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OPTIMAL POLICIES FOR THE ACCEPTANCE OF LIVING- AND

CADAVERIC-DONOR LIVERS

Oguzhan Alagoz, PhD

University of Pittsburgh, 2004

Transplantation is the only viable therapy for end-stage liver diseases (ESLD) such as hep-

atitis B. In the United States, patients with ESLD are placed on a waiting list. When organs

become available, they are offered to the patients on this waiting list. This dissertation fo-

cuses on the decision problem faced by these patients: which offer to accept and which to

refuse? This decision depends on two major components: the patient’s current and future

health, as well as the current and future prospect for organ offers. A recent analysis of liver

transplant data indicates that 60% of all livers offered to patients for transplantation are

refused.

This problem is formulated as a discrete-time Markov decision process (MDP). This dis-

sertation analyzes three MDP models, each representing a different situation. The Living-

Donor-Only Model considers the problem of optimal timing of living-donor liver transplan-

tation, which is accomplished by removing an entire lobe of a living donor’s liver and im-

planting it into the recipient. The Cadaveric-Donor-Only Model considers the problem of

accepting/refusing a cadaveric liver offer when the patient is on the waiting list but has

no available living donor. In this model, the effect of the waiting list is incorporated into

the decision model implicitly through the probability of being offered a liver. The Living-

and-Cadaveric-Donor Model is the most general model. This model combines the first two

models, in that the patient is both listed on the waiting list and also has an available living

donor. The patient can accept the cadaveric liver offer, decline the cadaveric liver offer and

use the living-donor liver, or decline both and continue to wait.
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This dissertation derives structural properties of all three models, including several sets

of conditions that ensure the existence of intuitively structured policies such as control-limit

policies. The computational experiments use clinical data, and show that the optimal policy

is typically of control-limit type.

Keywords: Control-limit policy, Markov decision processes, medical decision making, organ

transplantation, service operations.
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1.0 INTRODUCTION

The life expectancy for Americans increased from 49 years in 1900 to an all-time high of

77.2 years in 2001 [35, 56, 57]. Although factors such as changes in life style contribute to

this advance, it is mostly due to improved public health policy and improvements in medical

care [119]. A report prepared by MEDTAP International shows that, without the advances

in healthcare, in 2000 alone there would have been 470,000 more deaths, 2.3 million more

disabled persons, and 206 million more hospital days in the U.S. [84].

The Centers for Medicare and Medicaid Services (CMS) reports that in 2001, health-

care spending in the nation rose to $1.4 trillion, 14% of the gross domestic product (GDP),

making the health-service industry the largest industry in the U.S. [58, 60, 109]. Projections

show that by 2011 this industry will constitute approximately 17% of GDP [58]. These data

suggest that any improvement in health-care service might have significant effects on the

overall economy as well as life expectancy.

Medical decision making, which is required at every stage of medical intervention, is

the process of identifying, evaluating, and solving problems in a health-care system. Op-

timization models are a useful tool in medical decision making. In the last few decades,

optimization has been used to determine the optimal use of physical resources in deliver-

ing medical care and improving service quality. Several researchers [89, 111, 153] consider

personnel scheduling problems, particularly nurse scheduling. Other examples of the opti-

mal use of physical entities in medical decision making include emergency room scheduling

[8, 34, 100], scheduling of patient admissions [82], and ambulance location [18, 19].

Recently, however, optimization has been used for the treatment of individual patients,

using physiological knowledge of the individual patient. Optimal cancer therapy has been

a subject of much recent research interest. Lee et al. [97] consider the optimal placement
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of radioactive seeds for brachytherapy for prostate cancer. Preciado-Walters et al. [123]

use optimization for direct-beam cancer treatment. Lyberatos and Abulesz [101] evaluate

the effect of periodic injections as a cancer chemotherapy regimen using an optimization

model. Gallagher and Lee [63] use mixed integer programming optimization models for

generating treatment plans for brachytherapy. Yoo et al. [164] consider the problem of

planning treatment for prostate implants. Zhang et al. [167] describe an optimization

algorithm for gamma knife radiosurgery treatment planning. Korotaev et al. [93] consider

the problem of optimizing the dosage of a medication to obtain the best therapeutic effect.

They apply their methodology to the problem of dosage optimization for an antiseptic drug

in the treatment of pyelonephritis. Falk et al. [53] use optimization to develop bounds on

a trauma outcome function. Magni et al. [102] apply a Markov decision process model

to decide the optimal timing of the prophylactic surgery in mild hereditary spherocytosis.

Hauskrecht and Fraser [74] consider the problem of planning treatment of ischemic heart

disease and solve it by using a partially observable Markov decision processes model. Other

researchers [9, 10, 105, 106] focus on the optimal sequence of chemotherapy treatments.

This dissertation focuses on optimal timing of organ transplantation. In today’s medical

world, donated human organs available for transplant are one of the most scarce resources.

Although the number of organ transplants performed has increased annually since the enact-

ment of the National Organ Transplant Act of 1984, the number of patients waiting for an

organ transplant and the number of deaths have also increased dramatically [85]. In 2002,

nearly 24,900 Americans were transplanted with a kidney, liver, heart or other organ [149].

On the other hand, in 2002, there were nearly 80,483 patients on the organ waiting lists and

more than 6,000 of them died while waiting for an organ [149]. Given this scarcity, it is not

surprising that the allocation and efficient usage of organs are very critical and controversial

topics.

Table 1.1 shows the liver-related data in the U.S. between 1996-2001 [149]. As presented

in the table, the number of patients and the deaths while waiting for a liver have increased

dramatically in the last five years. Unfortunately, also as shown in the table, each year

around 10% of all donated livers are wasted and 13% of all patients who receive transplants
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die within the first year. These data suggest that there is a need to improve the allocation

and usage of available organs.

The liver is an appropriate organ for considering accept-reject decisions. First, none of

the previous studies on optimal organ allocation [1, 40, 41, 77, 126, 142, 165, 166] consider

liver transplantation. Second, the liver data reflect the trends in the overall organ data

such as imbalance between the number of organs and the number of patients on the wait-

ing list, dramatic increase in the number of patients waiting over time, and a significant

amount of organs wasted [149]. Moreover, although there are more kidney transplants than

liver transplants, there is no alternative therapy for end-stage liver diseases (ESLD) such

as primary biliary cirrhosis and hepatitis B, such as dialysis for kidney patients. When

Congress instructed the Institute of Medicine to study organ transplantation, it focused on

liver transplantation because “much of the current debate has centered on the procurement

and allocation of livers” [85].

Many approaches have been proposed to improve the discrepancy between the number of

sick patients and the number of available organs by increasing the number of organ donors.

For instance, tax credits for the families of organ donors would provide a financial incentive

for donation. Recently, the American Medical Association considered a proposal that would

pay donors for organs [23]. In Boston and Washington, D.C., a family member can improve a

relative’s priority for a transplant by becoming an organ donor [118]. The Wisconsin Senate

recently approved a bill calling for tax deduction for organ donors to cover their expenses

[114]. Transplant surgeons are now splitting livers and transplanting them into two separate

patients [104].

Most liver donations are from cadaveric donors. However, an increasing source of donated

livers is living donors, in which transplantation is accomplished by removing an entire lobe

of the donor’s liver and implanting it into the recipient [83]. The non-diseased liver has a

unique regenerative ability, so that a donor’s liver regains its previous size within two weeks

[83]; the same process occurs in the recipient. Living donors are often related to the recipient.

While donating part of a liver does entail real risk for the donor, to date there have been

only two donor deaths due to living-donor liver donation in the United States [131], which

is comparable to the mortality rate of other living-donor procedures such as kidneys [36].
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Table 1.1: U.S. Liver Data between 1996-2001 [149]

1996 1997 1998 1999 2000 2001

Patients Waiting 7,398 9,527 11,908 14,445 16,874 18,214

Deaths 1,003 1,199 1,437 1,850 1,787 2,003

Transplants 4,077 4,185 4,506 4,726 4,969 5,184

Deceased donors 4017 4101 4416 4485 4582 4665

Adult Recipients 3547 3613 3896 4040 4118 4175

Pediatric Recipients 470 488 520 445 464 490

Living donors 60 84 87 230 380 515

Adult Recipients 3 3 24 140 272 408

Pediatric Recipients 57 81 63 90 108 107

Wasted Organs1 427 402 458 428 496 444

Survival rate (Cadaveric Donors)2 85.7% 87.5% 87.2% 86.5% 88.3% 87.7%

Survival rate (Living Donors)3 89.4% 83.6% 83.3% 81.0% 89.7% 91.2%

1An organ is assumed to be wasted only if it is donated by a cadaveric recipient, is viable for transplantation,
but is not used for transplantation
2Annual post-transplant survival rate for cadaveric organ recipients
3Annual post-transplant survival rate for living-donor organ recipients
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In this study, the most general model considers the availability of a living donor as well as

potential cadaveric liver offers.

Due to a shortage of cadaveric livers, living donors have recently been used in liver

transplantation. In fact, living donors are practically the only source of organs in countries

where the availability of cadaveric donors is severely restricted, such as Japan [115]. There

are several potential advantages of using a living donor: the organ is usually of higher

quality, there is no waiting time on the list for the patient, the cold ischemia time, the

time that a liver stays outside the body, is essentially zero, and a complete pre-operative

evaluation of the donated liver is possible, which may increase the success of the operation

[73]. In addition to these benefits, the post-transplant quality of life is generally higher

for living-donor recipients than cadaveric liver recipients [145]. Moreover, the time of the

transplantation can be selected rather than dictated by a cadaveric donation [83]. This

timing decision is the focus of Chapter 5.

As can be seen from Table 1.1, although the number of living donors is still a small

portion of all transplanted organs, the rate of growth in living-donor transplants is much

greater than that of cadaveric transplants. The number of living-donor liver transplants

has grown by an order of magnitude from 1996 to 2001, and now represent over 10% of

all transplants. Initially, living-donor transplantation was almost exclusively used in the

pediatric population, where a parent of a child with ESLD would donate a lobe in order

to save the child’s life. However, as demonstrated in Table 1.1, a large component of the

rise in living-donor transplants has been from adult to adult. Bolstered by the success of

adult-to-adult living-donor transplantation from Japan, where there are social prohibitions

to cadaveric transplantation [115], adult-to-adult living-donor transplantation has spread

rapidly in the United States as waiting list death rates have risen, and waiting time for

organs has skyrocketed, with a median waiting time of 770 days for transplant recipients in

1998.

Previous research has focused on the optimal allocation of a given set of organs to a group

of patients. Much of the research for the optimal distribution of organs for transplantation

has focused on global optimization systems considering the societal perspective rather than

the patient perspective. These researchers seek to provide an optimal match between organs
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and patients by considering factors such as expected quality-adjusted life years, one-year

graft survival rates, and quality of the prospective match to find an optimal allocation of

organs [165, 166]. However, such an optimization model must address the ethical issues that

arise when one group of patients has a higher priority for organs than another. Furthermore,

the global optimal policy for allocation of organs ignores the fact that patients make their own

decisions in current practice. Therefore, the implementation of the policies resulting from

such models is very difficult. Some researchers have considered the question of which patients

should receive organs [107, 147]. Many factors must be considered, including differing moral

viewpoints [66] and political issues such as states’ rights [146].

1.1 PROBLEM STATEMENT

The purpose of this dissertation is to determine whether a patient should accept or decline

a liver offer, given her current health state. That is, we seek a policy describing the health

state/liver type combinations in which the liver transplantation should occur, and those

combinations where waiting is the optimal action.

The patient, the transplant surgeon and/or the physician responsible for the care of

the patient act as a single decision maker [83, 149], and we assume that their objective

is to maximize the patient’s total expected discounted reward. The consideration of other

objectives is left for future research. Discounting future health effects is a common practice

in medical research (see Chapter 3 for a more detailed discussion of this practice). The model

presented in this dissertation is general enough to handle various reward function definitions.

Possible definitions include total discounted expected life days and total discounted quality-

adjusted life days (QALD) of the patient, a common measure in medical decision making

research. The QALD measure is based on the assumption that the patient assigns a quality

score between 0 and 1 to each health state [68]. A quality score of 1 corresponds to perfect

health whereas a quality score of 0 corresponds to death.

There are several advantages to considering the patient’s perspective rather than society’s

perspective. The resulting optimal policies are immediately implementable by any patient

within the current system, without the approval of any government agency. This problem
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also reflects an actual decision made by thousands of patients every year. Considering the

number of deaths and the number of unsuccessful transplant operations, an optimal solution

to this problem may result in better usage of the organs and save many lives.

At first glance, the answer to this question seems very straightforward: a very sick patient

should perhaps always accept a high quality organ while a relatively healthy patient should

perhaps always decline a poor organ, but the decision is often more complicated in practice.

A high risk of mortality without a transplant might cause a very sick patient to accept a poor

organ, even if the post-transplant survival rate is not very high. Similarly, uncertainty in

the availability and the quality of future liver offers might cause a healthy patient to accept

a lower quality organ. On the other hand, if a relatively healthy patient is offered a poor

quality organ while she is likely to be offered higher quality organs in the near future, she

might prefer declining the organ offered.

The decision depends on two major components: the patient’s current and future health

as well as the current and future prospects for organs. In both cases, the future is unknown

and the probabilities of different outcomes are difficult to estimate.

This problem may appear to be equivalent to the classical secretary problem [25, 125],

where a decision maker is sequentially presented with a set of N candidates, where candidate

i is of quality qi. At stage i, the decision maker can either stop with candidate i and receive

a reward of qi, or he may continue and see candidate i + 1. If the decision maker rejects

candidate i, she seeks employment elsewhere. If the first N − 1 candidates are rejected,

candidate N must be accepted. The objective is to maximize the probability of choosing the

best candidate. This variant of the secretary problem has an optimal closed-form solution

in which the decision maker rejects the first 36.8% of candidates and then chooses the first

candidate thereafter who is the better than the best candidate in the first 36.8% of candidates

[125]. If no such candidate appears, the last candidate is chosen.

The problem described in this dissertation differs in several respects from the classical

secretary problem. First, the future availability of livers is uncertain. Patients do not wait

in a single queue for livers. Rather, different livers may induce different queues, depending

on other characteristics such as the geographical location of the donor and the blood type

of the liver. For one potential liver, patient A may have a higher priority than patient
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B. However, for another liver, patient B may have the higher priority. Second, the set of

potential candidates is essentially infinite and unknown; the patient might get organ offers

as long as she is sick. Third, the decision maker’s health changes over time, therefore the

reward is dynamic. The exact progression of health states is unknown and may depend on

such factors as disease. Lastly, unlike the secretary problem, there are intermediate rewards,

i.e. as the patient waits she accumulates reward. These differences make the problem far

more complicated than the classical secretary problem, and a closed-form solution is not

likely to exist.

1.2 CURRENT LIVER ALLOCATION SYSTEM

This section describes the current liver allocation system. Basic knowledge of this system is

necessary to understand the decision problem faced by the ESLD patients and the develop-

ment of the decision model. The United Network for Organ Sharing (UNOS) is responsible

for managing the national organ donation and allocation system. The UNOS Board of Di-

rectors approved for implementation the new liver allocation procedure as of February 28,

2002 [149]. It is important to note that, according to the General Accounting Office, in the

last six years the policy has been changed four times [117, 149]. The multiple changes in

policy over a short time period is evidence of the ever-changing opinions surrounding the

optimal allocation of livers. Although the new policy is anticipated to “better identify urgent

patients and reduce deaths among patients awaiting liver transplants” [149], anecdotal evi-

dence suggests that there is some question among the transplant community as to whether

the new allocation rules are satisfactory [64, 144].

UNOS manages the organ donation and procurement via Organ Procurement Organi-

zations (OPOs) which are non-profit agencies responsible for approaching families about

donation, evaluating the medical suitability of potential donors, coordinating the recovery,

preservation, and transportation of organs donated for transplantation, and educating the

public about the critical need for organ donation. There are currently 60 OPOs that operate

in designated service areas; these service areas may cover multiple states, a single state, or

just parts of a state [149]. The national UNOS membership is also divided into 11 geo-
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graphic regions, each consisting of several OPOs. This regional structure was developed to

facilitate organ allocation and to provide individuals with the opportunity to identify con-

cerns regarding organ procurement, allocation, and transplantation that are unique to their

particular geographic area [149]. Stahl et al. [141] consider the problem of optimal sizing

and configuration of these regions and OPOs, and they provide a framework to find a set of

regions that maximizes intra-regional transplants.

UNOS has different procedures for adult and for pediatric patients. In this study, we only

consider adult patients; therefore, we will describe only the adult liver allocation procedure.

UNOS maintains a patient waiting list that is used to determine the transplant candidates

among the patients. Under the current policy, when a liver becomes available, the following

factors are considered for its allocation: liver and patient OPO, liver and patient region,

medical urgency of the patient, patient points, and patient waiting time.

The medical urgency of the adult liver patients is represented by UNOS Status 1 and

MELD scores. According to the new UNOS policy, a patient listed as Status 1 “has fulminant

liver failure with a life expectancy without a liver transplant of less than 7 days” [149].

Patients who do not qualify for classification as Status 1 do not receive a status level.

Rather, these patients will be assigned a “probability of pre-transplant death derived from a

mortality risk score” calculated by the Model for End Stage Liver Disease (MELD) scoring

system [149]. The MELD score, which is a continuous function of total bilirubin, creatinine

and prothrombin time, indicates the status of the liver disease and is a risk-prediction model

first introduced by Malinchoc et al. to assess the short-term prognosis of patients with liver

cirrhosis [103, 162]. Wiesner et al. [162] develop the following formula for computing MELD

scores:

MELD Score = 10× [0.957× ln(creatinine mg/DL) + 0.378× ln(bilirubin mg/DL)

+1.120× ln(INR) + 0.643× Ic]

where INR, international normalized ratio, is computed by dividing prothrombin time (PT)

of the patient by a normal PT value, and Ic is an indicator variable that shows the cause of

cirrhosis, i.e., it is equal to 1 if the disease is alcohol or cholestatic related and it is equal

to 0 if the disease is related to other etiologies. As Wiesner et al. [162] note, the etiology
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(cause) of disease is removed from the formula by UNOS. In addition to this, UNOS makes

several modifications to the formula such as any lab value less than 1 mg/DL is set to 1

mg/DL, any creatinine level above 4 mg/DL is set to 4 mg/DL and the resulting MELD

score is rounded to the closest integer[149]. By introducing these changes, UNOS restricts

the range of MELD scores to be between 6 and 40, where a value of 6 corresponds to the

best possible patient health and 40 to the worst.

Kamath et al. [88] introduce the MELD system to more accurately measure the liver

disease severity and to better predict which patients are at risk of dying. However, there

are concerns about the accuracy of the MELD system. First, there were some biases in the

data used to develop the model. For instance, the data available to the researchers were

mostly based on patients with advanced liver disease [103]. Furthermore, the MELD system

was validated on the patients suffering from cirrhosis [162], therefore it is possible that the

MELD system does not accurately measure the disease progression for other diseases, such as

acute liver diseases. Moreover, as stated, although they presented data to indicate that the

consideration of patient age, sex, and body mass is unlikely to be clinically significant, it is

possible that other factors, such as a more direct measurement of renal function (iothalamate

clearance), may improve the accuracy of the model [88]. For instance, patients who have

hepatocellular carcinoma or metabolic diseases might have good renal function, but must

wait because they are assigned a lower MELD score [99]. Furthermore, the MELD system was

validated on only three laboratory values: creatinine and bilirubin levels, and prothrombin

time. Thus, it is possible that the MELD system does not accurately consider patients with

liver cancer because they would score as if they were healthy [64]. Consequently, relying

mainly on laboratory results may not be the best solution for all patients [52].

Patients are stratified within Status 1 and each MELD score using patient “points” and

waiting time. Patient points are assigned based on the compatibility of their blood type

with the donor’s blood type. For Status 1 patients, candidates with an exact blood type

match receive 10 points; candidates with a compatible, though not identical, blood type

receive 5 points; and a candidate whose blood type is incompatible receives 0 points. As

an exception, though type O and type A2 (a less common variant of blood type A) are

incompatible, patients of type O receive 5 points for being willing to accept a type A2 liver.
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Figure 1.1: Current Liver Allocation System

For non-Status 1 patients with the same MELD score, a liver is offered to patients with an

exact blood type match first, compatible patients second, and incompatible patients last.

If there are several patients having the same blood type compatibility and MELD scores,

the ties are broken with patient waiting time. The waiting time for a Status 1 patient is

calculated only from the date when that patient was listed as Status 1. Points are assigned

to each patient based on the following strategy: “Ten points will be accrued by the patient

waiting for the longest period for a liver transplant and proportionately fewer points will be

accrued by those patients with shorter tenure” [149]. For MELD patients, waiting time is

calculated as the time accrued by the patient at or above her current score level from the

date that she was listed as a candidate for liver transplantation.

Figure 1.1 shows a schematic representation of the liver allocation system. In summary,

the current liver allocation system works as follows: every liver available for transplant is

first offered to those Status 1 patients located within the harvesting OPO. When more than

one Status 1 patient exists, the liver is offered to those patients in descending point order

where the patient with the highest number of points receives the highest priority. If there are
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no suitable Status 1 matches within the harvesting OPO, the liver is then offered to Status 1

patients within the harvesting region. If a match still has not been found, the liver is offered

to all non-Status 1 patients in the harvesting OPO in descending order of MELD score. The

search is again broadened to the harvesting region if no suitable match has been found. If no

suitable match exists in the harvesting region, then the liver is offered nationally to Status

1 patients followed by all other patients in descending order of MELD scores.

UNOS maintains that the final decision to accept or decline a liver “will remain the pre-

rogative of the transplant surgeon and/or physician responsible for the care of that patient”

[85]. The surgeon and/or the physician have very limited time, namely one hour, to make

their decision [149], because the acceptable range for cold ischemia time is very limited.

The Scientific Registry of Transplant Recipients states that the acceptable cold ischemia

time limit for a liver is 12 to 18 hours [116], whereas the Center for Organ Recovery and

Education gives the maximum limit as 18 to 24 hours [59]. Furthermore, as the Institute

of Medicine points out, there is evidence that the quality of the organ decreases as cold

ischemia time increases [85]. In the event that a liver is declined, it is then offered to another

patient in accordance with the above-described policy. The patient who declines the organ

will not be penalized and will have access to future livers. Organs are frequently declined

due to low quality of the liver. For example, the donor may have had health problems that

could have damaged the organ or may be much older than the potential recipient, making

the organ undesirable [154].

In current practice, organs are frequently declined. As we demonstrate in Section 4.4,

60% of all liver offers are declined. Howard [79] reports that 45% of livers are rejected by

the first surgeon to whom they are offered. Although a lower percentage may hold for other

organs, the problem addressed in this dissertation is faced, on average, by approximately

100 patients every day in the United States alone and is not expected to change in the near

future [149].

The remainder of this dissertation is organized as follows: Chapter 2 discusses the lit-

erature related to Markov decision processes (MDP), MDP applications in medical decision

making, simulation models of liver allocation system, and the organ allocation problem.

Chapter 3 formulates the problem faced by the decision maker, namely, whether or not to
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accept a liver offered for transplantation. Chapter 4 describes the data sources that are

used in the computational study and presents three supplementary models that are input to

the decision models in the subsequent chapters. Chapter 5 describes the Living-Donor-Only

Model, in which the liver is assumed to be available at all points in time and its charac-

teristics are known and constant. Chapter 6 describes the Cadaveric-Donor-Only Model, in

which multiple patients compete for multiple livers. The other patients competing for livers

are implicitly modeled through the probability of being offered livers in the future. Chapter

7 considers the combined model, in which the patient is assumed to have an available living

donor and is listed on the waiting list. Chapter 8 summarizes the conclusions drawn based

on these modes and gives possible future research directions.
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2.0 LITERATURE REVIEW

In this chapter, we discuss the literature related to our study. In Section 2.1 we give a brief

introduction to MDP models, describe some different applications of MDPs, and summarize

several solution techniques. In Section 2.2 we summarize previous studies that apply MDPs

to medical decision making problems. Section 2.3 discusses previous simulation studies of

the national liver allocation system. Finally, in Section 2.4 we present previous studies

considering optimal usage of organs for transplantation.

