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In longitudinal studies of depressive symptoms in elderly patients, analyses are

complicated by the presence of nonignorable missing data. In this study, we used data from the

Monongahela Valley Independent Elders Survey (MoVIES) of 1,260 rural and elderly residents

in western Pennsylvania. The method we used to analyze the evolution of depression is the

shared parameter model, which is one of the methods that provide a framework for jointly

modeling the longitudinal outcomes and the dropout process through a common frailty or

unobserved random effects. When we used 2 different shared parameter models instead of using

an unadjusted longitudinal model, we found the following decreases in the ratio of the odds of

depression: a 2% decrease for women versus men (OR decreased from 2.05 in the unadjusted

model to 2.00 in each shared parameter model); a 3% decrease for individuals with less than a

high school education versus individuals with more than or equal to a high school education (OR

decreased from 0.33 to 0.32); a 3% decrease for individuals taking fewer than 4 prescription

drugs versus individuals taking 4 or more prescription drugs (OR decreased from 0.29 to 0.28); a

5% decrease for individuals using antidepressant drugs versus individuals not using

antidepressant drugs (OR decreased from 16.15 to 15.35 in the first shared parameter model and

to 15.39 in the second shared parameter model); and a 1% decrease for individuals with
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MISSING DATA

Hsiao-Ching Yang, M.S.

University of Pittsburgh, 2007



v

functional impairment versus individuals without functional impairment (OR decreased from

4.72 to 4.66 in the first shared parameter model and to 4.67 in the second shared parameter

model). Because differences of this magnitude are likely to have an impact on decisions

concerning public health policies and funding, it is important to take nonignorable missing data

into account when analyzing longitudinal studies. Shared parameter models can be

computationally demanding, so their performance should be judged by their goodness of fit and

required running time.
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1.0 INTRODUCTION

In longitudinal studies of depressive symptoms in elderly patients, analyses are complicated by

the presence of nonignorable missing data. Some patients are unwilling to participate further in

scheduled follow-up interviews and examinations, some become too ill to do so, and some die

before they are able to do so. Because severely ill or dying patients may in fact experience

depression right before they drop out of the study, their missing data are nonignorable. If the

problem of missing data is not handled appropriately, the study results may be biased and may

consequently lead to inadequate management of depressive symptoms in the elderly population.

Missing data are usually categorized into three types (Rubin, 1976; Little and Rubin,

1987). For data missing completely at random (MCAR), the chance of missing does not depend

on observed or unobserved values. For data missing at random (MAR), the chance of missing

depends on observed but not unobserved values. For missing informative/nonignorable data (NI),

the chance of missing may depend on unobserved values. The methods proposed to analyze

studies with missing data include pattern mixture models and selection models. When the

missing data type is NI, a joint model of the longitudinal outcome and missing process is often

used.

In our study, the method we used to analyze the evolution of depression is the shared

parameter model, which is one of the methods that provide a framework for jointly modeling the

longitudinal outcomes and the dropout process through a common frailty or unobserved random
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effects (Wu and Carroll, 1988; Wulfsohn and Tsiatis, 1997; Lin et al., 2002; Roy, 2003; Tsiatis

and Davidian, 2004; Beunckens et al, 2005; Vonesh et al., 2006). The key advantages of this

approach are that it provides a flexible framework for handling nonmonotonic missing patterns

and that it can be applied when study participants do not undergo the same number of follow-up

interviews or examinations (follow-up "waves"). In our study, we modeled the evolution of

depression by using scores from the modified Center for Epidemiologic Studies–Depression

Scale (mCES-D Scale), and we modeled the time to dropout by using survival regression models

of data collected from the Monongahela Valley Independent Elders Survey (MoVIES).

In Section 2 of this article, we introduce the notation and describe the shared parameter

model that we used to analyze the evolution of depression. We also describe the procedure that

we used to estimate the unknown parameters in the model. In Section 3, we begin by

introducing the MoVIES data set and then present the analysis of results. In Section 4, we

discuss possible extensions of our work.
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2.0 METHODOLOGY: NOTATION AND MODEL

Let ijy be a binary variable indicating whether individual i was depressed at wave j ( Ni ,...,1

and iJj ,...,1 ). For individual i , let iT be the time interval from baseline to dropout, let iC be

the observed censoring time (e.g., time interval from baseline to study end), and let

 iii CTID  be the binary variable indicating whether the individual dropped out before the

end of the study. Assume that ijD is the binary variable indicating whether individual i dropped

out before wave j . Let ijX and ijZ be the fixed-effect covariates associated with depression

status and time to dropout, respectively. Note that ijX and ijZ may be overlapping. For

example, age may be related both to depression status and to time to dropout, so the age variable

will appear both in ijX and ijZ . Let iu be the shared parameter, which is the unobserved

random effect contributing both to the probability of depression and the time to dropout. The

association between longitudinal depression status and time to dropout is induced through this

shared parameter.

