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ANALYZING SURVIVAL DATA FOR SEQUENTIALLY RANDOMIZED

DESIGNS

Xinyu Tang, PhD

University of Pittsburgh, 2010

Sequentially randomized designs are becoming common in biomedical research, particularly

in clinical trials. These trials are usually designed to evaluate and compare the effect of

different treatment regimes. In such designs, eligible patients are first randomly assigned

to receive one of the initial treatments. Patients meeting some criteria (e.g. no progressive

diseases) are then randomized to receive one of the maintenance treatments. Usually, the

procedure continues until all treatment options are exhausted. Such multistage treatment

assignment results in dynamic treatment regimes consisting of initial treatment, intermediate

response and second stage treatment. However, methods for efficient analysis of sequentially

randomized trials have only been developed very recently. As a result, earlier clinical trials

reported results based only on the comparison of stage-specific treatments.

We first propose to use accelerated failure time and proportional hazards models for

estimating the effects of treatment regimes from sequentially randomized designs. Based on

the proposed models, differences between treatment regimes in terms of their hazards are

tested. We investigate the properties of these methods and tests in a Monte Carlo simulation

study. Finally the proposed models are applied to the long-term outcome of the high risk

neuroblastoma study.

We then extend the proportional hazards model to a generalized Cox proportional haz-

ards model that applies to comparisons of any combination of any number of treatment

regimes regardless of the number of stages of treatment. Contrasts of dynamic treatment

regimes are tested using the Wald chi-square method. Both the model and Wald chi-square
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tests of contrasts are illustrated through a simulation study and an application to a high

risk neuroblastoma study to complement the earlier results reported on this study.

Chronic diseases such as cancer and cardiovascular diseases are major causes of mortality

and morbidity in the United States and in the world. Sequentially randomized designs are

commonly used in clinical studies investigating treatments of chronic diseases such as cancer,

AIDS, and depression. The public health significance of the methodologies proposed in this

research is to allow efficient analysis of data from such studies and thereby enhance the

discovery of efficient maintenance and eradication strategies for chronic diseases.

Keywords: Accelerated failure time model, Cox proportional hazards model, Dynamic

treatment regime, High risk neuroblastoma study, Proportional hazards model, Sequen-

tially randomized design, Time-dependent covariates.
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1.0 INTRODUCTION

In this chapter, we describe important concepts that will be used frequently throughout the

dissertation. We also describe the study that motivated this research. Finally, we provide a

motivation and background for the research presented in subsequent chapters.

1.1 SEQUENTIALLY RANDOMIZED DESIGNS

Sequentially randomized designs are becoming common in biomedical research, particularly

in clinical trials. These trials are usually designed to assess and compare the effects of differ-

ent treatment regimes resulting from medical decision making at different stages of therapy.

In a sequentially randomized clinical trial, eligible patients are first randomly assigned to

receive one of the initial treatments. Patients meeting some criteria (e.g. no progressive

diseases) are then randomized to receive one of the maintenance treatments. Usually, the

procedure continues until all treatment options are exhausted. The basic structure of a two-

stage randomization design is depicted in Figure 1. In this two-stage randomization design,

patients are randomly assigned to J initial treatments, namely, A1, A2, ..., AJ−1, AJ . Then

patients with a response (e.g. without progressive diseases) are re-randomized to K mainte-

nance treatments, namely, B1, B2, ..., BK−1, BK , upon consent to further randomization.
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Figure 1: A conceptual framework of a two-stage randomization design.

1.2 DYNAMIC TREATMENT REGIMES

Dynamic treatment regimes are algorithms for assigning treatments to patients with complex

diseases, where treatment consists of more than one episode of therapy, potentially with

different dosages of the same agent or different agents. The multistage treatment assignment

in sequentially randomized clinical trials results in dynamic treatment regimes consisting of

initial treatment, intermediate response, and second stage treatment. A dynamic treatment

regime in a two-stage treatment setting consists of an initial treatment, a decision rule

for choosing the second-stage treatment, and the second-stage treatment. For example,

in the setting described in Figure 1, a treatment regime could be “Treat with Aj (initial

treatment), if patients respond and consent to further randomization, treat with Bk (second-

stage treatment)”. This is a dynamic treatment regime since the assignment of second-stage

treatments depends on the intermediate outcome (response). We will denote the above

regime by AjBk.
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1.3 HIGH RISK NEUROBLASTOMA STUDY

Between 1991 and 1996, the Children’s Cancer Group commenced a high risk neuroblastoma

study aiming to assess whether a combination of myeloablative chemotherapy, total-body ir-

radiation, and transplantation of autologous bone marrow purged of cancer cells (ABMT)

improves event-free survival in children with high-risk neuroblastoma compared to inten-

sive non-myeloablative chemotherapy, and to determine whether subsequent treatment with

13-cis-rectinoic acid (cis-RA) improves event-free survival further compared to no further

therapy [13]. A two-stage randomization design was used for the treatment assignment. All

patients were first treated with induction chemotherapy. Then 379 eligible patients without

progressive diseases participated in the first-stage randomization, with 190 patients assigned

to chemotherapy and 189 patients assigned to ABMT. A total of 176 patients either had

progressive diseases or declined further randomization, so only 203 patients participated in

the second stage randomization, with 102 patients assigned to cis-RA and 101 patients as-

signed to no further therapy. Thus, four possible treatment regimes could be constructed

under the neuroblastoma study: (i) treat with chemotherapy followed by cis-RA if no pro-

gressive diseases present (CCR); (ii) treat with chemotherapy followed by no further therapy

if no progressive diseases (CNR) present; (iii) treat with ABMT followed by cis-RA if no

progressive diseases (ACR) present; (iv) treat with ABMT followed by no further therapy if

no progressive diseases present (ANR). This formulation of dynamic treatment regimes from

multistage treatment assignment allows simultaneous assessment of both first and second

stage treatments, which has been the focus of such clinical trials.

1.4 MOTIVATION AND ORGANIZATION

Initial results from the outcome of the study was reported in Matthay et al. [13]. Us-

ing Kaplan-Meier procedure, probabilities of event-free survival beyond three years were

estimated for both initial treatments ABMT and chemotherapy. A test of the signifi-

cance of the differences in event-free survival at 3 years confirmed the superiority of ABMT

3



over chemotherapy alone. The study also compared cis-RA with no further therapy after

chemotherapy or transplantation in improving the event-free survival among children with

high-risk neuroblastoma. The difference in the event-free survival was statistically signifi-

cant in favor of cis-RA therapy. In a follow up to their original publication, Matthay et al.

[12] showed that ABMT significantly improves 5-year event-free survival and overall survival

compared to non-myeloablative chemotherapy, and cis-RA provided after chemotherapy or

transplantation significantly improves overall survival compared to no further therapy after

consolidation.

However, the statistical analyses reported in these articles were not efficient and may

have been inappropriate as well, since they did not take into account the information of

those patients who had progressive disease or histologically confirmed disease before the

second stage of treatment. Besides, the analyses only compared ABMT to chemotherapy

alone ignoring subsequent randomization to cis-RA or no further therapy and compared cis-

RA to no further therapy only among those who did not have progressive or histologically

confirmed disease. Separate analyses for the first stage and second stage treatments may not

be valid as they ignore the prior or post therapies received and the analysis is conditional

on patients becoming eligible to receive second stage treatment [11].

There has been significant development in statistical methods for analyzing sequentially

randomized designs (details are given in Sections 2.1 and 3.1). However, all the methods only

apply to the comparisons of treatment regimes that share the same second stage therapy. In

Chapter 2, We first propose to use accelerated failure time and proportional hazards models

for estimating the effects of treatment regimes from sequentially randomized designs. Based

on the proposed models, differences between treatment regimes in terms of their hazards

are also tested. We investigate the properties of these methods and tests in a Monte Carlo

simulation study. Finally the proposed models are applied to the long-term outcome of the

high risk neuroblastoma study.

In Chapter 3, which is a follow-up study to the work presented in Chapter 2, we extend the

proportional hazards model to a generalized Cox proportional hazards model that applies

to comparisons of any combination of any number of treatment regimes regardless of the

number of stages of treatment. Contrasts of dynamic treatment regimes are tested using

4



the Wald chi-square method. Both estimates and Wald chi-square tests of contrasts are

evaluated through a simulation study. An application to a high risk neuroblastoma study

complemented the earlier results reported on this study.

5



2.0 ACCELERATED FAILURE TIME AND PROPORTIONAL

HAZARDS MODELS FOR SEQUENTIALLY RANDOMIZED DESIGNS

2.1 INTRODUCTION

The last decade has seen considerable advancement in the development of statistical meth-

ods for estimating the effects of dynamic treatment regimes [17, 15, 16, 11, 23, 24, 6, 5, 10].

Murphy et al. [17] developed marginal models for the mean response for a given dynamic

treatment regime. In a follow-up article [15] they provided a methodology for constructing

the optimal dynamic treatment regime. Lunceford et al. [11] proposed consistent survival

and mean restricted survival estimators for treatment regimes in a two-stage randomization

design. Wahed and Tsiatis [23, 24] introduced the most efficient estimator utilizing addi-

tional information from auxiliary variables. Guo and Tsiatis [5] derived a weighted risk set

estimator (WRSE) on the basis of counting process theory [4] using a time-varying mea-

surement for the intermediate response. Hernan et al. [6] described a simple method to

compare dynamic treatment regimes via inverse probability weighting. Murphy and Bing-

ham [16] used screening experiments to identify potential treatment components and screen

out insignificant ones for developing dynamic treatment regimes.

Other articles focused on the comparisons of dynamic treatment regimes from two-stage

randomization designs [10, 3]. Lokhnygina and Helterbrand [10] extended the Cox regres-

sion method to the estimation of log hazards of dynamic treatment regimes in a two-stage

randomization design and applied a robust score test to compare two treatment regimes

sharing the same second-stage treatment. Feng and Wahed [3] presented a modified supre-

mum weighted log-rank test to test the equality of two dynamic treatment regimes. Both

tests applied only to the comparisons of treatment regimes that share the same second-stage

6



therapy. In this article, we used accelerated failure time and proportional hazards models

to derive the survival estimators for dynamic treatment regimes. Based on the proposed

models, we also tested the equality of two survival distributions for any pairs of treatment

regimes.

This chapter is organized as follows. In Section 2.2, we introduce the notation and

assumptions. In Section 2.3, we describe the methods proposed for estimating the survival

quantities and for comparing different treatment regimes based on the overall survival. In

Section 2.4, a Monte Carlo simulation study is carried out to examine the performance of

the proposed models. In Section 2.5, we analyze the high risk neuroblastoma dataset to

compare overall survival for different neuroblastoma treatment regimes.

2.2 NOTATION AND ASSUMPTIONS

The basic structure of a two-stage randomization design is depicted in Figure 1, which

reflects the design of the high risk neuroblastoma study described in brief in Section 2.1

(details are given in Section 2.5). In this two-stage randomization design, patients are

randomly assigned to J initial treatments, namely, A1, A2, ..., AJ−1, AJ . Then patients

with a response (e.g. without progressive diseases) are re-randomized to K maintenance

treatments, namely, B1, B2, ..., BK−1, BK , upon consent to further randomization. A

dynamic treatment regime in a two-stage treatment setting consists of an initial treatment,

a decision rule for choosing the second-stage treatment, and the second-stage treatment.

For example, in the setting described in Figure 1, a treatment regime could be “Treat with

Aj (initial treatment), if patients respond and consent to further randomization, treat with

Bk (second-stage treatment)”. This is a dynamic treatment regime since the assignment of

second-stage treatments depends on the intermediate outcome (response). We will denote

the above regime by AjBk. The goal is to estimate survival quantities (e.g. hazards, survival

probabilities) under various regimes and compare their effects. To facilitate this we resort to

the idea of counterfactual variables from the causal inference literature. Although we are not

particularly interested in the causal inference, this formulation will help us develop methods

7



to serve our goal.

Assume that the ith individual has a set of potential outcomes or counterfactuals [7]

{
R∗ji, T

∗
j0i, T

∗
jki, j = 1, ..., J, k = 1, ..., K

}
,

where R∗ji is the potential intermediate response for the ith patient were he/she assigned

Aj as the initial treatment; T ∗j0i is the potential survival time for the ith patient if he/she

were on Aj as the initial therapy, and did not respond; and T ∗jki indicates the potential

survival time for the ith patient if he/she were on Aj as the initial therapy, responded and

was consequently assigned Bk as the maintenance therapy. Then by definition, the overall

survival for the ith patient under treatment regime AjBk can be written as

Tjki = (1−R∗ji)T ∗j0i +R∗jiT
∗
jki.

