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The National Safety Council listed falls as the third ranked cause (14.6%) of unintentional deaths in the general 

population of the US.  It is postulated that an attempt to control the COM is employed to prevent falls during 

perturbed gait.  The goal of this research was to gain an understanding of (1) the relationship between COM 

dynamics at slip initiation and slip severity, and (2) how individuals control their COM dynamics when warned 

about the possibility of slipping (anticipatory control). The dynamics of the body’s COM during slips may reveal 

insights into the biomechanical reasons behind the high prevalence of slip-precipitated falls in the elderly. The 

findings may also be helpful in differentiating between postural strategies that successfully recover balance and 

responses that result in falls. 

 Sixteen healthy young (20-35 yrs) and 11 older (55-70 yrs) subjects were exposed to an unexpected slip (no 

prior knowledge of the floor’s contaminant condition), and alert slip (warned of the potential contamination), and 

known slip after two baseline walking trials.  Body motion from 79 VICON markers attached to the body was 

sampled at 120 Hz.  Segmental mass was generated using a segmental analysis.  For an unexpected slip, maintaining 

the COM closer to the leading leg, an elevated COM position and fast medial-lateral COM transfers to the slipping 

leg at heel contact were associated with an increase in slip severity.  For anticipation conditions (alert and known), 

COM placement and velocity was geared toward continuing the gait cycle.  Age was significant in regards to COM 

position variables.  
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1.0 INTRODUCTION 

1.1 SCOPE OF THE PROBLEM 

Slips, trips, and falls (STF) and their associated injuries and deaths are a serious concern both in 

and outside the workplace.  Overall, the National Safety Council reported 14,500 deaths due to 

falls in 2002 and listed falls as the third ranked cause (14.6%) of unintentional injury deaths in 

the general population in the United States [1].  In the workplace, the incidence of nonfatal falls 

was nearly 19% in 2001 in the United States [2], while the prevalence of fatal falls ranked third 

below traffic accident fatalities and poisonings (Figure 1).  Falls are often initiated by slip 

events.  For same level occupational falls, slipping is the most common triggering event (43-50% 

of the cases), followed by tripping (18%) and loss of balance (14%) [2, 3, 4].   

Fall related injuries are severe and impart a heavy economic burden on society.  Workers 

suffer a multitude of injuries resulting from STFs; including sprains and strains, contusions and 

crushings, fractures, superficial injuries, and lacerations [5].  Over 21% of reported occupational 

disabling injuries in the United States are caused by STFs, the most common injuries being lower 

limb and wrist fractures [4].  The economic relation between slip-precipitated falls and cost can 

be observed in insurance claims by the workforce in the United States.  Slip and fall injuries 

comprised over 24% of the total cost of occupational insurance claims in the U.S. and included 

over 16% of the total number of occupational insurance claims seen in 1989 and 1990.  Over 

65% of these claims were due to falls on the same level, incurring an average cost of $4363 per 
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claim [6]. The economic detriment of falls and severity of injuries is also reflected in the number 

of days away from work (Figure 2).  The increased incidence of sick leave economically impacts 

the cost of doing business through lost time as well as increasing worker compensation 

payments. Similar findings were reported in Great Britain: STFs are the second most leading 

cause for occupational injuries and cost over $247 million in medical costs and lost output each 

year [5].  These falls-related occupational trends cause similar concerns in the general 

population.  In 1985, falls in the general population affected over 11 million people in the United 

States resulting in a lifetime cost to the nation of $37 billion [7].  

 

Figure 1: Unintentional Deaths by Cause [2]. 
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Figure 2: Number of days away from work due to falls [2]. 

The probability of falling as well as severity of fall-related injuries increases with age.  

Specifically, the risk for an STF accident is 1.5 times greater in workers aged 56 years and above 

compared to the findings in younger individuals between the ages of 21 and 25 years [5].  

Occupational falls, one of the four leading causes of death for workers 65 and older, are 

responsible for 13% of deaths in that age group, which is 4 to 14 times the rate from workers 

aged 16 to 64 years [8].  Finally, over 50% of fatal falls in the United States workforce occur to 

adults 45 years and older (Figure 3).  Similarly, outside the workplace, the average annual risk of 

falling for an older adult over 65 years ranges from 30 to over 50%, meaning roughly one in 

three older adults fall each year [9, 10].  Furthermore, older adults over 75 years of age have 

almost three times the incidence of falls compared to older adults aged 60-75 years in the general 

population in the United Kingdom [11].  In a study based in a hospital in New Zealand, nearly 

90% of documented hip fractures in the elderly population involved a fall, with 75% of them 

taking place indoors and the remainder outdoors [12].  Falls-related injuries incurred an average 

cost of $4000 to an individual over 65 years of age in comparison to an average cost of $2300 for 
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an individual 25-44 years of age.  Over 30% of the total economic cost of falls in the older 

general population in the United Kingdom is attributed to falls preceded by slips [11]. 

 

Figure 3: Age Distribution of Work-related falls, 2001 [2]. 

The aging trend of the population coupled with the predisposition of the elderly to fall is 

expected to emphasize the seriousness of fall-related concerns. Looking ahead into the future, an 

approximate 5% increase in the US population of workers aged 55 and older is projected during 

the 1998-2008 decade compared to the previous decade [13]. In this 98-08 decade, this age group 

will comprise about 16% of the total labor force [13].  In terms of cost, over $85.37 billion 

dollars in 2020 due to workplace fall injuries and deaths are anticipated, with more than 37% of 

this cost attributed to falls among workers over 65 years old [14].   

In summary, epidemiological findings indicated that slip-precipitated falls are among the 

leading causes of injuries and source of high economic costs, especially among older adults. 

Understanding the biomechanical factors responsible for slipping and falling is an important 

component in injury prevention [15].  This thesis project focuses on the impact of age and 

anticipatory postural responses on COM dynamics during slipping.  The knowledge gained from 
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this research may provide underlying biomechanical reasons for the epidemiology findings 

summarized in this section.  

1.2 SLIPS AND FALLS 

When an individual slips, a postural response is generated to regain balance.  These complex 

recovery mechanisms take place at several body joints (knee, hip, upper extremities, etc) in order 

to restore perturbed balance.  Although research which focuses upon the reactions of individual 

joints of the body gives insights into the role of that specific joint [15, 16, 17, 18] or on specific 

characteristics of slips e.g. foot dynamics [19, 15, 17, 20], it does not provide an overall picture 

of the body’s response to a perturbation.  This study focuses on potential associations between 

the three-dimensional dynamics of the body’s COM and resulting slipping severity.   

1.2.1 Biomechanics of Slips and Falls 

The causes of slips and falls involve complex interactions of human and environmental factors 

[21].  Human factors include gait biomechanics, proprioceptive abilities, aging, perceptual 

knowledge of a slippery surface, and neuromuscular mechanisms involved in balance and gait.  

Environmental factors include friction between the foot-floor interface, footwear material, 

lighting, and floor unevenness.  Previous studies focusing on the interactions between human and 

environmental factors revealed that a slip occurs when the coefficient of friction of the shoe-floor 

interface does not meet the biomechanical frictional requirements determined by the peak shear-

to-normal ground reaction forces, also called peak required coefficient of friction (RCOF), 

recorded during stance shortly after heel contact [22].   
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After a slip occurs, the body must initiate a corrective response to regain balance, 

maintain posture, and continue with forward locomotion.  Characterizing biomechanical factors 

that influence the outcome of a slip lead to a greater understanding of the variables which 

impacts the ability to recover equilibrium.  In an attempt to understand these variables, 

researchers have exposed participants to moving floor surfaces e.g. simulated slips [16] or to 

very slippery (contaminated) floors [23, 24, 17, 20, 18].  Most research has focused on postural 

strategies adopted by the lower body.  Findings related to the foot dynamics of the slipping leg 

indicate that the foot's slipping distance and velocity are positively associated with the risk of 

falling [16, 17, 20].  Investigators have also noted that corrective reactions generated at the knee 

and hip of the leading (slipping) leg play a predominant role in balance recovery [25, 17, 15, 18].  

