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Injuries to knee ligaments are frequent, demanding an increased understanding of the 

healing process.  Clinically, the injured medial collateral ligament (MCL) has been found to heal 

without surgical intervention.  However, laboratory studies have shown that, even one year after 

injury, the biomechanical properties, biochemical composition, and histomorphological 

appearance of the healing MCL remains suboptimal.  While research has focused on the changes 

in mechanical properties (i.e. stress-strain behavior) of the healed MCL, studies on its 

viscoelastic properties are limited.  Yet, this knowledge is critical to determine the overall kinetic 

response of the knee joint. 

The quasi-linear viscoelastic (QLV) theory proposed by Professor Y.C. Fung has been 

frequently used to model the viscoelastic properties of the MCL.  This theory was developed 

based on an idealized step-elongation during a stress relaxation test.  As this is experimentally 

impossible, the constants of the theory may not be representative when they are determine based 

on experiments that utilize finite strain rates.  Thus, the overall objectives of this dissertation 

were to 1) develop and validate a novel experimental and analytical approach that accounts for 

finite strain rates and provides an accurate determination of the viscoelastic properties of the 

normal MCL, 2) apply this new approach to describe the viscoelastic behavior of the healing 

MCL, and 3) to determine whether the new approach can describe the response of the MCL to 

harmonic oscillations. 



 iv

This work demonstrated that a newly developed approach could be utilized to determine 

the constants of the quasi-linear viscoelastic theory and successfully describe the viscoelastic 

behavior of both the normal and healing MCLs.  Interestingly, the healing ligaments display a 

lower initial slope of the stress-strain curve and a greater propensity to dissipate energy, 

suggesting other structures within the knee would have to play a compensatory role in knee 

function.  It was also found that the mechanisms governing the viscoelastic response of the MCL 

to harmonic oscillations may not be the same as that which governs stress relaxation behavior.  

Thus, a more general theory may be necessary to describe both phenomena.   
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1.0      MOTIVATION 

 

 

Severe injuries to knee ligaments can be devastating, commonly resulting in surgery and 

extended absences from work or athletic competition.  They often lead to damage of other 

structures and arthritis.  With the increasing activity level and average life span of the general 

population, the rate of injury has been on the rise. The current incidence of knee ligament 

injuries is 2 per 1,000 people per year in the general population [74], with a much higher rate for 

individuals involved in sports activities [52, 63, 72].  Of these injuries, ninety percent involve the 

anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) [74].   

 Clinical and basic science studies have revealed that some knee ligaments, such as the 

MCL, can heal following isolated injury [32, 45, 49, 50, 127] while others, such as the ACL and 

PCL, do not heal and in the majority of cases require surgical reconstruction [26, 42, 51, 88].   In 

addition, ACL and PCL injuries rarely occur in an isolated state.  ACL injuries are often 

accompanied by meniscal damage and injury to the MCL, and PCL injuries often involve 

damage to the posterior lateral corner.  In these cases, surgery is definite and outcomes are less 

successful.  For the patients with isolated MCL injuries, however, their prognosis is favorable 

with a return to pre-injury activity levels following 12 weeks of limited weight bearing and 

physical therapy.  Concomitantly, basic science studies have also found that a non-operative 

treatment modality in animal models resulted in the stiffness of the healing femur-MCL-tibia 

complex (FMTC) approaching that for normals at this time period.  However, these studies have 

further shown that the mechanical properties of the ligament substance (i.e. quality of tissue) are 
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well below normal and remain so for one to two for years after injury.  These differences have 

been associated with a wide array of biochemical and histmorphological changes. 

 Ligaments also exhibit time- and history- dependent viscoelastic properties.  Although 

the viscoelastic behavior of ligaments is widely recognized as an important factor that mediates 

normal joint function, relatively few studies have investigated how injury and the subsequent 

healing response affects the viscoelastic behavior of these ligaments.  To date, it has been shown 

that healing MCLs display a greater percentage of stress relaxation or creep.  In addition, during 

cyclic loading and unloading, the tangent modulus of healing MCL was found to be lower but 

increases more rapidly with additional cycling than for non-injured ligaments [17, 112].  

However, these parameters are insufficient to fully describe the viscoelastic behavior of these 

tissues [2, 18, 34, 59, 82, 110].  On the other hand, mathematical models have been developed to 

describe the complexity of these behaviors that could include the microphysical interactions of 

various constituents.  Models can be an important tool in understanding tissue structure-function 

relationships and elucidating the effects of injury, healing, and treatment [24, 108, 109].  The 

quasi-linear viscoelastic (QLV) theory, developed by Professor Y.C. Fung, is arguably the most 

widely used model to describe the viscoelastic properties of soft-tissues.   It has been utilized to 

describe the viscoelastic behavior of the normal MCL, anterior cruciate ligament (ACL), as well 

as many others [15, 19, 24, 34, 36, 48, 57, 67, 76, 108, 109, 121, 138].   

Nevertheless, there are limitations with the application of the QLV theory, i.e. the  ability 

to accurately estimate the constants describing the viscoelastic behavior (C, τ1, τ2, A, and B) [15, 

23, 36, 57, 67, 76, 83].  As will be described more completely in the following sections, the QLV 

theory describes the time and strain dependent stress within a tissue by the convolution of a 

strain dependent elastic function and a time dependent reduced relaxation function.  The theory 
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was developed on the basis that the reduced relaxation function describes the normalized stress 

response of a specimen in response to a step increase in strain.  Since it is experimentally 

impossible to apply a step change in strain, many investigators have attempted to load specimens 

at high rates and assumed that no relaxation has occurred during loading.  This approach proves 

to be technically challenging in terms of performing tests while measuring strain accurately as 

vibrations are a common occurrence when using fast strain rates [36].  In addition, the small 

amount of relaxation that occurs during loading when using finite strain rates causes significant 

errors in the estimates of the constants of the QLV theory (A, B, C, τ1, and τ2).   

A number of authors have implemented methods to account for the latter issue in order to 

better approximate the “true” constants of the QLV theory.  These methods include 

normalization procedures, iterative techniques, as well as extrapolation and deconvolution [56, 

68, 76, 83].   However, these approaches all require the use of fast strain rates and are therefore 

significantly affected by experimental errors resulting from vibrations.  Therefore, the results 

from different laboratories for the same type of tissue can vary dramatically as each test is 

dependent on the testing protocol and the approach utilized to determine the constants of the 

theory.  In addition, the variability resulting from these approaches reduces statistical power, 

making differences between groups of tissues virtual undetectable. 

 Ideally, if there was an approach that could allow for the utilization of slow strain rates to 

avoid the errors resulting from vibration and also account for the relaxation manifested during 

loading, it would be possible to determine the true constants of the QLV theory that describe the 

viscoelastic behavior of a tissue. Then, the QLV theory can be utilized to describe the 

viscoelastic behavior of the healing and sham-operated MCL.  Comparing these results would 

allow for the changes in viscoelastic behavior resulting from injury to be elucidated.   In 
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addition, this approach would allow for investigators from different laboratories to compare their 

results.  These investigators can provide clinicians and physical therapists with a further 

understanding of the contribution of the healing MCL to knee function and recommend an 

appropriate time frame to return to normal activity.  Finally, these data may one day pave the 

way for future studies which may correlate viscoelastic behavior with structural or biological 

changes within the healing tissue such that fundamental questions regarding the roles of specific 

biochemical constituents can be answered. 
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2.0      BACKGROUND 

 

 

2.1   STRUCTURE AND COMPOSITION OF THE NORMAL MCL 

 

Anatomically, the MCL runs from the medial femoral epicondyle distally and anteriorly 

to the postero-medial margin of the metaphysis of the tibia (Figure 1). In the human, it consists 

of two bands, the superficial and deep.  The superficial band runs on the anterior side of the 

MCL from the medial epicondyle to an anterior medial attachment to the tibia.  The deep band 

runs along the posterior side of the MCL and attaches to the medial meniscus.  In animals, these 

bands are not distinct and the MCL appears less broad.  These differences likely correspond to 

the increased stability required at the knee for bipedal locomotion compared to quadrapedial 

locomotion.  Yet, despite these differences, there are some fundamental similarities between the 

MCLs of human and animals. 

The MCL is designed to help maintain varus-valgus and anterior-posterior stability 

during normal knee joint motion.  Microscopically, the predominant cell type of the MCL is 

spindle shaped fibroblasts interspersed in between the parallel bundles of extracellular matrix 

which are composed mainly of collagen (Figure 2). Collagen is organized into a cascade of levels 

with pro-collagen assembled into microfibrils which in turn aggregate to form subfibrils. 

Multiple subfibrils combined to form fibrils which are the elemental constituent of collagen 

fibers [53, 54]. Collagen fibers are the functional macrostructural element of ligaments and 
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groups of these fibers form fascicular units which are readily observed upon inspection. As many 

as twenty or more of these fascicular units are bound together to form fasciculi that are up to 

several millimeters in diameter. Hundreds of fasciculi agglomerate to form the MCL [53, 54].  
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Figure 1  A photograph of a goat knee (medial view) displaying the MCL. 
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Figure 2 H&E stained histology slide of the MCL midsubstance at a magnification of 20x. 

 

 

The MCL’s femoral insertion is classified as direct, which means the fibers attach 

directly into the femur thru a transition of ligamentous tissue to bone in four zones: ligament, 

fibrocartilage, mineralized fibrocartilage and bone [124].  The tibial insertion of the MCL is 

designed to cross the epiphyseal plate so that it can be lengthened in synchrony as the bone 

grows between the plate and the joint. Prior to epiphysial closure, the tibial insertion is indirect 

whereby the superficial fibers are attached to periosteum while the deeper fibers are directly 

attached to the bone at acute angles via Sharpey’s fibers [124].  A uniform microvascular system 
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originating in the femoral insertion from the medial superior genicular artery provides nutrition 

to the cell population, which maintain the ligament in terms of matrix synthesis and repair.  

The biochemical constituents of the MCL consist of fibroblasts surrounded by aggregates 

of collagen, elastin, proteoglycans, glycolipids and water [119].  Between 65 and 70% of the 

MCLs total weight is composed of water. Type I collagen is the major constituent (70-80% dry 

weight) and is primarily responsible for a ligament’s tensile strength. Type III collagen (8% dry 

weight), is strongly associated with disorganized scar tissue, and Type V collagen (12% dry 

weight) has been suggested to regulate the diameter of collagen fibrils [10, 69].  Type XII 

collagen (< 1% dry weight) has been observed more recently and is thought to provide  

‘lubrication’ between collagen fibers [86]. The collagen types at the bone-MCL interface have 

also been studied, with types  X, IX, and XIV being identified [10, 69, 85, 86].  The functional 

roles of these collagens are not clear, but they are thought to aid in reducing stress concentrations 

as ligamentous tissue transitions into bone.  Proteoglycans and elastin constitute a small 

percentage of the MCLs dry weight, making up the ground substance which surrounds collagen 

fibers.  The functional roles of these molecules are to attract water into the ligament and return 

the MCL to its original shape following deformation, respectively. 

 

 

2.2   STRUCTURE AND COMPOSITION OF THE HEALING MCL 

 

MCL injuries can result from a variety of mechanisms.  However, the most common 

involve a high valgus stress resulting from a direct blow to the lateral side of the knee or upper 

leg with the foot firmly planted on the ground  (Figure 3).  The healing process of an isolated 
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MCL tear, although affected by various systemic and local factors, is somewhat similar to those 

for the vascular tissues [31].  Clinically, Grade I and II MCL injuries heal well within 11 to 20 

days post-injury [22].  Healing of a Grade III MCL tear, however, may continue for years after 

initial injury.  

 

 

 

 

Figure 3  Photograph depicting the common mechanism of an MCL injury. 

 

 

A typical midsubstance tear of the MCL is characterized by the mop-end appearance of 

its torn ends.  Roughly, ligament healing can be divided into four overlapping phases: i.e. 
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hemorrhage, inflammation, repair, and remodeling [127]. Between these torn ends, the 

hemorrhage phase begins with blood flowing into the gap created by the retracting ligament 

forming a hematoma.  In response to the increased vascular and cellular reactions resulting from 

the injury, inflammatory and monocytic cells migrate into the injury site and convert the clot into 

granulation tissue and engage in phagocytosis of necrotic tissue.  This marks the beginning of the 

inflammatory stage. After approximately 2 weeks, a continuous network of immature, parallel 

collagen fibers replaces the granulation tissue.  The inflammatory phase concludes with the 

formation of extracellular matrix in the central region of the ligament from a random and 

disorganized grouping of fibroblasts  (Figure 4). 
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Figure 4  Histology of the midsubstance of the rabbit MCL at ten days following injury.  Polarized light 
magnification at 100x. 

 

 

The formation of extracellular matrix by fibroblasts also marks the beginning of the 

reparative phase.  The ligament superficially resembles its pre-injury appearance.  The torn ends 

of the ligament are no longer visible, and the granulation tissue has been replaced by immature, 

parallel collagen fibers.  New blood vessels begin to form, while fibroblasts continue to actively 

produce extracellular matrix.  This phase overlaps with the inflammatory phase, and concludes 

after several weeks. 



 

13 

 Overlapping with the reparative phase, the remodeling phase begins several weeks after 

injury and continues for months.  It is marked by collagen fibers continuing to align along the 

long axis of the ligament and the increased maturation of collagen matrix.  The continued 

alignment of these fibers has been shown to correlate directly with an improvement in the 

structural properties of the ligament.  

Based on the results of long-term animal studies, healing ligaments still have a different 

histological and morphological appearance compared to the uninjured ligament.  When viewed 

using transmission electron microscopy, the number of collagen fibrils increased, but their 

diameters and masses are significantly smaller after 2 years of healing [28, 29]. Additionally, 

“crimping” patterns within the healing ligament remain abnormal for up to one year, and 

collagen fiber alignment remains poor [32, 118]. 

Further, the extracellular matrix of the healing MCL exhibits increases in 

glycosaminoglycans, changes in elastin, and differences in other glycoproteins in the short-term 

[14, 16, 31, 116, 140].  The changes in collagen distribution are also evident, with more type III 

and V than in normal ligaments [84].  Long-term studies (> 10 months) have shown that levels of 

glycosaminoglycans and collagen type V remain elevated, collagen fibrils remain small, and the 

crimp patterns remain irregular [29, 31, 84, 139, 141].  The number of mature collagen cross-

links is only 45% of normal values after one year [30, 132].  Most importantly, a relationship has 

been demonstrated between inferior biomechanical properties of the MCL and the smaller 

number of collagen cross-links, as well as the decrease in mass and diameter of the collagen 

fibers [132].   
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2.3   TENSILE PROPERTIES 

 

Due to the limited length of ligaments and logistical difficulties in clamping soft-tissue, 

tensile testing of ligaments is usually performed using a bone-ligament-bone complex [122, 123, 

126].  In a single test, the structural properties of the bone-ligament-bone complex and the 

mechanical properties of the ligament substance can both be obtained [123].     

 

2.3.1   Structural Properties of the FEMUR-MCL-TIBIA Complex  
 

Structural properties of the bone-ligament-bone complex are extrinsic measures of the 

tensile performance of the overall structure.  As a result, they depend on the size and shape of the 

ligament in question, in addition to the variations of the unique properties from tissue to the 

insertion into bone.  These properties are obtained by loading a ligament to failure and are 

represented in the resulting load-elongation curve (Figure 5).  From this curve, the stiffness 

(N/mm) is the slope of the load-elongation curve between two defined limits of elongation; the 

ultimate load (N) is the highest load placed on the complex before failure; the ultimate 

elongation (mm), is the maximum elongation of the complex at failure; and the energy absorbed 

at failure (N-mm) is the area under the entire curve which represents the maximum energy stored 

by the complex.  These parameters represent the performance of a complex in response to 

uniaxial tension. 
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Figure 5  A typical non-linear load-elongation curve representing the structural properties of a rabbit femur-
MCL-tibia complex. 

 

 

2.3.2   Mechanical Properties of MCL Substance  
 

Mechanical properties, on the other hand, are intrinsic measures of the quality of 

materials and are represented by a stress-strain curve (Figure 6).  From this curve, the tangent 

modulus (N/mm2 or MPa) is obtained from the linear slope of the stress-strain curve between two 

limits of strain; the tensile strength (N/mm2) is the maximum stress achieved; the ultimate strain 

(in percent) is the strain at failure; and the strain energy density (MPa) is the area under the 

stress-strain curve, are parameters obtained to represent tissue quality. In order to determine the 
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mechanical properties of the ligament, video techniques have been used to track markers 

deployed in one-dimensional or two-dimensional patterns on the ligament’s surface and the 

relative motions of the markers is used to determine the strain values [58, 64, 106, 123, 144].  In 

addition, measurement of the ligament cross-sectional area is required for stress calculations.  

Laser micrometry is a good method that has been employed for accurate measurement of the 

cross sectional area of ligaments without deforming the cross section of soft tissues [65, 120].  A 

specimen is placed perpendicular to a collimated laser beam and rotated 180 degrees.  Using the 

specimen’s shadow, profile widths of the specimen are recorded by a computer, and the shape 

and area of the specimen’s cross-section are reconstructed digitally.  
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Figure 6  A typical non-linear stress-strain curve representing the mechanical properties of the rabbit 
ligament substance. 
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2.3.3   Viscoelastic Properties 
 

The MCL, like all biological materials, possess time- and history- dependent viscoelastic 

properties [11, 17-19, 121, 129, 131].  Thus, the loading and unloading of a specimen in uniaxial 

tension yields different paths of the load-elongation curve for each testing cycle, forming a 

hysteresis loop. This represents the energy lost as a result of a non-conservative or dissipative 

process.  These viscoelastic properties result from complex interactions of its constituents, i.e. 

collagen, water, surrounding protein, and ground substance [17, 18, 24].   

Three classic experimental tests used to characterize the viscoelastic behavior are stress 

relaxation and creep tests, as well as the application of small harmonic excitation (i.e. dynamic 

mechanical analysis).  A stress relaxation test involves stretching a specimen to a constant length 

and allowing the stress to vary with time.  A creep test involves subjecting a specimen to a 

constant force while the length gradually increases with time. For a linear viscoelastic material, 

the stress in response to harmonic excitation of strain will be out of phase by some difference, d, 

where 0± (perfectly elastic) < d < 90± (perfectly viscous).  Therefore, the stress can be resolved 

vectorially as  

 

s =  e E’ + i e E” 

 

Dividing by strain gives the dynamic modulus of the tissues which is written as the complex ratio 

 

E* =  s/e = E’ + i E” 
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Where E’ is the in phase or storage modulus and E” is the out of phase or loss modulus.  Both of 

these components are related to d by 

 

E’ =  s0/e0  Cos(d) 

 

and 

 

E” =  s0/e0  Sin(d) 

 

where s0 and e0  are the maximum amplitude of stress and strain, respectively.  Thus, by 

measuring d, one can determine the degree of elastic versus viscous behavior for a specimen 

(Figure 7).  

