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Globally, cardiovascular disease (CVD) is the leading cause of death.  Increased risk for 

CVD can be attributed to smoking, high blood pressure, poor lipid profiles, obesity and 

psychosocial factors.  Markers of subclinical CVD are non-invasive measures that detect 

early atherosclerotic changes.   The purpose of this dissertation was to evaluate novel risk 

factor associations for subclinical CVD in three distinct populations.  

The protective effect of HDL-c for subclinical CVD was diminished in a population of 

postmenopausal women compared to premenopausal women.  Furthermore, the 

concentration of small HDL particles was higher among postmenopausal women.  Lipid 

profile changes with the menopausal transition may in part explain the increased risk of 

CVD seen after menopause. 

The protective effect of education for subclinical CVD was evident only among 

females from an Afro-Caribbean population.  Educational differences in SBP and lipids 

varied for males and females providing insight into potential mechanisms for the education-

subclinical CVD relationship observed on the island of Tobago. 

Tonic cardiac sympathetic activity and parasympathetic reactivity were independent 

predictors of subclinical CVD in a population of overweight and obese young adults.  The 

effect of C-reactive protein (CRP) on subclinical CVD is potentially explained by the 

autonomic anti-inflammatory mechanisms linking heart rate variability and CRP.  



v 
 

Identifying novel risk factor associations for subclinical CVD in various populations 

supports the important public health objective of reducing the global burden of CVD 

morbidity and mortality through early detection of atherosclerosis. 
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1.0 DISSERTATION OVERVIEW AND OBJECTIVES 

 

Globally, cardiovascular disease (CVD) is the leading cause of death.  Increased risk for 

CVD can be attributed to smoking, high blood pressure, poor lipid profiles, obesity and 

psychosocial factors.  Markers of subclinical CVD are non-invasive measures that detect 

early atherosclerotic changes.  These measures are associated with traditional CVD risk 

factors and have shown to predict future cardiovascular events.   

The intention of this dissertation is to evaluate novel risk factor associations for 

subclinical CVD in three distinct populations.  The three aims and study populations are 

described below: 

   

1. As women transition through menopause their risk for CVD increases.  It is plausible 

that adverse lipid profile changes during the transition may explain a portion of this 

increased risk.  SWAN Heart, an ancillary study to SWAN (Study of Women’s Health 

Across of the Nation), assessed subclinical CVD during the menopausal transition.  

The aim of this manuscript was to determine if the relationship between lipids and 

subclinical CVD varies by menopausal status.  Understanding the mechanisms that 

promote early CVD in women may lead to new preventative efforts or delay disease 

onset in the postmenopausal years. 

 

2. Education is protective against adverse health outcomes; however the effect of 

education on CVD has shown to be steeper among females.  This manuscript aimed 

to determine the association between education and subclinical CVD in a 
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community-based sample of Afro-Caribbean males and females from the Tobago 

Family Health Study.  Differences in CVD risk factors by education may offer 

potential mechanism for gender differences in the education-subclinical CVD 

relationship.  

 

3. Heart rate variability (HRV) and C-reactive protein (CRP) are known markers of 

CVD.  Autonomic nervous system activity, as measured by HRV, modulates 

inflammation.  The primary aim of this manuscript was to determine which CVD risk 

factors predicted HRV, CRP and subclinical CVD and how HRV and CRP together 

predicted subclinical CVD in a population of moderately overweight and obese 

young adult men and women from the study to Slow Adverse Vascular Effects 

(SAVE).  Using measures of tonic sympathetic and parasympathetic outflow 

simultaneously and including HRV reactivity to standard autonomic challenges may 

provide further evidence into how the autonomic nervous system relates to early 

atherosclerotic changes.  
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2.0 GENERAL INTRODUCTION 

 

 

2.1 CARDIOVASCULAR DISEASE 

 

Cardiovascular disease (CVD) is the leading cause of death in the world 1.  In 2004, 32% of 

mortality among females and 27% among males were due to myocardial infarction and 

stroke.  A dramatic increase from 17.5 million CVD deaths in 2005 to 24.2 million in 2030 is 

projected 2.  The estimated cost of CVD in the United States is $475.3 billion for 2009 3.  

Worldwide, over 80% of CVD mortality occurs in low to middle income developing countries 

4.  There is tremendous economic growth potential lost in these countries because CVD 

death occurs among the working aged 5.  Given the large economic impact and premature 

death, prevention is imperative in reducing the global burden of CVD.  Identifying novel risk 

factor associations with subclinical CVD can facilitate the stratification of individuals at 

increased risk for early CVD.     

 

2.2 ATHEROSCLEROSIS 

 

Atherosclerosis is the initial process that ultimately leads to myocardial infarction and stroke 

6, 7.  Luminal occlusion begins with repeated damage to the endothelium.  Inflammation, 

toxins and oxidized LDL-c are hypothesized mechanisms of vascular injury.  Following 

injury, monocytes attach to the endothelium due to increased adhesion molecule expression 

and migrate into the intimal layer where they develop into macrophages.  These 
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macrophages accumulate lipids, referred to as foam cells, and together with lymphocytes, 

become fatty streaks.  If these streaks are allowed to progress, as the result of continued 

CVD risk factor exposure, they will eventually become plaques.  Fibrous plaques are 

composed of foam cells and layers of smooth muscle cells.  Atherosclerotic changes 

progress to incident CVD as a result of cumulative plaque burden, arterial lumen narrowing 

and vulnerability of the lesions 8.  Large lesions with thin fibrous caps and vascular 

remodeling are factors that promote plaque rupture and subsequent hemorrhage and 

thrombosis, resulting in vessel occlusion 9.   

 

 

2.3 SUBCLINICAL CARDIOVASCULAR DISEASE 

 

Subclinical CVD measures are non-invasive techniques that allow for the early detection of 

vascular changes due to aging and other risk factors.  The following measures are used in 

this dissertation and appear in chapters 3, 4 and 5.   

 

2.3.1 Carotid Intima Media Thickness 

 

Carotid intima media thickness (IMT) is a measure of the inner two layers of the arterial 

wall.  B-mode ultrasound is a non-invasive technique that is used to capture reliable 

measures of IMT 10.  Arterial wall hypertrophy and dilation occur with vascular adaptation to 

increased blood pressure and atherosclerosis 11, 12.  These changes maintain shear and 

tensile stresses.  IMT is primarily a result of intimal hypertrophy 13.  However, ultrasound 

techniques are not sensitive enough to capture only the intimal layer and therefore the 

intima and media are measured collectively 10.  
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IMT has shown to be an independent predictor of incident CVD: myocardial 

infraction, stroke and mortality 14-20.  In addition, IMT is associated with traditional CVD risk 

factors such as age, male gender, lipids, smoking, glucose and blood pressure 14, 17, 21-26.  A 

linear increase in IMT has been observed with increasing age among healthy adults 24.  The 

increased risk of incident CVD seen with increasing IMT is similar to the observed increase 

with age, suggesting IMT is good measure of vascular aging 27.  IMT changes have been 

noted with SBP above 120 mmHg and these changes were independent of other CVD risk 

factors 25.   A 40 mg/dL increase in LDL-c was associated with a 0.02 to 0.05 mm increase 

in IMT 26.  Small changes in IMT indicate large changes in risk.  For example, the odds of 

myocardial infarction and stroke increased 25% and 34%, respectively, over a 3 year period 

for a 1 SD increase in IMT (0.163mm) 28.  Although IMT is not necessarily synonymous with 

atherosclerosis, it is likely the result of similar factors as plaque formation given the strong 

associations with traditional risk factors 10.  This in conjunction with its ability to predict 

incident CVD makes IMT a valuable subclinical measure of CVD. 

 

2.3.2 Arterial and Lumen Diameter  

 

As with intima media thickness, adventitial and lumen diameter (AD and LD, respectively) 

are obtained from B-mode ultrasound imaging.  The AD is the distance between the 

adventitial and medial interfaces on the near and far wall, while the LD is the distance 

between the intima and lumen interfaces.  An intraclass correlation coefficient of 0.99 has 

been previously reported for AD 29.  Traditional CVD risk factors, such as age, weight, SBP, 

glucose and HDL-c have been shown to be independently associated with AD in a 

population of older adults from the EVA study 30. 
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Larger diameters result from outward remodeling due to age related decreases in 

arterial wall elastin and mechanical stress 31, 32.  In a subset of non-smoking ARIC 

participants free of known CVD, diabetes, hypertension, obesity or hyperlipidemia, AD was 

positively associated with age, suggesting outward remodeling is independent of known 

CVD risk factors.  Besides age associated remodeling, AD increases with hemodynamic 

changes seen with plaque formation.  AD was shown to be higher among postmenopausal 

women with carotid plaque compared to women without plaque in a case-control study 

matched on age and adjusted for HDL-c and SBP 33.   

In addition to outward remodeling, hypertrophy occurs as a result of risk factor 

exposure.  Consequently, increases in AD may mask IMT changes.  Therefore, AD and IMT 

should be evaluated simultaneously as predictors of incident CVD.  In a subset of ARIC 

participants, AD was an independent predictor of incident CVD after adjusting for traditional 

risk factors and carotid IMT 34. 

   

2.3.3 Carotid Plaque  

 

Eccentric carotid plaque develops as a result of atherosclerotic progression within the 

vessel wall.  Plaque is often distinguished from IMT on ultrasound imaging as focal 

protrusion greater than 50% of the surrounding arterial wall.  IMT is a potential precursor for 

carotid plaque given its positive correlation independent of traditional risk factors and its 

modest predictability of carotid plaque (R2 = 0.23) 35, 36.  Traditional CVD risk factors, such 

as age, SBP, smoking, BMI and glucose have shown to predict carotid plaque 37.  In 

addition, among several large longitudinal studies, carotid plaque has predicted myocardial 

infarction, stroke and death 19, 38, 39.   

 



7 
 

2.3.4 Aortic Calcification 

 

Electron beam computed tomography (EBCT) is a non-invasive method that requires 

minimal radiation exposure to detect calcified aortic plaques. Age, gender, diabetes, lipids, 

SBP and smoking have been shown to predict aortic calcification (AC) 40. The Framingham 

Heart study observed a 6 to 8 fold increase in AC over a 25 year follow up 41.  Unlike 

coronary calcification, where males tend to have much higher rates compared to females, 

AC differences by gender were less striking in the Rotterdam Study 22.  A 20mg/dL increase 

in LDL-c was associated with an OR for AC of 1.33 (95% CI: 1.0, 1.8) whereas a 10mg/dL 

increase in HDL-c was associated with an OR of 0.70 (95% CI: 0.47, 1.0) 42. 

 

2.3.5 Pulse Wave Velocity 

 

Pulsatile blood flow is converted to continuous flow by stored energy in compliant vessel 

walls and pressure wave reflection 43.  Arterial stiffening due to vascular aging and 

hypertrophy of the vessel wall leads to noncompliant vessels and subsequently increased 

pulse pressure and decreased coronary blood supply during diastole 44, 45.  Pulse wave 

velocity (PWV) is a highly reproducible method of choice for assessing arterial stiffening 46, 

47.  The Rotterdam study observed a significant association between PWV and IMT, carotid 

plaque, aortic calcification and peripheral artery disease 48.  In addition, to predicting other 

measures of subclinical atherosclerosis, increased PWV is related to CVD events and 

mortality 49-51.  The Health ABC study observed a > 50% increase in incident CVD among 

those in the top 25th percentile of PWV. 
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2.4 CARDIOVASCULAR RISK FACTORS 

 

A vast number of risk factors have been established as independent predictors for 

subclinical and clinical CVD 52.  These risk factors include, but are not limited to: age, lipids, 

weight, gender, socioeconomic status and heart rate variability.  Assessment of these 

factors among various populations can help with risk stratification and determine 

mechanism for disease development.  The following risk factors are evaluated in this 

dissertation and appear in chapters 3, 4 and 5. 

 

2.4.1 Menopause 

 

Menopause is the cessation of menses due to ovarian follicular inactivity 53.  The 

menopausal transition begins with changes to the regular menstrual cycle and ends when 

menstruation has stopped for one year.  Natural menopause occurs between 45 to 55 years 

of age and lasts 4 to 5 years on average 53, 54.  Hormones are known to fluctuate on a day-

to-day basis as women transition through menopause, with a gradual decrease in estrogen 

and an increase in follicular stimulating hormone (FSH) over time.  Estrogen is known to 

increase vasodilation, reduce vascular injury and reduce smooth muscle cell proliferation.  

In addition, a decrease in LDL-c, an increase in HDL-c and a reduction of LDL-c oxidation 

have been documented.  Therefore, menopause is associated with a decrease in a 

hormone that has cardioprotective effects. 

 The decline in estrogen that accompanies menopause is thought to contribute to the 

increased risk for CVD that is observed among postmenopausal women 55, 56.  However, it 

is also possible that the increased risk that accompanies the 4-5 year menopausal transition 

is a function of older age.  Thus, the role of age should be considered in examining whether 
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menopausal changes in hormones contribute to CVD risk. Simple adjustment may not 

account for the entire effect of age if the range is too wide and there is little overlap between 

the pre- and postmenopausal groups.  Therefore, careful consideration in recruitment needs 

to be addressed in order to reduce bias and differentiate risk associated with hormonal 

changes from age-related increases in risk 57.  

Growing evidence shows that a number of factors contribute to menopause-related 

increases in CVD risk that are independent of age 58.  Both total cholesterol and LDL-c have 

been shown to be higher among the post- than pre-menopausal group 59.  The Study of 

Women’s Health Across the Nation showed a significant difference in LDL-c from pre- to 

post-menopause (116.3 vs. 123.4 mg/dL, p <0.0001).  Weight gain over the menopausal 

transition is most likely due to chronological aging; however, increases in visceral adiposity 

and decreases in lean mass have been attributed to menopause 60, 61.  In the Vermont 

Longitudinal Study of the Menopause, postmenopausal women had higher fat mass and 

higher intra-abdominal adiposity compared to premenopausal women (18 vs. 23 kg, p<0.01 

and 65 vs. 77 cm2, p<0.05). 

 

2.4.2 Lipoproteins 

 

Low density lipoprotein cholesterol (LDL-c) and high density lipoprotein cholesterol (HDL-c) 

are often referred to as the ‘bad’ and ‘good’ cholesterol; however, they are not types of 

cholesterol, but rather different transporters of lipids and proteins 62.  LDL-c has shown to be 

directly related to the risk of CHD in a large population of Japanese men and women 63.  

However, LDL-c levels alone may not accurately characterize lipid profiles 64, 65.  Two 

individuals may have similar LDL-c levels; however, the number of particles carrying that 

cholesterol may vary greatly. NMR spectroscopy measures the total number of terminal 
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methyl groups in each lipoprotein particle, thereby approximating the diameter of the 

lipoprotein 64.  This method provides an estimate of the particle concentration rather than 

the amount of cholesterol being carried by the particles.   

Several studies have concluded small LDL particles are more atherogenic compared 

to large particles 65.  However, the MESA study, a large population of relatively healthy men 

and women, ages 45 to 84 years, demonstrated that both small and large LDL particles 

were predictors of subclinical CVD, and only when the inverse correlation between small 

and large particles was accounted for was this association apparent 66.  It has been 

suggested that LDL particle number is a more informative risk factor compared to LDL-c or 

LDL particle size 65. 

HDL-c is inversely related to CVD.  It exerts its protective effects through reverse 

cholesterol transport from the periphery to the liver for secretion with bile 67.  In addition, 

HDL-c is known for its anti-atherogenic properties, such as inhibition of adhesion molecules 

and LDL-c oxidation 68.  The protective properties of HDL-c may not be equally shared 

between large and small particles 69.  In a population of adult men with a known history of 

myocardial infarction, small HDL particles were directly related to the progression of 

coronary atherosclerosis, while large particles were inversely related 70.  Therefore, HDL 

particle size, as a CVD risk factor, may provide additional information beyond HDL-c. 