More recently, trailing (non-slipping) limb strategies have been underlined in the literature [26] 

and in some current/preliminary work, including swing phase interruption and thus increase of 

the base of support (BOS) area.  Few other studies have presented evidence of definitive upper 

body postural strategies, namely an arm elevation strategy, which may influence the outcome of 

a slip [26].  In summary, the reactions generated during slipping involve intertwined responses 

generated at several body joints. 

 The prevalence of falls in the elderly and aging of the population has stimulated research 

on the differences in the biomechanics of slips between young and older adults.  Older people 

characteristically walk with a shorter stride length, a larger step width, and slower gait speed 

[23].  These factors should result in a safer or more stable gait; however the epidemiological 

findings are not in support of this argument.  Other factors that may degrade the ability of older 

adults to recover once a slip is initiated include decreased strength [27] and delayed reaction time 

[24].  In other words, the typically reduced muscular leg strength found in older adults may 
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prevent the generation of appropriate corrective torques necessary to recover from a slipping 

perturbation, or alternatively, older adults may react too slowly to stop the sliding motion of the 

foot.  Delayed reaction time may also be due to aging-related proprioceptive deficits that may 

influence the ability to recognize a slip is occurring.   

1.2.2 COM Dynamics When Balance is Perturbed 

The human body has a wide range of biomechanical responses, both conscious and reflexive, 

available to maintain stability during slips and to protect in case of a fall [15].  These 

multivariate responses include arm elevation, hip and knee motion, trunk motion, and 

compensatory stepping [15].  The interactions between these responses are complex and their 

individual impact on balance during walking is difficult to evaluate.  Examining the center of 

mass dynamics during slipping can provide insights into the overall appropriateness of postural 

responses generated in an attempt to prevent a fall.   

 Both experimental [26, 28, 23] and modeling [29, 30] studies have examined COM 

dynamics in response to an external perturbation.  Two experimental perturbation paradigms 

have been used to investigate the COM dynamics during slipping: base of support (BOS) 

translations simulating slips [26] and gait on contaminated slippery floors [23, 24, 28].  The 

study by Marigold and Patla investigated the impact of prior knowledge regarding a known 

forward BOS translation on the COM trajectory [26].  The authors reported that during known 

perturbations COM-related adaptations were evident compared to findings in unexpected 

perturbations (e.g. COM was positioned closer to the contralateral (non-perturbed) limb at time 

of heel contact) [26].  The dynamics of the arms were not included in the computation of the 

COM position [26], which may significantly impact the findings [15].  Another study by You 

and colleagues investigated the effect of slippery perturbations on the body’s COM for a known 
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slip condition [28].  During falls, participants were unable to bring the COM over the perturbed 

foot.   

Investigations by Lockhart have examined the relationship between aging, RCOF, and 

the anterior posterior COM velocity [23].  Lockhart found that older adults fell more than their 

younger counterparts.  Additionally, the anterior posterior COM velocity was higher after heel 

contact in comparison to before heel contact during a slipping perturbation for both young and 

older adults.  This indicates that increasing the anterior posterior COM velocity is an important 

strategy in slip-recovery reactions.  The investigators concluded that COM dynamics is a crucial 

component necessary to understand the reaction of the whole body in response to a slipping 

perturbation.   

In a 2-D inverted pendulum model of the body during stance, Pai and Patton simulated 

anterior COM pushes while maintaining a stationary base of support (BOS) in an effort to derive 

a “stability region” within which loss of balance can be prevented [29].  The model predicted 

that the initial position of the COM with respect to the BOS plays an important role in 

determining the boundaries of this stability region. For example, in response to an anterior COM 

push with a given velocity, a posteriorly positioned COM at the start of the perturbation will 

increase the chances of recovering balance, i.e. the COM will come to a stop over the BOS as the 

velocity dissipates.  The first modeling study by Pai and Patton [29] was followed by a second 

inverted pendulum model investigation using a dynamic base of support to simulate a slip [30]. 

In contrast to the COM’s anterior pushes employed in the first study, the model predicted that in 

order to stay within the stability region in response to a simulated slip (anterior translation of the 

BOS), an anteriorly positioned COM as well as an increased COM anterior velocity are desired.  

The investigators hypothesized that subjects adjust their COM initial conditions in anticipation to 
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a known slipping perturbation [30].  The limitations of the studies by Pai and colleagues [29, 30] 

include the simplicity of the inverted pendulum model (knee and hip reactions are important in 

large perturbations).  Furthermore, COM dynamics were not investigated in the frontal and 

transverse planes. 

Based on previous studies, one of the main goals of corrective reactions generated in 

response to a slip is to bring the center of mass over the base of support.  The 3-D COM 

dynamics during slipping are yet to be fully described as well as their dependence on aging and 

anticipatory responses.  Thus, this proposed thesis work focuses on these aspects of slips and 

falls. 
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2.0 SPECIFIC AIMS 

The goal of this research was to gain a greater understanding of the body’s center of mass 

(COM) dynamics during slipping in young and older adults.  It is believed that individuals 

attempt to control the COM to prevent falls during perturbed gait. Thus, the dynamics of the 

body’s COM during slips reveal insights into the biomechanical reasons behind the high 

prevalence of slip-precipitated falls in the elderly.  In addition, tracking COM dynamics during 

slips is helpful in differentiating between postural strategies that successfully recover balance 

and responses that result in falls.  Previous findings by our research group suggested that the 

perception of the danger of slipping induces anticipatory responses that are effective in 

preventing large slipping perturbations.  Thus, this project (1) examined differences in COM 

dynamics between slip-recovery and slip-fall outcomes, (2) investigated the impact of 

anticipatory responses on COM dynamics, and (3) compared COM dynamics between young and 

older adults. 

2.1 SPECIFIC AIM 1 (SA1) 

The first specific aim is to investigate potential associations between the COM dynamics 

(position and velocity) evaluated at heel contact and the severity of the slip. 
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 H.1) Maintaining the COM closer to the trailing (non-slipping) leg at heel contact will be 

associated with reductions in slipping distance and velocity (i.e. slip severity), and thus 

increasing chance of recovery. 

 H.2) A greater forward velocity of the COM at the time heel contact onto the slippery 

surface will be associated with reductions in slip severity. 

H.3) The COM dynamics at heel contact will have a greater impact on slipping 

distance/velocity in the elderly compared to the findings in young adults. 

2.2 SPECIFIC AIM 2 (SA2) 

The second specific aim is to examine the impact of anticipating slippery surfaces on COM 

dynamics. 

 H.1) Anticipation conditions will impact COM dynamics at heel contact. 

 H.2) In the case of a slip, anticipation conditions will be associated with a faster recovery 

of the COM trajectory.  Recovery time will be chosen as the time at which the anterior-

posterior distance between the COM and heel of the leading (slipping) leg is zero. 

H.3) Anticipation condition will impact COM dynamics to a greater degree in older 

adults. 

 

In summary, this study investigates the relationship between COM kinematics and slipping 

severity, as well as the impact of aging on this relationship. 
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3.0 METHODS 

Data for the completion of this research thesis has been collected as part of a larger study funded 

by the National Institute of Occupational Safety and Health (R03 OH007533, Principal 

Investigator: Rakié Cham).   

