
EVOLUTIONARY SOLUTIONS AND INTERNET

APPLICATIONS FOR ALGORITHMIC GAME

THEORY

by

Christine Chung

B.A. in Computer Science, Cornell University, 1999

M.Eng. in Computer Science, Cornell University, 2000

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12208514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

ARTS AND SCIENCES

This dissertation was presented

by

Christine Chung

It was defended on

June 10, 2009

and approved by

Kirk Pruhs, Professor, Department of Computer Science

Panos Chrysanthis, Professor, Department of Computer Science

Alexandros Labrinidis, Associate Professor, Department of Computer Science

Avrim Blum, Professor, Department of Computer Science, Carnegie Mellon University

Dissertation Director: Kirk Pruhs, Professor, Department of Computer Science

ii

EVOLUTIONARY SOLUTIONS AND INTERNET APPLICATIONS FOR

ALGORITHMIC GAME THEORY

Christine Chung, PhD

University of Pittsburgh, 2009

The growing pervasiveness of the internet has created a new class of algorithmic problems:

those in which the strategic interaction of autonomous, self-interested entities must be ac-

counted for. So motivated, we seek to (1) use game theoretic models and techniques to

study practical problems in load balancing, data streams and internet traffic congestion, and

(2) demonstrate the usefulness of evolutionary game theory’s adaptive learning model as an

analytical and evaluative tool.

First we consider the evolutionary game theory concept of stochastic stability, and pro-

pose the price of stochastic anarchy as an alternative to the price of anarchy for quantifying

the cost of having no central authority. Unlike Nash equilibria, stochastically stable states

are the result of natural dynamics of large populations of computationally bounded agents,

and are resilient to small perturbations from ideal play. To illustrate the utility of stochastic

stability, we study the load balancing game on related machines, which has an unbounded

price of anarchy, even in the case of two jobs and two machines. We show that in contrast,

even in the general case, the price of stochastic anarchy is bounded.

Next, we propose auction-based mechanisms for admission control of continuous queries

to a Data Stream Management System. When submitting a query, each user also submits a

bid: how much she is willing to pay for her query to run. Our mechanisms must admit queries

and set payments in a way that maximizes system revenue while incentivizing customers to

use the system honestly. We propose several manipulation-resistant payment mechanisms

and prove that one guarantees a profit close to a standard profit benchmark, and the others

iii

perform well experimentally.

Finally, we study the long standing problem of congestion control at bottleneck routers

on the internet. We examine the effectiveness of commonly-used queuing policies when each

network endpoint is self-interested and has no information about the other endpoints’ actions

or preferences. By employing evolutionary game theory, we find that while bottleneck routers

face heavy congestion at stochastically stable states under policies being currently deployed,

a practical policy that was recently proposed yields fair and efficient conditions with no

congestion.

iv

TABLE OF CONTENTS

PREFACE . x

1.0 INTRODUCTION . 1

1.1 Quantifying Inefficiency of Equilibria . 5

1.1.1 Our Contribution: the Price of Stochastic Anarchy 7

1.2 Algorithmic Mechanism Design . 9

1.2.1 Our Contribution: Data Streams Query Admission 10

1.3 Congestion at Internet Bottleneck Routers 12

2.0 THE PRICE OF STOCHASTIC ANARCHY 14

2.1 Introduction . 14

2.1.1 Our Results . 15

2.1.2 Related Work . 16

2.2 Model and Background . 18

2.2.1 Adaptive Play and Stochastic Stability 18

2.2.2 Imitation Dynamics . 21

2.3 Load Balancing: Game Definition and Price of Nash Anarchy 22

2.4 Upper Bound on Price of Stochastic Anarchy 24

2.4.1 Two Players, Two Machines . 24

2.4.2 General Case: n Players, m Machines 27

2.5 Lower Bound on Price of Stochastic Anarchy 30

2.6 Summary . 33

3.0 CONTINUOUS QUERY ADMISSION CONTROL 35

3.1 Introduction . 35

v

3.1.1 System Model and Problem Statement 37

3.1.2 Relevant Background on Auctions . 40

3.1.3 This Work . 42

3.2 Greedy Strategyproof Mechanisms . 45

3.2.1 Agents Chosen by Remaining Load 45

3.2.2 Agents Chosen by Static Fair Share Load 47

3.2.2.1 CAF (CQ Admission based on Fair Share) 47

3.2.2.2 CAF+: An Extension to CAF 48

3.2.3 Agents Chosen by Total Load . 50

3.3 A Profit Guarantee . 51

3.3.1 A Randomized Mechanism . 51

3.3.1.1 Strategyproofness . 52

3.3.1.2 Competitiveness . 54

3.4 Sybil Attack . 56

3.4.1 Attacks Against the Fair Share Mechanisms 57

3.4.2 Attacks Against the Total Load Mechanisms 58

3.4.3 Attacks Against the Randomized Mechanism 61

3.5 Experimental Evaluation . 63

3.5.1 Experimental Platform . 63

3.5.2 Experimental Results. 65

3.6 Summary . 69

4.0 INTERNET BOTTLENECK ROUTER CONGESTION 73

4.1 Introduction . 73

4.1.1 Our Results . 75

4.1.2 Related Work . 77

4.2 Model, Notation, and Background . 79

4.2.1 Adaptive Learning and Imitation Dynamics 79

4.3 Droptail . 81

4.3.1 Droptail’s Best Response . 82

4.3.2 Droptail’s NE . 83

vi

4.3.3 Droptail’s Stochastically Stable States 85

4.4 RED (Random Early Detection) . 88

4.4.1 RED’s Best Response . 90

4.4.2 RED’s Nash Equilibria . 93

4.4.3 RED’s Stochastically Stable States 97

4.5 “Fair” Queue Policy . 100

4.6 Summary . 103

5.0 CONCLUSIONS . 106

BIBLIOGRAPHY . 109

vii

LIST OF TABLES

1 Summary of the greedy algorithms . 43

2 Properties of our proposed auction mechanisms 45

3 A sybil attack against CAT+. 59

4 Workload Characteristics . 64

5 Runtime Performance. 68

6 Properties of our proposed auction mechanisms. 70

viii

LIST OF FIGURES

1 Research goals. 4

2 Unbounded price of anarchy in a load balancing game. 8

3 A load-balancing game with bad price of stochastic anarchy. 30

4 PSA can be worse than m. 33

5 Two views of a sample input instance. 38

6 A Sybil Attack. 56

7 Experimental results: admission rate, profit and payoff. 66

8 Experimental results for profit as capacity varies. 68

9 Profit comparison. 70

10 Ranges of g values for three different RED best response functions. 91

ix

PREFACE

First, I would like to thank my adviser, Kirk Pruhs, for his invaluable guidance, for keeping

me on track and pushing me in my research, for all his practical career advice, for generously

supporting me and providing me with many research opportunities, and for always having

my best interests in mind. I am deeply indebted to him, and I was fortunate to have found

such a wonderful adviser.

I would also like to thank my committee members Panos Chrysanthis, Alex Labrinidis,

and Avrim Blum. Panos and Alex have made me feel like an honorary member of their

flourishing data management group, welcoming me into their ADMT family and providing

me much help and guidance over the years. They have been like co-advisers to me. And

Avrim, though very busy at CMU with his endless line of successful students, has generously

made time in his schedule to give me advice and feedback on my research and writing.

I also feel deep gratitude for my collaborators and co-authors, from whom I have learned

so much and with whom I’ve thoroughly enjoyed working: Katrina Ligett, Aaron Roth,

Evangelia Pyrga, Lory Al Moakar, Shenoda Guirguis, Panickos Neophytou, Rob Van Stee,

Giorgos Christodoulou, Alexander Souza, Tim Nonner, and Patchrawat Uthaisombut (who

taught me a great deal and had endless patience when working with me on my first publica-

tion as a graduate student). You have all helped me to personally affirm that there’s little in

life that can be as fun and rewarding as research. Others I’d like to thank for playing a big

role in my grad school experience include Michel Hanna, Peter Djalaliev, Weijia Li, Subrata

Acharya, Jeff Nelson and Ricky Sanchez.

Before graduate school, I received valuable support and encouragement from my intern-

ship adviser at Bell Labs, Bob Kurshan, and my superviser at Sportvision, Rick Cavallaro.

And in college, my excitement for computer science (and related intellectual pursuits)

x

was inspired and nurtured by many professors (Jon Kleinberg, Eva Tardos, Bart Selman,

Joe Halpern, Lillian Lee), as well as other students and friends (Rami Baalbaki, Aaron

Lowenkron, Tomasz Piech, Thomas Hwang, Bob Rossi, Felix Rodriguez, Garrett Lang, Scott

Aaronson) who have also influenced me in ways beyond the intellectual. Thanks also to my

“family” at the Mandarin House for their love and support, and to the Cornell Women’s

Ultimate team (especially our coach, Mandy Carreiro), from whom I first learned true com-

mitment, dedication, and passion.

If my interest in computer science blossomed in college, it was seeded in high school by

my computer science and physics teacher, Kenneth Appel. Without him, I would never have

become a computer scientist. I also need to thank my lifelong friends Felicia Yue and Abby

Weintraub, who have stuck with me as our lives and careers have evolved through the years.

Finally, thank you to my family, Judy, Fung-Lung, Christopher, and Clifford, for always

loving me, supporting me, humoring me, and making me laugh. You are the greatest and

most special people I know! That is, besides Brian, to whom I dedicate this thesis. I don’t

have the words to express my abiding love and gratitude for you.

xi

1.0 INTRODUCTION

The growing pervasiveness of the internet and its new technologies has created a new class of

algorithmic problems: those in which the strategic interaction of independent, self-interested

entities must be accounted for. New internet-based settings have given rise to problems where

solutions are not always dictated by a central authority, but often formed by the aggregation

of the actions of separate, autonomous agents.

Consider the formation of the internet itself: internet service providers (ISPs) sprang up

around the world, each ISP with a set of endpoints it sought to connect in a way that was

most self-serving and profitable. Thus, the topology of the internet was not designed by

some central authority for the overall social good, but resulted from the aggregate decisions

of independent entities whose self-interests were often in conflict with one another.

As another example, consider what happens as traffic is routed over a network. The

network might be a network of computers and the traffic might be data traffic, but one

might alternatively simply consider a network of roads and automobile traffic. Each car on

the road wishes to travel from its starting point to its destination as quickly as possible, and

routes itself accordingly. However, such separate, individual routing decisions might cause

certain routes to become congested, decreasing overall travel efficiency, making the average

travel time higher than if a central traffic controller dictated the routes.

We could also consider the dominant source of Google’s revenue: online ad sales. Google

makes money by selling ad slots for each search string entered by users of Google’s free and

ubiquitous search engine. Of course, Google seeks to design an auction system that incen-

tivizes advertisers to bid their true valuation for each search string, to determine the actual

market value of each ad slot. On the other hand, advertisers (companies and individuals) bid-

ding on the search strings inevitably try to find ways to strategize and manipulate Google’s

1

pricing system in their favor. Indeed, there is an entire industry that sells consulting services

to help advertisers optimize their bidding strategies against Google’s ad auction system. The

prices Google charges for ad slots are a function of the bids of the many potential advertisers

for each search string.

And finally, consider network endpoints behind a bottleneck router on the internet. Each

endpoint makes decisions about how much traffic to send through the router, while the

router, being of limited capacity, runs a protocol deciding which packets to send through

and which packets to drop. Each of the endpoints is an independent agent making decisions

and choosing a strategy for transmitting its packets based on its own interests, without

regard to the others. The aggregate decisions of the network endpoints determine how many

packets the router drops from each traffic flow. Given the fact that the bottleneck router

has limited bandwidth/capacity, will greedier packet flows inevitably quash the traffic flow

of the endpoints that try to send less traffic? Is there anything the designer of the router’s

protocol can do to prevent this?

There are innumerable computing and internet-based settings that echo the same story:

self-interested, autonomous entities interact and the combination of their individual decisions

together determine the final system state or outcome. These settings in fact fit the definition

of a game: a setting where a number of decision-making agents interact, each agent (or

player) with a set of possible strategies or actions to choose from, and each with a personal

preference over the possible outcomes of their interaction (expressed as a utility or payoff

function they wish to maximize). In the example of endpoints behind a bottleneck router,

each player perhaps wishes transmit its data so as to maximize the number of packets

it successfully sends minus the number of its packets that get dropped. In the case of

advertiser’s buying Google’s ad words, each player’s goal would be to place the bid that

maximizes the difference between his valuation of the ad spot and the amount he must

pay. In the case of traffic routing, each player chooses her own route perhaps for the goal of

minimizing her travel time from starting point to destination (i.e., maximizing the negation).

And in the internet formation example, each ISP’s goal might be to connect its clients in a

way that minimizes its own cost.

One natural question is, how bad do things actually get when strategic players trying to

2

maximize their own payoffs behave selfishly? For example, in the traffic routing problem,

how many times worse is the average travel time when the players make their own routing

choices than the minimum-possible average travel time? With internet network formation,

how many times costlier is the total construction of the final network formed by the many

separate ISPs than a minimum-possible-cost network?

Another natural question is how we might design underlying protocols (aka mechanisms)

in such a way that agents’ self-interests become aligned with the designer’s central objectives.

Google, for example, wishes to design an auction mechanism that guarantees any payoff

maximizing bidder will always prefer to reveal his true valuation, rather than bid falsely.

And protocols for bottleneck routers on the internet should be designed to incentivize network

endpoints to share router capacity fairly.

These new and vital applications have fueled the growth of the field of algorithmic game

theory. Algorithmic game theory is simply game theory from an algorithmic perspective:

it includes algorithm design when strategic agents are part of the input with a concern for

computational complexity, and proving worst-case guarantees on the performance of these

algorithms. It includes evaluation of solution concepts with an emphasis on whether finding

such solutions is computationally tractable. And it includes the general game theoretic study

of any real-world problems that now arise in computer-based settings.

The goal of our research is to contribute to shaping and enriching the study of algorithmic

game theory. (See Figure 1.) We wish to widen the breadth of understanding of game

theory by introducing the application of lesser-known areas of game theory, and we also

seek to supply game theoretic frameworks and analyses for a wider range of applied areas of

computer science. Specifically, our goals are

1. to use game theoretic models and techniques to study practical problems in load balanc-

ing, data streams and internet traffic congestion, and

2. to demonstrate the usefulness of evolutionary game theory’s adaptive learning model as

an analytical and evaluative tool.

Toward these goals, we have accomplished the following, which are described in further detail

later in this Chapter.

3

Algorithmic

Game Theory

Evolutionary

Game Theory

CS

Applications

(2)(1)

1

Figure 1: This goals of this work can be viewed as bridge building. The first goal corresponds

to the bridge between applied computer science and algorithmic game theory, and the second

goal corresponds to the bridge between evolutionary game theory’s adaptive play model and

algorithmic game theory.

• We consider the evolutionary game theory concept of stochastic stability, and propose the

price of stochastic anarchy as an alternative to the price of anarchy for quantifying the

cost of having no central authority. Unlike Nash equilibria, stochastically stable states

are the result of natural dynamics of large populations of computationally bounded

agents, and are resilient to small perturbations from ideal play. To illustrate the utility

of stochastic stability, we study the load balancing game on related machines, which has

an unbounded price of anarchy, even in the case of two jobs and two machines. We show

that in contrast, in the two player case, the price of stochastic anarchy is 2, and that

even in the general case, the price of stochastic anarchy is bounded.

• We propose auction-based mechanisms for admission control of continuous queries to a

Data Stream Management System. When submitting a query, each user also submits a

bid: how much she is willing to pay for her query to run. The mechanism then determines

which queries to admit, and how much to charge each user. Our mechanisms must admit

queries and set payments in a way that maximizes system revenue while incentivizing

customers to use the system honestly, in the following sense. For the system to be

manipulation-resistant, we require that each user maximizes her payoff by bidding her

true value of having her query run, and we also propose the notion of sybil-immunity,

4

that is, that no user can increase her payoff by forging additional false identities. Towards

this, we propose several manipulation-resistant payment mechanisms and prove that one

guarantees a profit close to a standard profit benchmark, and the others perform well

experimentally.

• We study the long standing problem of congestion control at bottleneck routers on the

internet. We study how effective some common router queuing policies are when each

network endpoint is a self-interested player with no information about the other players’

actions or preferences. By employing the adaptive learning model of evolutionary game

theory, we study policies such as Droptail, RED, and a policy recently proposed by Gao

et al. [46]. We find that while bottleneck routers face heavy congestion at stochastically

stable states under Droptail and RED, which are currently widely deployed, the policy

of Gao et al. yields fair and efficient conditions with no congestion.

We now begin with a brief summary of the story arcs in algorithmic game theory research

that bring us to this juncture. Though computer science initially found its game theory niche

in exploring the complexity of computing central solution concepts like Nash equilibria, we

present here two other outgrowths of the computer science-game theory merger that have

come to form what some consider the “most active” areas of research in algorithmic game

theory today [77]: Quantifying the Inefficiency of Equilibria and Algorithmic Mechanism

Design. (For an extensive survey of the work that falls under the umbrella of algorithmic

game theory, please see [68].)

1.1 QUANTIFYING INEFFICIENCY OF EQUILIBRIA

The primary solution concept in game theory is the well-known Nash equilibrium. In a

game, a Nash equilibrium is a state where all players have chosen strategies such that, given

the other players’ current strategy choices, no player can benefit by choosing an alternate

strategy. It can be thought of as a “stable state,” one where all players feel satisfied in

some sense with their choices, or do not look back with regret on their own actions after

the game has been played. However, from the perspective of say, the social good, or some

5

centralized goal, Nash equilibrium can often leave a lot to be desired. There is an expansive

body of work on quantifying this “inefficiency” of Nash equilibria. Here, we limit ourselves

to a few highlights, to provide some context for our contribution. For a complete survey of

the research in this area, we defer to Part Three of the text by Nisan et al [68].

In 1999, Koutsoupias and Papadimitriou [57] initiated the study of “worst-case equilib-

ria.” They proposed that analogous to worst-case approximation and worst-case competi-

tiveness, we should study worst-case lack-of-coordination, or “anarchy.” Specifically, they

studied a load balancing problem and considered the goal of minimizing makespan (the time

when the final job is completed). They sought to determine how much worse the makespan

is when, instead of having a centralized job scheduling algorithm, the jobs each belong to

a player who is able to selfishly choose which server to run his job on. They assumed that

rational, self-interested players would end up at a Nash equilibrium solution. The ratio of

the value at a worst-case Nash equilibrium to the value at the optimal solution of a game

became known as the price of anarchy.

Following their paper, a spate of price of anarchy studies followed. Some more notable

results include studies on other load balancing variants [24, 62], nonatomic selfish routing

(where each player wishes to route a negligible fraction of the overall traffic) [74], atomic

selfish routing (where each player routes a nonnegligible fraction of the overall traffic) [44, 9,

22], congestion games (where players vie for resources, say paths in a network, and the cost

of using each resource is function of the number of players using it) [81, 20], facility location

(where each player wishes to locate her facility to service customers in a way that maximizes

her profit) [85], and various network creation/design/formation games [7, 18, 4, 30, 5, 32, 23].

Alongside this body of work, there is also a significant amount of work that studies the price

of stability in games. The price of stability, initially proposed by [7], is the ratio of the value

of the best Nash equilibrium to the value of the optimal solution. It can be thought of as an

optimist’s version of the pessimistic price of anarchy.

However, one downside of the Nash equilibrium solution concept is that while mixed Nash

equilibria (Nash equilibria in which players may randomize over their possible strategies)

always exist in any game, pure Nash equilibria do not always exist. The notion that players

might randomize over many strategies rather than sticking to one strategy is not realistic

6

or appropriate for many settings. Another drawback is that while Nash equilibria are game

states that are resilient to unilateral defection in play, they fail to account for the possibility

that two or more players may cooperate and jointly wish defect from a Nash equilibrium

state. Due to these limiting properties of Nash equilibria, alternate solution concepts have

also been proposed and studied, including: the price of sinking (sink-equilibria always exist

in a game and do not refer to a particular stable state like Nash equilibria, but a whole

neighborhood of states that a game may indefinitely shuffle between) [48]; approximate

equilibria (states where players may benefit from unilateral defection, but not by very much)

[8, 18, 4]; and the strong price of anarchy (strong Nash equilibria are resilient to simultaneous

defections by any number of players, making them resilient to collusion among any subset

of players) [6, 38, 30, 4].

1.1.1 Our Contribution: the Price of Stochastic Anarchy

A major limitation of the Nash equilibrium solution concept is that while it’s clear that once

players arrive at such an equilibrium, it is stable (in the sense that players don’t benefit from

unilaterally changing their strategy), the Nash equilibrium itself comes with no roadmap for

how or if players might arrive at such a solution to begin with. And yet another nagging

property of Nash equilibria: solutions that seem very unnatural can satisfy the definition of

Nash equilibrium. For example consider the following load balancing game.

Example 1.1.1. We are given two machines, M1 and M2, and two players, each with a
job to run, each with the goal of having their job completed as quickly as possible. Job 1
costs ε time to run on M1, and job 2 costs ε time to run on M2. However, job 1 costs 1
full time unit to run on M2 and job 2 costs 1 full time unit to run on M1. (See Figure 2.)
Assume that if two jobs are on the same machine, they both reach completion at time equal
to the sum of their individual execution times. (So if both jobs are assigned to M1, then
they both finish at time 1 + ε.) If our goal is to assign the jobs to machines in a way that
minimizes makespan, then the optimal solution is obviously to assign job 1 to M1 and job
2 to M2. This is also the solution that would be most preferable to the players, as under
this assignment, they each finish at time ε. However player 1 choosing M2 and player 2
choosing M1 is a Nash equilibrium, since both players have chosen the machine where they
finish earliest given the choice of the other player. At this suboptimal Nash equilibrium,
the makespan is 1, while at the optimal solution, the makespan was ε. In this case, the
price of anarchy is 1/ε, an unbounded value (since ε can be arbitrarily small)!

7

Figure 2: This figure shows the time for running each job on each machine in Example 1.1.1,

where Price of Anarchy is unbounded. The assignment of jobs to machines that gives the

worst Nash equilibrium is circled.

The optimal solution in this example is a more robust Nash equilibrium in the sense that

it is clearly far better for both players than the bad Nash equilibrium; neither player prefers

any other outcome. On the other hand, at the bad Nash equilibrium, each player privately

wishes she was on the opposing player’s machine; if one of them switched to her “preferred”

machine, the other would quickly follow suit. These types of brittle Nash are often what

make people question whether Nash equilibrium is the most sensible solution concept to

study. In light of these many drawbacks, using the price of anarchy to measure the cost of

the lack of having centralized control may sometimes be too pessimistic.

Motivated by this need for a more robust measure of the price of “anarchy,” in Chapter

2 we introduce the notion of the price of stochastic anarchy. Stochastic stability is an evolu-

tionary game theory notion proposed in 1990 by Foster and Young [43] within a framework

they called adaptive learning. Given a game that is played repeatedly, where the players

use given natural heuristics (functions of play history) to decide (or “learn”) what strategies

to play in each round, the stochastically stable states are those solutions that are robust to

noisy behavior (mistakes, or sporadic unexplained behavior by the players) and have positive

long-run probability of being played. Such a solution concept by definition allows for com-

putationally bounded, imperfect, players with limited information, and in fact was devised

with such players specifically in mind. After finding the stochastically stable states of a

8

game, there are no remaining questions about how players arrive at such solutions. And all

finite games must have stochastically stable states by definition.

In our work, we show that in the load balancing game on unrelated machines, while the

price of anarchy is unbounded, the price of stochastic anarchy is bounded. Our work is the

first foray into using stochastically stable states as the solution concept when bounding the

inefficiency of equilibria. It sows initial seeds for the future development of new analytical

techniques needed to obtain such results.

The work in Chapter 2 was completed in collaboration with Katrina Ligett, Kirk Pruhs,

and Aaron Roth.

1.2 ALGORITHMIC MECHANISM DESIGN

Algorithmic mechanism design was first defined and proposed by Nisan and Ronen in [67].

They viewed the traditional mechanism design of economists simply as algorithm design

where the inputs include strategic players whose actions are determined by their payoff

functions. Thus, they proposed the study of mechanism design as applied to “algorithmic

problems,” like task scheduling, load balancing, or routing, with an emphasis on computa-

tional tractability. Following their work, algorithmic mechanism design became a popular

area of research. For a complete survey of work in the area, refer to Part Two of the text by

Nisan et al [68].

For our purposes we concentrate here on the design of auction mechanisms. An auction

mechanism is an algorithm that can be applied any time a set of resources must be allocated

to a set of strategic agents. In an auction setting, we assume the agents have private

valuations for the resources, and our goal is to assign the resources to the agents and charge

them prices in a way that optimizes some objective. Most commonly, the objective is either

to maximize social welfare (the total valuation of those agents who receive resources), as in

the case of the Federal Communications Commission allocating radio spectrum to various

telecom companies, or to maximize profit (the total payments charged to agents who receive

resources), as in the case of Google selling the ads it displays after each user’s search query.

9

The catch is that we also require the algorithm to be designed in such a way so as to

make the players always prefer, strategically speaking, to reveal their true valuations when

bidding. Such a mechanism is termed incentive compatible, strategy-proof, or truthful. The

truthfulness of a mechanism guarantees that if bidders are rational, they will reveal their true

valuations, and allow us to determine just how close the system is to reaching its objective

(whether it be maximizing social welfare, or maximizing profit). While ensuring truthfulness

inevitably leads to sacrifices in profit, guaranteeing truthfulness of a system gives users a

sense of security and trust in the system, so even for profit-oriented systems, it can be seen

as a long-term investment. This philosophy is apparently held by real-world profit-seekers

such as the online auction house, eBay, who uses Vickrey’s second-price auction mechanism

(a well-known, auction mechanism that only charges bidders the second highest price rather

than the winning bid amount in order to guarantee truthfulness).

For our work, we are interested combinatorial auctions. In a combinatorial auction,

each bidder has a different valuation for every possible subset of items to be allocated.

The type of combinatorial auction of relevance to us is one with single-minded bidders.

In such an auction, each bidder desires (has a positive valuation for) a specific subset of

items, but has no interest in any other subset. Mu’alem and Nisan [65] studied the case

of single-minded bidders, and they characterize the properties of truthful mechanisms for

such auctions. Lehmann et al. [60] show that with single-minded bidders, one can find a

truthful mechanism that gives a
√

m approximation to the maximum social welfare, where m

is the number of items being sold. In Chapter 3, we propose a single-minded combinatorial

auction setting motivated by a recently growing area of databases research. Our goal will be

to maximize profit. We now briefly summarize our research in this area.

1.2.1 Our Contribution: Data Streams Query Admission

A Data Stream Management System (DSMS) processes continuous queries about incoming

streams of data such as stock market indices, weather data, traffic data, etc. With the growth

of internet cloud computing services sold by Amazon, Google, IBM, etc, we envision future

DSMSs renting server capacity for their monitoring services to users through the internet.

10

We propose an auction model for DSMS query admission, in which each user has a private

valuation for her query being serviced by the system, and submits a bid that may or may not

accurately reflect these valuations. In turn, the system, being of limited processing capacity,

chooses which queries to service based on their bids.

