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AN IMPUTATION METHOD UNDER A PSEUDOLIKELIHOOD METHOD

FOR ANALYSIS OF MULTIVARIATE MISSING DATA

Yu–Mi Kwon, PhD

University of Pittsburgh, 2010

Missing data are prevalent in many public health studies for various reasons. For exam-

ple, some subjects do not answer certain questions in a survey, or some subjects drop out

of a longitudinal study prematurely. It is important to develop statistical methodologies

to appropriately address missing data in order to reach valid conclusions. For regression

analysis on data with missing values in the response variable, when data are not missing at

random, usually the missing-data mechanism needs to be modeled. When the missingness

only depends on the response variable, a pseudolikelihood method that avoids modeling the

nonignorable missing-data mechanism was developed in the past. A corresponding mean

imputation method was used to impute the missing responses under this pseudolikelihood

method. In this dissertation, we consider the inference on the moments of the response vari-

able for missing data analyzed by this pseudolikelihood method. At first, we compared three

methods: the delta method, the bootstrap method and a re-sampling method, for estimating

the variance of the corresponding pseudolikelihood estimate in simulation studies. Second,

we modified that mean imputation method and developed a corresponding stochastic im-

putation method. Multiple imputations were subsequently used to obtain estimates of the

moments and the corresponding variance estimates. We compared the performance of these

two imputation methods in simulation studies and illustrated them through analysis of the

data from a Schizophrenia clinical trial. Compared to the mean imputation method, the

stochastic imputation method leads to less and negligible bias.
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1.0 INTRODUCTION

Missing data are very common in many biomedical studies for various reasons. For example,

some subjects do not answer certain questions in a survey, or some subjects drop out of

a longitudinal study prematurely. These missing data are often troublesome because most

standard statistical methods require complete data. There are several methods for analysis

of missing data. The simplest method is the complete–case analysis (CC). The CC discards

all cases which have any missing value, and perform analysis on cases where all variables are

present. This method is simple, and has a comparability of univariate statistics. But, it is

inefficient because some data are discarded, and often leads to biased estimates. Therefore,

it is not recommended in general (Little& Rubin, 2002).

The likelihood–based method is the most common method to analyze missing data by

specifying the missing–data mechanism in the likelihood function in addition to a model for

the hypothetical complete data. Missing data indicator is used to denote whether a value is

observed or not: The missing data indicators are defined as 1 if the corresponding value is

observed, and it is defined as 0 if the corresponding value is missing. The likelihood–based

method fully specifies the joint distribution of the variables of interest and the missing data

indicators. There are two different model frameworks according to how to factor the joint

distribution of the variables of interest and the missing data indicators. One is selection

models, and the other is pattern–mixture models (Little & Rubin, 2002). Selection mod-

els factor the joint distribution into the product of the distribution of the hypothetically

complete data and the conditional distribution of the missing data indicator given the hypo-

thetically complete data. Pattern–mixture models stratify the hypothetically complete data

according to the missing patterns, and model the distribution of hypothetically complete

data within each stratum. When one concerns inference about characteristics of the entire
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population, selection models have more natural interpretation, and are more popular. In

this dissertation, we focus on selection models.

Selection models generally require specifying the missing–data mechanism, and make

inferences based on the full likelihood function. The missing–data mechanism is ignorable

if missing data are missing at random (MAR), and parameters of interest and parameters

for the missing–data mechanism are distinct (Little & Rubin, 2002). If missing data are

ignorable, then the likelihood–based inferences for parameters of interest from full likelihood

function is the same as likelihood–based inferences for the parameters of interest from the

ignorable likelihood function that is solely based on observed values. However, the observed

data do not provide evidence whether the missing–data mechanism is MAR or not, let alone

the functional form of the missing–data mechanism. If the missing–data mechanism is mis–

specified, the maximum likelihood method often leads to biased estimates and wrongful

conclusion. Tang et al. (2003) proposed a pseudolikelihood method to estimate regres-