The likelihood function of the shared parameter model we used to jointly model

longitudinal depression status and time to dropout has the form

             ,|||,,,
1

 


uu

uuTuyuuTyyTy dFffdFfTffL
N

i

ii (1)
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where  f denotes a density function and  F denotes a cumulative density function.

Note that under this model, if    TuT ff | , then y and T are independent. From this we

infer that the dropout is ignorable.

The choice of  uy |f depends on the type of longitudinal outcome. In our case,

because the longitudinal response variable, depression status, is a binary variable, we used the

binomial density function in  uy |f . We then used logistic mixed-effects regression to model

the longitudinal outcome. This regression has the form

   βXX ijiiijij uuy  0,|1Prlogit  , 2j , (2)

where β is a vector of fixed-effect parameters and the quantity  1Pr ijy can be interpreted as

the depression prevalence. We assume that the shared parameter iu follows a normal

distribution with mean 0 and unknown variance 2 .

There are many choices to model the time-to-event dropout in their studies. For example,

for  uT |f , Hogan and Laird (1997) chose nonparametric models; Tsiatis et al. (1995) chose

semiparametric models; Schluchter (1992), DeGruttola and Tu (1994), Pulkstenis et al. (1998),

Schluchter et al. (2001), Guo (2004), and Vonesh et al. (2006) chose accelerated failure time

models; and Vonesh et al. (2006) chose other parametric models and discrete failure time models.

We chose the Weibull accelerated failure time model and the discrete failure time model.

The Weibull accelerated failure time model is useful because it is flexible enough to

incorporate density functions with a wide range of shapes and because it often yields a

reasonably robust estimate of  , the scale parameter, provided that the assumption of

proportional hazards is met (Vonesh, 2006). The hazard function of the Weibull model that

corresponds to the component  uT |f in (1) has the form
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     ,exp 10 ipii utt   αZ (3)

where the baseline hazard function is     1
00 exp   tt with an unknown shape parameter

0 .

The discrete failure time model is useful in our study because the dropout time could be

at any follow-up wave. The density function of this model has the form

      ,|1||Pr

1

1








j

k

iikiikii uuujT  (4)

where the discrete time hazard rate is   ipiikiik uu 1expexp1|   αZ and where ik

defines the baseline conditional survival probability in the interval between wave 1k and wave

k — that is, at all time ],( 1 kk ttt  . We chose each time kt as the follow-up wave.

To estimate the unknown parameters β , α ,  , and  , we used the maximum likelihood

approach. This approach is needed to solve the score equation of the likelihood function shown

in equation (1). Solving this equation involves high-dimensional integration. In general, there

are three ways to approximate a high-dimensional integration numerically: to approximate the

data using a pseudoresponse variable (Beal and Sheiner, 1982, 1988, Sheiner and Beal, 1985), to

approximate the integral using either a nonadaptive or adaptive gaussian quadrature (Pinheiro

and Bates, 1995), and to approximate the integrand using the Laplace method (Beal and Sheiner,

1992; Vonesh, 1996; Wolfinger and Lin, 1997; Raudenbush et al., 2000). Note that the method

using a pseudoresponse variable may not perform well if the outcome variable is binary with few

repeated measurements per individual (Verbeke and Molenberghs, 2000), as occurs in our study.

A gaussian quadrature method is used to replace the integral by a weighted sum. The higher the

order of the method, the more accurate the approximation is. The tradeoff of using a higher-

order method is the computational intensity. The Laplace approximation of the integrand is an
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order one adaptive gaussian quadrature, so it is usually less accurate than a higher-order gaussian

quadrature. In our study, we used and compared the Laplace approximation and adaptive

gaussian quadrature, both of which are implemented in the SAS version 9.0 procedure

NLMIXED (SAS Institute, Cary, NC).

To summarize the estimation of the unknown parameters β , α ,  , and  , we used the

following steps:

1. Begin with an initial guess of the shared parameter from the generalized linear mixed

model of the same form as equation (2).