 

2.4.3 Education 

 

Socioeconomic status (SES) is a complex combination of education, income and 

occupation 71, 72.  Using more than one measure of SES is ideal because the three 

measures contribute different information, however, education is the variable most often 

used in epidemiology research 73.  It has shown to be reliable and valid 74.  Education is a 
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measure of social, psychological and economic resources.  It influences behavior, problem 

solving and values.  Since education is attained early in life, it does not reflect changes in 

SES or accumulation of SES in adulthood 75.  Income and occupation reflect a more current 

status of adulthood SES.  However, income and occupation are difficult to analyze among 

the unemployed, homemakers or retired.  In addition, it is possible that health status could 

influence occupation and subsequently income.  Education may improve health related 

knowledge and allow for favorable occupation and income in adulthood. 

Education has been shown to be a strong predictor of traditional CVD risk factors 

and disease.  In a study of Scottish males, occupation was a stronger predictor of all cause 

mortality, but when individual causes of mortality were explored, education was strongly 

associated with cardiovascular mortality 73.  Using US census data, education was inversely 

associated with mortality 76.  Income did not account for additional variation in mortality.  

When income was substituted for education, traditional CVD risk factors explained the 

majority of the association between income and CVD events 77.  

 

2.4.4 Autonomic Nervous System 

 

The autonomic nervous system (ANS) is a component of the peripheral nervous system 

consisting of two main branches, the sympathetic and the parasympathetic.  The 

sympathetic and parasympathetic branches innervate the sinoatrial node of the heart and 

regulate heart rate variability 78.  Vasculature tone is achieved via sympathetic 

vasoconstriction and parasympathetic vasodilation 79.  The ANS is responsible for 

maintaining vascular homeostasis when the system is disturbed.  For example, during a 

rapid standing position, blood will pool in the lower extremities.  As a result, there is 

decreased cardiac return and subsequently decreased cardiac output. This drop in blood 
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pressure triggers the sympathetic branch to increase heart rate and peripheral resistance in 

order to restore the arterial pressure 80.    

Heart rate variability (HRV) is a well known and validated method to measure the 

ANS.  This method has produced reproducible results in reliability studies 81.  Heart rate and 

respiratory rate variability, from the electrocardiogram and bioimpedance plethysmography, 

respectively, is converted to quantitative estimates of ANS function via spectral analysis 82-

84.  From the classic frequency domain analysis, the high frequency peak (HF) has been 

shown to correlate with parasympathetic (vagal) activity; however, the low frequency peak 

(LF) is believed to be a combination of sympathetic and parasympathetic activity.  These 

interpretations are based on pharmacologic studies observing a reduction in the LF peak 

with sympathetic blockade, but a reduction in both LF and HF peaks with parasympathetic 

antagonist 78.  Another concern is slower respiratory rates can cause false elevations in LF 

85, 86. To address these problems, a new method was created to take into account 

respiratory rate.  By isolating the respiratory peak on the respiratory rate spectral analysis, 

and centering the HF component at this frequency, parasympathetic and sympathetic 

activity estimates are improved 86.   

Measures of HRV have been associated with increased risk of CHD and mortality.  

The ARIC study, a population based cohort of adult men and women, ages 45 to 64 years, 

found a significant inverse association (RR = 1.72, 95% CI: 1.17-2.51) for CHD in the lower 

quartile of HF compared to the upper three quartiles 87.  No significant association was 

observed for LF or LF/HF ratio, a possible measure of sympathovagal balance.  A decrease 

in all HRV measures, except LF/HF ratio, was associated with a significant increase in the 

risk of incident CVD among the Framingham Heart Study cohort 88.  The lack of association 

of CHD and LF in the ARIC study and the inverse association in the Framingham study may 

reflect the mixture of sympathetic and parasympathetic activity within the LF component. 
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2.4.5 C-Reactive Protein 

 

C-Reactive Protein (CRP) is a marker for low-grade systemic inflammation that can be 

measured in peripheral circulation 89.  Inflammation is involved in the atherosclerotic 

process from vascular injury and endothelial dysfunction to foam cell development and 

plaque rupture. Cytokines produced during atherosclerotic progression, specifically, IL-1, IL-

6, and TNF-α, are known to trigger the acute phase response, which includes the 

production of CRP by hepatocytes 90.  In addition, IL-6 and CRP are produced by 

adipocytes, which may account for the positive associations of weight with circulating levels 

of CRP 91.  

CRP is an inexpensive and widely available marker of general inflammation 92.  The 

mechanism by which CRP is related to the progression of atherosclerosis is complex.  A 

significant association has been observed with age, smoking, BMI, lipids, clotting factors 

and glucose 93.  CRP has proven to be a sensitive marker of incident CVD in a general 

population of British men 94.  The adjusted odds ratio for CHD was 2.13 (95% CI: 1.38, 3.28) 

for the top tertile of CRP compared to the bottom.  The Women’s Health Study showed an 

adjusted relative risk of 1.5 (95% CI: 1.1, 2.1) for CVD events (myocardial infarct, stroke, 

revascularization and death) in a population of postmenopausal women 95. Despite its 

predictability, the benefit of therapeutic reduction in CRP is debatable given the lack of a 

casual association observed in a genetics study 83.  In addition, CRP was not found to 

improve risk stratiifcation over convential factors in a large population of Swedish men and 

women 96.  Nevertheless, CRP can assist in the explanation of atherosclerotic disease 

mechanims.  
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2.5 STATISTICS 

 

2.5.1 Multinomial Logistic Regression  

 

Multinomial logistic regression (MLR) and ordinal logistic regression (OLR) are used when 

the outcome measure is a categorical variable with more than two levels 97.  Nominal 

outcomes are analyzed with MLR and ordinal outcomes by OLR.  OLR takes into account 

the rank order of the outcome when calculating the odds ratio, but requires that the 

predictor variables have the same effect on each ordered outcome level.  When the logistic 

regression model does not meet this assumption of proportional odds, results can be 

misleading and MLR should be used 98.  MLR generates an odds ratio for each pair of 

outcome measures; however, it does not consider the order of the outcome measure. 

 In chapter 3, aortic calcification, a three level categorical measure (none, moderate 

and high), is one of the key outcome variables assessed.  The three levels are ordinal in 

nature; however, the assumption of proportional odds was violated.  Therefore, MLR was 

the method of choice when analyzing aortic calcification.   

 

2.5.2 Collider Bias  

 

Collider bias can occur when exposure and disease influence a third variable (C) and the 

association between exposure and disease is conditioned upon C 99, 100.  If sample selection 

or stratification is based on C this can create a collider bias; the results from these data 

analyses may misrepresent the true relationships between the variables and false 

conclusions may be drawn regarding causality.  The direction of the associations between 

exposure, disease and C is critical.  If C causes disease and C is related to exposure then 
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stratifying on C would remove bias (confounding).  However, if exposure and disease affect 

C then the observed change in the association estimate is biased.  The effect of exposure 

on C or disease on C does not have to be direct, it can occur through other measured or 

unmeasured variables. 

 The manuscripts in chapters 3 and 4 both include interactions in the model; 

therefore, it was necessary to rule out the possibility for collider bias.  Chapter 3 assessed 

the association between HDL-c and subclinical CVD by menopausal status.  It is unlikely 

that HDL-c (exposure) or subclinical CVD (disease) influences menopausal status (C), 

therefore, the risk for collider bias is small. However, it is plausible that other measured or 

unmeasured factors may affect menopausal status; thus the potential for collider bias is still 

possible. In addition, chapter 4 evaluated the effect of education on subclinical CVD among 

a population of Tobagonian males and females.  Since education (exposure) and subclinical 

CVD (disease) do not determine ones gender (C), conditioning on gender is acceptable. 
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3.1 ABSTRACT 

 

Background: The risk of cardiovascular disease increases after menopause.  Changes in 

the lipoprotein profile may in part be responsible for this trend.  Evaluating the contribution 

of HDL cholesterol (HDL-c) to subclinical cardiovascular disease across the menopausal 

transition would provide insight for this increased risk.  Methods: Aortic calcification (AC), 

carotid plaque and intima media thickness (IMT) were measured in Pittsburgh and Chicago 

women enrolled in an ancillary study to the Study of Women’s Health Across the Nation 

(SWAN).  Women were stratified into two menopause groups; premenopausal or early 

perimenopausal (Pre/EP) and late perimenopausal or postmenopausal (LP/Post).  Results: 

On average Pre/EP women were 49 years of age and LP/Post women were 52 years of 

age.  LP/Post women had slightly higher HDL-c levels compared to Pre/EP women (59 vs. 

56 mg/dL, p = 0.04).  Across all women, HDL-c was negatively associated with high and 

moderate AC, any carotid plaque and IMT in univariate analysis.  However, interactions 

between menopause status and HDL-c were statistically significant for AC and IMT in fully 

adjusted models (p = 0.01, 0.03), but borderline for any carotid plaque (p = 0.08).  In 

multivariable models, Pre/EP women demonstrated a negative association between HDL-c 

levels and moderate AC (OR = 0.97, 95%CI 0.94, 1.00), high AC (OR = 0.98, 95%CI 0.94, 

1.02), any carotid plaque (OR = 0.97, 95%CI 0.94, 1.00) and IMT (β = -0.001, 95%CI -

0.002, -0.0002), however only IMT showed a significant association.  In LP/Post women, a 

positive association between HDL-c levels and moderate AC (OR = 1.03, 95%CI 1.00, 

1.06), high AC (OR = 1.05, 95%CI 1.01, 1.09), any carotid plaque (OR = 1.01, 95%CI 0.98, 

1.03) and IMT (β = 0.0002, 95%CI -0.0006, 0.0009) was observed, but was only significant 

for high AC.  In the small sub sample of Pittsburgh women, LP/Post women had more small 
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HDL particles (HDL-p) compared to Pre/EP women.  Conclusion: In conclusion, the 

protective effect of HDL-c appears to diminish in LP/Post women compared to Pre/EP 

women.  This loss of protection may be due to increased concentrations of small HDL-p. 

 

3.2 INTRODUCTION 

 

Cardiovascular disease (CVD) contributes to 39 percent of mortality in American women 1.  

As women age they are increasingly exposed to major CVD risk factors, including a poor 

lipid profile and weight gain.  In addition to chronological aging, women experience the 

biological changes of the menopausal transition.  The largest increase in CVD rates around 

the menopausal transition adds additional risk above and beyond chronologic aging 2.  

Decreasing estrogen levels have been linked to endothelial dysfunction and poor vascular 

tone 3-5.  However, there may be additional mechanisms through which the menopausal 

transition confers CVD risk. 

Lipids are known to change in association with both age and the menopausal 

transition 6, 7.  Understanding these changes, including how they contribute to early vascular 

disease, may provide evidence to the underlying mechanism(s) that increases CVD risk 

following the transition.  During the transition, low density lipoprotein cholesterol (LDL-c) 

levels increase, while high density lipoprotein cholesterol (HDL-c) levels tend to remain 

stable or increase slightly 8-12.  It is widely accepted that increasing levels of LDL-c promote 

CVD while increasing levels of HDL-c are protective.  However, no studies have yet 

evaluated whether or not these associations are consistent across the stages of 

menopause.  One study has suggested that the protective effects of HDL-c on IMT may 

diminish over time in middle aged-women 13.  



19 
 

The Study of Women’s Health Across the Nation (SWAN) provides a unique 

opportunity to determine if the relationship between lipids and CVD varies by menopausal 

status.  SWAN has explored biological changes as women have transitioned through 

menopause, including subclinical CVD measures in two of the seven sites.  Subclinical CVD 

measures are reliable measures of the atherosclerotic process 14.  Accordingly, the purpose 

of this study was to evaluate whether the menopausal transition modifies the contribution of 

lipids to subclinical CVD, specifically, aortic calcification (AC), carotid plaque and intima 

media thickness (IMT).  These non-invasive subclinical measures have been shown to 

predict clinical events including stroke, myocardial infarction and cardiovascular death in 

large population studies 15-19.  These studies have shown independent positive associations 

between subclinical measures and the following traditional CVD risk factors: increasing age, 

African American race, hypertension, obesity, hyperlipidemia, diabetes and smoking 20.  

Therefore, subclinical measures can be used to evaluate risk factor associations and 

possible differences in these associations by menopausal status.  Understanding 

mechanisms that promote early CVD in women may lead to new preventative efforts or 

delay CVD in the postmenopausal years. 

 

3.3 METHODS 

 

3.3.1 Study Population 

 

The study population for this analysis included 540 women who participated in SWAN 

Heart, an ancillary study to the Study of Women’s Health Across the Nation.  Detailed study 

design and recruitment descriptions for SWAN have previously been published 21.  In brief, 

this multi-center, community-based, longitudinal study recruited women from 7 clinical sites 
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(Chicago, IL; Pittsburgh, PA; Boston, MA; Detroit, MI; Newark, NJ; Oakland, CA; and Los 

Angeles, CA) to assess the biological and psychological changes associated with the 

menopause transition.  Baseline enrollment of 3302 women between the ages of 42 and 52 

years took place during 1996 to 1997.  Only women who had an intact uterus and at least 

one ovary, menstruated in the prior 3 months and not taken hormone therapy or oral 

contraceptives in the prior 3 months were eligible for the parent project.  Women who were 

pregnant or breast feeding were excluded.   

 The ancillary study, SWAN Heart, evaluated 608 women for subclinical CVD.  

Baseline enrollment at the Pittsburgh and Chicago sites occurred between 2001 and 2003 

(corresponding to the 4th - 7th annual SWAN visits).  Women were ineligible for SWAN Heart 

if they had a history of CVD (angina, myocardial infarction, congestive heart failure, stroke, 

transient ischemia attack or vascular surgery), had a hysterectomy or bilateral 

oophorectomy since the start of SWAN, were pregnant or were taking diabetic or hormone 

therapy.  Women were excluded from this analysis for CVD history (n=2), 

hysterectomy/oophorectomy (n=16), diabetes (n=1) and hormone therapy (n=32).  An 

additional 17 women were excluded due to missing menopausal status or no subclinical 

vascular measures collected, resulting in a final sample size of 540 (89%) for this analysis.  

 Research protocols for SWAN and SWAN Heart were approved by the site specific 

institutional review boards and all women provided informed consent prior to enrollment.   

 

3.3.2 Subclinical Measures 

 

Aortic calcification (AC) was quantified using electron beam computed tomography (EBCT; 

Imatron C-150 Ultrafast CT Scanner, GE Imatron, San Francisco, CA).  An initial scout scan 

was done to identify anatomical landmarks.  Next, the scanner obtained cross-sectional 6 
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mm images with a 300 ms exposure time from the aortic arch to the iliac bifurcation.  

Participants were exposed to a total of 2.45 rads during the aortic scan.  All scans were 

saved to optical disc and read centrally at the University of Pittsburgh using a DICOM 

workstation and Acuimage software (South San Francisco, CA).  Using the Agatston 

scoring method, 3 contiguous pixels > 130 Hounsfield units was used to determine the 

presence of lesions within the aorta.  A total calcium score was calculated for the entire 

vessel by one blinded physician trained in EBCT.    