For soft tissues, the amplitude of oscillation must be small in order for stress and strain to 

oscillate harmonically, thus allowing for the application of linear viscoelastic theory.  Previous 

studies of vascular tissue have shown linear viscoelastic theory can be applied if sinusoidal 

strains remain below 4% [93].    
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Figure 7  Sinusoidal oscillations showing the phase lag of stress to strain for a viscoelastic material. 

 
 
 
2.3.4   Factors Affecting the Properties of the Normal MCL 
 

A large range of experimental methods have been employed by investigators in the 

measurement of their mechanical properties.  Difficulties encountered during testing include 

gripping of ligaments, strain measurement, definition of the initial length, determination of the 

cross-sectional area, specimen orientation, and so on.  Furthermore, other factors including 

temperature, dehydration, freezing and sterilization techniques used during testing can also cause 

different outcomes in the experimental data.  For more information on these factors, the readers 

are encouraged to study the chapter by Woo and co-workers entitled, “Biology, Healing and 
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Repair of Ligaments” in Biology and Biomechanics of the Traumatized Synovial Joint: The 

Knee as a Model, 1992 [133]. 

 Biological factors including species, skeletal maturity, age, immobilization, and exercise 

have a significant influence on the mechanical properties of ligaments.  Studies have shown that 

that the relationship between different levels of activity and the properties of the MCL follows 

highly non-linear relationship [62, 79, 80, 87, 89, 117, 124, 125]. Limbs subjected to periods of 

immobilization displayed marked decreases in the structural properties.   Remobilization was 

found to reverse these negative changes, but at a much slower rate.  Up to one year of 

remobilization was required for the properties of ligaments to return to normal levels following 

up  to 2 months of immobilization [124].  Exercise, on the other hand, only showed marginal 

increases in the biomechanical properties of ligaments [61, 130].   

Maturation has also been shown to cause significant changes to the MCL.  A study looking 

at the changes resulting from skeletal development using the rabbit model have shown that the 

stiffness and ultimate load increased dramatically from 6 to 12 months of age [134].  This 

corresponded with a change in failure mode from the tibial insertion to the midsubstance 

reflecting closure of the tibial epiphysis during maturation [136]. However, these values reached 

a plateau up to four years of age. This exemplifies that each ligament is a unique structure and it 

is not possible to extrapolate age related changes from one ligament (ex. MCL to ACL) or 

species (ex. rabbit to human) to another.   

 

2.3.5   Properties of the Healing MCL 
 

The MCL of animals has served as a suitable model for studies of ligament healing because 

it can heal spontaneously after rupture [37, 115].  It is anatomically accessible and has suitable 
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length-width ratio and relatively uniform cross-sectional area for uniaxial tensile testing. The 

rabbit and canine MCLs have been studied extensively [14, 37, 38, 40, 41, 70, 75, 84, 105, 115, 

128, 141].  

The results of these experiments have revealed that conservative treatment produces 

similar results when compared to surgical repair with and without immobilization [12, 115, 124]. 

Similar results have been reported in clinical studies whereby patients respond well to 

conservative treatment without immobilization by plastercasts [25]. Immobilization after an 

MCL tear has been found to lead to significant changes in collagen synthesis and degradation, a 

greater percentage of disorgnized collagen fibrils, decreased structural properties of the FMTC, 

decreased mechanical properties of the ligament substance, and slower recovery of the resorbed 

insertion sites [8, 27, 37, 39, 124, 128]. These findings have led to a change in the paradigm of 

clinical management, i.e. shifting from surgical repair with immobilization to non-operative 

management with early controlled range-of-motion exercises [46, 100].     

 The changes in the histomorphological appearance and biochemical composition of the 

healing MCL are reflected in its biomechanical properties.  One of the more severe injury models 

creates a “mop-end” tear  which mimics injuries observed clinically [115].  A “mop-end” tear of 

the MCL substance is created by placing a stainless steel rod beneath the MCL and pulling 

medially, rupturing the MCL in tension and causing a midsubstance tear and damage at the 

insertion sites.  Immediately after injury (Time 0), the valgus rotation more than doubles as 

compared to sham operated controls, and is still approximately 20% greater than controls at 12 

weeks of healing [115].  The structural properties also differ from normal with the stiffness of 

the healing FMTC only approaching normal levels by 52 weeks after injury.  This return to 

normal is largely due to an increase in the cross-sectional area of the healing ligament to as much 
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as 2 ½ times its normal size [91].  Thus, mechanical properties of the healing MCL midsubstance 

remain consistently inferior to those of the normal ligament and do not change with time (Figure 

8) [91, 115].  

           Most likely, more than one ligament is damaged when the knee is traumatically injured, 

such as a combined ACL and MCL injury.  These injuries are usually do not heal as successfully 

as the isolated MCL injuries [141].  Animal studies have revealed that with ACL reconstruction, 

the structural properties of the FMTC, and mechanical properties of the healing MCL were 

improved compared to those without ACL reconstruction.  However, they remained worse than 

for isolated MCL injuries, suggesting that the gross joint instability may disrupt the healing 

process of the MCL [6].  Additionally, no long-term advantages were found between groups with 

the MCL repaired or without [141]. Thus, for a combined ACL and MCL injury, many clinicians 

reconstruct the ACL and treat the MCL non-operatively. 
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Figure 8  Stress-strain curves representing the mechanical properties of the MCL substance for sham control, 
as well as 6, 12, and 52 weeks after injury (printed with permission from [90]).  

 

  

 While most research has been performed using the rabbit model, its sedentary nature may 

not mimic healing as seen in the clinical situation.  As a result, a goat model has been developed 

recently and used for MCL healing studies because of its large size, robust activity level, and the 

previously published success of ACL reconstructions using this animal [81, 82].  A comparison 

between the tensile properties of the healing goat MCL and the healing rabbit MCL indicates that 

the stiffness and ultimate load of the healing goat FMTC are closer to control values at earlier 

time periods, probably due to their increase activity level [1].  However, the tangent modulus and 

morphology of the healing ligament for the goat and rabbit models demonstrate that the tissue is 

of similar quality.   
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This model was then extended to study combined ACL and MCL injuries because of the 

difficulties of performing ACL reconstructions on smaller animals [6].  Functional evaluations of 

the knee demonstrated that the initially high in situ forces in the ACL graft were transferred to 

the healing MCL during the early stages of healing (i.e. from time zero to six weeks).  These 

excessively high loads likely contributed to the observed decrease in the structural properties of 

the FMTC and tangent modulus of the MCL substance when compared to the isolated MCL 

injury [6, 104].   

  In terms of the viscoelastic behavior of healing ligaments, the current knowledge is less 

conclusive as less than a handful of studies have investigated this topic [17, 33, 128].  All of 

these studies are based on experiments which measured the percentage of stress relaxation or 

creep over a defined time period.  Regardless of the injury model utilized, these studies have 

shown that the percentage of stress relaxation and creep is increased for healing ligaments in the 

first 3 months after injury. However, some studies suggested that these values returned to normal 

levels after this time period [17, 33, 128], while others suggested they remained increased [79]. 

 

 

2.4   QUASI-LINEAR VISCOELASTIC THEORY 

 

The nonlinear time- and history- dependent viscoelastic behavior of soft biological tissues 

has been widely described by the QLV theory formulated by Fung (1972) [15, 19, 24, 34-36, 44, 

48, 57, 76, 99, 103, 108, 109, 113, 121, 138].  This theory has been adopted for modeling the 

viscoelastic behavior of ligaments and tendons by many laboratories [19, 24, 36, 48, 57, 67, 99, 

108, 109, 113, 121].  In our laboratory, the QLV theory has been successfully used for modeling 
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the viscoelastic properties of the canine MCL [121], the porcine ACL [57], and the human 

patellar tendon [48]. 

 

2.4.1   Fundementals 
 

In the late 60’s, Professor Y.C. Fung made two key observations about soft tissue 

mechanical behavior that could not be described using linear viscoelastic theory.  The first 

observation was that the percentage of stress relaxation was linearly related to the applied stress.  

In other words, an increase of the applied stress resulted in an increase in the total amount of 

stress relaxation.  Yet, the same overall percentage of relaxation would be observed when the 

stress relaxation was normalized by the peak stress.  The second major observation was that the 

stress-strain behavior of soft tissues in nonlinear.  Linear viscoelastic theory can describe the first 

observation only if there is a linear relationship between stress and strain.  Since this behavior 

was nonlinear, Professor Fung realized that a new viscoelastic theory would be necessary.  Based 

on the framework of linear viscoelastic theory, Professor Fung developed the QLV theory to 

describe these observations.  It assumes that the stress relaxation behavior of soft-tissue can be 

expressed as 

 

σ(t) = G(t)*σe(ε)          (1) 

 

where σe(ε) is a nonlinear function describing the stress in response to an instantaneous input of 

strain (i.e. the elastic response).  G(t) is the reduced relaxation function that represents the 

time-dependent stress response of the tissue normalized by the peak stress following a step input 

of strain [i.e., t = 0+, such that G(t) = σ(t)/ σ(0+), and G(0+) = 1 ]. 
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To describe a non-instantaneous strain history (i.e. strain is dependant on time), the 

Boltzmann superposition principle can be assumed and the stress at time t, σ(t), is given by the 

convolution integral of the strain history and G(t): 
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t e
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In the experimental setting, we can assume that the history begins at t = 0.  These 

equations describe the general theory to model the viscoelastic behavior of soft tissues.  

However, to apply this theory to experimental data obtained for a specific tissue, it is necessary 

to define functions for G(t) and σe(ε) that describe the relaxation of a tissue following a step-

elongation and the stress resulting from an instantaneous strain, respectively. 

    

2.4.1.1      Reduced Relaxation Function 
 

While any choice can be made for the function G(t), the specific form that has been the 

most popular choice for many studies was also developed from a few additional key observations 

by Professor Fung.  While testing rabbit mesentery, he noticed that the hysteresis was not 

dependent on the strain rate of the experiment (i.e. the amount of damping or energy loss was 

constant versus frequency).  In addition, the dynamic modulus increased linearly versus the 

logarithm of frequency.  With his strong background and experience in aeroelasticity, he soon 

recalled that these were design criteria considered for airplane wings to respond to turbulence 

and a mathematical representation had previously been described [78]. 
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The reduced relaxation function chosen by Professor Fung can be derived on the basis of a 

standard linear solid model (Figure 9). 
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Figure 9 Models of a standard linear solid can be combined in series to create a model with a continuous 
spectrum of relaxation (adapted from [34]). 

 

 

The differential equation for this model takes the form 

 

 s + te s’ = ER (e + ts e’)        (3) 
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where te is the relaxation time constant for constant strain, ts is the relaxation time constant for 

constant stress, and ER the constant that determines the level of stress or strain after a long 

relaxation, t  ¶.  For a suddenly applied stress s(0) and strain e(0), this equation is subjected 

to the initial condition 

 

 te s(0) = ER ts e(0)          (4) 

 

which describes instantaneous behavior of two springs in parallel since the dashpot behaves as a 

rigid solid for a step input of strain.  However, to force this equation to describe normalize 

relaxation versus time, the condition G(0) = 1 is necessary.  Thus, for a unit step increase of 

strain 

 

 te = ER ts           (5) 

 

or 

 

ER = te/ts.            (6) 

 

With these conditions, the stress in response to a unit step increase of strain can be obtained by 

solving equation 3: 

 

 G(t) = ER [1 + (ts/te - 1) e-t/te] 1(t)       (7) 
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With the substitution 

  

 S = ts/te - 1  and  ER = 1/(1+S)         (8) 

 

equation 7 becomes  

 

  G(t) = 1/(1+S) [1 + S e-t/te]          (9) 

 

To implement the idea of a relaxation spectrum, which is equivalent to connecting an infinite 

number of standard linear solid models in series and providing a distribution of spring and 

dashpot constants throughout, te is replaced by a continuous variable, t.  Thus, equation 9 

becomes 
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The standard linear solid was chosen because, like most soft tissues, this model does not 

completely stress relax to zero.  Instead, it reaches a finite platue for long relaxation times.  

However, the constant hysteresis versus frequency (i.e. spectrum of relaxation) that is 

characteristic of soft tissues is not observed with this model.  In order to describe the 

phenomenon of a constant spectrum of relaxation, a special definition of S(t) must be considered 
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S(t) = C/t for  t1 § t § t2       (11) 

                = 0 elsewhere 

 

where C is a dimensionless constant.   With this definition, the reduced relaxation function 

describing a constant spectrum of relaxation takes the form 
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 is the exponential integral, and C, τ1, and τ2 are material constants.  For 

a stress relaxation experiment, the constant C determines the magnitude of viscous effects 

present and is related to the percentage of relaxation.  The time constants τ1 and τ2 govern initial 

and late relaxation, respectively, relating to the slope of the stress relaxation curve at early and 

late time periods [102].   

 

2.4.1.2      Sinusoidal Strain History and G(t) 
 
 

As mentioned, the choice for the expression of G(t) was made partially because the 

hysteresis for many soft tissues is independent of strain rate.  While equation 12, which describes 

stress relaxation in response to a step input of strain, was obtained by solving equation (3) for a 

step input of strain, the stress response to a sinusoidal input of strain can be determined in a 

similar fashion.  For a sinusoidal oscillation,  
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e(t) = e0 eiwt            (13) 

 

the stress response can be described as 

 

s(t) = s0 eiwt            (14) 

 

where w = 2pf.  Thus, an expression for the complex or dynamic modulus, i.e. s0/e0 can be 

obtained by substituting these equations into equation 3: 
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With the same substitution for S as described in the previous section 
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Then, allowing te to be replaced by a continuous variable t gives 

 

)
1

1)(
1

)(1(
)(1

1)(
00

0

∫∫
∫

∞∞

∞

+
+

+
+

+
=Μ τ

ωτ
ωτ

ττ

ωτ
ωτ

ωττ
ττ

ω diSdS
dS

    (17) 

 
 



 

32 

With the definition of a constant spectrum of relaxation, the dynamic modulus can be described 

as 

 

 M(w) = {1+C/2[Ln(1 + w2t2
2) - Ln(1 + w2t1

2)] + i C[Tan-1(wt2) - Tan-1(wt1)]}{1 + C 

Ln(t2/t1)}-1  

            (18) 

 

By dividing the magnitude of the complex portion of this expression by the real portion, an 

equation describing the damping or internal friction is as follows 

 

Tan(d)=(C[Tan-1(wt2) - Tan-1(wt1)])/(1+1/C/2[Ln(1 + w2t2
2) - Ln(1 + w2t1

2)])   (19) 

 

As the choice for the relaxation function, G(t) for ligaments is based on the framework of 

linear viscoelasticity and incorporates the concept of a constant spectrum of relaxation [34, 35], 

it is described by 3 constants (C, τ1, and τ2).  The degree of energy loss per cycle (described by 

the dimensionless constant C) during cyclic loading of a specimen is constant for a wide range of 

frequencies.  The frequencies described by 1/τ2 and 1/τ1 bound the lower and upper limits of this 

range, respectively.   

 Previous work has shown that creep cannot be predicted from stress relaxation using the 

QLV theory [111].  In fact, Professor Fung in his book Biomechanics (2nd edition; 1993 [34]) 

described this phenomenon by suggesting “…creep is fundamentally more nonlinear, and 

perhaps does not obey the quasi-linear hypothesis.”  While many studies have indeed shown that 

this theory does well when it is used to describe and subsequently predict stress relaxation 
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phenomenon, it is less clear whether the constants obtained from a stress relaxation experiment 

can be utilized with the QLV theory to describe the response of ligaments to harmonic 

oscillations (i.e. hysteresis).    

 

2.4.1.3      Elastic Response 
 

For the elastic response, there have been many expressions which describe the nonlinear 

concave upward shape that is characteristic of many soft tissues.  One of these expressions has 

become popularly utilized to describe the stress-strain behavior of ligaments and tendons [121].  

The expression consists of an exponential function with a linear constant A and a nonlinear 

constant B.    

 

σe(ε) = A(eBε - 1)          (20) 

 

The physical significance of these constants has been examined.  The physical 

significance of B and the product AB are the rate of change of the slope of the stress-strain curve 

and the initial slope of the curve, respectively.  This is shown in the following derivation: 
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Note that the slope of the stress-strain curve is linearly related to stress by constant B.  

When the stress is zero or near zero, the slope of the stress-strain curve is governed by the term 

AB.   

 

2.4.2   Errors Involved with the Application of the QLV Theory 
 

The most common approach to determine the constants of the QLV theory (A, B, C, t1, and 

t2) utilized until the mid 1980s was the instantaneous assumption approach as utilized by Woo et 

al. (1981) [121].  This approach is based on curve-fitting the equations describing the elastic 

response and reduced relaxation function separately to the stress-strain curve obtain during 

loading and the normalized and time-shifted relaxation data from a static stress relaxation 

experiment.  It assumes that the loading phase of the stress relaxation test occurred 

instantaneously [23].  It is, therefore, necessary to simulate a step increase in strain as closely as 

possible to minimize errors resulting from that assumption.  Thus, previous investigators have 

applied extensions at relatively high rates and assumed that the stress relaxation portion of the 
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experiment begins at t = 0.  This allows separate curve-fitting of equations 19 and 12 to the 

loading and relaxation portions of the experimental data, respectively, to estimate the 5 

constants.  It was later found that even short (< 1 sec) loading times significantly erred all of the 

estimated constants, with constant τ1 most significantly affected [23]. 

 As a result, researchers developed approaches designed to account for the relaxation 

manifested during short loading times.  These methods included normalization procedures, 

iterative techniques, as well as extrapolation and deconvolution methods [15, 23, 36, 57, 67, 76, 

83].  While these approaches improved the estimates of constants, they are still dependant on fast 

ramp times (~0.01 to 0.1 sec).  Not only does this prove to be technically challenging as it is 

difficult to measure strain accurately, but investigators later found that obtained constants are 

significantly affected by experimental errors associated with high extension rates (ex. overshoot, 

vibration, poorly approximated strain histories) (Figure 10) [36].  The constants obtained 

demonstrate high variability because they are dependent on the testing equipment, testing 

protocol, and an individual investigator’s subjectivity on defining the time at which the stress 

relaxation portion of the test begins.  Table 1 lists the range of values reported in the literature 

for ligaments and tendons for the 5 constants (A, B, C, τ1, and τ2) of the QLV theory [19, 24, 36, 

48, 57, 67, 99, 108, 109, 113, 121].  Similar ranges of values have been reported for all types of 

tissue in which this theory has been applied.  It should be noted that the reported values span at 

least 2 orders of magnitude, likely reflecting the errors from the sources described above. 
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Figure 10  Vibrations induced while performing a ramp and hold strain history at high rates (printed with 
permission from  [36]). 