In terms of these survival quantities, we define the hazard

λAjBk(t) = lim
∆t→ 0

P (t < Tjk < t+ ∆t)

P (Tjk > t)∆t
,

and the corresponding survival function SAjBk(t) = P (Tjk > t). Note that for a given

individual i, not all JK survival times Tjki, j = 1, ..., J, k = 1, ..., K can be observed, since in

practice, a patient i cannot receive all treatment sequences. In fact, the observed data from

a two-stage randomization design can be expressed as

{Xji, Ri, RiZki, Ui,∆i},

where

Xji is the indicator for jth initial treatment, Xji = 1 if the ith patient was assigned to

Aj as initial treatment, and Xji = 0 if otherwise;

Ri is the indicator for response and consent, Ri = 1 if the ith patient responded to the

initial treatment and consent to further randomization, and Ri = 0 if otherwise;

Zki = 1 if the ith patient was assigned to Bk as maintenance treatment, and Zki = 0 if

otherwise (note that Zki is defined only when Ri = 1);

and Ui denotes the observed death (∆i = 1) or censoring time (∆i = 0). In other words,

when ∆i = 1, Ui = Ti, the potential survival time, and when ∆i = 0, Ui = Ci, the potential

8



censoring time. We assume that censoring is independent of observed data and counterfac-

tuals. Patients who were censored without a response were treated as nonresponders (since

a response was not observed before being censored; see Lunceford et al. [11]).

In order to draw inferences on counterfactual variables Tjk, j = 1, ..., J, k = 1, ..., K,

one needs to make certain assumptions about the relationship between counterfactual and

observed data. The first assumption is the consistency assumption [1], which could be

described in statistical terms as

Ri =
J∑
j=1

XjiR
∗
ji,

and

Ti =
J∑
j=1

{
Xji

[
(1−R∗ji)T ∗j0i +R∗ji

(
K∑
k=1

ZkiT
∗
jki

)]}
. (2.1)

In words, in the absence of censoring, the observed response and survival time for the ith

patient equal his/her potential response and survival time under his/her observed treat-

ment assignments. For example, if the ith patient was assigned to A3 as initial treat-

ment, responded and was consequently assigned to B5 as maintenance treatment, then

the observed survival time for the ith patient is equal to the potential survival time un-

der treatment regime A3B5, namely, Ti = T35i = T ∗35i. The other assumption is the

“No unmeasured confounder” assumption. Briefly, patients with various treatment as-

signments have the equal distribution of potential outcomes [1]. This assumption can be

expressed statistically as P (Xj = 1|Tjk, j = 1, ..., J, k = 1, ..., K) = P (Xj = 1), and

P (Zk = 1|R = 1, Tjk, j = 1, ..., J, k = 1, ..., K) = P (Zk = 1|R = 1). Denote πZk to be

the probability of a patient being assigned to maintenance treatment Bk given that the

patient responded to the initial treatment, namely, πZk = P (Zk = 1|R = 1). In further

developments, this will be assumed known, since the assignment is done through random-

ization.

9



2.3 METHODS

Our goal is to find the survival and hazard estimators for the treatment regimes AjBk, and

also provide contrasts for comparing regimes AjBk, j = 1, ..., J and k = 1, ..., K based on the

overall survival. Define λjk(t) and Sjk(t) to be the hazard and survival functions respectively

corresponding to the counterfactual variable T ∗jk, j = 1, ..., J ; k = 0, 1, ...K, then the hazard

function λAjBk(t) of the treatment regime AjBk can be expressed in terms of λjk(t) and

Sjk(t), j = 1, ..., J ; k = 0, 1, ..., K as follows:

λAjBk
(t) = lim

∆t→ 0

P (t < Tjk < t+ ∆t)

P (Tjk > t) ∆t

= lim
∆t→ 0

P
(
t < T ∗jk < t+ ∆t|R = 1

)
P (R = 1) + P

(
t < T ∗j0 < t+ ∆t|R = 0

)
P (R = 0)[

P
(
T ∗jk > t|R = 1

)
P (R = 1) + P

(
T ∗j0 > t|R = 0

)
P (R = 0)

]
∆t

= lim
∆t→ 0

P
(
t < T ∗jk < t+ ∆t

)
πj + P

(
t < T ∗j0 < t+ ∆t

)
(1− πj)[

P
(
T ∗jk > t

)
πj + P

(
T ∗j0 > t

)
(1− πj)

]
∆t

=
P
(
T ∗jk > t

)
P
(
T ∗j0 > t

)
P
(
T ∗jk > t

)
πj + P

(
T ∗j0 > t

)
(1− πj)

lim
∆t→ 0

P
(
t < T ∗jk < t+ ∆t

)
P
(
T ∗jk > t

)
∆t

πj

P
(
T ∗j0 > t

) +
P
(
t < T ∗j0 < t+ ∆t

)
P
(
T ∗j0 > t

)
∆t

1− πj
P
(
T ∗jk > t

)


=
P
(
T ∗jk > t

)
πj

P
(
T ∗jk > t

)
πj + P

(
T ∗j0 > t

)
(1− πj)

lim
∆t→ 0

P
(
t < T ∗jk < t+ ∆t

)
P
(
T ∗jk > t

)
∆t

+
P
(
T ∗j0 > t

)
(1− πj)

P
(
T ∗jk > t

)
πj + P

(
T ∗j0 > t

)
(1− πj)

lim
∆t→ 0

P
(
t < T ∗j0 < t+ ∆t

)
P
(
T ∗j0 > t

)
∆t

=
P
(
T ∗jk > t

)
πjλjk(t)

P
(
T ∗jk > t

)
πj + P

(
T ∗j0 > t

)
(1− πj)

+
P
(
T ∗j0 > t

)
(1− πj)λj0(t)

P
(
T ∗jk > t

)
πj + P

(
T ∗j0 > t

)
(1− πj)

=
P
(
T ∗jk > t

)
πjλjk(t) + P

(
T ∗j0 > t

)
(1− πj)λj0(t)

P
(
T ∗jk > t

)
πj + P

(
T ∗j0 > t

)
(1− πj)

=
πjSjk(t)λjk(t) + (1− πj)Sj0(t)λj0(t)

πjSjk(t) + (1− πj)Sj0(t)
,

where πj is the probability of response for patients assigned to Aj as initial treatment ex-

pressed as πj = P (R = 1|Xj = 1). As an example, let J = 2 and K = 2, then the hazards

10



under regimes A1B1, A1B2, A2B1 and A2B2 can be written as

λA1B1(t) =
π1S11(t)λ11(t) + (1− π1)S10(t)λ10(t)

π1S11(t) + (1− π1)S10(t)
, (2.2)

λA1B2(t) =
π1S12(t)λ12(t) + (1− π1)S10(t)λ10(t)

π1S12(t) + (1− π1)S10(t)
, (2.3)

λA2B1(t) =
π2S21(t)λ21(t) + (1− π2)S20(t)λ20(t)

π2S21(t) + (1− π2)S20(t)
, (2.4)

and

λA2B2(t) =
π2S22(t)λ22(t) + (1− π2)S20(t)λ20(t)

π2S22(t) + (1− π2)S20(t)
. (2.5)

Corresponding survival functions of four treatment regimes are

SA1B1(t) = π1S11(t) + (1− π1)S10(t), (2.6)

SA1B2(t) = π1S12(t) + (1− π1)S10(t), (2.7)

SA2B1(t) = π2S21(t) + (1− π2)S20(t), (2.8)

and

SA2B2(t) = π2S22(t) + (1− π2)S20(t). (2.9)

Thus if one can estimate the probability of response and the survival and hazard functions

λjk(t) and Sjk(t), then the above formulae can be used to estimate the hazard and survival

functions for different regimes. The probability of response for patients assigned to Aj as

initial treatment can be estimated by

π̂j =

∑
XjiRi∑
Xji

.

Nonparametric methods such as Nelson-Aalen (NA), semiparametric methods such as pro-

portional hazards model (PHM), and parametric methods such as accelerated failure time

model (AFTM) can be used to obtain the estimates of six survival functions [S10(t), S20(t),

11



S11(t), S12(t), S21(t), S22(t)] and six hazard functions [λ10(t), λ20(t), λ11(t), λ12(t), λ21(t),

λ22(t)] from patients who actually received corresponding treatment sequences (see Sections

2.3.1-2.3.3).

After obtaining the six survival estimates, the survival functions of four treatment

regimes can be easily obtained through ŜA1B1(t) = π̂1Ŝ11(t) + (1− π̂1) Ŝ10(t), ŜA1B2(t) =

π̂1Ŝ12(t) + (1− π̂1) Ŝ10(t), ŜA2B1(t) = π̂2Ŝ21(t) + (1− π̂2) Ŝ20(t), and ŜA2B2(t) = π̂2Ŝ22(t) +

(1− π̂2) Ŝ20(t). Similarly, one can obtain the estimates for the hazard functions from equa-

tions (2.2) - (2.5).

2.3.1 Nonparametric Methods

Based on the counting process notations described in Fleming and Harrington [4], the cumu-

lative hazard rate for each subpopulation defined by the survival time T ∗jk, j = 1, 2; k = 0, 1, 2,

can be estimated by the Nelson-Aalen estimator

Λ̂jk(t) =

∫ t

0

dNjk(u)

Yjk(u)
,

where Njk(u) is the event process for patients following the treatment path jk at time u

(note that k = 0 indicates that the patient did not make it to the second stage of therapy),

Njk(u) =
n∑
i=1

Njki(u) =
n∑
i=1

I[Ui ≤ u,∆i = 1, Xji = 1, (1−Ri) +RiZki = 1],

and Yjk(u) is the number of individuals at risk at time u given by

Yjk(u) =
n∑
i=1

I[Ui ≥ u,Xji = 1, (1−Ri) +RiZki = 1].

Then the corresponding hazard and survival functions can be estimated by λ̂jk(t) =
dΛ̂jk(t)

dt

and Ŝjk(t) = exp{−Λ̂jk(t)} respectively.
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2.3.2 Semiparametric Methods

Let us assume that there are proportional hazards across different subpopulations defined

by the survival times T ∗jk, j = 1, 2; k = 0, 1, 2, that is, the hazard ratio can be written as

λjk(t)

λj′k′(t)
= eγjkj′k′ ,∀j 6= j′ = 1, 2; k 6= k′ = 0, 1, 2. (2.10)

For simplicity, denote λ0(t) to be the hazard function for patients who were assigned to

initial treatment A1, responded and were assigned to maintenance treatment B1, namely,

λ0(t) = λ11(t). Based on the proportional hazards model, the hazard functions λ10(t),

λ20(t), λ11(t), λ12(t), λ21(t), and λ22(t) are equal to λ0(t)eγ1011 , λ0(t)eγ2011 , λ0(t), λ0(t)eγ1211 ,

λ0(t)eγ2111 , and λ0(t)eγ2211 respectively.

The coefficient set under the proportional hazards model is estimated based on the

partial likelihood function [2]. For details, see Therneau and Grambsch [22] Chapter 3.

After fitting the model, the coefficient estimates γ̂ = [γ̂1011, γ̂2011, γ̂1211, γ̂2111, γ̂2211]T and their

estimated variance covariance matrix Σ̂ are obtained, as well as the Breslow’s estimator of the

baseline cumulative hazard function Λ̂0(t) and the corresponding baseline hazard function

λ̂0(t) = dΛ̂0(t)
dt

. Thus, the six estimated survival functions Ŝ10(t), Ŝ20(t), Ŝ11(t), Ŝ12(t),

Ŝ21(t), and Ŝ22(t) can be obtained as Ŝ10(t) = exp(−Λ̂0(t)eγ̂1011), Ŝ20(t) = exp(−Λ̂0(t)eγ̂2011),

Ŝ11(t) = exp(−Λ̂0(t)), Ŝ12(t) = exp(−Λ̂0(t)eγ̂1211), Ŝ21(t) = exp(−Λ̂0(t)eγ̂2111), and Ŝ22(t) =

exp(−Λ̂0(t)eγ̂2211). Similarly, one can obtain the six estimated hazard functions as λ̂10(t) =

λ̂0(t)eγ̂1011 , λ̂20(t) = λ̂0(t)eγ̂2011 , λ̂11(t) = λ̂0(t), λ̂12(t) = λ̂0(t)eγ̂1211 , λ̂21(t) = λ̂0(t)eγ̂2111 , and

λ̂22(t) = λ̂0(t)eγ̂2211 .

2.3.3 Parametric Methods

Under specific distributional assumptions about the shape of the survival function, we would

be able to fit accelerated failure time models to different subpopulations defined by the

survival times T ∗jk, j = 1, 2; k = 0, 1, 2 as

lnT ∗jk = µjk + σjkW.
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A variety of distributions can be chosen for the survival time, such as Weibull distribution,

log normal distribution, log logistic distribution, etc. We focus on the estimation for the

Weibull distribution here for demonstration. Under the Weibull distributional assumption,

the hazard and survival functions are given by

Sjk(t) = exp(−λjktαjk),

and

λjk(t) = λjkαt
αjk−1,

where, in many instances, λjk and αjk are reparametrized as λjk = exp(−µjk/σjk) and

αjk = 1/σjk.