 Carotid intima media thickness (IMT) and carotid plaque assessment were made 

using B-mode ultrasound (Pittsburgh site: Toshiba American Medical Systems, Tustin, CA 

and Chicago site: Hewlett Packard, Andover, MA).  Right and left carotid arteries were 

scanned to obtain a total of 8 images: near and far wall of common carotid (1 cm proximal 

to bulb), far wall of carotid bulb (starting from the point where the common carotid walls are 

no longer parallel and ending at the flow divider) and far wall of internal carotid artery (distal 

1 cm from flow divider).  Semi-automated reading software (AMS system developed in 

Sweden by Dr. Thomas Gustavsson) took 140 measurements of IMT from the leading edge 

of the intima to the trailing edge of the media over the 1 cm segment.  The mean IMT of 

each of the 8 IMT segments was determined, and the average of these 8 mean measures 

was computed for the outcome variable in this analysis.  Carotid plaques were identified as 

discrete focal protrusions > 50% of the surrounding wall thickness.  These plaques were 

graded from 1 to 3 based on the size and number.  The cumulative plaque grades for the 

left and right carotid arteries were summed to generate a plaque index. Image readings 

were performed centrally at the University of Pittsburgh Ultrasound Research Laboratory 

(URL; Pittsburgh, PA).  Reproducibility of IMT during annual recertifications and plaque 

readings from previous work in the URL are as follows: intraclass correlation coefficients for 

IMT 0.98 and plaque 0.86 to 0.93 22, 23.  
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3.3.3 Covariates 

 

SWAN collected annual self- and interviewer-administered questionnaires, fasting blood 

glucose and lipid laboratory measures, anthropometric measures and blood pressure 

readings.  Data from these annual SWAN clinic visits (4th visit: n=272, 5th visit: n=231, 6th 

visit: n=20 and 7th visit: n=17) were matched to participant’s baseline SWAN heart 

subclinical measures in this cross-sectional analysis.  Demographic factors such as age, 

race (only Caucasian and African American race for the Pittsburgh and Chicago sites), 

alcohol and smoking status were obtained through questionnaires.  Participants were asked 

if they had ever smoked on a regular basis defined as at least 20 packs in a lifetime or 1 

cigarette per day for at least one year.  They were also asked the number of servings of 

beer, wine or liquor they consumed on an average day, week or month.  Based on self-

reported bleeding history, menopausal status was classified as premenopausal (Pre; 

menses in the last 3 months with no irregularity), early perimenopausal (EP; menses in the 

last 3 months with irregularity), late peri-menopausal (LP; no menses for at least 3 months, 

but less than 12 months) and postmenopausal (Post; no menses for at least 12 months).  

Blood pressure was collected by a standard sphygmomanometer in the right arm of 

participants after a 5 minute rest period.  A total of three pressures were collected and the 

last two were averaged.  Waist circumference was collected to the nearest 0.1 cm at the 

narrowest portion of the torso in each participant.  Fasting blood samples were collected 

and analyzed at the Medical Research Laboratories (Lexington, KY).  A hexokinase-coupled 

reaction was used to measure glucose levels (Boehringer Mannheim Diagnostics, 

Indianapolis, IN).  EDTA treated plasma was used to analyze lipids; isolation of HDL-c 
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(mg/dL) was done with heparin-2M manganese chloride and LDL-c (mg/dL) was estimated 

with the Friedewald equation 24.   

 Lipoprotein assays were conducted on blood samples from women at the Pittsburgh 

site (sample collection dates from 1997 to 2001).  Lipoprotein subclasses were determined 

on stored EDTA plasma using an automated nuclear magnetic resonance (NMR) 

spectroscopic assay (LipoScience Inc., NC), with a modification of the method previously 

reported 25, 26.  Briefly, the particle concentrations of the lipoprotein subclasses were derived 

from the measured amplitudes of the characteristic lipid methyl group NMR signals they 

emit.  The following subclasses were analyzed for this study: large LDL particles (LDL-p) 

(21.2-23 nm), small LDL-p (18-21.2 nm), large HDL particles (HDL-p) (8.8-13 nm) and small 

HDL-p (7.3-8.8 nm).  Subclasses were summed to provide total LDL-p and total HDL-p, and 

mean LDL and HDL particle sizes are weighted-averages (i.e. the diameter of each 

subclass multiplied by its relative concentration).  NMR-determined LDL and HDL subclass 

distributions are correlated with those determined by gradient gel electrophoresis 27, 28.   A 

total of 71 SWAN Heart women had lipoprotein data and subclinical CVD measures 

available.  Participants had up to three lipoprotein assays conducted; however, the latest 

date was chosen to match to SWAN Heart subclinical measures.  Those with lipoprotein 

data collected more than 16 months apart from their subclinical measures were excluded 

from this analysis.  Of the remaining 53 women, average collection time from subclinical 

measures was 184.5 days for Pre/EP and 236.3 days for LP/Post women.   

 

3.3.4 Statistical Analysis 

 

The distribution of each continuous variable was examined and variables were log 

transformed or categorized if the distribution was not approximately normal.  Glucose, 
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alcohol consumption, AC and carotid plaque were identified as having skewed distributions 

and large proportions of zero values.  Glucose was log transformed; however, medians 

(IQR) are presented in Table 1 for descriptive purposes.  Alcohol and carotid plaque were 

dichotomized into any or none, and AC was classified as none, moderate and high 

calcification (0, 1-74 and 75+, respectively).  High AC was set at the 75th percentile 29.  

Menopausal status was dichotomized into Pre plus EP menopause (Pre/EP) and LP plus 

Postmenopausal (LP/Post) to maintain a moderate sample size 30.  All remaining variables 

met the guidelines for normality and were treated as continuous.  Two sample t-test and chi-

square test were utilized to compare participant characteristics between Pre/EP and 

LP/Post.    

Univariate and multivariable logistic and linear regression were used to assess the 

association between traditional CVD risk factors and AC, carotid plaque and IMT.  For AC, 

multinomial logistic regression rather than ordinal logistic regression was preferred due to 

unmet assumptions of proportional odds 31.  No AC and no carotid plaque were the 

reference groups for the multinomial and binary logistic regression, respectively.  Stepwise 

regression selection was used to evaluate the inclusion of traditional CVD risk factors in the 

multivariable linear and logistic regression models.  Default p-value entry and exit (p-value = 

0.15) were used, however, final models were chosen to be parsimonious.  Age, site and race 

were variables of interest and therefore kept in the final models.  Waist circumference was 

included in multivariable models since it explained more of the variation compared to BMI.  

Interactions between HDL-c and menopausal status and LDL-c and menopausal status 

were tested in multivariable models with and without adjustments for other covariates.  

Further exploration of the HDL-c interactions was done using a reparameterized model to 

include the effects of HDL-c among Pre/EP and LP/Post women in a single multivariable 

model.  The sub sample of Pittsburgh women (n=53) with available lipoprotein data was 
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compared across menopausal status using a two sample t-test.  These data were not used 

in the regression analysis due to small sample size.  All statistical analyses were completed 

with SAS 9.1. Two-sided p-values ≤ 0.05 were considered statistically significant.  

 

3.4 RESULTS 

 

Of the 540 SWAN Heart participants included in this analysis, 316 (59%) were Pre/EP and 

224 (41%) were LP/Post women (Table 3.1).  Average age was 50 years, with Pre/EP 

women being 3 years younger than LP/Post women.  Approximately 39% were African 

American, 62% drank alcohol and 16% had ever smoked regularly.  These characteristics 

did not differ by menopausal status.  LP/Post women had higher mean HDL-c, LDL-c, SBP 

and glucose compared to Pre/EP.  Following age-adjustment, mean HDL-c and SBP no 

longer differed significantly.  Average BMI for the total group was 29.4 kg/m2.  There was a 

trend towards a higher mean waist circumference in LP/Post women.  In addition, LP/Post 

women had more AC, more carotid plaque and higher IMT on average, however, once 

adjusted for age, only carotid plaque differed between the two groups. 

 In univariate analysis (Table 3.2) the odds of high AC increased with age, LDL-c, 

SBP, glucose, waist circumference, smoking and postmenopausal status.  Higher HDL-c 

and alcohol use were significantly associated with lower odds of high AC.  African American 

race was significantly associated with higher odds of moderate AC, but was not statistically 

significant associated with high AC.  For carotid plaque, only age, LDL-c and 

postmenopausal status significantly increased the odds of any carotid plaque, while alcohol 

use lowered the odds of any carotid plaque.  Thicker IMT was seen with increasing age, 

LDL-c, SBP, glucose, waist circumference, African American race and postmenopausal 

status, while IMT decreased with increasing HDL-c and alcohol use.   
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In the multivariable models adjusted for age, site, race, HDL-c, LDL-c, SBP, glucose, 

waist circumference and smoking, the effect of HDL-c significantly varied by menopausal 

status (interaction p-value = 0.01 for high and moderate AC).  To better visualize the 

interactions, the models were reparameterized to the following: subclinical measure = 

Menopausal Status + Effect for HDL-c for Pre/EP women + Effect for HDL-c for LP/Post 

women + Covariates (Figure 3.1).  For every 1 mg/dL increase in HDL-c the odds of high 

AC among Pre/EP women was decreased by 2% (OR = 0.98, 95% CI = 0.94, 1.02) while 

the odds for LP/Post women was increased by 5% (OR = 1.05, 95% CI = 1.01, 1.09).  For 

the carotid plaque model, the interaction p-value was 0.08 after adjustment for age, site, 

race, HDL-c and LDL-c.  Although not significant, a similar pattern of HDL-c being protective 

for Pre/EP women, but not for LP/Post women was seen in the reparameterized model (OR 

= 0.97, 95% CI = 0.94, >1.00 vs. OR = 1.01 95% CI = 0.98, 1.03).  After adjusting for age, 

site, race, HDL-c, LDL-c, SBP and waist circumference, the interaction in the IMT model 

reached statistical significance (p-value = 0.03).  Reparameterization of the adjusted model 

showed that HDL-c was negatively associated with IMT in Pre/EP women, but positively 

associated in LP/Post women (not significant).  For every 1 mg/dL increase in HDL-c there 

was an associated 0.001 mm decrease in IMT for Pre/EP women (-0.002, -0.0002) and a 

0.0002 mm increase for LP/Post women (-0.0006, 0.0009). 

The interaction between LDL-c and menopausal status was tested, but did not reach 

statistical significance for any of the three subclinical measures (data not shown). However, 

in multivariable analyses stratified by menopausal status, the odds ratio of high AC 

associated with a 1 mg/dL increase in LDL-c was 1.02 (<1.00, 1.04) for Pre/EP women and 

1.03 (1.01, 1.05) for LP/Post women.  An odds ratio associated with LDL-c of 1.00 (0.99, 

1.01) and 1.02 (>1.00, 1.03) for Pre/EP and LP/Post women respectively was observed for 
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any carotid plaque.  The β coefficient estimate for IMT was -.00005 (-.0004, .0003) among 

Pre/EP women and .0003 (-.0001, .0007) among LP/Post women for LDL-c.   

Similar analyses were conducted with coronary artery calcification as an outcome.  

However, HDL-c was protective for Pre/EP and LP/Post women alike (results not shown). 

 To explore lipoprotein profile difference by menopausal status, the lipoprotein NMR 

spectroscopy data for a small sub sample of Pittsburgh women (n = 19 for Pre/EP and n = 

34 for LP/Post) was used.  LP/Post women had more small HDL-p, more total HDL-p and a 

smaller HDL particle size on average (Table 3.3).  Large HDL-p concentrations were lower 

in LP/Post women, however this was not significant.  Finally, LP/Post women had 

significantly more total LDL-p than Pre/EP women.  

 

3.5 DISCUSSION 

 

This study demonstrates that the potency of lipids as CVD risk factors changes from 

premenopause to postmenopause.  Statistically significant interactions between 

menopausal status and HDL-c were seen for AC and IMT, while the interaction for carotid 

plaque was borderline.  Among LP/Post women, HDL-c appeared to lose its protective 

effect against subclinical CVD measures.  These results are in accord with Fan et al. who 

report that the protective effects of HDL-c on IMT may diminish around the age of 

menopause 13.  This analysis demonstrated positive associations between HDL-c and AC, 

any carotid plaque and IMT in LP/Post women after adjustments for traditional risk factors; 

where as HDL-c had a traditionally protective effect in Pre/EP women.  For LDL-c, there 

was a trend for a stronger association with subclinical measurements among LP/Post 

women; however this interaction did not reach statistical significance.  
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The traditional protective effect of HDL-c is exerted through reverse cholesterol 

transport, inhibition of LDL-c oxidation, decreased adhesion molecule expression and 

increased endothelial function 32-35.  In men, this protective effect is maintained 

longitudinally, suggesting the phenomenon observed in this analysis among LP/Post 

women is most likely not due to age and corresponds to changes due to the menopausal 

transition 13.  Additional evidence of a detrimental effect of HDL-c in women comes from the 

EUROSTROKE study, a collaboration between several large European cohort studies.  This 

study reported that among women pooled from the Novosibirsk and Rotterdam cohorts, 

higher HDL-c was associated with increased odds of stroke 36.  The average age of the 

cohorts were 51.6 and 72.8 years respectively; therefore these effects were seen among 

women who have recently transitioned through menopause and those who have been 

postmenopausal for years. 

Early studies report substantial rises in HDL-c with the menopausal transition.  Kim 

et al. and Do et al. explained that these studies, showing increases in HDL-c with the 

transition, are not accounting for the rise due to age.  The majority of researchers agree 

there is little net change in HDL-c when age is accounted for appropriately 8, 10, 12, 37.  A 

moderately higher HDL-c was observed in LP/Post compared to Pre/EP women in this 

analysis; however, this difference disappears once adjusted for age.  

The change in risk association between HDL-c and the menopausal transition may 

be explained by compositional changes in HDL-c lipoproteins.  Conventional methods of 

measuring HDL-c only reflect the concentration of cholesterol and not the HDL 

concentration 38.  The lipoprotein particles are believed to provide more information in 

predicting CHD 39.  Using NMR spectroscopy to capture lipoprotein particle concentrations, 

it has been shown that small HDL-p are less protective than the large HDL-p.  The 

traditional protective effect of HDL-c on CVD is mostly due to the large HDL-p 34, 40.  In the 
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Framingham Offspring Study and Milwaukee Cardiovascular Data Registry, having more 

small HDL-p were associated with higher odds of having coronary heart disease 28,34, 35, 41.  

However, these observations between HDL-c lipoproteins and CVD focused primarily on 

men, diabetics or drug therapies. 

A recent study exploring the relationship between HDL-c lipoproteins and the risk of 

CHD in postmenopausal women found no association with HDL-c, however, when the 

lipoprotein sub fractions were examined a negative association with large HDL-p and a 

positive association with small HDL-p was determined 39.  Similar results were obtained in 

Women’s Health Study for large HDL-p, but small HDL-p was not significant, however, this 

sample was a mixture of pre and postmenopausal women 42.  The small sub sample of 

NMR spectroscopy data available for Pittsburgh women in SWAN Heart showed that 

LP/Post women had more small HDL-p and smaller HDL particle size on average compared 

to Pre/EP women.  This lipoprotein subclass profile could potentially explain the loss of 

HDL-c protection observed in this analysis.  Another study found similar results where 

postmenopausal women had significantly more small HDL-p and fewer large HDL-p 

compared to premenopausal women 43.  The Healthy Women Study saw a significant 

protective association between coronary calcification and large HDL-p and HDL particle size 

in postmenopausal women, whereas small HDL-p were not correlated with coronary 

calcium 44.  In addition, postmenopausal women with aortic or coronary calcification had 

lower large HDL-p and higher small HDL-p 45.  It has been reported that increased levels of 

small HDL-p and smaller HDL particle size were correlated with thicker IMT measures of 

Finnish men and women 46. 

One potential mechanism responsible for these lipoprotein profile changes is 

enzymatic activity.  Large HDL-p are converted to small HDL-p by increased hepatic lipase 

47.  It is shown that estrogen inhibits this enzyme; therefore decreases in estrogen with 
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menopause would lead to a higher ratio of small HDL-p to large HDL-p.  In support of this 

theory, postmenopausal women have been found to have higher hepatic lipase activity that 

covaried inversely with large HDL-p.  Although not statistically significant, LP/Post women in 

this SWAN Heart analysis had larger waist circumference compared to Pre/EP women.  

This rise in central adiposity, most likely due to chronological aging, could account for 

additional increases in hepatic lipase activity leading to more small HDL-p.  One study 

found intra-abdominal fat to be positively associated with hepatic lipase activity in obese 

women 48. 

In addition to increasing hepatic lipase, decreased estrogen hinders several 

protective vascular mechanisms.  Estrogen is believed to accelerate reendothelialization in 

the face of vascular injury thereby inhibiting smooth muscle proliferation and subsequently 

medial thickening 49.  Vascular tone is maintained by estrogen through several pathways, 

including nitric oxide and prostacyclin 4.  Therefore, decreased estrogen following the 

menopausal transition leaves the vasculature vulnerable to CVD risk factors.  SWAN Heart, 

has previously shown that lower estrogens are directly related to larger carotid arterial 

diameter 30.  Larger vessel diameters lead to less ability to compensate for hemodynamic 

changes due to blood pressure or arterial wall thickening and thus leave the vessel more 

vulnerable 30, 50.  Indirect effects of estrogen on the vasculature include maintenance of 

cardioprotective lipid profiles, decreased coagulation and reduced LDL-c oxidation 3. 