2.1 MARKOV DECISION PROCESSES

This section introduces the methodology that is used to formulate the problem. The notation

in this section is mostly from Puterman [125]. A collection of objects, (T , S, As, Pt(.|s, a),

rt(s, a)) is referred to as a discrete-time Markov decision process in which T = 1, . . . , N are

the decision epochs, that is, the set of the points of time at which decisions are made; S is the

state space, that is, the set of observations which the system occupies at each decision epoch

and that describe the system; for any state s ∈ S, As is the action space, that is, the set

of possible actions that the decision maker can take at state s; Pt(.|s, a) are the transition

probabilities, that is, the probabilities that determine the state of the system in the next

decision epoch; and rt(s, a) is the reward function, that is, the result of taking action at each

state. A decision rule is a procedure for action selection from As for each state, namely,

dt(s) ∈ As. We can drop the index s from this expression and use dt ∈ A which represents a

decision rule specifying the actions to be taken at all states, where A is the set of all actions.
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A policy δ is a sequence of the decision rules to be used at each decision epoch and defined

as δ = (d1, . . . , dN−1). A policy is called stationary, if dt = d for all t ∈ T . A Markovian

decision rule is one which depends only on the state and action taken at the last decision

epoch, whereas a history-dependent decision rule depends on the past history of the system

represented by the sequence of previous states and actions. A decision rule prescribing exactly

one action for each state is called a deterministic decision rule whereas a randomized rule is

one in which there is a probability distribution over the actions that can be taken at each

state. There are four types of policies in general: Markovian and deterministic, Markovian

and randomized, history-dependent and deterministic, history-dependent and randomized.

In this study, we consider only Markovian and deterministic decision rules because it can

be shown that when the immediate rewards and transition probabilities depend only on the

current state of the system, there exists a corresponding optimal deterministic and Markovian

decision rule [125].

MDPs are classified according to the time horizon in which the decisions are made: finite

or infinite horizon. They can be further classified into two categories with respect to the

existence of a discounting factor for future rewards: discounted or undiscounted. There are

three main performance or optimality criteria used for evaluating different decision rules

or policies: expected total reward criterion, expected total discounted reward criterion and

average reward criterion [125].

The objective of solving an MDP is to find the policy that optimizes the expected reward

for a given optimality criteria. For a finite horizon problem, average total reward and

expected total reward criteria give the same optimal policies [125]. In the absence of a

discounting factor, if we let u∗t (st) be the optimal value of the expected total reward when

the state at time t is s and there are N − t periods to the end of time horizon, then the

optimal value function and the optimal policy can be computed by iteratively solving the

following recursive equations which are also called Bellman equations :

u∗N(sN) = rN(sN) for all sN ∈ S,

and

u∗t (st) = sup
a∈As

{
rt(st, a) +

∑
j∈S

P (j|st, a)u∗t+1(j)

}
for t = 1, . . . , N − 1,
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where rN(sN) denotes the terminal reward that occurs at the end of the process when the

state of the system at time N is s. At each stage, we choose

a∗st,t ∈ arg sup
a∈As

{
rt(st, a) +

∑
j∈S

P (j|st, a)u∗t+1(j)

}
for t = 1, . . . , N − 1,

where a∗st,t is a decision rule maximizing the expected total reward at time t for state s [125].

The most common method used for solving finite-horizon problems, the backward induction

method uses the above equations to obtain the optimal policies.

The most commonly used optimality criterion for infinite-horizon problems is the ex-

pected total discounted reward. The expected total discounted reward, or value, of a policy

δ is defined as

V δ
λ (s) = lim

N→∞
Eδ

s

N∑
t=1

λt−1r(Xt, Yt),

where 0 ≤ λ < 1 is a discounting factor, Xt represents the decision rule applied to state s

and Yt represents the system state at time t [125].

In a general MDP model, the following assumptions guarantee the existence of opti-

mal stationary policies: stationary rewards and transition probabilities, bounded rewards,

discounting with λ where 0 ≤ λ < 1 and discrete state and action spaces. Under these

assumptions, it can be shown that the value of any stationary policy d∞ can be computed

by solving the following set of equations [125]:

V d∞
λ (s) =

{
rd(s) +

∑
j∈S

λPd(j|s)V d∞
λ (j)

}
for s ∈ S,

where V d∞
λ (s) is the value of policy d∞ at state s, rd(s) is the reward obtained under policy

d∞, and Pd(j|s) is the probability that the system will move to state j at next decision epoch

given that the system is in state s and decision rule d∞ is applied. It can also be shown that

there is a unique solution to the following optimality equations giving the optimal policy

[125]:

V (s) = sup
a∈As

{
r(s, a) +

∑
j∈S

λP (j|s, a)V (j)

}
for s ∈ S,

where V (s) is the optimal value of the MDP at state s. The policy maximizing this set of

equations is the optimal policy.
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MDPs provide powerful models for sequential decision making under uncertainty. The

earliest sequential decision making problem in the literature dates back to 1875 when Cayley

defined the well known secretary problem [25]. However, the study by Cayley did not resur-

face until the 1950s when books by Bellman [13] and Howard [80] popularized sequential

decision making and MDPs.

Beginning from the 1960s there has been an enormous amount of research in the area of

MDPs. MDPs have been applied to a broad class of real-world problems such as inventory

control [27, 30, 48, 75, 86, 92, 110], production control [49, 55, 65, 67, 133, 137, 155], finance

[54], machine maintenance [134] and medical decision making [1, 74, 81, 87, 98, 102]. Inter-

ested readers should refer to books by Puterman [125], Bertsekas [14], White [161], Heyman

and Sobel [76], Howard [80] and Bellman [13] for more references and applications.

The most common methods for solving infinite horizon MDPs are value iteration [17,

125, 135], policy iteration [13, 80] and linear programming [43]. However, these methods fail

to work well as the MDP problem becomes large, which is often referred as the “curse of di-

mensionality” [13, 33]. Therefore, many researchers consider efficient solution techniques for

solving MDPs. These include variants of the basic methods such as modified policy iteration

[113], relative value iteration [160], and approximation techniques such as neuro-dynamic

programming. Neuro-dynamic programming techniques allow systems to learn how to make

good decisions by observing their own behavior and to use their built-in mechanisms for

improving their actions through a reinforcement mechanism [15]. In the artificial intelli-

gence community, the name reinforcement learning is also used to refer to neuro-dynamic

programming [15].

Researchers who formulate MDPs also seek to establish the existence of structured opti-

mal policies. Such policies are appealing to the decision makers and are easier to implement.

Furthermore, problems that are known to have special structures may be solved faster by

using specialized algorithms. Examples of structured policies are (s, S) policies in inven-

tory models [122, 168] and control-limit policies in queueing control models [12, 125]. A

control-limit policy consists of decision rules of the form

d∗t (s) =





a1 s < s∗

a2 s ≥ s∗,
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where a1 and a2 are distinct actions and s∗ is a control limit [125]. This policy can be

interpreted as follows: if the state of the system is less than s∗, it is optimal to take action a1,

otherwise it is optimal to take action a2. In many areas of application, such as maintenance

optimization [11, 29, 120, 150], inventory theory [71, 158], queueing [20, 42, 157, 159], and

control theory [96], authors derive sufficient conditions to ensure the existence of an optimal

control-limit policy.

In MDP models, we assume the state that the system occupies at each decision epoch

is completely observable. However, in some real-world problems, the actual system state

is not entirely known by the decision maker, rendering the states only partially observable.

Such MDP models are known as partially observable Markov decision process (POMDP)

models. In addition to the basic components of a MDP model, a POMDP model contains (i)

an observation set which the decision maker observes at each decision epoch rather than an

actual state space, and (ii) a probability function of this space, the state space and the action

space. In other words, the decision maker can make inferences about the actual system state

using the partial observation that he/she has.

POMDPs were first introduced in the 1960s [6, 7, 51]. Later work [138, 139, 140] ad-

dressed the computational difficulties associated with POMDPs and developed algorithms

specific to POMDPs.

A finite action/state space POMDP model can be analyzed by transforming it to an

equivalent continuous-state Markov decision process in which the system state is a probability

distribution on the unobserved states in the POMDP, and transition probabilities are derived

through Bayes’ rule [125]. Therefore, standard solution techniques used for solving MDPs can

also be used for solving POMDPs. In addition to those, there are solution algorithms specific

for PODMPs such as Sondik’s one-pass and two-pass algorithms [139], Cheng’s relaxed region

and linear support algorithms [31] and Cassandra’s witness algorithm [24]. More information

about exact and approximate algorithms for solving POMDPs is available in Monahan [112],

as well as in Cassandra [24].
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2.2 MDP APPLICATIONS IN MEDICAL DECISION MAKING

This section summarizes the previous applications of MDPs to medical decision making prob-

lems. MDPs have been widely used to solve production control, finance, logistics, machine

replacement, and inventory control problems but are not very common in medical decision

making. Although sequential decision making models are frequently needed in medical de-

cision making problems, using decision trees to solve the arising decision problems is more

popular than MDP modeling. However, decision trees become very inefficient as the number

of recurrent events increases. Moreover, decision trees cannot be used to formulate problems

that have embedded decision nodes [129]. Recent research applies MDPs to medical decision

making problems successfully. In this section, we present some of these studies. Most of the

material in this section comes from Schaefer et al. [132].

Lefèvre [98] uses a continuous-time MDP formulation to model the problem of controlling

an epidemic in a closed population of N people. In his model, the state of the system is

described by the number of people infected at time t. Possible actions include quarantine

and medical care programs that could change the number of infected people by directly

influencing the birth and death rates. Each action has a certain cost and the objective in

his decision model is to minimize the total expected discounted cost in the infinite horizon.

Hu et al. [81] address the problem of choosing a drug infusion plan to administer to a

patient using a POMDP model. The internal states in this problem are patient parameters

that cannot be observed directly, such as the anesthesia concentration in the blood and the

clearance rate of the drug. They use approximation techniques to obtain suboptimal though

useful treatment options. They define six different policies for adaptive control of drug

concentrations in compartment models and compare their performances using a simulation

model.

Magni et al. [102] present an MDP model for optimal timing of intervention for treating

hereditary spherocytosis disease which destroys red blood cells. The state of the patient

is described through the state of the gallbladder and the state of the spleen. The authors

consider gallstone natural history, risk of surgical mortality, and natural causes of death in

deriving transition probabilities. They use a utility function based on the quality-adjusted

20



life years (QALYs) for representing rewards, and the objective is to maximize QALYs by

deciding the time of the intervention.

Hauskrecht and Fraser [74] use a POMDP framework to model and solve the problem of

treating patients with ischemic heart disease (IHD). IHD results from an imbalance between

the supply and demand of oxygen to the heart. The state of the patient is described by such

variables as the level of coronary heart disease, ischemia level, stress test result, history of

coronary artery bypass surgery and angioplasty and so on. Possible actions include medica-

tion, surgery (such as angioplasty or bypass surgery), investigative procedures (such as an

angiogram or stress test), or doing nothing at all. The internal states of the PODMP model

consist of the level of coronary artery disease, i.e. the ischemia level, because this is not

directly observable. On the other hand, variables such as the level of chest pain are directly

observable. Hauskrecht and Fraser develop an infinite-horizon discounted POMDP model

that seeks a treatment strategy that minimizes total lifetime costs, and they use heuristics

to solve this problem. Overall, their POMDP formulation is very effective and efficient in

generating good treatment strategies for IHD [132].

Ivy [87] considers the problem associated with detection and treatment of breast cancer.

She formulates the problem using a POMDP model which determines when to recommend a

mammogram and the form of optimal treatment. Alternative treatments include lumpectomy

and mastectomy. The goal is to minimize the total expected cost over a patient’s lifetime,

where costs are based on the patient’s condition, tests, and treatment options. She solves

this problem using real data.

Ahn and Hornberger [1] provide a Markov decision process model that considers the

accept/reject decision of a patient when there is a kidney offer. We describe their model in

detail in Section 2.4.

While there have been very few MDP applications to medical decision making, such

recent successful applications suggest that MDPs might provide powerful tools for clinical

decision making and will be more popular in the near future.
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2.3 PREVIOUS SIMULATION MODELS ON LIVER ALLOCATION

SYSTEM

This section describes previous simulation models of the liver allocation system and moti-

vates the need for a natural history model of end-stage liver disease. Several discrete-event

simulation models have been developed to estimate the effect of various allocation policies.

UNOS and the Pritsker Corporation use the UNOS Liver Allocation Model (ULAM) to ad-

dress issues related to the liver allocation system [124]. The model considers the patient

listing process, the organ availability, and the UNOS matching criteria. Post-transplant

survival is estimated using Cox proportional hazards models [38]. The primary goal of the

ULAM model is to consider the effects of moving from a regional to a national waiting list.

Their model considers the old liver allocation model in which there are four statuses assigned

to patients for determining their medical urgency.

One limitation of the ULAM model is that a patient’s medical history prior to transplan-

tation is given by the rate at which patients transition between predefined priority statuses.

The model is therefore unable to consider more general measures of health status. Consid-

ering the multiple changes in the liver allocation system recently, flexibility is a significant

factor in any simulation model of the liver allocation system. For instance, the medical sta-

tuses of the patients that they use for transitions are no longer used by UNOS, and therefore

the ULAM model may no longer apply.

It is also important to consider that since a patient can be listed for several years, her

health often changes during the time between listing and transplantation. In the ULAM

model, patient health can only change by moving from one of the priority states to another.

For example, in these models a patient can move from one status to another, but the models

keep no specific physiological data other than this.

The CONSAD Corporation [37] uses a simulation model to ascertain the effects of a

national distribution scheme. Since this model also measures the natural history of the liver

disease by rate of progression through existing priority levels, the model’s ability to predict

changes in patient health depends on the success of the specific allocation scheme. Therefore,
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although this model makes similar assumptions and uses almost identical data as the ULAM

model, it reaches slightly different conclusions.

Roberts et al. [95, 128, 136] develop a simulation model to overcome the issues that arises

in the other simulation models described above. They design a biologically based discrete

event simulation to test proposed changes in allocation policies. Their simulation model

consists of five core modules: the patient generator, the organ generator, the pre-transplant

natural history, the matching algorithm, and the post-transplant survival. Section 4.2 de-

scribes the pre-transplant natural history module in detail. They use mathematical models

of disease progression and post-transplant survival to track patients’ health at the individual

level. Unlike the other simulation models, they model the changes in the medical status of

patients independently from the priority statuses, which makes the model sufficiently flexible

enough to evaluate a user-defined liver allocation system. Their model is clinically based and

modular, so that they can incorporate possible changes to natural history, post-transplant

survival, patient prioritization, and the allocation policy.

2.4 PREVIOUS RESEARCH ON THE OPTIMAL USE OF ORGANS

This section describes the studies on the optimal use of cadaveric organs for transplanta-

tion. David and Yechiali [40] give perhaps the first model for a problem similar to the

problem under consideration. They consider when a patient should accept or reject an organ

for transplant. They first assume that organs arrive at fixed time intervals and provide a

time-dependent control-limit optimal policy. Next, they consider the case where the arrival

of organs is a renewal process and patient health is always deteriorating. Under these as-

sumptions, they show that the optimal control limit is a nonincreasing continuous function,

so that a patient becomes more willing to accept lower quality organs as time progresses.

Unfortunately, they make many assumptions that do not reflect the actual organ allocation

system. For instance, in one of their models the organ arrival rate decreases as time passes.

In the actual configuration, a patient should see the organ arrival rate increase as she wins

more tie-breakers for length of time on the waiting list. Furthermore, patient health does not,
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in fact, monotonically deteriorate [3]. They also do not consider the waiting list, nor do they

consider the actual matching criteria.

In a later work, David and Yechiali [41] consider allocating multiple organs to multiple

patients. They consider the case where there are more organs than patients, the case where

there are equal numbers of each, and the case where there are more patients than organs.

The health of the patient is constant, and a rejected organ is never offered to another patient.

It is not clear that any of the data that are used are based on clinical observation, and the

authors do not provide any computational results from the proposed algorithms. Moreover,

they do not consider changes in the patient health. Most importantly, there are serious

obstacles to implementing the optimal policies they obtain because they ignore the existence

of the waiting list; therefore, they do not address the issue of who is given the priority for

an organ offer among patients on the waiting list.

Righter [126] considers a resource allocation problem in which there are a finite number

of activities each of which requires a resource, where resources arrive according to a Pois-

son process. Her model can be applied to the kidney allocation problem, where resources

represent the organs and activities represent the patients. She assumes that the reward of

assigning a resource to an activity is the product of the resource value and the activity value.

She presents several structural properties of the optimal value function such as monotonic-

ity. She does not provide any computational results. She does not consider the effect of

the physiology of the patient on the transplant success and post-transplant survival rates

[127, 151]. Her model does not consider the effect of the waiting list on the organ arrival

rates and the organ allocation process.

Hornberger and Ahn [77] describe a model for kidney transplantation in which the goal

is to decide eligibility of the patient for transplantation of a donated kidney. They compute

the one-year survival rate of the patient when she accepts the offered organ and receives

the transplantation, and this survival probability is used to determine the eligibility of the

patient for transplantation with that organ. They consider the effect of the waiting list on the

probability of receiving a future organ, and estimate one-year survival rates by performing

a Weibull regression on real survival data. They conclude that using minimum eligibility

standards improves total quality-adjusted life years for all groups of patients considered.
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They do not consider that a patient, by remaining on the waiting list, may gain points in

tie-breakers. Moreover, they do not clearly state how the waiting list is incorporated into

their model. Furthermore, their model does not consider the fact that the patient’s health

changes and usually deteriorates over time. Finally, they do not consider the physiology of

the patient, which certainly has effects on the transplant success and post-transplant survival

rates [127, 151].

Ahn and Hornberger [1] provide an MDP model for deciding which kidneys would max-

imize a patient’s duration and quality of life. In their model, the patient is involved in the

process of determining a threshold kidney quality value for transplantation. A patient may

experience one of five states: alive on dialysis and waiting for transplantation; not eligible

for transplantation; received a functioning renal transplant; failed transplant; and death.

Due to the small number of states, they provide an exact analytical solution for threshold

kidney quality. Due to insufficient data, the authors use months as their decision epochs;

however, it is frequently the case that patients make these decisions more often. In both

papers, patient health is modeled very simply and does not include the physiological state

of the patient. However, as Valenta [151] finds, the physiological state of a liver patient has

effects on the post-transplant survival rates of the patients, and therefore, their framework

might not give accurate results for the liver patients.

Zenios et al. [166] develop a Monte Carlo simulation to compare various kidney allocation

policies. They compare a fundamental trade-off in organ allocation: efficiency and equity.

Patient survival rates and quality-adjusted life expectancies are used as performance criteria

for efficiency. Equity is measured by average waiting time to transplant for patients in

different ethnic groups. They suggest alternative allocation schemes and show that several

of these schemes outperform the current UNOS allocation plan on several criteria. In this

simulation model, a patient must accept a liver allocated to her, and patient welfare is only

considered in the aggregate.

Zenios et al. [165] consider the problem of finding a best kidney allocation policy with

three criteria of maximizing total quality-adjusted life years (QALYs) and minimizing two

measures of inequity. The first measures equity across various groups in terms of access to

kidneys and the second measures equity in waiting times. They model this problem as a
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continuous-time, continuous-space deterministic fluid model which does not have an obvious

closed-form solution. They provide a heuristic dynamic index policy for the problem. As with

[166], they only consider aggregate measures of patient welfare and do not permit patients

to reject kidneys. In both papers they do not consider the dynamics of patient health.

Su and Zenios [142] consider the problem of allocating kidneys to the transplant candi-

dates who have the right to refuse the organs. They use a sequential stochastic assignment

model to solve different variants of this problem. First, they consider the case when the

patient does not have the right to reject an organ offer and the number of the organs offered

is the same as the number of patients on the waiting list. They then consider the problem

of allocating kidneys to the patients when the patients have the right to refuse an organ

offer and measure the effects of this patient autonomy on the overall organ acceptance and

rejection rates. In both problems, the objective is to maximize total reward, where reward

is a function of patient health and organ type. For both problems, they derive structural

properties of the optimal policies under different reward functions; however, their model has

several shortcomings. First, they make unrealistic assumptions such as the number of organ

offers is equal to the number of patients on the waiting list. As Table 1.1 shows, there is

an imbalance between the number of organs and the number of patients on the waiting list

[149]. Second, they do not consider the effect of the waiting list on the number and quality

of the organs that are offered to the patient. Furthermore, they do not consider the dynamic

nature of patient health and its effect on post-transplant survival and accept/reject decisions.

For example, their model does not consider mortality risks for the patients. Third, the per-

formance measures they use might not give the true optimal solution for the patients. For

example, they use one-year and five-year graft survival rates and number of wasted organs as

their performance measures, which is equivalent to assuming that the patient is indifferent

to the timing of organ transplantation and she always benefits from having the transplant as

soon as she gets the organ offer. However, as we demonstrate in Chapter 5, waiting longer

might give the optimal result for the patient, even if she receives an excellent organ offer.

Therefore, using total expected life days or quality-adjusted life days to measure the over-

all effectiveness of an organ allocation system should be considered for a complete model. As
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a result, as they acknowledge, their model fails to capture many important aspects of the

kidney allocation problem [142].

Howard [79] presents a decision model in which a surgeon decides to accept or reject a

cadaveric organ based on the patient’s health. He does not provide any solutions to this

decision model. Instead, he provides statistical evidence that explains why a transplant

surgeon may reject a cadaveric liver offer. He also discusses the trends in organ procurement

in light of his findings.

This dissertation differs significantly from the previous studies. First, this research ad-

dresses livers, rather than kidneys. ESLD are different from the end-stage renal diseases

(ESRD) because the only viable therapy for ESLD patients is organ transplantation whereas

there are alternative therapies such as dialysis for ESRD patients. Second, this research

addresses the decision faced by a patient awaiting an organ transplant, which differs from

the work of Zenios et al. [165, 166] and Su and Zenios [142] in that no global allocation

scheme is proposed. Such research must consider many factors, including ethical issues such

as equity among various minority groups [26] and prioritizing liver patients for transplan-

tation [26] and political issues such as states’ rights [146]. Because this research views and

solves the problem from the patient’s perspective, it does not need to consider such issues.

Third, unlike previous researchers [1, 40, 41, 77, 126, 142, 165, 166], this research uses de-

tailed models of patient health utilizing real data gathered from clinical observation. Fourth,

unlike David and Yechiali [40, 41], this model is not limited by unrealistic assumptions such

as the number of organs is greater than or equal to the number of transplant candidates.

Finally, this research considers the effects of the waiting list on the organ arrival rates and

the decisions of the patients.

As a result, this study describes a model that can be implemented immediately. The

implementation of the proposed models does not require unrealistic assumptions about data,

nor does it propose or require a change in the current allocation scheme. The next chapter

presents the MDP formulation of the decision model.
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3.0 PROBLEM FORMULATION

The state space consists of two parts: the liver offered, if any, and the patient health. The

state space component corresponding to the liver offered includes all possible liver types

that can be offered to the patient, including a state corresponding to a no-offer state. The

state space component corresponding to patient health consists of all transient health states,

and absorbing states corresponding to pre-transplant death and post-transplant states. We

assume that the quality of the organ and the health of the patient may be discretized.

The decisions are made when patient health changes or a liver is offered to the decision

maker, which could occur at any moment in time, requiring a continuous time model. How-

ever, we approximate the continuous time process by using a discrete-time Markov decision

process [125].

There are three possible actions that the patient can take at any decision epoch. She

can choose the “Transplant the cadaveric organ” option if one has been offered to her; she

can choose the “Transplant the living-donor organ” option if such an organ exists; or she

can decline the liver offer(s) and choose to “Wait” for one more time period. When the

patient chooses either of the “Transplant” options, she quits the process and moves to the

post-transplant state.

There is a consensus that in any sequential decision making context, it is necessary to

state all future effects in terms of their present value to the decision maker [152]. Weinstein

and Stason [156] point out that the future life years should be discounted because they are

being valued relative to dollars and since a dollar in the future is discounted, so must a life

year. Keeler and Cretin [91] present a cost-effectiveness study that shows that failure to

discount future benefits such as improvements in future life years implies that health-care

programs are always improved by delay. On the other hand, the selection of the appropri-
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ate discount factor is controversial [22, 39, 62, 70, 78, 90, 94, 108]. For instance, Harvey

[72] argues that both psychological evidence and common political observation imply that

constant-rate discounting is unrealistic and proposes the usage of nonconstant discount rates.

On the other hand, Gold et al. [68] point out some theoretical problems with using noncon-

stant discount rates and suggest using the same discount rate that is used to express future

dollars in present value. More information about selection of the appropriate discount rate

to the future health benefits is available in [28, 61, 68, 152].