2. Substitute the estimated shared parameter from step 1 into the approximated log-

likelihood function of the joint model.

3. Maximize the approximated log-likelihood function from step 2 to obtain β̂ , α̂ , ̂ , and

̂ .
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3.0 DISCUSSION: THE MONONGAHELA VALLEY INDEPENDENT ELDERS

SURVEY

We used data from the Monongahela Valley Independent Elders Survey (MoVIES), which was

conducted from 1987 to 2002 in two counties of southwestern Pennsylvania that were

economically depressed and had lower education levels. Inclusion criteria for study participation

included being at least 65 years old at the time of recruitment, being fluent in English, and

having a sixth grade education or higher (Ganguli, 1993). The initial study cohort consisted of

1,681 participants, 1,422 of whom were randomly selected from voter registration lists in the

study area and an additional 259 volunteers from the same area (Ganguli, 1993). Participants

were assessed at study entry (wave 1) and reassessed in a series of approximately biennial data

collection waves. Between waves 1 and 2, a total of 340 participants died, relocated, or dropped

out of the study, leaving 1341 participants to be assessed at wave 2.

We collected data about depressive symptoms for the first time in wave 2 (1989-1991),

which is considered the data baseline for our current study. We used the modified Center for

Epidemiological Studies–Depression (mCES-D) scale, in which scores range from 0 to 20. For

our study, we considered <5 to indicate not depressed and 5 to indicate depressed, based on the

suggestion of Ganguli et al. (1995), Rovner and Ganguli (1998), and Ganguli et al. (2006).

Of the 1,341 participants in wave 2, we excluded 48 who had dementia before the

depression assessment, 21 whose depression data were incomplete, and 12 whose data in the
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Mini-Mental State Examination (MMSE) were incomplete. This left 1260 participants whose

demographic and clinical characteristics of the sample have been described by Andreescu et al.

(2007). Of the 1260 participants, 48 (38.10%) completed waves 2 and 6 but skipped one or more

waves between. In this case, we imputed the missing mCES-D score by using the average of the

scores derived before and after the missing wave.

Of the 1260 participants, a total of 669 (53.10%) dropped out before or at wave 6, with

171 (13.57%) of the dropouts occurring between waves 2 and 3, with 154 (12.22%) occurring

between waves 3 and 4, with 164 (13.02%) occurring between waves 4 and 5, and with 180

(14.29%) occurring between waves 5 and 6 (Figure 1). When we used a chi-square test to

compare the depression status of two groups— the 81(12.11%) of participants who dropped out

before or at wave 6 (the dropout group) and the 46(7.78%) of participants who completed wave 6

(the nondropout group)— we found a significant difference in the percentage of depressed

participants (21.10% vs. 16.60%, respectively; P < 0.043). As Figure 2 shows, there was a rise

in the percentage of participants who were depressed before the dropouts occurred, and

depression was the least common in the participants who completed the most waves.

As described earlier, we used shared parameter models to analyze data on depression

evolution and dropout. For depression evolution, we used a logistic model with random

intercepts representing the subject-specific baseline depression status. The model included the

following covariates measured at baseline (wave 2): gender, age (65-74 years, 75-84 years, and

≥85 years), education level (less than high school or at least high school completion), number of

prescription drugs used (<4 or 4), use of antidepressant drugs (yes or no), and functional

impairment in instrumental activities of daily living (IADL, yes or no). To measure time to

dropout, we defined the failure date as the actual date of dropout and defined the censoring date
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as the study end date (wave 6). We then used a Weibull accelerated failure time model and a

discrete failure time model, both of which were conditional on the subject-specific random effect,

which served as a subject-specific covariate. The results are shown in the first two columns of

Table 1. Next, we compared the results from the shared parameter models (which jointly

modeled depression evolution and dropout) with the results from a naïve generalized logistic

random-effects model (which only modeled depression evolution).

For each participant, if the missing pattern is nonmontonic (may have missing values in

between two nonmissing waves), we imputed these values by averaging the adjacent available

outcome values. From all three models (the naïve model, shared parameter model with Weibull

drop out, and the shared parameter model with discrete failure drop out), age is not a significant

risk factor of being more depressed (mCESD 5). Being female, with less than high school

education, having more than 4 prescription drugs used, using antidepressant drugs, and having

functional impairment are positive risks factors of being more depressed. The odds ratios for

each of the factor are very similar across the models. For the two shared parameter models,

being older, being male, having more than 4 prescription drugs used, and having functional

impairment are positively associated with time to drop out. Although we identified more 4

factors that are related to drop out, the longitudinal association between the risk factor and the

depression status are similar with and without adjusting for drop out.