Other lipoprotein profile changes include a significant increase in LDL-c as women 

transition through menopause 8-11.  The difference in LDL-c was statistically significant in the 

LP/Post compared to Pre/EP women.  Menopausal status did not significantly modify the 

contribution of LDL-c on subclinical measures, but a similar pattern of LDL-c as a stronger 

risk factor among postmenopausal women was suggested for all three subclinical 

measures.  Given the moderate sample size in this analysis, further studies examining this 
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possibility are indicated.  The NMR data in this analysis showed that LP/Post women have 

higher total LDL-p. This coincides with the literature that suggests the quantity of LDL-p, 

rather than the particle size is a stronger predictor of CHD risk 42.  Thus it is possible that 

the potency of LDL-c as a risk factor does increase after the transition.  

This analysis is comprehensive because we were able to analyze the contribution of 

menopausal status, HDL-c and LDL-c and lipoprotein subclasses in the same study.  A 

positive association with HDL-c among LP/Post women was consistently observed across 3 

subclinical measures.  The NMR data provides initial evidence that supports the potential 

mechanism of lipoprotein compositional changes being responsible for this association.  

This analysis is cross sectional, and thus a causal relationship between menopause status 

and HDL changes cannot be proven.  However, acute changes in calcification, carotid 

plaque and IMT have been reported previously, supporting the potential for subclinical 

disease development over the menopausal transition 36, 51-53.  Premature and early 

menopause ranged from 1 - 1.4% and 2.9 - 3.7% respectively, in SWAN Caucasian and 

African American women 54.  It is plausible that the lipid changes attributed to the 

menopausal transition may instead be explained by altered lipid patterns due to premature 

and early menopause 55.  Despite the modest sample size for detecting interactions, the 

HDL-c by menopausal status interaction was significant for AC and IMT, suggesting 

differences effect by menopausal status.  The borderline and non-significance observed for 

carotid plaque and LDL-c require larger sample sizes for confirmation.  The protective effect 

of HDL-c to coronary artery calcification among LP/Post women could be due to the low 

amount of plaque detected in the SWAN Heart population (2.4%) 29.  A loss of HDL-c 

protection for coronary artery calcification might be observed in a population with more 

extensive disease and therefore further studies need to be conducted in this area.  Lastly, 
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since all participants did not have NMR data, lipoproteins could not be use in the regression 

models. 

In conclusion, the protective effect of HDL-c is reduced among postmenopausal 

women most likely related to changes in the lipid profile seen with the menopausal 

transition.  This, in addition to a more vulnerable vessel caused by age, decreased estrogen 

and adipose tissue redistribution, may partially explain the increased CVD risk seen after 

menopause.  Future studies evaluating lipid profiles longitudinally through the menopause 

transition are needed.   
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3.7 TABLES AND FIGURES 
 
 

 
Table 3.1 Participant characteristics by menopausal status 
 

 
Values are presented as mean (SD); p-values generated with t-test  
† Values are presented as % (n); p-values generated with chi-square test 
* Non-normally distributed; values presented as median (IQR); p-values generated with t-test with log of glucose 
 

 

 

 

 

 

 

 

 

Characteristic n Total Pre/EP  
n=316 

LP/Post 
n=224 p-value 

Age 
Adjusted 
p-value 

Age (years) 540 50.2 (2.9) 48.9 (2.2) 52.1 (2.7) < .0001 ─ 
African American (%) † 540 38.7 (209) 36.1 (114) 42.4 (95) 0.14 0.31 

Alcohol (yes/no, %) † 537 61.6 (331) 61.5 (193) 61.9 (138) 0.92 0.50 

Smoker (ever regular, %) † 488 16.0 (78) 16.6 (47) 15.2 (31) 0.69 0.32 

HDL-c (mg/dL) 472 57.5 (15.0) 56.2 (13.8) 59.3 (16.4) 0.04 0.23 

LDL-c (mg/dL) 474 119.0 (32.8) 113.5 (28.7) 126.6 (36.5) < .0001 < .0001 
SBP (mmHg) 519 119.7 (16.7) 118.2 (16.3) 121.7 (17.0) 0.017 0.94 

Glucose (mg/dL) * 480 88 (83, 96) 87 (81, 95) 91 (84, 98) 0.0003 0.01 
Waist Circumference (cm) 518 89.2 (14.4) 88.3 (14.7) 90.5 (14.0) 0.089 0.69 

BMI (kg/m2) 518 29.4 (6.4) 29.1 (6.5) 29.7 (6.3) 0.35 0.85 

Aortic Calcification (%) † 
  None (0) 
  Moderate (1-74) 
  High (75 +) 

515 
 
 
 

 
30.3 (156) 
44.7 (230) 
25.0 (129) 

 
34.3 (104) 
44.9 (136) 
20.8 (63) 

 
24.5 (52) 
44.4 (94) 
31.1 (66) 

0.0096 
 
 
 

0.28 
 
 
 

Any Carotid Plaque (%) † 535 15.1 (81) 11.5 (36) 20.4 (45) 0.0047 0.04 
Intima Media Thickness (mm) 529 0.67 (0.1) 0.66 (0.1) 0.68 (0.1) 0.040 0.77 
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Table 3.2 Univariate associations between traditional CVD risk factors and subclinical measures 
 

 
 
 
 
 
Risk Factor 

Subclinical measure 

Aortic Calcification 
n = 515 

 
Any Carotid Plaque 

n = 535 
OR (95% CI) 

 
Carotid IMT (mm) 

n = 529 
β Estimates (95% CI) Moderate AC 

OR (95% CI) 
High AC 

OR (95% CI) 
Age (years) 1.09 (1.01, 1.17) † 1.18 (1.09, 1.28) * 1.09 (>1.00, 1.18) † 0.006 (0.003, 0.009) * 
African American (%) 1.90 (1.23, 2.93) * 1.61 (0.98, 2.64) 0.94 (0.58, 1.53) 0.033 (0.016, 0.050) * 
Alcohol (yes/no, %) 0.69 (0.44, 1.06) 0.53 (0.32, 0.86) * 0.62 (0.38, 0.99) † -0.033 (-0.051, -0.017) * 
Smoker (ever regular, %) 1.00 (0.51, 1.96) 3.05 (1.58, 5.88) * 1.03 (0.52, 2.01) -0.021 (-0.044, 0.002) 
HDL-c (mg/dL) 0.97 (0.95, 0.98) * 0.97 (0.95, 0.98) * 0.99 (0.97, 1.01) -0.001 (-0.002, -0.0005) * 
LDL-c (mg/dL) 1.02 (1.01, 1.03) * 1.02 (1.01, 1.03) * 1.01 (>1.00, 1.02) * 0.0004 (0.0002, 0.001) * 
SBP (mmHg) 1.03 (1.01, 1.04) * 1.04 (1.03, 1.06) * 1.00 (0.99, 1.02) 0.001 (0.001, 0.002) * 
Glucose (mg/dL) # 1.06 (1.04, 1.08) * 1.06 (1.04, 1.09) * 1.00 (0.99, 1.01) 0.115 (0.062, 0.168) * 
Waist Circumference (cm) 1.14 (1.11, 1.17) * 1.18 (1.14, 1.22) * 1.01 (0.99, 1.02) 0.002 (0.002, 0.003) * 
Late Peri/Postmenopausal 1.38 (0.91, 2.11) 2.10 (1.30, 3.39) * 1.97 (1.23, 3.18) * 0.018 (0.001, 0.035) † 

 
Values are odds ratios (95% CI) for AC and carotid plaque and β Estimates (95% CI) for IMT. 
Reference value for both moderate and high AC was no calcification. 
# Glucose was log transformed in linear regression model for carotid IMT 
* < 0.01, † <0.05 
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Figure 3.1 Multivariable association between HDL-c and subclinical measures 
 

High AC - values are OR (95% CI) of high AC for HDL-c; adjusted for age, site, race, LDL-c, SBP, glucose, waist circumference and smoking. 

Any Carotid Plaque - values are odds ratios (95% CI) of carotid plaque for HDL-c; adjusted for age, site, race and LDL-c. 
Carotid IMT - values are β coefficient estimates (95% CI) of IMT for HDL-c; adjusted for age, site, race, LDL-c, SBP and waist circumference. 
* < 0.01, † <0.05 for Pre/EP versus LP/Post 
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Table 3.3 Lipoprotein levels by menopausal status for Pittsburgh SWAN Heart sub 
sample 
 

 
 
Values are presented as mean (SD); p-values generated with t-test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lipid Variable Pre/EP (n=19) LP/Post (n=34) p-value 
HDL-c (mg/dL) 49.1 (15.0) 49.3 (14.0) 0.97 
Small HDL Particles (µmol/L) 21.6 (5.7) 26.6 (5.7) 0.0035 
Large HDL Particles (µmol/L) 6.7 (2.9) 6.1 (3.1) 0.49 
Total HDL Particles (µmol/L) 28.3 (6.4) 32.7 (7.6) 0.037 
HDL Particle Size (nm) 9.4 (0.5) 9.1 (0.4) 0.0078 
IDL-p (nmol/L) 41.9 (35.5) 70.9 (52.7) 0.037 
Small LDL Particles (nmol/L) 478.2 (247.1) 620.5 (351.7) 0.13 
Large LDL Particles (nmol/L) 575.4 (193.7) 620.3 (227.1) 0.47 
Total LDL Particles (nmol/L) 1095.6 (189.3) 1311.6 (325) 0.0036 
LDL Particle Size (nm) 21.6 (0.5) 21.5 (0.7) 0.50 
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4.1 ABSTRACT 

 

Background: Education is protective against risk factors and incident cardiovascular disease 

(CVD).  The protective effect of education for CVD has suggested to be stronger among 

females.  The association between education and subclinical CVD was assessed for males 

and females from the Tobago Family Health Study.  Differences in CVD risk factors by 

education were evaluated as potential mechanism for gender differences in the education-

subclinical CVD relationship.  Methods:  A community-based sample of Afro-Caribbean 

males and females were evaluated for intima media thickness (IMT), adventitial diameter 

(AD) and lumen diameter (LD).  Education, age, waist circumference, SBP, HDL-c, LDL-c 

and other traditional CVD risk factors were collected.  Results: The average age was 43.7 

years and ranged from 18 to 86 years.  More females had ≥ secondary education compared 

to males (52% versus 34%, p-value = 0.0093).  Mean IMT, AD and LD were higher among 

males.  The interaction between education and gender was significant for AD and LD.  The 

adjusted mean AD and LD were lower among females that had ≥ secondary education 

compared to females with < secondary education (AD: 6.94 vs. 7.29 mm, p-value = 0.0051 

and LD: 5.51 vs. 5.90 mm, p-value = 0.0010).  There was no significant difference observed 

for males.  Females with ≥ secondary education also had lower age adjusted SBP 

compared to females < secondary education.  Males with ≥ secondary education had lower 

HDL-c and higher LDL-c compared to males < secondary education.  Conclusion: Gender 

differences in the association between education and subclinical CVD are evident in a 

Tobago population.  Educational differences in SBP for females and lipids for males may 

potentially explain some of the gender difference in the education-subclinical CVD 

relationship.   
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4.2 INTRODUCTION 

 

It is well established that education is inversely related to health in developed countries.  

Those with lower education have higher rates of CVD risk factors such as obesity, 

hypertension and atherogenic lipid profiles 1.  In addition, lower education is associated with 

higher risk of all cause-mortality, cerebrovascular disease and cardiovascular disease 

(CVD).  The inverse association observed between education and health outcomes has 

been shown to vary by gender.  Higher education and other measures of social position are 

protective for all cause mortality, with several studies showing a steeper gradient among 

males 2-7.  On the other hand, the protective effect of education and social position for CVD 

is steeper among females 1-3, 8-12.   

The relationship between traditional CVD risk factors and education varies by 

gender.  In developed countries, education tends to be protective against hypertension and 

obesity among females, whereas a significant association is not always evident for males 13.  

The gender difference in the education-SBP relationship is even more striking in developing 

countries.  Males in the Caribbean have been shown to have a direct association between 

education and SBP 14, 15.          

In 2004 approximately 25% of deaths in Trinidad and Tobago were due to CVD, 

making it the leading cause of death 16.  Intima media thickness (IMT) and adventitial and 

lumen diameter (AD and LD, respectively) are markers of early atherosclerosis and vascular 

remodeling 17-20.  Increases in IMT, AD and LD are associated with CVD risk factors and 

clinical outcomes such as myocardial infarction and stroke, making these measures quality 

subclinical markers for CVD 17, 21-24.  

 Few studies have examined the association between education and CVD by gender 

in developing countries, and no study to date has evaluated this relationship in a population 
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of African descent.  Using a community-based population of Afro-Caribbean males and 

females from the Tobago Family Health Study, the gender difference in the education-

subclinical CVD relationship was assessed.  Potential mechanisms explaining this 

relationship was further evaluated by exploring education differences in traditional CVD risk 

factors for males and females. 

 

4.3 METHODS 

 

4.3.1 Study Population 

 

The Tobago Family Health Study began recruitment in 2003 on the Caribbean Island of 

Tobago.  Study design and recruitment have been previously described 25.  The purpose of 

this study was to assess the role of inheritance, lifestyle and body composition in the 

etiology of chronic disease, including diabetes, obesity and CVD.  A total of 471 individual 

participants were recruited from 8 large multi-generational families of Afro-Caribbean 

ancestry.  To be eligible for the Tobago Family Health Study, a proband had to be Afro-

Caribbean (reported that all 4 of grandparents were Afro-Caribbean), have a spouse willing 

to participate in the study and at least 6 living offspring and/or siblings (≥ 18 years of age) 

residing in Tobago.  In order to obtain a community-based sample, representative of the 

island of Tobago, no health status eligibility criteria were defined.  An ancillary study to the 

Tobago Family Health Study, invited participants back for an ultrasound scan of their carotid 

arteries.  Of the 471 participants originally recruited for the parent study, 415 returned for an 

ultrasound scan.  To date, 255 of these images have been read and were available for this 

analysis.   
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 The Tobago Ministry of Health and University of Pittsburgh institutional review 

boards approved research protocols for the Tobago Family Health study.  All participants 

provided written informed consent prior to enrollment. 

 

4.3.2 Subclinical Measures 

 

All Tobago Family Health Study participants were invited back for a B-mode carotid 

ultrasound scan conducted between May 2007 and November 2008.  The common carotid 

artery (CCA) was imaged using an Acuson Cypress portable ultrasound machine (Siemens 

Medical Solutions, Malvern, PA).  Images were taken from the near and far walls of the 

distal CCA (one centimeter proximal to the carotid bulb).  Intima media thickness (IMT) 

measures were obtained electronically using a semi-automated reading software (AMS 

system developed in Sweden by Dr. Thomas Gustavsson).  Lines were traced between the 

lumen-intima interface and the media-adventitia interface across the 1 cm segment.  The 

computer then generated one measurement for each pixel over this area, for a total of about 

140 measures. The mean of the near and far wall IMT measurements from the left and right 

CCA comprises the average IMT.  Diameter measurements were derived from the same 1 

cm CCA segment.  Specifically, the CCA inter-adventitial diameter was measured as the 

average distances between the adventitial-medial interface on the near wall and the medial-

adventitial interface on the far wall.  Similarly, the CCA intra-lumen diameter was measured 

using the two lumen-intima interfaces.  Inter-sonographer reproducibility was conducted on 

35 Tobago Family Health Study participants.  The intraclass correlation (ICC) was 0.97 for 

average IMT and 0.95 for average AD.  All images were read centrally at the Department of 

Epidemiology’s Ultrasound Research Laboratory (University of Pittsburgh, Pittsburgh, PA).  

Inter-reader ICC was 0.99 for IMT and AD.   
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4.3.3 Education Measure 

 

Participants were asked what was their highest grade or level of schooling completed.  

Categories included: no formal education, primary (age 5 – 11 years), secondary – O level 

(age 11 – 16 years), secondary – A level (16 – 18 years), technical vocational training, 

some university or associate degree, university graduate (4 or 5 year program), master’s 

degree (or other post-graduate training) or doctoral degree (MD, MBBS, PhD, EDD, DVM, 

DDS, JD). 