The complicating factor in this setting is that the demands of the queries may overlap,

so the system capacity required to simultaneously service any two given queries can be less

than the sum of the queries’ separate individual demands. Given such portions of “shared

processing” between queries, optimally choosing which queries to service becomes a great

deal more complex. Evidence of this added complexity is that without the shared processing

or strategic bidders, our resource allocation problem is the classic knapsack problem, in which

a subset of items of varying sizes and values must be placed into a limited-capacity knapsack

such that the total value of the items chosen is maximized. While there is a polynomial

time approximation scheme for the knapsack problem, the densest subgraph problem, which

is just a special case of the problem with shared processing, has no known polynomial time

approximation that is better than a polynomial factor away from optimal[35].

In Chapter 3, we propose four truthful deterministic auction mechanisms that each in

some way greedily prioritizes those queries with higher valuations and lower processing de-

mands, and we evaluate their performance experimentally. We propose an additional truthful

randomized mechanism that achieves a provable profit guarantee: it always yields at least a

profit of OPT − 2h, where OPT is the maximum possible profit attainable when there is no

requirement of truthfulness, but players who are serviced must all be charged the same price

(a price less than their bids), and h is the value of the highest bid. We also consider what

happens under these mechanisms when players may cheat by forging additional fake identi-

ties, creating dummy queries to manipulate the system. This type of strategic behavior is

referred to as a sybil attack. We propose the important property of “sybil immunity,” being

invulnerable to sybil attack, as desirable design constraint for auction mechanisms. We show

that while one of our mechanisms is sybil immune, it does not give a profit guarantee, and

the mechanism that gives a profit guarantee is not sybil immune.

The work in Chapter 3 was done in collaboration with Lory Al Moakar, Panos Chrysan-

this, Shenoda Guirguis, Alexandros Labrinidis, Panickos Neophytou and Kirk Pruhs.

11

1.3 CONGESTION AT INTERNET BOTTLENECK ROUTERS

In Chapter 4, we study a long-standing problem from the field of networks: congestion at

bottleneck routers on the internet. The internet is a world-wide network whose creation and

operation is not controlled by a single, central entity. Instead, separate autonomous entities

create and operate their own segments of this world-wide network at will. It has therefore

been a long-held belief that the continued dependability and functionality of the internet

relies on the sense of civic responsibility and good will of all these separate entities.

In 2002, Akella et al [3] asked the question: under a simplified model of internet traf-

fic, what would happen if each of the entities, or players, took purely self-interested actions,

without regard to other internet users? They first assumed that network endpoints use the

standard Transmission Control Protocol (TCP) for congestion control, which is the most

common case for today’s internet. Under TCP, an endpoint gradually (additively) increases

the number of packets it sends at once, it’s “window size,” until one of its packets gets

dropped due to congestion at a router, at which point it dramatically (multiplicatively) de-

creases the number of packets it sends at once. They also assumed that routers use the

FIFO Droptail queuing policy, also the most common case for today’s internet. Under FIFO

Droptail, after the router queue fills up, the router simply begins dropping any additional

arriving packets. They concluded that under these assumptions, even if endpoints can strate-

gically manipulate their TCP parameters (rates at which they increase and decrease their

window sizes), the Nash equilibrium are relatively efficient, in the sense that the router’s

full capacity is used, and not exceeded by too much. However, they go on to show that

under newer congestion control and router policies that are growing in popularity, in which

network endpoints are not so responsive to or effected by packet drops, the Nash equilibria

are dangerously inefficient, implying possible future “congestion collapse” on the Internet.

Increasing multimedia content on the web has led to an increase in UDP flows on the

internet, which, unlike TCP flows, disregard any congestion detected and remain aggressive

even in the face of packet drops. Many works have focused on the effect of a single UDP end-

point on other endpoints that are all TCP. Recently, Efraimidis and Tsavlidis [28] proposed

a simpler model of endpoints sending traffic through a bottleneck router that we find to be

12

general enough to capture any type of flow: the one-shot “window game.” In the window

game, endpoints are not assumed to have specific congestion control properties like TCP or

UDP. Instead, each player simply specifies a window size; the number packets they will send

at a time, or, to cast it another way, the amount of router capacity they hope to use. In the

model, each player’s utility, or payoff, is defined as

(number of packets that it successfully sends)−g ·(number of its packets that get dropped).

Hence g represents how much each endpoint is hurt by each dropped packet, and endpoints

are not assumed specifically to be TCP or UDP. The authors [28] show that in this window

game, under Droptail routers, when for example g ≤ 1, players send more than twice as

much traffic as the bottleneck router can handle at the Nash equilibrium.

However, the full-information and mutual-belief-of-rationality assumptions needed for

Nash equilibria seem unlikely to hold in a setting as populous and chaotic as the internet.

We thus complete the first study of this problem using evolutionary game theory’s adaptive

learning framework (see Section 1.1.1). Adaptive learning with imitation dynamics is espe-

cially suited for this setting because the players need only know what we expect internet

endpoints to know: what actions they take and what they themselves experience in each

round of play.

Using the window game model, we study the stochastically stable states under the FIFO

Droptail and RED router policies and show that they coincide with the unique Nash Equi-

librium under both policies. We show that the Nash equilibria and stochastically stable

states under these policies are inefficient, with endpoints sending much more traffic than the

capacity of the bottleneck router. We then study a policy proposed by Gao et al [46] in

which the router drops packets of the greediest flow when the capacity is exceeded, and we

show that the only stochastically stable state is efficient and fair: endpoints send no more

than bottleneck router capacity, and capacity is divided evenly among them.

The work in Chapter 4 was done in collaboration with Evangelia Pyrga.

13

2.0 THE PRICE OF STOCHASTIC ANARCHY

2.1 INTRODUCTION

Quantifying the price of (Nash) anarchy is one of the major lines of research in algorithmic

game theory. Indeed, one fourth of the authoritative algorithmic game theory text edited by

Nisan et al. [68] is wholly dedicated to this topic. But the Nash equilibrium solution concept

has been widely criticized [48, 14, 33, 34]. First, it is a solution characterization without

a road map for how players might arrive at such a solution. Second, at Nash equilibria,

players are unrealistically assumed to be perfectly rational, fully informed, and infallible.

Third, computing Nash equilibria is PPAD-hard for even 2-player, n-action games [19], and

it is therefore considered very unlikely that there exists a polynomial time algorithm to

compute a Nash equilibrium even in a centralized manner. Thus, it is unrealistic to assume

that selfish agents in general games will converge precisely to the Nash equilibria of the

game, or that they will necessarily converge to anything at all. In addition, the price of

Nash anarchy metric comes with its own weaknesses; it blindly uses the worst case over

all Nash equilibria, despite the fact that some equilibria are more resilient than others to

perturbations in play.

Considering these drawbacks, computer scientists have paid relatively little attention to

if or how Nash equilibria will in fact be reached, and even less to the question of which Nash

equilibria are more likely to be played in the event players do converge to Nash equilibria. To

address these issues, we employ the stochastic stability framework from evolutionary game

theory to study simple dynamics of computationally efficient, imperfect agents. Rather than

defining a-priori states such as Nash equilibria, which might not be reachable by natural

dynamics, the stochastic stability framework allows us to define a natural dynamic, and

14

from it derive the stable states. We define the price of stochastic anarchy to be the ratio

of the worst stochastically stable solution to the optimal solution. The stochastically stable

states of a game may, but do not necessarily, contain all Nash equilibria of the game, and

so the price of stochastic anarchy may be strictly better than the price of Nash anarchy. In

games for which the stochastically stable states are a subset of the Nash equilibria, studying

the ratio of the worst stochastically stable state to the optimal state can be viewed as a

smoothed analysis of the price of anarchy, distinguishing Nash equilibria that are brittle

to small perturbations in perfect play from those that are resilient to noise. (Note that

conversely, there may also be stochastically stable states that are not Nash equilibria.)

The evolutionary game theory literature on stochastic stability studies n-player games

that are played repeatedly. In each round, each player observes her action and its outcome,

and then uses simple rules to select her action for the next round based only on her size-

restricted memory of the past rounds. In any round, players have a small probability of

deviating from their prescribed decision rules. The state of the game is the contents of the

memories of all the players. The stochastically stable states in such a game are the states

with non-zero probability in the limit of this random process, as the probability of error

approaches zero. The play dynamics we employ in our work are the imitation dynamics

studied by Josephson and Matros [54]. Under these dynamics, each player imitates the

strategy that was most successful for her in recent memory.

2.1.1 Our Results

To illustrate the utility of stochastic stability, we study the price of stochastic anarchy of the

unrelated load balancing game [10, 6, 38]. To our knowledge, we are the first to quantify the

loss of efficiency in any system when the players are in stochastically stable equilibria. In the

load balancing game on unrelated machines, even with only two players and two machines,

there are Nash equilibria with arbitrarily high cost relative to optimum, and so the price of

Nash anarchy is unbounded. We show that these equilibria are inherently brittle, and that for

two players and two machines, the price of stochastic anarchy is 2. This result matches the

strong price of anarchy [6] without requiring coordination (at strong Nash equilibria, players

15

have the ability to coordinate by forming coalitions). We further show that in the general

n-player, m-machine game, the price of stochastic anarchy is bounded. More precisely the

price of stochastic anarchy is upper bounded by the nmth n-step Fibonacci number. We

also show that the price of stochastic anarchy is at least m + 1.

Our work provides new insight into the equilibria of the load balancing game. Unlike

some previous work on dynamics for games, our work does not seek to propose practical

dynamics with fast convergence; rather, we use simple dynamics as a tool for understanding

the inherent relative stability of equilibria. Instead of relying on player coordination to avoid

the Nash equilibria with unbounded cost (as is done in the study of strong equilibria), we

show that these bad equilibria are inherently unstable in the face of occasional uncoordinated

mistakes. We conjecture that the price of stochastic anarchy is closer to the linear lower

bound, paralleling the price of strong anarchy.

In light of our results, we believe the techniques in this work will be useful for under-

standing the relative stability of Nash equilibria in other games for which the worst equilibria

are brittle. Indeed, for a variety of games in the price of anarchy literature, the worst Nash

equilibria of the lower bound instances are not stochastically stable.

2.1.2 Related Work

We give a brief survey of related work in three areas: alternatives to Nash equilibria as a

solution concept, stochastic stability, and the unrelated load balancing game.

Recently, several authors have noted that the Nash equilibrium is not always a suitable

solution concept for computationally bounded agents playing in a repeated game, and have

proposed alternatives. Goemans et al. [48] study players who sequentially play myopic

best responses, and quantify the price of sinking that results from such play. Fabrikant and

Papadimitriou [33] propose a model in which agents play restricted finite automata. Blum

et al. [14, 13] assume only that players’ action histories satisfy a property called no regret,

and show that for many games, the resulting social costs are no worse than those guaranteed

by price of anarchy results.

Although we believe this to be the first work studying stochastic stability in the computer

16

science literature, computer scientists have recently employed other tools from evolutionary

game theory. Fisher and Vöcking [41] show that under replicator dynamics in the routing

game studied by Roughgarden and Tardos [74], players converge to Nash. Fisher et al. [40]

went on to show that using a simultaneous adaptive sampling method, play converges quickly

to a Nash equilibrium. For a thorough survey of algorithmic results that have employed or

studied other evolutionary game theory techniques and concepts, see Suri [80].

Stochastic stability and its adaptive learning model as studied in this work were first

defined by Foster and Young [43], and differ from the standard game theory solution concept

of evolutionarily stable strategies (ESS). ESS are a refinement of Nash equilibria, and so

do not always exist, and are not necessarily associated with a natural play dynamic. In

contrast, a game always has stochastically stable states that result (by construction) from

natural dynamics. In addition, ESS are resilient only to single shocks, whereas stochastically

stable states are resilient to persistent noise.

Stochastic stability has been widely studied in the economics literature (see, for example,

[87, 55, 58, 15, 29, 73, 54]). We discuss in Section 2.2 concepts from this body of literature

that are relevant to our results. We recommend Young [88] for an informative and readable

introduction to stochastic stability, its adaptive learning model, and some related results.

Our work differs from prior work in stochastic stability in that it is the first to quantify the

social utility of stochastically stable states, the price of stochastic anarchy.

We also note a connection between the stochastically stable states of the game and the

sinks of a game, recently introduced by Goemans et al. as another way of studying the

dynamics of computationally bounded agents. In particular, the stochastically stable states

of a game under the play dynamics we consider correspond to a subset of the sink equilibria,

and so provide a framework for identifying the stable sink equilibria. In potential games, the

stochastically stable states of the play dynamics we consider correspond to a subset of the

Nash equilibria, thus providing a method for identifying which of these equilibria are stable.

In this work, we study the price of stochastic anarchy in load balancing. Even-Dar et al.

[31] show that when playing the load balancing game on unrelated machines, any turn-taking

improvement dynamics converge to Nash. Andelman et al. [6] observe that the price of Nash

anarchy in this game is unbounded and they show that the strong price of anarchy is linear

17

in the number of machines. Fiat et al. [38] tighten their upper bound to match their lower

bound at a strong price of anarchy of exactly m.

2.2 MODEL AND BACKGROUND

We now formalize (from Young [87]) the adaptive play model and the definition of stochastic

stability. We then formalize the play dynamics that we consider. We also provide in this

section the results from the stochastic stability literature that we will later use for our results.

2.2.1 Adaptive Play and Stochastic Stability

Let G = (X, π) be a game with n players, where X =
∏n

j=1 Xi represents the strategy

sets Xi for each player i, and π =
∏n

j=1 πi represents the payoff functions πi : X → R

for each player. G is played repeatedly for successive time periods t = 1, 2, . . ., and at

each time step t, player i plays some action st
i ∈ Xi. The collection of all players’ actions

at time t defines a play profile St = (St
1, S

t
2, . . . , S

t
n). We wish to model computationally

efficient agents, and so we imagine that each agent has some finite memory of size z, and

that after time step t, all players remember a history consisting of a sequence of play profiles

ht = (St−z+1, St−z+2, . . . , St) ∈ (X)z.

We assume that each player i has some efficiently computable function pi : (X)z×Xi → R

that, given a particular history, induces a sampleable probability distribution over actions

(for all players i and histories h,
∑

a∈Xi
pi(h, a) = 1). We write p for

∏

i pi. We wish to model

imperfect agents who make mistakes, and so we imagine that at time t each player i plays

according to pi with probability 1−ε, and with probability ε plays some action in Xi uniformly

at random.1 That is, for all players i, for all actions a ∈ Xi, Pr[st
i = a] = (1−ε)pi(h

t, a)+ ε
|Xi|

.

The dynamics we have described define a Markov process P G,p,ε with finite state space

H = (X)z corresponding to the finite histories. For notational simplicity, we will write the

Markov process as P ε when there is no ambiguity.

1The mistake probabilities need not be uniform random—all that we require is that the distribution has
support on all actions in Xi.

18

The potential successors of a history can be obtained by observing a new play profile,

and “forgetting” the least recent play profile in the current history.

Definition 2.2.1. For any S ′ ∈ X, A history h′ = (St−z+2, St−z+3, . . . , St, S ′) is a successor

of history ht = (St−z+1, St−z+2, . . . , St).

The Markov process P ε has transition probability pε
h,h′ of moving from state h = (S1, . . . , Sz)

to state h′ = (T 1, . . . , T z):

pε
h,h′ =

∏n

i=1(1− ε) pi(h, T z
i) + ε

|Xi|
if h′ is a successor of h;

0 otherwise.

We will refer to P 0 as the unperturbed Markov process. Note that for ε > 0, pε
h,h′ > 0

for every history h and successor h′, and that for any two histories h and ĥ not necessarily

a successor of h, there is a series of z histories h1, . . . , hz such that h1 = h, hz = ĥ, and for

all 1 < i ≤ z, hi is a successor of hi−1. Thus there is positive probability of moving between

any h and any ĥ in z steps, and so P ε is irreducible. Similarly, there is a positive probability

of moving between any h and any ĥ in z +1 steps, and so P ε is aperiodic. Therefore, P ε has

a unique stationary distribution µε.

The stochastically stable states of a particular game and player dynamics are the states

with nonzero probability in the limit of the stationary distribution.

Definition 2.2.2 (Foster and Young [43]). A state h is stochastically stable relative to P ε if

limε→0 µε(h) > 0.

Intuitively, we should expect a process P ε to spend almost all of its time at its stochas-

tically stable states when ε is small.

When a player i plays at random rather than according to pi, we call this a mistake.

Definition 2.2.3 (Young [87]). Suppose h′ = (St−z+1, . . . , St) is a successor of h. A mistake

in the transition between h and h′ is any element St
i such that pi(h, St

i) = 0. Note that

mistakes occur with probability ≤ ε.

We can characterize the number of mistakes required to get from one history to another.

19

Definition 2.2.4 (Young [87]). For any two states h, h′, the resistance r(h, h′) is the mini-

mum total number of mistakes involved in the transition h→ h′ if h′ is a successor of h. If

h′ is not a successor of h, then r(h, h′) =∞.

Note that the transitions of zero resistance are exactly those that occur with positive

probability in the unperturbed Markov process P 0.

Definition 2.2.5. We refer to the sinks of P 0 as recurrent classes. In other words, a recurrent

class of P 0 is a set of states C ⊆ H such that any state in C is reachable from any other

state in C and no state outside C is accessible from any state inside C.

We may view the state space H as the vertex set of a directed graph, with an edge from

h to h′ if h′ is a successor of h, with edge weight r(h, h′).

Observation 2.2.6. We observe that the recurrent classes H1, H2, . . ., where each Hi ⊆ H,

have the following properties:

1. From every vertex h ∈ H, there is a path of cost 0 to one of the recurrent classes.

2. For each Hi and for every pair of vertices h, h′ ∈ Hi, there is a path of cost 0 between h

and h′.

3. For each Hi, every edge (h, h′) with h ∈ Hi, h
′ 6∈ Hi has positive cost.

Let ri,j denote the cost of the shortest path between Hi and Hj in the graph described

above. We now consider the complete directed graph G with vertex set {H1, H2, . . .} in which

the edge (Hi, Hj) has weight ri,j. Let Ti be a directed minimum-weight spanning in-tree of

G rooted at vertex Hi. (An in-tree is a directed tree where each edge is oriented toward the

root.) The stochastic potential of Hi is defined to be the sum of the edge weights in Ti.

Young proves the following theorem characterizing stochastically stable states:

Theorem 2.2.7 (Young [87]). In any n-player game G with finite strategy sets and any set

of action distributions p, the stochastically stable states of P G,p,ε are the recurrent classes of

minimum stochastic potential.

20

2.2.2 Imitation Dynamics

In this work, we study agents who behave according to a slight modification of the imitation

dynamics introduced by Josephson and Matros [54]. (We note that this modification is of

no consequence to the results of Josephson and Matros [54] that we present below.) Player i

using imitation dynamics parameterized by σ ∈ N chooses his action at time t + 1 according

to the following mechanism:

1. Player i selects a set Y of σ play profiles uniformly at random from the z profiles in

history ht.

2. For each play profile S ∈ Y , i recalls the payoff πi(S) he obtained from playing action

Si.

3. Player i plays the action among these that corresponds to his highest payoff; that is, he

plays the ith component of argmaxS∈Y πi(S). In the case of ties, he plays a highest-payoff

action at random.

The value σ is a parameter of the dynamics that is taken to be n < σ ≤ z/2. These dynamics

can be interpreted as modeling a situation in which at each time step, players are chosen at

random from a pool of identical players, who each played in a subset of the last z rounds.

The players are computationally simple, and so do not counterspeculate the actions of their

opponents, instead playing the action that has worked the best for them in recent memory.

We will say that a history h is monomorphic if the same action profile S has been repeated

for the last z rounds: h = (S, S, . . . , S). Josephson and Matros [54] prove the following useful

fact:

Proposition 2.2.8. A set of states is a recurrent class of the imitation dynamics if and only

if it is a singleton set consisting of a monomorphic state.

Since the stochastically stable states are a subset of the recurrent classes, we can as-

sociate with each stochastically stable state h = (S, . . . , S) the unique action profile S it

contains. This allows us to now define the price of stochastic anarchy with respect to imita-

tion dynamics. For brevity, we will refer to this as simply the price of stochastic anarchy.

Definition 2.2.9. Given a game G = (X, π) with a social cost function γ : X → R, the

21

price of stochastic anarchy of G is equal to max γ(S)
γ(OPT)

, where OPT is the play profile

that minimizes γ and the max is taken over all play profiles S such that h = (S, . . . , S) is

stochastically stable.

Given a game G, we define the better response graph of G: The set of vertices corresponds

to the set of action profiles of G, and there is an edge between two action profiles S and

S ′ if and only if there exists a player i such that S ′ differs from S only in player i’s action,

and player i does not decrease his utility by unilaterally deviating from Si to S ′
i. Josephson

and Matros [54] prove the following relationship between this better response graph and the

stochastically stable states of a game:

Theorem 2.2.10. If V is the set of stochastically stable states under imitation dynamics,

then V = {S : (S, . . . , S) ∈ V} is either a strongly connected component of the better response

graph of G, or a union of strongly connected components.

Goemans et al. [48] introduce the notion of sink equilibria and a corresponding notion of

the “price of sinking”, which is the ratio of the social welfare of the worst sink equilibrium to

that of the social optimum. We note that the strongly connected components of the better

response graph of G correspond to the sink equilibria (under sequential better-response play)

of G, and so Theorem 2.2.10 implies that the stochastically stable states under imitation

dynamics correspond to a subset of the sinks of the better response graph of G, and we get

the following corollary:

Corollary 2.2.11. The price of stochastic anarchy of a game G under imitation dynamics

is at most the price of sinking of G.

2.3 LOAD BALANCING: GAME DEFINITION AND PRICE OF NASH

ANARCHY

The load balancing game on unrelated machines models a set of agents who wish to schedule

computing jobs on a set of machines. The machines have different strengths and weaknesses

(for example, they may have different types of processors or differing amounts of memory),

22

and so each job will take a different amount of time to run on each machine. Jobs on a single

machine are executed in parallel such that all jobs on any given machine finish at the same

time. Thus, each agent who schedules his job on machine Mi endures the load on machine

Mi, where the load is defined to be the sum of the running times of all jobs scheduled on

Mi. Agents wish to minimize the completion time for their jobs, and social cost is defined

to be the makespan: the maximum load on any machine.

Formally, an instance of the load balancing game on unrelated machines is defined by

a set of n players and m machines M = {M1, . . . , Mm}. The action space for each player

is Xi = M . Each player i has some cost ci,j on machine j. Denote the cost of machine

Mj for action profile S by Cj(S) =
∑

i s.t. Si=j ci,j. Each player i has utility function

πi(S) = −Csi
(S). The social cost of an action profile S is γ(S) = maxj∈M Cj(S). We define

OPT to be the action profile that minimizes social cost: OPT = argminS∈X γ(S). Without

loss of generality, we will always normalize so that γ(OPT) = 1.

The coordination ratio of a game (also known as the price of anarchy) was introduced by

Koutsoupias and Papadimitriou [57], and is intended to quantify the loss of efficiency due

to selfishness and the lack of coordination among rational agents. Given a game G and a

social cost function γ, it is simple to quantify the OPT game state S: OPT = argmin γ(S).

It is less clear how to model rational selfish agents. In most prior work it has been assumed

that selfish agents play according to a Nash equilibrium, and the price of anarchy has been

defined as the ratio of the cost of the worst (pure strategy) Nash state to OPT. In this

chapter, we refer to this measure as the price of Nash anarchy, to distinguish it from the

price of stochastic anarchy, which we defined in Section 2.2.2.

Definition 2.3.1. For a game G with a set of Nash equilibrium states E , the price of (Nash)

anarchy is maxS∈E
γ(S)

γ(OPT)
.

We show here that even with only two players and two machines, the load balancing game

on unrelated machines has a price of Nash anarchy that is unbounded by any function of m

and n. Consider the two-player, two-machine game with c1,1 = c2,2 = 1 and c1,2 = c2,1 = 1/δ,

for some 0 < δ < 1. Then the play profile OPT = (M1, M2) is a Nash equilibrium with cost

1. However, observe that the profile S∗ = (M2, M1) is also a Nash equilibrium, with cost

23

1/δ (since by deviating, players can only increase their cost from 1/δ to 1/δ + 1). The price

of anarchy of the load balancing game is therefore 1/δ, which can be unboundedly large,

although m = n = 2.

2.4 UPPER BOUND ON PRICE OF STOCHASTIC ANARCHY

The load balancing game is an ordinal potential game [31], and so the sinks of the better-

response graph correspond to the pure strategy Nash equilibria. We therefore have by

Corollary 2.2.11 that the stochastically stable states are a subset of the pure strategy Nash

equilibria of the game, and the price of stochastic anarchy is at most the price of anarchy.

We have noted that even in the two-person, two-machine load balancing game, the price of

anarchy is unbounded (even for pure strategy equilibria). Therefore, as a warmup, we bound

the price of stochastic anarchy of the two-player, two-machine case.

2.4.1 Two Players, Two Machines

Theorem 2.4.1. In the two-player, two-machine load balancing game on unrelated ma-

chines, the price of stochastic anarchy is 2.

Note that the two-player, two-machine load balancing game can have at most two strict

pure strategy Nash equilibria. (For brevity we consider the case of strict equilibria. The argu-

ment for weak equilibria is similar). Note also that either there is a unique Nash equilibrium

at (M1, M1) or (M2, M2), or there are two at N1 = (M1, M2) and N2 = (M2, M1).

An action profile N Pareto dominates N ′ if for each player i, CNi
(N) ≤ CN ′

i
(N ′).

Lemma 2.4.2. If there are two Nash equilibria, and N1 Pareto dominates N2, then only N1

is stochastically stable (and vice versa).

Proof. Note that if N1 Pareto dominates N2, then it also Pareto dominates (M1, M1) and

(M2, M2), since each is a unilateral deviation from a Nash equilibrium for both players.

Consider the monomorphic state (N2, . . . , N2). If both players make simultaneous mistakes

at time t to N1, then by assumption, N1 will be the action profile in ht+1 = (N2, . . . , N2, N1)

24

with lowest cost for both players. Therefore, with positive probability, both players will draw

samples of their histories containing the action profile N1, and therefore play it, until ht+z =

(N1, . . . , N1). Therefore, there is an edge in G from h = {N2, . . . , N2} to h′ = {N1, . . . , N1}
of resistance 2. However, there is no edge from h′ to any other state in G with resistance

< σ. Recall our initial observation that in fact, N1 Pareto dominates all other action profiles.

Therefore, no set of mistakes will yield an action profile with higher payoff than N1 for either

player, and so to leave state h′ will require at least σ mistakes (so that some player may

draw a sample from their history that contains no instance of action profile N1). Therefore,

given any minimum spanning in-tree of G rooted at h, we may add an edge (h, h′) of weight

2, and remove the outgoing edge from h′, which we have shown must have cost ≥ σ. This

is a minimum spanning tree rooted at h′ with strictly lower cost. We have therefore shown

that h′ has strictly lower stochastic potential than h, and so by Theorem 2.2.7, h is not

stochastically stable. Since at least one Nash equilibrium must be stochastically stable,

h′ = (N1, . . . , N1) is the unique stochastically stable state.

Proof of Theorem 2.4.1. If there is only one Nash equilibrium (M1, M1) or (M2, M2), then it

must be the only stochastically stable state (since in potential games these are a nonempty

subset of the pure strategy Nash equilibria), and must also be OPT. In this case, the price

of anarchy is equal to the price of stochastic anarchy, and is 1. Therefore, we may assume

that there are two Nash equilibria, N1 and N2. If N1 Pareto dominates N2, then N1 must

be OPT (since load balancing is a potential game), and by Lemma 2.4.2, N1 is the only

stochastically stable state. In this case, the price of stochastic anarchy is 1 (strictly less

than the (possibly unbounded) price of anarchy). A similar argument holds if N2 Pareto

dominates N1. Therefore, we may assume that neither N1 nor N2 Pareto dominate the other.