The estimates of the parameters µjk and σjk can be obtained through maximum likelihood

method [8]. After fitting the Weibull distribution to the subpopulation, the estimates µ̂jk and

σ̂jk, their respective estimated variance var(µ̂jk) and var(σ̂jk), and their estimated covariance

cov(µ̂jk, σ̂jk) can be obtained. Then the maximum likelihood estimators of parameters λjk

and αjk are given by λ̂jk = exp(−µ̂jk/σ̂jk) and α̂jk = 1/σ̂jk. Using the delta method, one

can obtain the estimated variance of λ̂jk and α̂jk, and their estimated covariance as follows:

var(λ̂jk) = exp

(
−2

µ̂jk
σ̂jk

)[
var(µ̂jk)

σ̂2
jk

− 2
µ̂jkcov(µ̂jk, σ̂jk)

σ̂3
jk

+
µ̂2
jkvar(σ̂jk)

σ̂4
jk

]
,

var(α̂jk) =
var(σ̂jk)

σ̂4
jk

,

and

cov(λ̂jk, α̂jk) = exp

(
− µ̂jk
σ̂jk

)[
cov(µ̂jk, σ̂jk)

σ̂3
jk

− µ̂jkvar(σ̂jk)

σ̂4
jk

]
.

Therefore, the hazard and survival functions can be estimated as λ̂jk(t) = λ̂jkα̂jkt
α̂jk−1 and

Ŝjk(t) = exp(−λ̂jktα̂jk). Similarly, their estimated standard errors can be obtained using the

delta method.
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2.3.4 Treatment Regime Comparisons

Comparisons of treatment regimes in terms of their hazards can be carried out by inte-

grating the weighted difference between two cumulative hazard functions [4]. For example,

the Fleming-Harrington linear rank statistics for comparing cumulative hazard functions

ΛA1B1(t) and ΛA2B2(t) is given by

WA1B1/A2B2 =

∫ ∞
0

KA1B1/A2B2(s)
{
dΛ̂A1B1(t)− dΛ̂A2B2(t)

}
=

∫ ∞
0

KA1B1/A2B2(s)
{
λ̂A1B1(s)− λ̂A2B2(s)

}
ds,

where the weight of K is chosen according to Feng and Wahed [3] as follows:

KA1B1/A2B2(s) =

{
n11 + n22

n11n22

} 1
2 Ȳ11(s)Ȳ22(s)

Ȳ11(s) + Ȳ22(s)
,

where njk, j, k = 1, 2 is the total number of patients following the treatment path jk defined

as njk =
∑n

i=1 I[Xji = 1, (1 − Ri) + RiZki = 1]; Ȳ11(s) =
∑n

i=1W11iI(Ui ≥ s); Ȳ22(s) =∑n
i=1 W22iI(Ui ≥ s); and Wjki, j, k = 1, 2 is the weight function for the ith patient defined as

Wjki = Xji(1−Ri)+XjiRiZki/πZk . The test statistic WA1B1/A2B2 is asymptotically normally

distributed with mean 0 and some variance σ2
WA1B1/A2B2

. We used a bootstrap resampling

method to obtain the estimated variance σ̂2
WA1B1/A2B2

.

2.4 SIMULATION STUDY

A Monte-Carlo simulation study was conducted to evaluate the performance of all three

methods described in Section 2.3: Nelson-Aalen (NA) estimator, proportional hazards model

(PHM) and accelerated failure time model (AFTM). A simple two-stage randomization de-

sign was chosen for the simulation study. The indicator for the initial treatment A1 (X1) was

sampled from Bernoulli(0.5) distribution and the intermediate response (R) was drawn from

Bernoulli(0.5) to reflect the response rate in the neuroblastoma dataset. For the responders

indicator for the maintenance treatment B1 (Z1) was generated from Bernoulli(0.5). By
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Table 1: Simulation scenarios

Response Censoring
Responders Nonresponders

True Survival Rates
Rate Percentage t(year) SA1B1

(t) SA1B2
(t) SA2B1

(t) SA2B2
(t)

Scenario I 50% 30% Weibull Weibull
1 0.79 0.78 0.77 0.74
3 0.54 0.51 0.55 0.50
6 0.32 0.28 0.38 0.30

Scenario II 50% 30% Log normal Log normal
1 0.80 0.80 0.78 0.76
3 0.48 0.48 0.54 0.48
6 0.27 0.28 0.37 0.30

Scenario III 50% 30% Log logistic Log logistic
1 0.75 0.75 0.76 0.72
3 0.42 0.43 0.52 0.43
6 0.23 0.24 0.38 0.26

Scenario IV 50% 30% Weibull Log normal
1 0.79 0.77 0.77 0.75
3 0.51 0.48 0.54 0.49
6 0.31 0.27 0.38 0.31

Scenario V 50% 30% Log normal Log logistic
1 0.76 0.76 0.76 0.74
3 0.45 0.45 0.51 0.46
6 0.25 0.25 0.36 0.29

equation (2.1), the survival time for the ith patient under a simple two-stage randomization

design can be expressed as

Ti = X1i[(1−Ri)T
∗
10i +Ri(Z1iT

∗
11i + Z2iT

∗
12i)] +X2i[(1−Ri)T

∗
20i +Ri(Z1iT

∗
21i + Z2iT

∗
22i)].

We generated T ∗jk, j = 1, 2; k = 0, 1, 2 from various distributions as described in Table 1.

Under scenario I, the survival times T ∗jk were generated from Weibull distributions, more

explicitly, T ∗jk, j = 1, 2; k = 0, 1, 2 was defined as

T ∗jk =

{
− log(u1)

λjk

} 1
αjk

,where u1 ∼ Uniform(0, 1).

Under scenario II, the survival times T ∗jk for each subpopulation followed log normal distri-

butions, thus T ∗jk, j = 1, 2; k = 0, 1, 2 was defined as

T ∗jk = exp{µjk + u2 ∗ σjk},where u2 ∼ Normal(0, 1).

Under scenario III, the survival time T ∗jk for each subpopulation followed a log logistic dis-

tribution, thus T ∗jk, j = 1, 2; k = 0, 1, 2 was defined as

T ∗jk =

{
1/u3 − 1

λjk

} 1
αjk

,where u3 ∼ Uniform(0, 1).
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Under scenario IV, the survival times T ∗jk, j = 1, 2; k = 1, 2 (of responders) followed Weibull

distributions, while the survival times T ∗jk, j = 1, 2; k = 0 (of nonresponders) followed log

normal distributions. Under scenario V, the survival times T ∗jk, j = 1, 2; k = 1, 2 (of re-

sponders) followed log normal distributions, while the survival times T ∗jk, j = 1, 2; k = 0

(of nonresponders) followed log logistic distributions. Censoring time C was drawn from a

uniform distribution, Uniform(25, τ), and τ was selected to achieve a censoring percent-

age of 30% approximately to reflect the censoring rate in the neuroblastoma dataset. For

each scenario, 500 samples of size 400 were generated and a total of seven different models

were fitted to each sample. These models represented the five mixture models presented in

scenarios I to V above plus two others, one used Nelson-Aalen estimator to estimate the

survival for subpopulations and the other used proportional hazards across subgroups (see

Section 2.3). We used a bootstrap resampling method to obtain the variance estimator for

the Fleming-Harrington linear rank statistic.

Simulation results are shown in Tables 2-3. Table 2 and Table 3 display the means of

survival estimates, their estimated standard errors and coverages of probability of 95% confi-

dence interval under scenarios I - V at different time points of 1-year and 3-year respectively.

Since the survival data under scenario I were generated based on the Weibull distribution,

the survival estimates obtained using the Weibull distribution performed very well, as one

would expect, with the coverage probability close to 95% in most of the cases. Some of the

survival estimates obtained using other parametric distributions, e.g. log normal distribu-

tion, were biased, and the coverage probability for one model was as low as 74.6%, which

occurred for SA1B2(t) at 1-year for the log normal models. However, the estimates obtained

using the log logistic distribution were unbiased, and the coverage probabilites were well-

maintained. The coverage probabilities obatined using the PHM were relatively low at early

time points, e.g. at 1-year, perhaps due to the smaller standard error estimates compared to

other models. Furthermore, the survival estimates based on the NA estimator were unbiased

with acceptable coverage probabilities, and the estimated standard errors were relatively

larger compared to the ones we obtained using the other methods. Under scenario II, since

the data were generated based on the log normal distribution, we observed unbiased survival

estimates using the log normal distribution. Other parametric distributions also gave us
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favorable coverage probabilities for the estimates except for the ones we obtained using the

Weibull distribution. Survival estimates obtained using the PHM were noticeably biased at

early time points, but the NA estimators performed very well, coverage probabilities being

well-maintained. Under scenario III, the parametric methods (log normal distribution, log

logistic distribution, and a combination of log normal and log logistic distribution) and NA

estimators performed well, however, the other two parametric methods (Weibull distribution,

and a combination of Weibull and log normal distribution) resulted biased estimates in most

of the cases, and the PHM gave biased estimates at early time points. Under scenario IV, the

data were generated based on a combination of Weibull and log normal distribution, there-

fore, we observed consistent coverage probabilites when the true distributions were fitted to

the data. The estimates obtained using the NA estimator were also unbiased. However, all

the other methods did not perform well, with some of the coverage probilities being smaller

than 95%. Under scenario V, only the estimates calculated based on the Weibull distribution

and the PHM were biased in some of the cases, but all the other methods provided us with

favorable results. Thus, from the results we observed under scenario I - scenario V, it is

clear that PHM does not perform well at early time points on the data generated based on

any parametric distribution. However, NA estimator provides unbiased estimates under all

true models, which is expected as NA estimator is unbiased in large samples. Moreover, the

choice of distribution when fitting the AFTM affects the survival estimates to some extent.

Table 4 presents the rejection rates of the Fleming-Harrington tests based on all seven

methods under scenario I - scenario V for 500 samples of size 400. A total of six null hy-

potheses [H1 : λA1B1(t) = λA1B2(t), H2 : λA1B1(t) = λA2B1(t), H3 : λA1B1(t) = λA2B2(t),

H4 : λA1B2(t) = λA2B1(t), H5 : λA1B2(t) = λA2B2(t), H6 : λA2B1(t) = λA2B2(t)] were tested.

Under scenario I, the rejection rates obtained using all the models were similar to each

other. We also observed similar results under scenario II through scenario V. Under all

the scenarios, the rejection rates obtained using the PHM and NA estimator were observed

to be slightly smaller than the ones obtained using the parametric models in most of the

cases. Thus, we would conclude that Fleming-Harrington test is robust regardless of the

methods used to obtain the hazard and survival estimates. In conclusion, although sur-

vival estimates at specific time points varied somewhat across different methods (NA, PHM,
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Table 2: Survival estimates (EST), standard errors (SE) in parentheses, and coverage probability
of 95% confidence interval (CP) at t = 1 year under scenarios I - V based on samples of size 400
at 50% response rate and 30% censoring percentage. WEI: Weibull distributions, LN: Log normal
distributions, LG: Log logistic distributions, WEILN: Weibull distributions for responders and
log normal distributions for nonresponders, LNLG: Log normal distributions for responders and
log logistic distributions for nonresponders, PHM: Proportional hazards model, NA: Nelson-Aalen
Estimators

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario I

WEI 0.79 (0.028) 95.8 0.78 (0.029) 94.2 0.77 (0.029) 94.6 0.75 (0.030) 94.6
LN 0.76 (0.029) 79.2 0.74 (0.030) 74.6 0.73 (0.030) 79.0 0.71 (0.031) 75.0
LG 0.79 (0.029) 93.6 0.78 (0.030) 92.0 0.76 (0.030) 93.4 0.74 (0.031) 93.0

WEILN 0.77 (0.028) 89.2 0.75 (0.029) 86.0 0.74 (0.029) 85.2 0.72 (0.031) 86.6
LNLG 0.78 (0.029) 90.2 0.76 (0.030) 89.2 0.75 (0.030) 91.0 0.72 (0.031) 88.4
PHM 0.78 (0.026) 96.0 0.76 (0.027) 89.8 0.78 (0.026) 89.8 0.76 (0.028) 91.0
NA 0.79 (0.033) 95.6 0.77 (0.034) 95.2 0.76 (0.034) 94.0 0.74 (0.035) 94.4

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario II

WEI 0.80 (0.027) 97.4 0.80 (0.027) 97.8 0.79 (0.027) 93.8 0.78 (0.028) 93.8
LN 0.80 (0.027) 94.0 0.80 (0.027) 94.4 0.78 (0.027) 93.6 0.76 (0.028) 95.0
LG 0.80 (0.027) 93.6 0.80 (0.027) 94.2 0.79 (0.028) 94.4 0.77 (0.029) 93.8