sion paramters for a class of Not–MAR mechanisms and avoid specifying the missing–data

mechanisms. They proved that the pseudolikelihood (PL) estimates of regression parame-

ters follow asymptotically normal distribution. However, the covariance matrix of regression

parameters by the PL method is very complicated. Suppose that one concerns estimating

the variance of the PL estimate of the data. Under this premise, several standard methods

can be considered. The standard methods such as the Delta method may not be the most

convenient for this case. The Delta method computes asymptotic variance estimates of that

function using the estimated covariance matrix of regression parameter estimates and the

marginal distribution of covariates. The PL estimate of a general function, say the first

moment of the response variable, is a function of the regression parameter estimates and the

empirical distribution of the covariates. Therefore, the implementation of the Delta method

is very computationally intensive in general.

The Bootstrap method is relatively simpler. The Bootstrap generates random samples

with replacement, and estimate regression parameters by the PL method for each boot-

strap sample. The function of interest is computed with those PL regression estimates, and

the sample variance becomes the variance estimate of the function of interest. However,

the Bootstrap requires lots of computing time for regression parameter estimates from the
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bootstrap samples because the PL regression parameter estimates have to be numerically

searched for each bootstrap sample.

As an alternative method, a direct resampling method is newly developed in the disser-

tation besides the Delta method and the Bootstrap. The direct resampling method derives

samples of the PL regression parameter estimates from the asymptotic normal distribution

of the PL regression parameter estimates that are obtained from the original dataset, and

samples of covariates are generated by sampling with replacement. Then predictive values of

the response variables are drawn from normal distributions whose means and variances are

calculated from the covariates and the PL regression parameter estimates. The function of

interest is computed with these predictive values in multiple times, and corresponding sam-

ple variance is used as the variance estimate of the corresponding PL estimate. The direct

resampling method requires less computing time than the Bootstrap because one directly

draws parameter estimates from their asymptotic normal distributions.

Beside the direct resampling method, imputation methods may be more useful in that

one can avoid complicated computation. The imputed dataset is treated like complete data

with appropriate imputation methods, and the variance of the PL estimate of that function

can be simply estimated via multiple imputation. Imputation methods replaces missing val-

ues with predictive values, and have two generic approaches to generate predictive values.

If the predictive values are generated from a formal statistical model, the imputation meth-

ods are called explicit model, and if the predictive values are generated from an algorithm

instead of an explicit model, the imputation methods are called implicit model. We focus

on explicit imputation methods in the dissertation, and the explicit imputation methods

include regression imputation, and stochastic imputation. These methods are reviewed in

detail in chapter 2. Imputation methods are simple, and the imputed datasets are treated

as complete datasets, so most standard statistical analysis can be applied to these imputed

datasets. However, imputation methods create predictive values based on observed data,

MAR assumption is required for the missing data. Hence, many imputation methods may

yield severe bias in estimates when the data are not MAR. Tang devised an imputation

method for the PL method (2002) with a mean imputation approach. This imputation

method is designed to fill missing values with predictive values that are drawn from the
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estimated conditional distribution of the missing values given the observed values for com-

plete cases, and he used Natharaya–Watson (NW) regression estimator (Nadaraya, 1964)

to derive means from the complete cases. We modify this mean imputation method with

a piece–wise linear regression instead of the NW estimator, and newly introduce a corre-

sponding stochastic imputation method in the dissertation. These imputation methods take

into account the population mean in the predictive distribution. Therefore, one can expect

less bias in the imputation methods. In the dissertation, we assume that the distribution of

the missing data mechansim depends only on response variables, and parameters of interest

are estimated by the pseudolikelihood method by Tang et al. (2003). As mentioned earlier,

we suppose that we concern estimating the variance of the PL estimate of any function of

the data, more specifically, moments of the response variable, and observe the performances

of two imputation methods – the mean imputation and the stochastic imputation– in the

dissertation. This dissertation consists of several chapters. After the introduction, we re-

view the missing–data mechanisms and three missing data analysis methods in chapter 2.