Without loss of generality, assume that N1 is OPT, and that in N1 = (M1, M2), M2 is

the maximally loaded machine. Suppose that M2 is also the maximally loaded machine in

N2. (The other case is similar.) Together with the fact that N1 does not Pareto dominate

25

N2, this gives us the following:

c1,1 ≤ c2,2

c2,1 ≤ c2,2

c1,2 ≥ c2,2

From the fact that both N1 and N2 are Nash equilibria, we get:

c1,1 + c2,1 ≥ c2,2

c1,1 + c2,1 ≥ c1,2

In this case, the price of anarchy among pure strategy Nash equilibria is:

c1,2

c2,2

≤ c1,1 + c2,1

c2,2

≤ c1,1 + c2,1

c1,1

= 1 +
c2,1

c1,1

Similarly, we have:

c1,2

c2,2

≤ c1,1 + c2,1

c2,2

≤ c1,1 + c2,1

c2,1

= 1 +
c1,1

c2,1

Combining these two inequalities, we get that the price of Nash anarchy is at most 1 +

min(c1,1/c2,1, c2,1/c1,1) ≤ 2. Since the price of stochastic anarchy is at most the price of

anarchy over pure strategies, this completes the proof.

26

2.4.2 General Case: n Players, m Machines

Theorem 2.4.3. The general load balancing game on unrelated machines has price of

stochastic anarchy bounded by a function Ψ depending only on n and m, and

Ψ(n, m) ≤ m · F(n)(nm + 1),

where F(n)(i) denotes the ith n-step Fibonacci number.2

To prove this upper bound, we show that any solution worse than our upper bound

cannot be stochastically stable. To show this impossibility, we take any arbitrary solution

worse than our upper bound and show that there must always be a minimum cost in-tree

in G rooted at a different solution that has strictly less cost than the minimum cost in-tree

rooted at that solution. We then apply Proposition 2.2.8 and Theorem 2.2.7. The proof

proceeds by a series of lemmas.

Definition 2.4.4. For any monomorphic Nash state h = (S, . . . , S), let the Nash Graph of

h be a directed graph with vertex set M and directed edges (Mi, Mj) if there is some player

i with Si = Mi and OPTi = Mj . Let the closure M̄i of machine Mi, be the set of states

reachable from Mi by following 0 or more edges of the Nash graph.

Lemma 2.4.5. In any monomorphic Nash state h = (S, . . . , S), if there is a machine Mi

such that Ci(S) > m, then every machine Mj ∈ M̄i has cost Cj(S) > 1.

Proof. Suppose this were not the case, and there exists an Mj ∈ M̄i with Cj(S) ≤ 1. Since

Mj ∈ M̄i, there exists a simple path (Mi = M1, M2, . . . , Mk = Mj) with k ≤ m. Since S is a

Nash equilibrium, it must be the case that Ck−1(S) ≤ 2 because by the definition of the Nash

graph, the directed edge from Mk−1 to Mk implies that there is some player i with Si = Mk−1,

but OPTi = Mk. Since 1 = γ(OPT) ≥ Ck(OPT) ≥ ci,k, if player i deviated from his action

in Nash profile S to S ′
i = Mk, he would experience cost Ck(S) + ci,k ≤ 1 + 1 = 2. Since

he cannot benefit from deviating (by definition of Nash), it must be that his cost in S,

Ck−1(S) ≤ 2. By the same argument, it must be that Ck−2(S) ≤ 3, and by induction,

C1(S) ≤ k ≤ m.

2 F(n)(i) =

{

1 if i ≤ n;
∑i

j=i−n F(n)(j) otherwise.
F(n)(i) ∈ o(2i) for any fixed n.

27

Lemma 2.4.6. For any monomorphic Nash state h = (S, . . . , S) ∈ G with γ(S) > m, there

is an edge from h to some g = (T, . . . , T) where γ(T) ≤ m with edge cost ≤ n in G.

Proof. Let D = {Mj : Ci(S) ≥ m}, and define the closure of D, D̄ =
⋃

Mi∈D M̄i. Consider

the successor state h′ of h that results when every player i such that St
i ∈ D̄ makes a mistake

and plays on their OPT machine St+1
i = OPTi, and all other players do not make a mistake

and continue to play St+1
i = St

i . Note that by the definition of D̄, for Mj ∈ D̄, for all players

i playing machine j in S, OPTi ∈ D̄. Let T = St+1. Then for all j such that Mj ∈ D̄,

Cj(T) ≤ 1, since Cj(T) ≤ Cj(OPT) ≤ 1. To see this, note that for every player i such that

St
i = Mj ∈ D̄, St+1

i = Mj if and only if OPTi = Mj. Similarly, for every player i such that

St+1
i = Mj ∈ D̄ but St

i 6= Mj , OPTi = Mj , and so for each machine Mj ∈ D̄, the agents

playing on Mj in T are a subset of those playing on Mj at OPT. Note that by Lemma

2.4.5, for all Mj ∈ D̄, Cj(S) > 1. Therefore, for every agent i with St
i ∈ D̄, πi(T) > πi(S),

and so for h′′ = (S, . . . , S, T, T) a successor of h′, r(h′, h′′) = 0. Reasoning in this way, there

is a path of zero resistance from h′ to g = (T, . . . , T). We have therefore exhibited a path

between h and g that involves only |{i : St
i ∈ D̄}| ≤ n mistakes. Finally, we observe that if

Mj ∈ D̄ then Cj(T) ≤ 1, and by construction, if Mj 6∈ D̄, then Cj(T) = Cj(S) < m, since

as noted above Mj 6∈ D̄ implies that the players playing Mj in S are the same set playing

Mj in T . Thus, we have γ(T) ≤ m, which completes the proof.

Lemma 2.4.7. Let h = (S, . . . , S) ∈ G be any monomorphic state with γ(S) ≤ m. Any path

in G from h to a monomorphic state h′ = (S ′, . . . , S ′) ∈ G where γ(h′) > m · F(n)(mn + 1)

must contain an edge with cost ≥ σ, where F(n)(i) denotes the ith n-step Fibonacci number.

Proof. Suppose there were some directed path P in G (h = h1, h2, . . . , hl = h′) such that

all edge costs were less than σ. We will imagine assigning costs to players on machines

adversarially: for a player i on machine Mj , we will consider ci,j to be undefined until play

reaches a monomorphic state hk in which he occupies machine j, at which point we will

assign ci,j to be the highest value consistent with his path from hk−1 to hk. Note that since

initially γ(S) ≤ m, we must have for all i ∈ N , ci,Si
≤ m = mF(n)(n).

There are mn costs ci,j that we may assign, and we have observed that our first n

assignments have taken values ≤ mF(n)(n) = mF(n)(1). We will assume inductively that our

28

kth assignment takes value at most mF(n)(k). Let hk = (T, . . . , T) be the last monomorphic

state in P such that only k cost assignments have been made, and hk+1 = (T ′, . . . , T ′) be the

monomorphic state at which the k+1st cost assignment is made for some player i on machine

Mj . Since by assumption, fewer than σ mistakes are made in the transition hk → hk+1, it

must be that ci,j ≤ CTi
(T); that is, ci,j can be no more than player i’s experienced cost in

state T . If this were not so, player i would not have continued playing on machine j in T ′

without additional mistakes, since with fewer than σ mistakes, any sample of size σ would

have contained an instance of T which would have yielded higher payoff than playing on

machine j. Note however that the cost of any machine Mj in T is at most:

Cj(T) ≤
∑

i:ci,j 6= undefined

ci,j ≤
n−1
∑

i=0

mF(n)(k − i) = mF(n)(k + 1)

where the inequality follows by our inductive assumption. We have therefore shown that the

kth cost assigned is at most mF(n)(k), and so the claim follows since there are at most nm

costs ci,j that may be assigned, and the cost on any machine in S ′ is at most the sum of the

n highest costs.

of Theorem 2.4.3. Given any state h = (S, . . . , S) ∈ G where γ(S) > m · F(n)(mn + 1),

we can exhibit a state f = (U, U, . . . , U) with lower stochastic potential than h such that

γ(U) ≤ m · F(n)(nm + 1) as follows.

Consider the minimum weight spanning in-tree Th of G rooted at h. We will use it to

construct a spanning in-tree Tf rooted at a state f as follows: We add an edge of cost at

most n from h to some state g = (T, . . . , T) such that γ(T) ≤ m (such an edge is guaranteed

to exist by Lemma 2.4.6). This induces a cycle through h and g. To correct this, we remove

an edge on the path from g to h in Th of cost ≥ σ (such an edge is guaranteed to exist by

Lemma 2.4.7). Since this breaks the newly induced cycle, we now have a spanning in-tree

Tf with root f = (U, U, . . . , U) such that γ(U) ≤ m ·F(n)(mn+1). Since the added edge has

lower cost than the removed edge, Tf has lower cost than Th, and so f has lower stochastic

potential than h.

Since the stochastically stable states are those with minimum stochastic potential by

Theorem 2.2.7 and Proposition 2.2.8, we have proven that h is not stochastically stable.

29

M1 M2 M3 M4

1 1 1− δ ∞ ∞
2 2− 2δ 1 2− 3δ ∞
3 3− 4δ ∞ 1 3− 5δ

4 4− 6δ ∞ ∞ 1

Figure 3: A load-balancing game with price of stochastic anarchy m for m = 4. The entry

corresponding to player i and machine Mj represents the cost ci,j. The δs represent some

sufficiently small positive value and the ∞s can be any sufficiently large value. The optimal

solution is (M1, M2, M3, M4) and costs 1, but (M2, M3, M4, M1) is also stochastically stable

and costs 4− 6δ. This example can be easily generalized to arbitrary m.

2.5 LOWER BOUND ON PRICE OF STOCHASTIC ANARCHY

In this section, we show that the price of stochastic anarchy for load balancing is at least

m, the price of strong anarchy. We show this by exhibiting an instance for which the worst

stochastically stable solution costs m times the optimal solution. Our proof that this bad

solution is stochastically stable uses the following lemma to show that the min cost in-tree

rooted at that solution in G has cost as low as the min cost in-tree rooted at any other

solution. We then simply apply Theorem 2.2.7 and Proposition 2.2.8.

Lemma 2.5.1. For two monomorphic states h and h′ corresponding to play profiles S and

S ′, if S ′ is a unilateral better response deviation from S by some player i, then the resistance

r(h, h′) = 1.

Proof. Suppose player i makes the mistake of playing S ′
i instead of Si. Since this is a better-

response move, he experiences lower cost, and so long as he samples an instance of S ′, he

will continue to play S ′
i. No other player will deviate without a mistake, and so play will

reach monomorphic state h′ after z turns.

30

Theorem 2.5.2. The price of stochastic anarchy of the load balancing game on unrelated

machines is at least m.

Proof. To aid in the illustration of this proof, refer to the instance of the load balancing

game pictured in Fig. 3. Consider the instance of the load balancing game on m unrelated

machines where n = m and the costs are as follows. For each player i from 1 to n, let ci,i = 1.

For each player i from 2 to n, let ci,1 = i−2(i−1)δ, where δ is a diminishingly small positive

integer. Finally, for each player i from 1 to n − 1, let ci,i+1 = i − (2i − 1)δ. Let all other

costs be ∞ or some sufficiently large positive value.

Note that in this instance the optimal solution is achieved when each player i plays on

machine Mi and thus γ(OPT) = 1. Also note that the only pure-strategy Nash states in

this instance are the profiles

N1 = (M1, M2, . . . , Mm),

N2 = (M2, M1, M3, M4, . . . , Mm),

N3 = (M2, M3, M1, M4, . . . , Mm),

. . .

Nm−1 = (M2, M3, M4, . . . , Mm−1, M1, Mm),

Nm = (M2, M3, M4, . . . , Mm, M1).

We observe that γ(Nm) = m−2(m−1)δ ≈ m, and the monomorphic state corresponding

to Nm is stochastically stable:

Note that for the monomorphic state corresponding to each Nash profile Ni, there is an

edge of resistance 2 to any monomorphic state (Si, . . . , Si) where Si is on a better-response

path to Nash profile Ni+1. This transition can occur with two simultaneous mistakes as

follows: At the same time step t, player i plays on machine Mi+1, and player i + 1 plays on

machine Mi. Since for this turn, player i plays on machine Mi+1 alone, he experiences cost

that is δ less than his best previous cost. Player i + 1 experiences higher cost. Therefore,

player i + 1 returns to machine Mi+1 and continues to play it (since Ni continues to be the

play profile in his history for which he experienced lowest cost). Player i continues to sample

the play profile from time step t for the next σ rounds, and so continues to play on Mi+1

31

without further mistakes (even though player i + 1 has now returned). In this way, play

proceeds in z timesteps to a new monomorphic state Si without any further mistakes. Note

that in Si, players i and i + 1 both occupy machine Mi+1, and so Si is one better-response

move, and hence one mistake, away from Ni+1 (by moving to machine M1, player i + 1 can

experience δ less cost).

Finally, we construct a minimum spanning in-tree TNm
from the graph G rooted at Nm.

For the monomorphic state corresponding to the Nash profile Ni, 1 ≤ i ≤ m− 1, we include

the resistance 2 edge to Si. All other monomorphic states correspond to non-Nash profiles,

and so are on better-response paths to some Nash state (since this is a potential game).

When a state is on a better-response path to two Nash states Ni and Nj , we consider only

the state Ni such that i > j. For each non-Nash monomorphic state, we insert the edge

corresponding to the first step in the better-response path to Ni, which by Lemma 2.5.1

has cost 1. Since non-Nash monomorphic states are part of shortest-path in-trees to Nash

monomorphic states, which have edges to Nash states of higher index, this process produces

no cycles, and so forms a spanning in-tree rooted at Nm. Moreover, no spanning tree of G
can have lower cost, since every edge in TNm

is of minimal cost: the only edges in TNm
that

have cost > 1 are those leaving strict Nash states, but any edge leaving a strict Nash state

must have cost ≥ 2. Therefore, by definition of stochastic potential, Theorem 2.2.7, and

Proposition 2.2.8, the monomorphic state corresponding to Nm is stochastically stable.

Remark 2.5.3. More complicated examples than the one we provide here show that the price

of stochastic anarchy is greater than m, and so our lower bound is not tight. For an example,

see Figure 4.

We note the exponential separation between our upper and lower bounds. We conjecture,

however, that the true value of the price of stochastic anarchy falls closer to our lower bound:

Conjecture 2.5.4. The price of stochastic anarchy in the load balancing game with unrelated

machines is O(m).

If this conjecture is correct, then the O(m) bound from the strong price of anarchy [6]

can be achieved without coordination.

32

M1 M2 M3 M4

1 1 1 ∞ 4− 3δ

2 2− δ 1 2− δ ∞
3 3− 2δ 3− 2δ 1 3− 2δ

4 4− 3δ 5− 4δ ∞ 1

Figure 4: The optimal solution here is (M1, M2, M3, M4) and costs 1, but by similar reasoning

as in the proof of Theorem 2.5.2, (M4, M3, M1, M2) is also stochastically stable and costs

5− 4δ. This example can be easily generalized to arbitrary values of m.

2.6 SUMMARY

In this chapter of our work, we used the evolutionary game theory solution concept of stochas-

tic stability as a tool for quantifying the inefficiency that results when there is no central

authority. As opposed to “price of anarchy,” which assumes players play Nash equilibrium

solutions, we proposed the “price of stochastic anarchy,” which can capture the relative sta-

bility of equilibria. When the stochastically stable states of a game are a subset of the Nash

equilibria, the price of stochastic anarchy can be viewed as a smoothed analysis of the price

of anarchy, quantifying the inefficiency of the worst Nash equilibria that are resilient to small

perturbations.

We showed that in the load balancing game on unrelated machines, for which the price

of Nash anarchy is unbounded, the “bad” Nash equilibria are not stochastically stable, and

so the price of stochastic anarchy is bounded. We conjecture that the upper bound given

in this work is not tight and the cost of stochastic stability for load balancing is O(m). If

this conjecture is correct, it implies that the fragility of the “bad” equilibria in this game

is attributable to their instability, not only in the face of player coordination, but also to

minor uncoordinated perturbations in play.

We expect that the techniques used in this work will also be useful in understanding the

33

relative stability of Nash equilibria in other games for which the worst equilibria are brittle.

This promise is evidenced by the fact that the worst Nash in the worst-case instances in many

games (for example, the Roughgarden and Tardos [74] lower bound showing an unbounded

price of anarchy for routing unsplittable flow) are not stochastically stable.

Another direction of future research is to address the practical question of convergence

time to stochastically stable states. While the imitation dynamics studied here most likely

do not admit good convergence-time guarantees, it might be possible that different dynamics

or a modification of imitation dynamics do allow for fast convergence. One might also study

states have positive probability in the “short-run” or “medium-run,” (e.g., states that have

positive probability within some polynomially-bounded number of rounds), rather than only

considering those that are stable in the long-run.

34

3.0 CONTINUOUS QUERY ADMISSION CONTROL

In the last chapter we completed work toward our goal of demonstrating the utility of

evolutionary game theory’s adaptive learning model. In this chapter, we discuss work that we

completed toward our goal of using game theoretic models for problems in applied computer

science. Specifically, we study a problem from the field of data management, and we do so

by using a much stronger equilibrium concept: dominant strategy equilibria. We learned

in the last chapter that at a Nash equilibrium, each player’s strategy is payoff maximizing

given what the other players are playing. In contrast, at a dominant strategy equilibrium,

each player’s strategy must be payoff maximizing regardless of what the other players do.

3.1 INTRODUCTION

The growing need for monitoring applications such as the real-time detection of disease

outbreaks, tracking the stock market, environmental monitoring via sensor networks, and

personalized and customized Web alerts, has led to a paradigm shift in data processing

paradigms, from Database Management Systems (DBMSs) to Data Stream Management

Systems (DSMSs) (e.g., [1, 52, 75]). In contrast to DBMSs in which data is stored, in DSMSs,

monitoring applications register Continuous Queries (CQs) which continuously process un-

bounded data streams looking for data that represent events of interest to the end-user.

We consider the setting of a business that seeks to profit from selling data stream moni-

toring/management services. One might imagine that a DSMS rents server capacity to users

similar to the way Amazon, Google, and IBM now sell cloud computing services [72, 12, 63].

Auctions, used for example by Google to sell search engine ad words, are a proven way of

35

both maximizing a system’s potential profit, as well as appealing to the end-user. Instead

of a business selling their services at a set price, an auction mechanism (soliciting bids, then

selecting winners) allows a system to charge prices per user based on what the individual

user is willing to pay. Users who don’t get serviced are not denied arbitrarily due to the sys-

tem’s limited resources, but instead feel legitimately excluded because their bid was simply

not high enough. And perhaps most compellingly, an auction setting allows the system to

subtly control the balance between overloading their servers and charging the most profitable

prices. Hence, we investigate auction-based mechanisms for admission control of CQs to the

DSMS.

One of the key challenges to designing these auction mechanisms is determining how to

best take advantage of the potential shared processing between CQs. The fact that some

queries can share resources obfuscates each query’s actual load on the system. Without

clear-cut knowledge of each query’s load on the system, optimally selecting the queries to

admit becomes exceedingly challenging from a combinatorial perspective. On top of this, we

must also address the game theoretic concern of guaranteeing the mechanism we design is

not manipulable by users. Specifically, we desire that the mechanism is strategyproof (also

known as truthful), which means a client always maximizes her payoff by bidding her true

valuation for having her query run, regardless of how the other players bid.

Our Contributions. Our contributions are as follows (they are described in further

detail in Section 3.1.3):

• We apply techniques and principles from algorithmic game theory to a data streams

query admission control problem. In doing so, we introduce a new auction problem (that

can be posed abstractly and applied quite generally).

• We introduce the notion of sybil immunity for auction mechanisms: the desirable prop-

erty that players cannot benefit by taking on additional false identities in the system.

(We note that this concept can be generally applied to any mechanism design setting.)

• We propose greedy and randomized algorithms for this problem and show that they

are strategyproof, but the greedy approaches do not admit good profit guarantees, and

while the randomized approach guarantees a profit amount close to a standard profit

benchmark, it is not sybil immune.

36

• We experimentally show that greedy profit density-based mechanisms (which take into

account both the bid and the load for each user’s query), usually provide both increased

system profits as well as better user payoff, compared to the randomized algorithm.

Road map. We continue the introduction by defining the system model and formalizing the

problem statement in Section 3.1.1. We then provide a summary of the relevant background

from the auction and game theory literature in Section 3.1.2. With these definitions and

background, we are ready to give a high-level description of the contributions of this work (in

Section 3.1.3). Next, we first present our greedy mechanisms (in Section 3.2), and prove their

strategyproofness. We then give a mechanism in Section 3.3 that provably approximates a

standard profit benchmark. We analyze the vulnerability and robustness of our mechanisms

to sybil attack in Section 3.4. Finally, we present our experimental results in Section 3.5.

3.1.1 System Model and Problem Statement

We assume that each of n users submits a continuous query qi along with a bid bi. The

bid expresses a declared bound on how much she is willing to pay to execute the query over

a fixed time period (say a day for concreteness). Further each user has a private value vi

expressing how much having query qi run is really worth to her. It will be useful to define a

variable h to represent the largest valuation of any user. For our purposes, it is sufficient to

view a continuous query as a collection of operators. For example, a continuous query might

consist of three operators:

• An operator on a stream of stock quotes that selects out high value transactions,

• An operator on a stream of news stories that selects stories that mention companies with

publicly traded stock, and

• A join operator that joins the results of the two selection operators on the company name

attribute.

We assume that each operator oj has an associated load cj that represents the fraction of

the system’s capacity that this operator will use, and this load can at least be reasonably

approximated by the system (say maybe from historical data). In order for a query qi to be

successfully serviced, all of the operators in qi must be processed. The payoff (aka utility)

37

(a) The queries as seen by the DSMS. Query q1 has
two operators A and B, query q2 is formed of A
followed by C, and query q3 is composed of operator
D followed by E. As shown, operator A is shared
between queries q1 and q2. Each operator is also
labeled with the load associated with it. Operator
A for example incurs a load of 4 units. The input
data streams to operators A and D are labeled s1
and s2 respectively.

(b) The query plan is simplified here to show only
the operators without information about the flow of
data. This simplified, abstract information model
is the one we use for our problem. In our problem,
each user submits a bid: how much she claims to
value her query being serviced. The bids are shown
above as dollar amounts.

Figure 5: Two different views of the sample input of Example 3.1.1.

ui of the user that submitted query qi is vi − pi if qi is accepted, and 0 otherwise. Note that

many CQs may contain the same operator. For example, one could imagine many queries

want to select news stories on publicly traded companies.

To make these concepts concrete, consider Example 3.1.1 (depicted in Figures 5(a) and

5(b)). For the purposes of the problem we are studying, it is sufficient to abstract away the

dependencies between operators and retain only the information seen in Figure 5(b): the

set of operators that comprise all the queries, the load of each operator, and an indication

of which queries each operator is used in. We thus retain knowledge of which operators are

shared between which queries. We also take each user’s bid as part of our input.

Example 3.1.1. Three queries (q1, q2 and q3) are submitted to a DSMS with a capacity

of 10 units. Figure 5(a) shows the query plan of q1, q2 and q3. Note that q1 and q2 share

operator A. Figure 5(b), which depicts the relevant information model for the problem we

study in this work, shows that users 1, 2, and 3 bid $55 , $72 and $100 respectively.

In our model, the DSMS has an admission control mechanism that, at the end of each

day, accepts the bids and relevant information about the queries, and returns a decision

38

about which queries to admit and run the next day. The mechanism also returns the price pi

charged to those admitted. The aggregate load of the operators in the accepted queries can

be at most the capacity of the server. The payoff (aka utility) ui of the user that submitted

query qi is vi − pi if qi is accepted, and 0 otherwise.

We assume an underlying query model similar to the Aurora query model [1] where

subnetworks are connected via connection points. During the transition phase at the end

of each day, the upstream connection points that surround the subnetworks that need to

be modified hold any incoming data tuples. The tuples stored inside the queues of these

subnetworks are drained through the downstream connection points. Then the query planner

modifies the subnetwork by adding new operators or deleting operators. Once the query

planner finishes, the tuples stored at the connection points are input into the subnetwork

before the newly arriving tuples are executed. This transition phase ensures the correctness

of the results output by queries that continue to execute for the next day.

As opposed to our work that focuses on admission control on the registration of CQs,

other works on admission control in data streams focus on the arrival of data and in particular

shedding data at the source, e.g. [83, 69, 11, 84]. The goal of “load shedding” is to reduce

the load on the DSMS by dropping tuples from incoming data streams so that quality of

service with respect to latency is maintained for each customer’s query (sometimes at the

expense of accuracy). We propose that admission control actually begin at the query level;

that the first filter of the DSMS should be to selectively choose which queries to register to

begin with. Our work, in concert with these load shedding works, can ensure the system

resources are not overloaded while being efficiently used and profitably run.

From the business’ point of view, the most obvious design goal for the mechanism is to

maximize profit, which is the aggregate prices charged to the accepted queries. Another first

class design goal for the mechanism is strategyproofness (also known as incentive compatibility

or truthfulness). Intuitively, strategyproofness means that users have no incentive to “lie”

about their private values, or bid strategically. Auction-based profit-driven businesses like

eBay and Google AdWords attempt to design and use strategyproof auction mechanisms,

even at the expense of potential short-term profit, because when users perceive that the

system is manipulable, they have less trust in the system and are less likely to continue

39

using it. Hence requiring that their auction mechanisms be strategyproof is an investment

in their long-term success.

3.1.2 Relevant Background on Auctions

In many auction settings, bidders’ true valuations are the only private information, and

hence in such settings strategyproofness means that users/bidders maximize their payoff

when bidding their true valuations. In this chapter, we will refer to this property as bid-

strategyproofness, as we will later be considering other private information the users can

potentially hide from the system. Several standard auction problems are special cases of our

auction problem for continuous queries.

Settings without Sharing. In the special case that there are no shared operators, the

load of each query (which is the aggregate load of the query’s operators) is the same, and

there is room for k queries, then this is equivalent to the problem of auctioning k identical

goods. Charging each of the k highest bidders the (k + 1)st highest bid is well known to be

bid-strategyproof. When k = 1, this is famously known as “Vickrey’s second price” auction.

If CQs do not share operators, but the load of each query may be different, then the

resulting problem is what is known in the literature as a Knapsack Auction problem [2].

Aggarwal and Hartline [2] give a bid-strategyproof randomized mechanism that guarantees

an expected profit of at least

αOPT − γh log log log n.

Here α and γ are constants, OPT is the optimal profit that can be obtained from monotone

pricing. Monotone pricing means that higher load queries must be charged higher prices.

Recall that h is the maximum valuation. Intuitively the additive loss of h in any guarantee

of this kind is unavoidable because it is not possible for a bid-strategyproof mechanism to

obtain a profit competitive with OPT if there is only one user with high valuation. This is

proved more formally in [51].

Operator Sharing. Operators shared between queries greatly complicate the task of

the mechanism because the profit density of a query, which refers to the ratio of the bid

40

for that query (or potential profit to be obtained from accepting the query) to the load of

the query, depends on which other operators are selected. For example, consider a query

qi with low value and high load. In overload situations, query qi would surely be rejected

in a knapsack auction. But if all of qi’s operators were shared by high value queries, then

the effective profit density of qi (given that we know these high value queries were accepted)

could be very high. This dependency between queries makes the mechanism’s task much more

complex in the case of our continuous query auction than in the case of a knapsack auction.