WEILN 0.79 (0.027) 96.0 0.79 (0.027) 96.4 0.78 (0.027) 95.0 0.76 (0.029) 96.2
LNLG 0.80 (0.027) 92.4 0.80 (0.027) 93.2 0.79 (0.028) 93.2 0.77 (0.029) 94.0
PHM 0.77 (0.026) 88.0 0.77 (0.026) 90.2 0.80 (0.026) 88.8 0.78 (0.027) 90.0
NA 0.79 (0.032) 95.4 0.79 (0.032) 94.6 0.77 (0.032) 94.8 0.76 (0.034) 95.2

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario III

WEI 0.75 (0.029) 96.6 0.76 (0.029) 96.4 0.77 (0.028) 93.2 0.74 (0.031) 93.2
LN 0.74 (0.030) 91.6 0.74 (0.030) 92.0 0.75 (0.029) 93.6 0.71 (0.031) 92.8
LG 0.75 (0.030) 94.8 0.75 (0.030) 94.8 0.76 (0.029) 95.2 0.73 (0.032) 94.2

WEILN 0.74 (0.030) 95.0 0.74 (0.030) 95.2 0.75 (0.028) 95.4 0.72 (0.031) 96.0
LNLG 0.74 (0.031) 94.0 0.75 (0.030) 93.6 0.76 (0.029) 93.4 0.72 (0.032) 92.2
PHM 0.73 (0.029) 90.4 0.73 (0.028) 89.8 0.78 (0.027) 88.0 0.74 (0.029) 88.6
NA 0.74 (0.035) 95.2 0.74 (0.035) 94.6 0.76 (0.033) 95.6 0.72 (0.036) 95.2

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario IV

WEI 0.80 (0.028) 91.6 0.79 (0.028) 92.8 0.79 (0.028) 93.6 0.77 (0.029) 91.8
LN 0.78 (0.028) 89.4 0.77 (0.029) 91.2 0.77 (0.028) 94.2 0.74 (0.030) 93.4
LG 0.80 (0.028) 89.0 0.78 (0.029) 90.4 0.78 (0.029) 95.2 0.76 (0.031) 92.4

WEILN 0.79 (0.028) 93.0 0.78 (0.029) 95.4 0.77 (0.028) 97.0 0.75 (0.029) 95.4
LNLG 0.79 (0.029) 87.8 0.77 (0.030) 91.2 0.77 (0.029) 94.8 0.74 (0.031) 93.8
PHM 0.77 (0.026) 93.2 0.75 (0.027) 90.2 0.79 (0.026) 90.4 0.76 (0.028) 91.6
NA 0.78 (0.033) 93.6 0.77 (0.034) 94.8 0.77 (0.033) 96.2 0.74 (0.035) 95.8

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario V

WEI 0.77 (0.028) 97.2 0.77 (0.028) 97.2 0.77 (0.028) 94.0 0.75 (0.029) 95.2
LN 0.76 (0.028) 94.8 0.76 (0.028) 95.0 0.76 (0.028) 93.4 0.74 (0.030) 94.8
LG 0.77 (0.029) 95.4 0.77 (0.029) 95.6 0.76 (0.029) 94.8 0.74 (0.030) 94.0

WEILN 0.75 (0.029) 96.0 0.75 (0.029) 96.0 0.75 (0.028) 95.2 0.73 (0.030) 95.8
LNLG 0.77 (0.029) 94.8 0.77 (0.029) 95.2 0.76 (0.029) 94.0 0.74 (0.030) 95.0
PHM 0.74 (0.028) 90.2 0.74 (0.028) 92.6 0.78 (0.027) 89.0 0.75 (0.029) 92.6
NA 0.76 (0.033) 94.8 0.76 (0.033) 95.4 0.75 (0.033) 95.6 0.74 (0.035) 95.2
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Table 3: Survival estimates (EST), standard errors (SE) in parentheses, and coverage probability
of 95% confidence interval (CP) at t = 3 year under scenarios I - V based on samples of size 400
at 50% response rate and 30% censoring percentage. WEI: Weibull distributions, LN: Log normal
distributions, LG: Log logistic distributions, WEILN: Weibull distributions for responders and
log normal distributions for nonresponders, LNLG: Log normal distributions for responders and
log logistic distributions for nonresponders, PHM: Proportional hazards model, NA: Nelson-Aalen
Estimators

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario I

WEI 0.54 (0.037) 96.2 0.51 (0.037) 93.4 0.55 (0.037) 93.6 0.50 (0.037) 94.4
LN 0.51 (0.037) 90.8 0.47 (0.037) 86.4 0.53 (0.037) 92.6 0.47 (0.038) 91.0
LG 0.52 (0.039) 94.4 0.49 (0.039) 91.8 0.53 (0.038) 93.6 0.48 (0.039) 93.0

WEILN 0.53 (0.037) 95.8 0.49 (0.037) 93.4 0.54 (0.037) 94.8 0.49 (0.037) 94.2
LNLG 0.51 (0.038) 91.0 0.48 (0.038) 87.2 0.53 (0.037) 92.6 0.47 (0.038) 91.0
PHM 0.53 (0.037) 96.0 0.50 (0.038) 93.2 0.55 (0.038) 94.2 0.50 (0.039) 93.4
NA 0.54 (0.043) 94.2 0.50 (0.043) 93.0 0.54 (0.042) 93.8 0.49 (0.043) 93.6

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario II

WEI 0.53 (0.037) 79.4 0.53 (0.037) 79.8 0.57 (0.036) 87.0 0.52 (0.037) 83.6
LN 0.48 (0.037) 95.4 0.48 (0.037) 93.8 0.54 (0.037) 94.2 0.48 (0.037) 95.2
LG 0.48 (0.039) 95.6 0.48 (0.039) 93.4 0.54 (0.038) 94.0 0.48 (0.039) 95.2

WEILN 0.50 (0.037) 94.2 0.50 (0.037) 94.2 0.55 (0.037) 95.4 0.50 (0.037) 93.6
LNLG 0.48 (0.038) 95.6 0.48 (0.038) 93.0 0.53 (0.037) 93.8 0.48 (0.038) 94.8
PHM 0.47 (0.037) 95.2 0.47 (0.038) 93.0 0.53 (0.038) 96.4 0.48 (0.039) 94.6
NA 0.48 (0.043) 95.2 0.48 (0.043) 94.4 0.53 (0.042) 93.4 0.48 (0.043) 94.6

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario III

WEI 0.46 (0.038) 87.2 0.47 (0.038) 84.4 0.55 (0.037) 87.6 0.47 (0.038) 83.2
LN 0.42 (0.038) 95.6 0.43 (0.038) 95.8 0.52 (0.037) 94.0 0.44 (0.038) 93.0
LG 0.42 (0.039) 94.6 0.43 (0.039) 95.8 0.52 (0.038) 94.6 0.44 (0.039) 93.2

WEILN 0.44 (0.038) 91.8 0.45 (0.038) 92.2 0.54 (0.037) 94.4 0.46 (0.038) 89.2
LNLG 0.42 (0.038) 94.6 0.42 (0.038) 94.6 0.52 (0.037) 93.4 0.43 (0.038) 94.4
PHM 0.41 (0.038) 94.0 0.42 (0.038) 94.2 0.52 (0.039) 93.8 0.44 (0.041) 93.4
NA 0.42 (0.044) 91.0 0.42 (0.043) 92.6 0.52 (0.042) 93.8 0.43 (0.043) 94.2

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario IV

WEI 0.53 (0.037) 89.6 0.50 (0.037) 91.0 0.56 (0.036) 92.2 0.51 (0.037) 91.0
LN 0.49 (0.037) 91.4 0.46 (0.037) 92.0 0.53 (0.037) 94.6 0.47 (0.037) 93.8
LG 0.50 (0.039) 92.6 0.47 (0.039) 93.6 0.53 (0.038) 95.4 0.48 (0.039) 94.4

WEILN 0.51 (0.037) 93.2 0.48 (0.037) 94.6 0.54 (0.037) 95.6 0.49 (0.037) 95.6
LNLG 0.49 (0.038) 89.2 0.45 (0.038) 90.0 0.52 (0.037) 93.8 0.47 (0.038) 91.8
PHM 0.50 (0.038) 93.2 0.47 (0.038) 94.4 0.54 (0.038) 95.6 0.49 (0.039) 96.0
NA 0.51 (0.043) 93.8 0.48 (0.044) 94.6 0.53 (0.042) 95.0 0.49 (0.043) 95.4

A1B1 A1B2 A2B1 A2B2

EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%) EST (SE) CP(%)

Scenario V

WEI 0.49 (0.037) 79.6 0.49 (0.037) 80.6 0.55 (0.037) 86.2 0.50 (0.037) 85.8
LN 0.45 (0.037) 94.8 0.45 (0.037) 95.0 0.52 (0.037) 95.0 0.47 (0.038) 95.0
LG 0.45 (0.039) 95.6 0.45 (0.039) 95.0 0.52 (0.038) 95.4 0.46 (0.039) 93.6

WEILN 0.47 (0.038) 91.0 0.47 (0.037) 90.6 0.53 (0.037) 92.4 0.48 (0.038) 92.2
LNLG 0.45 (0.038) 95.8 0.45 (0.038) 95.4 0.51 (0.037) 95.6 0.46 (0.038) 94.4
PHM 0.43 (0.038) 93.8 0.43 (0.038) 95.2 0.51 (0.039) 93.4 0.46 (0.040) 95.8
NA 0.44 (0.043) 91.6 0.44 (0.043) 94.0 0.51 (0.042) 94.0 0.45 (0.043) 93.6
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Table 4: The rejection rates of Fleming-Harrington tests under scenario I-V based on samples
of size 400 at 50% response rate and 30% censoring percentage. H1 : λA1B1(t) = λA1B2(t), H2 :
λA1B1(t) = λA2B1(t), H3 : λA1B1(t) = λA2B2(t), H4 : λA1B2(t) = λA2B1(t), H5 : λA1B2(t) =
λA2B2(t), H6 : λA2B1(t) = λA2B2(t), WEI: Weibull distributions, LN: Log normal distributions, LG:
Log logistic distributions, WEILN: Weibull distributions for responders and log normal distributions
for nonresponders, LNLG: Log normal distributions for responders and log logistic distributions for
nonresponders, PHM: Proportional hazards model, NA: Nelson-Aalen Estimators

H1 H2 H3 H4 H5 H6

Scenario I

WEI 0.174 0.098 0.090 0.280 0.060 0.298
LN 0.156 0.084 0.090 0.268 0.062 0.290
LG 0.152 0.088 0.084 0.280 0.064 0.286

WEILN 0.164 0.090 0.088 0.284 0.064 0.284
LNLG 0.156 0.092 0.086 0.270 0.060 0.292
PHM 0.152 0.104 0.076 0.294 0.054 0.280
NA 0.174 0.090 0.086 0.246 0.064 0.270

H1 H2 H3 H4 H5 H6

Scenario II

WEI 0.062 0.300 0.066 0.286 0.046 0.284
LN 0.066 0.318 0.066 0.284 0.042 0.282
LG 0.070 0.322 0.062 0.288 0.044 0.286

WEILN 0.062 0.302 0.062 0.282 0.042 0.276
LNLG 0.066 0.308 0.064 0.284 0.042 0.282
PHM 0.060 0.310 0.066 0.282 0.044 0.278
NA 0.060 0.234 0.064 0.232 0.056 0.274

H1 H2 H3 H4 H5 H6

Scenario III

WEI 0.074 0.632 0.088 0.550 0.078 0.542
LN 0.070 0.622 0.080 0.542 0.070 0.538
LG 0.076 0.628 0.092 0.548 0.070 0.548

WEILN 0.076 0.630 0.084 0.540 0.076 0.546
LNLG 0.070 0.624 0.086 0.546 0.070 0.538
PHM 0.060 0.618 0.078 0.546 0.076 0.502
NA 0.074 0.428 0.064 0.412 0.060 0.520

H1 H2 H3 H4 H5 H6

Scenario IV

WEI 0.160 0.172 0.062 0.422 0.080 0.308
LN 0.148 0.152 0.054 0.390 0.066 0.304
LG 0.134 0.152 0.054 0.376 0.070 0.280

WEILN 0.160 0.174 0.062 0.424 0.074 0.308
LNLG 0.152 0.160 0.054 0.382 0.070 0.300
PHM 0.152 0.164 0.038 0.440 0.062 0.284
NA 0.154 0.144 0.048 0.296 0.066 0.254

H1 H2 H3 H4 H5 H6

Scenario V

WEI 0.068 0.384 0.076 0.374 0.072 0.304
LN 0.070 0.382 0.074 0.378 0.074 0.302
LG 0.074 0.398 0.074 0.376 0.070 0.298

WEILN 0.072 0.370 0.080 0.364 0.072 0.304
LNLG 0.070 0.374 0.070 0.374 0.068 0.300
PHM 0.054 0.372 0.068 0.364 0.060 0.290
NA 0.060 0.288 0.068 0.284 0.066 0.294
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AFTM), Fleming-Harrington test of difference in survival/hazard curves between two treat-

ment regimes provided very similar conclusions.