The likelihood–based method, generalized estimating equation and imputation method are

discussed in chapter 2. In chapter 3, we introduce the pseudolikelihood method for bivariate

and multivariate monotone missing data under the assumption of that the distribution of

the missing–data mechanism only consists of dependent variables. In chapter 4, we study

the standard methods to estimate the variance of a function of interest under the pseudo-

likelihood, and examine the advantages and the disadvantages in practice. In chapter 5, we

propose two imputation methods: One is a modified mean imputation method based on a

piece–wise linear regression from Tang (2002) and the other is the corresponding stochastic

imputation method. We conduct the standard methods and two imputation methods to es-

timate the first moment and the second moment of PANSS data for schizophrenia patients,

and compare the results among the different methods in chapter 6. In the final chapter, we

summarize the related issues about two imputation methods.
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2.0 STANDARD METHODS FOR ANALYSIS OF MISSING DATA

The complete–case analysis is the simplest method for analysis of missing data. Because

the complete–case analysis only use the cases where all the variables are presenet, one can

apply standard statistical analysis. But this method is inefficient because some data are

discarded, and it can also cause a severe bias in estimates when the data are not MCAR.

Another method for missing data is available analysis. This method includes all cases where

the variable of interest is present, but the sample base changes from variable to variable

according to the missing pattern, so available analysis yields a comparability problem across

the variables (Little & Rubin, 2002).

The most common method for analysis of missing data is the likelihood–based method.

When data are complete, the likelihood–based method estimates parameters of interest based

on the likelihood functions where the likelihood function is a function of paramters of interest

that is proportional to probabilty density function of the data. If data are incomplete, the

likelihood–based method is based on specific modeling assumptions about the missing–data

mechanism to estimate parmeters of interest. The missing–data mechanism is ignorable if

data are MAR and parameters of interest and the parameter about the missing–data mecha-

nism are distinct. Although data are incomplete, if the missing–data mechanism is ignorable,

the likelihood method is relatively simple to use because one does not have to specify the

missing–data mechanism in the likelihood functions. If missing data are ignorable, one can

estimate parameters of interest by ignorable likelihood because full likelihood functions are

proportional to observed likelihood functions where ignorable likelihood is the likelihood of

parameters of interest based on observed data ignoring the missing–data mechanism (Lit-

tle& Rubin, 2002). However, if missing data are not–missing at random (NMAR), likelihood

based method requires the full specification of the joint probability of variables of interest
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and missing data indicators where missing data indicators are defined as 1 if corresponding

variables of interest are present, otherwise they are 0. In fact, it is almost impossible to cor-

rectly specify the missing–data mechanism in likelihood functions, and mis–specification of

the missing–data mechanism often leads to biased estimates. However, one can obtain con-

sistent estimates without specifying the missing–data mechanism in likelihood–based method

under certain assumptions, and this method and assumptions are reviewed in chapter 3.

Instead of likelihood–based method, generalized estimating equation (GEE) can be ap-

plied to missing data (Liang & Zeger, 1986). While full likelihood functions need to specify

the joint probability structure of the observations, GEE does not have to be associated with

likelihood functions. GEE only requires the mean and variance functions, and computes

consistent estimates of parameters of interest by treating correlation structure as a nuisance

parameter. However, GEE has a limitation to apply to an missing dataset because GEE

assumes that the missing–data mechanism is MCAR when data are incomplete. If data are

not MCAR, this method does not yield consistent estimates with missing data.

Besides, imputation methods are also frequently used for missing data analysis. Impu-

tations are techniques that replace missing values to reasonable predictive values according

to formal statistical models or underlying models. Once missing values are imputed, the

imputed dataset is treated as the complete dataset. If one creates more than one complete

data by imputation, then imputation methods are called multiple imputation. Single impu-

tation undermines the variability within the employed predictive model, so usually multiple

imputation are necessary in order to account for the variability of data, and we more focused

on multiple imputation methods in the dissertation. Imputation methods are easy to con-

duct, and one can directly employ standard statistical procedures on the imputed dataset.