 

4.3.4 Covariates 

 

Trained and certified clinical staff conducted standardized interviewer-administered 

questionnaires.  Race was self-defined by the participant in conjunction with a detailed 

ascertainment of the ethnic origin of their parents and grandparents.  According to recent 

census data, 97% of the island of Tobago is of West African origin, therefore, this analysis 

was limited to those who reported Afro-Caribbean race (n=232, 91% of those participants 

with a carotid scan) 26.  Participants were asked how many alcoholic beverages (beer, wine 

or liquor) they consumed on a weekly basis.  Smoking status was defined as ever smoked 

(> 100 cigarettes in a lifetime) or never smoked.  Physical activity was reported as the 

number of minutes walked per week.  Marital status was categorized as 1) married/ or living 

as married or 2) widowed, divorced, separated or never married.   

 Blood pressure was measured three times in the right arm following a 5 minute rest 

period using the Omron HEM-705 automatic monitor. An average of the last two readings 

was taken.  Weight (measured to the nearest 0.1 kg, wearing indoor clothing, but no shoes) 

was assessed using a balance beam scale and standing height (measured to the nearest 
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0.1 cm, without shoes) with a wall-mounted stadiometer.  An average of two readings was 

used for final weight and height measurements.  Body mass index (BMI) was calculated by 

dividing weight (kg) by height squared (m2).  An inelastic tape measure around the 

abdomen, at the point of the umbilicus, was used to determine waist circumference (cm). 

Venipuncture blood samples were collected on participants who had been fasting for 

12 hours.  All biochemical assays were performed in the Heinz Nutrition Laboratory at the 

University of Pittsburgh.  Serum glucose, triglycerides, total cholesterol and HDL were 

quantitatively determined utilizing enzymatic reactions 27-29.  LDL-c was calculated indirectly 

using the Friedewald equation 30.  CRP was measured by a commercial calorimetric 

competitive enzyme-linked immunosorbent assay (from Diagnostic Systems Laboratories, 

Inc).  

 

4.3.5 Statistical Analysis 

 

The distribution of each continuous variable was examined and log transformed if needed to 

approximate normality.  Triglycerides, glucose and CRP were log transformed; however, 

medians (IQR) are presented in Table 1 for descriptive purposes. All remaining variables 

met the guidelines for normality and were treated as continuous.  Highest level of completed 

education was dichotomized as < secondary education and ≥ secondary education.  Alcohol 

was categorized into zero drinks or ≥ one drink per week; physical activity into ≤ 30 minutes 

or > 30 minutes of walking per week; and marital status into married or not married.  These 

variables were collapsed into these cutoffs to maintain adequate sample size in each 

category.  Physical activity was tested in univariate models, but was not retained in 

multivariable modeling due to large number of missing values (n=66).  Two sample t-test 
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and chi-square test were utilized to compare participant characteristics between males and 

females.    

Univariate and multivariable linear regression were used to assess the association 

between traditional CVD risk factors and IMT, AD and LD.  Stepwise regression selection 

was used to evaluate the inclusion of traditional CVD risk factors in the multivariable linear 

regression models.  Age, height, gender and education were variables of interest and 

therefore kept in the final models.  Waist circumference was chosen in multivariable models 

because it explained more of the variation compared to BMI.  Models repeated using BMI 

showed similar results to those including waist circumference.  The interaction between 

education and gender was tested in multivariable models with and without adjustments for 

other covariates.  Further exploration of the education interaction was done using a 

reparameterized model to include the effects of education among males and females in a 

single multivariable model.  Adjusted least squares means were obtained from generalized 

linear models.  Statistical analyses were completed with SAS 9.1. Two-sided p-values ≤ 

0.05 were considered statistically significant. 

 

4.4 RESULTS 

 

Of the 232 Tobago Family Health Study participants used in this analysis, 152 (66%) were 

female (Table 1).  The average age was 43.7 years (range 18 to 86).  Forty-six percent of 

participants had ≥ secondary education, with females having a higher percentage than 

males (52% versus 34%, p-value = 0.0093).  On average, males drank more alcohol, 

smoked more cigarettes, were more likely to be married and had higher blood pressures 

then females.  Mean LDL-c, CRP and BMI were higher among females. Mean IMT, AD and 

LD were higher among males. 



 51 

Univariate analyses were conducted to determine which CVD risk factors were 

associated with subclinical CVD (Table 2).  Having ≥ secondary education was associated 

with lower mean IMT, AD and LD in univariate analyses, whereas SBP and waist were 

associated with higher means of all three subclinical measures.  Mean IMT and AD were 

positively associated with age, marital status, DBP, LDL-c and glucose.  Female gender 

was associated with lower mean AD and LD in unadjusted models.  Alcohol, physical 

activity and CRP were not associated with any of the subclinical measures. 

Multivariable models for subclinical CVD risk factors included age, height, gender, 

education and other CVD risk factors that remained significant (Table 3).  Having ≥ 

secondary education continued to be protective only for LD in adjusted models.  Waist 

circumference was the only risk factor that remained significant in multivariable analysis for 

all three outcomes.  Female gender remained independently associated only with mean IMT 

in multivariable modeling.   

Interactions between gender and SBP, waist circumference and education were 

tested for all three subclinical measures (Table 4).  For AD and LD, the gender and 

education interaction was significant (unadjusted p-value = 0.0066 and 0.0014, 

respectively).  The interaction remained significant for LD and borderline for AD after 

adjusting for age, SBP, waist circumference and height (adjusted p-value = 0.021 and 

0.061, respectively).  To demonstrate this interaction further, adjusted mean AD and LD are 

shown in Figure 1.  AD and LD means were significantly lower for females with ≥ secondary 

education compared to those with < secondary education (AD: 6.94 vs. 7.29 mm, p-value = 

0.0051 and LD: 5.51 vs. 5.90 mm, p-value = 0.0010).  These means were adjusted for age, 

SBP, height and waist circumference.  There were no significant differences between 

education levels for AD or LD among males.  No significant interactions were found for IMT. 
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Finally, age adjusted CVD risk factors were examined by education level for males 

and females (Figure 2).  Waist circumference did not vary by education for males or 

females.  Mean SBP was significantly higher among females with < secondary education 

than ≥ secondary education (126.0 vs. 115.7 mmHg, p-value = 0.0048).  Adjusting for waist 

circumference did not attenuate the difference (data not shown).  The lipid profile was worse 

for males with ≥ secondary education than < secondary education: lower HDL-c and higher 

LDL-c (34.9 vs. 45.0 mg/dL, p-value = 0.0025 and 136.4 vs. 117.7 mg/dL, p-value = 0.041, 

respectively).  Triglycerides, glucose, CRP, smoking and alcohol did not vary by education 

level (data not shown). 

 

4.5 DISCUSSION 

 

It was observed that the effect of education on subclinical CVD varied by gender; education 

was protective for females, but this pattern was not seen for males.  This interaction 

remained significant for LD and borderline for AD after adjustment for CVD risk factors.  

This was in accord with Rosvall et al. who demonstrated a significant inverse association 

with subclinical CVD for females, but not males after adjustment for CVD risk factors in a 

general population of adults 46 to 68 years of age from Sweden 9, 10.  When age adjusted 

CVD risk factors were evaluated by education for males and females from the Tobago 

population, some interesting trends were seen.  The only CVD risk factor that differed by 

education level for females was SBP, which was lower for those with a higher education.  

Interestingly, among males with ≥ secondary education, HDL-c was lower and LDL-c was 

higher compared to males with < secondary education.  These patterns in education 

differences by gender have been documented previously 13, 31-33.  In a population of males 

and females from Trinidad ages 24 to 89 years, an inverse association for education-SBP 
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was only observed among females 32.  Higher LDL-c and lower HDL-c have been observed 

among Chinese, Polish and Russian men with higher education levels 33. 

The association between education and incident CVD has been shown to vary by 

gender, with females having a stronger association than males 1-3, 12, 34.  In a population of 

adults from Finland, 35 to 64 years of age, females showed the largest education difference 

for CVD deaths 3.  Mackenbach et al. explored this gender difference in seven countries 

and observed a larger inequality in CVD mortality between low and high education levels for 

females in five of the countries 2.  Consistent with previous literature, both studies showed 

the opposite pattern for all-cause mortality, with males having a steep education-mortality 

gradient compared to females.  It has been argued that much of this gender difference in 

the education-CVD relationship can be explained by BMI 12.  In the Tobago population, the 

effect of education for AD and LD varied by gender, however, adjustment for waist 

circumference did not significantly attenuate this finding.  

Other markers of social position, neighborhood status and occupation, have shown 

similar gender differences seen for education-CVD relationship.  Females, ages 25 to 64 

years, from the Glasgow MONICA coronary event register, who lived in more deprived 

neighborhoods had higher rates of myocardial infarctions and coronary deaths compared to 

those in better neighborhoods 11.  This association was not as strong for males.  A large 

sample (n=12,000) representing the general population of the Netherlands showed a 

marked difference in CVD morbidity (angina, infarction and neurovascular incidence) by 

occupation for females only 8.  

Not all studies have shown a gender difference in the relationship between 

education and CVD.  NHANES I showed that for circulatory deaths, education was 

protective for males and females equally 35.  However, significantly more males died 

compared to females during the 20 year follow up.  Since females live longer than males, it 
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is plausible that not enough circulatory events were observed among females to see a 

gender difference in the association between education and mortality.  

Similar to incident CVD, a stronger association between education and subclinical 

CVD has been observed among females.  Thicker IMT and more carotid stenosis were 

seen among females, from a subcohort of the population-based Malmö Diet and Cancer 

Study, with lower education or lower occupational status after adjustment for CVD risk 

factors 9.  This observation was not apparent for males.   In the same subcohort, life-course 

occupation, a combination of parental and adulthood occupation, was associated with 

carotid stenosis for females only 10.  The association between neighborhood poverty, 

childhood socioeconomic position or adult socioeconomic positioning (a summary score for 

income, education and wealth) and carotid IMT also varied by gender 36.  All three 

socioeconomic positioning measures were inversely associated with IMT among females.  

There are several explanations for the greater protective effect of education on 

subclinical CVD among females compared to males.  Females depend on education more 

for health than males 37.  A higher education results in higher expectations of health and 

better ability to estimate risk.  Results from the NHANES I study showed that education 

modified the contribution of cardiovascular risk factors to self-rated health for females; 

highly educated females had higher odds of poor self-reported health among those with 

high glycosylated hemoglobin or high cholesterol 38.  Education was not related to self-

reported health among males.  Females with lower education have been shown to have 

higher rates of psychological disadvantages including: low income, depression, single 

parenting and unemployment 12.  Therefore, poorer health among low educated females 

may be due to higher psychological stressors compared to males with low education.     

Delayed gratification is another factor that contributes to the protective effect of 

education for females.  The higher rate of college education among females in the US is 
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partially due to personal and family related returns 39.  These female-favorable trends are in 

the form of income, marital returns and insurance against poverty.  More females in the 

Tobago population had ≥ secondary education compared to males.  Gender disparities in 

education attainment are reversing in Latin America and the Caribbean, with female 

education rates now exceeding that of males 40.  In 2005 the ratio of females to males 

completing primary education was 1.09 on the islands of Trinidad and Tobago.  It is 

plausible that personal and family returns may account for the higher rate of schooling 

among females, and the larger dependence of education for health among females may 

contribute to the protective effect of education on subclinical CVD observed in the Tobago 

population.     

Currently, the Republic of Trinidad and Tobago is a high-income developing nation: 

the wealthiest independent country in the Caribbean 41.  The economic transition 

experienced by developing countries alters patterns in CVD risk factors.  The current 

transition has led to increased obesity and non-communicable diseases among developing 

countries 42.  This transition is a result of urbanization and globalization, which increases 

food production, mass media advertisements, supermarkets, technology and transportation 

42, 43.  These changes lead to a rapid shift to diets high in fat, sugar and salt.  These types of 

foods tend to be high energy dense and low cost 44.  Decreased energy expenditure due to 

less labor intensives occupations and more television watching also aid in increased CVD 

risk.  Initially with economic prosperity, increased CVD risk occurs among high social 

classes, but with time this reverses and lower social classes share this increased risk 13. 

It is possible that the way in which CVD manifests itself varies by gender.  Risk 

factors may play diverse roles and have varying potencies in the pathogenesis of 

atherosclerotic changes for males and females 4.  Gender differences in CVD risk factors by 

education level may in part explain the difference in education-CVD relationship observed 
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for males and females 2.  Evaluation of education differences for Tobago males and females 

revealed varying effects of education on SBP, HDL-c and LDL-c, but not waist 

circumference.  In addition to the effect of education on risk factors, the economic transition 

may be responsible for some of the observed differences in risk factors. 

The relationship between education and SBP varies by gender and varies by the 

economic status of the country where the population was sampled.  The protective effect of 

education on SBP for females tends to be independent of age, but largely explained by BMI 

for both developed and developing countries; however, adjustments for waist circumference 

in the Tobago population did not explain the difference 13.  The education gradient in SBP 

was further explained with salt intake and physical activity among a population of Trinidad 

females 32.  It is plausible that these two behaviors are influenced by education and the 

effect of education on salt intake and physical activity varies by gender.  Colhoun el at. 

reviewed the socioeconomic status-blood pressure relationship in 57 studies from 

developed and 13 from developing countries 13.  In developed countries, an inverse 

association was more consistent with females.  Similar to developed countries, education 

was inversely related to SBP for females and not significantly related for males among a 

population of Trinidadians 32.  The direct association observed for males in developing 

countries such as Jamaica and St. Vincent, may reflect the low income economic status of 

the country and likely represents an earlier time point in the economic transition 14, 15.  The 

10 mmHg difference seen between education levels in the Tobago females is large 

compared to the usual difference of 2 to 3 mmHg reported by Colhoun el at., however, the 

NHANES II study observed a difference of 10 mmHg among females 13 45.  

The association between lipids and schooling varies across countries based on their 

societal economic development more for males.  Among US white males there was an 

inverse association between education and LDL-c and a direct association with HDL-c 33.  
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When US black males and males from China, Israel, Poland and Russia were pooled 

together, the opposite was observed: direct relationship with LDL-c and inverse relationship 

with HDL-c.  In Jackson, Mississippi, a poor, southern urban community that may parallel a 

developing country, males who lived in “poorer” neighborhoods who had higher individual 

socioeconomic status had higher serum cholesterol, while those who lived in “richer” 

neighborhoods had lower cholesterol with higher socioeconomic status 31.  It is plausible 

that males in developing countries, who have more education and or resources, tend to eat 

diets high in fat, whereas educated females avoid such diets.  The effect of physical activity 

and alcohol consumption on lipid profiles for males and females may vary by education.  

However, alcohol consumption did not vary by education level for males or females in the 

Tobago population.       

Although a strong predictor of subclinical CVD, waist circumference did not vary by 

education for the Tobago population.  A strong inverse association between education and 

obesity has been observed among females of developed countries whereas the association 

among males is nonsignificant 46.  Obesity is positively associated with higher 

socioeconomic status in low-income developing countries, but as the country becomes 

economically developed the relationship reversed with higher socioeconomic status being 

protective against obesity 47.  Those in the transition have a mixed picture.  Therefore, the 

nonsignificant difference for obesity by education level seen in the Tobago population for 

may be explained by the economic transition.  Females weighted significantly more than 

males in the Tobago population.  Therefore, the protective effect of education may been 

ameliorated among females due to their high rates of obesity 43. 

A few aspects of this study need to be considered when interpreting the results.  

First, the Tobago Family Health Study was cross-sectional, however, education begins in 

childhood and continues on into early adulthood.  It is unlikely that subclinical CVD 
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influences the level of education attained and therefore reverse causality is unlikely.  The 

association between education and subclinical CVD for males could have occurred due to a 

type II error.  Low educated males may have died of competing risks or were too sick to 

participant in the study.  Therefore the education-subclinical CVD relationship needs to be 

reevaluated in a larger sample of males and females.  The higher subclinical CVD among 

males compared to females may account in part for the observed gender difference.  