This complexity is illustrated by the fact that there is a polynomial time approximation

scheme for the problem of finding the maximum value collection of items to select in a

knapsack auction, but even for a special case of our continuous query auction, the densest

subgraph problem, it is not known how to approximate the optimal solution to within a

polynomial factor in polynomial time [35].

Characterizations of Strategyproofness. A continuous query auction where the only

private information is the amount each user values her query is called a single-parameter

setting. In single-parameter settings, an allocation mechanism is called monotone if every

winning bidder remains a winning bidder when increasing her bid. The critical value of user

i is the value ci where if the user bids higher than ci, she wins, but if she bids lower than

ci, she loses. Note that the existence of a critical value for each user is guaranteed by the

preceding monotonicity property. It is shown in [66] that a mechanism is bid-strategyproof

if and only if it is both monotone and each winning user’s payment is equal to her critical

value.

One final auction setting related to our continuous query auction is the single minded

bidders (SMB) auction problem, studied by Lehmann et al [60]. Each single-minded bidder i

is interested in a specific collection Si from the set of items being auctioned (for a continuous

query auction the items being auctioned would be server capacity units and Si would be the

units needed to process the collection of operators in the query qi). Bidder i has a single,

positive valuation vi for Si, and has a valuation of zero for any other collection of items.

Each bidder specifies not only a bid but also which collection she is interested in, and the

set of items is partitioned among the winning bidders. Our CQ auction becomes a SMB

auction if both the amount each user values her query and the operators in her query are

41

private information, and if there is no operator sharing. [16, 60] provide a characterization

for strategyproofness in this setting that applies to our setting, even under our more general

assumption of operator sharing. Their characterization of a strategyproof mechanism for an

SMB auction differs only slightly from the above characterization for any single-parameter

setting: the definition of monotonicity is expanded. For a strategyproof SMB mechanism,

monotonicity means that not only must a winning bidder remain a winning bidder when

increasing her bid, but also must remain a winner when asking for a strict subset of the

collection she won. In our CQ admission auction, this corresponds to submitting a query

comprised of a strict subset of the operators in the admitted query.

3.1.3 This Work

We present several intuitive greedy by density CQ auction mechanisms. We show that four

of these mechanisms, CAF, CAF+, CAT, and CAT+, are bid-strategyproof. Each of these

mechanisms has the following form:

• Order queries in decreasing profit density, and then

• admit queries until the server is full.

The intuition is that we wish to accept queries with high valuation to load ratio.

We consider two different definitions of the load of the query. The mechanism CAT

assumes that the load of a query is the sum of the loads of its operators. The mechanism

CAF assumes that the load of a query is the sum of the fair-share load of its operators,

where the fair-share load of an operator is the load of the operator divided by the number

of queries that share that operator. So intuitively, CAT assumes that there will be minimal

or no operator sharing among the accepted queries, while CAF assumes that there will be

maximal operator sharing among the accepted queries. The mechanisms CAT and CAF stop

once the first query is encountered that will not fit, while the mechanisms CAT+ and CAF+

continue processing the queries hoping to find later, lower load, queries that will fit.

In each of these mechanisms, the price quoted for query qi is the profit density of a

particular rejected query times the load of qi. For each of CAT and CAF the price for

each accepted query is based on the the profit density of the first rejected query. Hence the

42

Table 1: Summary of the greedy algorithms

P
P

P
P

P
P

P
P

P
P

P
P

PP

Load

CQ doesn’t fit
Stop Skip

Fair Share Load CAF CAF+

Total Load CAT CAT+

mechanisms for CAT and CAF are offering a fixed price per unit of server capacity that a

query uses. The price for a query qi in CAF+ and CAT+ is based on the minimum profit

density after which qi would no longer have been accepted (imagine lowering bi, and hence

the profit density, until qi is not accepted).

In much of the theoretical research on auction problems, the only way that a user can

behave strategically is in the setting of her bid. We note that in our CQ admission auction,

conceivably a user has other ways in which she could behave strategically. We assume that the

estimation of the operator load is done by the server mechanism, and thus the user does not

have an opportunity to lie about operator loads. However, a user might conceivably lie about

which operators are contained in her query, for example by adding additional operators that

are not part of the query she actually desires. A mechanism where users always maximize

their payoff by truthfully revealing all their private information is called strategyproof. In the

context of our CQ admission auction then, this means a mechanism is strategyproof when

both bidding truthfully and submitting only the operators in the query actually desired by

the user maximizes the user’s payoff. All the bid-strategyproof mechanisms that we consider

are also strategyproof.

Finally, we consider a strategic behavior that is well-known in the context of reputation

systems like that of eBay and Amazon for rating sellers, buyers and products: a sybil attack.

A user who behaves strategically using a sybil attack forges multiple (“fake”) identities to

manipulate the system. In reputation systems a user might try to boost the reputation of

some entity by perhaps adding positive recommendations from false users [45]. In our setting,

a sybil attack amounts to creating false identities to submit additional queries that the user

43

does not need or value in order to manipulate the mechanism. Thus we define a mechanism

to be sybil immune if a user can never increase her payoff by submitting additional fake,

no-value queries. Here we assume that a user’s payoff is the aggregate payoff that she gains

from the queries of all of her identities. We show that CAT is sybil immune, while the rest

of the mechanisms are not. To the best of our knowledge, this is the first time that sybil

immunity has been considered in the setting of an auction problem. The notion of sybil

immunity can apply to any auction mechanism design problem.

Unfortunately, these greedy by density mechanisms may utterly fail to produce a reason-

able profit on some instances. We thus design a bid-strategyproof randomized mechanism

called Two Price, that guarantees a profit of at least OPT − 2h, where OPT here is the

optimal profit that can be obtained by quoting each user the same price (without regard to

strategyproofness). Our mechanism is based on the mechanism composition technique from

[2]. We compose the greedy mechanism Greedy-by-Value (GV) with the Random-Sampling-

Optimal-Price (RSOP) mechanism from [49]. GV simply admits queries in descending bid

order until the next query exceeds capacity. The bid-strategyproofness of our mechanism

then follows from the fact that GV is a composable mechanism, the fact that RSOP is bid-

strategyproof, and the fact that our prices are the maximum of the prices produced by GV

and RSOP. Comparing our profit guarantee to the one given in [2] for knapsack auctions: on

the positive side, CQ auctions are more general than knapsack auctions, and our guarantee

does not degrade with the number of users, and on the negative side, we only compare to the

optimal single price profit, which can be much less than the optimal monotone profit [2]. Fi-

nally, we show that unfortunately this mechanism is not sybil immune. These game theoretic

results are summarized in Table 2.

In the next section we discuss our profit density-based greedy mechanisms and their

strategyproofness. In later sections, we discuss a randomized mechanism that yields a prov-

able profit guarantee and evaluate all our mechanisms for sybil immunity. Finally, we present

an experimental performance evaluation of our mechanisms, showing that our density-based

greedy mechanisms actually outperform the randomized Two Price mechanism in a number

of important performance measures.

44

Table 2: Properties of our proposed auction mechanisms

Mechanism Sybil Immune Strategyproof Profit Guarantee

CAF × X ×
CAF+ × X ×
CAT X X ×
CAT+ × X ×
Two Price × X X

3.2 GREEDY STRATEGYPROOF MECHANISMS

In order to set the stage, we start by describing a näıve approach that uses the remaining

additional load needed to service a CQ for choosing winners and determining payment values.

We show how this approach, while it accurately captures the additional load each query will

contribute to the total load on the server, is not bid-strategyproof. We then consider the

various greedy schemes and discuss their strategyproofness properties.

3.2.1 Agents Chosen by Remaining Load

Consider the following natural mechanism using the above-mentioned greedy scheme for

choosing winners. The mechanism first chooses each winner based on a value we define

called a query’s “remaining load.” Then the mechanism charges each winner a payment that

also depends on that user’s remaining load. We will show that using such a payment scheme

is not bid-strategyproof, due to the fact that user’s payments are dependent on their bids.

Selecting Winners. We sort the CQs in non-increasing order of priority Pri, where

Pri = bi/C
R
i and CR

i is defined as follows.

Definition 3.2.1. (Remaining Load CR
i) The remaining load CR

i of query i is equal to the

total load of all the operators of qi except those operators that are shared with CQs that

have already been chosen as winners.

45

In every iteration through the loop, the algorithm chooses the query with the highest

priority and if there is enough remaining capacity in the system to accommodate it, places

it in the set of winners. At the end of each iteration, the remaining loads CR
i as well as the

priorities of the yet-unchosen queries are updated. We demonstrate this mechanism with

the example in Figure 5(b).

Calculating Payments. We naturally base our first payment mechanism on the known

bid-strategyproof k-unit (k + 1)th-price auction. Recall from Section 3.1.2 that a simple

strategyproof mechanism for a k-unit auction is to charge each winning bidder the bid

amount of the (k + 1)th highest bidder. Hence, we define qlost to be the CQ with highest

priority that is not a winner. Then, the payment of each winning CQ qi is calculated as

follows: pi = CR
i · blost/C

R
lost. If the query does not belong to the winners list, then the

payment is zero.

Remaining Load Algorithm Applied to Example 3.1.1. The initial remaining

loads of q1 , q2 and q3 are 5, 6, and 10 respectively. The priorities of q1, q2 and q3 become

11, 12 and 10. During the first iteration of the above algorithm, q2 is chosen first. Since

operator A is chosen as part of q2, the remaining load of q1 becomes the load of operator

B (just 1 unit) and its priority becomes 55. Consequently, during the second iteration q1 is

chosen. The remaining capacity in the system is 3. During the third iteration, q3 is chosen

however it does not fit in the remaining capacity in the system. As a result, the winners list

is composed of q1 and q2, and qlost is q3. As a result, the payments for q1 and q2 is $10 per

unit load, which amount to respective payments of $10 and $60.

Strategyproofness. The above payment mechanism at first glance seems bid-strategyproof

since it is based closely on the well-known bid-strategyproof second-price auction mechanism.

However, it is not bid-strategyproof since a winning user i who shares operators with other

winning users can gain by bidding lower than her true value. She can strategically bid low

enough so that she gets chosen for service after the users she shares operators with, but

still high enough to win. This will result in a lower remaining load CR
i and thus in a lower

payment.

46

3.2.2 Agents Chosen by Static Fair Share Load

At this point it has become clear that using remaining load
(

CR
i

)

for setting payments of

users is problematic because of the dependence of these values on the user’s bid. Therefore,

in this section, we propose using a fixed load that does not change over the course of the

winner selection algorithm, and we use that same fixed load to calculate payments.

We define the static fair share load as follows.

Definition 3.2.2. Let oj be an operator that has a load of cj and is shared among l different

CQs, then the static fair share load of oj per CQ is defined as cSF
j = cj/l. Hence, the static

fair share load of a CQ qi is defined as CSF
i =

∑

oj∈Qi
cSF
j .

In the following subsections we propose two bid-strategyproof payment mechanisms using

the same greedy scheme as in the previous section, but now based on static fair share load:

CAF and CAF+.

3.2.2.1 CAF (CQ Admission based on Fair Share) Our first bid-strategyproof

mechanism that depends on the static fair share load as defined in Definition 3.2.2 is shown

in Algorithm 1.

Selecting winners. Steps 1 through 3 of Algorithm 1 greedily select winners as follows.

A priority is assigned to each operator, where the priority is the value-load ratio: Pri =

bi/C
SF
i . Then the list of CQs is sorted in descending order of these priority values. The

algorithm admits CQs from the priority list in this order as long as the remaining load CR
i

of hosting the next CQ does not cause system capacity to be exceeded. (Note that the

load considered while checking capacity constraints is not the static fair share load.) The

algorithm stops as soon as the next CQ does not fit within server capacity.

Calculating payments. Once we have selected the winners, we calculate the payment

for each winning user according to steps 4 and 5 of Algorithm 1.

CAF Applied to Example 3.1.1. Since q1 shares operator A with q2, CSF
1 is 3 and

CSF
2 is 4. During the first iteration of CAF, the priorities of q1, q2 and q3 are 18.34, 18, and

10. As a result, CAF chooses q1 first and then q2. Again, q3 is qlost. Thus the payments for

q1 and q2 are $10 per unit load, which amount to respective payments of $30 and $40.

47

Algorithm 1 Our basic fair share mechanism (CAF). Input: A set of queries with their

static fair share loads CSF
i and their corresponding bids bi. Output: The set of queries to

be serviced and their corresponding payments.

1. Set priority Pri to bi/C
SF
i for each query i.

2. Sort and renumber queries in non-increasing Pri so that Pr1 ≥ Pr2 ≥ . . . ≥ Prn.

3. Add the maximal prefix of the queries in this ordered list that fits within server capacity

to the winner list.

4. Let lost be the index of the first losing user in the above priority list.

5. Charge each winner i a payment of pi = CSF
i (blost/C

FS
lost). Charge all other users 0.

Strategyproofness. We prove the following theorem by using the monotonicity and

critical value characterization of bid-strategyproof mechanisms for any single-parameter set-

ting (see Section 3.1.2).

Theorem 3.2.3. The CAF mechanism is bid-strategyproof.

Proof. The CAF winner selection is clearly monotone: any winning bidder could not become

a loser by increasing her bid since she will only move up in the priority list by doing so. The

CAF payments are also equal to the users’ critical values. If user i bids b′i < CSF
i (blost/C

SF
lost),

then we would have b′i/C
SF
i < blost/C

SF
lost and we know that both user i and user lost could

not fit together on the server with the other winners, so user i will become a loser.

We also note that CAF is not just bid-strategyproof, but strategyproof. This results

from the fact that the characterization for SMB auctions in [60] carries over to our setting

(see Section 3.1.2), and that CAF satisfies their additional monotonicity requirement that

when a winning bidder asks for only a subset of the operators in her query, she still wins.

3.2.2.2 CAF+: An Extension to CAF Selecting winners. CAF+ extends CAF

by allowing the algorithm to continue until there are no unserviced CQs left that will fit in

the remaining server capacity. While CAF stops as soon as it encounters a query whose load

exceeds remaining capacity, CAF+ skips over any queries that are too costly, continuing

48

onto more light-weight queries in the priority list. (See Algorithm 2.)

Calculating payments. The algorithm calculates the payment of each winning user (or

serviced query) based on each user’s movement window. Intuitively, the movement window

of a winning user is the amount of freedom the user has to bid lower than her actual valuation

without losing. A more formal definition follows.

Definition 3.2.4. In CAF+ every query that is selected to be serviced has a movement

window. A user’s movement window is defined as a sublist of the complete list of queries

ordered in descending priority Pri = bi/C
SF
i . We will refer to this complete list as the

priority list. The movement window of winning user i begins with the user just after user

i in the priority list, and ends at the first user j in the priority list that both comes after i

and satisfies the following property: if user i’s bid was changed so that it directly followed

the position of user j in the priority list, CAF+ would no longer choose query i as a winner.

If such a user j does not exist, then user i’s movement window spans the entire remainder

of the priority list.

Definition 3.2.5. For each winning query qi, last(i) is defined to be the first query which

is outside qi’s movement window. If there are no queries remaining outside the movement

window of qi, then last(i) is set to null.

The payment in CAF+ (Algorithm 2) is calculated for each query after the set of queries

to be serviced is determined. To specify the payment of each winner i, the algorithm first

calculates the identity of last(i). Then the payment for the selected query is defined as

pi = CSF
i · blast(i)/C

SF
last(i). If user i’s movement window included all remaining queries in the

priority list, i.e., if last(i) = null, then the payment of user i is 0.

Strategyproofness. The proof that CAF+ is bid-strategyproof is similar to that of

Theorem 3.2.3; we again use the characterization of bid-strategyproofness given in [66].

Theorem 3.2.6. The CAF+ mechanism is bid-strategyproof.

Proof. The CAF+ winner selection is monotone: any winning bidder could not become a

loser by increasing her bid since she will only move earlier in the priority list by doing so.

The CAF+ payments, by definition of each user’s movement window (Definition 3.2.4) are

precisely equal to the minimum value the user must bid in order to remain a winner.

49

Algorithm 2 Our aggressive fairshare mechanism (CAF+). Input: A set of queries with

their static fair share loads CSF
i and their corresponding bids bi. Output: The set of queries

to be serviced and their corresponding payments.

1. Set priority Pri to bi/C
SF
i for each query i.

2. Sort and renumber queries in non-increasing Pri so that Pr1 ≥ Pr2 ≥ . . . ≥ Prn.

3. For i = 1 . . . n, add user i to the winner list if doing so does not exceed capacity.

4. For each winner i, calculate last(i), as defined in Definition 3.2.5.

5. Charge each winner i a payment of pi = CSF
i (blast(i)/C

FS
last(i)). Charge all other users 0.

As with CAF, we note that CAF+ is not only bid-strategyproof, but strategyproof. The

reasoning is the same as for CAF (see Section 3.2.2.1).

3.2.3 Agents Chosen by Total Load

Because the “fairshare” based mechanisms described above are vulnerable to certain types

of user manipulation (see Section 3.4), we propose two more robust mechanisms. These

mechanism are exactly analogous to the mechanism from Section 3.2.2, except that we replace

every incidence of the static fairshare load CSF
i with that total load CT

i =
∑

oj∈Qi
cj. Thus

we have two mechanisms.

• CAT (CQ Admission based on Total load): analogous to CAF described in Section

3.2.2.1.

• CAT+: analogous to CAF+ described in Section 3.2.2.2.

CAT Applied to Example 3.1.1. In example 3.1.1 CT
1 , CT

2 and CT
3 are 5, 6 and 10 units.

Thus Pr1, Pr2 and Pr3 are 11, 12, and 10. Consequently, CAT chooses q1 and q2 to be

serviced. The payments for q1 and q2 are $10 per unit load, which amount to respective

payments of $50 and $60.

It is easy to verify that the proofs of bid-strategyproofness carry over to these modified

versions of the algorithms and payments. We therefore have the following two theorems.

Theorem 3.2.7. The CAT mechanism is bid-strategyproof.

50

Theorem 3.2.8. The CAT+ mechanism is bid-strategyproof.

As with CAF and CAF+, we note that both CAT and CAT+ are not only bid-strategyproof,

but strategyproof.

3.3 A PROFIT GUARANTEE

In this section we present a bid-strategyproof randomized mechanism that is competitive

(in expectation) with the best optimal constant pricing mechanism with respect to the goal

of maximizing profit. A constant pricing mechanism as defined in [2], is any mechanism

(strategyproof or not) where the users are all charged the same price, call it p, and those

who bid strictly higher than p are winners, those who bid strictly lower than p are losers, and

those who bid equal to p may be designated winners or losers arbitrarily by the mechanism.

Winners must all pay p and losers pay 0. Profit is defined to be the sum of the payments

that the mechanism charges or receives from the users.

A constant pricing mechanism is valid if all winners fit within server capacity, and so we

will only consider valid constant prices. Optimal constant pricing profit then refers to the

maximum possible profit that can be attained from any valid constant pricing mechanism

(strategyproof or not). We choose to focus on constant pricing optimality in this work be-

cause with the shared processing of queries in our problem, other standard profit benchmarks

seem difficult to compete with. Two other natural profit benchmarks include optimal pric-

ing per unit load and optimal monotone pricing, both of which generalize optimal constant

pricing and were discussed in the context of Knapsack Auctions in [2]. But because of our

shared processing between queries, the processing load required of each query is not clear

cut. Hence both proportional and monotone pricing definitions become fuzzy.

3.3.1 A Randomized Mechanism

In this section we show that by only using two distinct prices, under the assumption that

the users all have distinct valuations, we are able to find a bid-strategyproof mechanism

51

that approximates optimal constant pricing profit. We show however that there is a trade-

off between the run-time of the mechanism and its profit. We first present a mechanism

that runs in time exponential in the number of duplicate valuations, then explain how a

polynomial time version of it gives a weaker profit guarantee.

We refer to our mechanism as the Two-price Mechanism (see Algorithm 3). The first

phase of the mechanism (Steps 1 and 2) follows our greedy scheme (using user valuations), the

second phase (Step 3) is an exhaustive search that gives the potential exponential running

time in terms of number of duplicate valuations, and the last phase (Steps 4 through 6)

contains the randomization and is essentially identical to the Random Sampling Optimal

Price auction of [49, 51].

Note that in Step 3 of the mechanism we run an exhaustive search on all possible subsets

of the critical set of queries with duplicate valuations. The possibility of sharing of server

capacity between queries is what requires us to take this potentially arduous step, as the

problem of optimally determining which subset of queries to admit in the face of such sharing

seems hard to approximate.

3.3.1.1 Strategyproofness A randomized mechanism is bid-strategyproof in expectation

if for every user i, the expected payoff for user i is maximized when user i bids her true

valuation vi [66]. A randomized mechanism is bid-strategyproof in the universal sense if it is

not only bid-strategyproof in expectation, but it is also “ex post” bid-strategyproof. That is,

regardless of the outcome of the randomness, users always maximize their payoff by bidding

their true valuations. In other words, a universally bid-strategyproof randomized mechanism

is a probability distribution over bid-strategyproof deterministic mechanisms [66].

To prove that our mechanism is bid-strategyproof in the universal sense, we depend

on some existing results. In [2], Aggarwal and Hartline define mechanism composition as

follows.

Definition 3.3.1. Given two mechanisms M1 and M2, define the composite mechanism

M1 ◦M2, as:

1. Simulate M1 and let H be the set of winners.

52

Algorithm 3 Two-price mechanism. Input: Set of n queries and corresponding user valu-

ations v1 . . . vn. Output: Set of winners and their corresponding payments.

1. Sort and renumber the queries in order of decreasing valuation, so v1 ≥ v2 ≥ v3 ≥ . . . ≥
vn, breaking ties arbitrarily.

2. Let H be the ordered set of queries that comprise the maximal prefix of queries from

this sorted list that fits within our server capacity. Let L be the ordered set of losers

(remaining queries not chosen for H) and let vL be the valuation corresponding to the

first query in L.

3. If the last query in H has valuation vL, the set of queries in H must be adjusted as follows.

Let D be the set of all users with valuation equal to vL, and let d be the cardinality of

D. Let H ′ = H −D. Let D∗ be the largest subset of D that fits within capacity along

with H ′. Redefine H = H ′ + D∗

4. Partition the users from H evenly into two sets, A and B, uniformly at random. Renum-

ber queries separately in each set as in step 1. I.e., v1 ≥ v2 ≥ . . . ≥ va for the a queries

in set A, and v1 ≥ v2 ≥ . . . ≥ vb for the b queries in set B, again breaking ties arbitrarily.

5. Calculate the optimal constant price profit of each set of queries: OPT (A) = maxi∈A ivi

and OPT (B) = maxi∈B ivi. Let k = arg maxi∈A ivi and let pA = vk. Similarly, let

j = arg maxi∈B ivi and let pB = vj.

6. Use the price pA to determine the winners from set B and use the price pB to determine

the winners from set A. Specifically, the winners from set B are those users whose

valuations are greater than pA, and these winners are each charged a payment of pA.

Similarly determine winners and payments for users in set A.

53

2. Simulate M2 on the set H .

3. Offer a price to each winner of Step 2 that is the maximum of the price she is offered by

M1 and M2.

They then define a mechanism to be composable if it is both bid-strategyproof and the

set of chosen winners does not change as any winning user varies her bid above her critical

value.

Finally, they prove the following lemma.

Lemma 3.3.2. ([2]) If mechanism M1 is composable and mechanism M2 is bid-strategyproof

then the composite mechanism M1 ◦M2 is bid-strategyproof.

To prove the following theorem, we use Lemma 3.3.2.

Theorem 3.3.3. The Two-price mechanism is bid-strategyproof in the universal sense.

Proof. We use Lemma 3.3.2. Let M1 be the mechanism defined by steps 1 and 2 of the

Two-price mechanism along with its corresponding critical payments: each user pays an

amount equal to vL, the highest losing bid as defined in Step 2 of the algorithm. This is bid-

strategyproof as it is equivalent to a standard k-Vickrey auction (see Section 3.1.2), and it is

composable since any winner varying her price above the highest losing bid does not change

the set of winners. We let M2 be the mechanism defined by the remaining steps of the Two-

price mechanism. Note that M2 is a randomized bid-independent auction (as defined in [37]).

Theorem 2.1 in [37] states that an auction is universally bid-strategyproof if and only if it is

bid-independent. Because the payments set by M2 will always be higher than those set by

M1, we can invoke Lemma 3.3.2 to conclude our entire mechanism is bid-strategyproof.

Note that because the Two-price mechanism allocates winners and sets payments entirely

independent of each query’s load, it is not only bid-strategyproof, but strategyproof.

3.3.1.2 Competitiveness We assume user valuations range from 1 to h and we use

OPT to refer to the optimal constant pricing profit.

Theorem 3.3.4. The expected profit of the Two-price mechanism is at least OPT − 2h.

54

Proof. Let n(S, p) refer to the number of users in set S whose valuations are p or higher.

Then the Two-price mechanism’s expected profit can be expressed as

TP = E[n(A, pB)pB + n(B, pA)pA].

Observe that

E[n(A, pB)pB] ≥ E[n(B, pB)pB]− pB (3.1)

≥ E[n(B, p∗)p∗]− pB, (3.2)

where p∗ is the optimal constant price if our input was the set H and the second inequality

holds by definition of pB. Then observe that

E[n(B, p∗)p∗] =
n(H, p∗)p∗

2
=

OPT (H)

2
=

OPT

2
(3.3)

where OPT(H) refers to the optimal solution if the input is only the queries in H , and the

last equality holds because any valid optimal constant price can be no less than the minimum

valuation of any user in H . Putting these together and upper bounding pB with h gives us

E[n(A, pB)pB] ≥ OPT − 2h

2
.

By symmetric arguments for E[n(B, pA)pA] and linearity of expectation we can then conclude

TP ≥ OPT − 2h.

We can also show that eliminating Step 3 of the Two-price mechanism, yielding a

polynomial-time algorithm, gives a weaker profit guarantee parameterized by the maximum

number of duplicate valuations. Specifically, if there are d valuations in the input that are

identical, then the profit guarantee decreases to OPT − dh. The analysis is similar to the

proof of Theorem 3.3.4, the difference being that we can no longer claim OPT (H) = OPT

as in equation (3.3). Eliminating Step 3 of the mechanism means we can only say that H

has at least 1 of the queries in the set D, while OPT has at most d − 1 of the queries in

D, so we instead obtain OPT (H) ≥ OPT − (d − 2)h. Combining this with the rest of the

analysis, which remains the same, gives us the following result.

Theorem 3.3.5. Expected profit of the polynomial-time mechanism defined by the Two-price

mechanism without Step 3 is at least OPT − dh.

55

Figure 6: This figure illustrates the third user from Example 3.1.1 perpetrating a sybil attack

by forging two additional fake users. The real queries are indicated in solid lines while the

fake queries are indicated in dashed lines. The presence of these fake queries creates the

illusion that user 3’s operators are in higher demand, which could conceivably influence the

mechanism to either charge the third user less, or service her when she would not have

otherwise been serviced.

3.4 SYBIL ATTACK

In this section we consider a strategic behavior that is well-known in the context of reputation

systems like that of eBay and Amazon for rating sellers, buyers and products: a sybil attack.

A user who behaves strategically using a sybil attack forges multiple (“fake”) identities to

manipulate the system. In reputation systems a user might try to boost the reputation

of some entity by perhaps adding positive recommendations from false users [45]. In our

setting, a sybil attack amounts to creating false identities to submit additional queries that

the user does not need or value in order to manipulate the mechanism. (See Figure 6.)