To check the model goodness of fit, we used two different statistics: -2  log-likelihood

and Akaike information criteria (AIC). A smaller value of the -2  log-likelihood and a smaller

value of the AIC value indicate a better model fit. The shared parameter model with Weibull

drop out has slightly larger -2  log-likelihood than the discrete failure time drop out does (-2 

log-likelihood = 5822.9 and 5402.4, respectively). The shared parameter model with Weibull
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drop out also has slightly larger AIC value than the shared parameter model with discrete failure

time drop out does (AIC = 5868.9 and 5436.4, respectively). Although from the results of these

two statistics, shared parameter model with discrete time failure time drop out is a better model

than the shared parameter model with Weibull drop out, the CPU time used for the shared

parameter model with discrete failure time drop out is much more (CPU time =1:13:57.45 versus

41:12.64).

Table 2 shows the percentage of depressed participants at each wave, stratified by the

number of completed waves and by the covariates measured at baseline. We found that

regardless of the number of waves that participants completed, depression was significantly less

likely to occur in men than in women ( 5.02% vs. 9.42%; P <0.001); in participants aged 65-74

years than in those aged 75-84 years (5.99% vs. 10.59%; P <0.001); in participants who did

complete high school than in those who did not (5.04% vs. 12.59%; P <0.001); in participants

who used ≥4 prescription drugs than in those who used <4 drugs (6.02% vs. 16.10%; P <0.001);

and in participant who did not use antidepressant drugs than in those who did (7.37% vs.

25.00%; P <0.001); and in participants who had functional impairment in IADL than in those

who did not (3.89% vs. 13.51%; P value <0.001).
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4.0 CONCLUSION

Missing observations are common in longitudinal studies with repeated data measurements and

must be handled appropriately, especially when the missing data are of the nonignorable

type. The shared parameter model, a newer method to handle this type of data, is a joint model

of longitudinal outcomes and noninformative dropout. Using this method, we found that the

longitudinal results were similar with and without adjusting for the noninformative dropout. The

reasons for this finding are not clear. Although Tsiatis and Davidian (2004) suggested that the

joint model of longitudinal and time-to-event data may not completely eliminate bias, they did

not explore this issue. Further investigations are therefore needed to determine why and under

what conditions the bias caused by noninformative dropout could be eliminated after adjusting

for it in the shared parameter model framework.

The shared parameter model can be computationally demanding. For our work, when we

used a server with 8 Xeon processors running at 2.66 GHz with 32 GB of RAM and a 4-disk

striped RAID array, we spent about 1 hour of CPU time to run each model. When we used a

personal computer with Pentium 4 processors running at 2.20 GHz with 1 GB of RAM, we spent

about 4 hours of CPU time to run each model. If multiple shared parameter models are used to

fit the data, the performance of the models should be judged by the model goodness-of-fit

statistics (e.g., log-likelihood or AIC) and should also take the computational efficiency into

account.
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APPENDIX A

SAS NLMIXED PROCEDURE FOR SHARED PARAMETER MODEL WITH LOGISTIC

RANDOM-EFFECTS DEPRESSION EVOLUTION AND WEIBULL TIME-TO-DROPOUT

proc nlmixed data=weibull start tech=DBLDOG maxiter=5000000

maxfunc=500000;

parms b0=3 b11=0 b12=0 b2=0 b3=3 b4=0 b5=0 b6=0 b71=0 b72=0 b73=0

b74=0 a0=0 a11=0 a12=0 a2=0 a3=0 a4=0 a5=0 a6=0 a7=0

gamma=2 psi=1;

bi=(b0+u)+ b11*age7584+ b12*age85+ b2*female+ b3*higheduc+

b4*rxfrqdum+ b5*deprs2+ b6*iadlc+b71*w3+b72*w4+b73*w5+b74*w6;

ai=a0+ a11*age7584+ a12*age85+ a2*female+ a3*higheduc+ a4*rxfrqdum+

a5*deprs2+ a6*iadlc+ a7*u;

Pi = exp(bi)/(1+exp(bi));

Li = exp(ai);