3.1 SUBJECTS 

The study involved 16 healthy young adult subjects aged between 20 to 35 years and 11 older 

adult subjects between the ages of 55 to 70 years (Table 1 and Table 2).  Prior to testing in the 

study, a 30-minute neurological screening was required of all subjects.  Exclusionary criteria 

included a history of neurological, orthopedic, vestibular, and any other difficulties that would 

hinder normal gait.  The subjects were required to return for two visits.  The first visit is a 30-

minute neurological and balance screening while the second visit is the gait testing session. 

During the gait session, subjects were equipped with a safety harness to prevent them from 

hitting the ground in case of an irrecoverable balance loss. This harness has been used in 

previous research and has proven to be safe without impeding natural walking.  The age, weight, 

stature, and gender of all subjects are detailed in Table 1 and Table 2.  
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Table 1: Gender Distribution 

  Young(N) Older (N) 
Female 9 7 
Male 7 4 
Total 16 11 

 

Table 2: Subject Population Characteristics 

 Young Mean (SD) [Range] Older Mean (SD) [Range] 
Age (yrs) 23.5 (3.2) [20-33] 60.9 (4.0) [55-67] 
Weight (kg) 67.6 (10.5) [53-89] 78.2 (10.9) [56-93] 
Stature (cm) 171.2 (8.9) [159-194] 166.2 (8.1) [154-179] 

 
 

3.2 EQUIPMENT 

Data collection of gait variables were synchronized and sampled at 1080 Hz, with the kinematic 

data sampled at 120 Hz. These variables included ground reaction forces recorded under each 

foot individually (2 BERTEC 4060 force platforms) and body motions from 79 VICON passive 

markers (8 M2-camera VICON system 612) attached to the body and shoes (Figure 4, Table 3).  

Eight Vicon cameras were placed around the lab to setup a capture volume of dimensions 

approximately 6.6 x 2 x 2 m on top of the force plates for 3D motion analysis (Figure 5).  An 

overhead harness system coupled with an overhead pulley was used to catch the participant in 

the event of an irrecoverable balance loss.  
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Figure 4: Marker placement on the body 

Table 3: Segments and position of Vicon markers 

Segment Position of markers 
Head 2 markers on the frontal bone (forehead) and 2 markers on the parietal bone 

(posterior) 
Torso L/R acromium, cervical vertebra 7, sternum, thoracic vertebra 10c 
Upper arm 
(L/R) 

Cluster of 4 markers attached mid-segment, lateralc and medialc epicondyli of 
humerus 

Forearm  
(L/R) 

Cluster of 3 markers attached mid-segment, lateralc and medialc styloid 
processes (wrist) 

Pelvis L/R anterior superior iliac spines (ASIS) and left/right posterior superior iliac 
spines (PSIS) 

Thigh (L/R) Cluster of 4 markers, lateral and medialc femoral epicondyli, greater trochanterc 
Shank (L/R) Fibula head, tibial tuberosity, lateral and medial malleoli 
Forefoot 
(L/R) 

4 markers surrounding anterior side of shoe (distal phalanges)  

Hindfoot 
(L/R) 

4 markers surrounding posterior side of shoe (tarsals/metatarsals), heelc, lateralc 

and medialc sides of flexion-extension axis of metatarsals/phalanges joint 
L/R =Left/Right    
c = Marker present only in standing calibration trial and reconstructed in the gait trials based 
on its 3D-relationship with other markers belonging to the same segment and present in the 
dynamic trials. 
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Figure 5: Experimental Laboratory Setup 

3.3 CONDITIONS AND PROTOCOL 

All participants were instructed to follow the same walking protocol.  First, written informed 

consent approved by the Institutional Review Board of the University of Pittsburgh was 

obtained.  The subject was then instrumented with the markers and equipped with safety harness.  

Subjects were instructed to walk at a self chosen speed and allowed to practice such that each 

foot hit one and only one force platform embedded into the ground such that the participant’s left 

foot landed onto the flooring area that would be contaminated during the slippery conditions.  

Prior to every trial, the subject was instructed to face away from the walkway and listen to loud 

music for one minute, which distracted the participant in the case that glycerol was applied onto 

the floor.  After one minute, the subject was instructed to turn around and walk to the end of the 

runway while data were recorded by the motion capture system.  To generate slip events a 

diluted glycerol solution, 75% glycerol by volume, was applied uniformly onto the force 
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platform in a location such that the left foot made contact with the slippery area, while the right 

leg was the trailing limb.   

 

The conditions included in the testing were as follows: 

 “Known Dry” trial: The subject was informed that the first few trials will be dry, ensuring 

natural walking with no fear of slipping. At least two known dry trials were collected. 

 “Unexpected” warning condition: No information about the floor’s contaminant 

condition was given to the subject. The third trial was the unexpected slip. 

 “Alert” warning conditions: The subject was verbally warned of the possibility of 

encountering slippery floors prior to each trial.  Four dry trials were collected followed 

by a glycerol-contaminated condition, and four dry trials were presented after. In this 

thesis the dry trials collected after the alert contaminated condition were not included in 

the analysis.  

 “Known Slip” warning condition: The subject was informed of the floor’s slippery 

condition and instructed to walk across the contaminated floor and do his/her best to 

prevent falling. 

3.4 WHOLE BODY MODEL 

A whole body model was generated consisting of 13 rigid segments: The foot, shank, thigh, 

forearm, and upper arm for each side of the body, as well as the pelvis, torso and head.  A 3D 13-

segment (Table 3, Figure 6, and Figure 7) whole-body model was built in Body Builder (version 

3.55, Vicon Motion Systems) as part of ongoing gait investigations.  Segmental mass and inertial 

properties are based on data published by Chandler [31].  A total of 79 markers was used, 60 
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dynamic and 19 static.  Static markers were removed for dynamic trials because of their 

increased likelihood of being blocked or knocked off the body during a slip.  The static markers 

were reconstructed from dynamic trials by finding its position within the static local coordinate 

system of the foot.  For dynamic trials this point was reconstructed within the dynamic local 

coordinate system using the derived static coordinates.   

The wrist, elbow, ankle and knee joint centers were taken as the midpoint between the 

lateral and medial styloid processes, epicondyli of the humerus, malleoli, and femoral epicondyli, 

respectively. The shoulder joint center was derived from the acromium marker [32], while the 

hip joint center was based on Bell’s regression equation [33, 34].  Segment lengths were derived 

from a standing calibration trial using the distance between relevant joint centers.  The 

orientation of the lower extremities’ local coordinate systems followed the convention proposed 

by Cappozzo [35], while local axes of the upper body’s segments adhere to the suggestions of 

Roux [36] and Schmidt [32].   

The relative orientation between neighboring segments was computed based on the 

widely used convention of Grood and Suntay [37] and recommended in the standards of the 

International Society of Biomechanics [38].  A segmental analysis was used to compute the 

COM position in this study, i.e. the body’s COM was calculated using Equation 1 [39]: 

∑
∑=

i

ii
a m

am
COM                       (1) 

where m is the mass of each segment i and a is the global coordinate of interest.   
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Figure 6: Marker placement on the body.  The static markers are the hollow markers while 
dynamic markers are solid.  The markers on the shoes (N=22) have a 9.5 mm diameter, while the 
rest of the markers on the body are 14 mm in diameter. 

  

Figure 7: Segment divisions of the body 
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3.5 DATA PROCESSING 

3.5.1 Overview 

This Master’s Thesis project focused on the COM position, COM velocity and the severity of the 

slip based on the peak slipping velocity (PSV) of the left heel.  Normal ground reaction forces 

were used to identify heel contact (HC) and toe off (TO) frames of the left (slipping) foot.  