In this study, we apply a stationary discount rate to future rewards. We do not lose

any generality by applying a discount rate to the future rewards. Because there is no re-

ward associated with remaining in the absorbing states, it can be shown that there exists a

stationary optimal policy for the discounted [13, 125], as well as the undiscounted case [125].

We assume that the transition probabilities and rewards are stationary. The following

notation is common to all three models.

Notation

• T = {1, ...∞}: time periods.

• λ: the discount factor, 0 ≤ λ ≤ 1.

• ht: patient’s health level at time t ∈ T . We assume that there exists a complete or-

dering of the health states. We use the MELD scores to represent patient health in our

computational experiments, which satisfies this assumption.

• `t: quality of the liver offered to the patient at time t ∈ T . We assume that there

exists a complete ordering of the liver offer states. The liver state definition employed

in our computational experiments satisfies this assumption as a result of our method for

classification of the livers, which is described in Section 4.4.

• st = (ht, `t): the state of the process at time t ∈ T .

• SH : health state space, i.e. SH = {1, . . . , H + 1}, where H + 1 represents death.

• SL: organ state space, i.e. SL = {1, . . . , L + 1}, where L + 1 represents the case that no

liver is offered.

• S: state space, i.e. S = SH ⊗ SL.

• `LD: living-donor liver quality.
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• a∗(s): optimal decision when the state is s, which represents accepting the cadaveric

offer or equivalently quitting the process if it is ‘TC’, accepting the living-donor liver

or equivalently quitting the process if it is ‘TLD’ and waiting for one more period or

equivalently continuing the process if it equals ‘W’.

• Q(h, `, TC) = total expected discounted reward of the patient when the patient has health

level h and a liver described by ` is transplanted.

• r(h, `, TC): total expected discounted reward if the patient accepts the liver described by

` while in health state h.

r(h, `, TC) =





0, if h = H + 1 or ` = L + 1,

Q(h, `, TC), otherwise.

Note that r(h, `, TC) is also a function of the liver quality and patient type, i.e. gender

and blood type. However, since we assume these factors are fixed, we suppress this

dependency for notational convenience.

• r(h, `LD, TLD): total expected discounted post-transplant reward that the patient accrues

when she is transplanted with the living donor and her health is h at the time of the

transplantation. Note that r(H + 1, `LD, TLD) = 0.

• ρ(h): the penalty (disutility) associated with using the living donor when the patient is

in health state h at the time of transplantation. We assume that the penalty function

depends on patient health, because the utility function of a very sick patient might be

different than that of a very healthy patient.

• r′(h, `LD, TLD): net total expected discounted post-transplant reward that the patient

accrues when she is transplanted with the living donor and her health is h at the time

of the transplantation, i.e. r′(h, `LD, TLD) ≡ r(h, `LD, TLD)− ρ(h).

• r(h,W ): expected intermediate reward accrued in the current time period when patient

health is h and she chooses to wait. Note that r(H + 1,W ) = 0.

• H(h′|h): probability that the patient will be in state h′ at time t+1 given that she is in

health state h at time t and the liver is not transplanted at time t. H(h′|H +1) = 0, h′ ∈
{1, . . . , H} and H(H + 1|H + 1) = 1.

• H: health transition probability matrix H = [H(h′|h)], h, h′ ∈ SH .
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• L(`|h): probability that the patient will receive a liver offer ` at time t given that she is

in state h at time t.

• L: organ arrival transition probability matrix L = [L(`|h)], h ∈ SH and ` ∈ SL.

• P : transition probability matrix P = [P(s′|s)], s ∈ S, where P(s′ = (h′, `′)|s = (h, `)) =

H(h′|h) · L(`|h′), h, h′ ∈ SH and `, `′ ∈ SL.

• V (h, `): maximum total expected discounted reward that the patient can attain when

her current health is h and the current liver offered is `.

• V i(s): the value associated with state s at the ith iteration of the value iteration algo-

rithm.

The above definitions imply that the probability of receiving a liver of type ` at time

t + 1 depends only on the health state at time t and is independent of the type of liver

offered at time t. Note also that r(h, `, TC) and r(h, `LD, TLD) account for the possibility

of death during the transplant operation. Furthermore, because patients often need to be

retransplanted due to a number of severe post-transplant complications [16, 50, 163], we

incorporate the risk and the reward of retransplantation into the post-transplant reward

functions.

Figure 3.1 shows the state-transition diagram of the MDP. The optimal solution to this

problem can be obtained by solving the following set of recursive equations [125]:

V (h, `) = max

{
r′(h, `LD, TLD), r(h, `, TC), r(h, W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `)V (h′, `′)

}
,

h = 1, . . . , H, ` = 1, . . . , L + 1,(3.1)

where r′(h, `LD, TLD) = r(h, `LD, TLD)− ρ(h).

The next chapter describes the sources of the data that we use in our computational

tests and three supplementary models that we use to calculate the transition probabilities

and the terminal rewards.
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Figure 3.1: State-Transition Diagram of the General Model∗

∗The labels a(h, `),P(j|h, `),r(h, `, a) on each arc represent the action taken at state (h, `), the probability
that the patient will move to state j when her current state is (h, `) and the reward obtained by taking
action a in state (h, `), respectively. Note that this figure does not show all possible transitions.
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4.0 DATA SOURCES AND SUPPLEMENTARY MODELS

This research involves estimating model parameters from clinical data. The parameters that

must be estimated are H, r(h, `LD, TLD), r(h, `, TC) and L. In this chapter, we describe the

sources of the data and the supplementary models that are used to generate inputs to our

decision models. Section 4.1 presents the sources and characteristics of the real clinical data

that are used in our computational experiments. In Section 4.2, we describe the methodology

that is used to analyze the data and estimate the H. Section 4.3 summarizes the survival

model that is used to estimate r(h, `LD, TLD) and r(h, `, TC). Section 4.4 describes the

computation of organ refusal rates and the estimation of L.

4.1 DATA SOURCES

The data come from four sources. The first, UNOS1, is a publicly available data set from

UNOS that covers 28,717 patients listed for their first liver transplant between 1990 and 1996

and contains data through 1999. UNOS1 is used to determine the post-transplant survival

rates. It cannot be used in the development of our model of disease progression because

UNOS records included results of laboratory testing done only at the time of transplantation.

The second data set, UPMC, comes from The Thomas E. Starzl Transplantation Institute

at the University of Pittsburgh Medical Center (UPMC), one of the largest liver transplant

centers in the world. Unlike the UNOS data sets, this data set is not publicly available.

UPMC is used to estimate the H matrix as described in Section 4.2 and Chapter 5. We

examine the records of 3,009 patients who had ESLD and joined the waiting list between

1991 and 2000. After we exclude patients with incomplete data at listing and patients seen
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only once at UPMC, we are left with a sample of 1,997 individual patients. For each patient

our data set contains demographic and clinical data, including the type of liver disease that

led to ESLD, the results of all laboratory testing done at UPMC, the location of the patient

at the time of laboratory testing (at home, in a general hospital ward, or in the intensive

care unit [ICU]), information concerning the occurrence of death before transplantation, and

information about the existence of clinical covariates such as the presence or absence of

encephalopathy.

The third data set, UNOS2, was collected between February 27, 2002 and May 31,

2003. We calculate the organ arrival probabilities using UNOS2. The first part of UNOS2

includes information for 25,810 patients waiting for a liver transplant such as region, MELD

scores, age, blood type, gender, race, and disease type. The second part of UNOS2 covers

information for the cadaveric organ offers such as the patients that each organ has been

offered to, the date of the offer, as well as information for the cadaveric donor such as

gender, cause of death, age, gender and region number.

The fourth data set, UNOS3, was collected between February 27, 2002 and April 30,

2003. We compute the organ refusal rate using UNOS3. This data set summarizes statistics

regarding the total number of organ offers and the total number of refusals by recipient

MELD score. Four categories for recipient MELD scores are reported: (1) MELD < 11; (2)

MELD 11 to 18; (c) MELD 19 to 24; (d) MELD > 25. Unlike the third data set, this data

set does not include information about the livers that are not used for transplantation.

4.2 NATURAL HISTORY MODEL

In this section, we describe the methodology that we use to estimateH. Most of this section is

from Alagoz et al. [2, 3] and Bryce et al [21]. As described in Section 2.3, previous simulation

models of the transplant system that have been used to evaluate allocation policies a priori

are inadequate because they fail to estimate disease progression on the basis of clinical

or biological factors [37, 124]. Instead, these models estimate disease progression entirely

through probability distributions that describe how patients transition from one specific

priority status to another.
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Estimation of disease progression requires tracking individual patients and updating

natural history at any point in time on the basis of biological criteria. A possible method

for tracking individual natural histories is to use statistical techniques such as regression

to determine how an individual’s clinical characteristics change over time. The problem

with this approach is that the modeling of individual natural histories from population

averages smoothes out the chaotic behavior of specific diseases seen in actual patients. For

example, the clinical course of ESLD is often unpredictable and characterized by acute

exacerbations and recoveries. Therefore, any simulation model that represents individual

patients with ESLD must have the ability to replicate the occasionally chaotic time course

of the disease. Methods used to predict the natural history of disease in individual simulation

models should balance two important considerations: they should allow for chaotic paths

and acute exacerbations in individual patients while still preserving the statistical properties

of the natural history in the patient population over time.

This section describes development and validation of our empiric, quantitative natural

history model (NHM) of ESLD that estimates the natural history of ESLD and provides

quantitative clinical histories of individual patients over time.

4.2.1 The Model

For patients with ESLD, the clinical condition at a given time (t) can be represented by

a vector of clinical covariates (
−→
Xt) that are associated with liver function or transplant

success. In our model, this vector contains laboratory values (bilirubin, creatinine, and

albumin levels and prothrombin time) and clinical conditions (the presence or absence of

ascites, encephalopathy, and mechanical ventilation).

In general, we define a quantitative NHM as a model with the ability to predict the value

of a clinical covariate vector at time t + ∆t given the values of the vector at time t:

−→
X t+∆t = f(

−→
X t, ∆t),

where
−→
X t is the vector of clinical covariates at time t and

−→
X t+∆t is the vector of these values

∆t in the future.
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The function f should satisfy several conditions. First, the natural history of disease in

individual simulated patients should replicate the stochastic and sometimes chaotic nature of

the disease seen in real patients. Second, the natural history of disease in the simulated cohort

should mirror the average changes in laboratory values that are observed in a cohort of real

patients over a given period of time. Third, the correlations between clinical characteristics

and laboratory values in the model should mirror the correlations observed in real patients.

Fourth, the pre-transplant survival rates in the model should be similar to those observed in

real patients.

Standard statistical estimation techniques are not well suited to satisfy these require-

ments. For example, regression techniques summarize clinical experiences as the average

change over time and eliminate the stochastic nature of real clinical histories. Although

time series analysis can create waxing and waning levels of a single variable over time, this

type of analysis does not provide a mechanism for simultaneously predicting the time course

of multiple correlated variables. Moreover, it does not offer a mechanism for dealing with

the data sets that have an inherent sampling bias, which is caused by the oversampling of

laboratory values in patients when they are severely ill and undersampling in patients when

they are less ill.

The NHM reduces this sampling bias by interpolating additional laboratory values be-

tween the existing (real) laboratory values using cubic splines by the method shown in the

top portion of Figure 4.1. A function f is called a cubic spline on [x1, xN ] if the following

criteria are met: the function is defined on [x1, xN ]; the function f is continuous and its first

and second derivatives exist, both being continuous on the points (knots) of the cubic spline

f ; and the knots are such that x1 < x2 < . . . < xN , where f is a polynomial with a degree

less than or equal to 3 on each subinterval (xj, xj+1), j = 1, . . . , N − 1 [69].

The spline function is estimated by minimizing the penalized least-squares function [69],

which consists of two terms: the penalty function and the sum of squares between the

observed and expected data points. The addition of the penalty function ensures that the

estimated spline function gives the best compromise between its goodness of fit to the data

(as quantified by the sum of squares between the observed and expected data points) and

its smoothness. The penalty term also is used to assure that the values of the splines do not
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exceed certain known limits: for each laboratory value there are minimum possible values,

and for some, maximum plausible values, and the simulation routine should only be able to

create values between those limits. This technique is called the smoothing spline method.

For more information on cubic spline functions, see [69].

For each patient and each laboratory value in the sample, the NHM creates a cubic spline.

In the top panel of Figure 4.1, the solid line forming the curve represents the spline, the solid

circles represent the observed (actual) bilirubin levels, and hollow circles represent bilirubin

levels that are interpolated according to the fitted spline. We use penalized cubic splines

with a variable number of knots, so the spline is not required to go through each actual data

point. Because interpolated values are calculated at a standard time interval, they provide

a large number of time points to sample from, and they reduce the bias of having more

observations at a time when patients are ill. Each spline is then decomposed into triplets of

three sequential laboratory values (middle panel of Figure 4.1), and merged with the triplets

from the same times of the other laboratory values and clinical characteristics (lower panel of

Figure 4.1). An individual cubic spline is created for each type of laboratory value (bilirubin,

creatinine, and albumin level and prothrombin time) in each patient. The splines are then

sampled at regular intervals to obtain a complete longitudinal history of each patient [69].

The spline routines in our model use an individual patient’s first and last observed values

for a given laboratory test (i.e., the first and last bilirubin levels) as anchors. At each anchor

point, the observed and spline-derived values are identical. Because the pace of disease

is generally faster when patients are hospitalized, our model samples the splines at daily

intervals for patients in the hospital and in the ICU, and it samples the splines at monthly

intervals for patients at home. From the spline of laboratory values for a given parameter

(i.e., bilirubin levels), the model selects each set of three sequential values and converts them

into a time triplet (t1 − t2 − t3 triplet), as shown in the middle portion of Figure 4.1. This

process is repeated for the other laboratory parameters (i.e., creatinine and albumin levels

and prothrombin time) so the model will have time triplets in the same time sequence for

all four laboratory parameters, as shown in the bottom portion of Figure 4.1.

Next, the model stratifies the time triplets by liver disease group and patient location.

Table 4.1 shows the number of individual patients and the number of spline-interpolated
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t13

The cubic spline is decomposed into 
multiple t1-t2-t3 triplets.

The t1 -t2-t3 triplets are merged with 
equivalent times from all other laboratory 
values and clinical characteristics

Time 2
t2
t3
t4
•
•
•

t14

Time 3
t3
t4
t5
•
•
•

t15

Bilirubin Creatinine Albumin PT Location Enceph Status
t 1 t 2 t 3 t 1 t 2 t 3 t 1 t 2 t 3 t 1 t 2 t 3 Home No Alive

t 2 t 3 t 4 t 2 t 3 t 4 t 2 t 3 t 4 t 2 t 3 t 4 Home No Alive

t 3 t 4 t 5 t 3 t 4 t 5 t 3 t 4 t 5 t 3 t 4 t 5 Hospital Yes Alive. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .
t n-2 t n-1 t n t n-2 t n-1 t n t n-2 t n-1 t n t n-2 t n-1 t n ICU Yes Dead

Figure 4.1: Interpolation of Existing Data with Spline Functions [3]∗

∗PT indicates prothrombin time; Enceph, encephalopathy; and ICU, intensive care unit.
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time triplets generated for each disease and location. The data come from the sources that

are described in Section 4.1. Sample size prohibits our incorporating all of the types of

liver disease in our model, so we aggregate the diseases into five groups: cirrhotic diseases,

hepatitis infections, acute liver diseases, cancers, and other liver diseases. These groups were

discussed and finalized by the National Clinical Oversight Committee. The diseases included

in each group and the members of the Oversight Committee are shown in Table A.1 and

Appendix B, respectively. We estimate a disease-specificH by using these spline-interpolated

time triplets that are stratified by liver disease group.

4.2.2 A Simulation Model to Predict the Progression of ESLD

Figure 4.2 describes the method for predicting the progression of disease in an index patient

with the following laboratory values at the current time (time t): bilirubin level of 8.6

mg/dL; creatinine level of 0.4 mg/dL; albumin level of 1.7 g/dL; and prothrombin time of

24.0 seconds. The values in the previous period (time t-1) determine whether the laboratory

values are improving, worsening, or essentially staying the same. To estimate the patient’s

laboratory values in the next period (time t+1), the model searches the entire list of patients

within the same disease group and location to find the first patient who is similar to the

index patient in terms of laboratory values and clinical characteristics. The model uses a

multivariate nearness measure (defined below) to assess how “near” each patient is to the

values of the index patient. When a sufficiently similar patient is found, the model assigns

this patient’s time t3 laboratory values to the index patient. These values then become the

index patient’s new time t values, and the process is repeated the next time the patient’s

laboratory values need to be updated. Note that in the figure, t1 represents time t-1, t2

represents time t and t3 represents time t+1 for a given observation.

When searching a database for similar patients, the NHM considers a laboratory value

to be “near” only if it falls within laboratory-specific upper and lower limits determined by a

survey of gastroenterologists and liver transplant intensive care physicians at the University

of Pittsburgh. For various levels of each laboratory test, the physicians were asked how much

higher or lower the laboratory value would have to be before it would be clinically relevant
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Table 4.1: Number of Spline-interpolated Time Triplets [3]

Disease Group and Location Number of Patients Number of Interpolated Triplets

Patients with cirrhotic diseases

At home 869 11,161

In a hospital general ward 834 2,150

In the intensive care unit 493 3,013

Patients with hepatitis infections

At home 590 7,892

In a hospital general ward 533 8,901

In the intensive care unit 314 1,371

Patients with acute liver diseases

At home 41 148

In a hospital general ward 69 1,016

In the intensive care unit 59 454

Patients with cancers

At home 106 1,090

In a hospital general ward 115 2,260

In the intensive care unit 40 294

Patients with other liver diseases

At home 328 4,467

In a hospital general ward 308 6,147

In the intensive care unit 192 1,297

All disease groups and locations 4,891∗ 51,661

∗Column sums to more than the number of unique patients in the cohort as each patient contributes a record
for each location (at home, in general hospital ward, and in ICU).
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improving improving improvingno change

Index patient, time t:

Search database within same disease and location until an 
observation that is “near” the current index patient is found:

Use the “near” patient’s t+1 values as the new values at  the new time t:

pt ID Bilirubin Creatinine Albumin PT
t-1 t t+1 t-1 t t+1 t-1 t t+1 t-1 t t+1 t t+1 t t+1 t t+1

Index 9.1 8.6 ? 0.3 0.4 ? 1.6 1.7 ? 30.2 24.0 ? 2 ? NO ? Alive ?

Location Enceph Status

pt ID Bilirubin Creatinine Albumin PT
t-1 t t+1 t-1 t t+1 t-1 t t+1 t-1 t t+1 t t+1 t t+1 t t+1

Index 9.1 8.6 7.1 0.3 0.4 0.8 1.6 1.7 2.1 30.2 24.0 15.1 2 2 NO No Alive Alive

Location Enceph Status

pt ID Bilirubin Creatinine Albumin PT
t-1 t t+1 t-1 t t+1 t-1 t t+1 t-1 t t+1 t t+1 t t+1 t t+1

Index 8.6 7.1 ? 0.4 0.8 ? 1.7 2.1 ? 24.0 15.1 ? 2 ? NO ? Alive ?

Location Enceph Status

Repeat the process for the next time t:

pt ID Bilirubin Creatinine Albumin PT
t 1 t 2 t 3 t 1 t 2 t 3 t 1 t 2 t 3 t 1 t 2 t 3 t 2 t 3 t 2 t 3 t 2 t 3

t-1 t t+1 t-1 t t+1 t-1 t t+1 t-1 t t+1 t t+1 t t+1 t t+1. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .
1423 7.0 7.3 7.5 4.0 3.1 2.9 2.1 2.0 2.1 16.0 14.0 18.0 2 2 NO NO Alive Alive

45 5.2 7.0 11.2 2.0 1.6 2.3 4.3 4.2 4.0 14.5 15.0 19.0 2 1 NO YES Alive Alive
1423 3.2 3.2 2.9 1.2 1.9 2.7 4.6 4.5 4.2 12.0 12.5 13.0 2 2 NO NO Alive Alive
673 8.8 8.5 7.1 0.5 0.6 0.8 1.4 1.6 2.1 28.0 19.2 15.1 2 2 NO NO Alive Alive
713 3.0 3.1 3.1 2.1 2.0 2.3 4.2 3.8 1.0 17.0 16.2 24.8 2 2 NO NO Alive Alive

1527 6.0 5.3 5.2 0.9 0.8 0.9 3.9 4.0 3.8 12.0 12.4 13.2 2 2 NO NO Alive Alive. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .

Location Enceph Status

Figure 4.2: Updating a Patient’s Health [3]∗

∗pt ID indicates patient identification number; PT, prothrombin time; and Enceph, encephalopathy.
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Figure 4.3: “Nearness” Criteria for the Four Laboratory Values Included in the Model [3]
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to them in caring for the patient. Because some panel members did not provide values for all

levels of the indicated laboratory test, the upper and lower limits are not always monotonic

in increasing value. The laboratory values are aggregated and limits average to render the

limits smoother and continuous. The results of this survey for the four laboratory values are

presented in Figure 4.3. As expected, the limits widen as the level of the laboratory values

increases. For example, a given change in the creatinine level is more important when the

level is 2.0 mg/dL than when it is 10.0 mg/dL.

The NHM has flexibility in deciding how many of the four laboratory parameters must

be “near” to consider the circumstances of two patients to be similar. It also has the option

of searching for matches in terms only of the level of laboratory values (a level-based search,

or LBS) or searching for matches in terms of both the level and direction of change from the

prior time (a direction-based search, or DBS).

We formulate two different DBS strategies. DBS1 seeks a strict match in which all

four laboratory values must be both at a similar level and moving in the same direction

to be considered close. DBS2 is a less restrictive match in which patients are classified

as improving, worsening, or remaining stable, depending on the direction of change in the

majority of their laboratory values. In DBS2, a patient is classified as getting worse if three or

more laboratory values are getting worse. A patient is classified as being in stable condition

if two laboratory values are worsening and the other two are improving. All remaining

patients are categorized as getting better. DBS2 assumes that the index patient is moving

in the same direction with the “sufficiently close” patient if both patients are classified in

the same category.

These search methods can easily be extended to include other quantitative and qualitative

clinical criteria for determining the “sufficiently close” patient. If the search fails to find a

patient who meets the nearness criteria, the criteria are expanded and the search is repeated.

The NHM has two mechanisms in place to calculate pre-transplant death. The first

mechanism is empiric. Because the vital status of each patient at each observation time

is recorded, patients who die while waiting for a transplant will have a death indicator in

the t3 position of their last time triplet for location. Thus, if the patient who is found to

be “sufficiently close” to the index patient died in the next time period, the index patient
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is assumed to be dead at time t+1 as well. This approach, the NH death mechanism, will

work well only if the actual data set records all of the deaths. Since we used clinical data

taken only from our own hospital clinical information system, and because many of our

patients receive their primary care at other institutions and are therefore lost to follow-up,

our database may not include records of all the deaths, and may therefore underestimate the

actual number of deaths.

The second mechanism uses the characteristics of the index patient at each time point

to calculate the probability of death during the next time period. Specifically, it uses scores

derived from MELD. Using the MELD three-month death probabilities, we first compute

the monthly and daily probabilities of death. Then at each time period t, we estimate the

probability that the index patient (with his or her particular MELD score) would be dead

at time t+1. If the patient is not predicted to be dead at time t+1, then the NHM looks for

a “sufficiently close” patient who is alive and the model proceeds as usual.

4.2.3 Computational Tests

We conduct some computational experiments to validate the NHM. The face validity of the

NHM is supported by examination of the model output. Figure 4.4 illustrates the predicted

longitudinal histories of two hypothetical patients who initially had identical laboratory

values for all four laboratory parameters. Each patient experiences a different history during

the course of liver disease. For instance, Patient 1 is stable and out of the hospital for almost

a year, is admitted for an exacerbation around day 300, improves and leaves the hospital only

to be readmitted for another exacerbation three months later. The patient’s liver diseases

at this point continue to worsen, and the patient is admitted to the hospital again on day

678 and remains in the hospital until transplant on day 706. In contrast, Patient 2 starts in

the hospital, but has a stable course for over three years, when an acute exacerbation and

worsening of bilirubin brings the patient back into the hospital. The patient improves, leaves

the hospital only to be readmitted on day 1104, and dies during that hospitalization. A detail

of the final 16-day hospitalization is shown in the lowest panel: the patient is admitted to

the ICU, improved and is moved to the floor, but has acute deterioration between admission
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days 10 and 11, is moved back to the ICU, and dies on day 16. Note that these are only

example trajectories for liver patients generated by the simulation model; the NHM is able

to produce a very large number of individual natural histories.