Thus we define a mechanism to be sybil immune if a user can never increase her payoff by

submitting additional fake, no-value queries. We make the natural assumption that if a fake

query is chosen to be serviced, the sybil attacker is responsible for making the fake query’s

payments, so a user’s payoff is the aggregate payoff that she gains from the queries of all of

her identities.

56

We will show here that CAT is sybil immune, while the rest of the mechanisms are not.

To the best of our knowledge, this is the first time that sybil immunity has been proposed,

and we note that the notion of sybil immunity can apply to any mechanism design problem.

Definition 3.4.1. We define a mechanism to be vulnerable to sybil attack if there exists

an input instance where there is a user who can increase her payoff by perpetrating a sybil

attack.

Definition 3.4.2. We define a mechanism to be universally vulnerable to sybil attack if in

every input instance, every user has a way to improve her payoff by perpetrating a sybil

attack.

In this section we show that while some of our mechanisms are extremely vulnerable to

sybil attack, our CAT mechanism is robust to sybil attack.

3.4.1 Attacks Against the Fair Share Mechanisms

Unfortunately, our proposed fair-share schemes of Section 3.2.2 are vulnerable to sybil attack.

A user i can employ the following strategy using a sybil attack to improve her payoff: simply

create fake users with negligible valuations whose queries share operators with qi. A sybil

attack of this kind will lower the attacker’s fair share load, improving her ranking and

enabling her to be selected as a winner while simultaneously decreasing her payment to an

affordable amount. Note that it is always possible for the attacker to set her fake users’

valuations low enough so that they are not in danger of being selected as winners, and hence

will require no additional payment from the attacker.

Indeed, we can prove that in any given instance of the CQ admission problem, any user

can gain from employing a sybil attack against our fair share mechanism.

Theorem 3.4.3. Both the CAF or CAF+ mechanisms are universally vulnerable to sybil

attack.

Proof. Consider any given user i. We have two cases: either user i is a winner under the

mechanism in question (either CAF or CAF+), or i is a loser.

57

Case 1. If i is a loser, then i can gain by perpetrating a sybil attack as follows. Let j be a

winning user such that j = arg maxk Prk. Choose the number s of forged queries to be such

that vi/(CT
i /s) > vj/C

SF
j . User i creates s fake users, each with query identical to qi. Doing

so makes CSF
i ≤ CT

i /s, which by choice of s means Pri = vi/C
SF
i > vj/C

SF
j = Prj. Since j

was the winner with highest priority, and all users have total load at most 1 by assumption,

i is now a winner. We can see that i’s payoff has improved because when i was a loser her

payoff was 0, while now it is vi − pi = vi − CSF
i vj/C

SF
j > 0. User i can also ensure that

she makes no payments for the fake queries she created by setting their valuations to be

sufficiently small so that they all lose.

Case 2. If i is a winner, then i can gain by using a sybil attack to reduce i’s payment,

pi. If i simply creates one fake user whose query is identical to qi, CSF
i will be reduced,

which reduces pi = CSF
i (vlost/C

SF
lost). Again, user i chooses the fake user’s valuation to be

a sufficiently small value to ensure that the fake query’s priority is low enough to not get

serviced.

3.4.2 Attacks Against the Total Load Mechanisms

In contrast to this vulnerability of our fair share mechanisms, the total load payment mech-

anisms (CAT and CAT+), described in Section 3.2.3, seem at first to be robust to such

attacks. While we’ve seen that a user’s fair share can easily be reduced by creating fake

identities, a user’s total load is not dependent on the number of other users sharing her load,

and therefore CAT and CAT+ should not (at least at first glance) be prone to such sybil

attack strategies.

Definition 3.4.4. We say that a mechanism is immune to sybil attack if for every input

instance, no user can increase her payoff by perpetrating a sybil attack (i.e., it is not vulner-

able). We also use the term sybil immunity to refer to this property.

However, one of our total load mechanisms is not immune to sybil attack. We begin by

giving the following characterization of sybil immunity. A mechanism is sybil immune if and

only if both of the following properties hold:

1. The arrival of additional queries will never cause a loser to become a winner with positive

58

payoff.

2. If the arrival of additional queries reduces a winner’s payment by δ, the additional queries

that become winners must be charged a total of at least δ by the mechanism.

We now show that CAT+ is vulnerable to sybil attack because it does not satisfy property

1 of the above characterization.

Theorem 3.4.5. For the CQ admission problem, CAT+ is vulnerable to sybil attack.

Table 3: An example of a sybil attack that beats CAT+. User 2 is a sybil attacker, creating

a fake query that appears to the system as “user 3”. Here, ε represents an arbitrarily small

positive value.

User 1 2 “3”

vi 100 89 100ε + ε

CT
i 1 0.9 ε

Pri 100 < 100 > 100

Round 1 100 < 100 picked

Round 2 exceeds cap. picked picked

Payments pi 0 0 ← 100ε

Payoffs 0 89− 100ε N/A

Proof. Consider the example in Table 3, in which a sybil attacker defeats our total load

algorithm, CAT+. In this example, if user 2 does not perpetrate the attack, user 1 will

get chosen for service, and then server capacity will be reached, so user 2 would not get

serviced. Whereas when user 2 introduces the fake “user 3,” she is able to trick the system

into choosing her instead of user 1.

Note that in this kind of sybil attack, the danger for user 2 (the attacker) is that when

the fake “user 3” was chosen for service, user 2 had to make user 3’s payment. Hence user

3’s fake valuation and fake load had to be carefully chosen by user 2 so that user 2 found

paying user 3’s fee worthwhile. (Recall from Section 3.2.3 that payment of a winning user i

59

is calculated as CT
i vlost/C

T
lost, so in our example, that makes p3 = 100ε). In this particular

instance, user 2 had no payment of her own to pay because there are no users that have

lower priority than user 2. This makes paying “user 3”’s payment affordable to user 2.

The good news is: our total load mechanisms are not always bad. First, while our

fair share mechanisms are universally vulnerable to attack, there are instances under the

total share mechanism that are robust to sybil attack. Second, and more notably, the CAT

mechanism is immune to sybil attack. In fact we can make an even stronger claim. Thus far

in our discussion of sybil attacks, we have been considering sybil attack in isolation from bid-

strategyproofness. However, it is possible that a user can use a sybil attack in conjunction

with lying about her valuation in order to increase her payoff. This possibility raises the

question of whether adding sybil attacks to each user’s set of possible strategies has removed

our mechanism’s bid-strategyproofness.

It turns out that our CAT mechanism remains bid-strategyproof even if we allow sybil

attacks, and it remains immune to sybil attack, even if we allow users to lie about their

valuations.

Definition 3.4.6. We define a mechanism to be sybil-strategyproof if no user can improve

her payoff by either lying about her valuation, perpetrating a sybil attack, or doing both

simultaneously.

We now give a characterization of sybil-strategyproof mechanisms. A mechanism is

sybil-strategyproof if and only if both of the following properties hold:

1. It is bid-strategyproof.

2. The arrival of additional users (e.g., via a sybil attack) cannot decrease anyone’s critical

value by an amount more than the total payment charged to the additional users.

We use the above characterization to prove that CAT is sybil-strategyproof.

Theorem 3.4.7. For the CQ admission problem, the CAT mechanism is sybil-strategyproof.

Proof. Property 1 of the characterization of sybil-strategyproofness is satisfied since we have

already seen from Theorem 3.2.7 that CAT is bid-strategyproof. To satisfy property 2 of

60

the characterization, it is sufficient to show that adding additional users to the instance does

not decrease any user’s critical value. Consider any user i. In the CAT mechanism, user

i has critical value pi = CT
i (vlost/C

T
lost). (Recall that lost is defined to be the user with

highest priority not selected to be serviced by CAT.) Since the arrival of additional users

cannot change CT
i , we need only show that the arrival of additional users cannot decrease

vlost/C
T
lost = Prlost.

We proceed by induction on the number of additional users that arrive. Assume induc-

tively that introducing the first k users cannot reduce Prlost. Define lost(k) to be lost in the

instance that includes only the first k fake users, and let lost(k + 1) be lost in the instance

that includes the first k + 1 users. We must show that Prlost(k+1) = vlost(k+1)/C
T
lost(k+1) ≥

Prlost(k) = vlost(k)/C
T
lost(k).

Consider user j, the (k + 1)th newly arriving user. If user j has priority Prj ≤ Prlost(k),

then lost(k + 1) = lost(k) and hence Prlost(k+1) = Prlost(k). If Prj > Prlost(k) then

Prlost(k+1) ≥ Prlost(k).

Hence the critical value of user i cannot be decreased by the arrival of additional users.

3.4.3 Attacks Against the Randomized Mechanism

Our randomized Two-price mechanism, however, is not immune to sybil attack. We prove

this fact by showing that the mechanism violates property 2 of our characterization of sybil

immunity: a winning user can reduce her payment (in expectation) by introducing fake

queries such that the fake queries incur less expected total charges than the amount her

payment was reduced by.

Theorem 3.4.8. The Two-price mechanism is vulnerable to sybil attack.

Proof. Consider the following input instance. User 1 has valuation b > 1 and users 2 and 3

have valuation c > 1, where b > c and c is an integer. Suppose all three users make it past

the first three Steps of the mechanism into the set H with some positive capacity to spare.

(Assume all other users have very large size and valuation less than 1 and were thus placed

in set L.)

61

The mechanism will always charge user 1 a price of c, regardless of the randomness,

giving user 1 a payoff of b− c. However, user 1 can benefit from sybil attack as follows. User

1 creates 2c−3 fake queries, each with valuation 1+ ε, and each with size small enough that

they are also placed in the set H . We consider three cases.

Case 1: users 2 and 3 are in the opposite partition from user 1. Without loss of generality,

assume user 1 is in set A and users 2 and 3 are in set B. In this case, it is impossible for

the fake users to change the payoff of user 1: c − 2 of them are placed in the set B, but

(1 + ε)c < 2c, so pB remains at c as before. And none of the fake users are winners.

Case 2: users 2 and 3 are in opposite partitions from one another. Without loss of

generality, assume users 1 and 2 are placed in set A and user 3 is placed in set B. Now,

since (1+ ε)c > c, the price pB becomes 1+ ε, giving user 1, our sybil attacker, a lower price.

The fake users in set A also must pay 1 + ε, but there are only c− 2 of them, so user 1’s net

payoff becomes b− (1 + ε)− (c− 2)(1 + ε) > b− c, for small enough ε.

Case 3: users 1, 2 and 3 are in the same partition. Assume they are all placed in set A.

Then user 1’s new price is again 1 + ε. Again, even after making the payments for her fake

users, users 1’s payoff has improved.

Thus, overall, user 1’s expected payoff improves due to her sybil attack.

Finally, we note that even if we modify Step 4 of the mechanism so that each query

is placed in set A or B based on independent coin flips (so that H may not be evenly

partitioned), the mechanism is still vulnerable to sybil attack. Again, the vulnerability is

due to a violation of property 2 of our characterization of sybil immunity. Consider the

instance where user 1 has valuation b and nc users (which get placed into H along with user

1) all have a valuation of c < b. Set server capacity to be equal to the size of the users in H .

User 1 creates a fake user with valuation d = c + ε, with size equal to the combined size

of all the users with valuation c, kicking them out of H . While before user 1 was charged

c with probability 1− (1/2)nc and 0 with probability (1/2)nc, now that only user 1 and the

fake user are in H , user 1 and her fake user is charged 0 with probability 1/2, and d with

probability 1/2. For choice of ε that ensures d/2 < c(1− (1/2)nc), user 1’s expected payoff

has decreased.

62

3.5 EXPERIMENTAL EVALUATION

In this section, we experimentally demonstrate the behavior of the different proposed auction-

based admission control mechanisms. First we present the experimental setup. Then we

discuss the results.

3.5.1 Experimental Platform

Mechanisms. We implemented all the proposed admission control mechanisms in Java,

including the strategyproof GV (Greedy by Valuation) mechanism (described in Section

3.2). We also implemented the optimal constant pricing profit (OPTC) algorithm, described

in Section 3.3.

Metrics. For each mechanism, we measured the following performance metrics:

• Profit: the sum of the payments of the admitted queries.

• Admission rate: The percentage of queries admitted.

• Total user payoff: the sum of the valuations (bids) of the admitted queries minus the

payments. Total user payoff can be seen as an indication of total user satisfaction under

each mechanism.

• System utilization: the used capacity of the server.

• The runtime for each mechanism.

The reported results are the average of running each algorithm on 50 different sets of work-

load. Note that, for clarity, our figures do not show GV or OPTC as they echo the behavior

of Two-price in all experiments.

Workload. We summarize the workload parameters in Table 4. We generated 50 sets

of workload for four different system capacities. Each set contains a number of different

input instances. An input instance consists of users’ queries along with their bids, and is

parameterized by:

• A system capacity.

• Maximum degree of sharing: The degree of sharing of an operator is the number of

queries that share a single operator, and the maximum is taken over all the operators.

63

Table 4: Workload Characteristics

Number of workload sets 50

Number of queries 2000

Number of operators 700 ∼ 8800

Max Degree of Sharing [1− 60] - Zipf, skewness: 1

Maximum Bid 100 - Zipf, skewness: 0.5

Maximum Operator Load 10 - Zipf, skewness: 1

System Capacity 5K-10K-15K-20K

We varied the maximum degree of sharing from 1 to 60. We keep the average query load

the same throughout a workload set, while varying the maximum degree of sharing. To

achieve this, we generate a workload with the highest maximum degree of sharing (i.e. 60)

and then gradually split the operators of the highest degree and distribute the resulting

operators into other varying degrees within a workload. For example, to generate an input

instance of maximum degree of sharing 7, using the input instance of max degree of sharing

8, if there were 100 operators with degree 8, we split each one of them to degrees 4,2,1,1

(four operators). This will generate 400 new operators with the same load as the original

operators. The queries associated with that operator will be distributed among the resulting

operators. Each input instance consists of 2000 queries and between 700 and 8800 operators

(the number of operators decreases as the degree of sharing increases).

The bids of each query are randomly generated according to a Zipf distribution with

maximum bid value set to 100 and skewness parameter set to 0.5. The load of each operator

is also randomly generated according to a Zipf distribution with the maximum operator load

set to 10 units and skewness parameter set to 1. Operators are assigned to queries randomly,

where for each operator, the number of queries sharing it is drawn from a Zipf distribution

with skewness parameter set to 1 and the maximum degree of sharing changes from 1 to 60.

64

3.5.2 Experimental Results.

Figure 7(a) shows the percentage of admitted queries as the degree of sharing ranges from

1 to 60, for a system with capacity 15,000. All mechanisms admit more queries as the

degree of sharing increases. This is due to the fact that the mechanisms are able to take

advantage of the shared processing between queries, so more queries can be serviced using

the same system capacity. Two-price always admits a smaller percentage of the queries than

the density-based mechanisms (CAF, CAF+, CAT, CAT+) because it chooses queries by

user bid only, without regard to query load.

Interestingly, profit (in Figure 7(b)) does not follow the same trend. CAF and CAT are

the best for profit, as they do not admit queries as greedily as CAF+ and CAT+ do, which

means the prices they charge admitted queries are much higher than CAF+ and CAT+.

The profit of CAF+ and CAT+ decrease as degree of sharing increases because they are

simply admitting so many queries (as sharing increases) that the prices they are charging

admitted queries continues to be driven downward. Due to the fact that queries are selected

in decreasing order of density and charged a per-unit price equal to the per-unit bid of the

first losing query, very few queries means higher prices, more queries means lower prices. The

Two-price mechanism provides profit that consistently improves as degree of sharing increases

because its profit is close to the optimal constant pricing profit, which only improves as the

number of queries that can fit within capacity increases. At the point where Two-price

crosses over CAF and CAT, we observe the same phenomenon that caused decreasing profit

in CAF+ and CAT+. At the crossover point, CAF and CAT begin to admit such a high

rate of queries that the prices they are charging are being driven dramatically downward

(remember, query valuations are drawn from a skewed distribution), reducing overall profit

faster than the gain in profit from admitting more queries. The profit of CAF in particular

begins to really dive, as the payments are an increasing function of each query’s fair share

load, which also shrinks as the degree of sharing increases.

With respect to maximizing total user payoff (Figure 7(c)), the density based mechanisms

always perform better than Two-price because they are able to admit more queries and satisfy

more customers. CAF+, of course, has the highest payoff because not only are the most

65

(a) System Capacity = 15,000 (b) System Capacity = 15,000

(c) System Capacity = 15,000

Figure 7: Figure 7(a) shows the percentage of queries serviced under each mechanism. Figure

7(b) shows the profit earned by each mechanism. Profit is the sum of the payments of the

admitted queries as they were calculated by the respective mechanisms. Figure 7(c) shows

total user payoff, which can be interpreted as a measure of total user-satisfaction. A user’s

payoff is defined as her valuation minus her payment. Seen here is the sum of winning users’

payoffs.

66

queries admitted under CAF+, but users are only paying for their fair share load, rather

than for their total load. As the degree of sharing increases, CAF begins to overtake CAT+

in total user payoff because fair share load per user is decreasing, which decreases payments,

increasing payoffs. Each query’s total load on the other hand, remains constant as the degree

of sharing increases.

In terms of utilization, we found that all proposed mechanisms admit queries so as to

utilize more than 98 percent of the system capacity, except for Two-price which utilizes

between 96 percent and 98 percent.

In Figure 8, we show the system profit for three other system capacities. As system

capacity increases, it is apparent that the crossover points (between CAF+, CAT+ and

Two-price and between CAF, CAT and Two-price) are shifted to the left, to lower degrees

of sharing. Indeed, as capacity increases, the picture as a whole seems to shift and scale

downward to the lower end of max degree of sharing. When system capacity is close to the

total query demand and sharing is high, the Two-price mechanism has clearly overtaken all

the density mechanisms for highest profit. As described above, this is due to the fact that so

many of the queries are being serviced by the density mechanisms, driving down the prices

being charged.

We list the average runtime performance of each mechanism over all workloads with

2000 queries and capacity 15K in Table 5. As a baseline, we also implemented a randomly

admitting algorithm, which picks queries at random and stops at the first query that does

not fit in the remaining capacity. The algorithms ran on an Intel Xeon 8 core 2.3GHz, with

16GB of RAM. The mechanisms only utilized one core. It is clear that the more aggressive

mechanisms (CAF+ and CAT+) cannot scale compared to the simple ones. We note here

that even though the density based mechanisms’ runtime is only three to seven times more

than the baseline random algorithm, they provide strategyproofness, and moreover CAT also

provides sybil-immunity.

Manipulation of the System. Finally, we evaluate CAR for profit both in a setting

where users are being truthful about their valuations, and in a setting where they strategize

and bid less than their true valuations (i.e., “lie”). Since CAR is the only mechanism that

is not strategyproof, such lying under CAR is to be expected.

67

(a) System Capacity = 5000 (b) System Capacity = 10,000

(c) System Capacity = 15,000 (d) System Capacity = 20,000

Figure 8: The sequence of figures in 8(a) through 8(d) shows system profit as system capacity

varies from 5000 to 20,000 in increments of 5000.

Table 5: Runtime performance averages for each algorithm on 50 workloads with 2000 queries

Random GV Two-price CAF CAF+ CAT CAT+

0.92 2.003 3.72 7.088 12555.5 7.26 10091.2

68

To simulate strategizing users, we add an alternative bid to each client, which represents

a lower bid than her valuation, and it is the product of her query valuation (original bid)

and a lying factor. If a user’s query shares many operators with other queries, she would

strategize by bidding lower than her valuation thus lowering her payment and increasing

her payoff. Therefore, if the ratio of Static Fair Share/Total Load is less than a certain

threshold, the client will lie (i.e., submit the alternative bid) with a certain probability. We

generated two workloads: a moderately lying workload and an aggressively lying workload.

In the moderately lying workload, the threshold is set to 0.25, the probability of lying to 0.5,

and the lying factor to 0.5, while in the aggressively lying workload, they are set to 0.35, 0.7

and 0.3 respectively.

Figure 9 shows the profit for three strategyproof mechanisms, CAF, CAT and Two-

price, along with three different representations of the profit of CAR: CAR when no user

lies, CAR-ML (CAR running the Moderate Lying workload) and CAR-AL (CAR running the

Aggressive Lying workload). We see that when some users lie, the system profit decreases,

motivating the need and desire of the system for a strategyproof mechanism. The profit of

the three strategyproof mechanisms is dependable, while the profit from CAR is manipulable.

Finally, Table 6 simply summarizes the desirable characteristics of each mechanism along-

side its experimental performance for various metrics like profit maximization, total user

payoff, and rate of admission. Note that all mechanisms listed here are strategyproof. Ad-

mission Rate, Total User Payoff, and Profit are all in terms of relative performance as degree

of sharing increases. For Profit, note that in the special case that degree of sharing is high

and system capacity is almost as high as total system demand, the profit from CAF and

CAT begins to dwindle and the profit from Two-price is actually highest.

3.6 SUMMARY

In this work, we applied techniques and principles from algorithmic game theory to a data

streams query admission control problem. We introduced a new auction problem that,

69

Figure 9: Profit of the three strategyproof mechanisms, (CAF, CAT, and Two-price), in

comparison with the following different representations of the non-strategyproof mechanism

CAR: CAR when no user lies, CAR-ML(CAR running the Moderate Lying workload) and

CAR-AL(CAR running the Aggressive Lying workload). System capacity = 15,000.

Table 6: Properties of our proposed auction mechanisms.

Mechanism Sybil Profit Admission Total User Profit

Immune Guarantee Rate Payoff

CAF × × High Medium High

CAF+ × × High High Low

CAT X × Medium Medium High

CAT+ × × Medium High Low

Two-price × X Low Low Medium

70

when posed abstractly, can be applied generally to naturally arising combinatorial settings

outside of DSMSs. We introduced the notion of sybil immunity for auction mechanisms

which can also be applied generally to any mechanism design setting. We proposed greedy

and randomized auction mechanisms for this problem which are all strategyproof. We show

the greedy approaches cannot give provable profit guarantees, and we also show that the

randomized approach, for which we do give a provable profit guarantee, is not sybil immune.

Our theoretical results pose a nice open question: can one find a mechanism for this problem

that is strategyproof, sybil immune, and has a profit guarantee?

Our experimental results show that, generally speaking, CAT and CAF are the best

mechanisms to use for profit maximization. However, if you have a high degree of operator

sharing, and your system capacity is close to the total demand of the queries requesting

service, then Two-price performs better for profit maximization. As expected, the greedy

mechanisms (CAF, CAF+, CAT, and CAT+) provide better admission rate and payoff than

Two-price. CAF+ and CAT+ are best for total user payoff, while CAF and CAF+ have the

highest query admission rate as the degree of sharing increases. CAT, the one mechanism

which is sybil immune, seems to offer the best overall tradeoff with respect to profit.

The data streams setting lends itself to natural and interesting variants on our model.

For example, we might consider a more general and perhaps more realistic model where each

query not only has a private valuation and a set of operators it wants executed, but it also

has a specific interval of time during which it wants to be executed. The processing costs

of each operator now represent costs per time unit, and the problem takes on a scheduling

nature. Each time we choose to service a query we are committed to servicing it for the entire

time interval specified by the query. And as before, we have a server of limited capacity.

Our goal would again be to find a truthful mechanism that maximizes profit.

Another possible (and perhaps more realistic) variant is one where rather than having

all queries and their corresponding information present up front, queries instead arrive over

time. Hence a natural avenue for future work would include the design of online mechanisms

for query admission.

And finally, we might consider the issue of energy consumption of the DSMS center

Different levels of system operation incur different energy costs. This can be coupled with

71

the observation that it might be more profitable not to fully utilize the available capacity.

Indeed, this is what our results suggest. Hence, an extension is to maximize profit while

taking energy costs from system utilization into consideration.

72

4.0 INTERNET BOTTLENECK ROUTER CONGESTION

In the last chapter we discussed work that we completed toward our goal of using game

theoretic models for problems in applied computer science. We now work toward both of

our goals: demonstrating the utility of adaptive learning from evolutionary game theory and

applying game theoretic techniques to real-world problems. Specifically, we study a problem

from the field of networks.

4.1 INTRODUCTION

Ever since the first congestion control algorithms for TCP endpoints were introduced in [53],

the important problem of congestion control at bottleneck routers on the Internet has gar-

nered wide-spread attention. Several algorithms have been proposed for queue management

and scheduling of packets in routers. Initially, such algorithms were designed under the

assumption that all packets arriving at the routers come from TCP complying sources that

produce packet flows with certain characteristics: all flows that become aware of congestion

at the router (by seeing some of their packets dropped) will respond by reducing their trans-

mission rates. However, TCP flows are not the only ones competing for available bandwidth

or space in router queues. UDP flows behave in a completely different manner, tending to

be more aggressive since they don’t have TCP’s built-in congestion control behavior. More-

over, the assumption that future users will continue using the current TCP protocol seems

questionable. Since there is no central authority governing their behavior, as users compete

for bandwidth, they may very well change the way they respond to congestion.

Studying congestion control from a game theoretic perspective is therefore natural. Us-

73

ing a variety of models, game theory has been used not only to find Nash equilibria (NE)

when users are self-interested and routers employ existing methods, (e.g. FIFO with Drop-

tail, or RED [42]) but also to design new router queuing policies, aimed at reaching good

social outcomes in the presence of such users [46]. Such “good social outcomes” include the

avoidance of congestion at routers, and thus avoidance of Internet congestion collapse, but

also fairness of bandwidth sharing.

However, an approach commonly taken is to assume perfect information. Users are

assumed to know the transmission rates of others and the congestion levels at the router,

and use this information to compute a best response and optimize their utility. Even though

such assumptions are standard, and even necessary, in the study of NE, they are not likely

to be met in a setting like the Internet. Without such assumptions, can the equilibria be

reached? Could there be a set of states, none of them necessarily a NE, such that the system

gets trapped cycling among the states in the set? These are the questions we are aiming to

answer in this work.

Using a simple yet general model of the game played by internet endpoints at inter-

net bottleneck routers, we provide the first (to our knowledge) analysis of this problem

using stochastic stability, a classical solution concept from the adaptive learning model of

evolutionary game theory. Evolutionary game theory’s adaptive learning setting is suited

especially well for the game of internet endpoints competing for bottleneck router capacity.

In traditional game theoretic settings, each player must assume all other players are perfectly

rational, and must be fully informed of each other’s actions and preferences. When players

are internet endpoints, such requirements seem unreasonable and quite unlikely to be met.

In our evolutionary setting, under adaptive learning’s imitation play, players need only know

what you would expect them to know: what they themselves experience in each round of

play. They can then use simple heuristics to decide, based on the results of their recent play,

what strategy to employ for the next round of play.

To study our problem in this adaptive learning setting, we use a new model proposed by

Efraimidis and Tsavlidis [28] called the window game. This model is not only simple, but

more general than previous models in which players are usually assumed to be TCP endpoints

with specific loss recovery properties. In the window game, the endpoints are modeled such

74

that they can be thought of as using either TCP, UDP, or whatever transmission protocol

they choose. There are n internet endpoints, each seeking to send an unlimited amount of

traffic. But all endpoints encounter the same bottleneck router, which has capacity C. Each

of the endpoints is a player that chooses a strategy: an integer-sized “window” between 0

and C. The window size can be thought of as the amount of the router’s capacity being

requested by the player, or the number of packets being sent by the player.