Hi = gamma *(Li**gamma)*(t**(gamma-1));

ll_Y= (1-ind)*(response1*log(Pi/(1-Pi))+log(1-Pi));

ll_T= (ind)*(response1*log(Hi)-(Li*t)**gamma);

model response1 ~ general(ll_Y+ll_T);

random u ~ normal(0,psi) sub=subid;

run;
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APPENDIX B

SAS NLMIXED PROCEDURE FOR SHARED PARAMETER MODEL WITH LOGISTIC

RANDOM-EFFECTS DEPRESSION EVOLUTION AND DISCRETE FAILURE TIME ON

DROPOUT

proc nlmixed data=discrete start tech=dbldog;

parms b0=3 b11=0 b12=0 b2=0 b3=3 b4=0 b5=0 b6=0 b71=0 b72=0 b73=0

b74=0 a1=-1 a2=-1 a3=-1 a4=-1

L11=0 L12=0 L2=0 L3=0 L4=0 L5=0 L6=0 L7=0 psi=1;

bi=(b0+u)+b11*age7584+b12*age85+b2*female+b3*higheduc+b4*rxfrqdum+b5*

deprs2+b6*iadlc+b71*w3+b72*w4+b73*w5+b74*w6;

Li=a1*w3+a2*w4+a3*w5+a4*w6+L11*age7584+L12*age85+L2*female+L3*highedu

c+L4*rxfrqdum+L5*deprs2+L6*iadlc;

P_i = exp(bi)/(1+exp(bi));

H_i = 1-exp(-exp(Li+L7*u));

ll_Y= (1-ind)*(response*log(P_i/(1-P_i))+log(1-P_i));

ll_T= (ind)*(response*log(H_i/(1-H_i))+log(1-H_i));

model response ~ general(ll_Y+ll_T);

random u ~ normal(0,psi) sub=subid;

run;
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APPENDIX C

SAS NLMIXED PROCEDURE FOR NAIVE MODEL WITH LOGISTIC RANDOM-

EFFECTS DEPRESSION EVOLUTIONE

proc nlmixed data=one start;

parms b0=3 b11=0 b12=0 b2=0 b3=3 b4=0 b5=0 b6=0 b71=0 b72=0 b73=0

b74=0 sigma=1;

bi=(b0+u)+ b11*age7584+ b12*age85+ b2*female+ b3*higheduc+

b4*rxfrqdum+ b5*deprs2+ b6*iadlc+ b71*w3+b72*w4+b73*w5+b74*w6;

Pi = exp(bi)/(1+exp(bi));

model response ~ binary(Pi);

random u ~ normal(0,sigma**2) sub=subid;

run;
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TABLES

Table 1. Results from the naïve model and the shared parameter models*

Naïve Model Weibull Model Discrete Time Model

Covariates

Estimated OR

or HR

(95% CI) P value

Estimated

OR or HR

(95% CI) P value

Estimated

OR or HR

(95% CI) P value

Longitudinal model

σ
2

18.84 <0.001 17.47 0.001 17.51 0.002

Age 75-84
1.04

(0.51, 2.10)
0.92

1.08

(0.54, 2.14)
0.83

1.08

(0.54, 2.14)
0.83

Age >85
0.63

(0.13, 3.07)
0.57

0.74

(0.16, 3.41)
0.63

0.68

(0.14, 3.18)
0.63

Female
2.05

(1.03, 4.09)
0.04

2.00

(1.02, 3.90)
0.04

2.00

(1.02, 3.91)
0.04

At least high school

education

0.33

(0.17, 0.63)
<0.001

0.32

(0.17, 0.61)
<0.001

0.32

(0.17, 0.61)
<0.001

# of prescription

drugs used

3.50

(1.65, 7.42)
<0.001

3.55

(1.70, 7.41)
<0.001

3.56

(171, 7.43)
<0.001

Use of

antidepressant drug

16.15

(2.36, 110.46)
0.005

15.35

(2.35, 100.04)
0.004

15.39

(2.35, 100.69)
0.004

Functional impaired
4.72

(2.40, 9.30)
<0.001

4.66

(2.41, 9.03)
<0.001

4.67

(2.41, 9.04)
<0.001
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Table 1 continued