Stance time, defined between HC and TO, was used to time normalize the gait data collected on 

dry surfaces.  For slippery trials, stance time of the dry trial prior to the slip was used to 

normalize the data.   

Regarding the filtration of data, there are two possible sources of internal filtering within 

the Vicon motion analysis system.  If a marker went missing during the course of a trial, during 

data processing a cubic spline interpolation was employed to estimate the location of missing 

data points in addition to a moving average to estimate any remaining missing markers.  Since 

the algorithm used to arrive at this point is proprietary to Vicon, the data hereafter shall be 

referred to as ‘unfiltered’ in order to clarify the data process. 

3.5.2 Slip Severity/Left Heel Data 

The unfiltered 3D instantaneous position of the reconstructed left heel marker (Figure 8) was 

numerically differentiated to derive heel velocity information (Figure 9).  The resultant (medial-

lateral and anterior-posterior) transverse plane heel velocity was calculated and a customized 

MATLAB routine was used to identify the time of PSV between HC time and the end of the slip 

(EOS).  Peak slip velocity (PSV) was identified as the first local maximum occurring in the 

resultant velocity after 50 ms from heel strike.  The EOS frame was selected either as the time of 

recovery (i.e. heel velocity returned to 0 baseline), or in the case of a fall (subject fell into the 

 19



 

harness or slipped beyond the capture volume) the EOS was set to the time of the typical second 

peak that occurs in the anterior-posterior heel velocity time series HC (Figure 9, B).  Total slip 

distance (TSD) was also measured as a secondary measure of slip severity. Specifically, TSD 

was assessed as the resultant distance (medial-lateral and anterior-posterior) traveled along the 

floor by the left heel marker between HC time and EOS, as illustrated in Figure 8.   

Each slip trial was classified as hazardous or non-hazardous. This classification was 

based on the value of PSV. More specifically, a slip trial was classified as hazardous if the 

resultant PSV was greater or equal to 1 m/s. The slip trial was labeled as non hazardous if this 

PSV cutoff criterion was not satisfied.  It should be noted that in the case of a hazardous slip, 

TSD is probably a conservative value as the subject often slipped beyond the capture volume or 

fell into the harness. This is the reason for the choice of PSV as a primary measure of slip 

severity.  
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Figure 8: Distance traveled by the slipping foot (C) in global coordinates calculated as the 
resultant of the dimensions of the transverse plane of the floor (A and B) for both Non-
Hazardous and Hazardous slip outcomes.  An X denotes the EOS while a diamond marks time of 
PSV. These events were set based on the heel velocity data (Figure 9) 
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Figure 9: Unfiltered velocity of the slipping foot (C) calculated as the resultant of the dimensions 
of the transverse plane of the floor (A and B) for both Non-Hazardous and Hazardous slip 
outcomes.  An X denotes the EOS while a diamond marks time of PSV. 
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3.5.3 COM related variables 

The Cartesian COM coordinates, i.e. medial-lateral (ML COM), anterior-posterior (AP COM), 

and vertical COM position (UP COM) were calculated relative to the position of the left heel 

(leading foot) at time of HC (typical time trajectory represented in Figure 10 for a dry baseline 

trial). Furthermore, the vertical COM (UP COM) was normalized to stature to account for 

differences in height within the subject population.  The 3D components of the COM position 

were filtered using a 10 Hz lowpass elliptical filter and numerically differentiated to derive the 

COM velocity information (VML COM, VAP COM, and VUP COM as typically represented in 

Figure 11).  The typical time trajectory of the COM kinematics (Cartesian position, velocity) 

represented in Figures 10-11 for a baseline dry trial indicates agreement with previously 

published data [40, 41]. 
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Figure 10:  Typical Cartesian based position graphs of a young female subject. Positive values 
indicate right, forward, and up for the mediolateral (ML COM), anterior posterior (AP COM), 
and vertical COM (UP COM) respectively.  Lines indicate HC and TO.  
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Figure 11: Typical Cartesian based velocity graphs of a young female subject. Positive values 
indicate the COM is moving toward the right, forward, and top sides of the body for the 
mediolateral (VML COM), anterior posterior (VAP COM), and vertical (VUP COM) COM 
velocity respectively. Lines indicate HC and TO. 

The COM position was converted from a Cartesian coordinate system to cylindrical 

coordinates in order to provide the resultant distance (DCOM) and orientation (ORCOM) of the 

COM relative to the left heel at HC in the horizontal plane in order to observe an overall COM 

position component.  Specifically, DCOM was calculated as the square root of the sum of 

squares of the mediolateral (ML COM) and anterior posterior (AP COM) position (Figure 12 

represents a typical DCOM time series).  Furthermore, the DCOM was normalized to stature to 

account for the impact of differences in height within the subject population on the COM 
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placement.  The orientation of the COM in the transverse plane (ORCOM) was calculated as 

explicitly stated in Equation 2.  That is, the global orientation of the vector COM-Left heel is 

calculated in the transverse plane and normalized to a direction of travel (in case the subject were 

not walking in a straight line). The direction of travel is arbitrarily set to the orientation of the 

COM trajectory between HC and the normalized time -30% of stance.  Figure 12 represents a 

typical DCOM and ORCOM time series.  The DCOM (Figure 12, A) decreases linearly, since 

the COM is behind the left foot.  After the COM progresses over the left heel, it increases 

linearly.  The ORCOM is 0 degrees as the COM approaches the left heel.  As the COM 

progresses over the heel, it flips 180 degrees. 

















−
−

−







=

−

−

HC

HC

HC

HC

APCOMAPCOM
MLCOMMLCOM

APCOM
MLCOM

ORCOM
%30

%30arctanarctan180
π

    (2) 

 
Where, ORCOM is the orientation of the COM with respect to the left heel at HC in the 
horizontal plane, 
ML COMHC, is the mediolateral COM at time of heel contact,  
AP COMHC, is the anterior posterior COM at time of heel contact 
ML COM-30%, is the mediolateral COM at -30% of stance phase, and 
AP COM-30%, is the anterior posterior COM at -30% of stance phase. 
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Figure 12:  Typical cylindrical based position graphs of a young female subject. A positive 
DCOM indicates greater distance from the left heel.  The ORCOM begins at zero and grows 
increasingly positive as the subject passes over the left heel.  The UP COM is more positive 
closer to the head.  Lines indicate HC and TO. (DCOM and UPCOM are normalized with respect 
to stature) 

3.5.4 Additional relevant variables  

Other calculations relevant to the Master’s Thesis project are gait speed, step width, and step 

length.  Gait speed (GS) was computed as the total anterior posterior distance traveled by the 

COM between left and right heel strikes divided by the travel time.  Step width (SW) was 

determined to be the distance in the frontal plane between the right and left heel markers at time 
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of HC.  Step length was computed to be the distance in the sagittal plane between the right and 

left heel markers at time of HC. Step Width and Step Length were normalized to left leg length 

in order to account for differences in anthropometry.   

3.6 DATA ANALYSIS 

To analyze the Specific Aims, point in time values of the dynamic variables listed in Table 4 

were calculated for each trial.  Times of interest were HC (SA1, SA2) and an average reaction 

time of 200 ms after HC (SA2).  For both Specific Aim data sets, the normality of all variables 

was checked and an outlier analysis using the jackknife distance method was performed on the 

relevant variables pertaining to the specific hypotheses.  Any subject data identified as an outlier 

was removed from further analysis and summary.  Analysis of variance (ANOVA) conducted on 

the gait variables listed in Table 4 were used to test the hypotheses associated with the Specific 

Aims with a significant level of 0.05 used to determine significance.  In addition, the baseline 

dry trial used for comparison in the statistical analysis was the first dry trial preceding the slip. 