We review the concept of the missing–data mechanisms that lead to missing data in the

first section, and study three common methods for missing data analysis are studied in the

second section.
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2.1 MISSING–DATA MECHANISM

”The missing–data mechanisms are crucial for missing data analysis because the properties

of missing data methods depend very strongly on the nature of the dependencies in these

missing–data mechanisms” (Little & Rubin, 2002). According to the theory of Rubin (1976),

the concept of the missing–data mechanism begins at the definition of the missing data in-

dicators. We denote the missing data indicator as R, and R is defined as 1 if the value is

observed, otherwise it is defined as 0. This missing data indicator R is treated as a random

variable. Based on the defintion of the missing data indicator, the missing–data mechanisms

are statistically formalized by Rubin (1976) according to the relationship between the hy-

pothetical complete data and the missing data indicators, and they explain how variables of

interest are related with underlying values in missing data.

We denote an independent variable and a dependent variable as X and Y where X is

fully observed and Y is partially observed. Y is expressed as {Yobs, Ymis} where Yobs denotes

observed part of Y and Ymis denotes missing part of Y. The missing–data mechanism is char-

acterized by the conditional distribution of R given [X, Y ] where α and ψ denote parameters

of interest and the parameter of the missing–data mechanism. The missing–data mechanism

is categorized into three : Missing Completely At Random (MCAR), Missing At Random

(MAR) and not–missing at random (NMAR) (Rubin & Little, 2002).

1. MCAR, with the assumption:

pr[R|y, x;ψ] = pr[R;ψ]

Missing completely at random (MCAR) is the strongest assumption on missing data. If

the data are MCAR, it implies that there is no relationship between variables of interest

and the missing data indicator at all. The assumption of MCAR does not imply that

the missing pattern itself is random, but rather that the missingness does not depend on

the data values (Little & Rubin, 2002).

2. MAR, with the assumption:
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pr[R|y, x;ψ] = pr[R|yobs, x;ψ]

An assumption of missing at random (MAR) is less restrictive than MCAR. MAR implies

that the missingness is not dependent on the missing values after conditioning on the

observed values. So, if the missing data are missing at random, one does not have to

specify full likelihood functions under the specification of the missing–data mechanism.

Because full likelihoods are proportional to the observed likelihoods, the missing–data

mechanism can be ignored in likelihood–based method. When the data are incomplete,

most statistical packages such as SAS assume that data are missing at random.

3. NMAR, with the assumption:

pr[R|y, x;ψ] = pr[R|yobs, ymis, x;ψ]

Not–missing at random (NMAR) includes all missing–data mechanisms that do not be-

long to either MCAR or MAR. NMAR implies that the missingness depends on the miss-

ing values even after conditioning on the observed values, and is the condition that makes

the missing data analysis complicated. When missing data are NMAR, the missing–data

mechanism should be specified in the likelihood functions to yield consistent estimates,

and many imputation methods yield severeo biases for estimation.

The distribution of observed data is obtained by integrating Ymis out of the joint density of

[Y,M ] as follows:

f(Yobs,M |α, ψ) =

∫
f(Yobs, Ymis|α)f(M |Yobs, Ymis, ψ)dYmis (2.1)

If data are MAR, and parameters of interest and the parameter of the missing–data mecha-

nism are distinct, the missing data are usually called ignorable. If the missing–data mecha-

nism is ignorable, the missing–data mechanism does not depend on Ymis.

f(M |Yobs, Ymis, ψ) = f(M |Yobs, ψ) for all Y (2.2)

Therefore, (2.1) is summarized as follows:

f(Yobs,M |α, ψ) = f(Yobs|α)f(M |Yobs, ψ) (2.3)
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This ignorable condition does not require the specification of the missing–data mechanism

in the likelihood–based approach according to (2.3). So one performs the likelihood–based

method by ignoring the missing–data mechanism for a valid inference under ignorable con-

dition. In addition, most imputation methods also assume this condition.