We simulate patients initially equivalent to patients in the UPMC database using the

NHM with all three search techniques (LBS, DBS1, and DBS2) and two different death

mechanisms (the NH mechanism and the MELD mechanism), and then we compare the

simulation results with the actual UPMC results. Specifically, we compare the following: (1)

the average change in laboratory values over time in the simulated cohort versus the UPMC

cohort, (2) the correlations between the laboratory values in the simulated cohort versus

the UPMC cohort, and (3) the predicted survival rates in the simulated cohort versus the

observed survival rates in the UPMC cohort and the national UNOS cohort.

Although we model the results of the disease progression mechanism and the death mech-

anisms for all five disease groups, here we present the results for only two of these groups:

(1) cirrhotic diseases, an example of a chronic liver disease category, which includes primary

biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and autoimmune dis-

orders, and (2) all acute liver diseases.

Tables 4.2 and 4.3 show the average change in laboratory values of the actual UPMC

cohort and the simulated cohort for patients with cirrhotic diseases and patients with acute

liver disease, respectively. For purposes of comparison, neither the UPMC cohort nor the

simulated cohort contain data from patients who had a transplant before the duration of

the simulation is exceeded. For example, if a patient had a transplant in month 4, that

patient’s change in laboratory values would be included in the 3-month cohort, but not

the 6-month or 1-year cohort. Therefore, the initial average laboratory values are different

for each time horizon. Note also that the change in laboratory values at time t do not

include the laboratory values of the patients who died before time t. The table represents

only the natural history of those patients who did not die and were not transplanted in the

time period. The average change is generally similar in the two cohorts at 3-, 6-, and 12-

months; and any differences that are noted between the values in both cohorts are deemed

clinically insignificant according to the criteria used to determine if a particular laboratory

value is clinically “near” or not. No single search method dominates the others in producing
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Figure 4.4: Longitudinal Histories of Two Simulated Patients [3]
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Table 4.2: Average Change in Laboratory Values of Patients with Cirrhotic Diseases [3]∗

Simulated Cohort

Disease Group and UPMC

Laboratory Value Cohort LBS DBS1 DBS2

Patients with cirrhotic diseases

Bilirubin level, mg/dL

3 months 4.2 4.5 2.9 4.8

6 months 2.6 4.4 2.7 4.6

12 months 2.0 4.5 2.4 4.6

Creatinine level, mg/dL

3 months 1.4 1.0 1.0 1.0

6 months 1.3 1.0 1.0 1.0

12 months 1.3 1.0 0.9 0.9

Albumin level, g/dL

3 months 3.4 3.2 3.3 3.1

6 months 3.4 3.2 3.3 3.2

12 months 3.3 3.2 3.3 3.2

Prothrombin time, sec

3 months 14.3 14.2 13.6 14.4

6 months 13.5 14.2 13.5 14.2

12 months 13.3 14.2 13.3 14.2

∗UPMC indicates University of Pittsburgh Medical Center; LBS, level-based search; DBS1, restrictive
direction-based search; and DBS2, less restrictive direction-based search.
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Table 4.3: Average Change in Laboratory Values of Patients with Acute Liver Disease [3]∗

Simulated Cohort

Disease Group and UPMC

Laboratory Value Cohort LBS DBS1 DBS2

Patients with acute liver disease

Bilirubin level, mg/dL

3 months 4.3 4.3 1.4 7.2

6 months 3.1 3.9 1.8 6.6

12 months 3.7 3.8 1.9 6.0

Creatinine level, mg/dL

3 months 1.3 1.2 1.0 1.4

6 months 1.1 1.2 1.0 1.4

12 months 0.8 1.2 0.9 1.5

Albumin level, g/dL

3 months 3.6 3.2 3.5 3.3

6 months 3.2 3.3 3.4 3.4

12 months 3.2 3.3 3.4 3.4

Prothrombin time, sec

3 months 14.4 14.6 12.7 14.1

6 months 13.8 14.4 13.1 14.0

12 months 13.3 14.4 13.2 13.9

∗UPMC indicates University of Pittsburgh Medical Center; LBS, level-based search; DBS1, restrictive
direction-based search; and DBS2, less restrictive direction-based search.
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the closest laboratory value changes across disease groups. The performance of the various

search methods is not affected by the duration of the simulation. The performance does vary,

however, across disease groups, with better results seen in patients with acute liver diseases

than in those with cirrhotic diseases. In general, the average actual UPMC laboratory

values improve over time because sicker patients with worse laboratory values die or are

transplanted and are removed from the cohort.

Table 4.4 shows the correlations between the laboratory values in the UPMC cohort and

the simulated cohort of patients with cirrhotic diseases. The simulated natural histories are

obtained using LBS and DBS1, DBS2 with the NH death mechanism. Correlations between

clinical variables found in the actual data set are maintained in the simulated one.

Figure 4.5 presents 3-, 6-, and 12-month survival rates for the patients in the UPMC

cohort with cirrhotic disease used to calibrate the natural history model, and the survival

rates of simulated patients using the LBS, DBS1 and DBS2 strategies. The cohort and

the simulations contain only patients who are not transplanted during those intervals. We

also provide comparison to the pre-transplant survival rates found in the UNOS1 data set,

although there is no guarantee that the initial clinical conditions are the same, as initial

laboratories at time of listing are not available in the UNOS cohort for that time period.

The top panel of Figure 4.5 compares actual survival to simulated survival using the NH

death mechanism and the lower panel of Figure 4.5 presents the same results when the

simulation uses predicted survival from the MELD score. The simulated results are the

average survival at each time point of 100 iterations of simulating the natural history of

602 patients, representing the same size cohort from the UPMC experience. The simulation

that closely matches the actual survival when using the NH (empiric) death mechanism and

when determining “closeness” with either the LBS or DBS1, DBS2 does not well replicate

actual experience. However, when the MELD score-derived death rates are used to predict

mortality, all search strategies markedly overestimate pre-transplant death. Regardless of

the search technique used, the NH death mechanism produces fewer deaths than does the

MELD death mechanism for all of the disease groups (data not shown). As the duration of

the simulation increases, the gap grows between the survival rate associated with the NH

death mechanism and the survival rate associated with the MELD death mechanism. This
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Table 4.4: Correlation of Laboratory Values of Patients with Cirrhotic Diseases [3]∗

Correlation of Laboratory Values

Cohort and Laboratory Bilirubin Creatinine Albumin Prothrombin

Value Level Level Level Time

UPMC Cohort

Bilirubin level 1

Creatinine level 0.329 1

Albumin level -0.100 -0.006 1

Prothrombin time 0.389 0.119 -0.273 1

LBS Simulated Cohort

Bilirubin level 1

Creatinine level 0.288 1

Albumin level -0.072 0.024 1

Prothrombin time 0.469 0.198 -0.257 1

DBS1 Simulated Cohort

Bilirubin level 1

Creatinine level 0.332 1

Albumin level -0.231 -0.024 1

Prothrombin time 0.494 0.139 -0.431 1

DBS2 Simulated Cohort

Bilirubin level 1

Creatinine level 0.409 1

Albumin level -0.005 0.161 1

Prothrombin time 0.432 0.201 -0.140 1

∗UPMC indicates University of Pittsburgh Medical Center; LBS, level-based search; DBS1, restrictive
direction-based search; and DBS2, less restrictive direction-based search.
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Figure 4.5: Survival Rates in the Simulated and Actual Cohorts [3]
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is not surprising and relates to the MELD score itself, which was designed only to predict

3-month mortality [88, 103, 162].

4.2.4 Conclusions and Limitations

The NHM described in this section uses cubic-spline-estimated data from real patients await-

ing liver transplantation at UPMC to simulate the laboratory values and clinical status of

individual candidates over time, and thereby provides a quantitative natural history of each

transplant candidate’s disease. Subsequent validity checks show that the NHM is able to

simulate the types of acute exacerbations and chaotic disease trajectories that are seen in

individual patients, and it is also able to preserve the overall statistical properties of the

natural history of ESLD seen in the cohort of real patients over time. Moreover, the NHM

is able to predict pre-transplant survival rates that are statistically similar to the rates ob-

served in the UPMC cohort and in the national UNOS cohort. It is interesting that the

MELD score, used by UNOS to predict the 3-month risk of death while awaiting transplant,

appears to be a poor predictor of long-term survival.

Two factors may affect the generalizability of the NHM. First, because of the intensive

data requirements of our model, we are restricted to using data from a single, major university

center. Second, it is impossible to directly verify the accuracy of our spline-derived laboratory

values. The decision to use data from UPMC and to develop the interval-based spline method

both arose from the fact that currently there is no large, multicenter study that collects

routine, interval-based data on the natural history of liver disease. UNOS originally collected

very little clinical data on candidates at the time of their registration for a transplant,

although it began to collect more data after it adopted the MELD criteria for liver allocation

in 2002.

Like the current databases for ESLD, the databases for many other diseases are incom-

plete. We believe that the framework developed in our model for ESLD can be used to

generate natural histories for individual patients with other diseases.
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4.3 POST-TRANSPLANT SURVIVAL MODEL

Most discussion in this section is from the paper by Roberts et al. [127] and the unpublished

dissertation of Valenta [151]. Roberts et al. [127] describes a disease-specific survival model

that predicts post-transplant survival rates of an ESLD patient given a set of clinical char-

acteristics. The UNOS classification scheme includes more than sixty codes for the ESLD,

many of which include few patients for a disease-specific analysis. Therefore, they use the

disease classification described in Table A.1.

They first ask the National Oversight Committee to determine the set of candidate

covariates that might affect the survival. They then test each candidate variable in single

variable analyses, using a log-rank test or Cox proportional hazards model. They select those

variables whose association with outcome had a significance level of 0.1 or smaller. They use

these variables to construct multivariable survival models. Finally, they construct disease-

specific survival estimates using a Cox proportional hazards regression model [127, 151]. We

use the factors that affect post-transplant survival rates in our computational experiments.

The factors that have an effect on post-transplant survival are listed in Table 4.5.

4.4 COMPUTATION OF THE ORGAN REFUSAL RATES AND ARRIVAL

PROBABILITIES

In this section, we calculate the overall organ refusal rates using real data and show that

the decision problem described in this dissertation is faced by many liver patients. We use

the UNOS3 data set to estimate the organ refusal/declination/rejection rates. Because the

UNOS3 includes only the cadaveric organs that have been transplanted, the refusal rate can

be calculated by simply dividing the total number of accepted offers with the total number

of liver transplanted. However, as Table 1.1 shows, a significant portion of all organs are

wasted. Therefore, we report the refusal rates relative to the total number of offered organs

as well as the total number of cadaveric transplants. For this purpose, we estimate the

number of livers that are donated between February 27, 2002 and April 30, 2003 using the

UNOS web site [149]. When an organ is declined by different patients multiple times, each
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Table 4.5: Factors that Affect Post-transplant Survival

Donor Characteristics Recipient Characteristics

Gender1 Gender1

Age Age

CMVGR2 CMVGR2

Blood type3 Blood type3

Race4 Mechanical ventilator5

Prior transplant6

Encephalopathy7

Disease group8

Bilirubin level

Albumin level

Creatinine level

1 Binary variable that indicates whether the donor gender and the recipient gender are the same
or not
2 Binary variable that indicates whether the person has CMVGR (Cytomegalovirus) or not.
3 Binary variable that indicates whether the donor blood type and the recipient blood type match
or not
4 Binary variable that indicates whether the donor is white or not
5 Binary variable that indicates whether the patient is on the mechanical ventilator or not
6 Binary variable that indicates whether the patient had another organ transplant before or not
7 Binary variable that indicates whether the patient has encephalopathy, a situation that occurs
when toxic substances accumulate in the blood or not
8 Integer variable that shows the disease group of the patient
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Table 4.6: Liver Refusal Rates by Recipient Status∗

Patient Status Refusal Rate (in %)

MELD < 11 85

MELD 11 to 18 66

MELD 19 to 24 62

MELD > 25 66

∗This table reports the refusal rates with respect to the total number of cadaveric liver transplants.

refusal is counted as a separate offer and refusal. Our calculations show that 60% of all liver

offers are refused by the patients/transplant surgeons. This figure rises to 68% when we

consider only organs that are used for transplantation.

Table 4.6 reports the organ refusal rates by recipient MELD score with respect to the

number of cadaveric liver transplantations. As can be seen from the table, patients with the

lowest MELD scores have the highest refusal rates. This result can be explained intuitively

as follows: the current liver allocation system implies that the sicker the patient is, the more

likely it is that she will be near the “top” of the list. As a result, patients with low MELD

scores typically receive lower quality organs than patients with high MELD scores. Note

also that as the MELD score increases, the risk of death increases. Therefore, a patient with

a low MELD score is more selective than a patient with a high MELD score. Intuitively,

the refusal rate for the patients with a MELD score greater than 25 may be expected to be

the lowest. However, this is not the case in Table 4.6, which may have occurred due to the

sparsity of the data.

We use the UNOS2 data set to estimate L. The estimation of L includes the discretiza-

tion of the liver quality, the classification of the liver types and the computation of the organ

arrival rates by recipient MELD score. The list of the donor characteristics that affect the

post-transplant life expectancy is given in Section 4.3, which includes five donor character-

istics. However, because the UNOS2 data set includes information about only the age, the

race and the gender of the donor, we use these three factors to determine the quality of
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the liver. We define seven categories for the donor age groups: age < 20, 20 ≤ age < 30,

30 ≤ age < 40, 40 ≤ age < 50, 50 ≤ age <60, 60 ≤ age < 70 and age ≥ 70. The donor

race consists of two categories: white or not white. The donor gender either matches the

recipient’s gender or does not. As a result, there are a total of 28 categories for liver types.

We use the coefficients of the Cox proportional hazards model described in Section 4.3 to

order the liver types. Note that the ordering of the liver types depends on the gender of the

recipient. We consider only female patients throughout this study, therefore if the donor is a

female then there exists a gender match, otherwise there exists a gender mismatch. Because

the data are sparse, we group the liver types in two and use 14 categories for livers.

In order to find the organ arrival rates, we first compute the total number of days that

each patient waits at each MELD score. Then, we calculate the total number of liver offers

by recipient MELD score. Let Wi(h) and Oi(h, `) be the total number of days that patient

i waits in MELD score h and the total number of type ` liver offers that patient i receives

when her MELD score is h, respectively. Then L is obtained using the following formulas:

L(L + 1|h) = 1−Min

{
1,

∑
i

∑
` Oi(h, `)∑

i Wi(h)

}
, h ∈ SH

and

L(`|h) = [1− L(L + 1|h)]

∑
i Oi(h, `)∑

i

∑
` Oi(h, `)

, h ∈ SH and ` ∈ SL.

Note that because L depends highly on geographical factors, we estimate a national L
as well as 11 regional L’s. Note also that

P
i

P
` Oi(h,`)P

i Wi(h)
< 1 holds for all L matrices.
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5.0 LIVING-DONOR-ONLY MODEL

Much of this chapter is based on Alagoz et al. [4, 5]. The purpose of this chapter is to

determine the optimal timing of living-donor liver transplantation. That is, we seek a policy

describing the health states in which the living-donor liver transplantation should occur and

those where waiting is the optimal action.

We assume that the donor is indifferent to the timing of transplantation and that the

quality of the donated organ is fixed. We assume that there are a finite number of health

states and that a complete ordering over the health states exists. We also assume that the

patient is either ineligible or has decided not to receive cadaveric organ offers. Although

we assume that the decision maker is both indifferent to the timing of the resolution of

uncertainty and risk-neutral, we recognize that these assumptions do not necessarily hold

[32]. Considering these and other types of patient preference issues is left for future research.

For ease of presentation, we also assume that the disutility associated with using the living-

donor liver, ρ(h), is 0. Because we do not consider any cadaveric liver offers in this chapter,

considering the case in which ρ(h) > 0 changes only the r(h, `LD, TLD) function and therefore

does not affect the structural results in Section 5.2 but may change the control limits.

The optimal solution to this problem may appear to be straightforward, i.e. the patient

should have the transplant immediately once the living donor comes forward. Consider,

however, that there are two components of a patient’s total reward; pre-transplant reward

and post-transplant reward, and recall that the overall objective is to maximize the total

discounted reward rather than maximizing one of these components. When transplantation

occurs, the patient’s pre-transplant life ends and the post-transplant life starts. Therefore,

if transplantation occurs at an early stage of the disease, the patient may maximize her

post-transplant reward but not her total reward. Figure 5.1 shows such a case. The first
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Figure 5.1: An Example Showing Why Transplanting as Early as Possible is Suboptimal

graph shows the post-transplant survival rate for the transplant recipients when they receive

transplants at different stages of the liver disease. The second graph combines the post-

transplant survival rate with the pre-transplant survival rate. As can be seen from the

figure, although an early transplant results in the longest post-transplant survival rate, an

intermediate transplant may produce a longer survival rate.

To the best of our knowledge, there are no other studies that consider the optimal timing

of living-donor transplantation for any organs. The remainder of this chapter is organized

as follows. In Section 5.1, we present an MDP model of the problem. We derive several

structural properties of this MDP model and its optimal policy in Section 5.2. In Section

5.3, we present and discuss computational results. We draw some conclusions and discuss

future research directions in Section 5.4.

5.1 MODEL FORMULATION

This problem is a special case of the model presented in Chapter 3, i.e. L(L + 1|h) =

1, h ∈ SH . This is equivalent to assuming that the probability that the patient will receive a

cadaveric liver offer is 0. We then can drop the liver state from the optimality equation. Note
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that we will use r(h, `LD, TLD) throughout this chapter, because ρ(h) is assumed to be 0 for

all h ∈ SH .

Figure 5.2 shows the state-transition diagram of the MDP. The decision maker can take

one of two actions at state h, namely, “Transplant” or “Wait for one more decision epoch”.

If the patient chooses “Transplant” in health state h, she receives a reward of r(h, `LD, TLD),

quits the process and moves to absorbing state “Transplant” with probability 1. If the patient

chooses to “Wait” in health state h, then she receives an intermediate reward of r(h,W ) and

moves to health state h′ ∈ SH with probability H(h′|h). Let V (h) be the maximum total

expected discounted reward that the patient can attain when her current health is h. The

optimal solution to this problem can be obtained by solving the following set of recursive

equations [125]:

V (h) = max

{
r(h, `LD, TLD), r(h,W ) + λ

∑

h′∈SH

H(h′|h)V (h′)

}
, h = 1, . . . , H. (5.1)

5.2 STRUCTURAL PROPERTIES

In this section, we derive some structural properties of the living-donor-only model (LDM)

given by (5.1). Some of these properties provide closed-form solutions to the LDM under

certain assumptions on the reward function and the transition probability matrix. Our main

result establishes sufficient conditions that ensure the existence of an optimal control-limit

policy. A control-limit policy in this case is of the simple form: choose the “Transplant”

action and “Accept” the organ if and only if the observed health state is one of the states

j, j + 1, . . . , H, for the control limit j.

The following additional assumptions are made throughout:

(As1 ) The function r(h, `LD, TLD) is nonnegative and is nonincreasing in h. That is, as

the patient gets sicker her post-transplant discounted quality-adjusted expected life days do

not increase.

(As2 ) The function r(h,W ) is nonincreasing. That is, the expected intermediate reward

that the patient accrues is nonincreasing in h.
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Figure 5.2: State-Transition Diagram of the Living-Donor-Only Model∗

∗The labels a(h),H(j|h), r(h, a) on each arc represent the action taken at state h, the probability that the
patient will move to state j when her current state is h, and the reward obtained by taking action a in health
state h, respectively. Note that this figure does not show all possible transitions.
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Theorem 5.1 presents sufficient conditions under which it is optimal to choose “Trans-

plant” for all health states.

Theorem 5.1. If H is upper triangular, i.e. the patient health never improves, and

[1− λH(h|h)]r(h, `LD, TLD) ≥ r(h,W ) + λr(h + 1, `LD, TLD)[1−H(h|h)] for h = 1, ..., H,

(5.2)

then a∗(s)=‘TLD’ for all s ∈ SH .

Proof. The theorem holds for s = H because

V (H) = max{r(H, `LD, TLD), r(H, W ) +

λ(1−H(H|H))r(H + 1, `LD, TLD) + λH(H|H)V (H)}.

Since r(H + 1, `LD, TLD) = 0 and r(H, `LD, TLD) ≥ r(H,W )
1−λH(H|H)

, V (H) = r(H, `LD, TLD) and

a∗(H)=‘TLD’. Assume that a∗(s)=‘TLD’ for s = h,...,H-1. Then V (s) = r(s, `LD, TLD) for

s = h,...,H. Now

V (h− 1) = max {r(h− 1, `LD, TLD), r(h− 1,W ) + λ
∑

h′H(h′|h− 1)V (h′)} , and

r(h− 1,W ) + λ
∑

h′
H(h′|h− 1)V (h′) ≤ r(h− 1,W ) + λ

∑

h′>h−1

H(h′|h− 1)r(h, `LD, TLD) +

λH(h− 1|h− 1)V (h− 1) (5.3)

= r(h− 1,W ) + λr(h, `LD, TLD)[1−H(h− 1|h− 1)]

+λH(h− 1|h− 1)V (h− 1) (5.4)

where (5.3) follows from the induction hypothesis, (As1) and because H is upper triangular.

So if a∗(h− 1) is uniquely ‘W’, then (5.4) is equivalent to

V (h− 1)[1− λH(h− 1|h− 1)] ≤ r(h− 1,W ) + λr(h, `LD, TLD)[1−H(h− 1|h− 1)]

≤ r(h− 1, `LD, TLD)[1− λH(h− 1|h− 1)],

where the last inequality follows from (5.2). Therefore, V (h − 1) ≤ r(h − 1, `LD, TLD) or

a∗(h− 1)=‘TLD’ which is a contradiction from which the result follows.
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Both the upper triangularity assumption on H and Condition (5.2) in Theorem 5.1 are

very restrictive and unrealistic. In fact, our computational tests in Section 5.3 indicate

that transplanting right away is typically suboptimal for the LDM. For this reason, we next

explore conditions under which the optimal policy may not be “Transplant” for all states,

but still has an appealing structure.

As discussed in Section 2.1, in many areas of application, such as maintenance opti-

mization [29, 120, 150], inventory theory [71] and queueing [157], authors derive sufficient

conditions to ensure the existence of an optimal control-limit policy. Most assume special

structure on the transition probability matrix and/or the reward function. Below we define

some concepts that are used to specify these special structures. Interested readers should

refer to [12, 44, 45, 46] and [120] for more details.

Definition 5.1. [12] (a) A discrete distribution {pk}∞k=0 is IFR (increasing failure rate) if

pkP∞
i=k pi

is nondecreasing in k = 0, 1, 2, . . .

(b) A Markov chain is said to be IFR if its rows are in increasing stochastic order, that

is,

z(i) =
H+1∑

j=h

H(j|i) (5.5)

is nondecreasing in i for all h = 1, . . . , H + 1.

This definition is equivalent to the well known notion of stochastic dominance [143] and may

be viewed intuitively as follows: the sicker the patient, the more probable that the patient

will become even sicker.

It is interesting to note that several authors consider machine replacement problems that

have similar, but not identical, structures to the LDM [12, 44, 45, 46, 130]. The main differ-

ence is that there are two absorbing states in the LDM, whereas most machine replacement

problems have at most one absorbing state. As a result, standard assumptions such as IFR

that guarantee the existence of a control-limit optimal policy in machine replacement prob-

lems may not be sufficient to ensure the existence of a control-limit optimal policy in our

problem.
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Figure 5.3: State-transition Diagram for the Counterexample

Remark 5.1. If the transition probability matrix is IFR, an optimal control-limit policy may

not exist, as demonstrated by the following counterexample.

Consider the example in Figure 5.3. Assume r(h,W ) = 1, ∀h ∈ SH and λ = 0.99. It is

clear that r(h, `LD, TLD) is nonincreasing. Furthermore, the transition probability matrix is

IFR based on Definition 5.1, and therefore satisfies the assumptions of the remark. However,

V (1) = (1 + (0.01)(0.99)50)/(1− 0.992) = 75.13 and a∗(1)=‘W’,

V (2) = r(2, `LD, TLD) = 50 and a∗(2)=‘TLD’,

V (3) = 1 + (0.99)(0.1)(50) = 5.95 and a∗(3)=‘W’.