Table 4: Dependent Gait Variables 

COM-related 
variables 

Foot kinematics 
(leading leg) 

Other 

3D COM position§ Heel slip distance Slip outcome£ 
3D COM velocity Heel slip velocity  

§ The COM position is taken relative to the left (leading leg) heel taken at the time of HC. 
£ Each slip will be classified as hazardous or non-hazardous slip. 
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Specific Aim 1 will investigate potential associations between aging and COM dynamics 

evaluated at heel contact and the severity of the slip as well as the corrective reactions 

employed in an attempt to prevent falling.   

Only unexpected slippery trials for both the young and old, male and female subjects 

were included in the analyses associated with the testing of the hypotheses of Specific Aim #1.   

H.1 Maintaining the COM closer to the trailing (non-slipping) leg at heel contact 

will be associated with reductions in slipping velocity, and thus increasing 

chance of recovery. 

H.2 A greater forward velocity of the COM at the time heel contact onto the slippery 

surface will be associated with reductions in slip severity. 

H.3  The COM dynamics at heel contact will have a greater impact on slipping 

distance/velocity in the elderly compared to the findings in young adults. 

Two four-factor ANOVAs were conducted on slip velocity measured at the left heel for the 

unexpected slip trials (Table 4).  The three factors are the 3-D components of the COM position 

(H.1) and velocity (H.2) evaluated at the time of left HC.  The fourth factor was age group, 

included as a between-subject effect in the ANOVA (H.3).  A significant COM dynamics factor 

(p<0.05) would be indicative of a non-negligible association between the slip severity (slip 

velocity) and the specific aspect of the COM dynamics under investigation.  

In order to compare COM dynamics between the possible outcomes of slipping, a series of 

logistic regressions were conducted on the variables describing the COM dynamics at time of 

HC (H.1., H.2.) with age group included as a between-subject effect (H.3) for the unexpected 

slip trials against the outcome of the slip (hazardous, non-hazardous).  A significant level of 0.05 
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was followed by post-hoc pairwise testing to investigate specific differences in COM dynamics 

between the three outcomes. 

 

Specific Aim 2 will examine the impact of anticipating slippery surfaces on the dynamics of 

the COM. 

Both the young and old, male and female data will be included in the analyses associated with 

the testing of aim 2’s hypotheses. 

 H.1 Anticipation conditions will impact COM dynamics. 

H.2 In the case of a slip, anticipation conditions will be associated with a faster 

recovery of the COM trajectory.  Recovery time will be chosen as the time at 

which the anterior-posterior distance between the COM and heel of the leading 

(slipping) leg is zero. 

H.3 Anticipation condition will impact COM dynamics to a greater degree in older 

adults. 

H.1 will utilize the dry trials collected under the baseline (known dry) and alert warning 

conditions.  Only the two baseline dry trials preceding the unexpected slip and the two alert dry 

trials preceding the alert slip condition are selected for this analysis.  A series of one factor 

within-subject ANOVAs were conducted on the COM dynamics (position and velocity) (see 

Table 4), with the warning condition being the explanatory effect of interest. In addition, age 

group is included as an additional (between-subject) effect (H.3) as well as the second order 

interaction effects of warning and age group.  The dependent variables will be evaluated at HC 

and 200 ms after HC. A significant warning factor would be indicative of the participants’ 

abilities to control the body’s COM dynamics when a slipping danger is perceived. 
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The testing of H.2 will include the slippery trials collected under the three warning 

conditions (unexpected, alert and known).  A two factor within-subject ANOVA was conducted 

on the recovery time of the COM trajectory (quantified as explained in the formulation of H.2), 

with the independent factor being the warning condition, age group (H.3), and their interaction 

effect.  
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4.0 SPECIFIC AIM #1 

4.1 QUALITATIVE DESCRIPTION OF GAIT VARIABLES RELATIVE TO SA1 

To qualitatively inspect differences in COM trajectories between walking patterns that resulted 

in a hazardous slip and those that did not, the time history of the COM variables recorded in a 

typical hazardous slip trial was compared to the average (+/- 1 SE) gait patterns that prevented a 

hazardous slip outcome (Figures 13-14). Pre-heel contact patterns, i.e. pre-slip patterns, suggest 

the only variables that differentiated gait patterns at high risk of slips are the DCOM (Figure 

13a), UPCOM (Figure 13a), and VML COM (Figure 14a). Specifically, hazardous slip events 

were characterized by a greater DCOM (i.e. COM closer to the trailing leg), VML (faster medial 

lateral COM transitions) and UPCOM (elevated COM).  

  After a slip occurs, i.e. post HC, the data suggests that the goal of a slipping individual is 

to regain balance by bringing the COM back in line with ‘normal’ gait.  The time trajectories of 

COM variables in hazardous slip trials undergo divergence with ‘normal’ gait, in both position 

(e.g. vertical COM position in Figure 13C) and velocity (e.g. medial-lateral and vertical COM 

velocity in Figures 14 AC), approximately 15-20% into stance.   
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Figure 13: Typical cylindrical based position graphs of the averaged non-hazardous baseline dry 
trials (mean +/-SE) for all young subjects (black line/gray shading).  A hazardous slip outcome 
of a young individual (hollow circle – dotted line) for the unexpected slip trial is also shown.  A 
positive DCOM indicates greater distance.  The ORCOM grows increasingly negative until the 
subject passes over the left heel.  The UP COM is more positive closer to the head.  The line 
indicates HC.  (DCOM and UPCOM are normalized with respect to stature). 
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Figure 14: Typical Cartesian based velocity graphs of the averaged non-hazardous baseline dry 
trials (mean +/-SE) for all young subjects (black line/gray shading).  A hazardous slip outcome 
of a young individual (hollow circle – dotted line) for the unexpected slip trial is also shown.  
Positive values indicate the COM is moving toward the right, forward, and top sides of the body 
for the VML COM, VAP COM, and VUP COM respectively.  The line indicates HC.   

4.2 CORRELATION ANALYSIS  

In order to examine Specific Aim #1, only the unexpected slippery trials for both male and 

female subjects of all ages were included in analyses relative to SA1.  A correlation analysis 

confirmed the expectations that slip distance and slip velocity are highly correlated (Table 5, r = 

0.88), thus only slip velocity was used in further analyses due to the more reliable nature of PSV 
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in hazardous slips as previously mentioned in 3.5 DATA PROCESSING.  Several strong 

correlations include the intuitive relationship between COM components, for example step width 

(SW) and mediolateral COM velocity (r=-0.64) and gait speed (GS) and anterior posterior COM 

velocity (r=0.73) which use similar components in their derivations.  Other relationships of 

interest include the orientation of the COM (ORCOM) and step width (0.64) which is highly 

related due to the mathematical definition of ORCOM.  A weak correlation of note is gait speed 

to total slip distance (TSD) and peak slip velocity (PSV).   

