h+1

[
HW (h′′|h)−HW (h′′|h + 1)

]
z(h + 1)

)
, (5.32)

= λ

([
H∑

h′′=h+1

[HW (h′′|h + 1)−HW (h′′|h)]

]
[z(h)− z(h + 1)]

)

+λ
([
HW (H + 1|h + 1)−HW (H + 1|h)

]
z(h)

)
, (5.33)

[∑H
h′′=h+1[HW (h′′|h + 1)−HW (h′′|h)]

]
≥ 0 by Condition (5.24), so we can delete this term

without increasing the right-hand side and obtain,

rT (h, `)− rT (h + 1, `) > λ
([
HW (H + 1|h + 1)−HW (H + 1|h)

]
z(h)

)
, (5.34)

z(h) can be replaced with rT (h+1, `) without increasing the right-hand side because z(h) ≥
V (h, L + 1) ≥ V (h + 1, L + 1) > rT (h + 1, `). The last inequality follows because a∗(h + 1, `)

is uniquely ‘W ′. Then (5.34) becomes

rT (h, `)− rT (h + 1, `) > λ
([
HW (H + 1|h + 1)−HW (H + 1|h)

]
rT (h + 1, `)

)
, (5.35)

However, (5.35) contradicts Condition (5.26). Therefore, if a∗(h, `) = ‘T ′, a∗(h+1, `) 6= ‘W ′.

Case 2: Suppose there exists a (h, `) such that a∗(h, `) = ‘T ′ but a∗(h + 1, `) is ‘D′ or ‘W ′:

If a∗(h + 1, `) is ‘W ′, then the contradiction discussed in the previous case stays valid.
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Otherwise, a∗(h + 1, `) is ‘D′. Because a∗(h, `) = ‘T ′,

rT (h, `) ≥ rD(h) + λ
∑

h′∈SH

∑

`′∈SL

HD(h′|h)L(`′|h′)U(h′, `′), (5.36)

and a∗(h + 1, `) = ‘D′ implies

rT (h + 1, `) < rD(h + 1) + λ
∑

h′∈SH

∑

`′∈SL

HD(h′|h + 1)L(`′|h′)U(h′, `′). (5.37)

This part of the theorem is very similar to Case 1. By As2, the assumption that HD

is IFR, the monotonicity of
∑

`∈SL
L(`|h)U(h, `) by Lemma 5.2, Conditions (5.9), (5.23)

and (5.25), a similar argument shows that if a∗(h, `) = ‘T ′, a∗(h + 1, `) 6= ‘D′. Because

a∗(h + 1, `) 6= ‘W ′ and a∗(h + 1, `) 6= ‘D′, a∗(h + 1, `) = ‘T ′ when a∗(h, `) = ‘T ′. 2

Theorem 5.5 compares the optimal liver-based control limits for the two optimal stopping

problems. The proof is based on the idea that if a patient accepts a particular quality of

organ offered to her in health state h before accepting an LAD, then she will accept the

same quality of organ offer in the same health state after accepting an LAD. Basically, if

the patient has more choices, she will be more selective. Let Ω1(h)(Ω2(h)) be the optimal

liver-based control limit for health state h for the first (second) optimal stopping problem.

Theorem 5.5 Ω1(h) ≤ Ω2(h) for every health state.

Proof. a∗(h, Ω1(h)) =‘T’ because Ω1(h) is the threshold liver quality such that the pa-

tient accepts the organ offer. Therefore, V (h, Ω1(h)) = rT (h, Ω1(h)), and rT (h, Ω1(h)) ≥
RD(h), rT (h, Ω1(h)) ≥ RW (h) by (5.7). From (5.8) and rT (h, Ω1(h)) ≥ RD(h), b∗(h, Ω1(h)) =

‘T’. That is, every acceptable liver in OSP1 is also acceptable in OSP2. So, Ω1(h) ≤ Ω2(h).

2

5.4 A NUMERICAL EXAMPLE

In this section, we numerically solve the model described earlier in this chapter a hypothet-

ical internal LAD. In other words, data to estimate the health state transition probability
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matrices for an LAD as well as the immediate rewards associated with using it are not

available. Therefore, we use hypothetical data in our numerical experiments. More specif-

ically, we validate our model numerically by using existing health state transition matrices

corresponding to different disease groups.

Data sources used to estimate the parameters in this chapter are either obtained from the

data sources used in Section 3.5.1 or from Alagoz [4]. The expected post-transplant rewards

used in Chapter 3 are directly used in this chapter as well. We assume that the immediate

reward of waiting is one day similar to existing studies in the literature [7, 8, 9, 153]. Since

there is a discomfort level associated with using an LAD, we assume that the immediate

reward associated with using it is less than one day.

We do not use the liver arrival rates estimated in Section 3.5.2 because we are interested

in liver arrival probabilities in this chapter. Therefore, we utilize the liver arrival probabilities

estimated by Alagoz [4] using UNOS data. The UNOS dataset Alagoz [4] uses to estimate

liver arrival probabilities is not one of the datasets we use in Chapter 3. This data set was

collected between February 27, 2002, and May 31, 2003, and it includes information such

as region, MELD scores, age, blood type, gender, race, and disease type for 25,810 patients

waiting for a liver transplant. It also includes information for the cadaveric organ offers.

Alagoz [4] utilizes UPMC data in order to estimate health state transition probability

matrices H for different disease groups. Ideally, H matrices that Alagoz [4] estimates should

correspond to HW in our model. However, we assume that H matrices that Alagoz [4]

estimates for different disease groups correspond to both HW and HD in our model. More

specifically, we consider the health state transition probability matrix for disease group one

(primary biliary cirrhosis) as HW and the health state transition probability matrix for

disease group two (hepatitis) as HD. We make this selection because disease group two

is a more stable disease than disease group one, as discussed in Chapter 3. That is, the

patient’s health deteriorates faster under disease group one. This is a reasonable selection

of disease groups for corresponding actions, because, by accepting an LAD, we assume that

the patient’s disease progression becomes more stable.

We consider the optimal policies for a 60-year-old, female patient with primary biliary

cirrhosis who has blood type A. We use an annual discount rate of 0.97. We either refer
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to Alagoz et al. [7, 9] or calculate the maximum violation of the IFR assumption and the

sufficient conditions presented in Section 5.3.3. According to Alagoz et al. [7], the maximum

violation of As4 for ‘W’ and ‘D’ actions are calculated as follows:

ε1 = max
j,h

{
0,

H+1∑

k=j

HW (k|h)−HW (k|h + 1)

}
for j = 1, · · · , H + 1, and h = 1, · · ·H − 1,

ε2 = max
j,h

{
0,

H+1∑

k=j

HD(k|h)−HD(k|h + 1)

}
for j = 1, · · · , H + 1, and h = 1, · · ·H − 1.

The maximum violation of Condition (5.9) [9]:

ε3 = max
h,`

{
0,
L(`|h + 1)

L(`|h)
− rT (h, `)

rT (h, ` + 1)

}
for h = 1, · · · , H − 1, and ` = 1, · · ·L.

The maximum violations of Conditions (5.23) and (5.24) [7]:

ε4 = max
j,h

{
0,

H∑

k=j

HD(k|h)−HD(k|h + 1)

}
for j = h + 1, · · · , H, and h = 1, · · ·H,

ε5 = max
j,h

{
0,

H∑

k=j

HW (k|h)−HW (k|h + 1)

}
for j = h + 1, · · · , H, and h = 1, · · ·H.

The maximum violations of Conditions (5.25) and (5.26):

ε6 = max
h

{
0,

rT (h, `)− rT (h + 1, `)

rT (h + 1, `)
− λ {HD(H + 1|h + 1)−HD(H + 1|h)}

}
for h = 1, · · · , H.

ε7 = max
h

{
0,

rT (h, `)− rT (h + 1, `)

rT (h + 1, `)
− λ {HW (H + 1|h + 1)−HW (H + 1|h)}

}
for h = 1, · · · , H,

The values for ε1, · · · , ε7 are 0.0234, 0.021, 0.64, 0.0021, 0.0038, 0.532, and 0.0278, respec-

tively.

Figure 5.2 illustrates the optimal policies when the immediate reward of accepting an

LAD is assumed to be 0.3 days. According to this figure, there is a liver-based and a health-

based control limit in terms of the transplant action as proved in Theorems 5.3 and 5.4. For

a particular health state, the Wait/Device decision does not change with the quality of the

organ offered, because the rewards of waiting and accepting an LAD do not depend on it, as

stated in Remark 5.1. Also, according to Figure 5.2, the set of acceptable livers for OSP1 is

a subset of the set of acceptable livers for OSP2.
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Figure 5.2: Example optimal LAD policies.

Figure 5.3: Comparing optimal policies when an LAD is available and when an LAD is not

available.

Figure 5.3 compares the optimal policies when an LAD is available to the patient and

when it is not available to the patient. In other words, we compare the optimal policies of

the model described in this section to that of Alagoz et al.’s [9]. This figure shows that the

patient accepts fewer, higher quality livers if an LAD is available to her.

119



5.5 CONCLUSIONS

Currently, transplantation remains the only therapy for ESLD patients. Present efforts

toward improving the donor pool by split-liver and living-donor transplantations still do not

decrease considerably the number of patients who die while waiting for an organ. Therefore,

an intermediate therapy, that will either support the patient while she is waiting for a

transplant or replace the function of a liver, is needed.