Specifically, a smaller effect of education on subclinical CVD is plausible with a higher 

prevalence of disease.   Another consideration is during vascular remodeling, AD can mask 

IMT changes 48.  Given the large age range and young average age of the study population 

(44 years), it is possible that there simply was not enough IMT change to observed gender 

differences in the education-IMT relationship.  Exploration of IMT may need to be conducted 

in a sample of older adults.  Given the wide age range it is also possible that a cohort effect 

masked the results.  The education older adults received may vary compared to younger 

adults.  Future analyses with a larger sample size should stratify the interaction by age 

categories 49.  Given the design of the Tobago Family Health study, 8 large multi-

generational families, observations are not independent; therefore, results may be biased.  

Lastly, there were several variables not collected in this study.  Previous literature has 

shown that income and education did explain additional variability between education and 

health outcomes and education was a stronger predictor compared to income or occupation 

50-54.  Dietary and psychosocial health data was not available and a large portion of the 

physical activity data was missing.  These factors could potentially further explain the 

mechanism linking education and subclinical CVD; therefore, residual confounding could be 

present. 

 In conclusion, gender differences in the association between education and 

subclinical CVD are evident in a Tobago population.  Educational differences in SBP were 
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evident for females, and waist circumference did not account for this pattern.  Additional 

research needs to be conducted to assess differences in dietary salt intake and physical 

activity.  A poorer lipid profile was observed among males with higher education.  Fat intake 

and physical activity could be plausible mechanisms for this pattern.  Educational 

differences in risk factors are further complicated by the economic transition of Tobago and 

the global impact of obesity.  Gender disparities in education are reversing in Trinidad and 

Tobago.  As higher education rates increase with economic development, special interest 

needs to be taken in order to maintain gender parity in education to help reduce CVD.  Early 

education should include healthy lifestyles messages to encourage such behaviors in 

childhood.  
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4.6 TABLES AND FIGURES FOR CHAPTER FOUR 

 

Table 4.1 Participant characteristics by gender. 

 
Values presented as mean (SD) or percents (n); p-values generated with t-test or chi-square test 
* Non-normally distributed; values presented as median (IQR); p-values generated with t-test for log of triglycerides, 
log of glucose or log of CRP  

 

 

 

 

 

 

 

 

 

Characteristic Total  
(n = 232) 

Female  
(n = 152) 

Male  
(n = 80) p-value 

Age 
adjusted 
p-value 

Age (years) 43.7 (15.9) 43.6 (15.8) 44.0 (16.1) 0.87 ─ 
Education (≥ secondary) 45.5 (105) 51.7 (78) 33.8 (27) 0.0093 0.0037 
Alcohol (> 1 drink/wk) 36.4 (84) 25.2 (38) 57.5 (46) <0.0001 <0.0001 
Smoke (100+ cigs) 8.2 (19) 2.6 (4) 19.0 (15) <0.0001 <0.0001 
Walking (> 30 mins/wk) 45.8 (76) 43.8 (46) 49.2 (30) 0.51 0.46 
Married 44.6 (103) 40.1 (61) 53.2 (42) 0.059 0.045 
SBP (mmHg) 124.2 (24.2) 120.8 (25.2) 130.6 (21.0) 0.0041 0.0007 
DBP (mmHg) 76.5 (12.7) 75.5 (12.8) 78.5 (12.2) 0.093 0.064 
HDL (mg/dL) 40.0 (12.9) 39.3 (13.6) 41.6 (11.3) 0.23 0.24 
LDL (mg/dL) 133.5 (41.4) 137.8 (43.3) 124.8 (35.7) 0.034 0.028 
Triglycerides (mg/dL) * 76.0 (59, 103) 75.0 (59, 95) 79.0 (59, 108)  0.26 0.21 
Glucose (mg/dL) * 83.0 (76, 91) 83.0 (76, 93) 84.0 (76, 89)  0.35 0.33 
CRP (mg/dL) * 1.0 (0.4, 2.2) 1.3 (0.5, 3.6) 0.7 (0.3, 1.5)  <0.0001 <0.0001 
Height (cm) 170.3 (8.1) 166.8 (6.4) 176.3 (6.5) <0.0001 <0.0001 
BMI (kg/m2) 29.0 (6.7) 30.1 (7.4) 26.9 (4.6) <0.0001 0.0004 
Waist (cm) 90.7 (15.2) 90.7 (16.7) 90.7 (12.2) 0.98 0.98 
Mean IMT (mm) 0.72 (0.16) 0.71 (0.15) 0.75 (0.17) 0.070 0.030 
Mean AD (mm) 7.2 (0.7) 7.1 (0.7) 7.4 (0.7) 0.0012 0.0009 
Mean LD (mm) 5.8 (0.6) 5.7 (0.6) 6.0 (0.6) 0.0025 0.0026 
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Table 4.2 Univariate linear regression between participant characteristics and subclinical CVD measures. 
 
Characteristic Mean IMT (n = 229) Mean AD (n = 231) Mean LD (n = 232) 
Age (years) 0.007 (0.006, 0.008) ¥ 0.015 (0.010, 0.021) ¥ 0.001 (-0.04, 0.006) 
Female -0.039 (-0.082, 0.003) -0.328 (-0.526, -0.130) † -0.260 (-0.427, -0.092) † 
Education (≥ secondary) -0.107 (-0.146, -0.069) ¥ -0.436 (-0.621, -0.250) ¥ -0.214 (-0.376, -0.053) † 
Alcohol (> 1 drink/week) 0.001 (-0.041, 0.043) -0.005 (-0.206, 0.196) 0.003 (-0.167, 0.172) 
Smoke (100+ cigs) 0.056 (-0.016, 0.129) 0.508 (0.168, 0.848) † 0.389 (0.098, 0.680) † 
Walking (> 30 mins/wk) -0.015 (-0.064, 0.033) -0.015 (-0.247, 0.216)  0.022 (-0.169, 0.214) 
Married 0.094 (0.055, 0.133) ¥ 0.280 (0.089, 0.470) † 0.077 (-0.087, 0.241) 
SBP (mmHg) 0.003 (0.003, 0.004) ¥ 0.011 (0.007, 0.015) ¥ 0.005 (0.001, 0.008) † 
DBP (mmHg) 0.005 (0.004, 0.007) ¥ 0.015 (0.008, 0.022) ¥ 0.005 (-0.002, 0.011) 
HDL (mg/dL) -0.001 (-0.002, 0.001) -0.006 (-0.014, 0.001) -0.005 (-0.011, 0.002) 
LDL (mg/dL) 0.001 (0.001, 0.002) ¥ 0.003 (0.0003, 0.005) † 0.0003 (-0.002, 0.002) 
Log Triglycerides (mg/dL) 0.124 (0.075, 0.174) ¥ 0.212 (-0.032, 0.456) -0.024 (-0.233, 0.186) 
Log Glucose (mg/dL) 0.205 (0.122, 0.289) ¥  0.746 (0.344, 1.149) † 0.324 (-0.031, 0.679) 
Log CRP (mg/dL) 0.013 (-0.003, 0.029) 0.064 (-0.012, 0.141) 0.037 (-0.029, 0.103) 
Height (cm) -0.002 (-0.005, 0.0003) 0.015 (0.003, 0.027) * 0.019 (0.009, 0.029) † 
Waist (cm) 0.003 (0.002, 0.005) ¥ 0.017 (0.011, 0.023) ¥ 0.011 (0.006, 0.016) ¥ 
 
Values presented as β coefficient estimates (95% CI) 
¥ p-value < 0.0001, † p-value < 0.01, * p-value <0.05  
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Table 4.3 Multivariable linear regression between participant characteristics and subclinical CVD measures. 
 
Covariate Mean IMT (n=216) Mean AD (n = 218) Mean LD (n = 219) 
Age (years) 0.006 (0.005, 0.007) ¥ 0.008 (0.001, 0.016) * -0.005 (-0.011, 0.002) 
Female -0.040 (-0.078, -0.002) * -0.091 (-0.326, 0.143) -0.033 -0.247, 0.181) 
SBP (mmHg) 0.001 (0.0002, 0.002) * 0.005 (0.001, 0.010) * 0.004 (-0.0005, 0.008) 
Waist (cm) 0.001 (0.0004, 0002) † 0.012 (0.007, 0.018) ¥ 0.010 (0.005, 0.015) † 
Height (cm) -0.0003 (-0.003, 0.002) 0.018 (0.004, 0.032) * 0.017 (0.004, 0.029) * 
Education (≥ secondary) 0.021 (-0.012, 0.054) -0.168 (-0.372, 0.036) -0.200 (-0.387, -0.014) * 
 
Values presented as β coefficient estimates (95% CI) 
¥ p-value < 0.0001, † p-value < 0.01, * p-value <0.05  
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Table 4.4 Single multivariable linear regression models between participant characteristics 
and subclinical CVD measures illustrating the effect of education for females and males 
 

Covariate Mean IMT (n = 216) p -value  
(interaction) 

Age 0.006 (0.005, 0.007) ¥  
Female -0.042 (-0.086, 0.001)   
SBP 0.001 (0.0002, 0.0002) †  
Height  -0.0003 (-0.003, 0.002)   
Waist 0.001 (0.0004, 0.002) †  
Education for Females 0.024 (-0.015, 0.062)  0.82 Education for Males 0.016 (-0.037, 0.069)  
 

Covariate Mean AD (n = 218) p -value  
(interaction) 

Age 0.009 (0.002, 0.017) *  
Female 0.033 (-0.234, 0.299)  
SBP 0.004 (-0.00004, 0.009)  
Height  0.016 (0.002, 0.030) *  
Waist 0.012 (0.006, 0.017) ¥  
Education for Females -0.283 (-0.519, -0.047) * 0.061 Education for Males 0.074 (-0.251, 0.398) 
 

Covariate Mean LD (n = 219) p -value  
(interaction) 

Age -0.004 (-0.011, 0.003)  
Female 0.106 (-0.136, 0.349)  
SBP  0.003 (-0.001, 0.007)  
Height  0.015 (0.003, 0.028) *  
Waist 0.010 (0.004, 0.015) †  
Education for Females -0.330 (-0.544, -0.115) † 0.021 Education for Males 0.072 (-0.223, 0.367) 
 
Values presented as β coefficient estimates (95% CI) 
Unadjusted interaction between gender and education for IMT (p-value = 0.83) 
Unadjusted interaction between gender and education for AD (p-value = 0.0066) 
Unadjusted interaction between gender and education for LD (p-value = 0.0014) 
¥ p-value < 0.0001, † p-value < 0.01, * p-value <0.05  
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Figure 4.1 Adjusted means for average adventitial and lumen diameters by education level for males and females 

Mean diameters adjusted for age, SBP, height and waist circumference. 
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Figure 4.2 Age adjusted means for cardiovascular risk factors by education level for males and females. 

Adjusted for age. 

p = 0.048 
p = 0.79 p = 0.45 

p = 0.0025 

p = 0.36 p = 0.61 p = 0.0048 
p = 0.66 
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5.1 ABSTRACT 

 

Background:  Autonomic nervous system (ANS) activity is known to modulate inflammation.  

Tonic and reactivity measures of sympathetic and parasympathetic activity, determined by 

heart rate variability (HRV), and C-reactive protein (CRP) have been associated cross-

sectionally and prospectively with subclinical and incident cardiovascular disease (CVD).  

This analysis aimed to determine which CVD risk factors predicted HRV, CRP and aortic 

pulse wave velocity (PWV), a validated measure of arterial stiffening. Also determined was 

how HRV and CRP together predicted aortic PWV.  Methods: Indicators of tonic HRV and 

HRV reactivity, in response to standard autonomic challenges, were obtained with 

continuous heart rate and respiratory rate recordings in 240 moderately overweight and 

obese young adult men and women from the study to Slow Adverse Vascular Effects 

(SAVE). Results: Tonic sympathetic cardiac activity was positively associated with aortic 

PWV, while parasympathetic reactivity to a deep breathing challenge was inversely 

associated with aortic PWV, even after adjustment for CVD risk factors (β = 36.3, p-value = 

0.029 and β = -35.1, p-value = 0.0085, respectively).  Cardiac parasympathetic activity 

during deep breathing was inversely associated with CRP (β = -0.208, p-value = 0.0059), 

and CRP was positively associated with aortic PWV (β = 19.9, p-value = 0.057) in a 

multivariable model, but was attenuated after adjusting for parasympathetic reactivity during 

deep breathing (β = 14.5, p-value = 0.17).  Conclusions: In overweight and obese young 

adults, tonic cardiac sympathetic activity and parasympathetic reactivity were independent 

predictors of arterial stiffening.  The significant findings observed for indicators of HRV, but 

not CRP, may be explained by autonomic anti-inflammatory mechanisms linking HRV and 

CRP. 
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5.2 INTRODUCTION 

 

Heart rate variability (HRV) and the inflammatory biomediator, C-reactive protein (CRP), are 

known predictors of future cardiovascular events 1-8.  Measures of HRV provide an indirect 

index of autonomic nervous system (ANS) activity, which is instrumental for regulating 

peripheral levels of inflammatory biomediators 9.  Moreover, emerging evidence has linked 

dysregulated activity in the sympathetic and parasympathetic divisions of the ANS with 

increased risk for inflammatory diseases, including coronary atherosclerosis 2.  Aortic pulse 

wave velocity (PWV) is a validated measure of subclinical cardiovascular disease (CVD), 

and is a known predictor of myocardial infarction, stroke and CVD mortality 10-12.  The 

associations between HRV and PWV and between CRP and PWV have been reported, yet 

prior findings are conflicting and the two autonomic and inflammatory predictors of PWV, 

HRV and CRP, have not been evaluated together. 

 More precisely, few studies have assessed the association between HRV and PWV.  

In young Japanese adult men, an HRV indicator of tonic sympathetic activity was positively 

associated with brachial ankle PWV; however, no association was observed for tonic 

parasympathetic activity 13.  Further, HRV indicators and carotid femoral PWV were not 

associated in UK adult men 14.  Additionally, in a case-control study of East Asian men and 

women, no significant HRV-brachial ankle PWV associations were found in the control 

group 15.  Critically, no study evaluated the relative predictive roles of tonic sympathetic and 

parasympathetic HRV indicator variables in the same models of PWV.    

CRP is a marker of general inflammation and a robust predictor of incident CVD; 

however, findings regarding whether CRP is an independent predictor of PWV are mixed 6.  

In diverse cohorts of adult men and women, positive associations between CRP and PWV 

have been reported, with adjustment for traditional CVD risk factors 16-23.  Other studies 
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have also observed an attenuation of association estimates after adjustment for similar 

factors 24-26.  In one report, a significant CRP-brachial ankle PWV association was observed 

only in men 27. 

An inverse association between indicators of HRV and CRP has been reported in 

several studies, suggesting decreased HRV is associated with peripheral inflammation.  In 

the CARDIA study, CRP was inversely associated in multivariable models with both low- 

and high-frequency HRV measures, which are thought to reflect sympathetic (LF-HRV) and 

parasympathetic (HF-HRV) levels of cardiac control, respectively 28.  HRV indicators of tonic 

sympathetic activity have also been inversely associated with CRP in several other 

populations of men and women 29-31.  Cross-sectionally, HF-HRV indicators of tonic 

parasympathetic activity have also been inversely associated with CRP; however, recent 

longitudinal findings suggest a possible direct relationship between HF-HRV  CRP 32, 33.  

In a large population of men and women from Germany, a significant inverse association 

between tonic parasympathetic activity and CRP was documented after adjustment for tonic 

sympathetic activity 34.  Only one of the mentioned studies used a measure of HRV 

reactivity, as opposed to tonic activity, in response to a relaxation exercise, and no study 

has evaluated HRV reactivity to standard autonomic challenges 32.   