Table 5: Correlation Matrix of SA1 Variables (Appendix) 

TSD PSV SW SL GS DCOM OR 
COM

UP 
COM

VML 
COM

VAP 
COM

VUP 
COM 

TSD 
 

0.88 0.47 -0.28 -0.07 0.40 0.18 0.44 -0.60 -0.02 0.30 

 PSV 
 

0.32 -0.31 -0.08 0.42 0.13 0.41 -0.53 0.00 0.28 

  SW 
 

-0.06 -0.12 0.11 0.64 0.17 -0.64 -0.06 0.19 

   SL 
 

-0.41 -0.54 0.14 -0.07 0.07 -0.40 0.28 

    GS 
 

0.02 0.21 -0.09 0.22 0.73 -0.48 

     D COM
 

-0.30 -0.14 -0.33 0.36 -0.25 

      OR 
COM

0.04 -0.46 -0.12 0.05 

       UP 
COM

-0.20 -0.08 0.24 

        VML 
COM

0.22 -0.42 

         VAP 
COM

-0.44 
 

          VUP 
COM 

4.3 QUANTITATIVE DESCRIPTION OF GAIT VARIABLES RELATIVE TO SA1 

Both young and old individuals had similar slip outcomes for the unexpected slip (Table 6) with 

only a 3.1% difference between the two age groups for each slip outcome.  
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Table 6: Slip Outcome by Age 

  Hazardous Non-Hazardous 
Young 66.7% 33.3%
Old 63.6% 36.4%

 

T-tests were run to investigate differences in the relevant parameters associated with SA1 

(unexpected slips) between young and older adults using a significance level of p<0.05 (Table 7).  

In general, the average slipping perturbation (peak slip velocity), while of a lesser magnitude in 

the young subjects, was not significantly different between young and older adults.  Similarly the 

average gait speed for younger adults was greater than that of older, but not significantly (GS in 

Table 7).  Finally, only the anterior-posterior COM velocity (VAP COM in Table 7) evaluated at 

HC showed significant differences between young and older adults. Specifically, VAP COM was 

significantly greater in young compared to older subjects (~7% difference). 

Table 7: Parameters relevant to SA1  

Mean (SD) Young Older 
PSV (m/s) 1.24 (0.50) 1.30 (0.55) 
GS (m/s) 1.47 (0.12) 1.38 (0.09) 
ML COM (mm) 60.42 (22.14) 56.07 (25.27) 
AP COM (mm) -304 (30) -275 (24) 
UP COM  0.581 (0.004) 0.581 (0.004) 
DCOM (mm) 0.18 (0.02) 0.17 (0.02) 
ORCOM (°) 10.53 (3.23) 11.11 (3.70) 
VML COM (m/s) 0.09 (0.04) -0.08 (0.05) 
VAP COM (m/s)* 1.49 (0.12) 1.38 (1.10) 
VUP COM (m/s) -0.19 (0.05) -0.18 (0.03) 

* = age significance 
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4.4 HYPOTHESIS TESTING  

 
To test the hypotheses of Specific Aim #1, two four-factor ANOVAs were conducted on PSV for 

the unexpected slip trials.  The four factors are the 3-D components of the COM position (H.1) 

and velocity (H.2) evaluated at the time of left HC.  The fourth factor was age group, included as 

a between-subject effect in the ANOVA (H.3).  As indicated by Table 5, none of the independent 

variables included in the same ANOVA model are strongly correlated. 

The ANOVAs revealed significant relationships between PSV and the independent 

variables DCOM, UP COM, and VML COM.  Specifically, maintaining the COM closer to the 

leading leg (DCOM) and a relatively lowered COM position (UP COM) (Figure 15) were 

associated with decreases in PSV. Also, fast medial-lateral COM transfers to the leading/slipping 

leg (VML COM) (Figure 16) were associated with increases in PSV.  Age was not significant in 

either ANOVA model.   

Table 8: COM dynamics and Slip Severity 

ANOVA MODEL Dependent variable Independent variable P-value 
1  PSV DCOM 0.0012
  R2=0.539 ORCOM 0.0954
    UP COM 0.0050
    Age 0.1363
2  PSV VML COM 0.0220
  R2=0.536 VAP COM 0.3202
    VUP COM 0.5459
    Age 0.5038

 

 37



 

PSV = -39.1 + 65.6 UPCOM + 12.9 DCOM 
R2=0.407

 

Figure 15:  Peak Slip Velocity as a function of this distance of the COM to the left heel in the 
transverse plane (DCOM) and the vertical COM position (UP COM).    
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Figure 16:  Peak Slip Velocity plotted versus mediolateral COM velocity (VML COM).  Age 
was not significant. 

In a further analysis, the significant variables from the previous statistical analyses were 

combined to conduct an additional four-factor ANOVA to investigate the relative importance of 

these variables on PSV.  This analysis indicates that PSV was mostly affected by DCOM and UP 

COM (Table 9). The impact of VML COM and age were not significant (There were no 

significant second-order interaction effects involving age). 
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Table 9: Combination of Variables 

Dependent variable Independent variable P value 
Peak Slip Velocity  DCOM 0.0214 
  VML COM 0.1027 
  UP COM 0.0191 
  Age 0.2097 

 

A logistic regression analysis was performed in an attempt to predict the outcome of 

slipping (hazardous/non-hazardous) using the COM variables present in previous analyses. The 

goal is to predict whether a specific COM variable influences the outcome of a slip.  A series of 

logistic regressions were conducted on the variables describing the COM dynamics at time of 

HC (H.1., H.2.) with age group included as a between-subject effect (H.3.) for the unexpected 

slip trials against the outcome of the slip (hazardous, non-hazardous).  Of the COM position and 

velocity variables tested, only the distance of the COM to the left heel in the transverse place 

(DCOM) and the mediolateral COM velocity (VML COM) were significant (Table 10).  Age is 

not significant in any of the regressions.  The value of this analysis is in its predictive nature.  

The DCOM and VML COM had values 18.8% and 120% higher respectively for the hazardous 

slip outcome in comparison to the non-hazardous outcome.   

Table 10: Logistic Regression results 

Mean (SD) 

Distance of COM 
to Left Heel 

 

Mediolateral 
COM Velocity 

(m/s) 
Hazardous 0.19 (0.04) -0.11 (0.01) 
Non-Hazardous 0.16 (0.02) -0.05 (0.02) 
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5.0 SPECIFIC AIM #2 

5.1 HYPOTHESIS TESTING 

Only the two baseline dry trials preceding the unexpected slip and the two alert dry trials 

preceding the alert slip condition were selected to test H.1. and part of H.3.  A series of two 

factor ANOVAs (Warning and Age) were conducted on the COM dynamics (position, velocity) 

at time of heel contact and 200 ms after heel contact  (Table 11 and Table 12).  The warning 

condition is the explanatory effect of interest (H.1.), with the age group being included as a 

between-subject effect, as well as second order interaction effects of warning and age group 

(H.3.).  

The ANOVAs conducted on the COM variables evaluated at HC revealed significant 

differences in the distance of the COM to the left heel in the transverse plane (DCOM) and the 

anterior posterior COM velocity (VAP COM) between warning conditions (Table 11, Figure 17 

a, e). Specifically, subjects walked with a strategy that reduced the frontal plane distance 

between their COM and left-heel at heel contact, as suggested by the 7.4% decrease in DCOM 

between the alert and baseline conditions.  Both young and older subjects’ COM velocity in the 

anterior-posterior direction was affected differently by the warning condition.  The VAP COM 

increased in the alert dry conditions (4.1%) compared to baseline levels.  There was no age 

significance observed in any of the ANOVAs.   
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Table 11: Anticipation effects on COM dynamics at HC 

Dependent variable Independent variable P value 
Warning Condition <.0001 
Age 0.1396 DCOM 
Age*Warning 0.6520 
Warning Condition 0.6748 
Age 0.9070 ORCOM 
Age*Warning 0.5314 
Warning Condition 0.0756 
Age 0.5539 UP COM 
Age*Warning 0.5875 
Warning Condition 0.6817 
Age 0.9481 VML COM 
Age*Warning 0.4915 
Warning Condition 0.0024 
Age 0.0509 VAP COM 
Age*Warning 0.0617 
Warning Condition 0.8421 
Age 0.3492 VUP COM 
Age*Warning 0.3522 
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Figure 17: COM variables divided by Age Group at time of HC (Appendix) 
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The ANOVAs conducted on the COM variables evaluated at 200ms after HC revealed 

significant differences in the orientation of the COM in the transverse plane (ORCOM), the 

vertical COM position (UP COM), the anterior posterior COM velocity (VAP COM), and the 

vertical COM velocity (VUP COM) between warning conditions (Table 12, Figure 18  b, e, f).  