 
 
Table 1  A range of values reported in the literature for the constants of the QLV theory describing the 
viscoelastic behavior of ligaments and tendons. 

 

A (MPa) B C t1 (sec) t2 (sec) 

0.2 to 281 0.6 to 161 .099 to 
2.01 

.041 to 
1.6 

323 to 
5.03(106) 
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Thus, there is currently no approach that allows for the use of slow strain rates to minimize 

experimental errors and can also account for the relaxation manifested during the loading portion 

of the static stress relaxation test.  While the current approaches can account for the relaxation 

manifested during the loading portion of a stress relaxation experiment, the wide range of values 

reported in the literature suggest that these constants are highly sensitive to the experimental 

protocol and analytical approach utilized.  With this degree of variability, the obtained constants 

cannot be compared between laboratories or between tissues.    
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3.0      OBJECTIVES 

 

 

3.1   BROAD GOALS 

 

The broad goal of this dissertation is to more thoroughly describe the viscoelastic 

behavior of the healing MCL after 12 weeks of injury (i.e. the time period in which most patients 

would be allowed to return to normal activities) using the QLV theory and to make comparisons 

to those for the normal MCL.  Because there is no one approach in the determination of the 

constants of the QLV theory that minimizes the errors resulting from finite strain rates nor the 

experimental errors from a fast strain rate test, the objective of this work was to develop a novel 

mathematical approach to determine the constants of the QLV theory and then validate these 

results experimentally.  In addition, this new approach can yield unique and accurate estimates of 

constants to allow for statistical comparisons of the constants describing healing and sham 

operated MCLs.   

The new analytical methodology and its application to the healing MCL is designed to 

address the three proposed Specific Aims below. 
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3.2   SPECIFIC AIMS 

 

Specific Aim 1:  The first Aim of this dissertation is to develop a new analytical approach that 

can determine the constants describing the functions σe(ε) and G(t) based on an experiment that 

utilizes a slow strain rates (i.e. loading time >1 sec).  This approach will allow for experimental 

errors to be minimized while accounting for relaxation that is manifested during loading.   

 

Specific Aim 2:  The second Aim of this dissertation is to utilize this new strain history approach 

to describe the viscoelastic properties of the healing goat MCL at 12 weeks after mop-end tear 

injury and compare the obtained constants with those for sham-operated controls.  

 

Specific Aim 3:  The third Aim of this dissertation is to assess whether the constants obtained 

using the approach described in Specific Aim 1 can be utilized to make conclusions regarding 

the response of ligaments to harmonic oscillations.  To complete this Aim, a predicted spectrum 

of relaxation using the new strain history approach will be compared to that obtained 

experimentally via dynamic mechanical analysis (DMA).  

 

 



 

40 

3.3   HYPOTHESES 

 

The hypotheses that correspond to Specific Aims 2 and 3 are as follows: 

 

Hypothesis 2a:  Based on previous studies that have shown that collagen within the healing 

MCL to be disorganized, the number of mature collagen cross-links to be decreased, and the 

tangent modulus of healing MCLs to be inferior to sham-operated controls, the constants A*B, 

which describe the initial slope of σe(ε), will be significantly lower for healing MCLs compared 

to sham-operated controls.  

 

Hypothesis 2b:  Previous studies have also shown that healing MCLs exhibit a larger hysteresis 

and greater percentage of relaxation compared to sham-operated controls, then constant C, which 

is related to the degree of energy loss, will be significantly greater for healing MCLs compared 

to sham-operated controls.  

 

Hypothesis 3:  In order to make conclusions regarding the response of a ligament to harmonic 

oscillations based on the results of a stress relaxation test, both viscoelastic phenomenon must be 

governed by the same mechanisms and described by a constant spectrum of relaxation.  Thus, if 

the constants obtained from analytical approach described in Specific Aim 1 describe this 

constant spectrum of relaxation, then the experimentally obtained spectrum of relaxation (i.e. 

Tan d vs. frequency) obtained from sinusoidal loading of a specimen at small strains will be 

predicted using the approach described in Specific Aim 1 with an R2 value greater than 0.9.   
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4.0      EXPERIMENTAL MODEL 

 

 

Inanimate models are unsuitable for investigations of the healing process of the MCL, 

and invertebrate animals lack mammalian-type knee joints and MCLs. Different vertebrate 

species (including rabbits, dogs, and goats) have been used in our laboratory to study various 

aspects of the normal and healing MCL [79, 104, 123, 138, 141].  The NZW rabbit is of 

sufficient size to allow surgery to be performed easily.  Furthermore, specimens from these 

animals have been shown to provide tissue samples large enough for successful biomechanical 

testing.  However, due to the relative activity levels following injury, the rabbit has recently been 

suggested to be less analogous to humans and therefore considered an inferior model to the goat 

for studying ligament healing.  The goat has been a preferred animal model because of its 

relatively large knee joint and robust post-operative activity level compared to that of the rabbit 

model [1, 81, 82, 92].  A study from our laboratory has shown that the structural properties of the 

FMTC are closer to controls at earlier time points for the goat which may be related to their 

activity level.  Thus, we selected goats as our model for MCL healing studies.  When healing 

was not considered (i.e. to evaluate whether the results obtained from static stress relaxation 

experiments could be utilized to predict those obtained from dynamic mechanical testing), the 

rabbit model was utilized because of its cost. 

 



 

42 

4.1   SURGICAL PROCEDURE 

  

All surgical procedures were performed using well-established protocols developed in 

our research center [1, 104, 115, 140].  Since goats were utilized for the healing portion of this 

dissertation, the following surgical procedures are described specifically for goats.  Animals 

were given an intramuscular (IM) preanesthetic dose of xylazine HCl 0.1 mg/kg and ketamine 

HCl (10 mg/kg), and a preoperative antimicrobial dose of 20-25 mg/kg Cephazolin.  General 

anesthesia was maintained with 1.5-2.0% isoflurane supplemented by oxygen and nitrous oxide.  

The fur was shaved from the hind limbs, and the exposed area was sterilized with betadine 

solution. 

An isolated MCL injury was created by making an anteromedial incision, centered over 

the joint line and carried down to the deep fascia.  The fascia was incised, exposing the MCL, 

which was undermined.  The knee was positioned to 90± of flexion.  In the right knee 

(experimental), a stainless steel rod (4-mm-diameter) was passed beneath and perpendicular to 

the ligament, just inferior to the attachment of the medial meniscus, and pulled medially to 

rupture the ligament [1, 104, 115, 140].  The ruptured ends were re-approximated but not 

repaired (Figure 11).  This technique was designed to simulate an MCL tear that is seen 

clinically.  This injury consists of a mid-substance tear with simultaneous damage to the 

insertion sites.  The left knees of all animals served as sham-operated controls [1, 104, 115, 140].  

All incisions were closed using Dexon 2-0 sutures and standard suture technique. Skin incisions 

for the shams were the same as those for the experimental groups.  The fascia over the MCL was 

incised, and the MCL was undermined but not ruptured for all shams. 
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Figure 11  Photograph of a "mop-end" tear created in the mid-substance of the MCL. 
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Postoperatively, all animals were allowed free cage activity (cage area: 3 m2 for goats).  

No immobilization was used.  The status of weight bearing, general health condition, as well as 

food and water intake of all animals was monitored during recovery.  An experienced veterinary 

technician cared for the animals.  Cephazolin (20-25 mg/kg) was administered twice a day for 

five days post-operatively for infection prophylaxis.  Xylazine was injected intramuscularly 

(0.05-0.3 mg/kg) twice a day for three days postoperatively as an analgesic. Pain was assessed by 

monitoring changes in level of cage/pen activity and eating habits.   

A lethal injection of sodium pentobarbital intravenously (50-100 mg/kg) while under 

sedation was used to humanely euthanize the animals at the time of sacrifice.  This surgical 

procedure has been approved by the University of Pittsburgh Institutional Animal Care and Use 

Committee (IACUC).  In addition, the methods are consistent with the recommendations of the 

Panel on Euthanasia of the American Veterinary Medical Association.  (University of Pittsburgh 

Assurance Number A3187-01, Protocol Number 0699055A; University of Pittsburgh Assurance 

Number A3187-01, Protocol Number 0002023A-2, goats and rabbits, respectively). 

 

 

4.2   SPECIMEN PREPARATION 

 

Following sacrifice, hindlimbs were disarticulated at the hip joint, wrapped in saline-

soaked gauze, placed in double plastic bags, and immediately stored at –20°C until testing [135]. 

On the day prior to testing, the saline soaked specimens were removed from the freezer and 

thawed overnight at room temperature.  An orthopaedic surgeon examined specimens for joint 

abnormalities during dissection.  All extraosseous and periarticular tissues around the knee joint 
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were removed leaving the MCL intact and connected via its insertion sites to the femur and tibia 

(i.e. a femur-MCL-tibia complex or FMTC).  The femur and tibia were then cut to a length of 7-

8 cm from the joint line to allow for placement within a laser micrometer system and testing 

clamps.  The tibial platue and femoral condyles were cut parallel to each other with the knee 

flexed at 60±.  Care was taken not to disturb the insertion sites.  Cutting the platue and condyles 

allowed for an unobstructed line of sight for multiple cross-sectional area measurements along 

the length of the MCL and a more rigid fixation within our testing clamps.   
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5.0      EXPERIMENTAL METHODS 

 

 

5.1   CROSS SECTIONAL AREA MEASUMENTS 

 

A laser micrometer was developed in our research center to measure the cross sectional 

area and shape of soft tissues without contacting the tissue substance [65, 120] (Figure 12).  The 

accuracy of the cross-sectional area measurement was been determined to be less than 0.1 mm2. 

For the MCL, measurements were taken at three locations: (1) at the center of the joint line, (2) just 

distal (approx. 2.5 mm) to the femoral insertion, and (3) just proximal (approx. 2.5 mm) the tibial 

insertion [1, 104].  The three measurements were averaged, and this average was used for 

calculating Lagrangian stress (force/initial cross-sectional area).   
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Figure 12  FMTC mounted on a laser micrometer system. 
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5.2   STRAIN MEASUREMENTS 

 

Two rectangular reflective markers (2 mm wide) were attached to the ligament substance 

for strain measurements.  The markers were positioned approximately 1 cm apart along the long 

axis of the MCL and centered about the joint line (Figure 13).  The motion of these reflective 

markers was recorded using a video analysis system (Motion Analysis VP320).  This system 

was able to digitize the inner edge of each marker (i.e. the edge closest to the midsubstance of 

the ligament) based on contrast.  The distance between these edges were used for the calculation 

of strain.  Prior tests revealed that the errors in the accuracy of strain measurement with this 

system are less than 0.2% [1, 91, 104, 106]. 

Recent literature suggests that the viscoelastic behavior of the MCL may be nonlinear 

[96].  To address this potential limitation, it was important to utilize consistent levels of strain for 

experiments involving ligaments in order to make statistical comparisons between groups.  A 

study by Provenzano et al. demonstrated that the rate of relaxation was constant for strains above 

2.5%  (i.e. the QLV theory would apply to strains above this magnitude).  Further, this group has 

also shown that ligament damage occurs at strains greater than 5% for the rat model [97].  

Therefore, the stain levels utilized in this dissertation were are all between 2.5% and 5% strain. 

However, the strain output can not be used to control our testing system.  Therefore, it was 

necessary to determine the elongations to apply to the sham-operated and healing MCL to yield 

equivalent strains.  The data from a previous study which evaluated the mechanical properties of 

the healing goat MCL at 6 weeks after injury was utilized to determine elongations that would 

correspond to strains within 2.5 and 5%.   Based on these data it was determined that elongations 

of 3 mm would fall safely within this range for both groups. 
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5.3   UNIAXIAL TENSILE TESTS 

 

The FMTCs were rigidly fixed into custom-designed clamps at 60° of knee flexion.  The 

clamps were immersed in a 32° C saline bath [1, 104].   One clamp was attached through a 

tensile load cell to the crosshead of the materials testing machine (model 4502; Instron, Canton, 

MA) and the other was attached to the base.  The MCL was centered beneath the load cell and its 

long axis was aligned with the loading axis  (Figure 13).  After allowing 1 hour for the specimen 

to equilibrate to the environment, each specimen was preloaded to 2 N and the gauge length was 

zeroed.  This was followed by preconditioning between 0 and 2 mm of extension for 20 cycles.   
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Figure 13  Photograph of an FMTC mounted on a materials testing machine.  A) Video Camera B) Load cell 
C) Clamp-specimen construct D) water bath heater E) reflective markers on the midsubstance of the MCL F) 
Femur G) Tibia (printed with permission from [1]). 

 
 

Each FMTC underwent a stress relaxation test whereby specimens were elongated from 0 

to 3 mm at 10 mm/min and held for a period of 60 minutes (Figure 14).  The time until peak load 

was t0 = 18.4 seconds.  The loading rate was chosen to avoid potential experimental errors 

associated with fast strain rates (i.e. overshoot, vibrations, and inaccurate measurements of tissue 

strain) [36].  Thus, the strain-time curve was linear to t0 and constant for t>t0.  The total 

percentage of stress relaxation was defined as the difference between the peak stress at t0 and the 

stress measured at the end of the test, normalized by the peak stress, and multiplied by 100.  The 

nonlinear stress-strain and stress-time curves were obtained from the loading and relaxation 

phases of this test.  A second test was performed to measure the cyclic stress relaxation behavior 
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of the MCL.  In this test, each FMTC was subjected to 10 cycles of elongation between 2 and 3 

mm at 10 mm/min and the corresponding peak stresses were recorded and utilized for validation 

(Figure 15).  Prior to each test, specimens were held at a zero-load position and allowed to 

equilibrate within the saline bath for one hour. 
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Figure 14  Strain and stress data versus time depicting a typical static stress relaxation test.  
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Figure 15 Strain and stress data versus time depicting a typical cyclic stress relaxation test.  The circled peaks 
emphasize that these data were used for validation. 
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5.4   DYNAMIC MECHANICAL TESTING 

 

For the dynamic mechanical test, six rabbit MCLs were isolated from the insertion sites 

of the knees.  The geometry was standardized by cutting the ligaments into a dog bone shape 

with a length to width ratio of 6.8 ± 0.8 (width 1.6 ± 0.2 mm). The specimens were fixed in 

custom made soft tissue clamps and mounted on a laser micrometer system.  Measurements were 

taken in 3 locations along the length of the tissue sample and averaged for stress calculations.  

Then the tissue sample-clamp construct was mounted to an EnduratecTM (Elf 3200) testing 

machine (Figure 16).  Reflective markers were placed on the tissue sample to track strain using a 

Motion AnalysisTM system.  A heated saline drip was utilized to hydrate the tissue sample and 

maintain temperature at a constant 37ºC.  The tissue sample was aligned along the loading axis 

using an x-y table and then was left unloaded for 30 minutes to acclimate.    Next, a 0.5 MPa pre-

stress was placed on the ligament and the ligament was elongated to a displacement of 0.5 mm 

while strain was recorded.  Assuming a linear relationship between displacement and 

midsubstance strain, this initial elongation combined with the strain data collected during this 

elongation allowed for a determination of the displacement levels that corresponded to the strain 

levels of interest for this experiment.  Immediately, the ligament was unloaded and given 30 

minutes to reach equilibrium.  A 0.5 MPa pre-stress was again placed on the ligament and this 

position served as the starting point for all subsequent tests.  A 35 min stress relaxation test was 

performed by elongating the specimens to a predefined level of strain (5%).  The stress 

relaxation reached a plateau after 35 minutes as the percent reduction in stress was less than 

0.05% during the last 10 minutes of the test. Afterwards, the strain level was maintained and 

each specimen underwent sinusoidal perturbations (amplitude 0.25% strain) at frequencies of 
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0.01, 0.1, 1, 10, 25, and 50 Hz centered at 4.75% strain.  Between tests at each frequency, the 

ligament was returned to the 5% strain level.       

For each frequency, 10 cycles of stress versus time and strain versus time data were 

collected after the first 10 cycles of loading.  These data were then curve-fit with the following 

equations: 

 

s(t) = ys + As Sin[ω t +2 Pi δs]        (21) 

 

e(t) = ye + Ae Sin[ω t +2 Pi δe]        (22) 

 

where y is the mean value of stress or strain, A is the amplitude of the sinusoidal oscillations, ω 

is the testing angular frequency (ω= 2 p f where f is frequency), and δ is the phase shift of the 

data relative to 0.  Subtracting δs- δe gives the phase difference, δ, between the stress versus time 

and the strain versus time data.  The experimentally obtained spectrum of relaxation was 

obtained by plotting Tan δ versus frequency.  The dynamic modulus was determined by  As/ Ae. 
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Figure 16  Photograph of a specimen mounted within an EnduratecTM Testing Machine. A) Water Heater B) 
Load Cell C) Saline Drip D) Specimen in soft tissue clamps E) Heated Saline Bath F) Actuator of the 
EnduratecTM Testing Machine. 

 
. 
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6.0      THEORETICAL DEVELOPMENT AND EVALUATION 

 

 

The main advantage to the assumption of a step-elongation is that it allows for separation of 

the elastic response and reduced relaxation function.  Thus, one can obtain the constants of the 

QLV theory by separately curve-fitting each of these functions to the loading portion and the 

relaxation portion of a stress relaxation experiment.  As discussed previously, this approach fails 

to account for the relaxation that is manifested during loading which leads to significantly erred 

estimates of constants.  To truly describe the stress during loading and the subsequent relaxation, 

the elastic response and reduced relaxation function must be convoluted in the form of a 

convolution integral.   

The new approach described in this dissertation is centered on curve-fitting the convoluted 

integral expression of the QLV theory to experimental data from a stress relaxation experiment.  

Thus, it is necessary to ensure that curve-fitting algorithms are global convergent (i.e. the 

solution is not dependent on the initial guess), and ensure that the approach is numerical stable 

(i.e. insensitive to systematic deviations between data and the theory as well as random noise).  