In this chapter, we model an emerging type of treatment for ESLD, a hypothetical LAD,

which would eliminate the concerns discussed above. We also present sufficient conditions

for a patient to accept a transplant both before and after accepting an LAD and for different

health states and liver offers. Since we model our problem as two nested optimal stopping

problems and classify both as special cases of the model presented in Alagoz et. al. [9], the

structural properties we discuss resemble their model.

Our model is based on the assumption that the immediate reward of accepting an LAD

and the health state transition probability matrices while using one both are known. How-

ever, the data regarding that reward and those matrices while using an LAD do not exist.

Therefore, our model considers hypothetical data, and in order for it to be practical, they

should be calibrated. Even if the data regarding the health state transition matrices while

using an LAD were within reach, we still would have to modify our model such that a

patient’s health initially improves while she is using an LAD, and then gets worse.

If the ongoing research on LADs satisfies the conditions presented in this chapter, and a

new generation of LADs is designed based on those conditions, then the number of patients

who die while waiting for a liver should decrease, and the patients’ total life expectancy

should increase.
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6.0 CONCLUSIONS AND FUTURE RESEARCH

6.1 CONCLUSIONS

This dissertation applies mathematical techniques to address fundamental and emerging

questions in ESLD. Three models discussed in this dissertation increase and ascertain patient

autonomy in liver transplantation, either by investigating patients’ flexibility to choose the

waiting list(s) they join, or by investigating a patient’s choice regarding the optimal timing

of the use of an emerging liver assist device therapy.

The first two models concentrate on multiple listing, which is one of the most controversial

issues within organ transplantation. This dissertation is the first study to introduce an

optimization model of multiple listing in liver transplantation. We establish two different

models of multiple listing in liver transplantation through which we are able to consider

a single multiple-listed patient’s perspective as well as the societal perspective. Critically

analyzing the results of both perspectives, we add insight to existing debate about multiple

listing.

In Chapter 3, we assess the impact of relocation and multiple listing on a single patient.

We analyze decisions faced by an ESLD patient beyond the simple liver accept/reject de-

cision. The patient decides in which home OPO to list, in which additional OPOs to list,

and then which organs to accept. We model the liver accept/reject decision as an infinite

horizon continuous-time MDP model. We solve the multiple listing decision using a branch-

and-bound technique in which each node of the tree corresponds to a different OPO set. We

construct a separate branch-and-bound tree for each home OPO. We analyze this problem

under two constraints: a cardinality constraint that restricts the number of OPOs in which
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a patient can list, and a budget constraint that restricts the total distance a patient can

travel in order to multiple list.

Considering the societal perspective in Chapter 4, we evaluate the potential benefits and

disadvantages of multiple listing to the entire waiting list. However, we do not present a

game-theoretic model due to the intractability given the number of players, the asymmetry

of the game, and a nonzero-sum reward structure. Therefore, we solve the problem utilizing

Shechter et al.’s simulation model [162]. We model the current liver allocation system in

which approximately 3% of all ESLD patients multiple list, and we also explore sensitivity

with respect to this value. We compare our findings to the case where multiple listing is

prohibited, i.e., to Shechter et al.’s [162] results.

All of the previous models in liver transplantation optimization consider an organ trans-

plant as the only treatment option available to ESLD patients [7, 8, 9, 153]. Iin Chapter

5, we consider an additional treatment option: a hypothetical, internal LAD. We model the

problem as a nested, infinite horizon discrete-time MDP. We derive the structural proper-

ties of that model, including sufficient conditions that ensure the existence of control-limit

policies. We provide a numerical example using hypothetical data. Through our model

and the sufficient conditions we provide, we assist researchers and manufacturers in their

development guidelines.

6.2 FUTURE RESEARCH

Solving the listing and home OPO selection decisions multiple times: In Chapter

3, we model the decision problem faced by the patient in three stages. The problems faced

in the first stage (home OPO selection), and the second stage (multiple listing) are one-time

decisions and the third-stage (liver acceptance) is a sequential decision process that depends

on the first two stages. As the health state of the patient changes, her optimal first- and

second-stage decisions change as well. Therefore, the patient should be given the flexibility

to change the decisions she made in the first two stages. Currently, we solve the first two

stages for the patient’s initial health state. However, we can modify the model so that it is
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possible for her to change her home OPO or listing decision as her health changes. Instead

of solving the third-stage decision for specific home OPO and listing decisions, we would

have to solve the decision problems at every stage at every decision epoch.

Patients listing in their optimal OPO sets within the simulation: In Chapter 4,

we determine the probability of multiple listing and the set of OPOs based on historical data.

A possible extension of this model includes finding the optimal OPO set for every patient

and incorporating this decision into the simulation. In other words, running the optimization

problem described in Chapter 3 (excluding the first-stage decision) and the simulation model

described in Chapter 4 together. In doing so, we may restrict every patient generated in

the simulation with a different cardinality/total distance constraint based on race, gender,

and disease group. Since the optimization problem assumes that the multiple listing of a

single patient does not change the organ arrival rates to other patients, we are aware that

this would yield sub-optimal results.

Selecting the home OPO within the simulation: In its current form, the home OPO

selection decision is left out of the simulation model described in Chapter 4. If we run the

simulation model based on the results from the optimization problem, we can also incorpo-

rate the home OPO selection decision into the societal framework.

Modeling the listing decision as a congestion game: The listing and liver accep-

tance decisions can also be incorporated within a societal framework such that the listing

decision is modeled as a congestion game. In a congestion game, the payoff a player receives

for playing a particular strategy depends on the total number of players utilizing the same

strategy and decreases by that number [109]. Similarly, a patient would receive more frequent

organ offers that are harvested in one of the OPOs in which she is listed if fewer patients

were listed in that OPO. By iteratively running the simulation model for a specific listing

for every patient, thereby revising the liver arrival rates, and resolving the congestion game

(listing decision) with the revised arrival rates, we should obtain the equilibrium listing and

liver acceptance decisions.
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Possible extensions to the liver assist device model: We do not provide an extensive

numerical study for the model described in Chapter 5, since we consider a hypothetical LAD.

However, showing numerically that the structural properties discussed in Chapter 5 hold is

an interesting research opportunity for the future. Also, a very important consideration in

liver support system design is the issue of how much human liver tissue from deceased/living

donors is needed to provide adequate bioactive support [78]. The tradeoff stems from the

fact that more human liver tissue would enable prolonged survival; however, it is a scarce

resource. This idea of finding the optimal amount of liver cells is a current consideration in

LAD development research.
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APPENDIX A

LEADING CAUSES OF DEATH
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Table A1: Leading causes of death in the U.S. in 2004 [119]

Rank Cause of death Number Percent

... All causes 2,397,615 100.0

1 Diseases of heart 652,486 27.2

2 Malignant Neoplasms 553,888 23.1

3 Cerebrovascular diseases 150,074 6.3

4 Chronic lower respiratory diseases 121,987 5.1

5 Accidents (unintended injuries) 112,012 4.7

6 Diabetes mellitus 73,138 3.1

7 Alzheimer’s disease 65,965 2.8

8 Influenza and pneumonia 59,664 2.5

9 Nephritis, nephrotic syndrome and nephrosis 42,480 1.8

10 Septicemia 33,373 1.4

11 Intentional self-harm (suicide) 32,430 1.4

12 Chronic liver disease and cirrhosis 27,013 1.1

13 Essential (primary) hypertension

and hypertensive renal disease 23,076 1.0

14 Parkinson’s disease 17,989 0.8

15 Assault (homicide) 17,357 0.7

... All other causes (residual) 414,674 17.3
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APPENDIX B

OBTAINING SML THROUGH A RESTRICTION ON ML

In this appendix, we consider a special case of ML, which we call simplified multiple listing

(SML). We formally define SML as follows:

SIMPLIFIED MULTIPLE LISTING (SML)

INSTANCE: Given a set I of indices with |I| even, and ωij ∈ IR
|I|∗|I|
+ of coefficients for each

i, j ∈ I such that ωii = ωjj, ωjj > maxi

∑
k 6=i ωik, and ωjk = ωkj, i, j, k ∈ I, rewards rT , rW

such that rT > (rW /α) and M ∈ ZZ+.

QUESTION: Is there a partition of I into disjoint sets I1, I2 such that |I1| = |I2| and
∑

i∈I2

∑
i∈I1

ωij is at least M?

SML is a specific class of ML. In this restricted problem, there are even number of OPOs

(|I| even). If |I| is odd, then we add a dummy OPO with zero organ offer arrival rate.

There is only one region (|R| = 1), so R(i) are the same for all i ∈ I. K ∈ ZZ+ in this

problem is defined as K = |I|/2. So, the cardinality constraint restricts the patient to list

in at most half of the OPOs. There is only one health state (|SH | = 1) and a single liver

quality (|SL| = 1). Therefore, µ(h, h′) for h, h′ ∈ SH is not defined, while rT and rW are used

to represent post-transplant and immediate rewards, respectively. In this specific problem

rT > (rW /α). Recall that νO(`|h) is the organ offer arrival rate at OPO set O and that it is

a function of ωij(`|h). Since |SH | = 1 and |SL| = 1, ωij(`|h) and νO(`|h) can be simply refer-

127



red to as ωij and νO, respectively. In the simplified problem, every OPO is in the admissible

set of the home OPO, i.e. Ai = I. Hence, there is no geographical restriction.