2.5 ANALYSIS OF NEUROBLASTOMA DATASET

A high risk neuroblastoma study was conducted by the Children’s Cancer Group between

1991 and 1996 with the goal of assessing whether a combination of myeloablative chemother-

apy, total-body irradiation, and transplantation of autologous bone marrow purged of cancer

cells (ABMT) improves event-free survival in children with high-risk neuroblastoma com-

pared to intensive non-myeloablative chemotherapy, and to determine whether subsequent

treatment with 13-cis-rectinoic acid (cis-RA) improves event-free survival further compared

to no further therapy [13]. A two-stage randomization design was used for the treatment

assignment. All patients were first treated with induction chemotherapy. Then 379 eligible

patients without progressive diseases participated in the first-stage randomization, with 190

patients assigned to chemotherapy and 189 patients assigned to ABMT. A total of 176 pa-

tients either had progressive diseases or declined further randomization, so only 203 patients

participated in the second stage randomization, with 102 patients assigned to cis-RA and

101 patients assigned to no further therapy. The initial outcome from the neuroblastoma

study was analyzed in Matthay et al. [13]. Matthay et al. [12] reported the long-term study

results. However, both articles separately compared chemotherapy to ABMT, and cis-RA

to no further therapy among those who participated in the second randomization. Such

analyses separated the first and second stage treatments and ignored the information from

those patients who had progressive diseases or declined further randomization, leading to

inefficient use of data.

As described before, there are four possible treatment regimes in this data, namely, CCR,

CNR, ACR, and ANR (see Section 2.1). We first identified the 6 subgroups in the data:

patients who were assigned to chemotherapy as initial treatment and did not respond; pa-

tients who were assigned to chemotherapy as initial treatment, responded and were assigned

to cis-RA as maintenance treatment; patients who were assigned to chemotherapy as initial
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Table 5: AIC values for a total of 18 models fitted to the neuroblastoma dataset

Initial Therapy Response Second-stage Therapy Weibull Log Logistic Log Normal

Chemotherapy No 1109.55 1192.78 1092.47

ABMT No 1173.84 1278.44 1154.31

Chemotherapy Yes cis-RA 618.84 655.84 608.46

Chemotherapy Yes No Further Therapy 619.04 653.88 609.86

ABMT Yes cis-RA 415.74 446.31 409.72

ABMT Yes No Further Therapy 486.77 521.44 479.38

treatment, responded and were assigned to no further therapy; and three other equivalent

subgroups corresponding to those who were assigned to ABMT as initial treatment.

For each subgroup we first computed the survival curve using the NA estimator. Based

on these estimates we obtained the survival curves for the four regimes through the formulae

(2.6)-(2.9) described in Section 2.3. The overall survival curves for these four treatment

regimes (CCR, CNR, ACR, ANR) are shown in Figure 2(a). The survival curves were close

to each other early into the study, but deviated at later times. We then fitted the PHM to

the neuroblastoma data as laid out in Section 2.3 and obtained the estimated survival curves

for the four treatment regimes. The survival curves are depicted in Figure 2(b). The three

survival curves for treatment regimes CCR, CNR, and ANR followed each other, while the

survival curve for ACR was almost always higher compared to other regimes. Finally we

fitted AFTMs to estimate the subgroup-specific survival functions. For each subgroup, we

fitted Weibull, log logistic and log normal distributions and chose the best model with the

lowest Akaike information criterion (AIC). Table 5 presents the AICs for a total of 18 models

involved. It was observed that the AIC was minimum when the log normal distribution was

used as the parametric model for all six subgroups. Figure 2(c) shows the corresponding

overall survival curves for the four treatment regimes. The pattern follows that of the curves

obtained by fitting the PHM. At the late stage of the study, the survival curve for treatment

regime ACR seemed to differ somewhat from the other three survival curves (CCR, CNR,

ANR), while the overall survival curves for treatment regimes CCR, CNR, and ANR followed
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each other closely. The estimated variance for survival estimates were obtained through a

bootstrap resampling method in both the NA estimator and PHM, however, we employed

delta method for the AFTMs. Figure 3 compares all three methods for all four regimes.

The survival curves from the NA estimator, PHM and AFTM were similar to each other,

with small deviations at specific time points. Under the four treatment regimes, the survival

estimates from the AFTM were always slightly larger than the other two during the first five

years of the study, but decreased rapidly afterwards.
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Figure 2: Overall survival curves under four treatment regimes in the neuroblastoma study. CCR: “treat with chemotherapy

followed by cis-RA if no progressive disease”, CNR: “treat with chemotherapy followed by no further therapy if no progressive

disease”, ACR: “treat with ABMT followed by cis-RA if no progressive disease”, ANR: “treat with ABMT followed by no

further therapy if no progressive disease”
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Figure 3: Comparisons of three methods for four treatment regimes in the neuroblastoma

study. CCR: “treat with chemotherapy followed by cis-RA if no progressive disease”, CNR:

“treat with chemotherapy followed by no further therapy if no progressive disease”, ACR:

“treat with ABMT followed by cis-RA if no progressive disease”, ANR: “treat with ABMT

followed by no further therapy if no progressive disease” PHM: “Proportional Hazards

Model”, NA: “Nelson-Aalen Estimator”, AFTM: “Accelerated Failure Time Model”
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We performed comparisons of treatment regimes using the NA estimator, PHM and

AFTM respectively. A total of six different hypotheses comparing pairwise treatment regimes

were tested using the Fleming-Harrington two-sample test. The results are shown in Table

6. For simplicity, only first three tests would be described in details. First of all, we tested

if there was a significant difference in the hazards of treatment regimes sharing the same

initial treatment of “chemotherapy.” The null hypothesis can be described as H1 : λCCR(t) =

λCNR(t). The tests resulted in p-values equal to 0.50, 0.90 and 0.96 for the NA estimator,

PHM and AFTM respectively, showing that there was no statistically significant difference

in the hazards of treatment regimes sharing the same initial treatment of “chemotherapy.”

Thus, patients assigned to initial treatment of “chemotherapy” and then assigned to “cis-

RA” upon response had similar survival compared to those assigned to “no further therapy”

upon response to initial treatment of “chemotherapy.”

Secondly, we tested if there was a significant difference in the hazards of treatment

regimes sharing the same maintenance treatment of “cis-RA.” The tests of the null hypothesis

H2 : λCCR(t) = λACR(t) resulted in p-values of 0.22, 0.22 and 0.25 for the NA estimator,

PHM and AFTM respectively. This implied that the null hypothesis would not be rejected

at α = 0.5. Therefore, we would conclude that for patients who were assigned to “cis-RA”

as maintenance treatment upon response, there was no significant difference in the overall

survival between those who were assigned to “chemotherapy” and those who were assigned

to “ABMT” as initial treatment.

The hypothesis that there was no significant difference in the hazards of treatment

regimes with different initial treatments and different maintenance treatments was then

tested using H3 : λCCR(t) = λANR(t). The hazards of CCR and ANR were not statistically

significantly different with the p-values being 0.86, 0.87 and 0.91 for the NA estimator, PHM

and AFTM respectively, implying that there was no difference in the overall survival for pa-

tients who were assigned to “chemotherapy” as initial therapy and “cis-RA” as maintenance

therapy upon response and for those who were assigned to “ABMT” as initial therapy and

“no further therapy” as maintenance therapy upon response. Other pairwise comparisons

were not statistically significant.
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Table 6: Fleming-Harrington test results for the neuroblastoma dataset. CCR: “treat with

chemotherapy followed by cis-RA if no progressive disease”, CNR: “treat with chemotherapy

followed by no further therapy if no progressive disease”, ACR: “treat with ABMT followed

by cis-RA if no progressive disease”, ANR: “treat with ABMT followed by no further therapy

if no progressive disease”, H1 : λCCR(t) = λCNR(t), H2 : λCCR(t) = λACR(t), H3 : λCCR(t) =

λANR(t), H4 : λCNR(t) = λACR(t), H5 : λCNR(t) = λANR(t), H6 : λACR(t) = λANR(t)

Nelson-Aalen Estimator
Test Statistic Standard Error P-value

H1 0.73 1.078 0.50
H2 1.72 1.390 0.22
H3 0.27 1.491 0.86
H4 1.08 1.245 0.39
H5 -0.31 1.337 0.82
H6 -1.37 1.038 0.19

Proportional Hazards Model
Test Statistic Standard Error P-value

H1 0.13 1.049 0.90
H2 1.65 1.354 0.22
H3 0.22 1.371 0.87
H4 1.54 1.260 0.22
H5 0.10 1.272 0.94
H6 -1.37 1.053 0.19

Accelerated Failure Time Model ∗

Test Statistic Standard Error P-value
H1 0.06 1.164 0.96
H2 1.59 1.373 0.25
H3 0.17 1.409 0.91
H4 1.55 1.254 0.22
H5 0.12 1.293 0.93
H6 -1.34 1.068 0.21
∗ Log normal model for each subgroup.
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3.0 COX PROPORTIONAL HAZARDS MODEL FOR COMPARING

DYNAMIC TREATMENT REGIMES WITH TIME DEPENDENT

INTERMEDIATE RESPONSE

3.1 INTRODUCTION

Recently, there has been significant improvement in statistical methods for analyzing sequen-

tially randomized designs [17, 11, 15, 23, 5, 24, 10]. Many of these articles use the idea of

dynamic treatment regimes to analyze the data simultaneously from both stages. Multistage

treatment assignment results in dynamic treatment regimes consisting of initial treatments,

intermediate responses and second stage treatments. For example, one dynamic regime

in the high risk neuroblastoma study could be defined as: “Treat with ABMT followed by

chemotherapy, if the disease remains stable, treat with cis-RA”. Such formulation of dynamic

treatment regimes from multistage treatment assignment allows simultaneous assessment of

both first and second stage treatments. For instance, one could compare the above regime

to a regime that follows ABMT after chemotherapy with no further therapy when disease

remains stable. Murphy et al. [17] provided methodology for estimating mean response to a

dynamic regime under sequential randomization. Lunceford et al. [11] introduced estimators

that account for second randomization and censoring for estimating the survival distribution

and mean restricted survival time for treatment regimes in a two-stage randomized design.

Murphy [15] constructed estimators of optimal dynamic treatment regimes using experimen-

tal or observational longitudinal data. Wahed and Tsiatis [23, 24] presented the most efficient

estimator for the survival distributions utilizing additional information from auxiliary vari-

ables. Guo and Tsiatis [5] proposed a weighted risk set estimator (WRSE) on the basis of

counting process and risk sets [4]. In addition, they also used time-varying measurement
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for the indicator of response and consent. Lokhnygina and Helterbrand [10] implemented

the inverse weighting [19] in the Cox regression methods for the two-stage randomization

design. Furthermore, a consistent estimator for the log hazard in the Cox regression model

and a pseudo-score statistic were also proposed to compare treatment regimes. Thall et al.

[21] used a family of generalized logistic regression models and an approximate Bayesian

method to evaluate multicourse treatment regimes. Murphy and Bingham [16] applied a

new methodology to the identification of potential treatment components and screening out

insignificant ones for developing dynamic treatment regimes.

Cox model provides an effective and efficient way of analyzing survival data in clinical

trials. Lokhnygina and Helterbrand [10] extended the widely used Cox regression method to

two-stage randomization designs. However, it applies only to the comparison of treatment

regimes that share the same second stage therapy. This significantly limits its application

in general settings. Furthermore, it does not take into account the fact that the intermedi-

ate response is a time-varying phenomenon. In this article, we propose a generalized Cox

proportional hazards model that not only applies to comparisons of any combination of any

number of treatment regimes, but also allows the intermediate response to appear as a time-

varying-covariate. We also provide contrasts for comparing treatment regimes and describe

corresponding hypothesis testing process.

This chapter is organized as follows. In Section 3.2, we introduce notation used in this

article. In Section 3.3, we introduce the model framework for estimation and testing. In

Section 3.4, a Monte Carlo simulation study is carried out to examine the performance of

the estimates and the corresponding hypothesis tests. In Section 3.5, we fit the model to

the high risk neuroblastoma dataset to compare overall survival for different neuroblastoma

treatment regimes.