Finally, it is necessary to demonstrate that the approach is indeed accounting for the component 

of relaxation manifested during loading and the obtained constants can be validated by predicting 

the result of a separate experiment.  The development of the new approach and its evaluation are 

presented in the following sections. 
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6.1   THE NEW STRAIN HISTORY APPROACH 

 

A new analytical approach to determine the constants of the QLV theory was developed 

for the applicaton of modeling experimental data obtained using slow strain rates.  The time 

dependent stress, s, resulting from a constant strain rate γ between the times 0 < t < t0 can be 

written by substituting equations 20 and 12 into equation 2 (from section 2.4): 

 

∫ ∂}][(Ε − ]+
+

=<< 112

t
et

C
ABt

0

B
1

12
0 ))/ - )/ -[(t  C(E  {1

)/ln(1
) , t t  0:( τττττ

ττ
γθσ γτ     (23) 

 

where θ={A,B,C,τ1,τ2}. 

 

Similarly, the subsequent stress relaxation from t0 to t = ∞, can be described as 
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 The loading portion of the experimental data was defined as (ti,Ri), from 0 < ti < t0 and the 

relaxation data as (ti,Si), from t0 to t = ∞.  Thus, the sums of squares difference between the 

experimentally obtained data and the theory can be expressed as: 

 

[ ]∑ <<−=
i

ii tttf 2
0 ),0:()( θσθ iR        (25) 

 

and   
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[ ]∑ <≤−=
i

ioi ttttg 2),:()( θσθ iS         (26)  

 

Since equations 25 and 26 are both functions of θ, the strain history approach minimizes 

these equations simultaneously.  A nonlinear optimization algorithm, called the algorithm 

modified Levenberg-Marquardt algorithm that was used to minimize f(θ) + g(θ).  The code for 

this algorithm was written using Mathematica (Wolfram Research, Inc. Champaign, IL), and was 

largely based on the algorithm outlined in the book Numerical Recipes in C [95]. 

 This approach gives a direct fit of equations 23 and 24 to the experimental data with no 

modification of the theory or normalization of the data.  Assuming that the theory provides a 

perfect Gaussian curve-fit of the data and a global minimum of f(θ) + g(θ) can be uniquely 

determined, the constants obtained that describe the instantaneous elastic response (A and B) and 

the spectrum of relaxation (C, τ1, and τ2) would be those obtained if a true step-elongation were 

to have been applied.   This is because the actual strain history can be well approximated at slow 

extension rates.   

It was found that constants A and τ1 became significantly correlated as loading time 

increases.  Since constant A is not required to describe the reduced relaxation following ramping 

at a constant strain rate [57], it was held fixed for each individual regression analysis.  Its value 

was determined by curve-fitting equation 20 to the ramping portion of the experimental data.  

This is further justified by previous work which has shown that the stress-strain curves of 

ligaments are insensitive to strain rates ranging over 4 decades [137]. 

To provide an example of the correlation between constants A and τ1, we selected a 

specimen at random from our preliminary analyses and increased constant A by 2.5%, 5%, and 
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10% of the value used in the original analysis.  We based the percentage increase on the results 

reported in Woo et al., 1990, where the magnitude of mean stress at 3.5% strain varied by no 

more than 10% for specimens ramped at an extension rate similar to ours versus those ramped 3 

orders of magnitude faster [137].  Table 2 demonstrates the resulting changes in each of the other 

constants in terms of percentage of their original value.  Positive values indicated an increase of 

that constant, and negative values indicate a decrease for that constant.  It should be noted that 

increasing constant A has the effect of decreasing constant τ1 on the same order.  More 

importantly, a 17% decrease of constant τ1 was equivalent to decreasing τ1 from 0.63 sec to only 

0.52 sec. 

 

 

Table 2  Percent differences of each constant when the value for constant A is increased. 

 

2% Increase of Constant A B C t1 t

2.5 -0.9% -0.1% -4.2% 0.2%
5 -1.8% -0.2% -8.4% 0.4%

10 -3.5% -0.4% -17.3% 0.7%

2% Increase of Constant A B C t1 t

2.5 -0.9% -0.1% -4.2% 0.2%
5 -1.8% -0.2% -8.4% 0.4%

10 -3.5% -0.4% -17.3% 0.7%  
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6.2   EVALUATION OF THE STRAIN HISTORY APPROACH 

 

6.2.1   Effect of Initial Guess 
 

Using a rabbit specimen, the FMTC was mounted onto customized clamps in an InstronTM 

testing machine and tested in a saline bath at 32° C as describe in previous sections.   A rabbit 

was utilized for this analysis because the experimental time required to reach a platue in stress 

relaxation is roughly half as long compared to that of the goat.  Thus, the number of data points 

and computation time required to perform the analysis was reduced significantly.  A stress 

relaxation test was performed by elongating the FMTC to 1.5 mm (º5% strain) and holding the 

strain constant for 25 minutes.  Midsubstance strain was measured using a Motion AnalysisTM 

system with reflective tape markers.  The strain rate during the loading portion of the test was 

0.45 %/sec (mean ± SD) and the time until the peak load was 9.3 sec.  The constants of the QLV 

theory were determined using the strain history approach whereby the nonlinear regression 

algorithm was initiated with 100 different guesses.  The average of the residuals for each guess 

was required to be within 30% of the average experimental stresses over the entire experiment.  

Further, the ranges of valid guesses for the constants were limited to a range of values (Table 3). 

These conditions forced each guess to provide a reasonable estimation of the experimental data.  

 

 

Table 3  Range of values utilized to determine an initial guess. Note: Constant A is determined prior to this 
analysis as described in section 6.1.  Its value was 2.52 MPa for this analysis. 

 

B C t1 (sec) t2 (sec)
10 - 100 0.01 - 0.25 0.0001 - 1 10 - 10000   
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For each initial guess, a coefficient of variation was computed for the obtained solution 

by dividing the standard deviations for each constant by the mean value and multiplying by 100.  

The algorithm was considered globally convergent if a coefficient of variation less than 2% was 

achieved.  If the coefficient of variation was larger than 2%, that would suggest that the 

algorithm is sensitive to the initial guess.  Thus, there would be less confidence that the solutions 

obtained from an individual regression analysis were meaningful since a different initial guess 

may result in a completely different solution. 

Experimentally, the specimen stress relaxed by 17.2% following ramping to a peak stress 

of 21.5 MPa.  The relaxation was considered to have reached a plateau after 25 minutes as there 

was no measurable stress relaxation during the last 10 minutes of the test.  Regardless of the 

initial guess, the model fit the data well with R2 values consistently measuring 0.996.  This 

corresponded with the algorithm consistently converging to the same minimum c2 value of 

8.33342 for each initial guess.  The algorithm also converged to the same solution within a small 

variance.  Below, Table 4 shows 7 of the initial guesses utilized and Table 5 shows the solution 

to those guesses.  Finally, Table 6 shows the means, standard deviations, and coefficient of 

variation for all 100 solutions.   
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Table 4  Seven initial guesses utilized in the analysis. 

 
Guess B C t1 (sec) t2 (sec) Initial c2

1 60.0 0.062 0.003 143 6345.37
2 65.2 0.155 0.256 1321 3874.82
3 65.6 0.228 0.901 286 3463.54
4 54.0 0.067 0.396 1745 11628.50
5 67.4 0.156 0.252 4059 16879.60
6 55.2 0.085 0.715 1469 10236.80
7 62.4 0.101 0.989 7805 18026.60  

 

 
Table 5  Seven solutions for the initial guesses in Table 4. 

 

Solution B C t1 (sec) t2 (sec) Final c2

1 54.9 0.047 0.319 240 8.33
2 54.9 0.047 0.319 240 8.33
3 54.9 0.047 0.319 240 8.33
4 54.9 0.047 0.319 240 8.33
5 54.9 0.047 0.319 240 8.33
6 54.9 0.047 0.319 240 8.33
7 54.9 0.047 0.319 240 8.33  
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Table 6  Means, standard deviations, coefficient of variations for all 100 initial guesses. 

 

Solution B C t1 (sec) t2 (sec) Final c2

mean 54.9 0.047 0.319 240 8.33
SD 0.0 0.000 0.000 0 0.00
CV 1.95E-06 4.84E-06 9.51E-05 9.15E-06 2.3E-16  

 

 

Overflow errors were observed for 2 of the initial guesses.  In other words a calculation was 

attempted for which exceeded the range of machine precision (Max: 

1.9202246726923565854204690606*10646456887 :  

Min: 5.2077239409589238546156053328*10-646456888).  The initial c2 values for these guesses 

where both greater than 30000 and therefore considered unreasonable.  Overall, these data 

demonstrate that the strain history approach converges to the same solution for a broad range of 

initial guesses.  Thus, the algorithm consistently converged to a unique solution which was 

assumed to be the global minimum.   

 

6.2.2   Assessment of Numerical Stability 
 

Further analysis of this approach showed that the theory did not provide a perfect 

Gaussian curve-fit to the experimental data.  Thus, it was necessary to assess the variability of 

constants that may result from systematic deviations between the model and the experimental 

data, experimental noise, and numerical instabilities.  A bootstrapping procedure was utilized to 

determine the sensitivity of the constants to systematic deviation between the theory and 

experimental data.  To obtain the experimental data for this analysis, femur-MCL-tibia 
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complexes (N=6) were prepared from goat knees that had underwent a sham operation for a 

separate experiment [6].  Using a laser micrometer system, the cross-sectional area of the MCL 

was measured. Each FMTC was then mounted onto customized clamps in an InstronTM testing 

machine and tested in a saline bath at 32° C.   A stress relaxation test was performed by 

elongating the FMTC to 3 mm (º5% strain) and holding the strain constant for 60 minutes.  

Midsubstance strain was measured using a Motion AnalysisTM system with reflective tape 

markers.  The average strain rate during the loading portion of the test was 0.15± 0.06 %/sec 

(mean ± SD) and the time until the peak load was 18.4 sec.  Following 1 hour of recovery, a 

second test was performed to measure the cyclic stress relaxation behavior of the MCL.  In this 

test, each FMTC was subjected to 10 cycles of elongation between 2 and 3 mm at 10 mm/min 

and the resulting stress response was recorded. Data was collected rate of 5 Hertz.  

This dissertation utilized a bootstrapping analysis that was previously described by Yin et 

al. [143].  First, the data from each specimen was curve-fit individually using the strain history 

approach.  Residual plots for each specimen were then curve-fit with a polynomial function to 

obtain a pool of curves representing systematic error.  Taking the difference between the 

systematic error curves and the residuals allowed for a random noise distribution for each 

specimen to be obtained.  Finally, a randomly selected systematic error curve and random error 

distribution were added to predicted stresses that were obtained by curve-fitting the theory to 

averaged experimental data.  This created a set of data whose systematic error and random noise 

distributions were representative of those that could be observed experimentally.  Constants A, 

B, C, τ1, and τ2 for this new data set were obtained using the strain history approach.  One 

hundred new data sets were generated using this methodology.  A coefficient of variation was 

calculated for each constant to assess the sensitivity of the new approach.   
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The coefficient of variation was based on 95% confidence intervals as the data did not 

follow a normal distribution.  Thus, the formula was (upper bound- the median)/the median*100, 

for each constant.  The algorithm was considered numerically stable if this coefficient of 

variation less than 2% was achieved for each constant.  If the coefficient of variation was large 

(ex. > 2%) for a particular constant, then that constant is sensitive to systematic deviations 

between the model and the experimental data, experimental noise, and numerical instabilities.  

Thus, there would be less confidence that the solutions obtained from an individual regression 

analysis were meaningful since a data set with a slightly different distribution of random noise or 

systematic error may result in a completely different solution. 

Six goat specimens were utilized for this analysis.  The specimens stress relaxed by 32 ± 

11% following ramping to a peak stress of 15.3 ± 5.40 MPa.  The relaxation was considered to 

have reached a plateau after 60 minutes as the stress relaxed by only 0.25 ±  0.26% during the 

last 10 minutes of the test.  The model fit the data for each specimen well with R2 values 

measuring 0.993 ± 0.006 (Figure 17).  Typical systematic and random error plots utilized in the 

Bootstrapping analysis are show in Figures 18 and 19.  The bootstrapping analysis showed that 

none of the constants displayed large variability as measured by the coefficient of variation 

(Table 7).  95% confidence intervals were utilized to express these data as they did not follow a 

normal distribution.   
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Figure 17  A typical fit to experimental data using the strain history approach (printed with permission from 
[4]). 
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Figure 18 A typical residual plot demonstrating systematic deviations between the model prediction and 
experimental data (printed with permission from [4]). 
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Figure 19 A typical random error plot with distribution 0 ± 0.00874 (mean ± SD) (printed with permission 
from [4]). 

 
 
Table 7 95% confidence intervals (upper and lower bounds) of the solutions for the 100 bootstrapped 
replicates (printed with permission from [4]).  

 

A B C t1 (sec) t2 (sec)
5.8 47.2 0.072 0.62 1469

6.00 48.2 0.072 0.63 1488
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In terms of the constants describing the instantaneous elastic response, all values for 

constant A were within 1.7% of its median value.  For constant B, the strain history approach 

determined its value within approximately 1% of the median value.  In terms of the constants 

describing the reduced relaxation function, confidence intervals for constant C were within 1% 

of the median values.  Similarly, the confidence intervals for constants τ1 and τ2 were also 

determined values to be within 1% of their median values, respectively.  Thus, this approach was 

deemed insensitive to systematic deviation between the theory and experimental data and 

experimental noise.   

 

6.2.3   Comparison to Previous Approach 
 

The experimental data obtained from the same 6 specimens utilized in the bootstrapping 

analysis were utilized to obtain the constants of the QLV theory with another approach.  The 

instantaneous assumption approach as utilized by Woo et al. (1981) assumes that the ramping 

phase of the stress relaxation tests occurred instantaneously [121].  Therefore, G(t) and σe(ε) are 

assumed to be separable functions. Constants A and B can be obtained by fitting equation 20 to 

the experimentally obtained stress-strain curve, and constants C, t1, and t2 can be obtained by 

fitting equation 12 to the time shifted relaxation data normalized by the peak stress at t0 where t0 

is set to t=0.  Thus, this approach does not account for relaxation that occurred during ramping 

which may result in increasingly erred estimates of constants as loading times increase [23].  For 

all 6 specimens, the experimental data was curve-fit using both approaches and the obtained 

constants were compared.  A nonparameteric two-tailed Wilcoxon sign-rank test and z-score 

statistic were used for statistical comparison and to calculate p-values [101].  Significance was 

set at p<0.05. 
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In terms of the solutions obtained from curve-fits of each individual specimen’s data 

(Table 8), constant B was determined to be significantly greater when obtained using the strain 

history approach (53.1 ± 27.0; mean ± SD) compared to the instantaneous assumption approach 

(49.8 ± 25.4), indicating a more nonlinear instantaneous elastic response (p<0.05; Figure 20).   
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Table 8 Constants describing the reduced relaxation function obtained by curve-fitting individual specimens using 
the strain history and instantaneous assumption approaches. * significant difference between the two approaches 
(p<0.05) (printed with permission from [4]). 

 

Specimen # Strain History Inst. Assum. Strain History Inst. Assum.
997 6.75 6.75 73.5 61.8
965 3.04 3.04 78.5 76.3
422 2.75 2.75 76.8 75.5
41 7.19 7.19 41.6 38.5
26 32.86 32.86 13.9 13.5
19 5.65 5.65 34.0 33.1

Mean ± SD 9.7 ± 11.5 9.7 ± 11.5 53.1 ± 27.0* 49.8 ± 25.4 

A (MPa) B
Specimen # Strain History Inst. Assum. Strain History Inst. Assum.

997 6.75 6.75 73.5 61.8
965 3.04 3.04 78.5 76.3
422 2.75 2.75 76.8 75.5
41 7.19 7.19 41.6 38.5
26 32.86 32.86 13.9 13.5
19 5.65 5.65 34.0 33.1

Mean ± SD 9.7 ± 11.5 9.7 ± 11.5 53.1 ± 27.0* 49.8 ± 25.4 

A (MPa) B
Specimen # Strain History Inst. Assum. Strain History Inst. Assum.

997 6.75 6.75 73.5 61.8
965 3.04 3.04 78.5 76.3
422 2.75 2.75 76.8 75.5
41 7.19 7.19 41.6 38.5
26 32.86 32.86 13.9 13.5
19 5.65 5.65 34.0 33.1

Mean ± SD 9.7 ± 11.5 9.7 ± 11.5 53.1 ± 27.0* 49.8 ± 25.4 

A (MPa) B
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Figure 20  The elastic response as determined using the instantaneous assumption approach and the strain 
history approach. 
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For the constants describing the reduced relaxation function (Table 9), the strain history 

approach consistently estimated significantly higher values for constant C (0.089 ± 0.057 versus 

0.076 ± 0.053) for each individual specimen (p<0.05).  Estimates for constant τ1 obtained using 

the strain history approach (0.54 ± 0.15 sec) were an order of magnitude lower than those 

obtained using the instantaneous assumption approach (2.13 ± 0.98 sec; p<0.05).  Further, 

estimates for constant τ2 were also significantly lower when determined with the strain history 

approach (1602 ± 581 sec versus 2222 ± 821 sec; p<0.05).   Thus, it can be seen that the strain 

history approach consistently predicts a reduced relaxation function with a greater percentage of 

relaxation, steeper initial slope, and earlier time to reach equilibrium (Figure 21). 

 

 

Table 9 Constants describing the reduced relaxation function obtained by curve-fitting individual specimens 
using the strain history and instantaneous assumption approaches. * significant difference between the two 
approaches (p<0.05) (printed with permission from [4]). 

 

Specimen # Strain History Inst. Assum. Strain History Inst. Assum. Strain History Inst. Assum.
997 0.204 0.183 0.30 3.29 1972 2451
965 0.055 0.047 0.64 2.07 1997 2685
422 0.071 0.058 0.63 1.85 896 1163
41 0.084 0.073 0.54 2.97 2248 3030
26 0.066 0.050 0.44 0.51 1587 2786
19 0.056 0.045 0.70 2.09 910 1218

Mean ± SD 0.089 ± 0.057* 0.076 ± 0.053   0.54 ± 0.15* 2.13 ± 0.98  1602 ± 581* 2222 ± 821  

C t1 (sec) t2 (sec)
Specimen # Strain History Inst. Assum. Strain History Inst. Assum. Strain History Inst. Assum.

997 0.204 0.183 0.30 3.29 1972 2451
965 0.055 0.047 0.64 2.07 1997 2685
422 0.071 0.058 0.63 1.85 896 1163
41 0.084 0.073 0.54 2.97 2248 3030
26 0.066 0.050 0.44 0.51 1587 2786
19 0.056 0.045 0.70 2.09 910 1218

Mean ± SD 0.089 ± 0.057* 0.076 ± 0.053   0.54 ± 0.15* 2.13 ± 0.98  1602 ± 581* 2222 ± 821  

C t1 (sec) t2 (sec)
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Figure 21 The reduced relaxation function as determined using the instantaneous assumption approach and 
the strain history approach (printed with permission from [4]). 