Dropout model

Age 75-84 · ·
1.56

(1.38, 1.76)
<0.001

1.96

(1.63, 2.35)
<0.001

Age >85 · ·
2.4

(1.95, 3.08)
<0.001

3.79

(2.68, 5.36 )
<0.001

Female · ·
0.72

(0.65, 0.81)
<0.001

0.61

(0.52, 0.73)
<0.001

At least high school

education
· ·

1.01

(0.90, 1.14)
0.82

1.00

(0.84, 1.19)
0.98

# of prescription

drugs used
· ·

1.50

(1.33, 1.70)
<0.001

1.83

(1.52, 2.21)
<0.001

Use of

antidepressant drug
· ·

1.23

(0.92, 1.63) 0.16

1.28

(0.83, 1.96)
0.27

Functional impaired · ·
1.14

(1.01, 1.29)
0.03

1.22

(1.02, 1.46)
0.03

CPU (hr: min: sec) 4:56.85 41:12.64 1:13:57.45

– 2Log L(y, T) 1870.8 5822.9 5402.4

AIC for L(y, T) 1896.8 5868.9 5436.4

*All models are multivariable models with intercept and also adjusted for time (not shown)

OR: odds ratio; HR: hazard ratio
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Table 2. Percent of depressed individuals at each wave by individual’s characteristics and by the individuals with different number of completed waves.

Number of completed waves

5 waves 4 waves 3 waves 2 waves 1 wave

N 2 3 4 5 6 N 2 3 4 5 N 2 3 4 N 2 3 N 2

Total 591 7.78 4.74 4.40 4.57 6.26 180 7.78 6.11 6.67 12.78 164 13.41 11.59 15.24 154 11.04 18.18 171 16.37

Age

65-74 446 7.40 4.26 3.59 3.14 4.93 88 6.82 4.55 5.68 12.50 68 13.24 10.29 13.24 59 5.08 15.25 86 13.95

75-84 140 9.29 6.43 6.43 7.86 9.29 88 9.09 7.95 6.82 12.50 83 13.25 12.05 16.87 77 15.58 20.78 65 16.92

85+ 5 0.00 0.00 20.00 40.00 40.00 4 0.00 0.00 25.00 25.00 13 15.38 15.38 15.38 18 11.11 16.67 20 25.00

Gender

Male 195 4.62 2.56 2.05 2.56 4.10 71 5.63 4.23 5.63 11.27 73 5.48 2.74 9.59 61 6.56 11.48 94 11.70

Female 396 9.34 5.81 5.56 5.56 7.32 109 9.17 7.34 7.34 13.76 91 19.78 18.68 19.78 93 13.98 22.58 77 22.08

Education

<High school 195 13.33 9.74 8.72 8.72 9.74 72 8.33 5.56 6.94 18.06 74 17.57 18.92 25.68 74 17.57 22.97 75 17.33

High school 396 5.05 2.27 2.27 2.53 4.55 108 7.41 6.48 6.48 9.26 90 10.00 5.56 6.67 80 5.00 13.75 96 15.63

# of Rx

medication

<4 521 7.87 4.61 4.03 4.03 5.76 138 5.07 2.90 5.07 10.14 117 10.26 7.69 9.40 102 6.86 13.73 108 7.41

4 70 7.14 5.71 7.14 8.57 10.00 42 16.67 16.67 11.90 20.46 47 21.28 21.28 29.79 52 19.23 26.92 63 31.75

Depressed at

Wave 2

No 580 7.76 4.66 4.31 4.48 6.03 173 7.51 5.78 6.36 12.72 161 12.42 10.56 14.29 145 8.97 15.17 165 15.15

Yes 11 9.09 9.09 9.09 9.09 18.18 7 14.29 14.29 14.29 14.29 3 66.67 66.67 66.67 9 44.44 66.67 6 50.00
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Table 2 continued

IADL

No 408 6.13 3.43 1.96 1.72 2.94 83 8.43 3.61 3.61 2.41 83 8.43 4.82 7.23 57 3.51 7.02 92 6.52

Yes 169 11.83 7.69 9.47 8.88 12.43 70 7.14 8.57 10.00 18.57 61 19.67 18.03 26.23 78 16.67 25.64 68 27.94



19

FIGURES

1089

935

771

591 591

171

154

164

180

0

200

400

600

800

1000

1200

1400

Wave 2 Wave 3 Wave 4 Wave 5 Wave 6

Study Wave

N
u

m
b

e
r

o
f

p
e
o

p
le

Dropout

Nondropout

Figure 1. Dropout in each wave.
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Figure 2. Percent depression by individuals who completed different number of waves: filled triangle and
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(completed wave 2 only).
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