3.2 NOTATION

Consider a two-stage randomization design as depicted in Figure 1, where patients are ran-

domized to J initial treatments, namely, A1, A2, ..., AJ−1, AJ . Patients who responded to
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the initial treatment and provided consent to further participation are subsequently random-

ized to K maintenance treatments, B1, B2, ..., BK−1, BK . Denote by AjBk the treatment

regime “treat with Aj followed by Bk if the patient responds and consents to subsequent

maintenance therapy.” Our goal is to compare regimes AjBk, j = 1, ..., J and k = 1, ..., K

based on the overall survival. The set of observed data from this design can be described as

{Vi, Xji, Ri, RiT
R
i , RiZki, Ui,∆i},

where Vi denotes the baseline covariates; Xji is the indicator for jth initial treatment, Xji = 1

if the ith patient was assigned to Aj as initial treatment, and Xji = 0 if otherwise; Ri is

the indicator for response and consent, Ri = 1 if the ith patient responded to the initial

treatment and consent to further randomization, and Ri = 0 if otherwise; TRi indicates the

time to response and consent; Zki is the indicator for kth maintenance treatment, Zki = 1

if the ith patient was assigned to Bk as maintenance treatment, and Zki = 0 if otherwise

(note that Zki is defined only when Ri = 1); and Ui denotes the observed death (∆i = 1) or

censoring time (∆i = 0). We assume independent right censoring which is customary in the

application of Cox model. Also define Ri(t) = 1 if response and consent have been observed

by time t for the ith patient, and Ri(t) = 0 if otherwise. Note that Ri(t) can be expressed

as Ri(t) = RiI(TRi < t) and indicates the time-varying response and consent status.

3.3 THE MODEL

Patients randomized according to a two-stage design (Figure 1) cannot be uniquely attached

to a single regime, since patients not responding to an initial treatment could be considered

following all regimes that share that initial treatment. For example, consider the hypothetical

data from four patients presented in Table 7. Patient P1 is assigned to initial treatment A1,

responded to A1, and then is assigned to maintenance treatment B1, and hence is consistent

with regime A1B1. Patient P2 is also assigned to initial treatment A1 but did not respond

to A1, and thus is consistent with both regimes A1B1 and A1B2. Similarly, patient P3 is

treated consistent to the regime A2B2, and patient P4 to both regimes A2B1 and A2B2. Thus
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Table 7: Data from four hypothetical patients in a two-stage randomization design.

Patient Initial treatment Respond? Maintenance treatment Regime consistent with

P1 A1 Yes B1 A1B1

P2 A1 No A1B1, A1B2

P3 A2 Yes B2 A2B2

P4 A2 No A2B1, A2B2

standard survival analysis tools such as Kaplan-Meier, log-rank or Cox proportional hazards

models are not directly appropriate. We therefore propose to use the following version of

Cox model

λ(t) = λ0(t) exp

{
J−1∑
j=1

β
(1)
j Xj + β(2)R(t) +

J−1∑
j=1

β
(3)
j XjR(t) +

K−1∑
k=1

β
(4)
k ZkR(t)

+
J−1∑
j=1

K−1∑
k=1

β
(5)
jk XjZkR(t) + γTV

}
≡ λ0(t) exp {G(t)β} , (3.1)

where λ(t) is the general hazard function at time t; λ0(t) denotes the baseline hazard func-

tion (when all the covariates equal to 0); R(t) denotes the time-varying measurement of

response and consent as defined before; β is the vector of coefficients denoted as β =[
β

(1)
1 , . . . , β

(1)
J−1, β

(2), β
(3)
1 , . . . , β

(3)
J−1, β

(4)
1 , . . . , β

(4)
K−1, β

(5)
11 , . . . , β

(5)
(J−1)(K−1), γ

]T
; and G(t) is the

vector of all covariates stacked in the same order as β. Note that in the above model, R(t)

is used as a covariate, which by definition may be affected by the initial treatment and thus

is not exogenous in nature. The goal of this model is neither to draw conclusion about R(t),

nor to draw inferences on the initial treatment. Instead this model aims to assess the effect

of a treatment regime, which is a function of both R(t) and the initial treatment. Therefore,

we do not consider it necessary to elaborate on the endogenous nature of R(t).

For J = K = 2 (i.e. only two treatment options available at each stage), the above

model can be written as

λ(t) = λ0(t) exp
{
β

(1)
1 X1 + β(2)R(t) + β

(3)
1 X1R(t) + β

(4)
1 Z1R(t) + β

(5)
11 X1Z1R(t) + γTV

}
.(3.2)
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Based on model (3.2), the hazard functions for four treatment regimes, namely, A1B1, A1B2,

A2B1, and A2B2 could be written as

λA1B1(t) = λ0(t) exp
{
β

(1)
1 + (β(2) + β

(3)
1 + β

(4)
1 + β

(5)
11 )R(t) + γTV

}
;

λA1B2(t) = λ0(t) exp
{
β

(1)
1 + (β(2) + β

(3)
1 )R(t) + γTV

}
;

λA2B1(t) = λ0(t) exp
{

(β(2) + β
(4)
1 )R(t) + γTV

}
;

λA2B2(t) = λ0(t) exp
{
β(2)R(t) + γTV

}
.

A similar model structure for linear regression was proposed in Murphy and Bingham

(2009), however, the model did not include time-varying response structure. Under model

(3.2), comparisons of treatment regimes in terms of their hazards can be interpreted by

the coefficient vector β =
[
β

(1)
1 , β(2), β

(3)
1 , β

(4)
1 , β

(5)
11 , γ

]T
. When comparing treatment regimes

sharing the same initial therapy, e.g., comparing A1B1 to A1B2 and comparing A2B1 to

A2B2, the null hypothesis H1 : λA1B1(t) = λA1B2(t) is equivalent to H1 : β
(4)
1 + β

(5)
11 = 0, and

the null hypothesis H2 : λA2B1(t) = λA2B2(t) is equivalent to H2 : β
(4)
1 = 0. When comparing

treatment regimes sharing the same maintenance therapy, e.g., comparing A1B1 to A2B1

and comparing A1B2 to A2B2, the null hypothesis H3 : λA1B1(t) = λA2B1(t) is equivalent to

H3 : β
(1)
1 = 0; β

(3)
1 + β

(5)
11 = 0, and the null hypothesis H4 : λA1B2(t) = λA2B2(t) is equivalent

to H4 : β
(1)
1 = β

(3)
1 = 0. Furthermore, for comparing all four treatment regimes in a simple

two-stage randomization design, the null hypothesis H5 : λA1B1(t) = λA1B2(t) = λA2B1(t) =

λA2B2(t) can be interpreted as H5 : β
(1)
1 = β

(3)
1 = β

(4)
1 = β

(5)
11 = 0.

In all of the above cases, no single relative risk can be used to estimate the relative effect

of one regime vs. the other, since a time-varying measurement of response and consent is

involved in their hazard functions. For example, the hazard ratio at time t for the regime

A1B1 and A1B2 is given by λA1B1(t)/λA1B2(t) = exp
{(
β

(4)
1 + β

(5)
11

)
R(t)

}
, which is not a

constant. It depends on whether the patient responded by time t or not. Thus if two patients

received the same initial therapy A1 and did not respond by time t, then their hazards are

identical, which is what one would expect. However, if these two patients had responded by
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time t, then their hazard ratio would be exp
(
β

(4)
1 + β

(5)
11

)
. Model (3.1) can also be extended

to compare any combination of any number of treatment regimes (see discussion).

Coefficients of Cox model with time-dependent covariates are usually estimated using

maximum likelihood method through partial likelihood [2, 22]. The log partial likelihood

function based on model (3.1) is given by

l(β) =
n∑
i=1

∫ ∞
0

{
Yi(t)Gi(t)β − log

(∑
p

Yp(t) exp [Gp(t)β]

)}
dNi(t),

where Ni(t) = I(Ui ≤ t,∆i = 1) and Yi(t) = I(Ui ≥ t). The coefficients are obtained by

solving the score equations defined below

U(β) =
n∑
i=1

∫ ∞
0

{Gi(t)− g(β, s)} dNi(s) = 0,

where

g(β, s) =

∑
Yp(s) exp [Gp(s)β]Gp(s)∑

Yp(s) exp [Gp(s)β]
.

It is well-known that the estimated coefficients β̂ are asymptotically normally distributed

with mean β and variance covariance matrix Σ, which is usually estimated by I−1(β̂), where

I−1(β̂) =


n∑
i=1

∫ ∞
0

∑
Yp(s) exp

[
Gp(s)β̂

] [
Gp(s)− g(β̂, s)

]′ [
Gp(s)− g(β̂, s)

]
∑
Yp(s) exp

[
Gp(s)β̂

] dNi(s)


−1

.

For details, see Therneau and Grambsch [22] Section 3. The estimation is done using the

Newton-Raphson algorithm in statistical packages such as SAS [20] and R [18]. Both the

PHREG procedure in SAS and the coxph function in the “survival” package of R can easily

fit this Cox proportional hazards model.

After fitting model (3.2), the coefficient estimates β̂ and their estimated variance covari-

ance matrix Σ̂ are obtained. Then the null hypotheses described above can be tested using

Wald chi-square tests. For example, the null hypothesis H3 : λA1B1(t) = λA2B1(t) could be

tested using a Wald chi-square test statistic with two degrees of freedom. The test statistic

can be written as

χ2
2 = (Aβ̂)

T
(AT Σ̂A)−1(Aβ̂),
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where

A =

 1 0 0 0 0

0 0 1 0 1

 .
This test statistics then is compared to the critical values from a χ2

2 distribution.

3.4 SIMULATION STUDY

The performance of the generalized Cox proportional hazards model was evaluated by con-

ducting a Monte Carlo simulation study. For simplicity, and to maintain similarity with

the neuroblastoma dataset, a simple two-stage randomization design allowing two treatment

options at each stage was chosen. Overall sample size n was varied between 200 and 800

with step-wise increments of 200. Indicator for initial treatment A1 (X1) was sampled from

Bernoulli(0.5) distribution. V was chosen to be a one-dimensional auxiliary covariate gen-

erated from normal distribution with mean 1 and standard deviation 0.5. We generated the

“response time” TR from Exponential(α). We followed Leemis et al. (1990) to generate

survival time from Cox model with time-dependent covariates. Let u be a single observation

drawn from a uniform distribution, Uniform(0,1), and λ be the exponential baseline function,

namely, λ0(t) = λ. Then the response status for the ith patient was defined by

Ri =

0 if 0 < −log(1− ui)/λ < TRi exp (β
(1)
1 X1i + γVi),

1 if −log(1− ui)/λ ≥ TRi exp (β
(1)
1 X1i + γVi).

Indicator for maintenance treatment B1 (Z1) was sampled from Bernoulli(0.5) distribution,

defined only under the condition that R = 1. Since our Cox proportional hazards model

includes both time-change covariate and other fixed covariates, piecewise exponentially dis-

tributed death times were generated for nonresponders (R = 0) and responders (R = 1) [9].

The survival time for the ith patient was defined as

Ti =


−log(1−ui)

λ exp (β
(1)
1 X1i+γVi)

if Ri = 0,

−log(1−ui)−TRi λ exp (β
(1)
1 X1i+γVi)

λ exp (β
(1)
1 X1i+β(2)+β

(3)
1 X1i+β

(4)
1 Z1i+β

(5)
11 X1iZ1i+γVi)

+ TRi if Ri = 1.
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Censoring time C was drawn from a Uniform(0, θ) distribution. These set-up ensured that

survival time T follows a Cox proportional hazards model with time dependent measurement

of response and consent R(t) as defined in Section 3.2:

λ(t) = λ0(t) exp
{
β

(1)
1 X1 + β(2)R(t) + β

(3)
1 X1R(t) + β

(4)
1 Z1R(t) + β

(5)
11 X1Z1R(t) + γV

}
.

Simulation parameters λ, α and θ were selected to achieve permutations of 40%, 50%, 60%

response rate and 50%, 30% censoring percentage approximately, whereas other param-

eters (β
(1)
1 , β(2), β

(3)
1 , β

(4)
1 , β

(5)
11 , γ) were chosen to reflect the status of different hypotheses

in the true population. For simplicity, we planned to test only the following three null

hypotheses: H1 : λA1B1(t) = λA1B2(t), H3 : λA1B1(t) = λA2B1(t), and H5 : λA1B1(t) =

λA1B2(t) = λA2B1(t) = λA2B2(t). These hypotheses are equivalent to H1 : β
(4)
1 + β

(5)
11 = 0,

H3 : β
(1)
1 = 0; β

(3)
1 + β

(5)
11 = 0, and H5 : β

(1)
1 = β

(3)
1 = β

(4)
1 = β

(5)
11 = 0 respectively.