Specifically, subjects favored a strategy where the COM line of progression, normalized to 

walking direction, was oriented farther away from the left heel at 200ms after time of heel 

contact (ORCOM).  Specifically, the ORCOM increased 43.7% in alert conditions compared to 

baseline levels.  In addition, the vertical COM (UPCOM) increased 0.3% during the alert dry 

trials, suggesting that subjects placed the COM farther from the floor.  For the VAP COM, 

subjects walked with a higher anterior-posterior velocity, as evidenced by the 5% increase in the 

alert dry condition in comparison to baseline trials.  Furthermore, subjects walked with a lower 

vertical velocity, as suggested by the 5.9% decrease in VUP COM in the alert dry condition in 

comparison with baseline.  Finally, it’s worth noting that that age had no significant impact on 

COM position or velocity. 
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Table 12: Anticipation effects on COM dynamics at 200ms after HC 

Dependent 
variable 

Independent 
variable P value 
Warning Condition 0.1172 
Age 0.3589 DCOM 
Age*Warning 0.4973 
Warning Condition <.0001 
Age 0.5140 ORCOM 
Age*Warning 0.4654 
Warning Condition <.0001 
Age 0.1757 UP COM 
Age*Warning 0.9784 
Warning Condition 0.4203 
Age 0.8828 VML COM 
Age*Warning 0.4986 
Warning Condition 0.0004 
Age 0.0753 VAP COM 
Age*Warning 0.3383 
Warning Condition 0.0004 
Age 0.3175 VUP COM 
Age*Warning 0.6604 
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Figure 18: COM variables divided by Age Group at time of 200 ms after HC (Appendix) 
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In a separate analysis, the testing of H.2 includes the slippery trials collected under the 

three warning conditions (unexpected, alert and known).  Both young and old individuals had 

similar slip outcomes for the unexpected slip (Table 13).  

Table 13:  Slip outcome by age, divided by condition (H.2) 

  Unexpected Slip Alert Slip Known Slip 
  HZ NH HZ NH HZ NH 
Young 66.7% 33.3% 20.0% 80.0% 6.3% 93.8%
Old 63.6% 36.4% 20.0% 80.0% 0.0% 100.0%

 

A one-factor within-subject ANOVA was conducted on the recovery time of the COM 

trajectory (Table 14), both for raw and normalized time data (quantified as explained in the 

formulation of H.2.), with the independent factor being the warning condition.  In addition, the 

age group was included as an additional (between-subject) effect as well as second order 

interaction effects of warning and age group.    

The ANOVAs on both the normalized and raw (Figure 19) recovery time indicated a 

significant relationship in Warning Condition only (Table 14).  Specifically, the recovery time 

normalized to stance the alert slip and known slip decreased by 36.1% and 47.1% respectively in 

comparison to the unexpected slip.  For the raw recovery time (expressed in seconds) the 

recovery time decreased by 38.5% in the alert slip and by 48.4% in the known slip compared to 

the unexpected slip.  Aging effects were not significant (H.3.). 
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Table 14: Recovery Time with Anticipation 

Dependent variable Independent variable P value 
Warning Condition <.0001 
Age 0.9781 Normalized Recovery Time 
Age*Warning 0.7872 
Warning Condition <.0001 
Age 0.5923 Raw Recovery Time 
Age*Warning 0.8881 
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6.0 DISCUSSION 

This study investigated the prospect that the COM has an impact on slip dynamics.  Two major 

components were investigated; the impact of the COM dynamics on slip velocity for an 

unexpected slip (SA1) and the effect of anticipating slippery floors on COM-related postural 

adjustments, i.e. impact of feedforward adjustments on COM dynamics (SA2).  Additionally, the 

impact of aging on the findings of SA1 and SA2 were investigated in the third hypothesis of each 

Specific Aim of this research project.  The findings presented by this study indicate that there is a 

significant relationship between several components of the COM kinematics and slip severity, a 

significant impact of anticipation on the COM, and a no age effects on the COM variables.   

6.1 SPECIFIC AIM #1 DISCUSSION 

The results pertaining to the unexpected slip illustrate that there are three important COM 

variables evaluated at HC which impact slipping severity.  Specifically, maintaining the COM 

closer to the leading/slipping leg in the transverse plane at HC (DCOM) reduced slipping 

velocity. Also, the magnitude of the slipping perturbation was positively correlated with 

increases in the subject-normalized distance of the COM from the ground (UPCOM) and faster 

medial-lateral COM velocity (VML COM) evaluated at HC. Thus, in the context of the original 

hypothesis for SA1, this study favors the rejection of the first two hypotheses in Aim 1.   
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Previous studies have investigated the impact of COM placement and initial COM 

velocity on the outcome of a slip using static and dynamic models of the body.  Unfortunately, 

there is limited data for comparison of unexpected slips using true slipping perturbations.  Most 

existing studies using experimental slips have focused on the effects of anticipation and are thus 

limited in data for comparison.  Few studies have attempted to use BOS translation perturbations 

to simulate slips. However, it is important to note that the heel dynamics at the foot-floor 

interface in a real slip (little/no shears) differ from the heel dynamics in BOS translations.  

Regarding studies that have used simulated or modeled slips, there is some disagreement in the 

results, presumably due to differences in the nature of the modeled perturbation considered in the 

investigations.  For example, while Pai and colleagues originally suggested that a higher DCOM 

would increase the chances of a small slip perturbation [29], a later study by Pai and colleagues 

involving a dynamic BOS predicted that to minimize slip magnitude a smaller DCOM and higher 

VAP COM are desired [30].  The difference between these two studies is that the BOS was static 

(not moving) versus a dynamic BOS in the latter.  The thesis results regarding the impact of the 

COM position at heel contact (DCOM) agree with the findings of Pai’s paper using a moving 

BOS [30].  However, in an experimental study, anterior posterior COM velocity (VAP COM) 

was found to play a signification role in slip-recovery biomechanics [23].  In this study it was 

found that the anterior-posterior COM velocity evaluated at HC was not correlated with slipping 

velocity.  This finding is discussed further in this section.  

In H.1, it was hypothesized that a more effective strategy to recover from an unexpected 

perturbation was to maintain the COM closer to the trailing (non-slipping leg).  If the COM is 

held closer to the trailing leg, a feasible strategy to minimize slip severity was to transfer the 

weight back to the more stable, trailing (non-slipping) leg.  However, the results now indicate 
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that the more effective strategy is to maintain the COM closer to the foot that the body weight is 

being transferred to, even if it’s during a slipping perturbation.  Subjects who employed this 

strategy experienced a less severe slip.  This is illustrated in the lower distance of the COM to 

the left heel in the transverse plane (DCOM), increasing the normal force exerted through the 

leading foot, thereby reducing slipping tendency through less available friction.  Furthermore, a 

lower vertical position (UP COM) facilitates smaller energy expenditure to move the COM in the 

vertical direction, allowing greater control.  Finally, a low medial lateral velocity (VML COM) 

indicates that the movement of the COM from side to side is reduced at HC, once again 

maintaining the COM in a region of increased influence, or ‘base of support’.  There may be an 

optimal placement of the COM within this base of support; however it is beyond the confines of 

this report. 