 

 

6.2.4   Validation:  Cyclic Stress Relaxation 
 

To determine the predictability of QLV theory using the constants obtained from the strain 

history approach, the obtained constants A, B, C, τ1, and τ2 based on the experimental data from 

the original 60 minute static stress relaxation test were separately substituted into equation 2 to 

obtain the specific equations describing the stress response of the goat FMTC for each specimen.  

Using a previously described approximated strain-time history [121], 

 

  ε = αt  0 < t < t0          (27) 
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ε = ε+ - ε- cos [ω(t- t0)]          to < t < ∞         (28) 

 

where α is the specimen’s strain rate, determined experimentally, ω is the angular frequency of 

the cyclic stress relaxation experiment, and: 

 

           (29) 

 

                           (30) 

 

 

equation 2 can be solved by direct integration for the history-dependent peak stresses.  

Specifically, the peak stresses (t=t1,t2 … etc.) for the first 8 cycles were calculated with the 

following times as upper limits to the integral.  The times for the peak stresses are 

 

          (31) 

 

The peak stress obtained from equation 2 were then compared to those obtained experimentally. 

The percent difference between the experimentally obtained and theoretical obtained peak 

stresses were calculated by the formula (theory-experimental)/experimental*100.  Constants 

were considered validated if predictions were within 15%. 

The constants A, B, C, τ1, and τ2 obtained using the strain history approach could 

accurately describe the experimental data of the cyclic stress relaxation test for each specimen.  

2
01 εεε +

=+

2
01 εεε −

=−

ω
π)2(0 nttt n +==
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Error between the prediction and experimental data ranged from 0.2% to 2.9% for the best 

prediction (Figure 22) and 9.3% to 16.2% for the worst prediction (Figure 23).  In general, the 

prediction of the initial peak stress was the most erred for all specimens.  Nonetheless, the 

average error for this peak measured only 6.3 ± 6.0% across all specimens. 
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Figure 22 Prediction of the peak stresses of a cyclic loading history based on the constants obtained from the 
stress relaxation experiment using the strain history approach for individual specimens (Best Prediction) 
(printed with permission from [4]). 
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Figure 23 Prediction of the peak stresses of a cyclic loading history based on the constants obtained from the 
stress relaxation experiment using the strain history approach for individual specimens (Worst Prediction) 
(printed with permission from [4]). 
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7.0      APPLICATION OF THE STRAIN HISTORY APPROACH TO THE HEALING 
MCL 

 

 

7.1   EXPERIMENTAL DESIGN 

 

For Specific Aim 3, skeletally mature goats (N=6) were utilized.  The right leg served as 

the healing group and the left leg served as the sham-operated controls. The experimental data 

obtained from a stress relaxation test for both groups was curve-fit using the strain history 

approach.  To make statistical comparisons between the two groups, it was necessary to 

determine if the experimental data and obtained constants from individual specimens were 

normally distributed.  As this portion of the dissertation utilized a paired approach, the normality 

of differences in the experimental data and obtained constants between individual paired samples 

were analyzed using a one sample Kolmogorov-Smirnov test [101].  Since a normal distribution 

was observed for all constants, a paired t-test was used for statistical comparisons [43].   The 

significance level was set at p<0.05. 
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7.2   EXPERIMENTAL RESULTS 

 

When dissected, the MCLs in the control group appeared shiny, white and opaque, with 

well-defined edges.  The healing MCLs, on the other hand, showed signs of an enlarged tissue 

mass at the original rupture site.  Laser micrometer measurements confirmed gross observations, 

demonstrating that the cross-sectional area of the healing MCL (19.2 ± 5.3 mm2) was almost 

100% larger than for sham-operated controls (11.6 ± 1.9 mm2; p<0.05).    

During the loading phase of the stress relaxation test, tissue strain was found to increase 

linearly with time.  Thus, the elongation rate of 10 mm/min was equivalent to a midsubstance 

strain rate, γ, of 0.26 ± 0.01 %/sec for healing specimens and 0.24 ± 0.01 %/sec for sham-

operated controls.  At the end of the loading phase, tissue strain was 4.7 ± 1.8% versus 4.4 ± 

1.7%, respectively (p>0.05).  The corresponding stress increased in a nonlinear fashion for both 

groups with the healing specimens measuring 4.4 ± 2.8 MPa, which was significantly lower than 

that of sham-operated controls (11.6 ± 5.8 MPa; p<0.05).  The largest amount of stress relaxation 

occurred in the first 20 minutes (Figure 24).  At 60 minutes, the total amount of stress relaxation 

was 49.0 ± 12.1% for healing MCLs versus 26.5 ± 8.1% for sham-operated controls (p<0.05).  

Curve-fits of the data of each individual specimen using the QLV theory were of good quality 

with R2 values greater than 0.994 for both groups (Figure 25). 
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Figure 24 Experimental stress vs. time curves (mean ± SD) during the stress relaxation test for healing and 
sham-operated specimens.  Note the time scale change at t0 = 18.4 sec separating the loading phase and 
relaxation phase of the experimental data (printed with permission from [5]). 
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Figure 25 Typical curve-fitting of the experimental data with the QLV theory for a pair of specimens 
demonstrating an accurate description of these data by the theory.  In this figure, the diamonds and squares 
represent the experimental data and the solid line is the curve-fit to these data (printed with permission from 
[5]).   
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7.3   ELASTIC RESPONSE 

 

The constants describing the instantaneous elastic response for healing and sham-

operated MCLs are shown in Table 10.  The combination of constants A*B, i.e. the initial slope 

of the stress-strain curves, was greater for sham-operated controls compared to those for healing 

MCLs (p<0.05).  Note that there were no statistical differences for constant A (0.7 ± 0.6 MPa 

versus 4.0 ± 4.2 MPa) or B (54.1 ± 18.9 versus 48.4 ± 23.1) between healing and sham-operated 

MCLs, respectively (p>0.05). 

 

 

Table 10 Constants describing the instantaneous elastic response of the healing (n=6) and sham-operated 
MCLs (n=6).  * indicates statistically significant differences between healing MCLs and sham operated 
controls (p<0.05) (printed with permission from [5]). 

 
 

Specimen # Healing Sham Healing Sham Healing Sham
915 0.5 4.4 56.3 31.7 28.2 139.5
921 0.2 4.7 29.0 44.2 5.8 207.7
924 0.6 0.3 55.5 79.7 33.3 23.9
947 0.2 2.1 74.5 55.6 14.9 116.8
948 0.7 0.7 73.7 63.8 51.6 44.7
949 1.8 11.8 35.5 15.3 63.9 180.5

mean 0.7 4.0 54.1 48.4 32.94* 118.8
SD 0.6 4.2 18.9 23.1 21.9 73.0

A*B (MPa)BA (MPa)
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7.4   REDUCED RELAXATION FUNCTION 

 

The three constants describing the reduced relaxation function (C, τ1, and τ2) for the 

healing MCLs and sham-operated controls are detailed in Table 11.  The dimensionless constant 

C was nearly 3 times greater for healing MCLs compared to sham-operated controls (p<0.05).  

Constant τ2, on the other hand, was significantly smaller for healing MCLs measuring 

approximately 63% of that for sham-operated controls (p<0.05).  No differences were found for 

time constant τ1. 

 

 

Table 11 Constants describing the reduced relaxation function of the healing (n=6) and sham-operated MCLs 
(n=6).  * indicates statistically significant differences between healing MCLs and sham operated controls 
(p<0.05) (printed with permission from [5]). 

 
(sec)(sec)

Specimen # Healing Sham Healing Sham Healing Sham
915 0.112 0.073 0.58 0.73 1265 2002
921 0.380 0.098 1.65 0.67 1210 1385
924 0.207 0.039 0.52 1.96 1284 2440
947 0.260 0.096 0.82 0.69 1804 1627
948 0.113 0.068 0.61 0.58 1114 2152
949 0.134 0.037 0.60 0.72 939 1465

mean 0.201* 0.069 0.80 0.89 1269* 1845
SD 0.106 0.026 0.43 0.52 291 419

C t1 t2 (sec)(sec)
Specimen # Healing Sham Healing Sham Healing Sham

915 0.112 0.073 0.58 0.73 1265 2002
921 0.380 0.098 1.65 0.67 1210 1385
924 0.207 0.039 0.52 1.96 1284 2440
947 0.260 0.096 0.82 0.69 1804 1627
948 0.113 0.068 0.61 0.58 1114 2152
949 0.134 0.037 0.60 0.72 939 1465

mean 0.201* 0.069 0.80 0.89 1269* 1845
SD 0.106 0.026 0.43 0.52 291 419

C t1 t2
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7.5   VALIDATION 

 

In terms of validation of the constants using the data from the cyclic stress relaxation test, 

Figures 26 and 27 show that the average peak stresses of the theoretically predicted values 

closely match the average experimentally measured values for both the healing MCL and the 

sham-operated controls, respectively.  For both groups, the theory predicted the initial peak stress 

most accurately, but the predictions tended to plateau more quickly when compared to the 

experimental data.  However, the close agreement confirms the validity of the 5 constants for all 

specimens at the strain level utilized in this study. 
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Figure 26 The average peak stresses of the theoretically predicted values versus the average experimentally 
measured values for the healing MCLs (printed with permission from [5]). 
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Figure 27 The average peak stresses of the theoretically predicted values versus the average experimentally 
measured values for the sham-operated controls (printed with permission from [5]). 

 

 

 

 

 

 

 

 

 

 

 



 

85 

 

 

 

 

8.0      DYNAMIC MECHANICAL TESTING 

 

 

8.1   EXPERIMENTAL DESIGN 

 

For Specific Aim 3, we wanted to assess whether the constants obtained utilizing the 

strain history approach can be used to determine the response of the MCL to sinusoidal loading, 

dynamic mechanical testing was performed.  Utilizing sinusoidal strains of a small magnitude 

about an equilibrium value of strain allow for the application of linear viscoelastic theory.  

Details on the mathematical development are provided in Section 2.4.1.2.   Thus, the spectrum of 

relaxation, i.e. Tan d versus frequency, of a tissue can be experimentally determined [7, 20, 21, 

44, 66, 94, 107, 142].  As the formulation of G(t) is based on linear viscoelastic theory, the 

experimental measures of Tan d can be predicted from the results of a stress relaxation 

experiment [34].  As described in previous sections, a formula which describes the constant 

spectrum of relaxation has been written in terms of the constants C, τ1, and τ2: 

 

Tan(d)=(C[Tan-1(wt2) - Tan-1(wt1)])/(1+1/C/2[Ln(1 + w2t2
2) - Ln(1 + w2t1

2)])  (32) 
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Theoretically, the same constants obtained from a stress relaxation test of a tissue can also be 

utilized to describe its spectrum of relaxation, i.e. Tan(d) versus frequency.  Thus, the ability to 

infer the response of the MCL to harmonic oscillations based on the constants obtained from a 

static stress relaxation test can be assessed.   

Using the experimental data from a stress relaxation test a previously described, the strain 

history approach was utilized to curve-fit the experimental data to obtain the constants of the 

QLV theory.  These constants were then utilized in equation 32 to predict the spectrum of 

relaxation (i.e. Tan(δ) versus frequency).  This prediction was compared to the actual 

experimentally determined spectrum of relaxation for the same specimens (Figure 28).  An r2 

statistic was utilized computed based on the differences between the prediction and experimental 

data.  Values greater than 0.8 suggests that the constants obtained using the strain history 

approach are predictive of the response of ligaments to harmonic oscillations.  

 

 

MCL
Specimen

Static Stress
Relaxation

Test

Sinusoidal loading
.01, .1, 1, 10,

25, 50 Hz
Amp 0.25%

New approach to
determine

C, t1, t2

Experimentally
Determined

Tan(d) vs. freq
*COMPARE*

Tan(d)=(C[Tan-1(wt2) - Tan-1(wt1)])/(1+1/C/2[Ln(1 + w2t2
2) - Ln(1 + w2t1

2)])  

 

Figure 28  A flow chart displaying the comparison of experimental and theoretical results. 
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8.2   COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 

 

The cross-sectional area of the 6 dog-bone shaped rabbit MCLs averaged 1.0 ± 0.3 mm2.  

Specimens stress relaxed by 25 ± 3% following ramping to a peak stress of 13.4 ± 5.7 MPa.  The 

relaxation was considered to have reached a plateau after 30 minutes as the stress relaxed by only 

0.05 ±  0.35% during the last 10 minutes of the test.  The model fit the static stress relaxation 

data well for each specimen well with R2 values measuring 0.983 ± 0.005.  The constants 

describing the reduced relaxation function are displayed in Table 12.   

 

 

Table 12 Constants describing the elastic response and reduced relaxation function obtained by curve-fitting 
individual specimens using the strain history. 

 
Specimen # A (Mpa) B C t1 (sec) t2 (sec)

3176 4.3 18.9 0.050 0.28 1675
3696 4.5 23.4 0.069 0.33 647
3594 7.7 17.4 0.046 0.27 1139
3595 13.0 20.1 0.047 0.31 1151
3597 6.6 27.3 0.054 0.36 257
3349 8.3 21.2 0.054 0.32 758

Mean ≤ SD 7.4 ≤ 3.2 21.4 ≤ 3.6 0.053 ≤ 0.008 0.31 ≤ 0.04 938 ≤ 492  

 

 

The Tan(d) response and dynamic modulus to sinusoidal oscillations are shown in 

Figures 29 and 30, respectively.  It can be seen that the rabbit MCL is relatively elastic for the 

frequencies tested as Tan(d) is relatively close to zero.  The experimentally obtained spectrum of 

relaxation is relatively constant in the range of 0.1 to 10 Hz.  However, the specimens display 

more viscous behavior toward 0.01 Hz and 50 Hz as energy dissipation is 57% and 14% higher 
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than at 1 Hz, respectively.  The dynamic modulus increased linearly with the logarithm of 

frequency between 0.01 to 50 Hz. 
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Figure 29  The experimentally obtained spectrum of relaxation for 6 rabbit MCLs. 
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Figure 30 The experimental obtained dynamic modulus for 6 rabbit MCLs.  Note that the data is linear on a 
logarithmic scale. 

 
 
 

The theoretical prediction of the spectrum of relaxation based on the result of the static 

stress relaxation test are shown in Figure 31.  At 0.01 Hz, the prediction matches the 

experimental data well.  From 0.1 to 1 Hz, the predicted energy loss is overestimated.  Then, 

from 10 to 50 Hz, the prediction significantly underestimates the experimental results.  The 

theoretical curve based on a constant spectrum of relaxation can not display more viscous 

behavior towards both higher on lower frequencies with a more elastic response in the range of 

physiologic frequencies.  Thus, the assumption of a constant spectrum of relaxation is not valid 

and conclusions regarding the response of the rabbit MCL to harmonic oscillations using the new 

approach are limited, especially for high frequencies (>1 Hz).     
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Figure 31  Experimental versus theoretical spectrum of relaxations for 6 rabbit MCLs 
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9.0      DISCUSSION AND CONCLUSIONS 

 

 

In this dissertation, an improved analytical approach to obtain the constants of Fung’s QLV 

theory (A, B, C, τ1, and τ2) was developed such that the time- and history- dependent viscoelastic 

properties of the MCL could be described during the early phase of healing.  The current 

approach takes into account the utilization of finite strain rates during tensile loading; thereby, 

removing the assumption of a step change in strain.  With the utilization of slower strain rates, 

the accuracy of stress and strain measurements can be improved and the experimental errors that 

result from fast strain rates can be avoided.  The strain history approach also enables one to fit 

the entire experiment (i.e. the stress versus time data from the loading phase and the stress 

relaxation portion) and accurately determines the constants of QLV theory (A, B, C, τ1, and τ2).  

This results from the approach converging to a globally convergent and numerical stable solution 

with a reduction in variation and increased statistical power.  Further, these constants were 

validated by comparing the theoretical viscoelastic behavior of all ligaments during a cyclic 

stress relaxation test to experimental data.  

Even though the strain history approach provides an accurate description of stress relaxation 

behavior of the MCL using the QLV theory, data obtained via dynamic mechanical testing 

suggests that the results obtained from a stress relaxation test on the basis of a constant spectrum 
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of relaxation still needs to be proved to be predictive of the true response to harmonic 

oscillations for these ligaments.   

 

   

9.1   VISCOELASTIC BEHAVIOR OF THE HEALING MCL 

 

Our results showed that the percentage of stress relaxation for healing MCLs at 12 weeks 

after injury was significantly increased compared to sham operated controls.  Previous studies 

found greater relaxation for the healing rabbit MCL up to 6 weeks post-injury compared to 

intact, but values were no longer statically different from controls by 14 weeks [17]. This may be 

due to injury model used in the previous study (i.e. 4 mm gap injury or a 4 mm saggital Z-plasty 

in the rabbit).  On the other hand, the “mop-end” tear injury model used in this study creates 

significant damage to the insertion sites which may provide another path for the alteration in 

stress relaxation behavior.  In fact, the differences observed in this study between healing MCLs 

and sham-operated controls are similar to those reported by Lam et al. (1993) when comparing 

the stress relaxation of skeletally mature rabbits versus those whose tibial insertion was 

immature [59].  Thus, the healing of the osseous insertion sites may provide another path for the 

alteration in stress relaxation behavior.   

In terms of the constants describing the QLV theory, the key findings are that the initial 

slope of the instantaneous elastic response (i.e. constants A*B) was lower for healing MCLs 

compared to sham-operated controls, suggesting differences in the quality of tissue between the 

two groups.  This is supported by a previous study on the same specimens that reported inferior 

mechanical properties for the healing MCLs as determined from a load to failure test [1].  
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Further, the viscoelastic properties of the healing MCL at 12 weeks had a larger viscous response 

than sham operated controls as shown by a larger value of C.  Therefore, the healing MCL would 

dissipate more energy and have a longer recovery time upon removal of load.   

Although there were no differences found for τ1 which describes short-term relaxation, the 

values obtained for this constant are similar to those found in Specific Aim 1.  Constant τ2 

measured more than 4 orders of magnitude larger than τ1, suggesting that both groups display 

insensitivity to strain rates that span orders of magnitude.  The significant difference between τ2 

for the sham and healing MCL indicates the long-term relaxation reaches a plateau earlier for the 

healing tissue. Although, there were no differences found for τ1 which describes short-term 

relaxation, the values obtained for this constant are similar to those reported previously for the 

goat MCL and other ligaments and tendons [3, 24, 48, 71, 121]. 