The amount of capacity that the router actually allocates to each player is then deter-

mined by the router’s queuing policy and the specified window sizes (capacity requests) of

the other users. We let each successful packet (each unit of successfully acquired capacity)

equate to a profit to the player of 1, while each packet loss costs the player g ≥ 0. Hence

each player’s utility or payoff can be expressed as:

(number of successfully sent packets)− g · (number of lost packets)

where the number of successful packets is equal to the amount of capacity granted to the

player by the router, and the number of lost packets is the difference between the player’s

specified window size and the capacity that was actually granted to the player by the router.

We assume that this game is played repeatedly in rounds, in which every player chooses

a strategy to play using imitation dynamics: sampling the outcomes of the rounds of play

in its memory, and then imitating the strategy that served it best. However, with very

small probability, each player fails to follow the imitation dynamics and chooses a strategy

at random. Then, loosely speaking, the set of stochastically stable states represents the set

of strategy profiles that have positive probability of being played in the long run, or, the

states that the system eventually settles on. More details can be found in Section 4.2.1.

4.1.1 Our Results

We begin by analyzing the two currently most well-known and widely-used router queuing

policies: FIFO with Droptail and RED (Random Early Detection) [42]. When Droptail is

used, all incoming packets are simply dropped once the queue is full. We show that for

any reasonable value of g, the only NE and the only stochastically stable state is the state

75

where all players send g+1
g

C n−1
n2 packets. This implies, for instance, that for a large number

of flows and any value of g ≤ 1 (g = 1 means that each player is hurt by each lost packet

about the same as the amount they gain from each successful packet), the router is getting

hit by roughly more than twice as much traffic as it has capacity. Next, we show that under

RED queuing, in which the router starts dropping packets preemptively as soon as its buffer

reaches a certain threshold T < C, things are a little better, but not by much. For reasonable

values of g, there is a single NE, which constitutes also the single stochastically stable state,

in which the congestion at the router is still significant.

Finally we study a queue policy proposed by Gao et al. [46], in which any overflow is

compensated for by dropping the packets belonging to the most demanding flow. This policy

was designed, in a idealized setting, to have a unique NE such that the router capacity is

equally shared among all flows and overflow is avoided. They also studied a non-idealized

setting in which in which flows do not have perfect information, and all sources are restricted

to fixed-rate Poisson rates except one, which can be arbitrarily aggressive. In this setting,

they succeed at a more modest goal: the source that can be arbitrarily aggressive should

not outperform the best Poisson source by much. In this work we show that this policy

can actually do even better. We show that even if flows have no information about one

another, and all of them can arbitrarily adjust their window sizes (so no flow is restricted to

a fixed rate), the system will still converge to the fair equilibrium under adaptive learning

with imitation dynamics. Players with no information about the game other than what they

themselves experience, making quick, simple decisions based on recent play, still converge on

the NE in the long run.

Even though the stochastically stable states for the queuing policies we study turn out

to coincide with the NE, what our results indicate is the following: even in the chaotic

internet setting, where players have extremely limited information about the game and make

instantaneous decisions, the NE will actually be reached. More specifically, for the all three

router queue policies under consideration, we show that the system will not be cycling

indefinitely between any other set of states; on the contrary, the unique NE in each case will

be obtained.

76

4.1.2 Related Work

FIFO with Droptail is the traditional queue policy that has been employed widely in internet

routers. As soon as the router queue is full, all subsequent incoming packets are dropped.

For more information on Droptail and its variants, see [17]. RED [42] works similarly, but

starts dropping packets with a certain probability as soon as the number of packets in the

queue exceeds a threshold T < C. Both these policies punish all flows in a similar manner,

regardless of whether they are “responsible” for causing the overflow or not. Specifically, the

expected fraction of the demand of each flow that gets through the router is the same among

all flows, those with moderate demands, and those with demands far exceeding their “fair

share,” contributing more to the overflow. The result of such a queue policy is that flows

with large demand can use more router capacity at the expense of lower-demand flows.

There have been methods suggested for inhibiting such behavior. The Fair Queuing

algorithm [25] ensures the max-min fairness criterion: using round-robin for selecting the

outgoing packets, every flow can at least obtain its “fair share.” Even though this is a

fair scheme, it comes at the cost of efficiency. It requires separate buffers for each queue

and a lot of book-keeping, making it unusable in practice. A method that achieves the

same result without the high computational cost at the routers was suggested in [78]. This

method however, cannot be used independently in each router, as it depends on receiving

flow-specific information from other routers.

CHOKe [70], on the other hand, is a stateless queue management scheme, which can be

implemented in a router independently from what other routers use. Every time a packet

arrives to the queue, it is compared to M ≥ 1 packets chosen uniformly at random from those

currently in the queue and if it comes from the same source as any of them, then the two

matching packets are dropped. There are both theoretical and experimental studies [82, 59]

suggesting its effectiveness at preventing greedy (e.g. UDP) flows from strangling moderate

flows. However, as the number of greedy flows varies, the number of packets chosen for

comparison must also change in order to protect the more moderate flows from losing their

fair share.

Gao et al [46] introduce a router queue management algorithm, which, unlike Fair Queu-

77

ing, does not require separate buffers for each flow, but, under some assumptions, achieves

the same (fair) NE as max-min fairness. The main idea is to keep track of the “greediest”

flow. Whenever there is an overflow, the algorithm drops only packets that belong to this

flow. 1 The Prince algorithm described in [28] works in a similar manner. The algorithm

in [46] was aiming to fulfill, among others, the following two objectives. First, in an idealized

environment of full information, the profile corresponding to max-min fairness is the unique

NE. Second, removing the full information setup but restricting all flows but one to being

Poisson sources of fixed rates, the unrestricted flow cannot get a much better throughput

than the best Poisson flow, no matter how it varies its sending rate.

There are several game theoretic results for congestion control. For a better introduction,

we refer the reader to [76] and [56]. Akella et al. [3] study the equilibria of a TCP game, in

which all flows use the Additive Increase Multiplicative Decrease (AIMD) algorithm. This is

the method currently employed by TCP endpoints. The strategy sets consist of the possible

values for the parameters of the algorithm. They show that even though the older TCP

endpoint implementations can lead to efficient equilibria even with FIFO Droptail and RED

router queue policies, this is no longer the case with newer implementations. They show

that some measure of “network efficiency” can be established with a variant of CHOKe,

assuming however that all flows are TCP. A lot of work has been devoted to game theoretic

models in which all flows originate from Poisson sources and each source is allowed to vary

the transmission rate [76, 26, 27]. The inefficiency of NE is studied, mainly in the case

of a single bottleneck router, but also in more general networks [47]. Kesselman et al [56]

consider a model in which the flows are explicitly deciding when to send new packets, instead

of implicitly modifying their transmission rates.

With respect to adaptive learning and computer science: the game of users setting trans-

mission rates for optimally receiving multimedia traffic is analyzed using an evolutionary

game theoretic approach based on adaptive learning in [64]. And in [21], adaptive learning

with imitation dynamics was used to analyze a load balancing game.

The Window game model we study here was first proposed in [28], where it was used

1Only in case that the overflow is greater than the number of packets of the greediest flow in the queue,
will packets from other flows be dropped as well.

78

to find the NE in games between AIMD but also more general flows. We believe that this

model is simple enough to allow interesting theoretical analysis, but still captures the essence

of the game played between competing internet endpoints.

4.2 MODEL, NOTATION, AND BACKGROUND

To model internet endpoints competing for capacity at a bottleneck router, we use the window

game of [28]. Let N be the set of players, |N | = n, with each player representing an internet

endpoint. The strategy set for each player is the set of all possible window sizes, integer

values between 0 and C, where C is the capacity of the bottleneck router. Let wi be the

window size requested by player i. Let w = (w1, w2, . . . , wn), so w is a strategy profile vector

or solution of the game. Let w−i refer to the vector of all the strategies in w except wi. Let

W =
∑n

i=1 wi and let W−i = W − wi. The bottleneck router uses a (possibly randomized)

queuing algorithm (like Droptail, RED, etc), to decide how many of each player’s packets to

keep, and how many to drop. Therefore the queuing policy maps each strategy profile w to

a corresponding vector that indicates for each player i how many of its wi packets are kept

(in expectation), keepi, and how many are dropped, wi−keepi. As described in the previous

section, g ≥ 0 is a real value that indicates how much detriment a lost packet causes to each

player. Then for any i = 1 . . . n, the payoff function of i is πi(w) = (keepi)− g(wi − keepi).

A best response to w−i for each player i is then bri(w−i) = arg maxwi
πi(wi, w−i).

4.2.1 Adaptive Learning and Imitation Dynamics

We now more formally present the relevant aspects of evolutionary game theory’s adaptive

learning model [43, 87, 88], as well as the imitation dynamics of [54]. A related, more detailed

summary can be found in Chapter 2, in which adaptive learning and imitation dynamics are

applied to a load balancing game.

In the adaptive learning model with imitation dynamics, each of n players has a finite

memory of their own actions and payoffs in the previous m rounds of play. After each round,

79

each player samples (uniformly at random) s of the m previous rounds of play, and then in

the next round, plays the strategy (in our case, the window size) that yielded highest average

payoff over the rounds that were sampled. In this way, the player is “imitating” the strategy

that has served her well in the past.

These dynamics correspond to a Markov process P , where each state in the process is

the history of the last m rounds of play. Each play history is comprised of m strategy

profiles, and a state where all m strategy profiles are the same is called a monomorphic

state.2 The transition probabilities between states of the process are determined by the

imitation dynamics described above. A recurrent class of a Markov process is a set of states

such that there is zero probability of leaving the set once a state in the set has been reached,

but positive probability of reaching any state in the set from any other state in the set.

Josephson and Matros [54] prove the following about the process P .

Theorem 4.2.1 ([54]). If s/m ≤ 1/2, a subset of states is a recurrent class if and only if it

is a singleton set containing a monomorphic state.

If we now suppose that in each round, each player with probability ε > 0 does not follow

the imitation dynamics, but instead chooses a strategy at random, we have modified the

Markov process so that there is always positive probability of eventually reaching any state

from any other state. Therefore, there is a unique stationary distribution over the states in

this modified process. We refer to this modified process as the perturbed Markov process,

P ε and the stationary distribution as µε. The stochastically stable states are those states h

in this modified process for which limε→0 µε(h) > 0.

A better reply is a unilateral strategy deviation by a player that gives that player at

least as high a payoff as the original strategy profile. I.e., x is a better reply for player i

if πi(x, w−i) ≥ πi(w). A cusber set or a set “closed under single better replies,” is a set of

strategy profiles such that any sequence of better replies, by any sequence of players, starting

from any strategy profile in the set, always leads to another strategy profile that is also in

the set. A minimal cusber set is a cusber set such that if any strategy profile is removed,

2For expository simplicity, if a monomorphic state has w as the strategy profile that fills its history, we
will sometimes abuse notation and use w not just as the name of the strategy profile, but when the context
is clear, as the name of the monomorphic state containing w.

80

the remaining set is no longer a cusber set.

Theorem 4.2.2 ([54]). Under imitation dynamics, the profiles in the set of stochastically

stable states are a minimal cusber set or a union of minimal cusber sets.

Note that the following corollary is an immediate consequence of Theorem 4.2.2.

Corollary 4.2.3. If a single strategy profile comprises the only minimal cusber set in a

game, then that is the only strategy profile in the set of stochastically stable states under

imitation dynamics.

For a more complete background on stochastic stability and imitation dynamics, we refer

the reader to [88, 54]. In what remains, we assume that s/m ≤ 1/2.

4.3 DROPTAIL

FIFO queues with Droptail are widely used in Internet routers. While the queue has not

reached its capacity, incoming packets are inserted in the end of the queue. As soon as the

capacity is reached, any new incoming packets are dropped. We will start by describing the

window game model of Droptail, then discuss the NE, and finally prove that there is a single

stochastically stable state that corresponds to the unique NE.

Remember that for any profile w, we denote by W the total window size requested, i.e.,

W =
∑N

i=1 wi. Under the Droptail routing policy, when W > C, the router chooses W − C

packets uniformly at random to be dropped. Therefore, for any player i with a window

size wi, the expected number of packets of i that will enter the queue is wi · C/W , while

wi · (1− C/W) will be dropped. Of course, when W ≤ C then no packets will be dropped.

This means that the expected payoff under Droptail for any player i can be expressed as

πDT
i (w) =

wi if wi ≤ C −W−i

wiC/W − gwi (1− C/W) if wi > C −W−i

(4.1)

We will refer to the first piece of the payoff function as πDT1

i (the linear piece), the second

piece as πDT2

i (the Droptail piece), for obvious reasons. We note that when the total window

81

size equals the capacity, i.e., wi + W−i = C, then both pieces of the payoff function result in

the same payoff. Therefore, for W = C either of the two subcases can be used.

4.3.1 Droptail’s Best Response

First we determine the best response function based on the above payoff function when

Droptail is used, so that we can then characterize the NE of the game.

Theorem 4.3.1 (Best Response). The best response to player i can be expressed

bri(w−i) =

C −W−i if W−i ≤ zg
√

(g+1)CW−i

g
−W−i if W−i > zg

(4.2)

where zg = Cg/(g + 1) is the value such that C − zg =
√

(g+1)Czg

g
− zg.

3

Proof. We refer to the first piece of the best response function as brDT1 and the second piece

as brDT2 . Note that brDT1(W−i) maximizes πDT1

i (wi, W−i) within the range of its validity, and

brDT2(W−i) maximizes πDT2

i (wi, W−i). The difference brDT1(W−i)−brDT2(W−i), is 0 for W−i =

zg, while it is positive for W−i < zg, and negative for W−i > zg. As noted after the definition

of πDT
i , for any W−i, 0 ≤ W−i ≤ C, πDT1

i (C − W−i, W−i) = πDT2

i (C − W−i, W−i). Also,

for any W−i ≥ 0, πDT1

i (brDT1(W−i), W−i) = πDT1

i (C −W−i, W−i) = πDT2

i (C −W−i, W−i) ≤
πDT2

i (brDT2(W−i), W−i).

However, when W−i < zg, brDT2(W−i) < brDT1(W−i) = C −W−i, implying that if the

second piece of the best response function was used (i.e., the one corresponding to brDT2),

then the total window size would be less than C. In that case it is the πDT1

i piece of

the payoff function that applies, and that gets maximized at C −W−i. Moreover, for any

wi > brDT2(W−i), the function πDT2

i (wi, W−i) is decreasing on wi. So, for any wi such that

wi ≥ C −W−i, πDT2

i (wi, W−i) ≤ πDT2

i (C −W−i, W−i) = C −W−i.

3 Here, the second piece is more formally expressed as min{C,
√

g+1
g

CW
−i−W

−i}}, since, when g < 1/3,

there are certain values of W
−i such that the value of the second piece function is larger than C. For ease

of presentation, in what follows we will assume that g ≥ 1/3. All statements can however be easily adjusted
for the case that g < 1/3.

82

On the other hand, if W−i > zg, then brDT2(W−i) > brDT1(W−i) = C − W−i, im-

plying that W−i + brDT2(W−i) > C, and the maximum payoff πDT2

i (brDT2(W−i), W−i) >

πDT1

i (brDT1(W−i), W−i) is obtained using the brDT2 piece of the best response function.

4.3.2 Droptail’s NE

In this section we study Droptail’s NE. The following lemma about symmetric NE under

Droptail was given by Efraimidis and Tsavlidis in [28].

Lemma 4.3.2. For g ≤ n − 1, the profile in which all players play window size dg is the

unique symmetric NE.

In fact, (dg, . . . , dg) is the only NE of any kind (symmetric or not) for the case g ≤ n−1.

To show this, we start by making the observation that at any NE, all players are playing

window sizes that correspond to a best response calculated using the same “piece” of our

piecewise-defined best response function.

Lemma 4.3.3. At any NE, either W−i ≤ zg for all i, or W−i ≥ zg for all i.

Proof. Recall from the proof of Theorem 4.3.1 the definitions of the functions πa, πb, ba,

and bb. By definition, at any NE, everyone is playing a best response. Assume by way of

contradiction that there is some player j for whom W−j > zg and another player k for whom

W−k < zg. This implies that wj + W−j = C, while wk + W−k > C. But wj + W−j =

wk + W−k = W , therefore no two such players j, k exist.

We are now ready to examine the first of two cases.

Lemma 4.3.4. When W > C, the solution where all players play window size dg is the only

NE.

Proof. Let A be a NE such that W > C and let X ⊆ N be the set of the players whose

window size in A is greater than zero.

Consider any two players i, j ∈ X. Let W−ij = W − wi − wj. Since for all players k,

W−k > zg by assumption, we have wi = bri(W−i) =
√

(g + 1)C(wj + W−ij)/g− (wj + W−ij)

83

and wj = brj(W−j) =
√

(g + 1)C(wi + W−ij)/g−(wi+W−ij). Subtracting the two equations

yields
√

(g + 1)C(wj + W−ij)/g − (wj + W−ij) =
√

(g + 1)C(wi + W−ij)/g − (wi + W−ij),

hence wi = wj. Let x = |X|. Since wi = wj for every i, j ∈ X and wk = 0, for every

k ∈ N \X, we obtain that wi =
√

g+1
g

C(x− 1)wi − (x− 1)wi which gives wi = (g+1)(x−1)C
gx2 .

Assume now that N \ X 6= ∅ and let k ∈ N \ X. W−k > zg and wk = 0, therefore
√

g+1
g

CW−k−W−k ≤ 0 if and only if W−k ≥ g+1
g

C. But W−k = x (g+1)(x−1)C
gx2 . Combining the

last two statements implies x−1
x
≥ 1 which is false. Therefore N \X = ∅, and x = n, which

means the only NE point at which W > C is the one where every player plays dg.

The proof of Lemma 4.3.4 implies the following about the maximum value that the sum

of the window sizes of all players may take.

Corollary 4.3.5. When g ≤ n − 1, in any NE such that W > C, it will always be W <

(1 + 1
g
)C.

We are now ready to prove our main theorem of this section.

Definition 4.3.6. Define dg to be g+1
g

C n−1
n2 .

Theorem 4.3.7. If g ≤ n− 1, then the outcome in which each player’s window size is dg is

the only NE.

Proof. By Lemma 4.3.3, we know that either W−i > zg for all i, or W−i ≤ zg for all i.

Case 1: W−i > zg for all i. We know from Lemma 4.3.4 that (dg, . . . , dg) is the only

possible NE in this case. The condition on g implied by W−i > zg when each player plays

dg is precisely g < n− 1.

Case 2: W−i ≤ zg for all i. W−i ≤ zg implies wi ≥ C/(g + 1) for all players i. This

lowerbound on the window size of any player along with the property that any NE w in this

case must have W = C, means that n ≤ g + 1. Hence g ≥ n− 1 at any NE. Since g ≤ n− 1

by assumption, we know that at any NE in this case, g = n − 1. Plugging this value for g

back into our lowerbound on wi gives wi ≥ C/n. But when g = n− 1, zg = (n− 1)C/n, so

we also know wi ≤ C/n. Hence the only equilibrium is (C/n, . . . , C/n), and the value of dg

is precisely C/n when g = n− 1.

84

For completeness, we now discuss the case where g > n−1. In this case, there is actually

a spectrum of NE. First we observe that (dg, . . . , dg) is not a NE if g > n− 1.

Lemma 4.3.8. The profile in which every player plays dg is a NE only if g ≤ n− 1.

Proof. Assume that g > n − 1. This implies that n · dg < C, therefore the payoff of every

player is given by the function πa(wi, W−i) = wi. But if W = n · dg < C, then any player

i can increase her payoff by C −W , by increasing her window size by the same amount.

Therefore (dg, . . . , dg) is not a NE.

Theorem 4.3.9. If g > n−1, then the only NE are those states where W = C. Specifically,

w is a NE if and only if at w, W = C and each player’s window size falls in the range

C
g+1

, . . . , C − C
g+1

.

Proof. Let w be a NE. By Lemma 4.3.3, we know that either W−i ≤ zg for all i or W−i ≥ zg

for all i. Lemma 4.3.4 implies that when W−i > zg, the only possible NE is the profile

(dg, . . . , dg). This profile, however, is not a NE when g > n−1 (by Lemma 4.3.8). Therefore,

in any NE W−i ≤ zg for all i ∈ N . In this case, br(W−i) = C −W−i for all i, and hence

any NE must have the property that W = C. Moreover, for all i ∈ N , W−i ≤ zg and

wi + W−i = C, therefore wi ≥ C − zg = C
g+1

.

4.3.3 Droptail’s Stochastically Stable States

In the following, we will assume that g ≤ n − 1, since the case where g > n − 1 is of no

practical relevance. We will now establish that the state (dg, . . . , dg) is the only SSS. Our

proof uses the fact that any profile in a stochastically stable state is found in a minimal

cusber set (Theorem 4.2.2), along with the fact that under the Droptail routing policy, the

only minimal cusber set in our game is the NE profile itself. We first give three lemmas that

allow us to establish the latter fact, by showing there is a better-reply path from any profile

to the NE profile.

Lemma 4.3.10. For any W ≥ C, and any player i, such that W−i + dg ≥ C, dg is a better

response for player i, if and only if (dg − wi) (C(g + 1)W−i − g(dg + W−i)W) ≥ 0.

85

Proof. Consider any W ≥ C, and some player i, such that W−i + dg ≥ C. Player i has dg as

a better response if and only if πb(dg, w−i) ≥ πb(wi, w−i), or

dg

dg + W−i

C(g + 1)− gdg ≥
wi

W
C(g + 1)− gwi

⇔ C(g + 1) (dg(W−i + wi)− wi(dg + W−i))− g(dg + W−i)W (dg − wi) ≥ 0

⇔ C(g + 1)W−i(dg − wi)− g(dg + W−i)W (dg − wi) ≥ 0

⇔ (dg − wi) (C(g + 1)W−i − g(dg + W−i)W) ≥ 0.

Lemma 4.3.11. Let w 6= (dg . . . , dg), W ≥ C. Within at most two better replies, a profile

w′ can be reached, such that for any k with wk = dg, w′
k = dg, and there is some player i,

such that wi 6= dg and w′
i = dg. Moreover W ′ ≥ C.

Proof. We will show that either there is immediately some player i with wi 6= dg that has dg

as a better response, or after just one more better response move by another player, such a

player i will exist. Thus we will show that after at most two better response moves, we will

be in a profile w′ where some player i who did not play dg in profile w is playing dg in w′.

(We will do this while ensuring that any player that played dg in w, still plays dg in w′.)

First consider the case that W ≤ n · dg. Consider some player i such that wi ≤ W/n

and wi < dg. (Note that such a player must exist.) Lemma 4.3.10 implies that dg is a better

reply to i if and only if C(g + 1)W−i − g(dg + W−i)W ≥ 0, or equivalently,

(W − wi)(C(g + 1)− gW) ≥ gWdg. (4.3)

Now, by assumption W ≤ ndg = g+1
g

n−1
n

C < g+1
g

C, and thus the last inequality (4.3) is

equivalent to

wi ≤W −W
gdg

C(g + 1)− gW
= W −W

dg

dg
n2

n−1
−W

.

86

However, since W ≤ n · dg, we have

W −W
dg

dg
n2

n−1
−W

≥ W −W
dg

dg
n2

n−1
− ndg

= W −W
n− 1

n2 − n(n− 1)
= W −W

n− 1

n
=

W

n

Therefore, wi ≤ W
n
≤W −W dg

dg
n2

n−1
−W

, meaning dg is a better response for player i.

In the case that W > n ·dg, we have two subcases. (Note that in this case there is always

some player k, such that wk ≥W/n and wk > dg.)

Case 1: There is a player i is such that wi ≥ W/n, wi > dg, and W−i + dg ≥ C. Then

Lemma 4.3.10 implies that dg is a better response for player i if and only if C(g + 1)W−i −
g(dg + W−i)W ≤ 0, i.e.,

W

C
≥ g + 1

g

W−i

dg + W−i

. (4.4)

If again C(g + 1) − gW > 0, then the claim holds similarly with the case that W ≤ ndg.

Otherwise, gW ≥ C(g + 1) means W
C
≥ g+1

g
≥ g+1

g

W−i

W−i+dg
.

Case 2: For all j such that wj ≥W/n and wj > dg, W−j + dg < C. Consider one such j

and note that W−j < C − dg < ndg (since g < n− 1). We will show that playing ndg −W−j

is a better response for j. But then the new total window size W ′ is equal to ndg > C and

thus, (according to the case that W ≤ ndg) there is a player i, with wi ≤W ′/n, wi < dg that

has dg as a better response.

To see that ndg −W−j is a better response for j, note that the derivative
∂πb(wj ,w−j)

∂wj
=

∂
∂wj

(

wj

W−j+wj
C(g + 1)− gwj

)

=
W−j

(W−j+wj)2
C(g + 1) − g has a unique positive root (at x0 =

brb(w−j)) and is negative for all x > x0. Moreover, its value when player j plays ndg −W−j

is
W−j

n2d2
g
C(g + 1)− g < (n−1)dg

n2d2
g

C(g + 1)− g = (n−1)C(g+1)
g+1

g
(n−1)C

− g = 0.

Therefore, since wj = W − W−j > ndg − W−j, we easily obtain that πi(wj , W−j) <

πj(ndg −W−j, W−j).

Lemma 4.3.12. For any w 6= (dg, . . . , dg), there is a finite sequence of better replies that

lead to the profile (dg, . . . , dg).

87

Proof. We note first that if W < C, then for any player i, playing C − W−i is a better

response than wi. Hence we will assume that W ≥ C. Note that applying Lemma 4.3.11

to w 6= dg, we will obtain some w′ such that still W ′ ≥ C. Therefore, by simply invoking

Lemma 4.3.11 at most n times, we can see that there is a path of (in total) at most 2n + 1

better response moves from w to the profile (dg, . . . , dg).

We are now ready to proof our main theorem of this section.

Theorem 4.3.13. For g < n − 1, the state in which every player plays dg is the unique

stochastically stable state.

Proof. First of all, note that dg is the unique better response to W−i = (n− 1)dg. Therefore

the profile a = (dg, . . . , dg) is a minimal cusber set. Moreover, by Lemma 4.3.12, there is a

better response path from any w 6= a to a. Therefore any other cusber set would have to

contain a, which implies there is no other minimal cusber set. Hence, by Corollary 4.2.3, a

is the only state that is stochastically stable.

4.4 RED (RANDOM EARLY DETECTION)

RED (Random Early Detection) [42] was meant to keep the average queue size low. It

works similarly to Droptail, but starts dropping packets before the queue is full. When the

total load at the router exceeds a system-defined minimum threshold T , the router begins

dropping each new arriving packet with probability proportional to the load. After total load

exceeds a system-defined maximum threshold, the packets are dropped with probability 1.

(Note that when the maximum threshold is set to C, then once capacity is reached, RED

behaves exactly like Droptail.)

To simplify our study, we will assume that the maximum threshold is C, but we will

leave the minimum threshold T as a free parameter. We then must model the RED protocol

as a window game. In what follows we use the term kept to refer to the event of a packet

not being dropped.

88

Assume that the current load at the queue is L ≥ T . Then, according to RED, each new

arriving packet will be dropped with probability L−T
C−T

. Assume that when W packets arrive

sequentially, the expected number of them that are kept is x. In contrast to this sequential

process where packets arrive one by one, using the window game we assume that given a

strategy profile w, all W packets arrive at the same time. Hence each packet will be kept

with probability x
W

(x packets are chosen uniformly at random). If W ≤ T , then all packets

are admitted.