Although the assumptions of Remark 1 are satisfied, the optimal policy is not a control-

limit policy. The result in Remark 5.1 can be explained intuitively as follows: If r(j, `LD, TLD)−
r(j+1, `LD, TLD) is very large, then it is possible that, starting from state j+1, the patient’s

expected cumulative intermediate reward before reaching “Death” exceeds r(j+1, `LD, TLD),

so that the “Transplant” option is not the optimal action in state j + 1.

Some researchers impose the assumption of totally positive of order 2 (TP2) on the tran-

sition probability matrix [130]. A matrix is TP2 if the determinants of all of its 2 × 2

submatrices are nonnegative. It has been shown that a TP2 matrix is also IFR [12]. In the
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above counterexample, the transition probability matrix is also TP2, therefore even if we

replace the IFR assumption with the TP2 assumption, the remark still holds.

Before proving our main results, we give two inequalities that hold for IFR matrices and

nonincreasing functions.

Lemma 5.1. Let H be an IFR transition probability matrix and V (h) be a nonincreasing

function. Then the following hold:

(a)
∑

h′≤h

[H(h′|h)−H(h′|h + 1)]V (h′) ≥
∑

h′≤h

[H(h′|h)−H(h′|h + 1)]V (h).

(b)
∑

h′′>h

[H(h′′|h)−H(h′′|h + 1)]V (h′′) ≥
∑

h′′>h

[H(h′′|h)−H(h′′|h + 1)]V (h + 1).

Proof. (a) First note that the IFR assumption requires that
∑h′

i=1H(i|h) ≥ ∑h′
i=1H(i|h + 1)

for any h′ ∈ SH . Now,
∑

h′≤h[H(h′|h)−H(h′|h + 1)]V (h′)

= [H(1|h)−H(1|h + 1)]V (1) +
h∑

h′=2

[H(h′|h)−H(h′|h + 1)]V (h′)

≥ [H(1|h)−H(1|h + 1)]V (2) +
h∑

h′=2

[H(h′|h)−H(h′|h + 1)]V (h′) (5.6)

= [H(1|h) +H(2|h)−H(1|h + 1)−H(2|h + 1)]V (2) +
h∑

h′=3

[H(h′|h)−H(h′|h + 1)]V (h′)

≥ [H(1|h) +H(2|h)−H(1|h + 1)−H(2|h + 1)]V (3) +
h∑

h′=3

[H(h′|h)−H(h′|h + 1)]V (h′)

where (5.6) follows because H(1|h) ≥ H(1|h + 1) and V (1) ≥ V (2). We obtain the second

inequality by recasting (5.6), and the last inequality holds because H(1|h) + H(2|h) ≥
H(1|h + 1) +H(2|h + 1) and V (2) ≥ V (3). H(1|h + 1) +H(2|h + 1) and V (2) ≥ V (3). The

result follows if we apply the same procedure to states 3 through h.

(b) The proof is similar to the proof of Part (a) and is omitted.

In the following theorem, we consider the case in which the transition probability matrix

is IFR and show that the patient’s total discounted expected life days is nonincreasing in h.

Theorem 5.2. If H is IFR, then for s = 1, ..., H, V (s) ≥ V (s + 1).
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Proof. This theorem is a direct result of the infinite-horizon version of Lemma 3.9.4 in Topkis

[143] or, equivalently Theorem 4.7.3 in Puterman [125]. We also provide an alternative proof

below.

We show that if we apply the value iteration algorithm to solve this problem, at any step

of the algorithm the monotonicity of the value function is preserved. Since it is well known

that the value iteration algorithm converges [125], the result will then follow.

Let V i(h) be the value associated with state h at the ith iteration of the value iteration

algorithm. Assume that the value iteration algorithm starts with a value of 0 for each health

state, i.e. V 0(h) = 0 for all h ∈ SH . For the base case, we need to prove that V 1(h) ≥ V 1(h+

1), for h = 1, . . . , H, where V 1(h) = max {r(h, `LD, TLD), r(h,W ) + λ
∑

h′H(h′|h)V 0(h′)} .

Because V 0(h′) = 0 for h′ ∈ SH , V 1(h) = max{r(h, `LD, TLD), r(h,W )}. Because both

r(h, `LD, TLD) and r(h,W ) is monotonically nonincreasing, it is obvious that the value func-

tion is also monotonically nonincreasing.

Now, suppose that the property holds for iterations i = 2, . . . , n, that is, V i(h) ≥ V i(h+1)

for h = 1, . . . , H and i = 2, . . . , n. Note that

V n+1(h) = max

{
r(h, `LD, TLD), r(h,W ) + λ

∑

h′
H(h′|h)V n(h′)

}
and

V n+1(h + 1) = max

{
r(h + 1, `LD, TLD), r(h + 1,W ) + λ

∑

h′
H(h′|h + 1)V n(h′)

}
.

If V n+1(h + 1) = r(h + 1, `LD, TLD), V n+1(h) ≥ r(h, `LD, TLD) ≥ r(h + 1, `LD, TLD) =

V n+1(h + 1) and the result immediately follows. Otherwise, we have the following:

V n+1(h)− V n+1(h + 1)

≥ r(h,W )− r(h + 1,W ) + λ

[∑

h′≤h

H(h′|h)V n(h′) +
∑

h′′>h

H(h′′|h)V n(h′′)

]
−

λ

[∑

h′≤h

H(h′|h + 1)V n(h′) +
∑

h′′>h

H(h′′|h + 1)V n(h′′)

]

≥ λ

(∑

h′≤h

[H(h′|h)−H(h′|h + 1)]V n(h′)+

∑

h′′>h

[H(h′′|h)−H(h′′|h + 1)][H(h′′|h)−H(h′′|h + 1)]V n(h′′)

)
, (5.7)
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where (5.7) follows because of (As2). From the induction assumption, V n(h) is monotonic.

Therefore, as a result of Lemma 5.1, the inequality is not violated when we replace V n(h′)

with V n(h) for h′ ≤ h and V n(h′′) with V n(h + 1) for h′′ > h. Hence, the above inequality

can be rewritten as follows:

V n+1(h)− V n+1(h + 1)

≥ λ

(∑

h′≤h

[H(h′|h)−H(h′|h + 1)]V n(h) +
∑

h′′>h

[H(h′′|h)−H(h′′|h + 1)]V n(h + 1)

)

= λ

(∑

h′≤h

[H(h′|h)−H(h′|h + 1)][V n(h)− V n(h + 1)]

)
.

By the IFR property and the induction assumption, both V n(h) − V n(h + 1) and
∑

h′≤h[H(h′|h) − H(h′|h + 1)] are nonnegative. Therefore, V n+1(h) − V n+1(h + 1) is also

nonnegative, from which the result follows.

The following theorem, the main result of this section, gives a set of sufficient conditions

to guarantee the existence of a control-limit optimal policy.

Theorem 5.3. Let H be an IFR matrix and suppose H and r(h, `LD, TLD) satisfy the fol-

lowing conditions:

H∑

k=j

H(k|h) ≤
H∑

k=j

H(k|h + 1), for j = h + 1, . . . , H and h = 1, . . . , H, and (5.8)

r(h, `LD, TLD)− r(h + 1, `LD, TLD)

r(h, `LD, TLD)
≤ λ[H(H + 1|h + 1)−H(H + 1|h)],

for h = 1, . . . , H − 1. (5.9)

Then there exists an optimal control-limit policy. In other words there exists a state j such

that a∗(1) = a∗(2) = . . . = a∗(j − 1)=‘W’ and a∗(j) = a∗(j + 1) = . . . = a∗(H)=‘TLD’.
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Proof. First note that the monotonicity result of Theorem 5.2 holds. If we show that for

some h, a∗(h)=‘TLD’ implies a∗(h + 1)=‘TLD’ then the result follows. Assume that the

converse is true. In other words, for some h, a∗(h)=‘TLD’ but a∗(h + 1) is uniquely ‘W’.

In this case, r(h, `LD, TLD) ≥ r(h,W ) + λ
∑

h′∈SH
H(h′|h)V (h′) and r(h + 1, `LD, TLD) <

r(h + 1,W ) + λ
∑

h′∈SH
H(h′|h + 1)V (h′). It is obvious that,

r(h, `LD, TLD)− r(h + 1, `LD, TLD) > r(h,W )− r(h + 1,W ) +

λ

[∑

h′≤h

H(h′|h)V (h′) +
∑

h′′>h

H(h′′|h)V (h′′)

]
−

λ

[∑

h′≤h

H(h′|h + 1)V (h′) +
∑

h′′>h

H(h′′|h + 1)V (h′′)

]
,

≥ λ

[∑

h′≤h

H(h′|h)V (h′) +
H∑

h′′=h+1

H(h′′|h)V (h′′)

]
−

λ

[∑

h′≤h

H(h′|h + 1)V (h′) +
H∑

h′′=h+1

H(h′′|h + 1)V (h′′)

]
,

because of (As2) and V (H + 1) = 0. The last inequality can also be rewritten as

r(h, `LD, TLD)− r(h + 1, `LD, TLD) > λ

(∑

h′≤h

[H(h′|h)−H(h′|h + 1)]V (h′)+

H∑

h′′=h+1

[H(h′′|h)−H(h′′|h + 1)]V (h′′)

)
. (5.10)

From Theorem 5.2 we know that V (h) is nonincreasing in h. Therefore, the result

of Lemma 5.1 applies to this problem and we can replace each V (h′) with V (h) without

violating (5.10). Similarly, as a result of Lemma 5.1 and (5.8), we can replace each V (h′′)

with V (h + 1). We then obtain the following:
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r(h, `LD, TLD)− r(h + 1, `LD, TLD)

> λ

([(
1−

H∑

h′′=h+1

H(h′′|h)−H(H + 1|h)

)
−

(
1−

H∑

h′′=h+1

H(h′′|h + 1)−H(H + 1|h + 1)

)]
V (h)

+
H∑

h′′=h+1

[H(h′′|h)−H(h′′|h + 1)]V (h + 1)

)
,

= λ

(
H∑

h′′=h+1

[H(h′′|h + 1)−H(h′′|h)][V (h)− V (h + 1)]

)
+

λ ([H(H + 1|h + 1)−H(H + 1|h)]V (h)) .

From (5.8),
∑H

h′′=h+1[H(h′′|h + 1) −H(h′′|h)] is nonnegative, so we can drop the first term

and rewrite the last inequality as follows:

r(h, `LD, TLD)− r(h + 1, `LD, TLD) > λ[H(H + 1|h + 1)−H(H + 1|h)]V (h). (5.11)

Using (5.11) and (5.9) we obtain λ[H(H + 1|h + 1)−H(H + 1|h)]V (h) < λ[H(H + 1|h +

1)−H(H + 1|h)]r(h, `LD, TLD), which is equivalent to assuming that V (h) < r(h, `LD, TLD)

which means there exists a contradiction. Therefore, a∗(h+1)=‘TLD’ also holds, from which

the result follows.

In Theorem 5.3, (5.8) implies that the sicker the patient is, the more likely it is that

she will move to sicker health states. Note that (5.8) and Definition 5.1 have similar inter-

pretations, but (5.8) is neither a consequence of, nor sufficient to establish Definition 5.1.

Condition (5.9) on the reward function has an intuitive explanation. Namely, as the patient

gets sicker, the reduction in the benefit of waiting is greater than the reduction in the benefit

of performing the transplant.

In the following set of theorems, we perform sensitivity analysis on the LDM, i.e., we

derive sufficient conditions for situations in which the optimal policy is the same. Theorem

5.4 considers two problems which have equivalent transition probabilities and discount fac-

tors, but different reward functions. Given a set of states for which the optimal decision is to

“Transplant” in the first problem, we present conditions under which “Transplant” remains
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optimal for the same set of states in the second problem. This theorem reflects the real-life

situation in which a patient has several potential living donors with different organ qualities.

The number of health states for which it is optimal to “Transplant”, the “Transplant” region,

decreases as the organ quality decreases. The computational results in Section 5.3 confirm

this theoretical result.

Theorem 5.4. Let r2(h, `LD, TLD) = (1 + α)r1(h, `LD, TLD), ∀h ∈ SH where r1(h, `LD, TLD)

and r2(h, `LD, TLD) are two different reward functions. Let a∗1(h) and a∗2(h) be the optimal

policies when the reward functions are r1(h, `LD, TLD) and r2(h, `LD, TLD), respectively. Then

the following are true:

(a) If α > 0, a∗1(h)=‘TLD’ implies that a∗2(h)=‘TLD’.

(b) If α < 0, a∗1(h)=‘W’ implies that a∗2(h)=‘W’.

Proof. (a) Let Vi(h) be the optimal value for state h for problem i, i.e., the problem having

the reward function ri(h, `LD, TLD),i = 1, 2.

Under the above definitions, we first show that at any step n of the value iteration, if

V n
2 (h′) ≤ V1(h

′)(1 + α) for all h′ ∈ SH , then V n+1
2 (h) ≤ V1(h)(1 + α) holds for any state h.

If r2(h, `LD, TLD) ≥ r(h,W )+
∑

h′∈SH
λH(h′|h)V n

2 (h′) then V n+1
2 (h) = r2(h, `LD, TLD) =

r1(h, `LD, TLD)(1 + α) ≤ V1(h)(1 + α) follows immediately.

Otherwise, the proof proceeds as follows:

r(h,W ) + λ
∑

h′∈SH

H(h′|h)V n
2 (h′) ≤ r(h,W ) + λ

∑

h′∈SH

H(h′|h)V1(h
′)(1 + α) (5.12)

=

(
1 + λ

∑

h′∈SH

H(h′|h)V1(h
′)

)
+

α

(
λ

∑

h′∈SH

H(h′|h)V1(h
′)

)

≤ V1(h) + αV1(h) = V1(h)(1 + α), (5.13)

where both (5.12) and (5.13) follow from the definition of the optimal value function.
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Now suppose that we use the value iteration algorithm for solving the second problem

with the following initial values

V 0
2 (h) = r2(h, `LD, TLD).

For any h ∈ SH , at each iteration i of the value iteration algorithm, V i
2 (h) ≤ V1(h)(1+α)

holds as shown in 5.13. Therefore, if a∗1(h)=‘TLD’ for some h, then

V2(h) ≤ V1(h)(1 + α) = r1(h, `LD, TLD)(1 + α) ≤ r2(h, `LD, TLD),

so a∗2(h)=‘TLD’ also holds.

(b) The proof of Part (b) is similar to the proof of Part (a) and is omitted.

Our computational tests show that as the discount rate increases, the number of health

states that it is optimal to “Wait”, the optimal “Wait” region, also increases. An intuitive

explanation for this result is given in Section 5.3. The following theorem presents a set of

sufficient conditions that guarantees the enlargement in the “Wait” region as the discount

rate increases. In this theorem we consider expected life days rather than quality-adjusted

life days. Let ELD(h) be the total expected post-transplant life days, given that the trans-

plant is performed when the patient health is h. Note that r(h, `LD, TLD) is in fact a function

of ELD(h) and λ, namely, r(h, `LD, TLD) = 1−λELD(h)

1−λ
. In our previous discussion, we sup-

pressed r(h, `LD, TLD)’s dependence on λ and ELD(h) for ease of notation. However, in the

next theorem, since the discount rate affects r(h, `LD, TLD), we give the sufficient conditions

in terms of ELD(h) and λ.

Theorem 5.5. For any state h with a∗(h)=‘W’, if ELD(h)λELD(h)−1(1 − λH(h|h)) ≥
r(h,W ) for 0 ≤ λ ≤ λ ≤ λ < 1 for an arbitrary interval [λ, λ], then as λ increases within

the interval [λ, λ] the optimal action for state h does not change.

Proof. If we show that the difference between the value of the “Wait” action and the “Trans-

plant” action does not decrease as λ increases then, the result follows. Therefore we need to

prove that the function

g(λ) =
r(h,W ) + λ

∑
h′∈SH ,h′ 6=hH(h′|h)V (h′)

1− λH(h|h)
− 1− λELD(h)

1− λ
is increasing in λ.
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It can easily be shown that as λ increases, V (h′) also increases for all h′ ∈ SH . Since

λ
∑

h′∈SH ,h′ 6=hH(h′|h)V (h′) is nonnegative, we can drop this term and show that the remain-

ing function increases as λ increases. If we rearrange the terms we have the following

g′(λ) =
r(h,W )[1− λ]− (1− λELD(h))(1− λH(h|h))

(1− λH(h|h))(1− λ)
,

which decreases in the denominator as λ increases. Therefore, it is sufficient to show that

the value of the numerator increases as λ increases. In order to show that we take derivative

with respect to λ and obtain the following:

∂g′(λ)

∂λ
=

∂[r(h, W )[1− λ]− (1− λELD(h))(1− λH(h|h))]

∂λ

=
∂[r(h, W )[1− λ]− 1 + λH(h|h) + λELD(h) −H(h|h)λELD(h)+1]

∂λ

= H(h|h)− r(h,W ) + ELD(h)λELD(h)−1 −H(h|h)(ELD(h) + 1)λELD(h)

= H(h|h)−H(h|h)λELD(h) + ELD(h)λELD(h)−1 −
H(h|h)ELD(h)λELD(h) − r(h,W )

in which H(h|h)−H(h|h)λELD(h) ≥ 0 and the remaining term can be rearranged as follows:

ELD(h)λELD(h)−1(1− λH(h|h))− r(h,W ),

which is ≥ 0 when λ ∈ [λ, λ] from the assumption. Therefore the derivative is nonnegative

which shows that as λ increases in the range of [λ, λ] the value of the function also increases

from which the result follows.

In Theorem 5.5, the condition ELD(h)λELD(h)−1(1 − λH(h|h)) ≥ r(h,W ) appears to

be restrictive. However, our computational tests show that if r(h, W ) equals 1, all of our

clinical data with an annual discount rate greater than 0.5 satisfy the condition.

Theorem 5.6 addresses the relationship between the optimal policies for two patients with

different disease progression rates but equivalent reward functions. We show that, given both

patients have control-limit optimal policies, if one of the patients deteriorates faster than the

other, then she has a lower optimal control limit. First, we describe a plausible relationship

between the transition probability matrices for two different diseases. Namely, if one of the

transition probability matrices has a faster deterioration rate than another, then we say that
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transition probability matrix is dominated by the other. This condition may arise when the

progression of two diseases are different.

Definition 5.2. Let P = [P (j|i)], i, j = 1, . . . , n and Q = [Q(j|i)], i, j = 1, . . . , n be

two transition probability matrices. We say P dominates Q, P º Q, if
∑n

j=k P (j|i) ≤
∑n

j=k Q(j|i), 1 ≤ i, k ≤ n.

Consider the implications of this definition by letting the random variables X(h) and

Y (h) be the time to death starting from health state h under transition probability matrices

P and Q if no transplant is performed, respectively. It can easily be shown that Definition

5.2 implies ordinary stochastic dominance between X(h) and Y (h), i.e. X(h) ≥st Y (h) for

h ∈ SH .

Lemma 5.2. Let P and Q be n× n transition probability matrices where P º Q. Further-

more, let V (j) be a monotonically nonincreasing function in j. Then for any i, the following

are true:

(a)
∑

j≤i[P (j|i)−Q(j|i)]V (j) ≥ ∑
j≤i[P (j|i)−Q(j|i)]V (i).

(b)
∑

j>i[P (j|i)−Q(j|i)]V (j) ≥ ∑
j>i[P (j|i)−Q(j|i)]V (i + 1).

Proof. The proof of this lemma is very similar to that of Lemma 5.1 and is omitted.

Theorem 5.6. Let Π1 and Π2 be two instances that satisfy the conditions of Theorem 5.3

so that the optimal policies for Π1 and Π2 are both control-limit optimal policies with control

limits j1 and j2, respectively. Let H1 and H2 be the transition probability matrices of Π1 and

Π2, respectively. If Π1 and Π2 have the same reward functions, r(h, `LD, TLD) and r(h,W )

and H1 º H2, then j1 ≥ j2.

Proof. Suppose that we solve the two problems simultaneously using the value iteration

algorithm. We first show that starting with a value of 0 for all states in both problems, at

the end of each iteration of the algorithm, the value function of Π1 will be greater than or

equal to the value function of Π2 for each health state. Let V j
i (h) be the value function of

the state h of problem i at the end of iteration j. We start with 0 for both problems. In this

case, V 1
1 (h) = V 1

2 (h) = max{r(h, `LD, TLD), r(h,W )}, h = 1, . . . , H as shown in Theorem

5.2. Therefore the result holds for the base case.
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Now, assume that V n
1 (h) ≥ V n

2 (h), h = 1, . . . , H, holds for iterations 2, . . . , n. Then

we want to show that V n+1
1 (h) ≥ V n+1

2 (h), h = 1, . . . , H. If for any state h, V n+1
2 (h) =

r(h, `LD, TLD), then the result immediately follows since V n+1
1 (h) ≥ r(h, `LD, TLD). Other-

wise, the application of the value iteration algorithm results in the following:

V n+1
1 (h) ≥ r(h,W ) + λ

∑

h′≤h

H1(h
′|h)V n

1 (h′) + λ
∑

h′′>h

H1(h
′′|h)V n

1 (h′′)

and

V n+1
2 (h) = r(h,W ) + λ

∑

h′≤h

H2(h
′|h)V n

2 (h′) + λ
∑

h′′>h

H2(h
′′|h)V n

2 (h′′).

We easily obtain the following:

V n+1
1 (h)− V n+1

2 (h)

≥ λ
∑

h′≤h

H1(h
′|h)V n

1 (h′) + λ
∑

h′′>h

H1(h
′′|h)V n

1 (h′′)−

λ
∑

h′≤h

H2(h
′|h)V n

2 (h′)− λ
∑

h′′>h

H2(h
′′|h)V n

2 (h′′)

≥ λ
∑

h′≤h

H1(h
′|h)V n

2 (h′) + λ
∑

h′′>h

H1(h
′′|h)V n

2 (h′′)−

λ
∑

h′≤h

H2(h
′|h)V n

2 (h′)− λ
∑

h′′>h

H2(h
′′|h)V n

2 (h′′) (5.14)

= λ

(∑

h′≤h

[H1(h
′|h)−H2(h

′|h)]V n
2 (h′) +

∑

h′′>h

[H1(h
′′|h)−H2(h

′′|h)]V n
2 (h′′)

)
(5.15)

≥ λ

(∑

h′≤h

[H1(h
′|h)−H2(h

′|h)]V n
2 (h) +

∑

h′′>h

[H1(h
′′|h)−H2(h

′′|h)]V n
2 (h + 1)

)
(5.16)

= λ

(∑

h′≤h

[H1(h
′|h)−H2(h

′|h)][V n
2 (h)− V n

2 (h + 1)]

)
≥ 0 (5.17)

where (5.14) follows from the induction assumption and (5.15) is obtained by simply rear-

ranging terms. Inequality (5.16) holds because H1 º H2 and the monotonicity of the value

function imply that V n
2 (h′) can be replaced with V n

2 (h), and V n
2 (h′′) can be replaced with

V n
2 (h + 1), without violating the inequality as a result of Lemma 5.2. The first inequality

in (5.17) follows from rearranging the terms in (5.16); and the second part of (5.17) follows

because H1 º H2 and the value function is monotonic.
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Since the value function for Π1 is always greater than or equal to that of Π2 at each

iteration of the value iteration algorithm, the optimal value function of Π1 will always be

greater than or equal to that of Π2. Hence, if for state j1, a∗1(j1)=‘TLD’ in the first problem,

since r(j1, `LD, TLD) ≤ V2(j1) ≤ V1(j1) = r(j1, `LD, TLD), a∗2(j1)=‘TLD’ always holds in the

second problem. As a result, since we have a control-limit optimal policy in both problems,

the control limit in the first problem will always be greater than or equal to the control limit

in the second problem, from which the result follows.

Note that Theorem 5.6 holds even if the conditions of Theorem 5.3 do not hold, as long as

both problems have control-limit optimal policies and nonincreasing optimal value functions

and the same reward functions.

Corollary 5.1. Let Π1 and Π2 be two problems having nonincreasing optimal value functions

and the optimal policies for Π1 and Π2 are both control-limit optimal policies with control

limits j1 and j2. Let H1 and H2 be the transition probability matrices of Π1 and Π2, re-

spectively. If Π1 and Π2 have the same reward functions, r(h, `LD, TLD) and r(h,W ) and

H1 º H2 then j1 ≥ j2.