Increased autonomically-mediated cardiovascular reactivity (blood pressure and 

heart rate changes) in response to stressors have shown to predict subclinical and incident 

CVD 35, 36.  Furthermore, cardiac parasympathetic reactivity in response to an impromptu 

speech challenge, was independently predicative of coronary calcification in the Healthy 

Women’s Study 37.  Hence, measures of HRV reactivity in addition to tonic HRV may 

provide additional insight into the mechanisms by which the ANS regulates inflammation 

and inflammatory diseases.   
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The classic method for analyzing HRV is limited because the LF-HRV component is 

affected by both sympathetic and parasympathetic outflow, whereas the HF-HRV 

component is a closer marker of parasympathetic (vagal) outflow 38.  Because respiratory 

rate strongly determines parasympathetic cardiac outflow, it can be used to improve the 

validity of the LF-HRV component as an index of autonomic activity 39.  Specifically, deriving 

HF-HRV spectral power estimates from bandwidths centered at respiratory spectral peak 

may allow for a better partitioning of sympathetic and parasympathetic contributions to LF- 

and HF-HRV estimates 40.  Mixed reports in previous literature regarding HRV indicators 

may be due to the limitation of the LF-HRV as an indicator of sympathetic outflow. 

Three studies to date have evaluated the relationship between HRV and PWV in 

healthy adults, and only one of these included females.  Furthermore, no study has 

assessed HRV-PWV associations in conjunction with CRP.  The research supporting the 

association between HRV reactivity and aortic calcification warrants further investigation 

into other markers of subclinical atherosclerosis.  Using a measure of sympathetic and 

parasympathetic outflow that adjusts for respiratory rate may improve the predictability of 

the LF-HRV estimates.  Using both measures of sympathetic and parasympathetic outflow 

simultaneously and including HRV reactivity to a Valsalva (index of sympathetic reactivity) 

and deep breathing (index of parasympathetic reactivity) challenge may provide further 

evidence into how indicators of HRV relate to early atherosclerotic changes.  

Accordingly, the purpose of this report was to determine which CVD risk factors 

predicted HRV, CRP and aortic PWV in a population of moderately overweight and obese 

young adult men and women from the study to Slow Adverse Vascular Effects (SAVE).  

Additional aims were to examine the predictive effects of HRV and CRP together on aortic 

PWV, and finally, how reactivity measures of HRV to standard autonomic challenges, in 

addition to tonic measures of HRV, relate to aortic PWV.  
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5.3 METHODS 

 

5.3.1 Study Population 

 

The study to Slow Adverse Vascular Effects (SAVE) is a randomized clinical trial designed 

to test the impact of a dietary and an activity intervention on arterial stiffening.  A total of 349 

overweight to obese (BMI 25 - 39.9 kg/m2) men and women from Allegheny County, 

Pennsylvania, between the ages of 20 and 45 years, were randomized.  To be eligible for 

the SAVE study participants had to have a blood pressure < 140/90 mmHg and a fasting 

glucose < 126 mg/dL.  Potential participants were ineligible if they had a known history of 

weight loss surgery, CVD, inflammatory disease or a condition where salt restriction would 

be harmful.  Anyone who was pregnant/nursing, on lipid lowering medication or on 

vasoactive medication was ineligible for the study.  The University of Pittsburgh institutional 

review board approved research protocols for the SAVE study.  All participants provided 

written informed consent prior to enrollment.   

The goal of the intervention was a 10% weight reduction and an increase in activity 

of 150 - 200 minutes per week.  In addition to the combined effects of weight loss and 

increased activity, the effect of a 50% sodium reduction on arterial stiffening was observed.  

This study has two treatment arms: weight loss, increased physical activity and normal sodium 

intake versus weight loss, increased physical activity and 50% reduction in sodium intake.  The 

following measures of vascular health were assessed at baseline, 6, 12 and 24 months: 

aortic and peripheral pulse wave velocity (PWV), carotid intima media thickness (IMT), 

carotid adventitial diameter (AD) and endothelial function.  The primary outcome of the 

SAVE study was aortic PWV following 6 months of intervention. 
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An ancillary study to the parent study, SAVE, assessed heart rate variability (HRV) 

at baseline and at the 6 month follow up visit.  Of the 349 randomized participants, 300 

were available for this baseline analysis.  A final sample size of 240 participants was used 

because 60 participants had missing HRV and aortic PWV data.  Participants with missing 

data had significantly higher leptin levels and higher household income compared to those 

included in this analysis.  All other variables were equally distributed. 

 

5.3.2 Heart Rate Variability 

 

HRV was measured using an ANSAR monitor (ANX-3.0, ANSAR Group Inc, Philadelphia, 

Pennsylvania), which provides for continuous and noninvasive measurements of 

electrocardiogram signals (for HRV assessment) and bioimpedance plethysmography 

signals (for respiratory rate variability assessment; RRV), respectively.  Testing began with 

attachment of electrocardiogram electrodes in a modified Lead-II configuration to the 

participant’s chest, along with a blood pressure cuff to the left arm.  Participants were asked 

to sit with their feet flat on the floor and refrain from sudden movements or talking.  Resting 

measures at a normal breathing rate were taken for 5 minutes followed by deep breathing 

(6 breaths per minute) for 1 minute.  Participants returned to their resting rate for 1 minute, 

performed Valsalva challenge for 1.5 minutes and returned to resting again for 2 minutes.  

To finish, participants remained in a standing position for 5 minutes.   

A spectral analysis of the HRV and RRV was generated using ANSAR software.  

The low-frequency area (LFa) was centered on the HRV spectrum from 0.04 - 0.10 Hz, 

which is taken to reflect sympathetic cardiac activity.  From the spectral analysis of the 

RRV, the frequency of the peak mode was defined as the fundamental respiratory 

frequency (FRF).  A 0.12 Hz wide window from the HRV spectrum was centered at the FRF 
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and was used to generate the respiratory frequency area (RFa), which is taken to reflect 

parasympathetic cardiac activity 39-42.  During low FRF, the RFa shifts into the low-frequency 

bandwidth. The area under the spectral curve centered on the FRF is computed as RFa.  

The remaining area under the spectral curve in the low-frequency bandwidth is computed 

as LFa.   

Four measures of HRV were identified for subsequent analyses:  (1) LFa and (2) 

RFa during the initial 5 minute resting period (corresponding to tonic sympathetic and 

parasympathetic activity levels, respectively) and (3) LFa and (4) RFa during the Valsalva 

and deep breathing challenge, respectively (corresponding to sympathetic reactivity to the 

Valsalva maneuver, and to parasympathetic reactivity to deep breathing, respectively).  

Reproducibility analyses between 3 technologists were conducted on 30 participants (10 for 

each pair).  Between technologist reproducibility intraclass correlation coefficients (ICC) 

ranged from 0.61 to 0.93 for the four HRV measures.  

 

5.3.3 Pulse Wave Velocity 

 

Aortic PWV was measured using an automatic waveform analyzer (Colin, Cardio Vascular 

Profiling System, VP1000, Omron Healthcare Co, Komaki, Japan). Methodology has been 

previously published 43.  Once pulse waves, electrocardiogram and phonocardiogram were 

stable, pulse waves were captured for 10 seconds.  A second 10 second recording was 

obtained and the two runs were averaged.  The technologist measured the distance from 

the suprasternal notch to the umbilicus and from the umbilicus to the femoral artery (∆Lhf).  

The Colin machine estimated the time for the blood to travel from the heart to the femoral 

artery by summing the interval between the second heart sound and the carotid dicrotic 

notch (∆Thc) plus the interval between the foot of the carotid pulse to the femoral pulse 
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(∆Tcf).  The heart femoral PWV, measure of aortic PWV, was calculated as (∆Lhf) / (∆Thc + 

∆Tcf).  Within-technologist ICC was 0.88 for heart femoral PWV. 

 

5.3.4 Covariates 

 

Demographic factors such as age, martial status, alcohol use and smoking were obtained 

through questionnaires at the baseline visit.  Participants were asked their highest level of 

education completed.  Race and ethnicity were self-defined.  Blood pressure was collected 

by a standard sphygmomanometer in the right arm of participants after a 5 minute rest 

period.  A total of three pressures were collected and the last two were averaged. 

Participants were weighted in light clothing and without shoes.  Waist circumference was 

collected to the nearest 0.1 cm at the narrowest portion of the torso in each participant.  

Fasting blood samples were collected and analyzed at Heinz Laboratory (University of 

Pittsburgh, Pittsburgh, Pennsylvania). Serum glucose was quantitatively determined by an 

enzymic reaction as previously described 44.  HDL-c (mg/dL) was determined using the 

enzymatic method of Allain et al. and LDL-c (mg/dL) was estimated with the Friedewald 

equation 45, 46.  CRP was quantified with an enzyme-linked immunoassay (Alpha Diagnostic 

International, Inc).  Finally, leptin, adiponectin and ghrelin were determined using 

radioimmunoassay kits (Linco Research, Inc).  

 

5.3.5 Statistical Analysis 

 

Baseline visit data from the SAVE study was used in this report.  Continuous variable 

distributions were assessed for normality.  Natural log transformations were performed to 

approximate a normal distribution when needed.  Insulin, CRP, ghrelin, and the four HRV 
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measures were naturally log transformed for regression analyses; however, medians (IQR) 

are presented in Table 1.  All other continuous variables were analyzed without 

transformation.  Categorical variables were collapsed into the following cutoffs to maintain 

adequate sample size in each category: education was dichotomized into ≤ secondary 

education versus tertiary education, household income was divided into ≤ $75,000 versus > 

$75,000, marital status was categorized into married versus divorced/separated, widowed 

or single, smoking status into ever smokers versus never smokers and alcohol into at least 

one drink per month versus no alcohol.  Lastly, black race was compared to non-black race 

to assess the impact of black race on HRV, CRP and aortic PWV.   

Univariate linear regression was performed with CVD risk factors as predictors of 

HRV, CRP and aortic PWV.  LFa during Valsalva and RFa during deep breathing were 

evaluated in bivariate and multivariable regression models adjusted for LFa at rest and RFa 

at rest, respectively.  Model variance inflation factors ≤ 2.0 were verified to reduce the risk 

of multicollinearity.  Stepwise linear regression was utilized to determine which CVD risk 

factors remained independent predictors for HRV, CRP and aortic PWV.  Weight was 

chosen in multivariable models because it explained more of the variation compared to BMI. 

Models repeated using BMI showed similar results to those including waist circumference.  

Statistical analyses were completed in SAS 9.1 and two sided p-values ≤ 0.05 were 

considered statically significant.       

 

5.4 RESULTS 

 

Complete characteristics for the 240 SAVE participants used in this analysis are reported in 

Table 1.  The average age was 38 years, with fifty-six male participants (23%) and 38 (16%) 
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defining themselves as black.  Thirty-six percent had ever smoked and 50% drank one or 

more alcoholic beverages per month.  The average BMI was 32.8 kg/m2.  Participants were 

normotensive (114/73 mmHg) and normoglycemic (97 mg/dL).  The median CRP was 2.4 

mg/dL and ranged from 1.3 to 5.5 mg/dL.  Average mean aortic PWV was 818 cm/sec.  

In univariate linear regression models (data available on request), age was inversely 

associated with LFa and RFa at rest, and continued to be an independent predictor in 

multivariable models (Table 2).   Weight was directly related to LFa at rest and LFa during 

Valsalva and inversely to RFa at rest and RFa during deep breathing; however, after 

adjusting for age and male gender, weight was not independently related to LFa at rest.  

Using stepwise regression, LFa at rest and RFa at rest were independent predictors of LFa 

during Valsalva and RFa during deep breathing, respectively.  CRP was only a significant 

predictor of RFa during deep breathing.   

Independent predictors of CRP included adiponectin, leptin and RFa during deep 

breathing (Table 3).  RFa during deep breathing was significant unadjusted and adjusted for 

RFa at rest.  

LFa at rest, RFa at rest and LFa during Valsalva (unadjusted and adjusted for RFa 

at rest) were not associated with aortic PWV in univariate and bivariate analyses, whereas 

RFa during deep breathing, unadjusted and adjusted for RFa at rest, significantly predicted 

aortic PWV (data available on request).  LFa at rest and RFa during deep breathing 

(unadjusted and adjusted for RFa at rest) were independent predictors of aortic PWV in 

multivariable regression (Table 4).  LFa at rest and RFa during deep breathing (adjusted for 

RFa at rest) remained significant predictors after adjustment for heart rate, LFa during 

Valsalva and remaining CVD risk factors: weight, LDL-c, insulin, adiponectin, leptin, ghrelin, 

alcohol, male gender, smoking, education, marital status and household income (data 

available on request).  CRP was not a significant predictor of aortic PWV in univariate 
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analysis (β = 14.4 p-value = 0.21).  After adjustment for age, SBP, height, HDL-c, black 

race, LFa at rest and RFa at rest, CRP was borderline directly associated with aortic PWV 

(β = 19.9, p-value = 0.057), but was attenuated after adjusting for RFa during deep 

breathing (β = 14.5, p-value = 0.17). 

 

5.5 DISCUSSION 

 

Indicators of HRV independently predicted aortic PWV in a population of overweight and 

obese young adults.  Tonic sympathetic cardiac activity, as reflected by resting LFa in this 

study, was positively associated with aortic PWV, while parasympathetic reactivity to deep 

breathing, as reflected by RFa, was inversely associated with aortic PWV, even after 

adjustment for CVD risk factors.  The significant association with tonic sympathetic cardiac 

activity accords with findings from Nakao M et al., who observed a positive association with 

the low-frequency/high-frequency ratio and brachial ankle PWV in a multivariable model 13.   

No association was observed for tonic parasympathetic cardiac activity in the Nakao 

population and in SAVE participants.  However, the SAVE study included a measure of 

parasympathetic reactivity during deep breathing, which was significantly associated with 

aortic PWV, but tonic and reactivity measures of HRV cannot be compared directly.  This is 

an important finding in that parasympathetic cardiac reactivity, as opposed to tonic 

parasympathetic activity, may be a better predictor of subclinical CVD.  Moreover, 

parasympathetic reactivity measures may reflect a homeostatic ability to adapt to 

environmental challenges and stressors and potentially compensate for hypersympathetic 

outflow 47. 
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Additionally, the Nakao population of men, were 24 to 39 years in age, which is 

similar to the SAVE study participants.  On the other hand, no females were included, the 

mean BMI was much lower compared to SAVE participants and arterial stiffening was 

assessed using brachial ankle PWV, a measure of peripheral stiffening, whereas the SAVE 

study used aortic PWV, a measure of central stiffening.  Despite these differences, similar 

results were found for HRV measures of sympathetic activity.  This is in contrast to the two 

additional studies reporting negative results for the association between HRV and PWV.  

The first, used carotid femoral PWV, a measure of central stiffening, among a population of 

UK men; however, the age range, 40 to 60 years, exceeded that of the SAVE study 14.  The 

second found no significant correlation with brachial ankle PWV, again a measure of 

peripheral stiffening, among the normal controls in a case-control study.  A potential reason 

for the lack of association may be the measure of sympathetic cardiac activity used (QT 

interval variability), which has been shown to only moderately correlated with low-frequency 

HRV, which is not a pure measure of sympathetic outflow 15, 48.  Also, a very small sample 

size (n=23) was used, and only 4 females were included.  The lack of females in all these 

studies may partially account for the differences in reported findings 49.  Besides the study 

design dissimilarities in HRV and PWV measures, the multivariable models did not 

incorporate separate measures of sympathetic and parasympathetic cardiac activity 

simultaneously.   

The two branches of the ANS regulate target organ activity concurrently, and 

therefore evaluating activity in one branch without the other may yield an incomplete picture 

of ANS control.  The health status of the ANS is likely to reflect an overall autonomic 

regulatory capacity and flexibility to adapt to change; however, understanding of these 

processes as they relates to cardiovascular health is evolving 50.  Both measures of 

sympathetic and parasympathetic cardiac control were predictive of prior myocardial 
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infarction in separate models; however, an overall measure of HRV regulation (summation 

of sympathetic and parasympathetic activation) was inversely related to prior myocardial 

infarction even after adjusting for sympathetic and parasympathetic control.  This suggests 

that not only does each branch of the ANS affect health outcomes, but also the overall 

ability of the ANS to adapt to change adds valuable information regarding disease 

processes.  Examining both tonic sympathetic and parasympathetic activity, in addition to 

reactivity, in the SAVE study demonstrated that both branches predict arterial stiffening 

adjusting for each other.  Furthermore, tonic sympathetic activity only became an 

independent predictor of aortic PWV once differences in parasympathetic reactivity were 

accounted for, suggesting the relationship between the two branches may offer additional 

insight into mechanisms of disease. 