According to the above-mentioned restrictions and Remark 3.1, Bellman’s equations can

be rewritten as follows:

VO(`) = max
{

rT , VO(L + 1)
}

(B.1)

VO(L + 1) =
rW

λmax + α
+

λmax − νO

λmax + α
VO(L + 1) +

νO

λmax + α
VO(`). (B.2)

From (B.2), it is possible to define VO(L + 1) in terms of VO(`) as:

(
1− λmax − νO

λmax + α

)
VO(L + 1) =

rW

λmax + α
+

νO

λmax + α
VO(`) (B.3)

VO(L + 1) =
rW + νOVO(`)

α + νO

. (B.4)

From (B.1), VO(`) is either rT or VO(L + 1). If VO(`) = rT , then

VO(L + 1) =
rW + νOrT

α + νO

. (B.5)

If VO(`) = VO(L + 1), then

VO(L + 1) =
rW + νOVO(L + 1)

α + νO

VO(L + 1) =
rW

α
. (B.6)

From Equation (B.5),

VO(L + 1) =
rW + νOrT

α + νO

VO(L + 1) =
rW + νOrT + αrT − αrT

α + νO

VO(L + 1) =
rW − αrT

α + νO

+
rT (νO + α)

α + νO

VO(L + 1) =
rW − αrT

α + νO

+ rT . (B.7)

Since rT > (rW /α), rW − αrT < 0. Therefore, maximizing VO(h, L + 1) in (B.7) is

equivalent to maximizing νO.
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Next from Equation (B.5),

rW + νOrT

α + νO

>
rW + νO(rW /α)

α + νO

=
rW (α + νO)

α(α + νO)
=

rW

α
.

Since rT > (rW /α), then from (B.5) and (B.6) it follows that in the solution of (3.4)-(3.6)

VO(`) = rT . Consequently, maximizing VO(L + 1) is equivalent to maximizing νO based on

(B.7). Therefore, optimization problem (3.4)-(3.6) is reduced to solving:

max
O

∑
i∈O

νO (B.8)

|O| ≤ |I|
2

. (B.9)

where νO =
∑

i∈O ωii +
∑

i∈O

∑
k 6∈O ωki.

Furthermore, we assume that the arrival rate of organs that are harvested and offered

in the same OPO is higher than the maximum regional offer rate any OPO can provide

(ωjj > maxi

∑
k 6=i ωik, i, j, k ∈ I). In other words, it is optimal to list in as many OPOs as

possible, and therefore receive local organ arrival rates, rather than to list in fewer OPOs, and

sacrifice some local rates in order to receive higher regional rates. Consequently, constraint

(B.9) should be tight in the optimal solution.

We further assume that the regional arrival rates are the same between the harvesting

OPO and the transplant OPO ( ωjk = ωkj, ∀j, k ∈ I), and the local arrival rates at each

OPO is the same (ωii = ωjj for i, j ∈ I). Therefore, we set ωii = F > maxi

∑
k 6=i ωik, i, k ∈ I.

As optimal O includes exactly half of the OPOs and the local arrival rates are the same

for each OPO,
∑

i∈O ωii becomes |I|/2 · F . Since constraint (B.9) in (B.8)-(B.9) is tight and

|I|/2 · F is a constant, the optimization problem (B.8)-(B.9) is reduced to:

max
O

{ ∑
i∈O

∑

k 6∈O

ωki

}
(B.10)

|O| = |I|
2

. (B.11)

According to (B.10)-(B.11), only regional rates are of interest. The decision problem version

of (B.10)-(B.11) is referred to as SIMPLIFIED MULTIPLE LISTING (SML).
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APPENDIX C

ESTIMATING ORGAN OFFER ARRIVAL RATES

C.1 CALCULATING LOCAL AND REGIONAL RATES NUMERICALLY

In this section we numerically show the estimation of regional offer rates for OPOs in Region

10 for MELD score 6 and liver type 10.

According to the UNOS datasets utilized in the dissertation, offer arrival rate to a singly-

listed patient (ωi(`|h)) in OPOs in Region 10 and the fraction of local transplants (P (i, i))

in OPOs in Region 10 are displayed in Table C1.

Table C1: Input Values.

OPO(i) ωi(` = 10|h = 6) P (i, i)

Ann Arbor (Ann) 0.001116 0.959383754

Cincinnati (Cin) 0.000824 0.340557276

Cleveland (Cle) 0.00195 0.596707819

Columbus (Col) 0.000077 0.788732394

Indianapolis (Ind) 0.000647 0.900862069

Maumee (Mau) 0.000317 0.652173913

Using the values shown in Table C1, we calculate values in Table C2, which are then

utilized in evaluating (3.71).
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Table C2:

OPO(i) ξi(` = 10|h = 6) ωi(` = 10|h = 6)− ξi(` = 10|h = 6)

Ann Arbor 0.001070672 0.000045327

Cincinnati 0.000280619 0.000543381

Cleveland 0.00116358 0.00078642

Columbus 0.0000607324 0.000016267

Indianapolis 0.000582858 0.000064142

Maumee 0.000206739 0.000110261

Then the regional rate of organ offers are calculated as follows:

θAnn(10|6) =
0.000543381 + 0.00078642 + 0.000016267 + 0.000064142

5

+
0.000110261− 4 ∗ 0.000045327

5

= 0.000267832.

θCin(10|6) =
0.000045327 + 0.00078642 + 0.000016267 + 0.000064142

5

+
0.000110261− 4 ∗ 0.000543381

5

= −0.000230221.

θCle(10|6) =
0.000045327 + 0.000543381 + 0.000016267 + 0.000064142

5

+
0.000110261− 4 ∗ 0.00078642

5

= −0.00047326.

θCol(10|6) =
0.000045327 + 0.000543381 + 0.00078642 + 0.000064142

5

+
0.000110261− 4 ∗ 0.000016267

5

= 0.000296892.

θInd(10|6) =
0.000045327 + 0.000543381 + 0.00078642 + 0.000016267

5

+
0.000110261− 4 ∗ 0.000064142

5
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= 0.000249018.

θMau(10|6) =
0.000045327 + 0.000543381 + 0.00078642 + 0.000016267

5

+
0.000064142− 4 ∗ 0.000110261

5

= 0.000202899.

In our numerical experiments, we do not use the regional organ offer rate estimates

as calculated in this section, because the estimation might yield negative regional rates.

Therefore, we perturb the percentage of organs transplanted in order to attain nonnegative

rate estimates as demonstrated in the following section.

C.2 CONSTRUCTING THE LP NUMERICALLY

We construct the LP to calculate the local and regional offer rates of OPOs in Region 10 for

MELD score 6 and liver type 10 as follows:

min (αAnn + βAnn + αCin + βCin + αCle + βCle + αCol + βCol + αInd + βInd + αMau + βMau)

s.t.

0.001116αAnn − 0.001116βAnn + θCin + θCle + θCol + θInd + θMau = 0.040616246 ∗ 0.001116,

0.000824αCin − 0.000824βCin + θAnn + θCle + θCol + θInd + θMau = 0.659442724 ∗ 0.000824,

0.00195αCle − 0.00195βCle + θAnn + θCin + θCle + θInd + θMau = 0.403292181 ∗ 0.00195,

0.000077αCol − 0.000077βCol + θAnn + θCin + θCle + θInd + θMau = 0.211267606 ∗ 0.000077,

0.000647αInd − 0.000647βInd + θAnn + θCin + θCle + θCol + θMau = 0.099137931 ∗ 0.000647,

0.000317αMau − 0.000317βMau + θAnn + θCin + θCle + θCol + θInd = 0.347826087 ∗ 0.000317,

αAnn − βAnn ≤ 0.040616246,

αCin − βCin ≤ 0.659442724,

αCle − βCle ≤ 0.403292181,
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αCol − βCol ≤ 0.211267606,

αInd − βInd ≤ 0.099137931,

αMau − βMau ≤ 0.347826087,

βAnn − αAnn ≤ 0.959383754,

βCin − αCin ≤ 0.340557276,

βCle − αCle ≤ 0.596707819,

βCol − αCol ≤ 0.788732394,

βInd − αInd ≤ 0.900862069,

βMau − αMau ≤ 0.652173913,

θAnn, θCin, θCle, θCol, θInd, θMau ≥ 0,

αAnn, αCin, αCle, αCol, αInd, αMau ≥ 0,

βAnn, βCin, βCle, βCol, βInd, βMau ≥ 0.

Table C3 shows the optimal x(i, i, 6, 10)
(
αi−βi+P (i, i)

)
, ξi(10|6)

(
ωi(10|6)·x(i, i, 6, 10)

)

and θi(10|6) values attained by solving the LP built above.

Table C3:

OPO(i) x(i, i, 6, 10) ξi(10|6 θi(10|6)

Ann Arbor 0.901200 0.001006 0.000000

Cincinnati 0.866188 0.000714 0.000000

Cleveland 0.943456 0.001840 0.000000

Columbus 0.788732 0.000121 0.000078

Indianapolis 0.879541 0.000569 0.000032

Maumee 0.652174 0.000207 0.000000

We use the values presented in Table C3 as the estimates for local and regional offer

rates of OPOs in Region 10 for MELD score 6 and liver type 10.
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APPENDIX D

NUMERICAL ANALYSIS ON SUBMODULARITY OF THE VALUE

FUNCTION
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Table D1: OPOs by indices used in numerical submodularity study.