5.3 COMPUTATIONAL RESULTS

5.3.1 Estimating Parameters

It is well known that MDPs are subject to the so called “curse of dimensionality” [13,

33]. That is, it becomes computationally difficult to solve the problem as the problem size

increases. As a result, it may be hard to solve some of the models in this dissertation using

very specific health states. Furthermore, the accuracy of parameter estimations might be

lost as the state space grows because some of the data are very sparse. Therefore, the

states must be defined with these trade-offs between medical accuracy, data availability and

computational time in mind. We use the MELD scores to represent patient health. MELD

scores are restricted to integers ranging from 6 to 40, where 40 is the sickest. In this study,

we use this same range to measure a patient’s health status, but due to the sparsity of the
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data, we aggregate the scores into groups of two or three. We do not include Status 1 as

part of health state space because there are very few Status 1 patients. For instance, as of

May 14, 2004, there were 15 Status 1 patients nationally whereas there were a total of 17,400

liver patients [149].

The data are classified into five disease groups based on the underlying etiology of ESLD.

We estimate the transition probabilities for each disease group separately because the pro-

gression of liver disease is highly disease-dependent [47, 121]. For each group, we estimate

the pre-transplant transition probabilities between health states using the NHM described

in Section 4.2.

There are two types of rewards in the MDP model: pre-transplant and post-transplant.

Because we are unaware of any existing data on quality-adjusted rewards for MELD scores,

we use total discounted life expectancy in days rather than total discounted QALD for

r(h,W ) and r(h, `LD, TLD) in our computational tests.

If the patient chooses to “Wait”, the patient accrues one day as the intermediate reward,

i.e. r(h,W ) = 1,∀h ∈ SH . If the patient chooses the “Transplant” option, then she receives

a post-transplant reward which is equal to the expected life days of the patient given her

health status at the time of the transplant and the liver quality. To estimate the expected

post-transplant life days of the patient given her MELD score at the time of transplant and

liver quality, we use the Post-transplant Survival Model described in Section 4.3. The inputs

of this model include the donor characteristics and the clinical characteristics of the patient

at the time of the transplant.

5.3.2 Numerical Examples

First consider a 60-year-old female patient with primary biliary cirrhosis who has blood type

A. Figure 5.4 depicts the optimal transplant/wait policy for this patient with ten potential

donors. Table 5.2 contains the characteristics of these donors. We used these characteristics

because the model of [127] identifies these factors to be most influential on the post-transplant

survival rates. We apply a 0.99 annual discount rate (daily λ = 0.999972). Recall that as the

MELD score increases, the patient gets sicker. In Figure 5.4, the organs are ordered from
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Table 5.1: Maximum Violations of Conditions of Theorem 5.3

Disease 1 Disease 2 Disease 3

ε1 0.0234 0.0021 0.0189

ε2 0.0038 0.0012 0.0189

ε3 0.1052 0.1089 0.1195

lowest to highest quality, i.e. Organ 1 is the “best” and Organ 10 is the “worst” organ. The

quality of a liver for a given patient is determined by the post-transplant survival model of

[127]. As Figure 5.4 shows, the optimal policy varies for different liver qualities. If the only

liver available to the patient is Organ 1, then the optimal policy for this particular patient

is as follows: “Wait” until the MELD score rises over 14 and then accept the liver and have

the transplantation.

We tested a total of 840 instances, and, while none strictly satisfied the conditions of

Theorem 5.3, all of the optimal policies were of control-limit type. To quantify the magnitude

of the violations of the conditions of Theorem 5.3 we define the following metrics:

ε1 = maxj,h

{
max

{
0,

∑H+1
k=j [H(k|h + 1)−H(k|h)]

}}
for j = 1, . . . , H + 1 and h =

1, . . . , H − 1, the maximum violation of the IFR assumption.

ε2 = maxj,h

{
max

{
0,

∑H
k=j[H(k|h + 1)−H(k|h)]

}}
for j = h + 1, . . . , H and h =

1, . . . , H − 1, the maximum violation of Condition (5.8).

ε3 = maxh {max {0, λ max{0,H(H + 1|h + 1)−H(H + 1|h)}−
[r(h,`LD,TLD)−r(h+1,`LD,TLD)]

r(h,`LD,TLD)

}}
for h = 1, . . . , H−1, the maximum violation of Condition (5.9).

Note that the values of ε1 and ε2 depend only on the etiology of the liver disease whereas ε3

depends on the patient type, donor organ quality and the discount rate because r(h, `LD, TLD)

is a function of these three factors. Table 5.1 reports the maximum ε1, ε2 and ε3 values

obtained with an annual discount rate of 0.99. The values for ε1 and ε2 are very small

whereas ε3 values are relatively larger.

As discussed earlier, the policies in Figure 5.4 are examples of control-limit policies. The

control limit for this patient is a MELD score of 16 when the potential donors are of organ
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Figure 5.4: Transplant-Wait Decisions for Annual Discount Rate=0.99 (λ=0.999972)

types 7, 8 or 9 and rises to a MELD score of 20 when there is a very low-quality liver such

as Organ 10. In general, as the liver quality drops the control limit is nondecreasing and

thus the “Wait” region enlarges. This result is intuitive: as the patient’s post-transplant life

expectancy drops while her pre-transplant life expectancy remains the same, she chooses to

wait until she reaches a sicker state.

Disease and patient types affect the optimal policies. Figure 5.5 shows the optimal policy

for seven patient types, where patient type is differentiated by characteristics not including

the MELD score, ten levels of liver quality and three disease groups, with an annual discount

rate of 0.99 as well as 1. Table 5.3 shows the static characteristics of the patient types

that are used in generating Figure 5.5. Disease groups in Figure 5.5 are defined in Table

A.1. In Figure 5.5, patients are in decreasing order with respect to their post-transplant

expected life days for a given liver. As the quality of the patient characteristics drops, the

“Wait” region enlarges. Intuitively, this result makes sense because, as the quality of patient

characteristics drops, the ratio of pre-transplant survival to post-transplant survival rate

increases. In general, our findings indicate that Disease Group 3, which includes the acute

liver diseases, has the highest control limits for the same patients and livers.
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Table 5.2: Donor Characteristics

Organ No Age Sex Blood Type Donor white1 CMVGR2

1 20 Female A No No

2 25 Female A No No

3 35 Female A No No

4 20 Male A No No

5 30 Male A No No

6 40 Male A No No

7 50 Male A No No

8 52 Female O No Yes

9 60 Male O No No

10 70 Male O No Yes

1 Indicates whether the donor is white or not
2 Indicates whether the donor has cytomegalovirus (CMVGR) or not
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Figure 5.5: Transplant-Wait Decisions for Discounted and Undiscounted Problems
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Table 5.3: Patient Characteristics

Patient No1 Age Sex Blood Type CMVGR2 Encephel3 Priortx4

1 22 Female A No No No

2 30 Female A No No No

3 40 Female A No Yes No

4 50 Female A No Yes No

5 60 Female A No Yes No

6 65 Female A Yes Yes Yes

7 72 Female A Yes Yes Yes

1 The patients are ordered according to their total life expectancies with a given organ, i.e., Patient
1 has the longest expected life and Patient 7 has the shortest life expectancy given the same liver.

2 Indicates whether the patient has cytomegalovirus (CMVGR) or not
3 Indicates whether the patient has encephalopathy or not
4 Indicates whether the patient had a prior transplant or not

We also perform a one-way sensitivity analysis of discount factor for Patient 6. We use

different annual discount factors and find the resulting optimal policies. If the only organ

available to the Patient 6 is Organ 1 and the patient has hepatitis, the resulting optimal

policies for different annual discount rates are presented in Figure 5.6. Note that, Figure

5.6 shows the optimal policies at several discount factors, namely at 0.5, 0.6, 0.7, 0.75, 0.8,

0.85, 0.9, 0.95 and 1. The results of the sensitivity analysis show that the larger the annual

discount rate, the larger the “Wait” region. This result is intuitive: as the discount rate

increases, the future life days of the patient become more valuable. Note also that the risk

of operative mortality is very high because the patient is elderly. Furthermore, the expected

post-transplant life days for this particular patient is very limited. In other words, the reward

of taking the risk of operation and having transplantation is very small. Hence, the patient

might not prefer to take the risk of operation. In addition to these, it is possible that when

the patient is relatively healthy, she does not have a high risk of immediate death so, she may

not choose to use her option for “Transplant” until she becomes really sick. Note that as

long as she waits until she gets sicker, she does not lose much of her post-transplant reward

because, future benefit of transplantation is not devalued greatly. On the other hand, if
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annual discount rate is low, the present life of the patient will be more valuable than her

future life days. As a result, if she does not have the transplantation, the probability of death

is immediate; therefore, she might prefer to take the risk of operation which guarantees a

certain amount of time for living longer.

5.4 CONCLUSIONS

This section considers the problem of optimally timing living-donor liver transplantation.

We formulate an MDP model of this decision problem and solve numerical examples using

clinical data. To the best of our knowledge, this study is the first to formulate the living-

donor organ transplantation problem by explicitly modeling patient health and the first to

solve numerical instances of the problem using clinical data.

We derive structural properties of the LDM, including conditions that guarantee the

existence of a control-limit policy. We also establish sufficient conditions for some of the

intuitive results seen in our computational experiments. For instance, if one disease causes a

faster deterioration in patient health than another, and yet results in identical post-transplant

life expectancy, then the control limit for this disease is less than or equal to that for the

other.

In all of our computational tests, the optimal policy is of control-limit type. In some of

the examples, when the liver quality is very low, it is optimal for the patient to choose never

to have the transplant. This implies that measuring an allocation system based on total

number of transplants may not fully capture the patient’s perspective. Our computational

experiments also show that there are significant differences in the optimal policies for iden-

tical patients in different disease groups. There are two possible sources of this variation:

differences in the disease progression and differences in the post-transplant survival rate of

the diseases. We also perform a sensitivity analysis on the discount rate, which shows that

as the discount rate increases the number of health states that it is optimal to “Wait” also

increases.
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6.0 CADAVERIC-DONOR-ONLY MODEL

The LDM considers the decision problem when the patient has a living donor who is avail-

able at all points in time. Unfortunately, the LDM is not applicable to the cadaveric-

donor-only problem, because there are multiple organ types in the cadaveric-donor-only

problem, whereas LDM assumes that there is a single organ type available to the patient.

Furthermore, cadaveric organ arrivals are random, whereas a living-donor organ is always

available. Capturing these complexities requires a different state definition and a different

transition probability structure. This chapter describes the Cadaveric-Donor-Only Model

(CDM), which formulates and solves the cadaveric-donor-only problem. LDM is a special

case of CDM, in which there is a single type of cadaveric liver that is offered to the patient

at all decision epochs.

In this chapter, the decision maker must compete with other patients for cadaveric livers.

The presence of other patients on the list is reflected in the probability of obtaining offers

for livers. If there are many other patients similar to the decision maker, the probability of

receiving future offers may be smaller than if there are few similar patients. The outcome

of this model is a policy that maps health and liver states to two possible actions: accept a

liver offered at a given time, or continue waiting for a liver.

The remainder of this chapter is organized as follows. In Section 6.1, we present an

MDP model of the problem. We derive some structural properties of this MDP model and

its optimal policy in Section 6.2. In Section 6.3, we present and discuss computational

results. We draw some conclusions in Section 6.4.
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6.1 MODEL FORMULATION

This problem is the special case of the model presented in Chapter 3, in which r(h, `LD, TLD) =

0, h ∈ SH . That is, the patient does not have a living-donor liver.

Figure 6.1 shows the state-transition diagram of the MDP. The decision maker can take

one of two actions in state (h, `), namely, “Accept” the liver ` or “Wait for one more decision

epoch”. If the patient chooses “Accept” in state (h, `), she receives a reward of r(h, `, TC),

quits the process and moves to absorbing state “Transplant” with probability 1. If the

patient chooses to “Wait” in state (h, `), then she receives an intermediate reward of r(h,W )

and moves to state (h′, `′) ∈ S with probability P(h′, `′|h, `). The optimal solution to this

problem is obtained by solving the following set of recursive equations [125]:

V (h, `) = max



r(h, `, TC), r(h,W ) + λ

∑

(h′,`′)∈S

P(h′, `′|h, `)V (h′, `′)



 ,

h ∈ {1, . . . , H}, ` ∈ SL. (6.1)

6.2 STRUCTURAL PROPERTIES

In this section, we derive some structural properties of the cadaveric-donor-only model

(CDM) given by (6.1). The following assumptions are common to all of the theorems:

(As1): The function r(h, `, TC) is nonincreasing in both h and `. That is, as the patient

gets sicker and/or the liver quality drops, the patient’s post-transplant reward does not

increase.

(As2): The function r(h,W ) is nonincreasing in h. That is, as the patient gets sicker

the intermediate reward does not increase.

Theorem 6.1 proves that the above assumptions guarantee the monotonicity of the opti-

mal value function in liver state for fixed health, without making any additional assumptions

on the transition probability matrices.

Theorem 6.1. V (h, `) is monotonically nonincreasing in `, ` ∈ SL, ∀h ∈ SH .
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.    .    .   .    .         1,L

2,1

2,L+1

1,1

1,L+1

2,L H,L

H,L+1

.  .  

.  .  

.  .

H-1,1

H-1,L

H-1,L+1

.  .  

TC,1,r(H-1,1,TC)

W,P ((H+1,.)|(1,L)),r(H,W) W,P ((H+1,.)|(H,L)),r(H,W)Pre-transplant 
death

TC,1,r(2,1,TC)

(.,1,0)

(.,1,0)

Figure 6.1: State-Transition Diagram of the Cadaveric-Donor-Only Model∗

∗The labels a(h, `),P(j|h, `), r(h, `, a)) on each arc represent the action taken at state (h, `), the probability
that the patient will move to state j when her current state is (h, `), and the reward obtained by taking
action a in state (h, `), respectively. Note that this figure does not show all possible transitions.
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Proof. If a∗(h, ` + 1)=‘TC’, then V (h, `) ≥ r(h, `, TC) ≥ r(h, ` + 1, TC) = V (h, ` + 1) from

(As1) and the result immediately follows. Otherwise,

V (h, `) ≥ r(h,W ) + λ
∑

h′

∑

`′
P(h′, `′|h, `)V (h′, `′) and

V (h, ` + 1) = r(h,W ) + λ
∑

h′

∑

`′
P(h′, `′|h, ` + 1)V (h′, `′).

Because P(h′, `′|h, ` + 1) = P(h′, `′|h, `), the right hand sides are the same, yielding

V (h, `) ≥ V (h, ` + 1), from which the result follows.

Although V (h, `) is monotonically nonincreasing in `, V (h, `) may not be monotonic in

h, even if we assume that H is IFR. Remark 6.1 formalizes this situation.

Remark 6.1. If H is IFR, then V (h, `) may not be monotonically nonincreasing in h,

h ∈ SH , ∀` ∈ SL.

Counterexample Let L=1, H=2, λ= 0.99, r(1, 1, TC)=r(2, 1, TC)=12, r(1,W ) = r(2,W )=1

and

H =


 0.9 0.01 0.09

0 0.91 0.09


 and L =


 0.01 0.99

0.99 0.01


 .

Then the optimal value function is:

V (1, 1)=12.00 V (1, 2)=10.40

V (2, 1)=12.00 V (2, 2)=11.81

Hence, although H is IFR and (As1) and (As2) are satisfied, V (h, `) is nonmonotonic in

h.

Note that the remark holds if we replace the IFR assumption with the TP2 assumption.

An example for this case is presented in Figure 5.3. Note that the problem in Figure 5.3 can

be formulated as a CDM problem if we use the following L matrix:

L =


 1 0

1 0


 .

Therefore the problem in Figure 5.3 constitutes a counterexample for Remark 6.1.

Theorem 6.2 proves the monotonicity of V (h, `) in h under a set of intuitive conditions.

We first present two lemmas that are used in the proof of Theorem 6.2. Let V i(h, `) be the
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value and ai(h, `) be the optimal action associated with state (h, `) at the ith iteration of

the value iteration algorithm, respectively. Then, noting that ai(h, L + 1)=‘W’, Lemma 6.1

states that at the ith iteration of the value iteration algorithm the optimal value of the liver

states for which the optimal action is to “Wait” for the same states is equal to V i(h, L + 1).

Lemma 6.1. If ai(h, `) =‘W’ then V i(h, `) = V i(h, L + 1).

Proof. The proof is obvious and is omitted.

Lemma 6.2. Let zi(h) =
∑

`∈SL
L(`|h)V i(h, `). If V i(h, `) is nonincreasing in h and ` and

L(`|h + 1)

L(`|h)
≤ r(h, `, TC)

r(h + 1, `, TC)
for h = 1, . . . , H − 1 and ` = 1, . . . , L, (6.2)

then zi(h) is nonincreasing in h.

Proof. Note that if ai(h, `)=‘TC’, then V i(h, `) = r(h, `, TC) and if ai(h, `)=‘W’, V i(h, `) =

V (h, L + 1) from Lemma 6.1. Let Li
g(h + 1) = {` ∈ SL : ai(h + 1, `) = ‘TC’,L(`|h + 1) ≥

L(`|h)} and Li
s(h + 1) = {` ∈ SL : ai(h + 1, `) = ‘TC’,L(`|h + 1) < L(`|h)}. Then,

zi(h)− zi(h + 1) =
∑

`∈Li
g(h+1)

[L(`|h)V i(h, `)− L(`|h + 1)V i(h + 1, `)] +

∑

`′∈Li
s(h+1)

[L(`′|h)V i(h, `′)− L(`′|h + 1)V i(h + 1, `′)] +

∑

`′′ /∈{Li
g(h+1)∪Li

s(h+1)}
[L(`′′|h)V i(h, `′′)− L(`′′|h + 1)V i(h + 1, `′′)]

(6.3)

Note that V i(h + 1, `) = ri(h + 1, `) for ` ∈ {Li
g(h + 1) ∪ Li

s(h + 1)} since ai(h + 1, `)=‘TC’,

and L(`|h)V i(h, `) − L(`|h + 1)V i(h + 1, `) ≥ 0 holds for all ` ∈ L
(
gh + 1) because of (6.2)

and (As1). Therefore, the first term on the right hand side of (6.3) can be dropped without

increasing the right hand side value. Similarly, L(`′|h)V i(h, `′) − L(`′|h + 1)V i(h + 1, `′) ≥
L(`′|h)V i(h + 1, L + 1)−L(`′|h + 1)V i(h + 1, L + 1) holds for `′ ∈ Li

s(h + 1) because V i(h, `)

is monotonic in h and ` and L(`′|h) ≥ L(`′|h + 1) by definition. We can also replace each

V i(h, `′′) with V i(h + 1, L + 1) for `′′ /∈ {Li
g(h + 1) ∪ Li

s(h + 1)} without changing the value

of the right hand side of (6.3) as a result of Lemma 6.1 and the monotonicity of V (h, l) in h

and l. Making these changes results in the following:
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zi(h)− zi(h + 1) ≥
∑

`′∈Li
s(h+1)

[L(`′|h)− L(`′|h + 1)]V i(h + 1, L + 1) +

∑

`′′ /∈{Li
g(h+1)∪Li

s(h+1)}
[L(`′′|h)V i(h + 1, L + 1)−

L(`′′|h + 1)V i(h + 1, L + 1)]

=
∑

`′ /∈Li
g(h+1)

[L(`′|h)− L(`′|h + 1)]V i(h + 1, L + 1) (6.4)

Since
∑

`′∈Lg(h+1) L(`′|h) ≤ ∑
`′∈Lg(h+1) L(`′|h + 1) by definition of Li

g(h + 1), the last in-

equality is nonnegative from which the result follows.

Condition (6.2) means that for any given liver type, as the patient gets sicker the increase

in the probability of receiving an offer must be smaller than the reduction in the benefit of

total expected discounted post-transplant reward. Theorem 6.2 imposes Condition (6.2) on

r(h, `, TC) and L and proves the monotonicity of the optimal value function in h. Using

Lemma 6.2, the proof of this theorem is very similar to the proof of Theorem 5.2.

Theorem 6.2. If H is IFR and (6.2) holds for all h and `, then V (h, `) is nonincreasing in

h.

Proof. We show that at any step of the value iteration algorithm the monotonicity of the

value function is preserved. Since it is well known that the value iteration algorithm converges

to the optimal value function [125], the result follows.

Assume that the value iteration algorithm starts with a value of 0 for each state, i.e.

V 0(h, `) = 0 for all (h, `) ∈ S. For the base case, we need to prove that for a given liver state

`, V 1(h, `) ≥ V 1(h + 1, `), for h = 1, . . . , H, where

V 1(h, `) = max

{
r(h, `, TC), r(h,W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `)V 0(h′, `′)

}
.

Because V 0(h′, `′) = 0 for (h′, `′) ∈ S, V 1(h, `) = max{r(h, `, TC), r(h,W )}. Because both

r(h, `, TC) and r(h,W ) are monotonically nonincreasing, it is obvious that the value function

is also monotonically nonincreasing.
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Now, suppose that the property holds for iterations i = 2, . . . , n, that is, V i(h, `) ≥
V i(h + 1, `) for h = 1, . . . , H and i = 2, . . . , n. Note that

V n+1(h, `) = max

{
r(h, `, TC), r(h, W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `)V n(h′, `′)

}
and

V n+1(h + 1, `) = max

{
r(h + 1, `, TC), r(h + 1,W ) + λ

∑

h′

∑

`′
P(h′, `′|h + 1, `)V n(h′, `′)

}
.

If V n+1(h+1, `) = r(h+1, `, TC), V n+1(h, `) ≥ r(h, `, TC) ≥ r(h+1, `, TC) = V n+1(h+1, `)

and the result immediately follows. Otherwise, we obtain the following:

V n+1(h, `)− V n+1(h + 1, `)

≥ r(h,W )− r(h + 1,W ) + λ

[∑

h′≤h

H(h′|h)zn(h′) +
∑

h′′>h

H(h′′|h)zn(h′′)

]
−

λ

[∑

h′≤h

H(h′|h + 1)zn(h′) +
∑

h′′>h

H(h′′|h + 1)zn(h′′)

]

≥ λ

(∑

h′≤h

[H(h′|h)−H(h′|h + 1)]zn(h′) +
∑

h′′>h

[H(h′′|h)−H(h′′|h + 1)]zn(h′′)

)
,(6.5)

where (6.5) follows because of (As2). From the induction assumption and Lemma 6.2, zn(h)

is monotonic. Therefore, as a result of Lemma 5.1, the inequality is not violated when we

replace zn(h′) with zn(h) for h′ ≤ h and zn(h′′) with zn(h + 1) for h′′ > h. Hence, the above

inequality can be rewritten as follows:

V n+1(h, `)− V n+1(h + 1, `)

≥ λ

(∑

h′≤h

[H(h′|h)−H(h′|h + 1)]zn(h) +
∑

h′′>h

[H(h′′|h)−H(h′′|h + 1)]zn(h + 1)

)

= λ

(∑

h′≤h

[H(h′|h)−H(h′|h + 1)][zn(h)− zn(h + 1)]

)
.

By the IFR property, the induction assumption and Lemma 6.2, both zn(h)− zn(h + 1)

and
∑

h′≤h[H(h′|h)−H(h′|h+1)] are nonnegative. Therefore, V n+1(h)−V n+1(h+1) is also

nonnegative, from which the result follows.
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Unlike the case of the LDM, there are two types of control limits in the CDM: liver-based

and health-based.

Definition 6.1. A liver-based control-limit policy is of the following form: For a given health

state h, choose the “Transplant” action and “Accept” the liver if and only if the offered liver

is of type 1, 2, . . . , i(h), for some liver state i(h), called the liver-based control limit.

Similarly, a health-based control-limit policy is of the simple form: For a given liver

state `, choose the “Transplant” action and “Accept” the liver if and only if the health state

is one of the states j(`), j(`) + 1, . . . , H, for some health state j(`), called the health-based

control limit.

Theorem 6.3. There exists an optimal liver-based control-limit policy.

Proof. The theorem is equivalent to showing that a∗(h, ` + 1)=‘TC’ implies a∗(h, `)=‘TC’,

∀h ∈ SH . If a∗(h, ` + 1)=‘TC’ for a given h ∈ SH , then the following are true about the

optimality equations:

V (h, ` + 1) = r(h, ` + 1, TC) ≥ r(h,W ) + λ
∑

h′

∑

`′
P(h′, `′|h, ` + 1)V (h′, `′),

and

V (h, `) = max

{
r(h, `, TC), r(h,W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `)V (h′, `′)

}
.