Another significant finding in this report was the association between HRV and CRP.  

Cardiac parasympathetic activity during deep breathing, as reflected by RFa, was inversely 

associated with CRP, however tonic parasympathetic at rest was not a significant predictor.  

These findings suggest HRV reactivity may also be a better predictor of inflammation than 

tonic HRV.  On the other hand, Nolan et al, Thayer et al. and Singh et al. observed an 

inverse association between tonic parasympathetic cardiac activity measures and CRP 32, 33, 

34.  Differences in the health status of the three populations compared to SAVE participants 

may account for these conflicting findings.  SAVE participants were relatively healthy; no 

history of hypertension, diabetes or CVD, whereas Thayer and Nolan included participants 

with known CVD and all three studies included participants who were on anti-hypertensive 

and anti-diabetic medications. Nolan used a measure of parasympathetic reactivity during a 

self guided relaxation technique, however, the model depicted tonic parasympathetic 

activity and CRP predicting parasympathetic reactivity, whereas the SAVE study evaluated 

how reactivity adjusted for tonic basal activity predicted CRP.  Thayer additionally adjusted 
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tonic sympathetic activity for urinary norepinephrine (NE) in a multivariable model, however, 

NE was not a significant independent predictor of CRP, which is similar to the SAVE study 

in that tonic sympathetic activity at rest was not a significant predictor.  Conversely, tonic 

sympathetic activity has been shown to be inversely associated with CRP among several 

other populations of men and women 29-31.  These studies, however, included older adults 

compared to the SAVE study, and used measures of sympathetic activity (LF-HRV and 

SDNN) that may actually reflect both tonic sympathetic and parasympathetic activity.  These 

conflicting results suggest that the association between measures of HRV and CRP is 

complex and factors such as age, health status of the study population and methodology 

used to capture HRV may affect the findings.  Nevertheless, overall, the literature and this 

report indicate a connection between HRV and CRP. 

CRP was positively associated with aortic PWV, but was attenuated once 

parasympathetic reactivity during deep breathing was added to the model.  This is 

consistent with the studies showing a non-significant relationship between CRP and aortic 

PWV once adjusted for CVD risk factors, however, none of these studies adjusted for HRV 

24-26.  Given the significant association between parasympathetic reactivity during deep 

breathing and CRP, it is plausible that the variation in aortic PWV explained by CRP is 

accounted for by parasympathetic reactivity.  There is evidence suggesting a causal 

pathway linking HRV  CRP  CVD via cholinergic anti-inflammatory mechanisms 51.  

Higher cardiac parasympathetic activity during paced respiration, was shown to be 

associated with lower cytokine production (IL6 and TNFα) in adult men and women from the 

Adult Health and Behavior project, supporting the relationship between parasympathetic 

activity and inflammatory competence 52.  Additionally, the direct association observed in 

longitudinal analysis of HRV and CRP also support the cholinergic anti-inflammatory 
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mechanisms; those with higher CRP had higher tonic parasympathetic activity a year later 

33.  

This analysis is unique because tonic and reactivity HRV measures of sympathetic 

and parasympathetic function were assessed and considered together with CRP in models 

predicting an indicator of subclinical CVD, aortic PWV.  Tonic levels and reactivity 

differences between individuals likely convey different information regarding the status of 

the ANS.  It is plausible that changes in reactivity due to age, weight or other CVD risk 

factors may precede changes to tonic levels or visa versa.  The lack of association with 

LFa, reflecting sympathetic cardiac activity, during the Valsalva challenge may be due 

insufficient power given the large standard deviation of the HRV measures.  Further 

research into the role of tonic versus reactivity measures and how they relate to subclinical 

CVD need to be assessed in longitudinal studies and larger samples sizes.  Because HRV, 

CRP and aortic PWV are measured at the same time point, the mechanisms linking HRV 

and aortic PWV via CRP should be interpreted cautiously.  It is plausible that changes in 

blood flow return to the heart due to arterial stiffness could lead to changes in cardiac output 

and subsequently changes to autonomic outflow; however, adjustment for heart rate did not 

attenuate the associations between HRV and aortic PWV in this report (data available on 

request).  Unfortunately, the relatively small sample size of black race and males prohibits 

the comparison of differences between groups.  Further research needs to evaluate racial 

and gender differences in the observed associations.  Lastly, a measure of physical activity 

at baseline was not available for this analysis, which is known to affect HRV; therefore 

residual confounding could account for some of the variability observed 53. 

Analysis of the 6 month follow up visit data will be evaluated once it becomes 

available.  Findings from this report provide empirical basis to test whether dietary changes 

impact subclinical disease via autonomic-inflammatory pathways. The effects of weight 
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reduction and increased physical activity on HRV, CRP and aortic PWV will be assessed.  

In addition, the effect of sodium reduction on HRV, CRP and aortic PWV will be determined.  

Evaluation of the changes in HRV and CRP and how they affect the observed associations 

seen in this report will be the primary focus.  

In conclusion a measure of tonic cardiac sympathetic activity and parasympathetic 

reactivity were independent predictors of arterial stiffening, as measured by aortic PWV.  

CRP is a known marker of general inflammation and a predictor of clinical and subclinical 

CVD.  However, this analysis suggests the variability in aortic PWV explained by CRP may 

be explained, in part, by autonomic anti-inflammatory mechanisms linking HRV and CRP.  

This report is significant because therapeutic approaches targeted at autonomic activity 

may be more successful at reducing CVD compared to those aimed at CRP, which may 

only be part of the causal pathway. 
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5.6 TABLES FOR CHAPTER FIVE 

 

Table 5.1 Participant characteristics  
 

Characteristic Total (n=240) 

Age (years) 38.1 (6.0) 
Males (%, n) 23.3 (56) 
Blacks (%, n) 15.8 (38) 
Tertiary Education (%, n) 69.2 (166) 
Income <$75,000 (%, n) 57.0 (134) 
Married (%, n) 60.0 (144) 
Ever smoke (%, n) 35.8 (86) 
Alcohol > once/month (%, n) 50.0 (120) 
BMI (kg/m2) 32.8 (3.8) 
Waist Circumference (cm) 100.2 (11.2) 
Weight (kg) 92.0 (15.1) 
Height (cm) 167.2 (8.5) 
SBP (mmHg) 113.5 (10.7) 
DBP (mmHg) 73.1 (8.5) 
LDL (mg/dL) 122.5 (32.8) 
HDL (mg/dL) 52.1 (13.0) 
Glucose (mg/dL) 97.4 (8.1) 
Insulin (µU/mL) * 12.4 (9.4, 18.2) 
CRP (mg/dL) * 2.4 (1.3, 5.5) 
Leptin (mg/dL) 24.5 (12.3) 
Ghrelin (mg/dL) * 657 (539, 879) 
Adiponectin (mg/dL) 11.9 (5.7) 
Mean Aortic PWV (cm/sec) 818 (188.9) 
LFa at Rest (bpm2) * 1.8 (1.1, 3.5) 
LFa during Valsalva (bpm2) * 53.2 (29.5, 92.1) 
RFa at Rest (bpm2) * 1.8 (1.0, 3.2) 
RFa during Deep Breathing (bpm2) * 25.7 (13.5, 47.4) 

 
Values presented as means (SD) or % (n) where indicated.     
* Non-normal distribution; values are presented as medians (IQR) 
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Table 5.2 Independent predictors of heart rate variability measures in multivariable linear 
regression models 
 
HRV Measure 
     Predictors Beta Estimate p-Value 95% Confidence 

Interval 

LFa at Rest * 
     Age  -0.035 <0.0001 -0.052, -0.019 
     Male gender 0.268 0.025 0.034, 0.502 

LFa during Valsalva * 
    Weight 0.009 0.015 0.002, 0.016 
    Adiponectin -0.023 0.015 -0.041, -0.005 
    LFa at Rest * 0.237 0.0003 0.111, 0.362 

RFa at Rest * 
    Age -0.031 0.0016 -0.050, -0.012 
    Weight -0.011 0.0041 -0.019, -0.004 
RFa during Deep Breathing * 
    Weight -0.007 0.042 -0.014, -0.0003 
    CRP * -0.149 0.0028 -0.247, -0.052 
    RFa at Rest * 0.353 <0.0001 0.237, 0.469 
 
* Non-normal distribution; measure natural log transformed 
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Table 5.3 Independent predictors of natural logarithm of C-reactive protein in a multivariable 
linear regression model 
 

Predictors Beta Estimate p-Value 95% Confidence 
Interval 

Adiponectin -0.044 <0.0001 -0.066, -0.023 
Leptin 0.033 <0.0001 0.023, 0.043 
RFa during Deep breathing * -0.208 0.0059 -0.355, -0.060 
RFa at Rest * 0.033 0.66 -0.114, 0.180 
 
* Non-normal distribution; measure natural log transformed 
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Table 5.4 Independent predictors of mean aortic pulse wave velocity in a multivariable linear 
regression model 
 

Variable Beta Estimate p-Value 95% Confidence 
Interval 

Age 10.9 <0.0001 7.1, 14.6 
SBP 2.0 0.062 -0.1, 4.1 
Height 3.1 0.028 0.3, 5.8 
HDL -2.2 0.015 -3.9, -0.4 
Black race 77.4 0.014 15.8, 139.0 
LFa at Rest * 36.3 0.029 3.7, 68.9 
RFa during Deep Breathing * -35.1 0.0085 -61.1, -9.0 
RFa at Rest * -1.8 0.91 -31.5, 28.0 
 
* Non-normal distribution; measure natural log transformed 
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6.0 GENERAL DISCUSSION 

 

 

6.1 SUMMARY OF FINDINGS 

 

This dissertation aimed to evaluate novel risk factor associations for subclinical CVD in 

three distinct populations.  A summary of the findings for chapters 3, 4 and 5 are presented 

below.  

 In chapter 3, the protective effect of HDL-c for subclinical CVD appeared to diminish 

in late perimenopausal and postmenopausal (LP/Post) women compared to premenopausal 

and early perimenopausal (Pre/EP) women.  Specifically, HDL-c was protective against 

aortic calcification, carotid plaque and intima medial thickness among the Pre/EP women, 

but directly associated with subclinical CVD among the LP/Post women.  Furthermore, in a 

subcohort of women, the concentration of small HDL-c particles was higher in LP/Post 

compared to Pre/EP women.  These findings suggest that lipid profile changes with the 

menopausal transition may in part explain the increased risk of CVD seen after menopause. 

 In chapter 4, the protective effect of education for adventitial and lumen diameter 

was evident only among females from an Afro-Caribbean population.  In addition, females 

with higher education had lower SBP than those with lower education, and higher educated 

males had higher LDL-c and lower HDL-c compared to lower educated males.  These 

educational differences in CVD risk factors for males and females provide potential 

mechanisms for the education-subclinical CVD relationship observed on the island of 

Tobago. 
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In chapter 5, measures of heart rate variability (HRV) predicted subclinical 

atherosclerosis in a population of overweight and obese young adults.  Specifically, tonic 

cardiac sympathetic activity and parasympathetic reactivity were independent predictors of 

aortic pulse wave velocity.  The effect of C-reactive protein (CRP) on arterial stiffening is 

potentially explained by the autonomic anti-inflammatory mechanisms linking HRV and 

CRP.  Therapeutic approaches targeted at autonomic activity may aid in the reduction of 

CVD. 

 

6.2 PUBLIC HEALTH SIGNIFICANCE 

 

Myocardial infarctions and strokes are the leading causes of death worldwide.  Both men 

and women are at increased risk for CVD due to rising rates of obesity, smoking, diabetes, 

hypertension and hyperlipidemia.  Understanding how these risk factors impact early 

atherosclerosis is imperative to the prevention and early detection of CVD.  Findings from 

this dissertation emphasize the need to potentially change the way in which CVD risk is 

assessed in various populations.  Specifically, changes in lipid profiles associated with the 

menopausal transition suggest the need to evaluate HDL-c and HDL particle size as women 

transition through menopause.   High levels of HDL-c may not confer the same protection 

for premenopausal and postmenopausal women.  Furthermore, the protective effects of 

education on CVD risk factors and early atherosclerosis differ for Afro-Caribbean males and 

females.  Opportunities to advise this population on healthy lifestyle choices in a clinical 

setting may be missed if assumptions are made that males with higher education have 

lower CVD risk.  Lastly, indicators of heart rate variability independently predicted early 

atherosclerosis.  Heart rate variability, a noninvasive indicator of increased CVD risk, is a 

plausible option for widespread clinical application.  These findings emphasize the need to 
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critically evaluate CVD risk on an individual level.  In addition, applying current and new risk 

stratification methods support the important public health objective of reducing the global 

burden of CVD morbidity and mortality through prevention and early detection of CVD.  

 

6.3 FUTURE RESEARCH 

 

Findings from this dissertation offer novel CVD risk factor associations for early 

atherosclerotic changes.  Using these associations to identify people at increased risk is 

only part of the challenge.  Further research is warranted for primary and secondary 

prevention methods targeted at CVD risk.  

 Lipid profile changes during the menopausal transition may lead to increased CVD 

risk due to a shift in HDL particle size.  Conventional behavioral modifications, such as 

smoking cessation, weight reduction, physical activity and moderate alcohol consumption 

have shown to increase HDL-c 101.  However, the HDL particle subfraction that increases 

differs for diet and physical activity 69, 102.  Physical activity is more effective at increasing 

large HDL particles than hypocaloric and low fat diets, which may initially reduce this 

subfraction.  The pharmacologic increases in HDL-c with niacin, fibrates and statins also 

vary by particle size 69.  Niacin has proven to be the most effective agent at increasing HDL-

c, with substantial increases in large HDL particles and minimal changes in small HDL 

particles, whereas fibrates have shown the opposite, an increase in small and decrease in 

large HDL particles.  Research on how women respond to these therapies during the 

menopausal transition is needed.  Tailoring behavioral modification strategies and 

pharmacologic therapy to target an increase in the large HDL particle subfraction may prove 

to slow the burden of CVD among postmenopausal women. 
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The lack of a protective effect from education against early atherosclerotic changes 

among Afro-Caribbean males is a cause for concern.  A community-based approach for 

promoting CVD risk factor reduction involving dietary, physical activity and smoking 

cessation campaigns across community centers, clinics, schools and public places could 

potentially create a network of support.  This network may help improve the likelihood that 

both males and females, across several age ranges, make healthy lifestyle choices.  

Previous community-based prospective studies have shown to be successful at increasing 

fruit and vegetable consumption and regular exercise, while reducing cholesterol, smoking 

and hypertension 103-105.  An ongoing study, involving 15005 individuals in Iran, aims to 

reduce the high burden of hyperlipidemia, hypertension, diabetes and smoking.  The effect 

of primary prevention strategies (public nutrition classes, information pamphlets, religion 

meeting lectures and a school-based lifestyle modification program) and secondary 

prevention strategies (dieticians and smoking clinics) will be monitored over a 20 year 

period 106.  Such community-based strategies are lacking in developing countries of African 

descent; therefore, further research into these methods may be successful at reducing CVD 

burden for Afro-Caribbean males. 

According to recent reports, despite the robustness of CRP as an indicator for CVD 

burden and events, it is not a causal determinate of CVD and including it in risk stratification 

does not improve prediction.  Consequently, therapies targeted at CRP reduction may not 

be beneficial at reducing CVD 96, 107.  The autonomic nervous system modulates 

inflammation via the cholinergic anti-inflammatory pathway.  Therapeutic approaches aimed 

at autonomic activity, including behavioral and pharmacologic methodologies, may be a 

more successful therapeutic strategy than CRP 108.  Omega-3-fatty acid consumption, 

stress reduction through mediation and aerobic conditioning have all shown to increase 

parasympathetic activity and therefore may reduce risk factors and CVD 109-111. 
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In conclusion, future research focusing on primary and secondary prevention 

measures in relation to novel mechanisms for CVD risk may further aid in the reduction of 

the global burden and economic cost of CVD. 
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