Therefore, in the first simulation scenario, the set of coefficients {β(1)
1 , β(2), β

(3)
1 , β

(4)
1 , β

(5)
11 , γ}

was chosen to be {−0.5,−0.8, 0.5, 1,−1,−0.5} to study the performance of Wald chi-square

tests for H1 : λA1B1(t) = λA1B2(t) (note that β
(4)
1 + β

(5)
11 = 0, which indicates that in

the true population H1 is true); in the second scenario, the set of coefficients was cho-

sen to be {0, 0.1,−0.8, 2, 0.8,−0.5} to study the performance of Wald chi-square tests for

H3 : λA1B1(t) = λA2B1(t) (note that β
(1)
1 = 0; β

(3)
1 + β

(5)
11 = 0); in the third scenario,

the set of coefficients was chosen to be {0, 0.8, 0, 0, 0,−0.5} to study the performance of

Wald chi-square tests for H5 : λA1B1(t) = λA1B2(t) = λA2B1(t) = λA2B2(t) (note that

β
(1)
1 = β

(3)
1 = β

(4)
1 = β

(5)
11 = 0). For each scenario, 2,000 samples of size n were drawn

and model (3.2) described in Section 3.3 was fitted to each sample using coxph function in

R.

Simulation results are shown in Tables 8-11. Table 8 shows the estimated coefficients,

standard errors (SE), Monte-Carlo standard errors (MCSE) and coverage probabilities (CP)

of 95% confidence intervals under scenario I. The estimated coefficients were approximately

unbiased. The largest absolute bias (0.05) occurred for β(2) under a smaller sample size of

400, a relatively larger censoring percentage of 50% and a smaller response rate of 40%. In

most cases absolute biases were less than 0.03. The standard errors were close to the Monte-

Carlo standard errors, demonstrating that the estimated standard errors were consistent.
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The coverage probabilities of 95% confindence intervals were within the range of 93.9% to

96.1%, attaining the nominal level of 95% in most of the cases. The results were similar for

both 40% and 60% response rates. However, as expected, both absolute biases and standard

errors became smaller with increasing sample size and decreasing censoring percentage. In

Tables 9 and 10, we presented the simulation results under scenarios II and III respectively.

Similar to the results of scenario I, under scenario II, estimators performed well, with small

absolute biases. Coverage probabilities were in the interval of 94.2% and 96.3%. We observed

even better performance under scenario III, with absolute biases even smaller (less than 0.02).

The coverage probabilities under scenario III were between 94.2% and 95.9%.
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Table 8: Simulation results under scenario I. True values of coefficients are β
(1)
1 = −0.5, β(2) =

−0.8, β
(3)
1 = 0.5, β

(4)
1 = 1.0, β

(5)
11 = −1.0, γ = −0.5. Est = mean of estimated coefficients,

Bias = | Estimate - True |, SE = mean of estimated standard errors, MCSE = Monte-Carlo

standard deviation of the estimators and CP = coverage probability of 95% CI.

n = 400

Response 50% censoring 30% censoring

Rate Coef Est Bias SE MCSE CP(%) Est Bias SE MCSE CP(%)

40% β
(1)
1 -0.51 0.01 0.182 0.184 95.3 -0.51 0.01 0.153 0.154 95.2

β(2) -0.85 0.05 0.333 0.335 96.1 -0.83 0.03 0.266 0.271 94.8

β
(3)
1 0.53 0.03 0.445 0.456 94.7 0.52 0.02 0.343 0.360 93.9

β
(4)
1 1.04 0.04 0.366 0.372 95.2 1.03 0.03 0.298 0.300 94.9

β
(5)
11 -1.04 0.04 0.537 0.544 95.5 -1.03 0.03 0.416 0.418 95.3

γ -0.51 0.01 0.149 0.152 95.0 -0.51 0.01 0.124 0.127 94.4

60% β1 -0.51 0.01 0.249 0.258 94.9 -0.51 0.01 0.188 0.191 95.0

β(2) -0.82 0.02 0.299 0.303 95.0 -0.82 0.02 0.244 0.250 94.5

β
(3)
1 0.52 0.02 0.391 0.401 95.2 0.51 0.01 0.309 0.317 94.5

β
(4)
1 1.02 0.02 0.270 0.271 95.7 1.02 0.02 0.237 0.238 95.3

β
(5)
11 -1.02 0.02 0.399 0.401 95.0 -1.03 0.03 0.335 0.338 95.5

γ -0.51 0.01 0.153 0.155 94.9 -0.51 0.01 0.126 0.128 94.8

n = 600

Response 50% censoring 30% censoring

Rate Coef Est Bias SE MCSE CP(%) Est Bias SE MCSE CP(%)

40% β
(1)
1 -0.50 0.00 0.148 0.147 94.9 -0.50 0.00 0.125 0.124 95.1

β(2) -0.81 0.01 0.267 0.266 95.5 -0.80 0.00 0.214 0.212 95.5

β
(3)
1 0.50 0.00 0.357 0.364 94.7 0.49 0.01 0.277 0.280 95.4

β
(4)
1 1.01 0.01 0.293 0.296 95.6 1.00 0.00 0.240 0.238 95.7

β
(5)
11 -1.01 0.01 0.430 0.432 95.3 -1.00 0.00 0.336 0.339 95.2

γ -0.50 0.01 0.121 0.121 94.8 -0.51 0.01 0.101 0.103 94.5

60% β
(1)
1 -0.50 0.00 0.202 0.199 95.6 -0.50 0.00 0.153 0.151 95.1

β(2) -0.81 0.01 0.242 0.242 95.0 -0.80 0.00 0.198 0.198 94.8

β
(3)
1 0.50 0.00 0.315 0.314 95.2 0.50 0.00 0.251 0.246 95.6

β
(4)
1 1.01 0.01 0.218 0.221 95.3 1.00 0.00 0.192 0.196 94.7

β
(5)
11 -1.01 0.01 0.322 0.325 95.4 -1.01 0.01 0.272 0.272 95.3

γ -0.51 0.01 0.124 0.125 94.8 -0.51 0.01 0.102 0.104 94.4
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Table 9: Simulation results under scenario II. True values of coefficients are β
(1)
1 = 0, β(2) =

0.1, β
(3)
1 = −0.8, β

(4)
1 = 2.0, β

(5)
11 = 0.8, γ = −0.5. Est = mean of estimated coefficients, Bias

= | Estimate - True |, SE = mean of estimated standard errors, MCSE = Monte-Carlo

standard deviation of the estimators and CP = coverage probability of 95% CI.

n = 400

Response 50% censoring 30% censoring

Rate Coef Est Bias SE MCSE CP(%) Est Bias SE MCSE CP(%)

40% β
(1)
1 -0.00 0.00 0.199 0.204 94.5 -0.00 0.00 0.158 0.159 95.0

β(2) 0.07 0.03 0.316 0.316 96.2 0.08 0.02 0.240 0.245 94.7

β
(3)
1 -0.83 0.03 0.512 0.523 95.5 -0.82 0.02 0.360 0.370 94.5

β
(4)
1 2.04 0.04 0.327 0.333 95.9 2.03 0.03 0.266 0.266 95.5

β
(5)
11 0.83 0.03 0.533 0.541 95.4 0.82 0.02 0.399 0.387 96.3

γ -0.50 0.00 0.148 0.151 94.8 -0.50 0.00 0.123 0.125 94.8

60% β
(1)
1 -0.01 0.01 0.259 0.267 95.1 -0.00 0.00 0.208 0.211 95.1

β(2) 0.07 0.03 0.316 0.327 94.8 0.09 0.01 0.242 0.248 94.6

β
(3)
1 -0.82 0.02 0.490 0.514 95.0 -0.81 0.01 0.343 0.341 95.7

β
(4)
1 2.04 0.04 0.284 0.288 95.4 2.03 0.03 0.225 0.232 94.6

β
(5)
11 0.83 0.03 0.462 0.476 95.1 0.80 0.00 0.331 0.327 95.0

γ -0.50 0.00 0.150 0.150 95.0 -0.50 0.00 0.125 0.127 94.5

n = 600

Response 50% censoring 30% censoring

Rate Coef Est Bias SE MCSE CP(%) Est Bias SE MCSE CP(%)

40% β
(1)
1 0.00 0.00 0.162 0.162 94.8 0.00 0.00 0.129 0.129 94.9

β(2) 0.09 0.01 0.254 0.256 95.4 0.10 0.00 0.195 0.192 95.4

β
(3)
1 -0.83 0.03 0.409 0.415 95.4 -0.82 0.02 0.290 0.299 94.2

β
(4)
1 2.02 0.02 0.263 0.262 95.3 2.01 0.01 0.215 0.213 95.6

β
(5)
11 0.84 0.04 0.425 0.432 94.7 0.82 0.02 0.322 0.325 95.3

γ -0.51 0.01 0.120 0.122 94.8 -0.50 0.00 0.100 0.102 95.0

60% β
(1)
1 0.00 0.00 0.211 0.212 94.7 0.00 0.00 0.169 0.166 95.5

β(2) 0.10 0.00 0.255 0.255 95.5 0.10 0.00 0.197 0.196 95.6

β
(3)
1 -0.83 0.03 0.392 0.400 95.1 -0.81 0.01 0.278 0.283 94.8

β
(4)
1 2.01 0.01 0.228 0.233 94.7 2.01 0.01 0.182 0.184 94.9

β
(5)
11 0.83 0.03 0.369 0.375 95.1 0.81 0.01 0.268 0.269 95.2

γ -0.51 0.01 0.121 0.124 94.6 -0.51 0.01 0.101 0.103 95.0
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Table 10: Simulation results under scenario III. True values of coefficients are β
(1)
1 = 0, β(2) =

0.8, β
(3)
1 = 0, β

(4)
1 = 0, β

(5)
11 = 0, γ = −0.5. Est = mean of estimated coefficients, Bias = |

Estimate - True |, SE = mean of estimated standard errors, MCSE = Monte-Carlo standard

deviation of the estimators and CP = coverage probability of 95% CI.

n = 400

Response 50% censoring 30% censoring

Rate Coef Est Bias SE MCSE CP(%) Est Bias SE MCSE CP(%)

40% β
(1)
1 -0.01 0.01 0.199 0.203 94.3 -0.01 0.01 0.162 0.163 95.3

β(2) 0.79 0.01 0.265 0.267 95.1 0.79 0.01 0.219 0.224 94.3

β
(3)
1 0.02 0.02 0.362 0.368 94.4 0.01 0.01 0.300 0.310 94.2

β
(4)
1 0.01 0.01 0.303 0.304 95.6 0.00 0.00 0.253 0.253 95.3

β
(5)
11 -0.02 0.02 0.429 0.432 95.1 -0.01 0.01 0.357 0.355 95.5

γ -0.51 0.01 0.148 0.149 95.3 -0.51 0.01 0.123 0.126 94.4

60% β
(1)
1 -0.01 0.01 0.254 0.262 95.1 -0.00 0.00 0.204 0.206 95.0

β(2) 0.79 0.01 0.270 0.281 94.7 0.80 0.00 0.218 0.224 94.8

β
(3)
1 0.02 0.02 0.361 0.376 94.2 0.01 0.01 0.291 0.298 94.5

β
(4)
1 0.01 0.01 0.256 0.259 94.5 0.00 0.00 0.207 0.209 94.7

β
(5)
11 -0.01 0.01 0.363 0.365 95.2 -0.01 0.01 0.293 0.292 95.9

γ -0.51 0.01 0.149 0.151 95.1 -0.50 0.00 0.122 0.126 94.2

n = 600

Response 50% censoring 30% censoring

Rate Coef Est Bias SE MCSE CP(%) Est Bias SE MCSE CP(%)

40% β
(1)
1 0.00 0.00 0.161 0.162 94.7 0.00 0.00 0.132 0.131 95.7

β(2) 0.81 0.01 0.214 0.214 95.3 0.80 0.00 0.178 0.176 95.8

β
(3)
1 -0.01 0.01 0.293 0.296 95.6 0.00 0.00 0.244 0.247 94.9

β
(4)
1 -0.01 0.01 0.244 0.244 95.6 -0.00 0.00 0.205 0.205 95.2

β
(5)
11 0.01 0.01 0.346 0.347 95.2 0.00 0.00 0.289 0.292 94.8

γ -0.51 0.01 0.120 0.120 94.8 -0.51 0.01 0.100 0.102 94.9

60% β
(1)
1 0.00 0.00 0.206 0.207 95.2 0.00 0.00 0.166 0.163 95.4

β(2) 0.81 0.01 0.219 0.217 95.8 0.81 0.01 0.177 0.177 95.7

β
(3)
1 -0.01 0.01 0.293 0.296 94.8 -0.01 0.01 0.236 0.237 94.9

β
(4)
1 -0.00 0.00 0.207 0.208 95.6 -0.00 0.00 0.168 0.172 95.0

β
(5)
11 -0.00 0.00 0.293 0.296 94.8 0.00 0.00 0.238 0.242 94.7

γ -0.51 0.01 0.121 0.123 94.4 -0.51 0.01 0.099 0.102 95.0
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Table 11 gives the Type I errors or powers of Wald chi-square tests under different

scenarios for samples of sizes 400 and 600. Scenario I was generated based on the null

hypothesis H1 : λA1B1(t) = λA1B2(t), so one would expect that the rejection rates for null

hypothesis H1 would be close to the nominal level of 0.05. The simulation results show

rejection rates for testing H1 to be near 0.05. The powers for the two other null hypotheses

H3 and H5 under scenario I were maintained above 0.96, with a small increase resulting

from an increase in the sample size. Scenario II was generated based on the null hypothesis

H3 : λA1B1(t) = λA2B1(t). Similar to the rejection rates for null hypothesis H1, type I error

was well-maintained (∼ 0.05) for this scenario, and the powers for the null hypotheses H1

and H5 were all equal to 1.00. Scenario III was generated based on the null hypothesis

H5 : λA1B1(t) = λA1B2(t) = λA2B1(t) = λA2B2(t). Because null hypothesis H5 implies null

hypotheses H1 and H3, the rejection rates for all three null hypotheses under scenario III

were close to 0.05. These results imply that comparative hypothesis testing can be performed

maintaining adequate type I errors from the proposed model.