 

 

9.2   A NEW APPROACH TO DETERMINE CONSTANTS OF QLV THEORY 

 

The key finding was that the regression algorithm converged to a unique solution that was 

stable and validated by predicting the stress response of a separate experiment.  By comparing 

the set of constants for individual specimens to those obtained for the instantaneous assumption 

approach, the effect of the assumption of a step change was elucidated. Finally, the behavior of 

the MCL was predicted for the cyclic stress relaxation test using the properties obtained from 

static stress relaxation test. Our prediction matched the experimental results, validating our 

values for the QLV constants. 
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9.2.1   Determination of Constants 
 

The constants (A, B, C, τ1, and τ2) for sham-operated controls compare well to those 

reported previously for the goat MCL which utilized the same methodology as the current study 

[3]. Compared to a study on the canine MCL, in which the strain rate utilized in the loading 

phase was 2 orders of magnitude higher than that for the current study, the constants for sham-

operated controls were also similar [121].  Most importantly, constant τ1, which has been shown 

to be the most sensitive to the experimental strain rate [23], was on the same order of magnitude 

as reported in these previous studies of the MCL as well as for other ligaments and tendons [3, 

24, 48, 71, 121]. 

Previous studies using QLV theory together with the assumption of a step change in strain 

do not account for the relaxation that occurred during ramping and base normalization of 

experimental data on an underestimated peak stress [23, 102, 103].  As a result, constants C and 

τ1 are significantly underestimated and overestimated, respectively [23].  The current approach 

improves the estimates of these constants. The constant C was significantly higher and constant 

τ1 was an order of magnitude lower than those determined using the instantaneous assumption 

approach.  Further, the strain history approach estimates a more nonlinear instantaneous elastic 

response as indicated by the higher value for constant B.  All of these improved approximations 

result from accounting for the strain history during ramping.   

In spite of the fact that the ramp time used in this study is 1-2 orders of magnitude longer 

than those used previously, the constants obtained using the strain history approach are similar to 

those reported previously for ligaments and tendons [24, 48, 71, 121].  Most importantly, the 

determination of constant τ1, which has been shown to be the most sensitive to the experimental 

ramp time, was on the same order of magnitude as these previous studies [23].  Further, the 
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ability for the model to predict the results of a second experiment for validation of the constants 

was similar to that reported by Woo et al., 1981 whose constants were also determined based on 

data with a ramp time that was 2 orders of magnitude shorter than that used in this study [121]. 

 

9.2.2   Comparison to Other Approaches 
 

Previously our laboratory had used a two-step regression approach to obtain better 

estimates of the constants (A, B, C, τ1, and τ2) based on experiments with finite ramp times [57].  

For this approach, however, two physically significant constants, B and τ1, are highly correlated.  

As a result, regression algorithms either fail to converge or converge to solutions that are 

sensitive to systematic deviations between the theory and the experimental data for certain 

applications.  This is demonstrated in Table 13 where the constants (A, B, C, τ1, and τ2) were 

determined for each individual specimen using this approach. Convergence failed for 3 of 6 

specimens and the constants A, B, and τ1 spanned more than 10 orders of magnitude.  
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Table 13 Constants describing the instantaneous elastic response and reduced relaxation function obtained by 
curve-fitting individual specimens using the approach described previously by our laboratory. y denotes 
convergence failure of the algorithm, for which the constants obtained for the iteration prior to failure are 
reported.   

 
 Specimen # A (MPa) B C t1 (sec) t2 (sec)

997y <1E-10 2.1E+07 0.173 4.87 2287
965y 15.62 36.3 0.068 5.25E-06 1275
422 10.95 46.2 0.071 9.05E-05 1568
41y <1E-10 2.5E+07 0.072 4.16 3186
26 1.68 90.0 0.071 1.34E-04 1657
19 2.67E-10 548.5 0.046 1.52 1197

Specimen # A (MPa) B C t1 (sec) t2 (sec)

997y <1E-10 2.1E+07 0.173 4.87 2287
965y 15.62 36.3 0.068 5.25E-06 1275
422 10.95 46.2 0.071 9.05E-05 1568
41y <1E-10 2.5E+07 0.072 4.16 3186
26 1.68 90.0 0.071 1.34E-04 1657
19 2.67E-10 548.5 0.046 1.52 1197  

 

 

A similar issue (i.e. the correlation of constants A and τ1) was observed using the strain 

history approach.  It was found that a relatively similar curve-fit could be achieved when both 

constants A and τ1 are increased and decreased by the same percentage of their original value, 

respectively.  Thus, this study chose to fix constant A based on work from two previous studies.  

One study showed that constant A is unnecessary to describe the reduced stress relaxation 

following a finite ramp time, and the other demonstrated that the stress-strain curve of ligaments 

is relatively insensitive to strain-rates ranging over 4 decades [57, 137]. 

This allowed for a significant improvement in the variability of the obtained constants when 

compared to an approach described previously by our laboratory [57].  It should be noted that 

this study did not compare to other approaches that account for the loading portion of the 

experiment as these approaches are fundamentally based on short ramp times [15, 76, 83].  These 

approaches were not developed to apply to the experimental protocol utilized in this study, but 

will perform adequately when applied appropriately. 
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It should also be noted that for tissues whose stress-strain curve is sensitive to strain-rate, an 

alternative means to determine constant A may be necessary.  For this case, a high strain-rate 

experiment may still be required to determine constant A, but the remaining constants could be 

determined utilizing a second slower strain rate experiment along with the approach described in 

this dissertation.  Although this methodology would still require accurate high-speed 

measurements of stress and strain to determine constant A, the errors caused by the inability of a 

testing machine to accurately perform a linear ramp and hold test at high strain rates can still be 

avoided. 

 

9.2.3   Dynamic Mechanical Testing 
 

While the strain history approach combined with the QLV theory performed well for 

modeling and predicting stress relaxation behavior, the result comparing the predicted and 

experimentally measured spectrum of relaxation did not match well.  Most notably, the spectrum 

of relaxation was not constant for the rabbit MCL as assumed by the selection of the function for 

G(t).  Yet, compared to the differences in frequency, the experimentally obtained spectrum of 

relaxation shows that ligaments are relatively insensitive to strain rates spanning nearly 4 orders 

of magnitude.  This supports previous work by Woo et al. showing that ligaments are relatively 

insensitive to strain rate [137].   

However, contrary to the assumption of a constant spectrum of relaxation, the rabbit MCL 

becomes more viscous for low and high frequencies, and more elastic for frequencies that 

correspond to those of daily activities.  These experimental results support the work of a recent 

study investigating the response of the human MCL to harmonic oscillations [11].  The human 

MCL displays more elastic behavior for frequencies between 0.1 and 1 Hz, but energy 
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dissipation doubles for frequencies of 0.01 Hz and 15 Hz.  Thus, the human MCL displays a 

smaller range of insensitivity to strain rate.  These changes in energy dissipation versus 

frequency for both the rabbit and the human may provide insight into the molecular composition 

of the MCL.  It can be hypothesized that the behaviors observed at the low and high ends of the 

frequency spectrum correspond to water interacting with proteoglycans and water interacting 

with collagen, respectively.  With further investigation, this approach may be utilized to further 

answer questions regarding the mechanisms governing the viscoelastic behavior of ligaments. 

With respect to the QLV theory, however, the variable phase angle versus frequency 

suggests that the assumption of a constant spectrum may not be valid.  Professor Fung suggests 

there are certain ranges of frequencies of oscillations in which the assumption of a constant 

spectrum of relaxation does not represent a tissue accurately [34].  Any tissue may have local 

peaks and valleys in these data.  Thus, it may be necessary to consider a broader range of 

frequencies than was tested in this dissertation.    

However, because the strain history approach is based on the assumption of a constant 

spectrum of relaxation, it appears that the constants obtained can not be utilized to predict the 

response of the ligament to harmonic oscillations.  This may suggest that different mechanisms 

govern these behaviors and a more general theory is necessary.  On the other hand, these data 

might also suggest that peaks and valleys in the spectrum of relaxation have relatively little 

influence on the shape of the reduced relaxation function.   

  A future modification that could help resolve this issue would be to change the 

mathematical expression for G(t).  Instead of a constant spectrum of relaxation, a variable 

spectrum can be considered whose amplitude can change with frequency [44].  Preliminary data 

based on a spectrum of relaxation that consists of 5 constants (C1, C2, C3, t1, and t2) shows that it 



 

99 

has the potential to fit the experimental results for Tan(δ) versus frequency (Figure 32).  

However, the theoretical prediction of the reduced relaxation function based on this spectrum of 

relaxation displays a shape that that is not consistent with that obtained experimentally for the 

rabbit MCL (Figure 33).  In fact, the shape of the experimentally obtained reduced relaxation 

function is more consistent with that described by a constant spectrum of relaxation. While more 

data is necessary regarding this point, these results suggest that the mechanisms which govern 

hysteresis are not identical to those that govern stress relaxation.  Thus, the QLV theory and the 

new approach may be limited to only describing viscoelastic behaviors related to stress 

relaxation.  
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Figure 32  Curve-fit to experimental data for Tan(δ) versus frequency using a variable spectrum of relaxation 
description. 
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Figure 33  The experimental data for G(t) compared to the theoretical prediction based on the variable 
spectrum of relaxation determined from Figure 32. 

 
 
 

An additional modification that may improve results is to use an alternative weighting 

schemes when curve-fitting the theory to the experimental data obtained from a stress relaxation 

test.  For example, the energy dissipation at frequencies between 1 and 100 Hz from dynamic 

testing corresponds to energy dissipation from only 0.01 to 1 sec of a stress relaxation 

experiment.  On the other hand, the energy dissipation at frequencies between 0.01 and 1 Hz 

corresponds to energy dissipation from 1 to 100 sec of a stress relaxation experiment.  Thus, if a 

constant rate of data collection is utilized and all data are equally weighted, the data representing 
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lower frequencies and longer relaxation times will be weighted heavier when fitting data from a 

stress relaxation experiment by virtue of the fact that more data points are collected at longer 

times.  A logarithmic weighting scheme would potentially equally weight both early and late 

relaxation times. 

Finally, it should be noted that these results were obtained for the rabbit MCL.  While the 

human shows similar behaviors, it can be seen from Tables 9 and 12 (in Sections 6.2.3 and 8.2) 

respectively) that the constants (specifically, C, τ1, and τ2) describing the viscoelastic behavior of 

the rabbit MCL tend to be lower than those for the goat.  This suggests that the viscoelastic 

behavior between these models is different.  Thus, thorough dynamic mechanical testing and 

analyses of the healing and sham operated goat MCL are necessary to definitively state how well 

the constants obtained in this dissertation are able to predict the response of the goat MCL to 

sinusoidal perturbations.    

 

       

9.3   CONCLUSIONS  

 

9.3.1   Clinical Significance 
 

The most powerful clinical significance would be to correlate the constants obtained in this 

dissertation directly with the biochemical constituents or histomorphological appearance of the 

healing tissue.  This would provide a direct relationship between the biology of the ligament and 

its function.  As a result, new treatment strategies may be developed that specifically target the 

proteins that have the most significant effect on ligament function.  This dissertation provides a 

first step in establishing those correlations.   Based on the current knowledge available in the 
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literature, the differences between healing and sham operated controls at 12 weeks points to 

some significant clinical considerations.    

In terms of the elastic response of the healing MCL, the most notable result was that the 

initial slope (constants A*B) was significantly decreased compared to sham-operated controls.  

Previous studies have associated collagen cross-link density with tangent modulus [30, 114].   In 

addition, ligament crimp has been suggested to significantly affect the mechanical properties of 

ligaments at low strains.  Since it has previously been found that both of these components are 

altered in the healing MCL, this decrease in initial slope may be indicative of the changes in 

collagen cross-linking and crimp pattern.  In addition, another potential mechanism that explains 

these results may be related to the random alignment of collagen in the healing MCL.  Upon the 

application of a tensile load, randomly oriented collagen fibers will rotate to align along the 

loading axis of the ligament before being recruited to resist elongation.  The toe region of 

disorganized tissues has previously been found to be significantly larger than that of tissues 

whose collagen is more aligned.  While previous studies have shown that collagen alignment 

appears to improve from 6 to 12 weeks in the goat model, these data may suggest that alignment 

is still not ideal.       

In terms of the constants describing the reduced relaxation function, the most significant 

result for the healing MCL was the increased viscous effects (i.e. a higher value of C).  Previous 

biochemical studies showed that healing MCLs have increased GAG molecules and water 

content [17, 18, 31, 60].  In addition, it has been shown that tissues with a greater water content 

display a greater degree of stress relaxation.  Thus, it could be hypothesized that these 

biochemical changes are correlated to the increase of constant C.  This may provide a protective 

mechanism by which the healing MCL limits its exposure to high valgus stresses by dissipating 
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energy to a much greater degree.  As a result, other structures within the knee may have to play 

more of a role to assist in stabilizing the knee.  Therefore, it can be hypothesized that other 

valgus stabilizers (e.g the ACL) play an important role in the healing process of the MCL and the 

healing process of the MCL is significantly compromised when the ACL is injured. 

For constant t2, the lower value for healing ligaments suggests that they reach a platue in 

their stress relaxation behavior earlier compared to normal ligaments.  This suggests that fluid 

flow within the healing ligament reaches an equilibrium faster.  This could also be potentially 

related to the disorganized collagen matrix as well as the increased number of voids and 

decreased collagen density that have been observed for healing ligaments.  All of these factors 

provide fluid with more places and easier avenues to flow in order to reduce stress within the 

healing ligament.      

Clearly, more studies are necessary to make stronger correlations between the constants that 

describe the QLV behavior of tissues and their biochemical constituents.  However, the results of 

this dissertation show that the viscoelastic behavior of the healing MCL is significantly altered at 

12 weeks after injury.  The changes observed likely represent a means by which the healing 

response naturally protects the ligament from high stresses.  That is, the inferior tissue quality 

prevents stresses from becoming too high.   Yet, if stresses do become high, the healing tissue 

will stress relax to a greater degree and reach that lower equilibrium value faster than normal 

ligaments.  While most patients with an isolated injury to the MCL are permitted to resume 

normal levels of activity at 12 weeks, clinicians and physical therapists should recognize that the 

knee is not functioning as it did prior to injury and that other structures within the knee may be 

playing more of a functional role to compensate for the compromised function of the MCL.      

 



 

105 

9.3.2   Significance of the Strain History Approach 
 

By using the strain history approach to determine the constants of the QLV theory that 

allows for the use of slow strain rates, errors caused at fast strain rates including overshoot, 

vibrations, and inaccurate measurements of tissue strain are avoided.  Researchers can focus on 

collecting accurate measurements of stress and strain at slower strain rates while still having the 

ability to determine meaningful constants describing the viscoelastic behavior of their specimens.  

the stability of the solutions obtained using the strain history approach reduces the variation of 

the constants and increases statistical power.  Therefore, the strain history approach may allow 

for differences in the constants of the QLV theory to be determined that may have otherwise 

been unobserved due to the effects of a finite ramp time or performing experiments at fast strain 

rates.    

As shown in this dissertation this approach can allow for more accurate comparisons of the 

constants describing injured, diseased, or treated tissues versus those of normal tissues so that 

researchers can quantitatively measure differences in viscoelastic behavior.  This approach 

makes QLV theory a valuable tool that can be utilized to help elucidate structure-composition-

function relationships such that fundamental questions regarding the roles of specific 

biochemical constituents can be answered.  However, the application the QLV is much broader 

than ligaments.   It has been used to describe vascular, lung, pharyngeal, myocardium, cartilage, 

skin, ureter, rectum, and many other tissues [9, 13, 15, 44, 47, 55, 73, 77, 145].  Ultimately, the 

analytical approach and knowledge gained in this dissertation can be applied to the majority of 

soft tissues and can be utilized to address questions in other fields. 

  Most importantly, the approach detailed in this dissertation will allow for researchers to 

compare their results to those obtained from different laboratories and can develop some idea of 
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a “realistic” range of values that should be expected from any given experiment.  With this 

knowledge, investigators have a basis of comparison that will allow them to assess whether their 

experimental methods are sound and data are reasonable.   

 
 

9.4   FUTURE DIRECTIONS 

 

This dissertation outlines an experimental and analytical approach that can be utilized for 

future studies aimed to understand how the composition and morphology relate to the stress 

relaxation phenomenon in ligaments.   However, this dissertation focused on one time period 

after injury.  Future studies should aim to perform similar analyses at various time periods 

following injury to elucidate the changes in viscoelastic behavior throughout the healing process.  

In addition, with the advance of quantitative measures of biochemical constituents, future studies 

should look toward measuring viscoelastic properties and protein concentrations on the same 

specimens in order to establish potential correlations.  Therefore, it is envisaged that this 

approach can be extended to better understand the relationship between tissue structure and 

function during tissue remodeling throughout the time course of healing.  The approach 

described in this dissertation will lead to a greater understanding of stress relaxation behavior of 

ligaments and the effects of injury on this behavior.   

This dissertation also demonstrated that the assumption of the constant spectrum of 

relaxation may not be valid for ligaments.  As a result, conclusions regarding the response of 

ligaments to harmonic oscillations based on the constants obtained from this approach are 

limited.  Future work should aim to describe stress relaxation, hysteresis, and creep phenomena 

within the framework of one theory.  Continuum based models have shown the potential to do 
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this as well as account for nonlinear behaviors and large deformations.  Recently, 1-D single 

integral formulations have been explored and shown to perform very well [96, 98].  However, to 

fully describe the nonlinear behavior of ligaments, more general continuum based models that 

account for multi-dimensional finite strains must be considered.   