Index OPO

0 Birmingham, AL

1 Phoenix, AZ

2 Oakland, CA

3 Sacramento, CA

4 Los Angeles, CA

5 San Diego, CA

6 Denver, CO

7 Windsor, CT

8 Annandale, DC

9 Miami, FL

10 Gainesville, FL

11 Tampa, FL

12 Norcross, GA

13 Honolulu, HI

14 North Liberty, IA

15 Chicago, IL

16 Indianapolis, IN

17 Louisville, KY

18 Metairie, LA

19 Waltham, MA

20 Baltimore, MD

21 Ann Arbor, MI

22 St. Paul, MN

23 St. Louis, MO

24 Westwood, KS

Index OPO

25 Charlotte, NC

26 Greenville, NC

27 Omaha, NE

28 New Providence, NJ

29 Rochester, NY

30 New York, NY

31 Cleveland, OH

32 Maumee, OH

33 Columbus, OH

34 Cincinnati, OH

35 Oklahoma City, OK

36 Portland, OR

37 Philadelphia, PA

38 Pittsburgh, PA

39 Charleston, SC

40 Nashville, TN

41 Memphis, TN

42 Houston, TX

43 San Antonio, TX

44 Dallas, TX

45 Salt Lake City, UT

46 Virginia Beach, VA

47 Bellevue, WA

48 Milwaukee, WI

49 Madison, WI
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Table D2: Sets of OPOs that are used to test (3.32).

O O ∪ {i} O ∪ {j} O ∪ {i, j}
{15} {15,14} {15,16} {15,14,16}
{15} {15,14} {15,17} {15,14,17}
{15} {15,14} {15,21} {15,14,21}
{15} {15,14} {15,23} {15,14,23}
{15} {15,14} {15,32} {15,14,32}
{15} {15,14} {15,34} {15,14,34}
{15} {15,14} {15,48} {15,14,48}
{15} {15,14} {15,49} {15,14,49}
{15} {15,16} {15,17} {15,16,17}
{15} {15,16} {15,21} {15,16,21}
{15} {15,16} {15,23} {15,16,23}
{15} {15,16} {15,32} {15,16,32}
{15} {15,16} {15,34} {15,16,34}
{15} {15,16} {15,48} {15,16,48}
{15} {15,16} {15,49} {15,16,49}
{15} {15,17} {15,21} {15,17,21}
{15} {15,17} {15,23} {15,17,23}
{15} {15,17} {15,32} {15,17,32}
{15} {15,17} {15,34} {15,17,34}
{15} {15,17} {15,48} {15,17,48}
{15} {15,17} {15,49} {15,17,49}
{15} {15,21} {15,23} {15,21,23}
{15} {15,21} {15,32} {15,21,32}
{15} {15,21} {15,34} {15,21,34}
{15} {15,21} {15,48} {15,21,48}
{15} {15,21} {15,49} {15,21,49}
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Table D2 (continued)

O O ∪ {i} O ∪ {j} O ∪ {i, j}
{15} {15,23} {15,32} {15,23,32}
{15} {15,23} {15,34} {15,23,34}
{15} {15,23} {15,48} {15,23,48}
{15} {15,23} {15,49} {15,23,49}
{15} {15,32} {15,34} {15,32,34}
{15} {15,32} {15,48} {15,32,48}
{15} {15,32} {15,49} {15,32,49}
{15} {15,34} {15,48} {15,34,48}
{15} {15,34} {15,49} {15,34,49}
{15} {15,48} {15,49} {15,48,49}
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Table D3: Sets of OPOs that are used to calculate total life expectancy and the submodu-

larity inequality.

{0} {0,12} {0,18} {0,12,18}
{0} {0,12} {0,40} {0,12,40}
{0} {0,12} {0,41} {0,12,41}
{0} {0,18} {0,40} {0,18,40}
{0} {0,18} {0,41} {0,18,41}
{0} {0,40} {0,41} {0,40,41}
{7} {7,19} {7,20} {7,19,20}
{7} {7,19} {7,28} {7,19,28}
{7} {7,19} {7,29} {7,19,29}
{7} {7,19} {7,30} {7,19,30}
{7} {7,19} {7,37} {7,19,37}
{7} {7,20} {7,28} {7,20,28}
{7} {7,20} {7,29} {7,20,29}
{7} {7,20} {7,30} {7,20,30}
{7} {7,20} {7,37} {7,20,37}
{7} {7,28} {7,29} {7,28,29}
{7} {7,28} {7,30} {7,28,30}
{7} {7,28} {7,37} {7,28,37}
{7} {7,29} {7,30} {7,29,30}
{7} {7,29} {7,37} {7,29,37}
{7} {7,30} {7,37} {7,30,37}
{8} {8,20} {8,26} {8,20,26}
{8} {8,20} {8,28} {8,20,28}
{8} {8,20} {8,30} {8,20,30}
{8} {8,20} {8,37} {8,20,37}
{8} {8,20} {8,38} {8,20,38}
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Table D3 (continued)

{8} {8,20} {8,46} {8,20,46}
{8} {8,26} {8,28} {8,26,28}
{8} {8,26} {8,30} {8,26,30}
{8} {8,26} {8,37} {8,26,37}
{8} {8,26} {8,38} {8,26,38}
{8} {8,26} {8,46} {8,26,46}
{8} {8,28} {8,30} {8,28,30}
{8} {8,28} {8,37} {8,28,37}
{8} {8,28} {8,38} {8,28,38}
{8} {8,28} {8,46} {8,28,46}
{8} {8,30} {8,37} {8,30,37}
{8} {8,30} {8,38} {8,30,38}
{8} {8,30} {8,46} {8,30,46}
{8} {8,37} {8,38} {8,37,38}
{8} {8,37} {8,46} {8,37,46}
{8} {8,38} {8,46} {8,38,46}
{9} {9,10} {9,11} {9,10,11}
{10} {10,9} {10,11} {10,9,11}
{10} {10,9} {10,12} {10,9,12}
{10} {10,11} {10,12} {10,11,12}
{11} {11,9} {11,10} {11,9,10}
{12} {12,0} {12,10} {12,0,10}
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Table D3 (continued)

{12} {12,0} {12,25} {12,0,25}
{12} {12,0} {12,39} {12,0,39}
{12} {12,0} {12,40} {12,0,40}
{12} {12,10} {12,25} {12,10,25}
{12} {12,10} {12,39} {12,10,39}
{12} {12,10} {12,40} {12,10,40}
{12} {12,25} {12,39} {12,25,39}
{12} {12,25} {12,40} {12,25,40}
{12} {12,39} {12,40} {12,39,40}
{14} {14,15} {14,22} {14,15,22}
{14} {14,15} {14,23} {14,15,23}
{14} {14,15} {14,24} {14,15,24}
{14} {14,15} {14,27} {14,15,27}
{14} {14,15} {14,48} {14,15,48}
{14} {14,15} {14,49} {14,15,49}
{14} {14,22} {14,23} {14,22,23}
{14} {14,22} {14,24} {14,22,24}
{14} {14,22} {14,27} {14,22,27}
{14} {14,22} {14,48} {14,22,48}
{14} {14,22} {14,49} {14,22,49}
{14} {14,23} {14,24} {14,23,24}
{14} {14,23} {14,27} {14,23,27}
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Table D3 (continued)

{14} {14,23} {14,48} {14,23,48}
{14} {14,23} {14,49} {14,23,49}
{14} {14,24} {14,27} {14,24,27}
{14} {14,24} {14,48} {14,24,48}
{14} {14,24} {14,49} {14,24,49}
{14} {14,27} {14,48} {14,27,48}
{14} {14,27} {14,49} {14,27,49}
{14} {14,48} {14,49} {14,48,49}
{15} {15,14} {15,16} {15,14,16}
{15} {15,14} {15,17} {15,14,17}
{15} {15,14} {15,21} {15,14,21}
{15} {15,14} {15,23} {15,14,23}
{15} {15,14} {15,32} {15,14,32}
{15} {15,14} {15,34} {15,14,34}
{15} {15,14} {15,48} {15,14,48}
{15} {15,14} {15,49} {15,14,49}
{15} {15,16} {15,17} {15,16,17}
{15} {15,16} {15,21} {15,16,21}
{15} {15,16} {15,23} {15,16,23}
{15} {15,16} {15,32} {15,16,32}
{15} {15,16} {15,34} {15,16,34}
{15} {15,16} {15,48} {15,16,48}
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Table D3 (continued)