It is obvious that

λ
∑

h′
∑

`′ P(h′, `′|h, ` + 1)V (h′, `′) = λ
∑

h′
∑

`′ P(h′, `′|h, `)V (h′, `′) holds in the above

expressions. As a result of (As1) we can write the following:

r(h, `, TC) ≥ r(h, ` + 1, TC) ≥ r(h,W ) + λ
∑

h′

∑

`′
P(h′, `′|h, `)V (h′, `′),

which is equivalent to a∗(h, `)=‘TC’, from which the result follows.

While (As1) and (As2) suffice to guarantee the existence of an optimal liver-based control

limit policy, we need additional assumptions to prove the existence of an optimal health-

based liver policy. The following theorem gives a set of intuitive conditions that ensures the

existence of an optimal health-based control-limit policy. Note that the conditions of this

theorem and those of Theorem 5.3 have similar interpretations.
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Theorem 6.4. If H is IFR, L satisfies (6.2),

H∑

k=j

H(k|h) ≤
H∑

k=j

H(k|h + 1), for j = h + 1, . . . , H and h = 1, . . . , H, (6.6)

and
r(h, `, TC)− r(h + 1, `, TC)

r(h + 1, `, TC)
≤ λ[H(H + 1|h + 1)−H(H + 1|h)],

for h = 1, . . . , H − 1, (6.7)

then there exists an optimal health-based control-limit policy.

Proof. First note that the monotonicity results of Theorems 6.1 and 6.2 hold. If we show

that for some h, a∗(h, `)=‘TC’ implies a∗(h + 1, `)=‘TC’ then the result follows. Assume

that the converse is true. In other words, for some h, a∗(h, `)=‘TC’ but a∗(h + 1, `) is

uniquely ‘W’. In this case, r(h, `, TC) ≥ r(h, W )+λ
∑

h′∈SH
H(h′|h)z(h′) and r(h+1, `, TC) <

r(h + 1,W ) + λ
∑

h′∈SH
H(h′|h + 1)z(h′). It follows that,

r(h, `, TC)− r(h + 1, `, TC) > r(h,W )− r(h + 1,W ) +

λ

[∑

h′≤h

H(h′|h)z(h′) +
∑

h′′>h

H(h′′|h)z(h′′)

]
−

λ

[∑

h′≤h

H(h′|h + 1)z(h′) +
∑

h′′>h

H(h′′|h + 1)z(h′′)

]
,

≥ λ

[∑

h′≤h

H(h′|h)z(h′) +
H∑

h′′=h+1

H(h′′|h)z(h′′)

]
−

λ

[∑

h′≤h

H(h′|h + 1)z(h′) +
H∑

h′′=h+1

H(h′′|h + 1)z(h′′)

]
,

because of (As2) and z(H + 1) = 0. The last inequality can also be rewritten as

r(h, `, TC)− r(h + 1, `, TC) > λ

(∑

h′≤h

[H(h′|h)−H(h′|h + 1)]z(h′)+

H∑

h′′=h+1

[H(h′′|h)−H(h′′|h + 1)]z(h′′)

)
. (6.8)

From Lemma 6.2 we know that z(h) is nonincreasing in h. Therefore, the result of Lemma

5.1 applies to this problem and we can replace each z(h′) with z(h) without violating (6.8).
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Similarly, as a result of Lemma 5.1 and (6.6), we can replace each z(h′′) with z(h + 1). We

then obtain the following:

r(h, `, TC)− r(h + 1, `, TC) > λ

([(
1−

H∑

h′′=h+1

H(h′′|h)−H(H + 1|h)

)
−

(
1−

H∑

h′′=h+1

H(h′′|h + 1)−H(H + 1|h + 1)

)]
z(h)+

H∑

h′′=h+1

[H(h′′|h)−H(h′′|h + 1)]z(h + 1)

)
(6.9)

= λ

(
H∑

h′′=h+1

[H(h′′|h + 1)−H(h′′|h)][z(h)− z(h + 1)]

)
+

λ ([H(H + 1|h + 1)−H(H + 1|h)]z(h)) .

From (6.6),
∑H

h′′=h+1[H(h′′|h + 1) −H(h′′|h)] is nonnegative, so we can drop the first term

and rewrite the last inequality as follows:

r(h, `, TC)− r(h + 1, `, TC) > λ[H(H + 1|h + 1)−H(H + 1|h)]z(h). (6.10)

Using (6.7) and (6.10) we obtain λ[H(H + 1|h + 1)−H(H + 1|h)]z(h) < λ[H(H + 1|h +

1)−H(H + 1|h)]r(h + 1, `, TC), which is equivalent to assuming that z(h) < r(h + 1, `, TC).

However, Theorem 6.1 and a∗(h + 1, `) =‘W’ imply that r(h + 1, `) < V (h + 1, `) = V (h +

1, L + 1) ≤ V (h, L + 1) ≤ z(h), because V (h, L + 1) ≤ V (h, `) for ` ∈ SL, which means

there exists a contradiction. Therefore, a∗(h + 1, `)=‘TC’ also holds, from which the result

follows.

Theorem 6.5 compares the optimal control limits of two similar patients who are listed

in different organ procurement organizations (OPO)s, i.e. who have different liver offer

probabilities. Namely, if a patient receives more and better liver offers than another patient,

then her optimal health-based control limits will be higher than the second patient given

that they have identical rewards and health transition probabilities. Similarly, the liver-

based optimal control limits of the patient who receives more and better liver offers will be

lower than those of the second one. Intuitively, this is because the patient receiving more

and better liver offers will be more selective than the second one.
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Theorem 6.5. Let Π1 and Π2 be two instances with liver transition probability matrices L1

and L2, respectively. Let V1 and V2 be the optimal value functions of Π1 and Π2, respectively.

If Π1 and Π2 have the same reward functions, r(h, `, TC) and r(h,W ), the same health

transition probability matrix H and L1 º L2, then the following are true:

(a) V1(h, `) ≥ V2(h, `) for h ∈ SH and ` ∈ SL.

(b) Let i1(h) and i2(h), h ∈ SH be the liver-based control limits of Π1 and Π2, respectively.

Then i1(h) ≤ i2(h), for all h ∈ SH .

(c) If both Π1 and Π2 have health-based control-limit optimal policies with health-based

control limits j1(`) and j2(`), ` ∈ SL, then j1(`) ≥ j2(`), for all ` ∈ SL.

Proof. (a) Suppose that we solve the two problems simultaneously using the value iteration

algorithm. We first show that starting with a value of 0 for all states in both problems, at

the end of each iteration of the algorithm, the value function of Π1 will be greater than or

equal to the value function of Π2 for each state. Let V j
i (h, `) be the value function of the

state (h, `) of problem i at the end of iteration j. We start with 0 for both problems. In

this case, V 1
1 (h, `) = V 1

2 (h, `) = max{r(h, `, TC), r(h,W )}, for h ∈ SH and ` ∈ SL as shown

in Theorem 6.2. Since the maximum of two nonincreasing functions is also a nonincreasing

function, the result holds for the base case.

Now, assume that V n
1 (h, `) ≥ V n

2 (h, `), (h, `) ∈ S holds for iterations 2, . . . , n. Then

we want to show that V n+1
1 (h, `) ≥ V n+1

2 (h, `), (h, `) ∈ S. If for any state (h, `) ∈ S,

V n+1
2 (h) = r(h, `, TC), then the result immediately follows since V n+1

1 (h, `) ≥ r(h, `, TC).

Otherwise, the application of the value iteration algorithm results in the following:

V n+1
1 (h, `) ≥ r(h,W ) + λ

∑

h′∈SH

H(h′|h)

[∑

`′≤`

L1(`
′|h′)V n

1 (h′, `′) +
∑

`′′>`

L1(`
′′|h′)V n

1 (h′, `′′)

]

and

V n+1
2 (h, `) = r(h,W ) + λ

∑

h′∈SH

H(h′|h)

[∑

`′≤`

L2(`
′|h′)V n

2 (h′, `′) +
∑

`′′>`

L2(`
′′|h′)V n

2 (h′, `′′)

]
.
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We obtain the following:

V n+1
1 (h, `)− V n+1

2 (h, `) ≥ λ
∑

h′∈SH

H(h′|h)

(∑

`′≤`

L1(`
′|h′)V n

1 (h′, `′)+

∑

`′′>`

L1(`
′′|h′)V n

1 (h′, `′′)−
∑

`′≤`

L2(`
′|h′)V n

2 (h′, `′)−

∑

`′′>`

L2(`
′′|h′)V n

2 (h′, `′′)

)

≥ λ
∑

h′∈SH

H(h′|h)

(∑

`′≤`

L1(`
′|h′)V n

2 (h′, `′)+

∑

`′′>`

L1(`
′′|h′)V n

2 (h′, `′′)−
∑

`′≤`

L2(`
′|h′)V n

2 (h′, `′)−

∑

`′′>`

L2(`
′′|h′)V n

2 (h′, `′′)

)
(6.11)

= λ
∑

h′∈SH

(∑

`′≤`

[L1(`
′|h′)− L2(`

′|h′)]V n
2 (h′, `′)+

∑

`′′>`

[L1(`
′′|h′)− L2(`

′′|h′)]V n
2 (h′, `′′)

)
(6.12)

≥ λ
∑

h′∈SH

(∑

`′≤`

[L1(`
′|h′)− L2(`

′|h′)]V n
2 (h′, `)+

∑

`′′>`

[L1(`
′′|h′)− L2(`

′′|h′)]V n
2 (h′, ` + 1)

)
(6.13)

= λ
∑

h′∈SH

(∑

`′≤`

[L1(`
′|h′)− L2(`

′|h′)][V n
2 (h′, `)− V n

2 (h′, ` + 1)]

)

(6.14)

≥ 0 (6.15)

where (6.11) follows from the induction assumption and (6.12) is obtained by simply rear-

ranging terms. Inequality (6.13) holds because L1 º L2 and the monotonicity of the value

function in ` imply that each V n
2 (h′, `′) can be replaced with V n

2 (h′, `), and V n
2 (h′, `′′) can

be replaced with V n
2 (h′, ` + 1), without violating the inequality as a result of Lemma 5.2.

(6.14) follows from rearranging the terms in (6.13); and (6.15) follows because L1 º L2 and

the value function is monotonic in `.
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Since the value function for Π1 is always greater than or equal to that of Π2 at each

iteration of the value iteration algorithm, the optimal value function of Π1 will always be

greater than or equal to that of Π2 from which the result follows.

(b) Note that the value function is monotonic from Part (a). Therefore, for a given h, if

for state i1(h), a1(h, i1(h))=‘TC’ in the first problem, since r(h, i1(h), TC) ≤ V2(h, i1(h)) ≤
V1(h, i1(h)) = r(h, i1(h), TC), a2(h, i1(h))=‘TC’ always holds in the second problem. As a

result, since we have a liver-based control-limit optimal policy in both problems, the liver-

based control limit in the first problem will always be smaller than or equal to the liver-based

control limit in the second problem, from which Part (b) of the theorem follows.

(c) Similarly, for a given `, if for state j1(`), a1(j1(`), `)=‘TC’ in the first problem, since

r(j1(`), `, TC) ≤ V2(j1(`), `) ≤ V1(j1(`), `) = r(j1(`), `, TC), a2(j1(`), `)=‘TC’ always holds in

the second problem. As a result, since we have a health-based control-limit optimal policy

in both problems, the health-based control limit in the first problem will always be greater

than or equal to the health-based control limit in the second problem, from which the Part

(c) of the theorem follows.

Theorem 6.6 provides a similar result to Theorem 6.5, in which two patients having iden-

tical reward functions and liver offer probabilities have different health transition probability

matrices. If a patient’s health deteriorates faster than another patient, then she will have

lower health-based and higher liver-based control limits than the second patient.

Theorem 6.6. Let Π1 and Π2 be two instances with health transition matrices H1 and H2,

respectively. Let V1 and V2 be the optimal value functions of Π1 and Π2, respectively. If

Π1 and Π2 has the same reward functions, r(h, `, TC) and r(h,W ), the same liver transition

probability matrix L and H1 º H2, then the following are true:

(a) V1(h, `) ≥ V2(h, `) for h ∈ SH and ` ∈ SL.

(b) Let i1(h) and i2(h), h ∈ SH be the liver-based control limits of Π1 and Π2, respectively.

Then i1(h) ≤ i2(h), for all h ∈ SH .

(c) If both Π1 and Π2 have heath-based control-limit optimal policies with health-based

control limits j1(`) and j2(`), ` ∈ SL, then j1(`) ≥ j2(`), for all ` ∈ SL.
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Proof. (a) Suppose that we solve the two problems simultaneously using the value iteration

algorithm. We first show that starting with a value of 0 for all states in both problems, at

the end of each iteration of the algorithm, the value function of Π1 will be greater than or

equal to the value function of Π2 for each state. Let V j
i (h, `) be the value function of the

state (h, `) of problem i at the end of iteration j. We start with 0 for both problems. In

this case, V 1
1 (h, `) = V 1

2 (h, `) = max{r(h, `, TC), r(h,W )}, for h ∈ SH and ` ∈ SL as shown

in Theorem 6.2. Since the maximum of two nonincreasing functions is also a nonincreasing

function, the result holds for the base case.

Now, assume that V n
1 (h, `) ≥ V n

2 (h, `), (h, `) ∈ S holds for iterations 2, . . . , n. Then

we want to show that V n+1
1 (h, `) ≥ V n+1

2 (h, `), (h, `) ∈ S. If for any state (h, `) ∈ S,

V n+1
2 (h) = r(h, `, TC), then the result immediately follows since V n+1

1 (h, `) ≥ r(h, `, TC).

Otherwise, the application of the value iteration algorithm results in the following:

V n+1
1 (h, `) ≥ r(h,W ) + λ

[∑

h′≤h

L1(h
′|h)zn

1 (h′) +
∑

h′′>h

L1(h
′′|h)zn

1 (h′′)

]

and

V n+1
2 (h, `) = r(h,W ) + λ

[∑

h′≤h

L2(h
′|h)zn

2 (h′) +
∑

h′′>h

L2(h
′′|h)zn

2 (h′′)

]
,

where zn
1 (h) =

∑
`∈SL

L(`|h)V n
1 (h, `) and zn

2 (h) =
∑

`∈SL
L(`|h)V n

2 (h, `).

We obtain the following:

V n+1
1 (h, `)− V n+1

2 (h, `) ≥ λ
∑

h′≤h

H1(h
′|h)zn

1 (h′) + λ
∑

h′′>h

H1(h
′′|h)zn

1 (h′′)−

λ
∑

h′≤h

H2(h
′|h)zn

2 (h′)− λ
∑

h′′>h

H2(h
′′|h)zn

2 (h′′)

≥ λ
∑

h′≤h

H1(h
′|h)zn

2 (h′) + λ
∑

h′′>h

H1(h
′′|h)zn

2 (h′′)−

λ
∑

h′≤h

H2(h
′|h)zn

2 (h′)− λ
∑

h′′>h

H2(h
′′|h)zn

2 (h′′)

= λ

(∑

h′≤h

[H1(h
′|h)−H2(h

′|h)]zn
2 (h′)+

∑

h′′>h

[H1(h
′′|h)−H2(h

′′|h)]zn
2 (h′′)

)
(6.16)
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≥ λ

(∑

h′≤h

[H1(h
′|h)−H2(h

′|h)]zn
2 (h)+

∑

h′′>h

[H1(h
′′|h)−H2(h

′′|h)]zn
2 (h + 1)

)
(6.17)

= λ

(∑

h′≤h

[H1(h
′|h)−H2(h

′|h)][zn
2 (h)− zn

2 (h + 1)]

)
(6.18)

≥ 0 (6.19)

where (6.16) follows from the induction assumption and (6.16) is obtained by simply re-

arranging terms. Inequality (6.17) holds because H1 º H2 and the monotonicity of the

z-function imply that zn
2 (h′) can be replaced with zn

2 (h), and zn
2 (h′′) can be replaced with

zn
2 (h+1), without violating the inequality as a result of Lemma 5.2. Inequality (6.18) follows

from rearranging the terms in (6.17) and (6.19) follows because H1 º H2 and the z-function

is monotonic.

Since the value function for Π1 is always greater than or equal to that of Π2 at each

iteration of the value iteration algorithm, the optimal value function of Π1 will always be

greater than or equal to that of Π2 from which the result follows.

(b) The proof is similar to the proof of Part (b) of Theorem 6.5 and is omitted.

(c) The proof is similar to the proof of Part (c) of Theorem 6.5 and is omitted.

6.3 COMPUTATIONAL RESULTS

We solve the CDM using real data. The estimation of parameters is described in Chapter 4

and Section 5.3. We first consider the same patient considered in Chapter 5, a 60-year old

female patient with primary biliary cirrhosis who has blood type A. We apply a 0.99 annual

discount rate (daily λ = 0.999972) and use the national liver probability matrix. Recall that

as the MELD score increases, the patient gets sicker. In Figure 6.2, the livers are ordered

from highest to lowest quality, i.e. Liver Type 1 is the “best” and Liver Type 14 is the

“worst” liver. The quality of a liver for a given patient is determined by the Post-transplant

Survival Model described in Section 4.3. As Figure 6.2 shows, the optimal action varies for

different liver types. If the patient has a MELD score of 16, then the optimal policy for this
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Figure 6.2: Transplant-Wait Decisions for Annual Discount Rate=0.99 (λ=0.999972)
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particular patient is as follows: if she receives a liver offer that is of type 4 or worse, then

“Wait”, otherwise accept the liver and have the transplantation. This policy is an example

of a liver-based control-limit policy. Similarly, if the patient receives a liver offer of type 5,

then the optimal action for this particular patient is as follows: if her MELD score is below

18, then “Wait”, otherwise accept the liver and have the transplantation. This policy is

an example of a health-based control-limit policy. For this particular patient, the optimal

policy is of liver-based control-limit type for each h and is of health-based control-limit type

for each `.

In all of our computational tests, all optimal policies are of liver-based control-limit type.

All of our data sets satisfy the requirements of Theorem 6.3. However, some optimal policies

are not of health-based control-limit type. Figure 6.3 shows an example of this situation.

Figure 6.3 shows the optimal policy for the same patient, but assumes that the patient is

listed in region 2 and uses the corresponding liver probability matrix. As can be seen from

the figure, for liver type 13, the patient does not have a health-based control-limit policy.

This result can be explained intuitively as follows: the current liver allocation system implies

that the sicker the patient is, the more likely it is that she receives more frequent and higher

quality liver offers. As a result, if as the patient gets sicker the rate of increase in the liver

offer probability is very high, then it may be optimal for the patient to decline the low quality

livers in anticipation of higher quality liver offers.

Neither the problem in Figure 6.2 nor the problem in Figure 6.3 strictly satisfy the

conditions of Theorem 6.4. While the maximum violation for Condition 6.2 is different,

the maximum violations for all remaining conditions of Theorem 6.4 are the same for both

problems. To quantify the magnitude of the violation of Condition 6.2 we define the following

metric:

ε4 = maxh,`

{
0, r(h,`,TC)

r(h+1,`,TC)
− L(`|h+1)

L(`|h)

}
, the maximum violation of Condition 6.2. The value

for ε4 is 0.41 and 1.01 for the problems in Figure 6.2 and Figure 6.3, respectively. Although

both of these values are high, the problem in Figure 6.3 has a larger ε4 value, which shows

that the sufficiency conditions in Theorem 6.4 may provide a good measure for the existence

of a health-based control-limit policy.
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Figure 6.3: Example of a Non-health Based Control-limit Policy for Liver Type 13
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As in the LDM, disease and patient types affect the optimal policies. Figure 6.4 shows the

optimal policy for seven patient types with an annual discount rate of 0.99 as well as 1. We

use the patient type definitions in Table 5.3 to generate Figure 6.4. Disease groups in Figure

6.4 are defined in Table A.1. In Figure 6.4, patients are in decreasing order with respect to

their post-transplant expected life days for any given liver. As in the LDM, as the quality

of the patient characteristics drops, it is optimal to “Wait” in more states. Intuitively, this

result makes sense, because as the quality of patient characteristics drops, the ratio of pre-

transplant survival probability to post-transplant survival probability increases. In general,

our findings indicate that Disease Group 3, which includes the acute liver diseases, has the

highest control limits. Our results also show that as in the LDM, the optimal control limits

of the undiscounted problem are higher than those of the discounted problem.

Liver offer probabilities also affect the optimal policy. Recall that the liver offer proba-

bility matrix depends on the location where the patient is listed. Figure 6.5 compares the

optimal transplant-wait decisions for Patient 5 when she is listed in two different regions.

We assume that the patient has cirrhosis and the annual discount rate is 0.99. There is not

a strict dominance relationship between the L matrices of Regions 1 and 6. In general, how-

ever, if the patient is listed in Region 6, then she receives more frequent and higher quality

liver offers. To quantify the magnitude of the violation of the dominance criterion 5.2, we

define the following metric:

ε5 = maxh

{
0,

∑L+1
j=k [L1(j|h)− L6(j|h)]

}
, 1 ≤ k ≤ L + 1, where L1(j|h) and L6(j|h) are

the liver transition probability matrices of Region 1 and Region 6, respectively. ε5 equals

0.0087 for the problems in Figure 6.5. As can be seen from Figure 6.5, the optimal control

limits in Region 1 are higher than those of Region 6. This result is intuitive because as the

patient receives more frequent liver offers with higher quality, she will be more selective.

6.4 CONCLUSIONS

This chapter considers the problem of accepting or declining a cadaveric liver offer. We derive

structural properties of the MDP model, including conditions that guarantee the existence

of a health-based and a liver-based control-limit policy. The conditions that ensure the
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(a)Annual discount rate=0.99 (b)Annual discount rate=1
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Figure 6.4: Transplant-Wait Decisions for Discounted and Undiscounted Problems
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(a) Region 1 (b) Region 6
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Figure 6.5: Transplant-Wait Decisions for Various Regions

existence of a health-based control-limit policy are stronger than those that guarantee the

existence of a liver-based control-limit policy. We also compare the optimal control limits

for the same patient listed in two different regions. We prove that if the patient is listed in a

region where she receives more frequent and higher quality liver offers than another region,

then the optimal control limits obtained when she is listed in the former region are higher

than those obtained when she is listed in the latter region.

In all of our computational tests, the optimal policy is of liver-based control-limit type.

All of the test problems satisfy the conditions of Theorem 6.3. However, some optimal

policies are not of health-based control-limit type. In some examples, as the patient gets

sicker, the probability of receiving a better liver increases significantly. In such cases, it is

optimal to decline a liver offer in some health states even if it is optimal to accept that

particular liver offer in better health states. Our computational tests also show that the

location of the patient has a significant effect on liver offer probabilities and optimal control

limits.
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7.0 LIVING-AND-CADAVERIC-DONOR MODEL

In this chapter, we consider the general model presented in Chapter 3. This chapter is

organized as follows. In Section 7.1, we derive structural properties of the MDP model and

its optimal policy. In Section 7.2, we present and discuss computational results. We draw

some conclusions and discuss future research directions in Section 7.3.

7.1 STRUCTURAL PROPERTIES

In this section, we derive some structural properties of the living-and-cadaveric-donor model

(LCDM) given by 3.1. The following assumptions are common to all theorems:

(As1): The function r(h, `, TC) is nonincreasing in both h and `, that is, as the patient

gets sicker and/or the liver quality drops, her post-cadaveric-transplant reward does not

increase.

(As2): The function r(h,W ) is nonincreasing in h, that is, as the patient gets sicker the

intermediate reward does not increase.

(As3): The functions r(h, `LD, TLD) and r′(h, `LD, TLD) are nonnegative and nonincreas-

ing in h, that is, as the patient gets sicker, her (net) post-living-donor-transplant reward

does not increase.

The proof of the following theorem is similar to the proof of Theorem 6.1 and is omitted.

Theorem 7.1. V (h, `) is monotonically nonincreasing in `, ` ∈ SL, ∀h ∈ SH .

Definition 7.1. An at-most-two-region liver-based policy (AM2RL) for a particular health

state is of the following form: For a given health state h, “Accept” the cadaveric organ if and

only if the offered organ is of types 1, 2, . . . , i(h), for some liver type i(h), called the AM2RL
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control limit. For all remaining health states, if a∗(h, i(h) + 1) =‘W’ then a∗(h, `) =‘W’

holds for ` = i(h) + 2, . . . , L and if a∗(h, i(h) + 1) =‘TLD’ then a∗(h, `) =‘TLD’ holds for

` = i(h) + 2, . . . , L.