Similarly, the formulation of H.2 was supported by previous studies [30].  However, in 

the thesis results it was found that the anterior-posterior COM velocity evaluated at HC was not 

correlated with slipping velocity.  This discrepancy could be due to the relatively tight VAP 

COM variability in this study, i.e. subjects walked with a similar gait velocity (overall mean of 

1.45 ± 0.13 m/s) due to the restriction in the laboratory walkway setup.  

Regarding the effects of age (H.3), there no significant difference of COM position or 

velocity between young and older adults.  Once again, research of age effects on unexpected 

slips is limited, but previous studies found that older adults fell more than their younger 

counterparts [23]. In this study, the fraction of hazardous/non-hazardous outcomes is similar 

between young and older adults (Table 6).  This lack of significance could be due to the limited 

sample size, the relative ‘youth’ of the older population sampled, or the relative physical fitness 

of the older adults in comparison to the entire population.  A larger study involving a greater 
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older population with a wider variation in ages would fully identify any relevant age significance 

present.  

The implications of this research are two-fold.  First, using the COM, individuals who 

fall outside this region of stability can be identified as ‘prone to slip’.  Secondly, people can be 

trained to walk differently in order to minimize the occurrence or magnitude of a slip.   However, 

further research must be performed in order to quantify the impact such a shift in walking pattern 

would have on the daily life of an older individual (e.g. energy expenditure, other gait 

perturbations, stiffening strategies). 

6.2 SPECIFIC AIM #2 DISCUSSION 

The results pertaining to anticipated slips indicated that there are two COM variables evaluated 

at HC and four COM variables evaluated at 200ms after HC which effect slip severity.  

Specifically, at time of HC, subjects significantly altered their COM location in the transverse 

plane to maintain the COM closer to the leading/slipping leg (DCOM).  In addition, the anterior 

posterior velocity (VAP COM) was positively correlated with anticipation effects.  In 

comparison, at 200ms after HC, subjects significantly altered their COM to maintain the COM 

closer to the body centerline (ORCOM).  Also, anticipation effects were associated with a raised 

overall body position (UP COM), a reduced vertical velocity (VML COM) and increased 

anterior posterior velocity (VAP COM).  Furthermore, a reduction in recovery time, where the 

COM was brought over the left heel, was observed with anticipation conditions. However in both 

COM variables at HC and 200ms after HC there were no significance in regards to age.  Thus, in 
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the context of the original hypothesis for SA2, this study supports the acceptance of hypotheses 

H.1 and H.2 associated with Specific Aim #2.   

Previous studies have examined the impact of anticipation on COM placement and 

velocity using experimental slips under a known anticipation condition.  For example, both 

studies by Marigold and Patla and You and colleagues suggested that a lower DCOM coupled 

with a higher VAP COM at time of HC is a common strategy in response to anticipation effects 

[26,28].  A further analysis by You and colleagues indicated that in order to recover from a 

slipping perturbation, the COM must be brought over the perturbed foot (Recovery Time) as well 

as increase in anterior posterior velocity (VAP COM) [28].   The results regarding the impact of 

the COM position and velocity at both HC and 200ms after HC agreed with these previous 

studies, in that a lower DCOM at HC, a higher overall VAP COM, and a reduction in recovery 

time of the COM were seen with anticipation conditions.   

Originally during the formulation of H.1 and H.2, it was postulated that a more effective 

strategy is one of ‘getting over’ the slip.  The goal of corrective reactions generated in response 

to a slip is to bring the center of mass over the base of support as fast as possible. This is 

illustrated at time of HC by strategic COM placement.  The COM is placed closer to the slipping 

foot (DCOM) thereby creating less work for the body to shift the COM forward while increasing 

the anterior posterior velocity (VAP COM).  After the slip has occurred (at 200ms after HC) the 

subject maximizes control over the COM by strategic placement and advancement.  The COM is 

held closer to the centerline of the body (ORCOM) in order to maintain greater control and 

stability and the anterior posterior velocity (VAP COM) remains higher in comparison to 

baseline trials.  These combine to propel the COM past the slip and onto the next stage of the gait 

cycle.  In summary, an effective strategy leading up to a slip is a combination of moving the 
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COM closer to the body and increasing anterior posterior COM velocity.  After HC has occurred, 

an individual raises their overall body position as well as reducing their vertical velocity to 

regain control.  This leads to an increased recovery time for a potential slip occurrence.   

Regarding the effects of age (H.3), like the results for Specific Aim #1, there were no 

COM variables significant with age for anticipation conditions.  While previous studies found 

that older adults fell more than their younger counterparts [23] the alert and known slips showed 

no such differences in slip outcome (Table 13).  It appears that for anticipation effects, there 

were no evident distinctions between young and older adults and their COM placement. 

The implications of this anticipation results have a significant impact on future research.  

A clear difference is present in the placement and velocity of COM variables during warning 

conditions.  These are measurable differences that sum the entire body’s response to a potential 

slipping perturbation.  Future work can now focus on identifying what postural parameters cause 

this shift in the COM and targeting these parameters in further analysis. 

6.3 LIMITATIONS 

Two limiting factors to the thesis work are of note.  The first is restrictions imposed by the 

subject protocol on gait speed.  The walkway setup used in testing in conjunction with the 

subject instructions to walk at a self chosen speed resulted in a relatively consistent gait speed 

across subjects (Table 7).  This limited variability in gait speed resulted in its independence from 

slip severity (Table 5).  However, it is known that people walk with varying gait speeds, 

especially during inclement weather and potential hazardous footing (Table 11, Figure 17 e).  

Future work focusing on COM variables and slip severity should incorporate variations in gait 

speed (walk fast, walk slow, walk normal, etc.) in order to fully elucidate the impact of a slip 
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condition.  The second limiting factor lies within the anthropometric data by Chandler [31].  

Anthropometric data regarding center of mass is limited.  An extensive literature review was 

performed to gather all available segmental center of mass descriptions.  The Chandler data set 

used in this research involved five male cadaver subjects.  The data neglects both gender and age 

differences in the human body.  Due to the fact that both older and female subjects have a 

different weight distribution in comparison to their young male counterparts, this is a restriction 

in the interpretation and practical significance of this thesis work.  If more comprehensive data 

pertaining to female and older anthropometry can be found, the kinematic data can be 

reprocessed to incorporate these new findings. 

6.4 CONCLUSION 

In summary, there are two strategies at present during slips (1) to maintain control over the COM 

and (2) to get over the slip as quickly as possible and continue the gait cycle.  The significance of 

this research indicates that tracking COM dynamics may be helpful in differentiating between 

postural strategies that successfully recover balance and responses that result in falls.  In 

addition, quantifying the effects of anticipation provides a baseline for identification of postural 

responses and their potential modifications that may significantly impact slip severity.   
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APPENDIX 

ABBREVIATIONS 

 

Abbreviation Definition 
STF Slips, trips, and fall 
COM Center of Mass 
RCOF Required Coefficient of Friction 
BOS Base of Support 
PSV Peak Slipping Velocity 
HC Heel Contact 
TO Toe Off 
EOS End of Slip 
TSD Total Slip Distance 
ML COM Mediolateral Center of Mass 
AP COM Anterior-Posterior Center of Mass 
UP COM Vertical Center of Mass – normalized to body height 
VML COM Velocity of the Mediolateral Center of Mass 
VAP COM Velocity of the Anterior Posterior Center of Mass 
VUP COM Velocity of the Vertical Center of Mass 
DCOM Distance of the Center of Mass relative to the left heel – normalized to 

body height 
ORCOM Orientation of the Center of Mass relative to the left heel 
GS Gait Speed 
SW Step Width 
SL Step Length 
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