3.5 ANALYSIS OF NEUROBLASTOMA DATASET

In the neuroblastoma study, all patients were treated with induction chemotherapy first.

Then 379 eligible patients without progressive disease participated in the first stage ran-

domization, with 190 patients assigned to chemotherapy and 189 patients assigned to a

combination of myeloablative chemotherapy, total-body irradiation, and transplantation of

autologous bone marrow purged of cancer cells (ABMT). A total of 176 patients either had

progressive disease or declined further randomization, so only 203 patients participated in the

second stage randomization, with 102 patients assigned to cis-RA and 101 patients assigned

to no further therapy. Thus, there are four possible treatment regimes in the neuroblastoma

study: (i) treat with chemotherapy followed by cis-RA if no progressive disease (CCR); (ii)

treat with chemotherapy followed by no cis-RA if no progressive disease (CNR); (iii) treat

with ABMT followed by cis-RA if no progressive disease (ACR); (iv) treat with ABMT

followed by no cis-RA if no progressive disease (ANR).
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Table 11: Wald chi-square test results under scenarios I, II and III based on samples of sizes

400 and 600. H1 : λA1B1(t) = λA1B2(t), H3 : λA1B1(t) = λA2B1(t), and H5 : λA1B1(t) =

λA1B2(t) = λA2B1(t) = λA2B2(t)

n = 400

50% censoring 30% censoring

Type I error/Power Type I error/Power

Scenario Response Rate H1 H3 H5 H1 H3 H5

I 40% 0.049 0.968 0.968 0.047 0.996 0.996

50% 0.050 0.972 0.989 0.054 0.998 0.999

60% 0.052 0.987 0.994 0.057 0.999 0.999

II 40% 1.000 0.049 1.000 1.000 0.049 1.000

50% 1.000 0.059 1.000 1.000 0.052 1.000

60% 1.000 0.058 1.000 1.000 0.049 1.000

III 40% 0.055 0.046 0.045 0.052 0.052 0.055

50% 0.053 0.054 0.055 0.048 0.050 0.048

60% 0.051 0.055 0.055 0.046 0.048 0.055

n = 600

50% censoring 30% censoring

Type I error/Power Type I error/Power

Scenario Response Rate H1 H3 H5 H1 H3 H5

I 40% 0.051 0.998 1.000 0.059 1.000 1.000

50% 0.041 1.000 1.000 0.051 1.000 1.000

60% 0.050 1.000 1.000 0.052 1.000 1.000

II 40% 1.000 0.053 1.000 1.000 0.047 1.000

50% 1.000 0.050 1.000 1.000 0.045 1.000

60% 1.000 0.047 1.000 1.000 0.048 1.000

III 40% 0.055 0.051 0.051 0.053 0.052 0.053

50% 0.054 0.044 0.049 0.052 0.054 0.052

60% 0.055 0.046 0.048 0.048 0.048 0.043
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Figure 4: Overall survival curves under four treatment regimes in the neuroblastoma study.

CCR: “treat with chemotherapy followed by cis-RA if no progressive disease”, CNR: “treat

with chemotherapy followed by no cis-RA if no progressive disease”, ACR: “treat with ABMT

followed by cis-RA if no progressive disease”, ANR: “treat with ABMT followed by no cis-RA

if no progressive disease”
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Table 12: Wald chi-square test results for the neuroblastoma dataset. CCR: “treat with

chemotherapy followed by cis-RA if no progressive disease”, CNR: “treat with chemotherapy

followed by no cis-RA if no progressive disease”, ACR: “treat with ABMT followed by cis-RA

if no progressive disease”, ANR: “treat with ABMT followed by no cis-RA if no progressive

disease”

df Test Statistic P-value

H1 : λCCR(t) = λCNR(t) 1 0.06 0.81

H2 : λACR(t) = λANR(t) 1 2.20 0.14

H3 : λCCR(t) = λACR(t) 2 3.92 0.14

H4 : λCNR(t) = λANR(t) 2 0.47 0.79

H5 : λCCR(t) = λCNR(t) = λACR(t) = λANR(t) 4 5.45 0.24

We first used the weighted risk set estimator (WRSE) [5] to estimate the overall survival

curves. Overall survival curves under these four treatment regimes are presented in Figure

4. Apparently survival curves are close to each other during the first three years. They

somewhat deviate from each other at later times but do not meet the criteria for statistical

significance in adjusted analysis described as follows. We fitted the Cox proportional hazards

model (3.2) to this data, including auxiliary covariates age, Evans stage, MYCN oncogene

amplification (MYCN), histology, ferritin and initial response to induction chemotherapy.

These covariates were identified as the potential prognostic factors diagnosed in Matthay

et al. [12]. The covariate Evans stage was grouped as “stage 4,” “stages other than stage

4” and “unknown.” Histology was grouped as “favorable,” “unfavorable” and “unknown.”

Ferritin was grouped as “normal,” “elevated” and “unknown.” Initial response to induc-

tion chemotherapy contained 8 levels: CR(complete response), VGPR(very good partial re-

sponse), PR(partial response), SD(stable disease), MR(mixed response), PD(progressive dis-

ease), NR(no response) and missing. We categorized it into “CR/VGPR,” “PR,” “SD/MR,”

“PD” and “unknown” as was done by clinicians, see Matthay et al. [12].

Several different hypotheses comparing the treatment regimes were tested. The results
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are summarized in Table 12. To test if there was a significant difference in the hazards of

treatment regimes sharing the same initial treatment “chemotherapy,” we set up the hypothe-

sis H1 : λCCR(t) = λCNR(t). The p-value from the Wald test was equal to 0.81, implying that

there was no statistically significant difference in the hazards of treatment regimes sharing

the same initial treatment “chemotherapy.” In other words, for patients who were assigned

to initial treatment “chemotherapy,” there was no difference in the overall survival whether

they continued with maintenance treatment “cis-RA” or “no further therapy.” The hypoth-

esis that there was no significant difference in the hazards of treatment regimes sharing the

same initial treatment “ABMT” was then tested using H2 : λACR(t) = λANR(t). The p-value

for this test was 0.14, which would mean that for patients who were assigned to “ABMT”

as initial treatment, there was no difference in the overall survival whether they continued

with maintenance treatment “cis-RA” or “no further therapy.” The hypotheses tests for

difference in the hazards of treatment regimes sharing the same maintenance treatment “cis-

RA” or “no further therapy,” namely, H3 : λCCR(t) = λACR(t) and H4 : λCNR(t) = λANR(t),

resulted in p-values 0.14 and 0.79 respectively, demonstrating that for patients who were

assigned to “cis-RA” as maintenance treatment, regardless of which initial therapy they

were assigned to, there was no difference in their overall survival, and the same was true

for patients who were assigned to “no further therapy” as maintenance treatment. Sub-

sequently, the difference in the hazards of four treatment regimes was examined through

H5 : λCCR(t) = λCNR(t) = λACR(t) = λANR(t). The hazards of four treatment regimes were

not statistically significantly different with p-value being 0.24. Thus, there was no difference

in the overall survival irrespective of which initial treatment patients were assigned to and

which maintenance treatment they were subsequently assigned to.
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4.0 CONCLUSIONS

In Chapter 2, we demonstrated the use of the Nelson-Aalen estimator, proportional hazards

model and accelerated failure time model for estimating the effects of treatment regimes from

two-stage randomization designs. We also demonstrated how to compare different regimes

in terms of their hazards using the Fleming-Harrington two-sample tests.

The simulation study showed that survival estimates could differ when a model other

than the true model was fitted. Thus, the survival estimates were affected somewhat by

the choice of distributions when fitting the accelerated failure time model. The proportional

hazards model provided slightly biased estimates at earlier time points, however, the survival

estimates obtained using the NA estimator were unbiased. The performance of the Nelson-

Aalen estimator, proportional hazards model and accelerated failure time model were also

evaluated at other response rates, censoring percentages, and for various sample sizes. We

observed similar results using the proportional hazards model and accelerated failure time

model at different censoring percentages, however, the Nelson-Aalen estimator provided bi-

ased estimates in small samples. When the response rate is as small as 40% and the overall

sample size is relatively small such as 400, all the three methods show some bias in the

survival estimates due to the small sample size in each subgroup.

Furthermore, the simulation study also showed that the rejection rates obtained us-

ing all the methods were similar to each other under all scenarios, demonstrating that the

Fleming-Harrington two-sample test was robust regardless of the methods for estimating

the survival quantities. When we utilized Fleming-Harrington two-sample tests to compare

different treatment regimes in terms of their hazards, six pairs of null hypotheses were tested

separately. In this circumstance, how small a p-value is considered significant needs further

discussion. As we know, many statistical techniques have been developed for protecting
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the Type I errors in multiple comparisons, e.g. Bonferroni correction, Holm’s sequential

rejection procedure, etc. Similar techniques could possibly be adopted here. However, we

decided to pursue this in a separate research study. The methodology proposed here resem-

bles the pattern-mixture models in the missing data literature ([14] Chapter 16), where the

parameter estimates are estimated for each missing data pattern and then overall estimate

is calculated as a weighted average of the pattern-specific estimates. If we look closely at

equations (2.6)-(2.9), we see that for each strategy, the survival function is calculated as the

weighted average of the two sequence(pattern)-specific survival estimates.

In Chapter 3, we proposed a generalized Cox proportional hazards model for comparing

dynamic treatment regimes from sequentially randomized designs. In the simulation study

we examined the performance of the proposed model fitting and showed that it performed

well for moderate to large samples of sizes 200 to 800. Even in a large percentage of 50%

censoring, the estimates were approximately unbiased and the coverage probabilites were

consistent with the nominal level. The model was used to analyze the neuroblastoma dataset.

Our analysis showed that neuroblastoma treatment regimes were similar in terms of overall

survival, even though the survival probability at specific time points may be significantly

different in analysis separated by stages [12].

The methodology proposed can be used to analyze survival data from sequentially as-

signed treatment trials or studies, regardless of the number of stages of treatment or number

of available treatment options at each stage. Although two-stage randomization designs were

used for demonstration throughout the article, the model also applies to multistage random-

ization designs with more than two stages. For example, under a three-stage randomization
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design, the Cox model can be written as

λ(t) = λ0(t) exp

{
J−1∑
j=1

β
(1)
j Xj + β(2)R1(t) +

J−1∑
j=1

β
(3)
j XjR1(t) +

K−1∑
k=1

β
(4)
k ZkR1(t)

+
J−1∑
j=1

K−1∑
k=1

β
(5)
jk XjZkR1(t) + β(6)R2(t) +

J−1∑
j=1

β
(7)
j XjR2(t) +

K−1∑
k=1

β
(8)
k ZkR2(t)

+
J−1∑
j=1

K−1∑
k=1

β
(9)
jk XjZkR2(t) +

P−1∑
p=1

β(10)
p YpR2(t) +

J−1∑
j=1

P−1∑
p=1

β
(11)
jp XjYpR2(t)

+
K−1∑
k=1

P−1∑
p=1

β
(12)
kp ZkYpR2(t) +

J−1∑
j=1

K−1∑
k=1

P−1∑
p=1

β
(13)
jkp XjZkYpR2(t) + γTV

}
,

where R1(t) indicates the time-varying response and consent status after first stage treat-

ment; R2(t) denotes the time-varying measurement of response and consent after second

stage treatment; and Yp is the indicator for pth treatment at third stage. As the number of

stages involved in a design increases, it becomes increasingly complex to explicitly write down

the Cox model, as the number of parameters increases rapidly. However, the implementation

using standard software packages is straightforward.

The inclusion of R(t) as a covariate in the model demands further discussion. At first

glance, one may hesitate to use R(t) (an endogenous covariate) in the model with the fear

of blurring the direct effect of the initial treatment with its indirect effect through response.

But the goal of such analysis is to assess the regime effect, which by definition puts the direct

and indirect effects in one bin. The inclusion of R(t) in the model should merely be seen as

a tool to facilitate the comparisons of different treatment regimes.
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