{15} {15,16} {15,49} {15,16,49}
{15} {15,17} {15,21} {15,17,21}
{15} {15,17} {15,23} {15,17,23}
{15} {15,17} {15,32} {15,17,32}
{15} {15,17} {15,34} {15,17,34}
{15} {15,17} {15,48} {15,17,48}
{15} {15,17} {15,49} {15,17,49}
{15} {15,21} {15,23} {15,21,23}
{15} {15,21} {15,32} {15,21,32}
{15} {15,21} {15,34} {15,21,34}
{15} {15,21} {15,48} {15,21,48}
{15} {15,21} {15,49} {15,21,49}
{15} {15,23} {15,32} {15,23,32}
{15} {15,23} {15,34} {15,23,34}
{15} {15,23} {15,48} {15,23,48}
{15} {15,23} {15,49} {15,23,49}
{15} {15,32} {15,34} {15,32,34}
{15} {15,32} {15,48} {15,32,48}
{15} {15,32} {15,49} {15,32,49}
{15} {15,34} {15,48} {15,34,48}
{15} {15,34} {15,49} {15,34,49}
{15} {15,48} {15,49} {15,48,49}
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Table D3 (continued)

{16} {16,15} {16,17} {16,15,17}
{16} {16,15} {16,21} {16,15,21}
{16} {16,15} {16,23} {16,15,23}
{16} {16,15} {16,31} {16,15,31}
{16} {16,15} {16,32} {16,15,32}
{16} {16,15} {16,33} {16,15,33}
{16} {16,15} {16,34} {16,15,34}
{16} {16,15} {16,40} {16,15,40}
{16} {16,15} {16,48} {16,15,48}
{16} {16,15} {16,49} {16,15,49}
{16} {16,17} {16,21} {16,17,21}
{16} {16,17} {16,23} {16,17,23}
{16} {16,17} {16,31} {16,17,31}
{16} {16,17} {16,32} {16,17,32}
{16} {16,17} {16,33} {16,17,33}
{16} {16,17} {16,34} {16,17,34}
{16} {16,17} {16,40} {16,17,40}
{16} {16,17} {16,48} {16,17,48}
{16} {16,17} {16,49} {16,17,49}
{16} {16,21} {16,23} {16,21,23}
{16} {16,21} {16,31} {16,21,31}
{16} {16,21} {16,32} {16,21,32}
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Table D3 (continued)

{16} {16,21} {16,33} {16,21,33}
{16} {16,21} {16,34} {16,21,34}
{16} {16,21} {16,40} {16,21,40}
{16} {16,21} {16,48} {16,21,48}
{16} {16,21} {16,49} {16,21,49}
{16} {16,23} {16,31} {16,23,31}
{16} {16,23} {16,32} {16,23,32}
{16} {16,23} {16,33} {16,23,33}
{16} {16,23} {16,34} {16,23,34}
{16} {16,23} {16,40} {16,23,40}
{16} {16,23} {16,48} {16,23,48}
{16} {16,23} {16,49} {16,23,49}
{16} {16,31} {16,32} {16,31,32}
{16} {16,31} {16,33} {16,31,33}
{16} {16,31} {16,34} {16,31,34}
{16} {16,31} {16,40} {16,31,40}
{16} {16,31} {16,48} {16,31,48}
{16} {16,31} {16,49} {16,31,49}
{16} {16,32} {16,33} {16,32,33}
{16} {16,32} {16,34} {16,32,34}
{16} {16,32} {16,40} {16,32,40}
{16} {16,32} {16,48} {16,32,48}
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Table D3 (continued)

{16} {16,32} {16,49} {16,32,49}
{16} {16,33} {16,34} {16,33,34}
{16} {16,33} {16,40} {16,33,40}
{16} {16,33} {16,48} {16,33,48}
{16} {16,33} {16,49} {16,33,49}
{16} {16,34} {16,40} {16,34,40}
{16} {16,34} {16,48} {16,34,48}
{16} {16,34} {16,49} {16,34,49}
{16} {16,40} {16,48} {16,40,48}
{16} {16,40} {16,49} {16,40,49}
{16} {16,48} {16,49} {16,48,49}
{17} {17,15} {17,16} {17,15,16}
{17} {17,15} {17,21} {17,15,21}
{17} {17,15} {17,23} {17,15,23}
{17} {17,15} {17,31} {17,15,31}
{17} {17,15} {17,32} {17,15,32}
{17} {17,15} {17,33} {17,15,33}
{17} {17,15} {17,34} {17,15,34}
{17} {17,15} {17,40} {17,15,40}
{17} {17,16} {17,21} {17,16,21}
{17} {17,16} {17,23} {17,16,23}
{17} {17,16} {17,31} {17,16,31}
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Table D3 (continued)

{17} {17,16} {17,32} {17,16,32}
{17} {17,16} {17,33} {17,16,33}
{17} {17,16} {17,34} {17,16,34}
{17} {17,16} {17,40} {17,16,40}
{17} {17,21} {17,23} {17,21,23}
{17} {17,21} {17,31} {17,21,31}
{17} {17,21} {17,32} {17,21,32}
{17} {17,21} {17,33} {17,21,33}
{17} {17,21} {17,34} {17,21,34}
{17} {17,21} {17,40} {17,21,40}
{17} {17,23} {17,31} {17,23,31}
{17} {17,23} {17,32} {17,23,32}
{17} {17,23} {17,33} {17,23,33}
{17} {17,23} {17,34} {17,23,34}
{17} {17,23} {17,40} {17,23,40}
{17} {17,31} {17,32} {17,31,32}
{17} {17,31} {17,33} {17,31,33}
{17} {17,31} {17,34} {17,31,34}
{17} {17,31} {17,40} {17,31,40}
{17} {17,32} {17,33} {17,32,33}
{17} {17,32} {17,34} {17,32,34}
{17} {17,32} {17,40} {17,32,40}
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Table D3 (continued)

{17} {17,33} {17,34} {17,33,34}
{17} {17,33} {17,40} {17,33,40}
{17} {17,34} {17,40} {17,34,40}
{18} {18,0} {18,42} {18,0,42}
{19} {19,7} {19,28} {19,7,28}
{19} {19,7} {19,30} {19,7,30}
{19} {19,7} {19,37} {19,7,37}
{19} {19,28} {19,30} {19,28,30}
{19} {19,28} {19,37} {19,28,37}
{19} {19,30} {19,37} {19,30,37}
{20} {20,7} {20,8} {20,7,8}
{20} {20,7} {20,26} {20,7,26}
{20} {20,7} {20,28} {20,7,28}
{20} {20,7} {20,29} {20,7,29}
{20} {20,7} {20,30} {20,7,30}
{20} {20,7} {20,37} {20,7,37}
{20} {20,7} {20,38} {20,7,38}
{20} {20,7} {20,46} {20,7,46}
{20} {20,8} {20,26} {20,8,26}
{20} {20,8} {20,28} {20,8,28}
{20} {20,8} {20,29} {20,8,29}
{20} {20,8} {20,30} {20,8,30}
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Table D3 (continued)

{20} {20,8} {20,37} {20,8,37}
{20} {20,8} {20,38} {20,8,38}
{20} {20,8} {20,46} {20,8,46}
{20} {20,26} {20,28} {20,26,28}
{20} {20,26} {20,29} {20,26,29}
{20} {20,26} {20,30} {20,26,30}
{20} {20,26} {20,37} {20,26,37}
{20} {20,26} {20,38} {20,26,38}
{20} {20,26} {20,46} {20,26,46}
{20} {20,28} {20,29} {20,28,29}
{20} {20,28} {20,30} {20,28,30}
{20} {20,28} {20,37} {20,28,37}
{20} {20,28} {20,38} {20,28,38}
{20} {20,28} {20,46} {20,28,46}
{20} {20,29} {20,30} {20,29,30}
{20} {20,29} {20,37} {20,29,37}
{20} {20,29} {20,38} {20,29,38}
{20} {20,29} {20,46} {20,29,46}
{20} {20,30} {20,37} {20,30,37}
{20} {20,30} {20,38} {20,30,38}
{20} {20,30} {20,46} {20,30,46}
{20} {20,37} {20,38} {20,37,38}
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Table D3 (continued)

{20} {20,37} {20,46} {20,37,46}
{20} {20,38} {20,46} {20,38,46}
{21} {21,15} {21,16} {21,15,16}
{21} {21,15} {21,17} {21,15,17}
{21} {21,15} {21,31} {21,15,31}
{21} {21,15} {21,32} {21,15,32}
{21} {21,15} {21,33} {21,15,33}
{21} {21,15} {21,34} {21,15,34}
{21} {21,15} {21,38} {21,15,38}
{21} {21,15} {21,48} {21,15,48}
{21} {21,16} {21,17} {21,16,17}
{21} {21,16} {21,31} {21,16,31}
{21} {21,16} {21,32} {21,16,32}
{21} {21,16} {21,33} {21,16,33}
{21} {21,16} {21,34} {21,16,34}
{21} {21,16} {21,38} {21,16,38}
{21} {21,16} {21,48} {21,16,48}
{21} {21,17} {21,31} {21,17,31}
{21} {21,17} {21,32} {21,17,32}
{21} {21,17} {21,33} {21,17,33}
{21} {21,17} {21,34} {21,17,34}
{21} {21,17} {21,38} {21,17,38}
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Table D3 (continued)