An example for AM2RL policy is presented in Figure 7.1(c). Theorem 7.2 proves that

(As1), (As2) and (As3) suffice to ensure the existence of an optimal AM2RL policy. We

first state two lemmas whose proofs are obvious and are omitted.

Lemma 7.1. For a given health state h, if a∗(h, `)=‘TLD’, then a∗(h, `′)=‘TLD’ for `′ > `.

Lemma 7.2. For a given health state h, if a∗(h, `)=‘W’, then a∗(h, `′)=‘W’ for `′ > `.

Theorem 7.2. There exists an optimal AM2RL policy.

Proof. We first show that a∗(h, ` + 1)=‘TC’ implies a∗(h, `)=‘TC’, ∀h ∈ SH . If a∗(h, ` +

1)=‘TC’ for a given h ∈ SH , then it is obvious that r(h, `, TC) ≥ r(h, `+1, TC) ≥ r′(h, `LD, TLD).

The following are also true about the optimality equations:

V (h, ` + 1) = r(h, ` + 1, TC) ≥ r(h,W ) + λ
∑

h′

∑

`′
P(h′, `′|h, ` + 1)V (h′, `′)

and

V (h, `) = max

{
r(h, `, TC), r(h,W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `)V (h′, `′)

}
.

Because

λ
∑

h′
∑

`′ P(h′, `′|h, ` + 1)V (h′, `′) = λ
∑

h′
∑

`′ P(h′, `′|h, `)V (h′, `′) holds in the above

expressions, as a result of (As1) we can write the following:

r(h, `, TC) ≥ r(h, ` + 1, TC) ≥ r(h,W ) + λ
∑

h′

∑

`′
P(h′, `′|h, `)V (h′, `′),

which is equivalent to a∗(h, `)=‘TC’, from which the first part follows. Let a∗(h, `)=‘TC’

for ` = 1, . . . , `∗ and a∗(h, `∗ + 1) 6= ‘TC’ . As a result of Lemma 7.1 and Lemma 7.2, the

optimal policy will be either ‘W’ or ‘TLD’ for ` > `∗, from which the result follows.

Theorem 7.3 proves the monotonicity of V (h, `) in h under a set of intuitive conditions.

The proof of this theorem is similar to Theorem 6.2 and is omitted.
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Theorem 7.3. Let H be an IFR matrix and (6.2) hold for all h and `. Then V (h, `) is also

nonincreasing in h.

Definition 7.2. An at-most-three-region (AM3R) policy satisfies the following two condi-

tions: For a given liver type `, choose the “Wait” action if and only if the observed health

state is one of the states 1, 2, . . . , j(`), for some health state j(`). Furthermore, there exists

an AM2RL policy for each health state h.

An example for AM3R policy is presented in Figure 7.1(c). The following theorem, the

main result of this section, gives a set of intuitive conditions that ensure the existence of

an optimal AM3R policy. Note that the conditions of this theorem and Theorem 5.3 have

similar interpretations.

Theorem 7.4. Let H be an IFR matrix and suppose L satisfies (6.2), and r(h, `, TC),

r′(h, `LD, TLD) and H satisfy (6.6) and (6.7). Then there exists an optimal AM3R policy.

Proof. Note that Theorem 7.2 applies under the above assumptions. Therefore, if we show

that for any `, a∗(h, `) =‘W’ implies a∗(h− 1, `) =‘W’, the result will then follow.

Note also that the monotonicity results in Theorems 7.1 and 7.3 hold. Now assume that

for a given ` and h, a∗(h, `) =‘W’ but a∗(h − 1, `) is uniquely either ‘TLD’ or ‘TC’. Then,

there are two cases:

Case 1. a∗(h− 1, `)=‘TLD’

Because H is IFR, condition (5.8) is satisfied, condition (6.7) implies condition (5.9), the

proof of Theorem 5.3 applies to this situation. As a result, a∗(h − 1, `) must also be ‘W’

from which the result follows.

Case 2. a∗(h− 1, `)=‘TC’

Because H is IFR and conditions (6.6) and (6.7) are satisfied, the proof of Theorem 6.4

applies to this situation. As a result, a∗(h − 1, `) must also be ‘W’ from which the result

follows.

Theorem 7.5 compares the optimal policies of two identical patients who have different

disutility functions. Namely, if a patient has a higher disutility of using the living donor

than another patient, then the number of states in which “Transplant the living-donor liver”
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action is optimal is smaller than or equal to the number of states that the second patient

chooses to “Transplant the living-donor liver”.

Theorem 7.5. Let Π1 and Π2 be two instances that have identical P , r(h,W ), r(h, `C , TC)

and r(h, `LD, TLD). Let V1(h, `) and V2(h, `) be the optimal value functions and ρ1(h) and

ρ2(h) be the disutility functions of Π1 and Π2, respectively. Let ρ1(h) = ρ1r(h, `LD, TLD) and

ρ2(h) = ρ2r(h, `LD, TLD), where ρ2 = αρ1 and 0 ≤ α ≤ 1. Then the following hold:

(a) V1(h, `) ≤ V2(h, `), for h ∈ SH and `inSL.

(b) Let a∗1(h, `) and a∗2(h, `) be the optimal actions of Π1 and Π2 for state (h, `), respec-

tively. If a∗1(h, `)=‘TLD’, then a∗2(h, `)=‘TLD’ must also hold.

Proof. (a) For any h and `, we can write the following as a result of (3.1):

V1(h, `) = max

{
r(h, `LD, TLD)− ρ1(h), r(h, `, TC), r(h,W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `)V1(h

′, `′)

}

and

V2(h, `) = max

{
r(h, `LD, TLD)− ρ2(h), r(h, `, TC), r(h,W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `)V2(h

′, `′)

}
.

Because ρ1(h) ≥ ρ2(h), r(h, `LD, TLD)−ρ1(h) ≤ r(h, `LD, TLD)−ρ2(h) holds. Since the second

and third components of the above equations are identical, V1(h, `) ≤ V2(h, `) follows.

(b) If we show that r′2(h, `LD, TLD) = r(h, `LD, TLD)−ρ2(h) = [r(h, `LD, TLD)−ρ1(h)](1+

α′) = r′1(h, `LD, TLD)(1 + α′) for some α′ > 0, then the proof of Part (a) of Theorem 5.4

applies to this situation and the result follows.

r′2(h, `LD, TLD) = r(h, `LD, TLD)[1− ρ2]

= r(h, `LD, TLD)[1− αρ1]

=
r′1(h, `LD, TLD)

[1− ρ1]
[1− αρ1]

= r′1(h, `LD, TLD)[1 + α′], (7.1)

where (7.1) follows because [1−ρ1]
[1−αρ1]

≥ 1 + α′ for some α′ ≥ 0 by definition of α, from which

the result follows.
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The LCDM generalizes the CDM by considering the availability of a living-donor liver.

We show that without making any additional assumptions, an LCDM problem can be con-

verted into an equivalent CDM problem. This conversion is accomplished by treating the

living-donor liver as a cadaveric liver offer and changing the r(h, `, TC) function. This

transformation is based on the fact that the patient would never accept a cadaveric liver

that results in a lower total expected discounted post-transplant reward than the living-

donor liver. Similarly, the patient would never accept the living-donor liver if doing so

results in a lower total expected discounted post-transplant reward than transplanting a

cadaveric-donor liver. Let r̃(h, `, TC) be the post-transplant reward function of the trans-

formed problem. We obtain r̃(h, `, TC) as follows. For any h, if there exists an `∗(h)

such that r(h, `∗(h), TC) ≤ r′(h, `LD, TLD) and r(h, `∗(h) − 1, TC) > r′(h, `LD, TLD), then

r̃(h, `(h), TC) = r′(h, `LD, TLD) for `(h) = `∗(h), . . . , L + 1 and r̃(h, `(h), TC) = r(h, `(h), TC)

for `(h) < `∗(h), `(h) ∈ SL. Theorem 7.6 proves that the optimal value function obtained by

solving the transformed problem is equal to the optimal value function of the original prob-

lem. Corollary 7.1 shows how the optimal actions of the original problem can be obtained

from those of the transformed problem. The proof of the corollary is obvious and is omitted.

Theorem 7.6. Let Ṽ be the optimal value function of the transformed problem. Then

V (h, `) = Ṽ (h, `), h ∈ SH , ` ∈ SL.

Proof. Note that we can rewrite the optimality equation for the LCDM as follows:

V (h, `(h)) = max

{
r(h, `(h), TC), r(h,W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `(h))V (h′, `′)

}
,

h ∈ SH , `(h) = 1, . . . , `∗(h)− 1, (7.2)

V (h, `(h)) = max

{
r′(h, `LD, TLD), r(h,W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `(h))V (h′, `′)

}
,

h ∈ SH , `(h) = `∗(h), . . . , L + 1, (7.3)

where (7.2) follows because r(h, `(h), TC) ≥ r(h, `LD, TLD) for `(h) < `∗(h) and (7.3) follows

because r(h, `(h), TC) ≤ r(h, `LD, TLD) for `(h) ≥ `∗(h) by definition of `∗(h). Combining
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(7.2) and (7.3) results in the following set of recursive equations:

V (h, `) = max

{
r̃(h, `, TC), r(h,W ) + λ

∑

h′

∑

`′
P(h′, `′|h, `)V (h′, `′)

}
, h ∈ SH , ` ∈ SL,

which is identical to the optimality equations of the transformed problem, from which the

result follows.

Corollary 7.1. Let ã∗(s) be the optimal decision for the transformed problem when the

state is s. Then, for any h, if ã∗(h, `(h))=‘TC’ for `(h) < `∗(h), then a∗(h, `(h))=‘TC’ for

`(h) < `∗(h). Similarly, if ã∗(h, `(h))=‘TC’ for `(h) ≥ `∗(h), then a∗(h, `(h))=‘TLD’ for

`(h) ≥ `∗(h). Also if ã∗(h, `(h))=‘W’ then a∗(h, `(h))=‘W’ for `(h) ∈ SL.

Note that the results in this section do not follow directly from the results in Section 6.2.

However, we can use this transformation to convert an LCDM problem into a CDM problem

and solve it as a CDM.

7.2 COMPUTATIONAL RESULTS

We solve the LCDM using real data. The estimation of parameters is described in Chapter

4 and Section 5.3. We use the same values for the health state space, health and liver

transition probability matrices and the reward function as in the CDM described in Chapter

6. All of our computational experiments in this section use the national liver transition

probability matrix. We are unaware of any studies that quantify the disutility of living-

donor liver transplants. We define ρ(h) as a linear function of r(h, lLD, TLD), i.e. ρ(h)=

ρ0 · r(h, lLD, TLD). Then r′(h, lLD, TLD) = (1 − ρ0) · r(h, lLD, TLD). This definition implies

that the sicker the patient, the smaller the disutility associated with accepting the living-

donor liver.

We consider the same patient considered in Chapters 5 and 6, a 60-year old female patient

with primary biliary cirrhosis who has blood type A. We use a 0.99 annual discount rate

(daily λ = 0.999972) and ρ0=0.1. Figure 7.1(c) shows the optimal policy when the only

living-donor liver available to this patient is Organ 2, whose donor characteristics are given

in Table 5.2. As can be seen from the figure, as the patient gets sicker, the “Transplant
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cadaveric liver” action is optimal for more cadaveric liver types and the “Wait” action is

optimal only in healthier states. This policy is an example for the AM3R policy described in

Section 7.1. We tested a total of 240 instances and all optimal policies were of AM3R type.

Figure 7.1 compares the optimal policy for LCDM with the optimal policies for the LDM

and CDM for the same patient and living-donor liver when annual discount rate is 0.99

(λ=0.999972) and ρ0 = 0.1. Note that the optimal policy obtained by LDM is a vertical

line in this figure, because when the patient is not listed on the waiting list she is indifferent

between various cadaveric liver offers. As expected, the “Transplant the living-donor liver”

action occurs in sicker health states for the LCDM than for the LDM. Similarly, the patient

becomes more selective in accepting the cadaveric liver offers for the LCDM.

As expected, the disutility function affects the optimal policies significantly. Figure

7.2 shows the optimal policies for various values of ρ0. As the disutility associated with

transplanting the living-donor liver increases, the number of states where “Transplant living-

donor organ” action is optimal decreases.

As in the LDM, different living-donor livers may result in different optimal policies.

Figure 7.3 shows the optimal policies for the same patient and disutility function and various

living-donor livers when ρ0 = 0.1 and annual discount rate equals 0.99. Organ types that

are used in Figure 5.2 are defined in Table 5.2. As can be seen from the figure, as the quality

of the organ drops the number of states in which it is optimal to “Transplant living-donor

organ” decreases. This result is intuitive because as the quality of the living donor drops,

the patient benefits less from the living-donor transplantation. As a result, the patient is

less selective when considering the cadaveric liver offers.

As in the LDM and CDM, different diseases and different discount factors have different

control limits. Figure 7.4 shows the optimal policies for different diseases and discount factors

when the only available living-donor liver to the patient is Organ 2 and ρ0 = 0.1. Disease

groups in Figure 7.4 are defined in Table A.1. As demonstrated in the figure, the optimal

policies for Disease Group 3 have the largest “Wait” regions. Our results also show that the

undiscounted problem have a larger “Wait” region than the discounted problem.

As can be seen from Figure 7.4, when the patient is in disease group 2, the optimal

policy suggests the following: she should accept a cadaveric liver offer that is of liver type
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Figure 7.1: Transplant-Wait Decisions for Different Models
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(e) ρ0=0.25 (f) ρ0=0.50

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

MELD Score

O
rg

an
 Q

ua
lit

y

W

TC

T
LD

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

MELD Score

O
rg

an
 Q

ua
lit

y

W

TC

Figure 7.2: Transplant-Wait Decisions for Different Disutility Functions
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Figure 7.3: Transplant-Wait Decisions for Various Organs
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9 when her MELD score is 34 and 38, and she should decline the same liver type when her

MELD score is 36. This result may appear counterintuitive, however, recall that the current

definition of disutility function does not ensure the existence of a complete ordering between

living-donor and cadaveric liver types. For this particular example, the transplantation of

the living-donor liver results in a smaller net total expected discounted reward than the

cadaveric liver type 9 transplant when the patient’s MELD score is 34 or 38. On the other

hand, the living-donor liver transplantation results in a larger net total expected discounted

reward than the cadaveric liver type 9 transplant when the patient’s MELD score is 36. This

is an example for the nonexistence of a complete ordering of the liver types. It is also possible

that our estimation for the total post-transplant reward is not accurate, which indicates that

the MELD system may not be a good measure of the total post-transplant life expectancy.

7.3 CONCLUSIONS

This chapter considers the most realistic decision problem faced by patients who have a

living-donor liver available: should an offered cadaveric organ of a given quality be accepted

or declined? If declined, should the living-donor liver be transplanted? The model presented

in this chapter extends the one in Chapter 5 by combining the two models that are described

in Chapters 5 and 6.

We derive structural properties of the MDP model, including conditions that guarantee

the existence of an AM3R policy. In all of our computational tests, the optimal policy

is of AM3R type. Our computational tests also show that the disutility associated with

transplanting the living-donor liver significantly affects the optimal policy. In general, as the

disutility function increases, the number of states in which it is optimal to “Wait” and to

“Transplant the cadaveric liver” increases and the number of states where it is optimal to

“Transplant the living-donor liver” decreases.
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(a)Annual discount rate=0.99 (b)Annual discount rate=1
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Figure 7.4: Transplant-Wait Decisions for Discounted and Undiscounted Problems
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8.0 SUMMARY AND FUTURE RESEARCH

8.1 SUMMARY

This dissertation focuses on the decision problem faced by patients with ESLD: which liver

offer to accept and which to refuse? Previous research [40, 41, 142, 165, 166] has focused

on the optimal allocation of the organs to the patients. However, such studies must con-

sider many political and ethical issues such as equity among various groups. Because this

dissertation views and solves the problem from the patient’s perspective, it does not need

to consider such issues and therefore the resulting optimal policies are immediately imple-

mentable. Furthermore, unlike previous researchers, we employ detailed models of patient

health and organ quality, and use real data to solve the decision problems. As a result, the

models in this dissertation are not limited by unrealistic assumptions.

The most general model considers the problem of determining whether a patient should

accept a cadaveric liver offer, or decline the cadaveric liver offer and accept the living-donor

liver, or decline both cadaveric and living-donor livers. We formulate this problem as an

infinite horizon discrete-time MDP model. Chapters 5 and 6 consider two specific cases of

this MDP model: the living-donor-only model, in which we assume that the patient has a

living donor and is not listed on the waiting list; the cadaveric-donor-only model, in which

the patient is assumed to be listed on the liver waiting list and does not have any living-

donor liver(s). To the best of our knowledge, the living-donor-only model is the first model

that considers the optimal timing of living-donor organ transplants. In all three models, we

derive the structural properties of the MDP model, including sets of sufficient conditions

that ensure the existence of control-limit policies.
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These decision models could be generalized to address the problem of optimally timing

other organ transplants, given the following components: a proxy for the patient health, the

transition probabilities between patient health and organ offer states, a measure for organ

quality, and a reward function for a given organ and patient health characteristics. If there

are additional treatment options (such as dialysis in the kidney transplantation), then the

action space and the state space could be expanded to include new actions.

8.2 FUTURE RESEARCH

There are several possible extensions to this dissertation. Section 8.2.1 discusses various

approaches to modeling the effect of the waiting list. We present the problem of optimally

choosing the regions for listing in Section 8.2.2. Finally, Section 8.2.3 describes several other

future research directions.

8.2.1 Modeling the Waiting List

Under the current UNOS policy, the composition of the waiting list and the actual position of

the patient on this list have a significant impact on the liver offer(s) that the patient receives.

Therefore, the waiting list must be considered in the cadaveric-donor liver transplant decision

problem. Neither the LCDM nor the CDM includes the waiting list in the decision model as

part of the state space nor do they make any attempt to infer the patient’s position on the

waiting list. Instead, these models incorporate the effect of the composition of the waiting

list and the patient’s position on the list into the state transition probabilities. Considering

the waiting list requires a more complicated model.

One possible method to model the waiting list is to assume that a full description of

the waiting list is available to the patient at all times and to include the description of the

waiting list as part of the state space. An optimal solution to this problem gives the best

policy that the patient can attain.

However, under the current UNOS policy, information about the position of the patient

and the composition of the waiting list are not fully available. Instead, the patient can learn
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only partial information about the composition of the waiting list such as the current medical

status or MELD scores of other patients in her OPO and region within some ranges [148].

Furthermore, throughout her waiting time, the patient receives information that is inherently

related to the overall composition of the waiting list, but does not reveal the composition

of the list with certainty. Based on this information, i.e. the stream of livers offered or not

offered, the succession of health levels and partial information about the waiting list, the

patient can make an inference as to the composition of the list and make accepting/declining

decisions based on this inference. For instance, consider a patient in the Pittsburgh OPO

who has a blood type of O and has a MELD score of 18 as of January 13, 2004. This patient

can look at the UNOS web site for her OPO region and learn about the total number of

people waiting in her OPO and partial information about their health status. As of January

13, 2004, this patient learns from the web site that there are 6 patients with MELD scores

larger than 18 or Status 1 and there are 19 people having MELD scores between 11 and

18 [148]. Based on this information, this patient can make an estimation of her rank by

assuming a probability distribution for the other patients’ individual MELD scores. As of

January 13, 2004, this particular patient is most probably at the top of the patients having

MELD scores between 11 and 18.

Viewing this decision problem in this manner naturally leads to a partially observed

Markov decision process (POMDP) formulation. It can be shown [112] that the POMDP

can be formulated as a Markov decision process with an enlarged state space, namely the

space of probability distributions over the underlying states. In the context of the problem

considered here, the underlying or “core” states may be taken to be the composition of the

waiting list. Considering the POMDP problem enables us to measure the price of hiding

information from the patients.

8.2.2 Multiple Listing Problem

According to the current UNOS policy, a patient can be listed in more than one OPO at

the same time. Although multiple listing may increase the probability of receiving more

frequent and higher quality liver offers, patients do not list in all OPOs due to financial and
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geographical constraints. Furthermore, there may not be a complete ordering of the OPOs.

For instance, there is not a strict relationship between an OPO with more frequent but lower

quality livers and another OPO with less frequent but higher quality livers. Similarly, the

frequency and the quality of liver offers depend on the patient health. Listing in one OPO

may result in more frequent and higher quality liver offers than another OPO for some health

states. However, the second OPO may be preferable to the first one for some other health

states. An interesting problem is to determine the optimal set of OPOs that will maximize

the total expected reward for the patient. This problem can be formulated and solved by

combining a combinatorial optimization model with an MDP model.

8.2.3 Other Future Research Directions

In all of our computational tests, we use the total discounted expected-life days (ELD) as

our reward function. However, it is well known that total discounted quality-adjusted life

days (QALD) of the patient is a better measure for outcome in medical research [68]. Using

QALD as the performance measure will not change the MDP model, however, it may have

a significant effect on the optimal policies. A possible future research could be to consider

QALD as the reward function and compare the resulting optimal policies with those that

are obtained when ELD is used.

All of our models assume that the decision maker is both indifferent to the timing of the

resolution of uncertainty and risk-neutral. However, these assumptions do not necessarily

hold [32]. A possible future research would be to consider these and other patient preference

issues, which may require a different reward function definition.

In this dissertation, we do not compare the optimal decisions obtained by using our

models to the actual decisions made by the patients. Such a comparison enables us to

measure the changes in the total (quality-adjusted) life expectancy of the patients when they

use our decision models. It is also possible to measure the changes in the overall statistics

of the organ allocation system such as liver refusal rates and the number of organs wasted

when all patients use the decision models described in this dissertation, which requires the

construction and execution of a simulation model.
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APPENDIX A

CLASSIFICATION OF LIVER DISEASES
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Table A.1: Classification of Liver Diseases [3, 127, 136]

Five-Group Ten-Group Category
Classification Classification

1 1 Primary biliary cirrhosis: primary biliary cirrhosis.
Cirrhotic 2 Primary sclerosing cholangitis: Crohn’s disease; ulcerative
diseases colitis; cholangitis with no bowel disease.

3 Alcoholic liver disease: Lannec’s cirrhosis.
4 Autoimmune disorders: cirrhosis (drug or industrial

exposure; cryptogenic; idiopathic); chronic autoimmune
hepatitis (etiology unknown; postnecrotic).

2 5 Hepatitis C and similar infections: postnecrotic cirrhosis
Hepatitis (non-A, non-B; type C; type D; types B and C; types B and D);
infections Lannec’s cirrhosis (postnecrotic; other).

6 Hepatitis B: postnecrotic cirrhosis (HBsAg-positive).
3 7 Acute hepatic failure: acute hepatic necrosis (drug exposure;

Acute liver hepatitis A; hepatitis B, HBsAg-positive; non-A, non-B
diseases hepatitis; hepatitis C; hepatitis D; hepatitis B and C; hepatitis B

and D; other acute viral infection); etiology unknown.
4 8 Cancers: primary liver malignancy (hepatoma; fibrolamellar

Cancers hepatocellular carcinoma; cholangiocarcinoma;
hepatoblastoma; hemangioendothelioma; hemangiosarcoma;
angiosarcoma).

5 9 Metabolic disorders: alpha-1-antitrypsin deficiency; glycogen
Other liver storage disease type I; glycogen storage disease type II;

diseases hemochromatosis; hemosiderosis; hyperlipidemia type II;
homozygous hypercholesterolemia; primary oxalosis or
oxaluria; hyperoxaluria; tyrosinemia; Wilson’s disease or other
copper disorder; urea cycle disorder; Crigler-Najjar syndrome;
Wolman’s disease; protoporphyria; Niemann-Pick disease;
abetalipoproteinemia; Gaucher’s disease; Osler-Rendu-Weber
disease; carbamoylphosphate synthase deficiency; amyloidosis;
Wiskott-Aldrich syndrome.

10 Other liver diseases: cirrhosis (postnecrotic hepatitis A);
secondary biliary cirrhosis (Caroli’s disease; choledochal cyst;
other); familial cholestasis (Byler disease; other); cholestatic
liver disease not listed above; neonatal hepatitis; biliary atresia
(extrahepatic biliary atresia; hypoplasia; Alagille syndrome;
other); congenital hepatic fibrosis; cystic fibrosis; Budd-Chiari
syndrome; benign tumor (hepatic adenoma; polycystic liver
disease; other); liver disease induced by total parenteral
nutrition or hyperalimentation; graft-versus-host disease;
trauma; biliary stricture or stenosis; idiopathic adult
ductopenia; unknown.
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