Lemma 4.4.1. Assume that RED is used and let w be a strategy profile such that W > T .

i)If W ≥WC, where WC = (C − T)HC−T + T then the queue size reaches C.

ii) If T ≤ W < WC, then T + k̃W packets are kept in expectation, where k̃W ≈ (C −
T)
(

1− e−
W−T
C−T

)

. (So the probability for any packet to be kept is k̃W +T
W

.)

Proof. The proof uses the solution to the well-known coupon collector problem. We consider

the case that W packets arrive sequentially. Consider the moment at which the queue size

becomes T + i− 1, for some i, 1 ≤ i ≤ C − T . Let Xi be a random variable that represents

the number of packets that arrive at the system until the queue size reaches T + i (i.e.,

Xi− 1 is the number of packets that arrive to the router and get dropped until one is kept).

According to the description of RED, when T + i− 1 packets are already in the queue, the

probability that a newly arriving packet is dropped is i−1
C−T

. This implies that

E[Xi] =
C − T

C − T − i + 1
.

Let Hj be the jth harmonic number.

i) WC = T + E
[

∑C−T

i=1 Xi

]

= T +
∑C−T

i=1
C−T

C−T−i+1
= (C − T)HC−T + T .

ii) The total number of packets k̃W that are kept, out of the total of W that arrive, is

given as the maximum k, such that T + E
[

∑k
i=1 Xi

]

≤W , or equivalently,

k
∑

i=1

C − T

C − T − i + 1
≤W − T.

In other words, we need the maximum k such that (C − T) (HC−T −HC−T−k) ≤ W − T.

Approximating Hj with ln j we get: ln(C − T − k) ≥ ln(C − T) − W−T
C−T

which gives k̃W ≈
(C − T)

(

1− e−
W−T
C−T

)

.

89

In order to simplify our presentation (and to allow clean formulation of a best response

function), we will approximate k̃W by kW = W−T
HC−T

. Note that kW is also a continuous

function, while kT = 0 and kWC
= C − T ; therefore, when W equals T (respectively, WC),

the total number of packets kept and sent through the queue and sent is T (respectively, C),

in accordance with Lemma 4.4.1. The payoff function of flow i is now expressed as:

πRED
i (w) =

wi if W ≤ T

wi(kW + T)/W − gwi (1− (kW + T)/W) if T < W ≤WC

wiC/W − gwi (1− C/W) if W > WC

We will refer to the first piece of the payoff function as πRED1

i (the linear piece), the second

piece as πRED2

i (the RED piece), and the third piece as πRED3

i (the Droptail piece), for

obvious reasons. We will refer to the condition on W corresponding to each piece as the

range of validity for that piece.

4.4.1 RED’s Best Response

From this payoff, we can determine that RED has three different best response functions,

one for each range of possible g values. We begin by noting the following facts. (Along the

way we also define the terms, brRED2

i , brRED3

i , αg, βg, and γg.)

1. πRED1

i is maximized (within its range of validity) at the right-most point, when wi =

T −W−i.

2. If g < 1/(HC−T−1), then πRED2

i is always increasing, and therefore its maximum is at the

right-most point in its range of validity, when wi = WC−W−i = (C−T)HC−T +T−W−i.

3. If g ≥ 1/(HC−T − 1), then πRED2

i is maximized when

wi = brRED2

i =

√

(g + 1)(HC−T − 1)TW−i

g(HC−T − 1)− 1
−W−i

(by basic calculus), and this best response is valid for πRED2

i only when

αg =
T (gHC−T − g − 1)

(g + 1)(HC−T − 1)
< W−i ≤ βg =

((C − T)HC−T + T)2(g(HC−T − 1)− 1)

T (g + 1)(HC−T − 1)

since we must have T < W ≤WC = (C − T)HC−T + T .

90

4. πRED3

i is maximized when

wi = brRED3

i =

√

(g + 1)CW−i

g
−W−i

(as we saw in Section 4.3), and this best response is valid for πRED3

i only when

W−i > γg =
g((C − T)HC−T + T)2

(g + 1)C

since we must have W > WC = (C − T)HC−T + T .

Hence, the value of wi that maximizes the overall payoff function, i.e., the overall best

response window size for player i, depends on the value of g (and of course, W−i). It turns

out the RED payoff function has three different best response functions, and which one

applies depends on the value of g. The corresponding range of values of g for each of the

three possible best response functions for RED is shown in Figure 10.

Figure 10: Here, g is shown as a function of C and the threshold T is set to 0.7C. Each

of the three best response functions corresponds to a region shown here. The lower range

(darkest) is g ≤ 1/(HC−T − 1), the middle range (lightly shaded) is 1/(HC−T − 1) < g <

C/((C − T)(HC−T − 1)), and the upper range (unshaded) is g ≥ C/((C − T)(HC−T − 1)).

We begin with the best response function for the lower-ranged values of g.

91

Theorem 4.4.2. If g ≤ 1/(HC−T − 1) then the RED best response function is

brRED
i (w−i) =

(C − T)HC−T + T −W−i if W−i ≤ γg

max
{

brRED3

i , 0
}

if W−i > γg

(4.5)

Proof. For such small values of g, the linear piece of the RED payoff function always returns a

lower payoff than the RED piece. And for such small values of g, πRED2

i is strictly increasing

in the range of its validity. So payoff is increasing with player i’s window size up to the point

where wi = (C − T)HC−T + T −W−i. If W−i ≤ γg, then brRED3

i is to outside of the range

of validity for πRED3

i , in the negative direction. So at (C − T)HC−T + T −W−i, πRED3

i has

already begun decreasing. Therefore (C − T)HC−T + T −W−i is the overall point of payoff

maximization. If W−i > γg, then brRED3

i is within the range of validity for πRED3

i , so at

(C − T)HC−T + T −W−i, payoff increases until wi = brRED3

i . Hence brRED3

i is the overall

point of payoff maximization.

The middle-ranged values of g yield the following best response function. Note that when

βg < γg, g < C/((C − T)(HC−T − 1)).

Theorem 4.4.3. If 1/(HC−T−1) < g < C/((C−T)(HC−T−1)) then the RED best response

function is

brRED
i (w−i) =

T −W−i if W−i ≤ αg

max
{

brRED2

i , 0
}

if αg < W−i ≤ βg

(C − T)HC−T + T −W−i if βg < W−i ≤ γg

max
{

brRED3

i , 0
}

if W−i > γg

(4.6)

Proof. When g is in this middle range, there is a gap between values of W−i for which

the maximization point of πRED2

i , brRED2

i , is in its validity range and values for which the

maximization point of πRED3

i , brRED3

i is in its validity range. Since brRED3

i is on the negative

side (outside) of the validity border between the two pieces of the payoff function, and

brRED2

i is on the positive side (outside) of the validity border between the two pieces of

the payoff function, the actual point of payoff maximization is the exact border point itself,

(C − T)HC−T + T −W−i, which is reflected as the third piece of the best response function

above. When W−i ≤ αg, the point brRED2

i is on the negative side of its validity range, so

92

πRED2

i is decreasing from the point T − W−i onward. Therefore T − W−i is the point of

overall maximization.

And finally, the upper-ranged values of g yield the following best response function. Note

that when βg ≥ γg, g ≥ C/((C − T)(HC−T − 1)).

Theorem 4.4.4. If g ≥ C/((C − T)(HC−T − 1)) then the RED best response function is

brRED
i (w−i) =

T −W−i if W−i ≤ αg

max
{

brRED2

i , 0
}

if αg < W−i

(4.7)

Proof. In this case, there is a range of values of W−i where both brRED2

i and brRED3

i would

be valid. However, in this case, starting at W−i = γg, when the range of validity for brRED3

i

begins, brRED3

i is always at a non-positive window size. Since from that point of payoff

maximization of πRED3

i , as the player’s window size grows, her payoff only decreases, playing

a window size of 0 will always yield at least as high a payoff with respect to πRED3

i as

playing any positive window size. Hence it is still safe to simply use the brRED2

i for any

γg ≤ W−i < βg, where βg is (as defined above) the point at which the range of validity

for brRED2

i ends. For values of W−i ≥ βg, brRED2

i always returns a negative window size,

therefore 0 will actually always be returned.

4.4.2 RED’s Nash Equilibria

As the best response function changes according to g, so do the NE of RED vary according

to the value of g. We note here that, just as in Droptail, we assume that g ≤ n − 1, since

any value greater than that is of no practical interest. We also use the following notation to

refer the three ranges of values for g: Rlow
g =

(

0, 1
HC−T −1

]

, Rmid
g =

[

1
HC−T −1

, C
(C−T)(HC−T −1)

)

,

and Rhi
g =

[

C
(C−T)(HC−T −1)

, n− 1
]

.

For the lower-ranged values of g, the RED best response function is similar to Droptail’s

best response, both of them using brRED3

i . Hence, the proof of the following theorem about

the NE for the lower-ranged values of g is analogous to that of Theorem 4.3.7 in Section

4.3.2 and we omit it here. Recall from Definition 4.3.6 the definition of dg.

Theorem 4.4.5. If g ≤ 1/(HC−T − 1) then the only NE is when wi = dg for all i.

93

We now establish the NE for the middle-ranged values of g.

Definition 4.4.6 (RED convergence point). Define rg = T (g+1)(HC−T −1)(n−1)

(gHC−T −g−1)n2 .

Theorem 4.4.7. Recall from Definitions 4.3.6 and 4.4.6 the definitions of dg and rg. If

g ∈ Rmid
g then the only NE are:

1. wi = rg for all i (for T+HC−T (Cn−T)

H2
C−T

(Cn−Tn)+HC−T (Tn−Cn+T)−T
≤ g)

2. any solution such that
∑

i wi = (C − T)HC−T + T

(for (n−1)C
((C−T)HC−T +T)n−(n−1)C

≤ g < T+HC−T (Cn−T)

H2
C−T

(Cn−Tn)+HC−T (Tn−Cn+T)−T
), or

3. wi = dg for all i (for g < (n−1)C
((C−T)HC−T +T)n−(n−1)C

).

Proof. As in the Droptail section, we know that at any NE, all players are using the same

best response function, i.e., for all players i, the same condition on W−i is satisfied.

First we can observe that g would be out of range for the W−i ≤ αg case as follows.

In this case we know that at any NE, wi = T − W−i ≥ T − αg for any i. Plugging in

for αg we see that wi ≥ HC−T T

(HC−T −1)(g+1)
. Since nwi = T , we can plug in for wi and see that

g ≥ nHC−T /(HC−T − 1)− 1 ≥ n− 1, much larger the upperbound on g for which this best

response function even applies. Hence there can’t be NE where all players are using the first

piece of the best response function.

We then observe that in pieces 2 and 4 (the non-linear pieces) of the best response

function, just as in Droptail, any NE must be symmetric. To see this for piece 2, refer to

the proof of Theorem 4.4.8. The same observations can be carried out with piece 4 of the

best response function.

The calculation of rg can also be found in the proof of Theorem 4.4.8. We now calculate

the more specific conditions on g under which the second piece of the best response function

applies, i.e., the conditions under which (rg,...,rg) is a NE. W−i > αg means (n − 1)rg ≥
T (gHC−T − g − 1)/((g + 1)(HC−T − 1)) at any SNE. That means (n− 1)(g + 1)(H − 1) ≥
(gHC−T − g − 1)n, which implies g ≤ nHC−T /(HC−T − 1)− 1. Note that this holds for any

reasonable g and more importantly for all g in the range of consideration in the statement

of the theorem.

94

W−i ≤ βg means

(n− 1)rg ≤
((C − T)HC−T + T)2(g(HC−T − 1)− 1)

(T (g + 1)(HC−T − 1))

which means

T (g + 1)(HC−T − 1)(n− 1) ≤ ((C − T)HC−T + T)(g(HC−T − 1)− 1)n

and hence

g ≥ (CHC−Tn + T − THC−T)

(CH2
C−Tn + THC−Tn + THC−T − CHC−Tn− TH2

C−T n− T)

=
(T + HC−T (Cn− T))

(H2
C−T (Cn− Tn) + HC−T (Tn− Cn + T)− T)

.

Note this sometimes holds for g in the range under consideration in the statement of the

theorem (depending on the values of n, C, and T).

The conditions on g for the NE to be where the players are all playing dg can be similarly

derived as follows: W−i > γg means (n − 1)dg > g((C − T)HC−T + T)/((g + 1)C), which

means (n− 1)(g + 1)C > g((C − T)HC−T + T)n, and hence

g <
(n− 1)C

((C − T)HC−T + T)n− (n− 1)C
.

Again note that this sometimes holds for g in the range under consideration in the statement

of the theorem (depending again on values of n, C, and T .)

Finally, we consider the potential NE where all players are using the third piece of the

best response function, i.e., when for all i, wi = (C − T)HC−T + T −W−i. The conditions

under which the third piece of the best response function applies are W−i > βg and W−i ≤ γg.

This means

wi ≥ (C − T)HC−T + T − γg = (CT)HC−T + T − g((C − T)HC−T + T)2

(g + 1)C
.

Using this along with the SNE property that nwi = (C − T)HC−T + T we can say

n ≤ (C − T)HC−T + T

(C − T)HC−T + T − g((C−T)HC−T +T)2

(g+1)C

=
1

1− g((C−T)HC−T +T)
(g+1)C

=
(g + 1)C

(g + 1)C − g((C − T)HC−T + T)
.

Isolating g gives us the stated lowerbound on g for this case. The upperbound can be

computed similarly.

95

And finally we establish the NE for the upper-ranged values of g.

Theorem 4.4.8. If g ∈ Rhi
g , then there is a unique NE, such that wi = rg, for all i.

Proof. We first observe that in the case where brRED2

i (the RED piece of the best response

function) applies, just as in Droptail, any NE must be symmetric. To see this, say that at

some NE we are in the case where αg < W−i ≤ βg for all players i. Then for any two players

j and k, we know that

wj =

√

(g + 1)(HC−T − 1)TW−j

g(HC−T − 1)− 1
−W−j

and

wk =

√

(g + 1)(HC−T − 1)TW−k

g(HC−T − 1)− 1
−W−k.

Subtracting the two equations gives

wj − wk =

√

(g + 1)(HC−T − 1)T

g(HC−T − 1)− 1

(

√

W−j −
√

W−k

)

−W−j + W−k

which implies W−j = W−k.

Now that we’ve established the only NE on brRED2

i of the function are SNE, the calcu-

lation of rg comes from taking the RED piece of the best response function and checking

what each player’s window size must be if all players are playing that best response. In other

words, solving the following equation for wi:

wi =

√

T (g + 1)(HC−T − 1)

gHC−T − g − 1
(n− 1)wi − (n− 1)wi.

We now calculate the more specific conditions on g under which the second piece of the

best response function applies, i.e., the conditions under which (rg,...,rg) is a NE. W−i > αg

means (n− 1)rg ≥ T (gHC−T − g − 1)/((g + 1)(HC−T − 1)) at any SNE. This last inequality

indeed implies that g ≤ nHC−T/(HC−T − 1)− 1.

96

4.4.3 RED’s Stochastically Stable States

In this section we show that in the case where g ∈ Rhi
g the only NE (rg, . . . , rg) is also the

only stochastically stable state. We will only discuss here the case where g is in this upper

range because it is the most practically relevant range of values for g. (In practice T = λC,

for some constant λ, so C
(C−T)(HC−T −1)

is a decreasing function on C, tending to 0 as C grows

large.) Our proof is similar to that for Droptail in Section 4.3.3, using the fact that any

profile in a stochastically stable state is found in a minimal cusber set (Theorem 4.2.2),

along with the fact that under the RED routing, the only minimal cusber set in our game is

the NE state itself.

We begin with a sequence of Lemmas that allows us to establish the fact that there is a

better-reply path from any profile to the profile (rg, . . . , rg).

Lemma 4.4.9. For any W ≥ T , and any player i, such that W−i + rg ≥ T , rg is a better

response for player i, if and only if

(rg − wi)((g + 1)T (HC−T − 1))W−i − (gHC−T − g − 1)(W−i + rg)W) ≥ 0

Proof. Consider any W ≥ T , and some player i, such that W−i + rg ≥ T . Player i has rg as

a better response if and only if πRED2(rg, w−i) ≥ πRED2(wi, w−i), or

rg

W−i+rg−T

HC−T
+ T

W−i + rg

(g + 1)− grg ≥ wi

W−T
HC−T

+ T

W
(g + 1)− gwi

⇔ rg(W−i + rg + T (HC−T − 1))W (g + 1)− gHC−Trg(W−i + rg)W

≥ wi(W + T (HC−T − 1))(W−i + rg)(g + 1)− gHC−Twi(W−i + rg)W

⇔ (rg − wi)(g + 1)(W−i + rg)W − (rg − wi)gHC−T (W−i + rg)W

+rg(g + 1)(W−i + wi)T (HC−T − 1))− wi(g + 1)(W−i + rg)T (HC−T − 1)) ≥ 0

⇔ (rg − wi)(g + 1− gHC−T)(W−i + rg)W + (rg − wi)(g + 1)T (HC−T − 1))W−i ≥ 0

⇔ (rg − wi)((g + 1)T (HC−T − 1))W−i − (gHC−T − g − 1)(W−i + rg)W) ≥ 0

97

Lemma 4.4.10. Let w 6= (rg . . . , rg), W ≥ T . Within at most two better replies, a profile

w′ can be reached, such that for any k with wk = rg, w′
k = rg, and there is some player i,

such that wi 6= rg and w′
i = rg. Moreover W ′ ≥ T .

Proof. We first consider the case where W ≤ nrg. Note there must be some player i such

that wi ≤ W/n and wi < rg (since not all players play rg by assumption). Lemma 4.4.9

implies that rg is a better reply to i if and only if

((g + 1)T (HC−T − 1)− (gHC−T − g − 1)W)W−i ≥Wrg(gHC−T − g − 1) (4.8)

Note that W ≤ nrg = (g+1)T (HC−T −1)

gHC−T −g−1
n−1

n
< (g+1)T (HC−T −1)

gHC−T −g−1
. Hence we can use the fact that

W−i = W − wi to rewrite inequality 4.8 as:

wi ≤
Wrg(gHC−T − g − 1)

(g + 1)T (HC−T − 1)− (gHC−T − g − 1)W
= W −W

rg

rg
n2

n−1
−W

(4.9)

However, since W ≤ n · rg, we have

W −W rg

rg
n2

n−1
−W

≥ W −W rg

rg
n2

n−1
−nrg

= W −W n−1
n2−n(n−1)

= W −W n−1
n

= W
n

Therefore, since wi ≤ W
n

, inequality 4.9 holds and rg is a better response for player i.

We now consider the case where W > nrg. In this case, we have two subcases. (Note

that in this case there is always some player k, such that wk ≥ W
n

and wk > dg.)

Case 1: There is a player i, such that wi ≥ W/n, wi > rg, and W−i + rg ≥ T . In this case,

Lemma 4.4.9 implies that rg is a better response if and only if

(((g + 1)T (HC−T − 1)− (gHC−T − g − 1)W)W−i −Wrg(gHC−T − g − 1)) ≤ 0. (4.10)

If again (g + 1)T (HC−T − 1) > (gHC−T − g − 1)W , then the claim holds similarly with

the case that W ≤ ndg. Otherwise, (g + 1)T (HC−T − 1) ≤ (gHC−T − g − 1)W , or

HC−TW

W + T (HC−T − 1)
≥ g + 1

g
,

which implies
g + 1

g
≤ HC−T W (rg + W−i)

W−i(W + T (HC−T − 1)) + rgW
,

which is equivalent to inequality 4.10.

98

Case 2: For all j, such that wj > W/n and wj > rg, W−j + rg < T . Consider one such j and

note that W−j < T − rg < nrg (for g < (n− 1) HC−T

HC−T −1
+1). W−i + dg < T , which implies

that W−i < T − rg < (n− 1)rg, for g < n− 1, and wi = W −W−i > nrg −W−i. We will

show that playing nrg −W−i is a better response for i. But then the new total window

size W ′ will be equal to nrg > T and thus, (according to the case that W ≤ nrg) there

is another player j, with wj ≤ W ′

n
andwj < rg, that has rg as a better response.

To see that nrg −W−i is a better response for i, note that the derivative

∂πRED2
i (w)

∂wi

=
∂

∂wi

(

wi

k̃ + T

W
(g + 1)− gwi

)

=

(

wi

WHC−T

(

W − T

HC−T

+ T

)(

1

W
− wi

W 2

))

(g + 1)− g

has a unique positive root at x0 = brRED2(w−i), and is negative and decreasing for all

window sizes x > x0. Moreover, its value when player i plays nrg −W−i is
(

nrg −W−i

nrgHC−T

+

(

nrg − T

HC−T

+ T

)(

1

nrg

− nrg −W−i

n2r2
g

))

(g + 1)− g

=

(

1

HC−T

+
TW−i(HC−T − 1)

n2r2
gHC−T

)

(g + 1)− g

<

(

1

HC−T

+
T (n− 1)rg(HC−T − 1)

n2r2
gHC−T

)

(g + 1)− g

=

(

1

HC−T

+
(HC−T − 1)(gHC−T − g − 1)

(g + 1)HC−T (HC−T − 1)

)

(g + 1)− g = 0

Therefore, since wi > nrg −W−i, we easily obtain that πRED2
i (wi, w−i) < πRED2

i (nrg −
W−i, w−i).

Lemma 4.4.11. For any w 6= (rg, . . . , rg), there is a finite sequence of better replies that

lead to the profile (rg, . . . , rg).

Proof. We note first that if W < T , then for any player i, playing T − W−i is a better

response than wi. Hence we will assume that W ≥ T . Note that applying Lemma 4.4.10 to

w 6= (rg, . . . , rg), we will obtain some w′ such that still W ′ ≥ T . Therefore simply invoking

Lemma 4.4.10 at most n times, we can see that there is a path of at most 2n + 1 better

response moves from any profile w 6= (rg, . . . , rg) to the profile (rg, . . . , rg).

99

We are now ready to prove our main theorem of this section.

Theorem 4.4.12. If g ∈ Rhi
g , then the only stochastically stable state under RED is the

state where all players set their window sizes to rg.

Proof. First note that rg is the unique better response to W−i = (n − 1)rg. Therefore the

profile d = (rg, . . . , rg) is a minimal cusber set. Moreover, by Lemma 4.4.11, there is a better

response path from any w 6= d to d. Therefore any other cusber set would have to contain d,

which implies there is no other minimal cusber set. Hence, by Corollary 4.2.3, d is the only

state that is stochastically stable.

The above theorem implies that under RED the system will converge to the unique Nash

Equilibrium. Given that g ∈ Rhi
g , the total congestion will be less than the corresponding

one in Droptail. Still, however, the overflow is large: as n grows, since (g+1)(HC−T −1)

gH−g−1
> g+1

g
,

the total window size will be (roughly) at least 2T . And, as g decreases to values outside of

Rhi
g , the congestion at RED NE can sometimes be even greater than at the Droptail NE. In

the middle-ranged values of g, when g < C/((C−T)(HC−T − 1)), yet still large enough that

(rg, . . . , rg) is the only NE, it is the case that rg > dg. So the NE under RED can sometimes

lead to worse congestion at the router than the NE under Droptail.

4.5 “FAIR” QUEUE POLICY

In this section we study the queuing policy proposed in [46]. The main idea (similar also

to the Prince algorithm in [28]) is that in case of congestion, the most demanding flow is

punished. Assuming that all players are fully informed of the other players’ strategies, this

policy was constructed so as to have a unique NE in which all players share the capacity

equally. In a more realistic setting, where the rates at which other flows send packets are

not globally known, the authors wish to reach a less lofty goal: if all flows but one have

fixed rates, then the unrestricted flow cannot use up much more of the router queue capacity

at the expense of the fixed-rate flows. We will show here that in fact, the fair equilibrium

is also the only stochastically stable state. This implies that, even without fully informed

100

players, the algorithm in [46] can achieve the fair NE, even when all flows are allowed to be

arbitrarily aggressive.

The window game adaptation of Protocol I in [46] works as follows. For any profile

(w1, · · · , wn), if W ≤ C then for any flow i, all wi packets will enter the queue, i.e. πi(w) = wi.

On the other hand, if W > C then let i0 = arg maxi∈N{wi} (breaking ties arbitrarily). Flow

i0 will be the one to be punished for the overflow, and if wi0 < W − C then the rest of the

packets will be dropped according to Droptail. In other words, πi0 = max{0, wi0 − (W −
C)} − g ·min{wi0 , W − C}, while for any i 6= i0,

πi(w) =

wi if wi0 ≥W − C

wi
C

W−wi0

− gwi

(

1− C
W−wi0

)

if wi0 < W − C.
(4.11)

The next theorem was stated in [28].

Theorem 4.5.1. Assuming g > 0, there is a unique NE in which all players play C/n.

Proof. Note first that the profile (C/n, . . . , C/n) is a NE. If a flow reduces its window size,

then it gets less packets in the queue and a decrease in its payoff. If it increases its window

size, then again it will get only C/n packets in the queue, but it will also have dropped

packets, which decrease its payoff.

We will now show that no profile w 6= (C/n, . . . , C/n) can be a NE. If W < C, any flow

can increase its window size by C −W and increase its payoff. Moreover, no state in which

W > C is a NE. If i is the flow such that wi = maxj∈N wj, and thus gets punished for the

overflow, then this flow can clearly benefit by reducing its window size. (The increase in

the payoff happens either because i can get more packets through by reducing its window

size, if there is another flow now that gets punished for the overflow, or because i gets the

same number of packets in the queue, but saves on the cost incurred by dropped packets.)

Therefore W = C in any NE. Consider then a player i, such that wi = minj∈N wj . If

wi < C/n, given that W = C, there must be some player i′ with wi′ > C/n. Then, flow i

can increase its payoff by increasing its window size to C/n, since player i′ will still be playing

a higher value and thus get punished for i’s increase. Therefore, in any NE w, W = C and

wj ≥ C/n, for all j ∈ N , implying that w = (C/n, . . . , C/n).

101

The following theorem establishes the fact that the unique NE is also the only stochas-

tically stable state. We prove this by showing that the state corresponding to the profile

(C/n, ..., C/n) is the only minimal cusber set.

Theorem 4.5.2. If g > 0, then the only stochastically stable state corresponds to the profile

(C/n, ..., C/n).

Proof. Let ŵ = (C/n, · · · , C/n). We will show that the singleton set {ŵ} is the only minimal

cusber set. Then we can conclude using Corollary 4.2.3 that ŵ is the only stochastically

stable state. First note that {ŵ} is a minimal cusber set: any player deviating from ŵ will

be strictly decreasing her payoff. (Assume that a player i moves to some value x 6= C/n. If

x < C/n, then πi(x, ŵ−i) = x < C/n = πi(ŵ). If x > C/n, then x− C/n of her packets will

be dropped and her payoff will decrease to πi(x, ŵ−i) = C/n − g(x − C/n) < πi(ŵ), since

g > 0.)

We proceed now to showing that for any profile w 6= ŵ, there is a finite better response

path to ŵ. Assume first that W > C and let i0 = arg maxi∈N{wi}. Then min{wi0 , W−C} of

i0’s packets get dropped. In that case it is at least as good for i0 to play max{0, wi0−(W−C)},
since the same amount of i0’s packets will enter the queue as before, but without any being

dropped. We will call this a move of type A.

Assume now that W = C, but w 6= (C/n, · · · , C/n). Let j be the player with the

maximum window size in w, i.e., j = argi∈N max wi. The fact that W = C and w 6= ŵ,

imply that wj > C/n. Moreover there must be some player k 6= j, with wk < C/n. Playing

C/n is a better response to k, since C/n < wj, meaning that j will be the one to be punished

for the overflow. (The new total window size cannot exceed the capacity by more than C/n,

implying only packets from flow j will be dropped.) Therefore, k gets more packets in the

queue by changing wk to C/n, and still none dropped. We will call this a move of type B.