{21} {21,17} {21,48} {21,17,48}
{21} {21,31} {21,32} {21,31,32}
{21} {21,31} {21,33} {21,31,33}
{21} {21,31} {21,34} {21,31,34}
{21} {21,31} {21,38} {21,31,38}
{21} {21,31} {21,48} {21,31,48}
{21} {21,32} {21,33} {21,32,33}
{21} {21,32} {21,34} {21,32,34}
{21} {21,32} {21,38} {21,32,38}
{21} {21,32} {21,48} {21,32,48}
{21} {21,33} {21,34} {21,33,34}
{21} {21,33} {21,38} {21,33,38}
{21} {21,33} {21,48} {21,33,48}
{21} {21,34} {21,38} {21,34,38}
{21} {21,34} {21,48} {21,34,48}
{21} {21,38} {21,48} {21,38,48}
{22} {22,14} {22,48} {22,14,48}
{22} {22,14} {22,49} {22,14,49}
{22} {22,48} {22,49} {22,48,49}
{23} {23,14} {23,15} {23,14,15}
{23} {23,14} {23,16} {23,14,16}
{23} {23,14} {23,17} {23,14,17}
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Table D3 (continued)

{23} {23,14} {23,24} {23,14,24}
{23} {23,14} {23,40} {23,14,40}
{23} {23,14} {23,41} {23,14,41}
{23} {23,15} {23,16} {23,15,16}
{23} {23,15} {23,17} {23,15,17}
{23} {23,15} {23,24} {23,15,24}
{23} {23,15} {23,40} {23,15,40}
{23} {23,15} {23,41} {23,15,41}
{23} {23,16} {23,17} {23,16,17}
{23} {23,16} {23,24} {23,16,24}
{23} {23,16} {23,40} {23,16,40}
{23} {23,16} {23,41} {23,16,41}
{23} {23,17} {23,24} {23,17,24}
{23} {23,17} {23,40} {23,17,40}
{23} {23,17} {23,41} {23,17,41}
{23} {23,24} {23,40} {23,24,40}
{23} {23,24} {23,41} {23,24,41}
{23} {23,40} {23,41} {23,40,41}
{24} {24,14} {24,23} {24,14,23}
{24} {24,14} {24,27} {24,14,27}
{24} {24,14} {24,35} {24,14,35}
{24} {24,23} {24,27} {24,23,27}
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Table D3 (continued)

{24} {24,23} {24,35} {24,23,35}
{24} {24,27} {24,35} {24,27,35}
{25} {25,12} {25,26} {25,12,26}
{25} {25,12} {25,39} {25,12,39}
{25} {25,12} {25,46} {25,12,46}
{25} {25,26} {25,39} {25,26,39}
{25} {25,26} {25,46} {25,26,46}
{25} {25,39} {25,46} {25,39,46}
{26} {26,8} {26,20} {26,8,20}
{26} {26,8} {26,25} {26,8,25}
{26} {26,8} {26,39} {26,8,39}
{26} {26,8} {26,46} {26,8,46}
{26} {26,20} {26,25} {26,20,25}
{26} {26,20} {26,39} {26,20,39}
{26} {26,20} {26,46} {26,20,46}
{26} {26,25} {26,39} {26,25,39}
{26} {26,25} {26,46} {26,25,46}
{26} {26,39} {26,46} {26,39,46}
{27} {27,14} {27,24} {27,14,24}
{28} {28,7} {28,8} {28,7,8}
{28} {28,7} {28,19} {28,7,19}
{28} {28,7} {28,20} {28,7,20}
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Table D3 (continued)

{28} {28,7} {28,29} {28,7,29}
{28} {28,7} {28,30} {28,7,30}
{28} {28,7} {28,37} {28,7,37}
{28} {28,7} {28,38} {28,7,38}
{28} {28,8} {28,19} {28,8,19}
{28} {28,8} {28,20} {28,8,20}
{28} {28,8} {28,29} {28,8,29}
{28} {28,8} {28,30} {28,8,30}
{28} {28,8} {28,37} {28,8,37}
{28} {28,8} {28,38} {28,8,38}
{28} {28,19} {28,20} {28,19,20}
{28} {28,19} {28,29} {28,19,29}
{28} {28,19} {28,30} {28,19,30}
{28} {28,19} {28,37} {28,19,37}
{28} {28,19} {28,38} {28,19,38}
{28} {28,20} {28,29} {28,20,29}
{28} {28,20} {28,30} {28,20,30}
{28} {28,20} {28,37} {28,20,37}
{28} {28,20} {28,38} {28,20,38}
{28} {28,29} {28,30} {28,29,30}
{28} {28,29} {28,37} {28,29,37}
{28} {28,29} {28,38} {28,29,38}
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Table D3 (continued)

{28} {28,30} {28,37} {28,30,37}
{28} {28,30} {28,38} {28,30,38}
{28} {28,37} {28,38} {28,37,38}
{29} {29,7} {29,20} {29,7,20}
{29} {29,7} {29,28} {29,7,28}
{29} {29,7} {29,30} {29,7,30}
{29} {29,7} {29,31} {29,7,31}
{29} {29,7} {29,37} {29,7,37}
{29} {29,7} {29,38} {29,7,38}
{29} {29,20} {29,28} {29,20,28}
{29} {29,20} {29,30} {29,20,30}
{29} {29,20} {29,31} {29,20,31}
{29} {29,20} {29,37} {29,20,37}
{29} {29,20} {29,38} {29,20,38}
{29} {29,28} {29,30} {29,28,30}
{29} {29,28} {29,31} {29,28,31}
{29} {29,28} {29,37} {29,28,37}
{29} {29,28} {29,38} {29,28,38}
{29} {29,30} {29,31} {29,30,31}
{29} {29,30} {29,37} {29,30,37}
{29} {29,30} {29,38} {29,30,38}
{29} {29,31} {29,37} {29,31,37}
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Table D3 (continued)

{29} {29,31} {29,38} {29,31,38}
{29} {29,37} {29,38} {29,37,38}
{30} {30,7} {30,8} {30,7,8}
{30} {30,7} {30,19} {30,7,19}
{30} {30,7} {30,20} {30,7,20}
{30} {30,7} {30,28} {30,7,28}
{30} {30,7} {30,29} {30,7,29}
{30} {30,7} {30,37} {30,7,37}
{30} {30,8} {30,19} {30,8,19}
{30} {30,8} {30,20} {30,8,20}
{30} {30,8} {30,28} {30,8,28}
{30} {30,8} {30,29} {30,8,29}
{30} {30,8} {30,37} {30,8,37}
{30} {30,19} {30,20} {30,19,20}
{30} {30,19} {30,28} {30,19,28}
{30} {30,19} {30,29} {30,19,29}
{30} {30,19} {30,37} {30,19,37}
{30} {30,20} {30,28} {30,20,28}
{30} {30,20} {30,29} {30,20,29}
{30} {30,20} {30,37} {30,20,37}
{30} {30,28} {30,29} {30,28,29}
{30} {30,28} {30,37} {30,28,37}
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Table D3 (continued)

{30} {30,29} {30,37} {30,29,37}
{31} {31,16} {31,17} {31,16,17}
{31} {31,16} {31,21} {31,16,21}
{31} {31,16} {31,29} {31,16,29}
{31} {31,16} {31,32} {31,16,32}
{31} {31,16} {31,33} {31,16,33}
{31} {31,16} {31,34} {31,16,34}
{31} {31,16} {31,38} {31,16,38}
{31} {31,17} {31,21} {31,17,21}
{31} {31,17} {31,29} {31,17,29}
{31} {31,17} {31,32} {31,17,32}
{31} {31,17} {31,33} {31,17,33}
{31} {31,17} {31,34} {31,17,34}
{31} {31,17} {31,38} {31,17,38}
{31} {31,21} {31,29} {31,21,29}
{31} {31,21} {31,32} {31,21,32}
{31} {31,21} {31,33} {31,21,33}
{31} {31,21} {31,34} {31,21,34}
{31} {31,21} {31,38} {31,21,38}
{31} {31,29} {31,32} {31,29,32}
{31} {31,29} {31,33} {31,29,33}
{31} {31,29} {31,34} {31,29,34}
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Table D3 (continued)

{31} {31,29} {31,38} {31,29,38}
{31} {31,32} {31,33} {31,32,33}
{31} {31,32} {31,34} {31,32,34}
{31} {31,32} {31,38} {31,32,38}
{31} {31,33} {31,34} {31,33,34}
{31} {31,33} {31,38} {31,33,38}
{31} {31,34} {31,38} {31,34,38}
{32} {32,15} {32,16} {32,15,16}
{32} {32,15} {32,17} {32,15,17}
{32} {32,15} {32,21} {32,15,21}
{32} {32,15} {32,31} {32,15,31}
{32} {32,15} {32,33} {32,15,33}
{32} {32,15} {32,34} {32,15,34}
{32} {32,15} {32,38} {32,15,38}
{32} {32,15} {32,48} {32,15,48}
{32} {32,16} {32,17} {32,16,17}
{32} {32,16} {32,21} {32,16,21}
{32} {32,16} {32,31} {32,16,31}
{32} {32,16} {32,33} {32,16,33}
{32} {32,16} {32,34} {32,16,34}
{32} {32,16} {32,38} {32,16,38}
{32} {32,16} {32,48} {32,16,48}
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Table D3 (continued)