The single integral finite strain (SIFS) viscoelastic model describes finite deformation of 

a nonlinearly viscoelastic material within the context of a three-dimensional model.  This model 

includes the concept of microstructural change to describe the nonlinear stress-strain relationship 

resulting from recruitment.  In addition, fading memory is incorporated in the viscoelastic 

response to ensure that more recent states of strain have greater weight in determining the stress 

than earlier states.   In fact, QLV theory can be obtained by an appropriate selection of strain 

invariants.  Ultimately, mathematical models, such as the SIFS theory or a modified QLV theory, 

that can fully describe hysteresis, stress relaxation, and creep behaviors are necessary to gain a 

true understanding of the viscoelastic behavior of ligaments and the constituents that influence 

these behaviors.    
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APPENDIX A 
 
 
 

OUR LABORATORY’S PREVIOUS APPROACH 
 
 

To compare to a previously published approach that can account for the relaxation 

manifested during loading, we utilized an approach detailed by Kwan et al. 1993 [57].   Unlike 

other approaches that are limited to fast strain rates (see note following page), this approach was 

developed to apply to any strain history.  Thus, we evaluated it for our data collected from a slow 

strain rate test in which experimental errors (i.e. overshoot) were minimized.  For this approach, 

the instantaneous step strain is replaced by a linear ramp strain with a constant, finite strain rate γ 

to a strain level at time t0. As stated previously, the corresponding stress rise during 0 < t < t0 can 

then be written as 
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Similarly, the subsequent stress relaxation σ(t), from t0 to t = ∞, can be described as 
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These two equations are then normalized by dividing equations 33 and 34 by the peak stress σ(t0) 

to eliminate constant A. This equation describes the stress relaxation normalized by the stress at 

time t0 for a linear ramp and hold strain history: 
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We expanded this formulation because the integrals of equation 35 are difficult for most 

nonlinear regression software packages to evaluate.  Further, the upper limit of the integral in the 

denominator represents a removable singularity.  Thus, we integrated both the numerator and 

denominator in Equation 35 by parts and evaluated the denominator as the upper limit of the 

integral approaches t0, to obtain an expand form, 

  

            (36) 

 

where Γ[a,b] is the generalized incomplete gamma function ∫ −−b

a

t dtet 1 .  Equation 36 was 

substituted for Equation 35 to improve the performance of nonlinear regression algorithms.  This 

equation was then curve-fit to the experimental data obtained and utilized in the previous 

sections.  Table 13 (Section 9.2.2) showed the results of that analysis. 

Note: All other approaches described in the literature are limited to fast strain rates as 

reported by the authors.  The article by Carew et al. stated that their approach fails to converge 
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for long ramp times [15].  The approach described by Myers et al. utilizes extrapolation based on 

a linear least squares fit of the first 200 ms of relaxation data [76].  As loading time of the 

experiment increases, the slope of that linear least squares fit changes dramatically.  The authors 

admitted that this approach assumes a linear rate of relaxation over the loading portion of the 

loading curve.  That assumption is not invalid for long loading times.  Nigul and Nigul report 

that determining the constants of the QLV theory following a finite ramp time can be done using 

their approach if experiments are carried out under a number of restrictions [83].  One of which 

is, “due to fast straining of the sample, the quantity t0/τ2 is kept several orders of magnitude 

smaller than unity.”  Thus, the closer this value gets to zero (i.e. as loading time increases), the 

more error is introduced.  They suggest that at a value of 10-3, or less, the error in their approach 

is negligible. For the strain rates we found acceptable for this dissertation, t0/τ2 is an order of 

magnitude larger.  Thus, the error using this approach would not be negligible.  
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APPENDIX B 
 
 
 

MATHEMATICA 4.2 CODES  
 
CURVE-FITTING ALGORITHM 

 
<<LinearAlgebra`GaussianElimination` 
<<NumericalMath`PolynomialFit` 
<<Statistics`NonlinearFit` 
<<Statistics`DescriptiveStatistics` 
<<Statistics`NormalDistribution` 
<<Statistics`ConfidenceIntervals` 
 Off[General::"spell1"] 
directory="c:/Temp/"; 
Time1=StringJoin[directory,"ramptime(1sp).txt"]; 
Force1 = StringJoin[directory,"rampstress(19).txt"]; 
FileStream=OpenRead[Time1]; 
Time1=ReadList[FileStream,  Number]; 
Close[FileStream]; 
Stream = OpenRead[Force1]; 
Force1=ReadList[Stream,  Number]; 
Close[Stream]; 
yy=Length[Time1] 
y=Length[Force1] 
Datafirst=Table[0ij,{i,1,yy},{j,1,2}]; 
Dataorig1=Table[0ij,{i,1,yy},{j,1,2}]; 
Do[ 
     Datafirst[[i,1]]=Time1[[i]]; 
     Datafirst[[i,2]]=Force1[[i]]; 
     ,{i,1,yy}]; 
Data1=Datafirst; 
Dataorig1=Data1; 
Clear[Datafirst]; 
  
 
directory="c:/Temp/"; 
Time2=StringJoin[directory,"statictime(1sp).txt"]; 
Force2 = StringJoin[directory,"staticstress(19).txt"]; 
FileStream=OpenRead[Time2]; 
Time2=ReadList[FileStream,  Number]; 
Close[FileStream]; 
Stream = OpenRead[Force2]; 
Force2=ReadList[Stream,  Number]; 
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Close[Stream]; 
yy=Length[Time2] 
y=Length[Force2] 
Datasecond=Table[0ij,{i,1,yy},{j,1,2}]; 
Dataorig2=Table[0ij,{i,1,yy},{j,1,2}]; 
Do[ 
   Datasecond[[i,1]]=Time2[[i]]; 
   Datasecond[[i,2]]=Force2[[i]]; 
   ,{i,1,yy}] 
Data2=Datasecond; 
Dataorig2=Data2; 
Clear[Datasecond]; 
(* Plot of Original Data *) 
A=ListPlot[Data1,PlotRange→All] 
B=ListPlot[Data2,PlotRange→All] 
 
 
 alpha=.0025; 
elasticfit=NonlinearRegress[Data1,  (AA*(Exp[BB*i*alpha]-1)), 
{i},{{AA,1,0,100000},{BB,50,0,100000}}, RegressionReport-
>BestFitParameters,Method ->LevenbergMarquardt]; 
Clear [AA,BB]; 
AA=BestFitParameters[[1,2]]/. elasticfit 
BBinitial=BestFitParameters[[2,2]]/. elasticfit 
tknot=18.3999999; 
numberofinterations=1; 
CCinitial=0.07; 
tau2initial=1500; 
tau1initial=.5; 
iniCC=CCinitial; 
initau1=tau1initial; 
initau2=tau2initial; 
iniBB=BBinitial; 
iniAA=AAinitial; 
 mm=Plot[(AA*(Exp[BBinitial*t*alpha]-1)),{t,.4,18.4}]; 
 Show[A,mm] 
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zz=Length@Data1D+Length@Data2D;
model1@t_,BB_,CC_,tau2_,tau1_D=

AA∗BB∗alphaêH1+CCLog@tau2êtau1DL∗‡
0

t−0.0000001H1+

CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLL∗

Ê HBB∗alpha∗τL Åτ;
model2@t_,BB_,CC_,tau2_,tau1_D=

AA∗BB∗alphaêH1+CCLog@tau2êtau1DL∗‡
0

tknotH1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLL∗

Ê HBB∗alpha∗τL Åτ;
matrix=Table@0 ij,8i,1,zz<D;
Do@
matrix@@iDD=model1@Data1@@i,1DD,BB,CC,tau2,tau1D;
,8i,1,Length@Data1D<D;

Do@
matrix@@iDD=model2@Data2@@i−Length@Data1D,1DD,
BB,CC,tau2,tau1D;

,8i,Length@Data1D+1,zz<D;
dBB@BB_,CC_,tau2_,tau1_D=D@matrix,BBD;
dCC@BB_,CC_,tau2_,tau1_D=D@matrix,CCD;
dtau2@BB_,CC_,tau2_,tau1_D=D@matrix,tau2D;
dtau1@BB_,CC_,tau2_,tau1_D=D@matrix,tau1D;  

 delta={0,0,0,0}; 
mu=1/100000; 
BigD={{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}; 
BBinitialtemp=BBinitial; 
CCinitialtemp=CCinitial; 
tau2initialtemp=tau2initial; 
tau1initialtemp=tau1initial; 
sumofsquares=100000; 
sumofsquareslast=100000; 
initialguess={{BBinitial,CCinitial,tau2initial,tau1initial}}; 
BigF=Table[0ij,{i,1,zz},{j,1,4}]; 
residuals=Table[0i,{i,1,zz}]; 
residualstemp=Table[0i,{i,1,zz}]; 
stop={10,10,10,10}; 
 
 While[sumofsquareslast>.00000001&&mu<100000, 
  holder=0; 
  
BigBB=dBB[initialguess[[1,1]],initialguess[[1,2]],initialguess[[1
,3]],initialguess[[1,4]]]; 
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BigCC=dCC[initialguess[[1,1]],initialguess[[1,2]],initialguess[[1
,3]],initialguess[[1,4]]]; 
  
Bigtau2=dtau2[initialguess[[1,1]],initialguess[[1,2]],initialgues
s[[1,3]],initialguess[[1,4]]];Bigtau1=dtau1[initialguess[[1,1]],i
nitialguess[[1,2]],initialguess[[1,3]],initialguess[[1,4]]]; 
  Do[ 
     BigF[[n,1]]=BigBB[[n]]; 
    BigF[[n,2]]=BigCC[[n]]; 
    BigF[[n,3]]=Bigtau2[[n]]; 
    BigF[[n,4]]=Bigtau1[[n]]; 
     ,{n,1,zz}]; 
  Do[ 
    residuals[[n]]=Data1[[n,2]]-
model1[Data1[[n,1]],initialguess[[1,1]],initialguess[[1,2]],initi
alguess[[1,3]],initialguess[[1,4]]]; 
    ,{n,1,Length[Data1]}]; 
 Do[ 
    residuals[[n]]=Data2[[n-Length[Data1],2]]-model2[Data2[[n-
Length[Data1],1]],initialguess[[1,1]],initialguess[[1,2]],initial
guess[[1,3]],initialguess[[1,4]]]; 
    ,{n,Length[Data1]+1,zz}]; 
Dtemp=Transpose[BigF].BigF; 
BigD[[1,1]]=Dtemp[[1,1]]; 
BigD[[2,2]]=Dtemp[[2,2]]; 
BigD[[3,3]]=Dtemp[[3,3]]; 
BigD[[4,4]]=Dtemp[[4,4]]; 
While[holder==0&&mu<100000, 
  lu=LUFactor[(Transpose[BigF].BigF+mu*BigD)]; 
  delta=LUSolve[lu,Transpose[BigF].residuals]; 
  sumofsquares=residuals.residuals; 
  BBinitialtemp=BBinitial+delta[[1]]; 
  CCinitialtemp=CCinitial+delta[[2]]; 
  tau2initialtemp=tau2initial+delta[[3]]; 
  tau1initialtemp=tau1initial+delta[[4]]; 
  
initialguesstemp={{BBinitialtemp,CCinitialtemp,tau2initialtemp,ta
u1initialtemp}}; 
 Do[ 
          residualstemp[[n]]=Data1[[n,2]]-
model1[Data1[[n,1]],initialguesstemp[[1,1]],initialguesstemp[[1,2
]],initialguesstemp[[1,3]],initialguesstemp[[1,4]]]; 
          ,{n,1,Length[Data1]}]; 
      Do[ 
          residualstemp[[n]]=Data2[[n-Length[Data1],2]]-
model2[Data2[[n-
Length[Data1],1]],initialguesstemp[[1,1]],initialguesstemp[[1,2]]
,initialguesstemp[[1,3]],initialguesstemp[[1,4]]]; 
          ,{n,Length[Data1]+1,zz}]; 
      sumofsquarestemp=residualstemp.residualstemp; 
      
If[BBinitialtemp>0&&CCinitialtemp>0&&tau2initialtemp>0&&tau1initi
altemp>0&&sumofsquarestemp<sumofsquares, 
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          mu=mu/100000; 
          BBinitial=delta[[1]]+BBinitial; 
          CCinitial=delta[[2]]+CCinitial; 
          tau2initial=delta[[3]]+tau2initial; 
          tau1initial=delta[[4]]+tau1initial; 
          
initialguess={{BBinitial,CCinitial,tau2initial,tau1initial}}; 
          Print[initialguess]; 
          Print[sumofsquarestemp]; 
          sumofsquareslast=sumofsquares-sumofsquarestemp; 
          numberofinterations=numberofinterations+1; 
          Print[numberofinterations]; 
          holder=1, 
          mu=mu*10];];] 
 
BigBB=dBB[initialguess[[1,1]],initialguess[[1,2]],initialguess[[1
,3]],initialguess[[1,4]]]; 
BigCC=dCC[initialguess[[1,1]],initialguess[[1,2]],initialguess[[1
,3]],initialguess[[1,4]]]; 
Bigtau2=dtau2[initialguess[[1,1]],initialguess[[1,2]],initialgues
s[[1,3]],initialguess[[1,4]]];Bigtau1=dtau1[initialguess[[1,1]],i
nitialguess[[1,2]],initialguess[[1,3]],initialguess[[1,4]]]; 
Do[ 
     BigF[[n,1]]=BigBB[[n]]; 
    BigF[[n,2]]=BigCC[[n]]; 
    BigF[[n,3]]=Bigtau2[[n]]; 
    BigF[[n,4]]=Bigtau1[[n]]; 
     ,{n,1,zz}]; 
covariancematrix=Inverse[Transpose[BigF].BigF]; 
Print["covariancematrix"] 
covariancematrix//MatrixForm 
correlationmatrix=Table[0ij,{i,1,4},{j,1,4}]; 
Do[ 
Do[correlationmatrix[[i,j]]=covariancematrix[[i,j]]/Sqrt[(covaria
ncematrix[[i,i]]*covariancematrix[[j,j]])] 
         ,{j,1,4}]; 
    ,{i,1,4}]; 
Print["correlationmatrix"] 
correlationmatrix//MatrixForm 
Print["Determinant of the correlationmatrix"] 
Det[correlationmatrix] 
 
 
 predyvalues=Table[0ij,{i,1,Length[Data1]}]; 
yvalues=Table[0ij,{i,1,Length[Data1]}]; 
Do[ 
    
predyvalues[[n]]=model1[Data1[[n,1]],initialguesstemp[[1,1]],init
ialguesstemp[[1,2]],initialguesstemp[[1,3]],initialguesstemp[[1,4
]]]; 
    ,{n,1,Length[Data1]}]; 
Do[ 
    yvalues[[n]]=Data1[[n,2]]; 
    ,{n,1,Length[Data1]}]; 
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averageyvalues=Sum[yvalues[[i]],{i,1,Length[Data1]}]/Length[Data1
]; 
regressvar=Sum[(predyvalues[[i]]-
averageyvalues)^2,{i,1,Length[Data1]}]; 
residualvar=Sum[(yvalues[[i]]-
predyvalues[[i]])^2,{i,1,Length[Data1]}]; 
rsquared=regressvar/(regressvar+residualvar) 
 predyvalues=Table[0ij,{i,1,Length[Data2]}]; 
yvalues=Table[0ij,{i,1,Length[Data2]}]; 
Do[ 
    
predyvalues[[n]]=model2[Data2[[n,1]],initialguesstemp[[1,1]],init
ialguesstemp[[1,2]],initialguesstemp[[1,3]],initialguesstemp[[1,4
]]]; 
    ,{n,1,Length[Data2]}]; 
Do[ 
    yvalues[[n]]=Data2[[n,2]]; 
    ,{n,1,Length[Data2]}]; 
averageyvalues=Sum[yvalues[[i]],{i,1,Length[Data2]}]/Length[Data2
]; 
regressvar=Sum[(predyvalues[[i]]-
averageyvalues)^2,{i,1,Length[Data2]}]; 
residualvar=Sum[(yvalues[[i]]-
predyvalues[[i]])^2,{i,1,Length[Data2]}]; 
rsquared=regressvar/(regressvar+residualvar) 
 
 predyvalues=Table[0ij,{i,1,zz}]; 
yvalues=Table[0ij,{i,1,zz}]; 
Do[ 
    
predyvalues[[n]]=model1[Data1[[n,1]],initialguesstemp[[1,1]],init
ialguesstemp[[1,2]],initialguesstemp[[1,3]],initialguesstemp[[1,4
]]]; 
    ,{n,1,Length[Data1]}]; 
Do[ 
    
predyvalues[[n+Length[Data1]]]=model2[Data2[[n,1]],initialguesste
mp[[1,1]],initialguesstemp[[1,2]],initialguesstemp[[1,3]],initial
guesstemp[[1,4]]]; 
    ,{n,1,Length[Data2]}]; 
Do[ 
    yvalues[[n]]=Data1[[n,2]]; 
    ,{n,1,Length[Data1]}]; 
Do[ 
    yvalues[[n+Length[Data1]]]=Data2[[n,2]]; 
    ,{n,1,Length[Data2]}]; 
averageyvalues=Sum[yvalues[[i]],{i,1,zz}]/zz; 
regressvar=Sum[(predyvalues[[i]]-averageyvalues)^2,{i,1,zz}]; 
residualvar=Sum[(yvalues[[i]]-predyvalues[[i]])^2,{i,1,zz}]; 
rsquared=regressvar/(regressvar+residualvar) 
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alpha=.00154;
elasticfit=NonlinearRegress@Data1, HAA∗HExp@BB∗i∗alphaD−1LL, 8i<,88AA,1,0,100000<,8BB,50,0,100000<<,
RegressionReport −>BestFitParameters,Method −>LevenbergMarquardtD;

Clear@AA,BBD;
AA=BestFitParameters@@1,2DDê. elasticfit
BBinitial=BestFitParameters@@2,2DDê. elasticfit
tknot=18.3999999;
numberofinterations =1;
CCinitial=0.07;
tau2initial=1500;
tau1initial=.5;
iniCC=CCinitial;
initau1=tau1initial;
initau2=tau2initial;
iniBB=BBinitial;
iniAA=AAinitial;  
 
mm=Plot@HAA∗HExp@BBinitial∗t∗alphaD−1LL,8t,.4,18.4<D; 
 
Show@A,mmD 
 
zz=Length@Data1D+Length@Data2D;
model1@t_,BB_,CC_,tau2_,tau1_D=

AA∗BB∗alphaêH1+CCLog@tau2êtau1DL∗‡
0

t−0.0000001H1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLL∗Ê HBB∗alpha∗τL Åτ;

model2@t_,BB_,CC_,tau2_,tau1_D=

AA∗BB∗alphaêH1+CCLog@tau2êtau1DL∗‡
0

tknotH1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLL∗Ê HBB∗alpha∗τL Åτ;

matrix=Table@0 ij,8i,1,zz<D;
Do@
matrix@@iDD=model1@Data1@@i,1DD,BB,CC,tau2,tau1D;
,8i,1,Length@Data1D<D;