Now the better response path to ŵ is constructed as follows: From any w, if W < C,

then any player can improve her payoff by increasing her window size by C −W . We then

arrive at a state w′ where W ′ = C. If W > C, after fewer than n moves of type A, a strategy

profile w′ is reached where W ′ = C.

For any w′ such that W ′ = C, if w′ 6= ŵ, then a move of type B occurs in which a player

102

that in w′ played something less than C/n moves to C/n. This is immediately followed by a

move of type A in which a player that in w′ was playing something greater than C/n reduces

her window size. If w′′ corresponds to the new profile reached, then again W ′′ = C. This

alternation between moves of type A and moves of type B continues, until ŵ is reached.

Note that once a player moves to C/n then she does not change her window size anymore,

meaning that the total number of steps needed until ŵ is reached is finite.

We note that the condition g > 0 in the above theorem is necessary in order for the

cusber set to contain only the profile (C/n, . . . , C/n). If g = 0, then a flow can deviate

from the profile (C/n, . . . , C/n) by increasing its window size while still obtaining exactly

the same payoff. We also note that unlike the results of Sections 4.3 and 4.4, the result in

this section holds even if each flow has a different value for g, a value that can be arbitrarily

small.

4.6 SUMMARY

In this chapter, we studied the long standing problem of congestion control at bottleneck

routers on the internet. Many policies have been proposed for effective ways to drop packets

from the queues of these routers so that network endpoints will be inclined to share router

capacity fairly and minimize the overflow of packets trying to enter the queues. We studied

just how effective some of these queuing policies are when each network endpoint is a self-

interested player with no information about the other players’ actions or preferences. By

employing the adaptive learning model of evolutionary game theory, we examined policies

such as Droptail, RED, and the greedy-flow-punishing policy proposed by Gao et al. [46]

and found the stochastically stable states: the states of the system that will be reached in

the long run.

We found that while Droptail and RED have stochastically stable states with high con-

gestion at the bottleneck router, the Gao et al. policy leads to fair and efficient use of the

bottleneck router capacity. Specifically, we’ve established that under Droptail queuing, the

unique stochastically stable state (and unique NE) is the profile where all players send a

103

window size of dg = C(g + 1)(n− 1)/(gn2). This means that if g = (n− 1)/(n + 1), players

will each be sending at least 2C/n, twice as many total packets as capacity allows.

Under RED, when g is reasonably large enough (for g ∈ Rhi
g), the unique stochastically

stable state (and unique NE) is the profile where all players send a window size of rg, which

is greater than T (g + 1)(n − 1)/(gn2). (Recall that T < C is the threshold value at which

RED begins preemptively dropping packets. It is a free parameter of the RED protocol.)

This means, analogous to the above discussion about Droptail, if g = (n− 1)/(n+1) (which

is close to 1 as n grows large), players will be sending at least 2T/n. This would imply that

when g is roughly 1, if deployers of RED routers set T to any more than C/2, endpoints

will each send more than their fair share of C/n packets. And in general, for any g ∈ Rhi
g , if

deployers set T to any more than roughly Cg/(g + 1), endpoints will each send more than

C/n packets.

In contrast with RED then, a great benefit to the more discriminating Gao et al protocol

is that it can be safely deployed without knowledge of the specific value of g: the endpoints

each send C/n as long as g is positive. In addition, our results for the Gao et al protocol hold

even when each player has a different, personal g value. Intuitively, this means the results

apply to settings where the endpoints can be of all different types: well-behaved TCP flows,

more aggressive TCP flows, UDP flows, etc.

A future possible direction of study would be to consider other variants on the utility

function that are motivated by real-world internet traffic flows. One possible utility function

to consider may be one that is tiered. When sending a video traffic flow, for example,

there are certain packets that are far more valuable than others, so players may not profit

uniformly over all packets, and likewise may not incur a uniform cost for all lost packets.

This type of function is especially relevant since internet traffic is increasingly dominated

by multi-media traffic. Another possibility is to consider concave utility functions, where a

player’s profit per successful packet diminishes as the number of successful packets nears the

player’s requested window size.

Another possible direction is that one might consider defining a variable gi for each player

i so that g, the penalty for each lost packet, need not be a global value. While perhaps

more realistic (certain players/endpoints suffer a lot from each dropped packet, while others

104

may not mind a dropped packet very much at all), this generalization will make the game

considerably more complicated to analyze. (While our results for the Gao et al protocol hold

even when players have different, personalized g values, the results for Droptail and RED

assume all players have the same g value.)

Finally, we find it curious that, for all three protocols, the unique Nash equilibrium was

also the only stochastically stable state. We conjecture that our work thus far has been

to prove special cases of a potentially more general theorem about the stochastically stable

state of any protocol satisfying certain characteristics. In our future work, we plan to further

explore this conjecture.

105

5.0 CONCLUSIONS

We sought to accomplish two goals in this work, the first to use game theoretic models for

problems in applied computer science such as load balancing, data streams and internet traffic

congestion, and the second to introduce the utility of adaptive learning from evolutionary

game theory as an analytical and evaluative tool.

Algorithmic

Game Theory

Evolutionary

Game Theory

CS

Applications

(2)(1)

Towards both goals, in Chapter 2 we proposed the evolutionary game theory solution

concept of stochastic stability as a tool for quantifying the relative stability of equilibria.

We showed that in the load balancing game on unrelated machines, for which the price of

Nash anarchy is unbounded, the “bad” Nash equilibria are not stochastically stable, and so

the price of stochastic anarchy is bounded. We conjecture that the upper bound given in

this chapter is not tight and the cost of stochastic stability for load balancing is O(m). If

this conjecture is correct, it implies that the fragility of the “bad” equilibria in this game is

attributable to their instability, not only in the face of player coordination, but also to minor

uncoordinated perturbations in play. We expect that the techniques used in this chapter will

also be useful in understanding the relative stability of Nash equilibria in other games for

which the worst equilibria are brittle. This promise is evidenced by the fact that the worst

Nash in the worst-case instances in many games (for example, the Roughgarden and Tardos

[74] lower bound showing an unbounded price of anarchy for routing unsplittable flow) are

106

not stochastically stable.

Towards our second goal, in Chapter 3 we applied techniques and principles from algo-

rithmic game theory to a data streams query admission control problem. We introduced

a new auction problem that, when posed abstractly, can be applied generally to naturally

arising combinatorial settings outside of DSMSs. We introduced the notion of sybil immunity

for auction mechanisms and proposed greedy and randomized auction mechanisms for this

problem which are all strategyproof. We show the greedy approaches cannot give provable

profit guarantees, and we also show that the randomized approach, for which we do give a

provable profit guarantee, is not sybil immune. Our theoretical results pose the natural next

question: can one find a mechanism for this problem that is strategyproof, sybil immune,

and has a profit guarantee?

Our experimental results show that, generally speaking, CAT and CAF are the best

mechanisms to use for profit maximization. However, if you have a high degree of operator

sharing, and your system capacity is close to the total demand of the queries requesting

service, then Two-price performs better for profit maximization. As expected, the greedy

mechanisms (CAF, CAF+, CAT, and CAT+) provide better admission rate and payoff than

Two-price. CAF+ and CAT+ are best for total user payoff, while CAF and CAF+ have the

highest query admission rate as the degree of sharing increases. CAT, the one mechanism

which is sybil immune, seems to offer the best overall tradeoff with respect to profit.

The data streams setting also lends itself to natural and interesting variants on our

model. For example, we might consider a more general model where each query not only

has a private valuation and a set of operators it wants executed, but it also has a specific

interval of time during which it wants to be executed. The processing costs of each operator

now represent costs per time unit, and the problem takes on a scheduling nature. Each time

we choose to service a query we are committed to servicing it for the entire time interval

specified by the query. Another possible variant is one where queries arrive over time, so the

challenge becomes one of online mechanism design. And finally, we might consider the issue

of energy consumption of the DSMS center. The profit of the DSMS center may not simply

be the sum of user payments, but it may also incur a cost based on how much of the system

is being utilized.

107

And finally, in Chapter 4, again towards both of our goals, we used evolutionary game

theory to study the long standing problem of congestion control at bottleneck routers on

the internet. Many policies have been proposed for effective ways to drop packets from the

queues of these routers so that network endpoints will be inclined to share router capacity

fairly and minimize the overflow of packets trying to enter the queues. We studied just how

effective some of these queuing policies are when each network endpoint is a self-interested

player with no information about the other players’ actions or preferences. By employing the

adaptive learning model of evolutionary game theory, we examined policies such as Droptail,

RED, and the greedy-flow-punishing policy proposed by Gao et al. [46] and found the

stochastically stable states: the states of the system that will be reached in the long run. We

found that while Droptail and RED have stochastically stable states with high congestion at

the bottleneck router, the Gao et al. policy leads to fair and efficient use of the bottleneck

router capacity.

A future possible direction of study would be to consider other variants on the utility

function that are motivated by real-world internet traffic flows. For example, when sending a

video traffic flow, there are certain packets that are far more valuable than others, so players

may not profit uniformly over all packets, and likewise may not incur a uniform cost for all lost

packets. Hence, one possible utility function to consider may be one that is somehow tiered.

This type of function is especially relevant since internet traffic is increasingly dominated

by multi-media traffic. Another possibility is to consider concave utility functions, where a

player’s profit per successful packet diminishes as the number of successful packets nears the

player’s requested window size.

Finally, for all three protocols, the unique Nash equilibrium was also the only stochasti-

cally stable state. It is possible that our work thus far has been only to prove special cases

of a potentially more general theorem about the stochastically stable state of any router

queuing protocol satisfying certain characteristics. Further exploration of this possibility is

needed.

With these three works as a whole, we have made inroads toward building bridges be-

tween algorithmic game theory, evolutionary game theory’s adaptive learning, and applied

computer science.

108

BIBLIOGRAPHY

[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new
model and architecture for data stream management. The VLDB Journal, 12(2):120–
139, 2003.

[2] Gagan Aggarwal and Jason D. Hartline. Knapsack auctions. In SODA, 2006.

[3] Aditya Akella, Srinivasan Seshan, Richard M. Karp, Scott Shenker, and Christos H.
Papadimitriou. Selfish behavior and stability of the internet: a game-theoretic analysis
of tcp. In SIGCOMM, 2002.

[4] Susanne Albers. On the value of coordination in network design. In SODA ’08: Pro-
ceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages
294–303, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[5] Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty. On
nash equilibria for a network creation game. In SODA ’06: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 89–98, New York, NY,
USA, 2006. ACM.

[6] Nir Andelman, Michal Feldman, and Yishay Mansour. Strong price of anarchy. In
SODA ’07.

[7] Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, va Tardos, Tom Wexler, and Tim
Roughgarden. The price of stability for network design with fair cost allocation. In In
FOCS, pages 295–304, 2004.

[8] Elliot Anshelevich, Anirban Dasgupta, Eva Tardos, and Tom Wexler. Near-optimal
network design with selfish agents. In STOC ’03: Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages 511–520, New York, NY, USA, 2003.
ACM.

[9] Baruch Awerbuch, Yossi Azar, and Amir Epstein. The price of routing unsplittable
flow. In STOC ’05.

109

[10] Baruch Awerbuch, Yossi Azar, Yossi Richter, and Dekel Tsur. Tradeoffs in worst-case
equilibria. Theor. Comput. Sci., 361(2):200–209, 2006.

[11] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for aggregation
queries over data streams. In ICDE ’04: Proceedings of the 20th International Con-
ference on Data Engineering, page 350, Washington, DC, USA, 2004. IEEE Computer
Society.

[12] Stephen Baker. Google and the wisdom of clouds. Business Week, December 2007.

[13] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: On conver-
gence to Nash equilibria of regret-minimizing algorithms in routing games. In PODC
’06.

[14] Avrim Blum, MohammadTaghi Hajiaghayi, Katrina Ligett, and Aaron Roth. Regret
minimization and the price of total anarchy. In STOC ’08.

[15] Lawrence E. Blume. The statistical mechanics of best-response strategy revision. Games
and Economic Behavior, 11(2):111–145, November 1995.

[16] Liad Blumrosen and Noam Nisan. Combinatorial auctions. In Noam Nisan, Tim Rough-
garden, Éva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory. Cam-
bridge University Press, 2007.

[17] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Ja-
cobson, G. Minshall, C. Larry Peterson Partridge, K. K. Ramakrishnan, S. Shenker,
J. Wroclawski, and L. Zhang. RFC2309: Recommendations on queue management and
congestion avoidance in the internet. Internet RFCs, 1998.

[18] Ho-Lin Chen and Tim Roughgarden. Network design with weighted players. In SPAA
’06: Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms
and architectures, pages 29–38, New York, NY, USA, 2006. ACM.

[19] Xi Chen and Xiaotie Deng. Settling the complexity of 2-player Nash-equilibrium. In
FOCS ’06.

[20] George Christodoulou and Elias Koutsoupias. The price of anarchy of finite congestion
games. In STOC ’05.

[21] Christine Chung, Katrina Ligett, Kirk Pruhs, and Aaron Roth. The price of stochastic
anarchy. In SAGT, 2008.

[22] Roberto Cominetti, Jos R. Correa, and Nicols E. Stier Moses. Network games with
atomic players. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener,
editors, ICALP (1), volume 4051 of Lecture Notes in Computer Science, pages 525–536.
Springer, 2006.

110

[23] Jacomo Corbo and David Parkes. The price of selfish behavior in bilateral network
formation. In PODC ’05: Proceedings of the twenty-fourth annual ACM symposium on
Principles of distributed computing, pages 99–107, New York, NY, USA, 2005. ACM.

[24] Artur Czumaj and Berthold Vöcking. Tight bounds for worst-case equilibria. In SODA
’02.

[25] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, pages 1–12, 1989.

[26] C. Douligeris and R. Mazumdar. On Pareto optimal flow control in an integrated
environment. In Allerton Conference on Communication, Control and Computing, 1987.

[27] C. Douligeris and R. Mazumdar. A game theoretic approach to flow control in an
integrated environment. Journal of the Franklin Institute, 329(3):383–402, 1992.

[28] P.S. Efraimidis and L. Tsavlidis. Window-games between tcp flows. In The first inter-
national symposium on algorithmic game theory, 2008.

[29] Glenn Ellison. Basins of attraction, long-run stochastic stability, and the speed of step-
by-step evolution. Review of Economic Studies, 67(1):17–45, January 2000.

[30] Amir Epstein, Michal Feldman, and Yishay Mansour. Strong equilibrium in cost sharing
connection games. In EC ’07: Proceedings of the 8th ACM conference on Electronic
commerce, pages 84–92, New York, NY, USA, 2007. ACM.

[31] Eyal Even-Dar, Alexander Kesselman, and Yishay Mansour. Convergence time to Nash
equilibria. In ICALP ’03.

[32] Alex Fabrikant, Ankur Luthra, Elitza N. Maneva, Christos H. Papadimitriou, and Scott
Shenker. On a network creation game. In PODC, pages 347–351, 2003.

[33] Alex Fabrikant and Christos Papadimitriou. The complexity of game dynamics: Bgp
oscillations, sink equilibria, and beyond. In SODA ’08.

[34] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure
nash equilibria. In STOC ’04.

[35] Uriel Feige, David Peleg, and Guy Kortsarz. The dense -subgraph problem. Algorith-
mica, 29(3):410–421, 2001.

[36] A. Fiat, A.V. Goldberg, J.D. Hartline, and A.R. Karlin. Competitive generalized auc-
tions. In Proceedings of the thiry-fourth annual ACM symposium on Theory of Comput-
ing, pages 72–81. ACM New York, NY, USA, 2002.

[37] Amos Fiat, Andrew V. Goldberg, Jason D. Hartline, and Anna R. Karlin. Competitive
generalized auctions. In STOC, 2002.

111

[38] Amos Fiat, Haim Kaplan, Meital Levy, and Svetlana Olonetsky. Strong price of anarchy
for machine load balancing. In ICALP ’07.

[39] Amos Fiat, Haim Kaplan, Meital Levy, Svetlana Olonetsky, and Ronen Shabo. On the
price of stability for designing undirected networks with fair cost allocations. In ICALP
(1), pages 608–618, 2006.

[40] Simon Fischer, Harald Räcke, and Berthold Vöcking. Fast convergence to wardrop
equilibria by adaptive sampling methods. In STOC ’06.

[41] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In ESA ’04.

[42] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoid-
ance. IEEE/ACM Trans. Netw., 1(4):397–413, 1993.

[43] D. Foster and P. Young. Stochastic evolutionary game dynamics. Theoret. Population
Biol., 38:229–232, 1990.

[44] Dimitris Fotakis, Spyros Kontogiannis, and Paul Spirakis. Selfish unsplittable flows.
Theor. Comput. Sci., 348(2):226–239, 2005.

[45] Eric Friedman, Paul Resnick, and Rahul Sami. Manipulation-resistant reputation sys-
tems. In Algorithmic Game Theory. 2007.

[46] X. Gao, K. Jain, and L.J. Schulman. Fair and efficient router congestion control. In
SODA 2004.

[47] Rahul Garg, Abhinav Kamra, and Varun Khurana. A game-theoretic approach towards
congestion control in communication networks. SIGCOMM Comput. Commun. Rev.,
32(3):47–61, 2002.

[48] Michel Goemans, Vahab Mirrokni, and Adrian Vetta. Sink equilibria and convergence.
In FOCS ’05.

[49] Andrew V. Goldberg, Jason D. Hartline, and Andrew Wright. Competitive auctions
and digital goods. In SODA, 2001.

[50] A.V. Goldberg and J.D. Hartline. Envy-free auctions for digital goods. In Proceedings
of the 4th ACM conference on Electronic commerce, pages 29–35. ACM New York, NY,
USA, 2003.

[51] A.V. Goldberg, J.D. Hartline, A.R. Karlin, M. Saks, and A. Wright. Competitive
auctions. Games and Economic Behavior, 55(2):242–269, 2006.

[52] The STREAM Group. Stream: The stanford stream data manager. IEEE Data Engi-
neering Bulletin, 2003.

[53] V. Jacobson. Congestion avoidance and control, ACM SIGCOMM, 1988.

112

[54] Jens Josephson and Alexander Matros. Stochastic imitation in finite games. Games and
Economic Behavior, 49(2):244–259, November 2004.

[55] Michihiro Kandori, George J Mailath, and Rafael Rob. Learning, mutation, and long
run equilibria in games. Econometrica, 61(1):29–56, January 1993.

[56] A. Kesselman. St. Leonardi, and V. Bonifaci. Game-theoretic Analysis of Internet
Switching with Selfish Users. In WINE 2005.

[57] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In 16th Annual Symposium
on Theoretical Aspects of Computer Science, pages 404–413, Trier, Germany, 4–6 March
1999.

[58] Samuelson Larry. Stochastic stability in games with alternative best replies. Journal of
Economic Theory, 64(1):35–65, October 1994.

[59] H.J. Lee and J.T. Lim. Performance Analysis of CHOKe with Multiple UDP Flows. In
SICE-ICASE, 2006. International Joint Conference, pages 5200–5203, 2006.

[60] Daniel J. Lehmann, Liadan O’Callaghan, and Yoav Shoham. Truth revelation in ap-
proximately efficient combinatorial auctions. J. ACM, 49(5):577–602, 2002.

[61] Jian Li. An O(log n/ log log n) upper bound on the price of stability for undirected
shapley network design games. Manuscript (arXiv:0812.2567v1), 2008.

[62] Marios Mavronicolas and Paul G. Spirakis. The price of selfish routing. In STOC ’01.

[63] Paul McDougall. Google, ibm join forces to dominate ‘cloud computing’. Information
Week, May 2009.

[64] D. S. Menasché, Daniel R. Figueiredo, and Edmundo de Souza e Silva. An evolutionary
game-theoretic approach to congestion control. Perform. Eval., 62(1-4):295–312, 2005.

[65] Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for restricted
combinatorial auctions. In AAAI/IAAI, pages 379–384, 2002.

[66] Noam Nisan. Introduction to Mechanism Design, chapter 9, pages 209–241.

[67] Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Games and Economic
Behavior, pages 129–140, 1999.

[68] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors. Algorithmic
Game Theory. Cambridge University Press, 2007.

[69] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries
over distributed data streams. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 563–574, New York, NY, USA,
2003. ACM.

113

[70] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis. Choke, a stateless active queue
management scheme for approximating fair bandwidth allocation. In INFOCOM, pages
942–951, 2000.

[71] Anita Ramasastry. Web sites change prices based on customers’ habits, June 2005.
http://www.cnn.com/2005/LAW/06/24/ramasastry.website.prices/.

[72] Spencer Reiss. Cloud computing. available at amazon.com today. Wired, April 2008.

[73] Arthur J. Robson and Fernando Vega-Redondo. Efficient equilibrium selection in evolu-
tionary games with random matching. Journal of Economic Theory, 70(1):65–92, July
1996.

[74] Tim Roughgarden and Éva Tardos. How bad is selfish routing? J. ACM, 49(2):236–259,
2002. Also appeared in FOCS 2000.

[75] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs.
Algorithms and metrics for processing multiple heterogeneous continuous queries. ACM
Trans. Database Syst., 33(1):1–44, 2008.

[76] SJ Shenker. Making greed work in networks: a game-theoretic analysis of switchservice
disciplines. IEEE/ACM Transactions on Networking, 3(6):819–831, 1995.

[77] Yoav Shoham. Computer science and game theory. Communications of the ACM, 51(8),
August 2008.

[78] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: Achieving approxi-
mately fair bandwidth allocations in high speed networks. In ACM SIGCOMM’98.

[79] David Streitfeld. On the web, price tags blur: What you pay could depend on
who you are, September 2000. http://www.washingtonpost.com/ac2/wp-dyn/A15159-
2000Sep25.

[80] Siddarth Suri. Computational evolutionary game theory. In Noam Nisan, Tim Rough-
garden, Éva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory. Cam-
bridge University Press, 2007.

[81] Subhash Suri, Csaba D. Tóth, and Yunhong Zhou. Selfish load balancing and atomic
congestion games. In SPAA ’04.

[82] A. Tang, J. Wang, and S.H. Low. Understanding CHOKe: throughput and spatial
characteristics. IEEE/ACM TRANSACTIONS ON NETWORKING, 12(4), 2004.

[83] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stone-
braker. Load shedding in a data stream manager. In VLDB Conf, 2003.

114

[84] Yi-Cheng Tu, Song Liu, Sunil Prabhakar, and Bin Yao. Load shedding in stream
databases: a control-based approach. In VLDB ’06: Proceedings of the 32nd inter-
national conference on Very large data bases, pages 787–798. VLDB Endowment, 2006.

[85] Adrian Vetta. Nash equilibria in competitive societies, with applications to facility
location, traffic routing and auctions. In In Proc. of IEEE FOCS, pages 416–425, 2002.

[86] Troy Wolverton. Amazon backs away from test prices, September 2000.
http://news.cnet.com/2100-1017-245631.html.

[87] H Peyton Young. The evolution of conventions. Econometrica, 61(1):57–84, January
1993.

[88] H Peyton Young. Individual Strategy and Social Structure. Princeton University Press,
Princeton, NJ, 1998.

115

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Summary of the greedy algorithms
	2. Properties of our proposed auction mechanisms
	3. A sybil attack against CAT+.
	4. Workload Characteristics
	5. Runtime Performance.
	6. Properties of our proposed auction mechanisms.

	LIST OF FIGURES
	1. Research goals.
	2. Unbounded price of anarchy in a load balancing game.
	3. A load-balancing game with bad price of stochastic anarchy.
	4. PSA can be worse than m.
	5. Two views of a sample input instance.
	(a). The queries as seen by the DSMS. Query q1 has two operators A and B, query q2 is formed of A followed by C, and query q3 is composed of operator D followed by E. As shown, operator A is shared between queries q1 and q2. Each operator is also labeled with the load associated with it. Operator A for example incurs a load of 4 units. The input data streams to operators A and D are labeled s1 and s2 respectively.
	(b). The query plan is simplified here to show only the operators without information about the flow of data. This simplified, abstract information model is the one we use for our problem. In our problem, each user submits a bid: how much she claims to value her query being serviced. The bids are shown above as dollar amounts.
	6. A Sybil Attack.
	7. Experimental results: admission rate, profit and payoff.
	(a). System Capacity = 15,000
	(b). System Capacity = 15,000
	(c). System Capacity = 15,000
	8. Experimental results for profit as capacity varies.
	(a). System Capacity = 5000
	(b). System Capacity = 10,000
	(c). System Capacity = 15,000
	(d). System Capacity = 20,000
	9. Profit comparison.
	10. Ranges of g values for three different RED best response functions.

	PREFACE
	1.0 INTRODUCTION
	1.1 Quantifying Inefficiency of Equilibria
	1.1.1 Our Contribution: the Price of Stochastic Anarchy

	1.2 Algorithmic Mechanism Design
	1.2.1 Our Contribution: Data Streams Query Admission

	1.3 Congestion at Internet Bottleneck Routers

	2.0 THE PRICE OF STOCHASTIC ANARCHY
	2.1 Introduction
	2.1.1 Our Results
	2.1.2 Related Work

	2.2 Model and Background
	2.2.1 Adaptive Play and Stochastic Stability
	2.2.2 Imitation Dynamics

	2.3 Load Balancing: Game Definition and Price of Nash Anarchy
	2.4 Upper Bound on Price of Stochastic Anarchy
	2.4.1 Two Players, Two Machines
	2.4.2 General Case: n Players, m Machines

	2.5 Lower Bound on Price of Stochastic Anarchy
	2.6 Summary

	3.0 CONTINUOUS QUERY ADMISSION CONTROL
	3.1 Introduction
	3.1.1 System Model and Problem Statement
	3.1.2 Relevant Background on Auctions
	3.1.3 This Work

	3.2 Greedy Strategyproof Mechanisms
	3.2.1 Agents Chosen by Remaining Load
	3.2.2 Agents Chosen by Static Fair Share Load
	3.2.2.1 CAF (CQ Admission based on Fair Share)
	3.2.2.2 CAF+: An Extension to CAF

	3.2.3 Agents Chosen by Total Load

	3.3 A Profit Guarantee
	3.3.1 A Randomized Mechanism
	3.3.1.1 Strategyproofness
	3.3.1.2 Competitiveness

	3.4 Sybil Attack
	3.4.1 Attacks Against the Fair Share Mechanisms
	3.4.2 Attacks Against the Total Load Mechanisms
	3.4.3 Attacks Against the Randomized Mechanism

	3.5 Experimental Evaluation
	3.5.1 Experimental Platform
	3.5.2 Experimental Results.

	3.6 Summary

	4.0 INTERNET BOTTLENECK ROUTER CONGESTION
	4.1 Introduction
	4.1.1 Our Results
	4.1.2 Related Work

	4.2 Model, Notation, and Background
	4.2.1 Adaptive Learning and Imitation Dynamics

	4.3 Droptail
	4.3.1 Droptail's Best Response
	4.3.2 Droptail's NE
	4.3.3 Droptail's Stochastically Stable States

	4.4 RED (Random Early Detection)
	4.4.1 RED's Best Response
	4.4.2 RED's Nash Equilibria
	4.4.3 RED's Stochastically Stable States

	4.5 ``Fair'' Queue Policy
	4.6 Summary

	5.0 CONCLUSIONS
	BIBLIOGRAPHY