{32} {32,17} {32,21} {32,17,21}
{32} {32,17} {32,31} {32,17,31}
{32} {32,17} {32,33} {32,17,33}
{32} {32,17} {32,34} {32,17,34}
{32} {32,17} {32,38} {32,17,38}
{32} {32,17} {32,48} {32,17,48}
{32} {32,21} {32,31} {32,21,31}
{32} {32,21} {32,33} {32,21,33}
{32} {32,21} {32,34} {32,21,34}
{32} {32,21} {32,38} {32,21,38}
{32} {32,21} {32,48} {32,21,48}
{32} {32,31} {32,33} {32,31,33}
{32} {32,31} {32,34} {32,31,34}
{32} {32,31} {32,38} {32,31,38}
{32} {32,31} {32,48} {32,31,48}
{32} {32,33} {32,34} {32,33,34}
{32} {32,33} {32,38} {32,33,38}
{32} {32,33} {32,48} {32,33,48}
{32} {32,34} {32,38} {32,34,38}
{32} {32,34} {32,48} {32,34,48}
{32} {32,38} {32,48} {32,38,48}
{33} {33,16} {33,17} {33,16,17}
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{33} {33,16} {33,21} {33,16,21}
{33} {33,16} {33,31} {33,16,31}
{33} {33,16} {33,32} {33,16,32}
{33} {33,16} {33,34} {33,16,34}
{33} {33,16} {33,38} {33,16,38}
{33} {33,17} {33,21} {33,17,21}
{33} {33,17} {33,31} {33,17,31}
{33} {33,17} {33,32} {33,17,32}
{33} {33,17} {33,34} {33,17,34}
{33} {33,17} {33,38} {33,17,38}
{33} {33,21} {33,31} {33,21,31}
{33} {33,21} {33,32} {33,21,32}
{33} {33,21} {33,34} {33,21,34}
{33} {33,21} {33,38} {33,21,38}
{33} {33,31} {33,32} {33,31,32}
{33} {33,31} {33,34} {33,31,34}
{33} {33,31} {33,38} {33,31,38}
{33} {33,32} {33,34} {33,32,34}
{33} {33,32} {33,38} {33,32,38}
{33} {33,34} {33,38} {33,34,38}
{34} {34,15} {34,16} {34,15,16}
{34} {34,15} {34,17} {34,15,17}
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{34} {34,15} {34,21} {34,15,21}
{34} {34,15} {34,31} {34,15,31}
{34} {34,15} {34,32} {34,15,32}
{34} {34,15} {34,33} {34,15,33}
{34} {34,15} {34,38} {34,15,38}
{34} {34,15} {34,40} {34,15,40}
{34} {34,16} {34,17} {34,16,17}
{34} {34,16} {34,21} {34,16,21}
{34} {34,16} {34,31} {34,16,31}
{34} {34,16} {34,32} {34,16,32}
{34} {34,16} {34,33} {34,16,33}
{34} {34,16} {34,38} {34,16,38}
{34} {34,16} {34,40} {34,16,40}
{34} {34,17} {34,21} {34,17,21}
{34} {34,17} {34,31} {34,17,31}
{34} {34,17} {34,32} {34,17,32}
{34} {34,17} {34,33} {34,17,33}
{34} {34,17} {34,38} {34,17,38}
{34} {34,17} {34,40} {34,17,40}
{34} {34,21} {34,31} {34,21,31}
{34} {34,21} {34,32} {34,21,32}
{34} {34,21} {34,33} {34,21,33}
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{34} {34,21} {34,38} {34,21,38}
{34} {34,21} {34,40} {34,21,40}
{34} {34,31} {34,32} {34,31,32}
{34} {34,31} {34,33} {34,31,33}
{34} {34,31} {34,38} {34,31,38}
{34} {34,31} {34,40} {34,31,40}
{34} {34,32} {34,33} {34,32,33}
{34} {34,32} {34,38} {34,32,38}
{34} {34,32} {34,40} {34,32,40}
{34} {34,33} {34,38} {34,33,38}
{34} {34,33} {34,40} {34,33,40}
{34} {34,38} {34,40} {34,38,40}
{35} {35,24} {35,44} {35,24,44}
{37} {37,7} {37,8} {37,7,8}
{37} {37,7} {37,19} {37,7,19}
{37} {37,7} {37,20} {37,7,20}
{37} {37,7} {37,28} {37,7,28}
{37} {37,7} {37,29} {37,7,29}
{37} {37,7} {37,30} {37,7,30}
{37} {37,7} {37,38} {37,7,38}
{37} {37,7} {37,46} {37,7,46}
{37} {37,8} {37,19} {37,8,19}
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Table D3 (continued)

{37} {37,8} {37,20} {37,8,20}
{37} {37,8} {37,28} {37,8,28}
{37} {37,8} {37,29} {37,8,29}
{37} {37,8} {37,30} {37,8,30}
{37} {37,8} {37,38} {37,8,38}
{37} {37,8} {37,46} {37,8,46}
{37} {37,19} {37,20} {37,19,20}
{37} {37,19} {37,28} {37,19,28}
{37} {37,19} {37,29} {37,19,29}
{37} {37,19} {37,30} {37,19,30}
{37} {37,19} {37,38} {37,19,38}
{37} {37,19} {37,46} {37,19,46}
{37} {37,20} {37,28} {37,20,28}
{37} {37,20} {37,29} {37,20,29}
{37} {37,20} {37,30} {37,20,30}
{37} {37,20} {37,38} {37,20,38}
{37} {37,20} {37,46} {37,20,46}
{37} {37,28} {37,29} {37,28,29}
{37} {37,28} {37,30} {37,28,30}
{37} {37,28} {37,38} {37,28,38}
{37} {37,28} {37,46} {37,28,46}
{37} {37,29} {37,30} {37,29,30}
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Table D3 (continued)

{37} {37,29} {37,38} {37,29,38}
{37} {37,29} {37,46} {37,29,46}
{37} {37,30} {37,38} {37,30,38}
{37} {37,30} {37,46} {37,30,46}
{37} {37,38} {37,46} {37,38,46}
{38} {38,8} {38,20} {38,8,20}
{38} {38,8} {38,21} {38,8,21}
{38} {38,8} {38,28} {38,8,28}
{38} {38,8} {38,29} {38,8,29}
{38} {38,8} {38,31} {38,8,31}
{38} {38,8} {38,32} {38,8,32}
{38} {38,8} {38,33} {38,8,33}
{38} {38,8} {38,34} {38,8,34}
{38} {38,8} {38,37} {38,8,37}
{38} {38,20} {38,21} {38,20,21}
{38} {38,20} {38,28} {38,20,28}
{38} {38,20} {38,29} {38,20,29}
{38} {38,20} {38,31} {38,20,31}
{38} {38,20} {38,32} {38,20,32}
{38} {38,20} {38,33} {38,20,33}
{38} {38,20} {38,34} {38,20,34}
{38} {38,20} {38,37} {38,20,37}
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Table D3 (continued)

{38} {38,21} {38,28} {38,21,28}
{38} {38,21} {38,29} {38,21,29}
{38} {38,21} {38,31} {38,21,31}
{38} {38,21} {38,32} {38,21,32}
{38} {38,21} {38,33} {38,21,33}
{38} {38,21} {38,34} {38,21,34}
{38} {38,21} {38,37} {38,21,37}
{38} {38,28} {38,29} {38,28,29}
{38} {38,28} {38,31} {38,28,31}
{38} {38,28} {38,32} {38,28,32}
{38} {38,28} {38,33} {38,28,33}
{38} {38,28} {38,34} {38,28,34}
{38} {38,28} {38,37} {38,28,37}
{38} {38,29} {38,31} {38,29,31}
{38} {38,29} {38,32} {38,29,32}
{38} {38,29} {38,33} {38,29,33}
{38} {38,29} {38,34} {38,29,34}
{38} {38,29} {38,37} {38,29,37}
{38} {38,31} {38,32} {38,31,32}
{38} {38,31} {38,33} {38,31,33}
{38} {38,31} {38,34} {38,31,34}
{38} {38,31} {38,37} {38,31,37}
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Table D3 (continued)

{38} {38,32} {38,33} {38,32,33}
{38} {38,32} {38,34} {38,32,34}
{38} {38,32} {38,37} {38,32,37}
{38} {38,33} {38,34} {38,33,34}
{38} {38,33} {38,37} {38,33,37}
{38} {38,34} {38,37} {38,34,37}
{39} {39,12} {39,25} {39,12,25}
{39} {39,12} {39,26} {39,12,26}
{39} {39,25} {39,26} {39,25,26}
{40} {40,0} {40,12} {40,0,12}
{40} {40,0} {40,16} {40,0,16}
{40} {40,0} {40,17} {40,0,17}
{40} {40,0} {40,23} {40,0,23}
{40} {40,0} {40,34} {40,0,34}
{40} {40,0} {40,41} {40,0,41}
{40} {40,12} {40,16} {40,12,16}
{40} {40,12} {40,17} {40,12,17}
{40} {40,12} {40,23} {40,12,23}
{40} {40,12} {40,34} {40,12,34}
{40} {40,12} {40,41} {40,12,41}
{40} {40,16} {40,17} {40,16,17}
{40} {40,16} {40,23} {40,16,23}
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Table D3 (continued)