Do@
matrix@@iDD=model2@Data2@@i−Length@Data1D,1DD,BB,CC,tau2,tau1D;
,8i,Length@Data1D+1,zz<D;

dBB@BB_,CC_,tau2_,tau1_D=D@matrix,BBD;
dCC@BB_,CC_,tau2_,tau1_D=D@matrix,CCD;
dtau2@BB_,CC_,tau2_,tau1_D=D@matrix,tau2D;
dtau1@BB_,CC_,tau2_,tau1_D=D@matrix,tau1D;  
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BOOTSTRAPING  ALGORITHIM 
 
numofboots=100; 
 initialguessfixed=initialguesstemp; 
AAfixed=AA; 
count=1; 
CCtable= Table[0i,{i,1,numofboots}]; 
tau1table= Table[0i,{i,1,numofboots}]; 
tau2table= Table[0i,{i,1,numofboots}]; 
BBtable= Table[0i,{i,1,numofboots}]; 
AAtable= Table[0i,{i,1,numofboots}]; 
  
 Do[ 
  random1=Random[Integer,{1,6}]; 
  random2=Random[Integer,{1,6}]; 
  If[random1m1,smoothfile="smoothfile1.txt"]; 
  If[random1m2,smoothfile="smoothfile2.txt"]; 
  If[random1m3,smoothfile="smoothfile3.txt"]; 
  If[random1m4,smoothfile="smoothfile4.txt"]; 
  If[random1m5,smoothfile="smoothfile5.txt"]; 
  If[random1m6,smoothfile="smoothfile6.txt"]; 
  If[random2m1,errorfile="errorfile1.txt"]; 
  If[random2m2,errorfile="errorfile2.txt"]; 
  If[random2m3,errorfile="errorfile3.txt"]; 
  If[random2m4,errorfile="errorfile4.txt"]; 
  If[random2m5,errorfile="errorfile5.txt"]; 
  If[random2m6,errorfile="errorfile6.txt"]; 
 directory="c:/Temp/"; 
smoothdata=StringJoin[directory,smoothfile]; 
errordata = StringJoin[directory,errorfile]; 
FileStream=OpenRead[smoothdata]; 
smooth=ReadList[FileStream,  Number]; 
Close[FileStream]; 
Stream = OpenRead[errordata]; 
error=ReadList[Stream,  Number]; 
Close[Stream]; 
yy=Length[smooth]; 
y=Length[error]; 
Datasmooth=smooth; 
Dataerror=error; 
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Clear@AA,BB,CC,tau2,tau1D;
eq1@t_,AA_,BB_,CC_,tau2_,tau1_D=

AA∗BB∗alphaêH1+CCLog@tau2êtau1DL∗‡
0

t−0.0000001H1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLL∗

Ê HBB∗alpha∗τL Åτ;
eq2@t_,AA_,BB_,CC_,tau2_,tau1_D=

AA∗BB∗alphaêH1+CCLog@tau2êtau1DL∗‡
0

tknotH1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLL∗E ĤBB∗alpha∗τL Åτ;

 
  
 
 
 Do[ 
    
Data1[[k,2]]=eq1[Data1[[k,1]],AAfixed,initialguessfixed[[1,1]],in
itialguessfixed[[1,2]],initialguessfixed[[1,3]],initialguessfixed
[[1,4]]]+Datasmooth[[k]]+Random[NormalDistribution[0,Dataerror[[1
]]]];, 
    {k,1,Length[Data1]}]; 
Do[ 
    Data2[[k-Length[Data1],2]]=eq2[Data2[[k-
Length[Data1],1]],AAfixed,initialguessfixed[[1,1]],initialguessfi
xed[[1,2]],initialguessfixed[[1,3]],initialguessfixed[[1,4]]]+Dat
asmooth[[k]]+Random[NormalDistribution[0,Dataerror[[1]]]];, 
    {k,Length[Data1]+1,zz}]; 
 alpha=.00154; 
elasticfit=NonlinearRegress[Data1,  (AA*(Exp[BB*i*alpha]-1)), 
{i},{{AA,1,0,100000},{BB,50,0,100000}}, RegressionReport-
>BestFitParameters,Method ->LevenbergMarquardt]; 
Clear [AA,BB]; 
AA=BestFitParameters[[1,2]]/. elasticfit; 
BBinitial=BestFitParameters[[2,2]]/. elasticfit; 
tknot=18.3999999; 
numberofinterations=1; 
CCinitial=0.072; 
tau2initial=1470; 
tau1initial=.65; 
iniCC=CCinitial; 
initau1=tau1initial; 
initau2=tau2initial; 
iniBB=BBinitial; 
iniAA=AAinitial; 
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zz=Length@Data1D+Length@Data2D;
model1@t_,BB_,CC_,tau2_,tau1_D=

AA∗BB∗alphaêH1+CCLog@tau2êtau1DL∗‡
0

t−0.0000001H1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLL∗

Ê HBB∗alpha∗τL Åτ;
model2@t_,BB_,CC_,tau2_,tau1_D=

AA∗BB∗alphaêH1+CCLog@tau2êtau1DL∗‡
0

tknotH1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLL∗E ĤBB∗alpha∗τL Åτ;

matrix=Table@0 ij,8i,1,zz<D;
Do@
matrix@@iDD=model1@Data1@@i,1DD,BB,CC,tau2,tau1D;
,8i,1,Length@Data1D<D;

Do@
matrix@@iDD=model2@Data2@@i−Length@Data1D,1DD,BB,CC,tau2,tau1D;
,8i,Length@Data1D+1,zz<D;

dBB@BB_,CC_,tau2_,tau1_D=D@matrix,BBD;
dCC@BB_,CC_,tau2_,tau1_D=D@matrix,CCD;
dtau2@BB_,CC_,tau2_,tau1_D=D@matrix,tau2D;
dtau1@BB_,CC_,tau2_,tau1_D=D@matrix,tau1D;

 
delta={0,0,0,0}; 
mu=1/100000; 
BigD={{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}; 
BBinitialtemp=BBinitial; 
CCinitialtemp=CCinitial; 
tau2initialtemp=tau2initial; 
tau1initialtemp=tau1initial; 
sumofsquares=100000; 
sumofsquareslast=100000; 
initialguess={{BBinitial,CCinitial,tau2initial,tau1initial}}; 
BigF=Table[0ij,{i,1,zz},{j,1,4}]; 
residuals=Table[0i,{i,1,zz}]; 
residualstemp=Table[0i,{i,1,zz}]; 
stop={10,10,10,10}; 
 
 While[sumofsquareslast>.00000001&&mu<100000, 
      holder=0; 
      
BigBB=dBB[initialguess[[1,1]],initialguess[[1,2]],initialguess[[1,3]],initialg
uess[[1,4]]]; 
      
BigCC=dCC[initialguess[[1,1]],initialguess[[1,2]],initialguess[[1,3]],initialg
uess[[1,4]]]; 
      
Bigtau2=dtau2[initialguess[[1,1]],initialguess[[1,2]],initialguess[[1,3]],init
ialguess[[1,4]]];Bigtau1=dtau1[initialguess[[1,1]],initialguess[[1,2]],initial
guess[[1,3]],initialguess[[1,4]]]; 
      Do[ 
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         BigF[[n,1]]=BigBB[[n]]; 
        BigF[[n,2]]=BigCC[[n]]; 
        BigF[[n,3]]=Bigtau2[[n]]; 
        BigF[[n,4]]=Bigtau1[[n]]; 
         ,{n,1,zz}]; 
      Do[ 
        residuals[[n]]=Data1[[n,2]]-
model1[Data1[[n,1]],initialguess[[1,1]],initialguess[[1,2]],initialguess[[1,3]
],initialguess[[1,4]]]; 
        ,{n,1,Length[Data1]}]; 
      Do[ 
        residuals[[n]]=Data2[[n-Length[Data1],2]]-model2[Data2[[n-
Length[Data1],1]],initialguess[[1,1]],initialguess[[1,2]],initialguess[[1,3]],
initialguess[[1,4]]]; 
        ,{n,Length[Data1]+1,zz}]; 
      Dtemp=Transpose[BigF].BigF; 
      BigD[[1,1]]=Dtemp[[1,1]]; 
      BigD[[2,2]]=Dtemp[[2,2]]; 
      BigD[[3,3]]=Dtemp[[3,3]]; 
      BigD[[4,4]]=Dtemp[[4,4]]; 
      While[holder==0&&mu<100000, 
        lu=LUFactor[(Transpose[BigF].BigF+mu*BigD)]; 
        delta=LUSolve[lu,Transpose[BigF].residuals]; 
        sumofsquares=residuals.residuals; 
        BBinitialtemp=BBinitial+delta[[1]]; 
        CCinitialtemp=CCinitial+delta[[2]]; 
        tau2initialtemp=tau2initial+delta[[3]]; 
        tau1initialtemp=tau1initial+delta[[4]]; 
        
initialguesstemp={{BBinitialtemp,CCinitialtemp,tau2initialtemp,tau1initialtemp
}}; 
        Do[ 
          residualstemp[[n]]=Data1[[n,2]]-
model1[Data1[[n,1]],initialguesstemp[[1,1]],initialguesstemp[[1,2]],initialgue
sstemp[[1,3]],initialguesstemp[[1,4]]]; 
          ,{n,1,Length[Data1]}]; 
        Do[ 
          residualstemp[[n]]=Data2[[n-Length[Data1],2]]-model2[Data2[[n-
Length[Data1],1]],initialguesstemp[[1,1]],initialguesstemp[[1,2]],initialguess
temp[[1,3]],initialguesstemp[[1,4]]]; 
          ,{n,Length[Data1]+1,zz}]; 
        sumofsquarestemp=residualstemp.residualstemp; 
        
If[BBinitialtemp>0&&CCinitialtemp>0&&tau2initialtemp>0&&tau1initialtemp>0&&sum
ofsquarestemp<sumofsquares, 
          mu=mu/100000; 
          BBinitial=delta[[1]]+BBinitial; 
          CCinitial=delta[[2]]+CCinitial; 
          tau2initial=delta[[3]]+tau2initial; 
          tau1initial=delta[[4]]+tau1initial; 
          initialguess={{BBinitial,CCinitial,tau2initial,tau1initial}}; 
          Print[initialguess]; 
          sumofsquareslast=sumofsquares-sumofsquarestemp; 
          numberofinterations=numberofinterations+1; 
          holder=1, 
          mu=mu*10];];] 
    Print[initialguess]; 
    Print[count]; 
    CCtable[[count]]=CCinitial; 
    tau1table[[count]]=tau1initial; 
    tau2table[[count]]=tau2initial; 
    BBtable[[count]]=BBinitial; 
    AAtable[[count]]=AA; 
    count=count+1; 
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    ,{vv,1,numofboots}]; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VALIDATION PROGRAM 
 
Clear[AA,BB,ω,PEAKS,tknot,ε1,ε0,t,n,alpha,q,w,v,τ]; 
n=0; 
alpha = 0.0037 
ω=Pi/3; 
tknot=6.2; 
t=tknot+(2n+1)π/ω; 
ε1=t*alpha; 
ε0=tknot*alpha; 
AA= 19.0; 
BB=32.7; 
CC=.0433; 
tau1 = .35; 
tau2=452; 
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n=1;
PEAKS=Table@0 i,8i, 0,9<D;
ε =alpha∗HτL;
q@τ_D=

AA∗BB HH1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLLêH1+CC∗Log@tau2êtau1DL∗HEBB∗ε ∗∂τεLL;
Stress1= NIntegrate@q@τD,8τ, 0,tknot−.000001<D;
DoA

Stress2=0;
t=tknot+H2 Hn−1L+1L πêω;
εprime =HHε1+ε0Lê2L−HHε1−ε0Lê2L∗HCos@ω∗Hτ−tknotLDL;

v@τ_D=

AA∗BB 
ikjjH1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLLH1+CC∗Log@tau2êtau1DL ∗HEBB∗εprime∗∂τεprimeLy{zz;

Stress2=NIntegrate @v@τD,8τ, tknot,t−.000001<D;
PEAKS@@nDD=Stress1+Stress2

,8n, 1,10<E
PEAKS
Pipe1 = "peaks.dat";
OpenWrite@Pipe1D;
WriteString@Pipe1,PEAKS@@1DD, "\n",PEAKS@@2DD, "\n",
PEAKS@@3DD,"\n", PEAKS@@4DD,"\n", PEAKS@@5DD,"\n",
PEAKS@@6DD,"\n", PEAKS@@7DD,"\n", PEAKS@@8DD,"\n",
PEAKS@@9DD,"\n"D;
Close@Pipe1D;  
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n=1;
VALLEYS=Table@0 i,8i, 0,9<D;
DoA

Stress2=0;
t=tknot+H2 nL πêω;
εprime =HHε1+ε0Lê2L−HHε1−ε0Lê2L∗HCos@ω∗Hτ−tknotLDL;

w@τ_D=

AA∗BB 
ikjjH1+CC∗HGamma@0,Ht−τLêtau2,Ht−τLêtau1DLLH1+CC∗Log@tau2êtau1DL ∗HEBB∗εprime∗∂τεprimeLy{zz;

Stress2=NIntegrate @w@τD,8τ, tknot,t−.000001<D;
VALLEYS@@nDD=Stress1+Stress2

,8n, 1,10<E
VALLEYS
Pipe2 = "valleys.dat";
OpenWrite@Pipe2D;
WriteString@Pipe2, VALLEYS@@1DD, "\n", VALLEYS@@2DD,
"\n", VALLEYS@@3DD, "\n", VALLEYS@@4DD, "\n", VALLEYS@@5DD,
"\n", VALLEYS@@6DD, "\n", VALLEYS@@7DD, "\n", VALLEYS@@8DD,
"\n"D;
Close@Pipe2D;  
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DMA PROGRAM 
 
 
 
<<Statistics`NonlinearFit` 
 Off[General::"spell1"] 
directory="c:/Temp/"; 
elapsedtime=StringJoin[directory,"elapsedtime.txt"]; 
load=StringJoin[directory,"load.txt"]; 
disp = StringJoin[directory,"disp.txt"]; 
FileStream=OpenRead[elapsedtime]; 
elapsedtime=ReadList[FileStream,  Number]; 
Close[FileStream]; 
Stream = OpenRead[load]; 
load=ReadList[Stream,  Number]; 
Close[Stream]; 
Stream2 = OpenRead[disp]; 
disp=ReadList[Stream2,  Number]; 
Close[Stream2]; 
 yyy=Length[elapsedtime] 
yy=Length[load] 
y=Length[disp] 
timeloadData=Table[0ij,{i,1,yy},{j,1,2}]; 
timedispData=Table[0ij,{i,1,yy},{j,1,2}]; 
loaddispData=Table[0ij,{i,1,yy},{j,1,2}]; 
temppeaks=Table[0ij,{i,1,500},{j,1,2}]; 
tempvalleys=Table[0ij,{i,1,500},{j,1,2}]; 
freqsdisp=Table[0i,{i,1,500}]; 
freqsload=Table[0i,{i,1,500}]; 
Do[ 
   timeloadData[[i,1]]=elapsedtime[[i]]; 
         timedispData[[i,1]]=elapsedtime[[i]]; 
   timeloadData[[i,2]]=load[[i]]; 
         loaddispData[[i,2]]=load[[i]]; 
         timedispData[[i,2]]=disp[[i]]; 
         loaddispData[[i,1]]=disp[[i]]; 
   ,{i,1,yy}] 
(* Plot of Original Data *) 
AA=ListPlot[timeloadData,PlotJoined->True,PlotStyle-
>Hue[.6],PlotLabel→"Load versus Time"]; 
BB=ListPlot[timedispData,PlotJoined->True,PlotStyle-
>Hue[0],PlotLabel→"Disp versus Time"]; 
CC=ListPlot[loaddispData,PlotJoined->True,PlotLabel→"Load versus 
Disp"]; 
Show[AA,BB] 
 
freq=100; 
 Clear[shift,A,diff,BestFitParameters]; 
fit=NonlinearRegress[timedispData,shift+A Sin[2 Pi (freq 
t+diff)],{t},{shift,A,diff},RegressionReport→BestFitParameters]; 
BestFitParameters=BestFitParameters/. fit; 
shiftdisp=shift/. BestFitParameters; 
Adisp=A/. BestFitParameters; 
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diffdisp=diff/. BestFitParameters; 
Clear[shift,A,diff,BestFitParameters]; 
fit=NonlinearRegress[timeloadData,shift+A Sin[2 Pi (freq 
t+diff)],{t},{shift,A,diff},RegressionReport→BestFitParameters]; 
BestFitParameters=BestFitParameters/. fit; 
shiftload=shift/. BestFitParameters; 
Aload=A/. BestFitParameters; 
diffload=diff/. BestFitParameters; 
Print["Amp Displacement"] 
peakdisp=Abs[Adisp] 
Print["Amp Load"] 
peakload=Abs[Aload] 
Print["Delta"] 
delta= ArcTan[Tan[2*Pi*(diffload-diffdisp)]]-.00112*freq 
Print["Tan(delta)"] 
tandelta=Tan[delta] 
Print["Complex Modulus"]; 
complex=peakload/peakdisp 
Print["Storage"] 
Storage=peakload/peakdisp*Cos[delta] 
Print["Loss"] 
loss=peakload/peakdisp*Sin[delta] 
Print["Hysteresis"] 
hysteresis=Chop[Integrate[(shiftload+peakload Sin[2 Pi*freq 
t+delta])*D[shiftdisp+peakdisp Sin[2 Pi*freq t],t],{t,0,1/freq}]] 
 
hyst=ParametricPlot[{shiftdisp+peakdisp Sin[2 Pi*freq 
t],shiftload+peakload Sin[2 Pi*freq 
t+(delta)]},{t,0,1/freq},PlotStyle->Hue[0]] 
Show[CC,hyst] 
test=Plot[shiftdisp+Adisp Sin[2 Pi (freq 
t+diffdisp)],{t,0,elapsedtime[[Length[elapsedtime]]]},PlotLabel→
"Disp versus Time"]; 
Show[test,BB] 
 
 test2=Plot[shiftload+Aload Sin[2 Pi (freq 
t+diffload)],{t,0,elapsedtime[[Length[elapsedtime]]]},PlotLabel→
"Load versus Time"] 
 
Show[test2,AA] 
 test3=Plot[ Sin[2 Pi (freq t)],{t,0,0.01},PlotLabel→"Disp 
versus Time"]; 
 test4=Plot[ Sin[2 Pi (freq t)+delta],{t,0,.01},PlotLabel→"Load 
versus Time",PlotStyle->Hue[.6]] 
 Show[test3,test4] 
 
 ListPlot[Abs[Fourier[load] 
],PlotJoined→True,PlotRange→{{0,250},{0,20}}]; 
 
 N[25/elapsedtime[[Length[elapsedtime]]]] 
 
 ListPlot[Abs[Fourier[disp] 
],PlotJoined→True,PlotRange→{{0,250},{0,.03}}]; 
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