{40} {40,16} {40,34} {40,16,34}
{40} {40,16} {40,41} {40,16,41}
{40} {40,17} {40,23} {40,17,23}
{40} {40,17} {40,34} {40,17,34}
{40} {40,17} {40,41} {40,17,41}
{40} {40,23} {40,34} {40,23,34}
{40} {40,23} {40,41} {40,23,41}
{40} {40,34} {40,41} {40,34,41}
{41} {41,0} {41,23} {41,0,23}
{41} {41,0} {41,40} {41,0,40}
{41} {41,23} {41,40} {41,23,40}
{42} {42,18} {42,43} {42,18,43}
{42} {42,18} {42,44} {42,18,44}
{42} {42,43} {42,44} {42,43,44}
{43} {43,42} {43,44} {43,42,44}
{44} {44,35} {44,42} {44,35,42}
{44} {44,35} {44,43} {44,35,43}
{44} {44,42} {44,43} {44,42,43}
{46} {46,8} {46,20} {46,8,20}
{46} {46,8} {46,25} {46,8,25}
{46} {46,8} {46,26} {46,8,26}
{46} {46,8} {46,37} {46,8,37}
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Table D3 (continued)

{46} {46,20} {46,25} {46,20,25}
{46} {46,20} {46,26} {46,20,26}
{46} {46,20} {46,37} {46,20,37}
{46} {46,25} {46,26} {46,25,26}
{46} {46,25} {46,37} {46,25,37}
{46} {46,26} {46,37} {46,26,37}
{48} {48,14} {48,15} {48,14,15}
{48} {48,14} {48,16} {48,14,16}
{48} {48,14} {48,21} {48,14,21}
{48} {48,14} {48,22} {48,14,22}
{48} {48,14} {48,32} {48,14,32}
{48} {48,14} {48,49} {48,14,49}
{48} {48,15} {48,16} {48,15,16}
{48} {48,15} {48,21} {48,15,21}
{48} {48,15} {48,22} {48,15,22}
{48} {48,15} {48,32} {48,15,32}
{48} {48,15} {48,49} {48,15,49}
{48} {48,16} {48,21} {48,16,21}
{48} {48,16} {48,22} {48,16,22}
{48} {48,16} {48,32} {48,16,32}
{48} {48,16} {48,49} {48,16,49}
{48} {48,21} {48,22} {48,21,22}
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Table D3 (continued)

{48} {48,21} {48,32} {48,21,32}
{48} {48,21} {48,49} {48,21,49}
{48} {48,22} {48,32} {48,22,32}
{48} {48,22} {48,49} {48,22,49}
{48} {48,32} {48,49} {48,32,49}
{49} {49,14} {49,15} {49,14,15}
{49} {49,14} {49,16} {49,14,16}
{49} {49,14} {49,22} {49,14,22}
{49} {49,14} {49,48} {49,14,48}
{49} {49,15} {49,16} {49,15,16}
{49} {49,15} {49,22} {49,15,22}
{49} {49,15} {49,48} {49,15,48}
{49} {49,16} {49,22} {49,16,22}
{49} {49,16} {49,48} {49,16,48}
{49} {49,22} {49,48} {49,22,48}
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APPENDIX E

ADDITIONAL OPTIMAL LISTING AND HOME OPO SELECTION

DECISIONS FOR THE CARDINALITY MODEL
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Table E1: Optimal listing decisions for patient 1 for different initial health states, K, and

when admissible set includes OPOs within 250 miles of Chicago.

Initial health K Optimal Optimal Total life Gain in life

state OPO region expectancy expectancy

(MELD score) set set (days) (Percentage)

12 1 Chicago, IL {7} 2759

Chicago, IL

2 Indianapolis, IN {7,10} 2983 8.12

Chicago, IL

Indianapolis, IN

3 Madison, WI {7,10} 3066 2.78

Chicago, IL

Indianapolis, IN

Madison, WI

4 North Liberty, IA {7,8,10} 3099 1.08

30 1 Chicago, IL {7} 1356

Chicago, IL

2 Indianapolis, IN {7,10} 1535 13.20

Chicago, IL

Indianapolis, IN

3 North Liberty, IA {7,8,10} 1608 4.76

Chicago, IL

Indianapolis, IN

North Liberty, IA

4 Madison, WI {7,8,10} 1646 2.36
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Table E2: Optimal listing decisions for patient 2 for different initial health states, K, and

when admissible set includes OPOs within 250 miles of Chicago.

Initial health K Optimal Optimal Total life Gain in life

state OPO region expectancy expectancy

(MELD score) set set (days) (Percentage)

12 1 Chicago, IL {7} 5338

Chicago, IL

2 North Liberty, IA {7,8} 5575 4.44

Chicago, IL

North Liberty, IA

3 Indianapolis, IN {7,8,10} 5630 0.99

Chicago, IL

North Liberty, IA

Indianapolis, IN

4 Madison, WI {7,8,10,11} 5656 0.46

30 1 Chicago, IL {7} 3529

Chicago, IL

2 Indianapolis, IN {7,10} 4072 15.39

Chicago, IL

Indianapolis, IN

3 North Liberty, IA {7,8,10} 4250 4.37

Chicago, IL

Indianapolis, IN

North Liberty, IA

4 Madison, WI {7,8,10} 4323 1.72
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Table E3: Home OPO selection decision for patient 1 for different initial health states, K,

and when admissible set includes OPOs within 250 miles of the home OPO.

Initial health K Best Total life % gain in life

state (MELD) home OPO expectancy expectancy

in best over worst

home OPO home OPO

12 1 Tampa, FL 3053 12.28

2 Tampa, FL 3123 8.97

Gainesville, FL

3 Indianapolis, IN 3126 5.57

Louisville, KY

Maumee, OH

4 Cincinnati, OH 3138 4.72

Indianapolis, IN

Louisville, KY

Maumee, OH

30 1 Cincinnati, OH 1522 33.38

2 Cincinnati, OH 1642 19.98

Louisville, KY

3 Cincinnati, OH 1676 12.77

Louisville, KY

Indianapolis, IN

4 Cincinnati, OH 1697 11.90

Louisville, KY

Indianapolis, IN

Ann Arbor, MI
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Table E4: Home OPO selection decision for patient 2 for different initial health states, K,

and when admissible set includes OPOs within 250 miles of the home OPO.

Initial health K Best Total life % gain in life

state (MELD) home OPO expectancy expectancy

in best over worst

home OPO home OPO

12 1 Westwood, KS 5673 7.16

2 Westwood, KS 5704 4.56

St. Louis, MO

3 St. Louis, MO 5722 3.44

Westwood, KS

Indianapolis, IN

4 Nashville, TN 5723 2.83

Birmingham, AL

Louisville, KY

Memphis, TN

30 1 Cincinnati, OH 3984 47.14

2 Cincinnati, OH 4273 21.34

Louisville, KY

3 Cincinnati, OH 4386 12.18

Louisville, KY

Indianapolis, IN

4 Cincinnati, OH 4440 11.06

Louisville, KY

Indianapolis, IN

Ann Arbor, MI
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APPENDIX F

ADDITIONAL OPTIMAL LISTING AND HOME OPO SELECTION

DECISIONS FOR THE TOTAL DISTANCE MODEL

Table F1: Optimal OPO sets for Patient 1 (maximum total distance = 400 miles).

Initial Optimal Total life Percentage gain

health OPO Region expectancy attained in life expectancy

state set by a total distance attained over

(MELD) of 400 miles a total distance

(days) of 300 miles

12 Chicago, IL 7 3085 2.27

Ann Arbor, MI 10

Madison, WI 7

30 Chicago, IL 7 1596 1.94

Madison, WI 7

North Liberty, IA 8

174



Table F2: Optimal OPO sets for Patient 2 (maximum total distance = 400 miles).

Initial Optimal Total life Percentage gain

health OPO Region expectancy attained in life expectancy

state set by a total distance attained over

(MELD) of 400 miles a total distance

(days) of 300 miles

6 Chicago, IL 7 5644 1.24

Louisville, KY 11

32 Chicago, IL 7 4197 1.36

Indianapolis, IN 10

Madison, WI 7
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Table F3: Optimal home OPO selection decision for Patient 1(maximum total distance =

400 miles).

Initial health Best home OPO Total life Gain in life

state and optimal Region expectancy expectancy over

MELD score OPO set in best worst home

home OPO OPO (%)

12 Louisville, KY 11 3132 10.59

Cincinnati, OH 10

Indianapolis, IN 10

Nashville, TN 11

30 Cincinnati, OH 10 1692 34.18

Columbus, OH 10

Indianapolis, IN 10

Louisville, KY 11
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Table F4: Optimal home OPO selection decision for Patient 2(maximum total distance =

400 miles).

Initial health Best home OPO Total life Gain in life

state and optimal Region expectancy expectancy over

MELD score OPO set in best worst home

home OPO OPO (%)

12 Louisville, KY 11 5718 5.40

Cincinnati, OH 10

Indianapolis, IN 10

Nashville, TN 11

30 Cincinnati, OH 10 4424 38.81

Columbus, OH 10

Indianapolis, IN 10

Louisville, KY 11
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APPENDIX G

MAPS OF US TRANSPLANT REGIONS AND OPOS

Figure G1: Transplant Regions.
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Figure G2: Transplant OPOs.

Figure G3: OPOs within 350 miles of Louisville, KY span Regions 7, 8, 10 and 11.
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APPENDIX H

P-VALUES OF THE LOGISTIC REGRESSION MODELS
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Ethnicity category 5 

 
 

 
All disease groups, all ethnicity categories, and a binary variable for female is present 
 
 

Figure H1: p-values of the logistic regression models when only one predictor variable is

present and all predictor variables are present.
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