However, if the data are not–missing at random , one has to specify the missing–data

mechanism in full likelihood functions, and the mis–specified missing–data mechanism results

in a severe bias for estimation problems. If the data are not–missing at random, imputation

methods are also troublesome. Because most imputation methods assume MAR, those im-

putation methods bring about severe biases for not MAR data. However, if the distribution

of the missing–data mechanism is a function of dependenet variables, one can obtain con-

sistent estimates without specifying the missing–data mechanism in likelihood functions by

the pseudolikelihood method (Tang et al. 2003).

2.2 METHODS FOR ANALYSIS OF MISSING DATA

2.2.1 Likelihood–based Methods

The likelihood–based method is the most common method for analysis of missing data. The

likelihood–based method specifies the joint distribution of the missing data indicator and

variables of interest with the assumption about the missing–data mechanism when the data

are incomplete, and estimates parameters of interest by maximizing likelihood functions.

The likelihood–based method has two model frameworks to express the joint distribution

of the missing data indicators and variables of interest when the data are incomplete. Where

R and Y denote the missing data indicators and variables of interest, the selection models

express the joint distribution of [Y,R] as the product of [Y ] and [R|Y ] (Heckman, 1976), and

the pattern–mixture models express [Y,R] with [R] and [Y |R] after stratifying the missing

data according to the missing data patterns. The expressions of these two models are ex-

changeable: The selection models can be written as the pattern–mixture models, and the

pattern–mixture models can be written as the selection models.
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• Selection Models

If one concerns parameters estimates of entire population, the selection model framework

is more natural expression of the joint distribution of [Y,R] in likelihood–based method.

In the selection model framework, the joint distribution of [Y,R] is factored as the prod-

uct of distribution of [Y ] and the conditional distribution of [R|y] as follows where α and

ψ denote parameters of interest and the parameter of the missing–data mechanism.

pr(X, Y,R;α, ψ) = pr[X, Y |α] · pr[R|X, Y, ψ]

The selection models focus on the inferences of the population parameters, α, while the

pattern–mixture models focus on the properties of the missing data patterns. When

the missing–data mechanism is ignorable such that where the missing–data mechanism

is MAR and α and ψ are distinct, the conditional distribution of [R|y, ψ] is ignored to

estimate parameters of interest α in the selection models.

• Pattern– Mixture Models

The pattern–mixture models are an alternative model framework to express the joint

distribution of [Y,R] in the likelihood–based method (Glynn, Laird and Rubin, 1986).

Unlike the selection model, the pattern–mixture models stratify the missing data by the

missing data patterns, and express the joint distribution of variables of interest and the

missing data indicator as follows where δ and γ denote a parameter of interest and the

parameter of the missing–data mechanism in a given stratum.

pr[X, Y,R|δ, γ] = pr[X, Y |R, δ] · pr[R|γ]

When the missing dataset consists of multiple sub–populations across the missing data

patterns, the pattern–mixture models may be more useful when one is interested in

observing the properties of sub–populations within each stratum. However, the inference

of the population paramter is drawn by the mixture form of the distributions of the sub–

populations due to the characteristics of the expression, so the identifiability problem

often occurs under the pattern–mixture model framework.
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We use the selection model framework to find regression parameter estimates in the

likelihood based method among the above two models in the dissertation. If the data are

complete, maximum likelihood method (ML) is the most efficient likelihood method. Max-

imum likelihood method is to estimate parameters of interest that maximize the likelihood

functions or the log–likelihood functions about the parameters of interest. If the data are

incomplete, and satisfy the ignorable condition, the conditional distribution of the missing

data indicator R given Y is not associated with parameters of interest in the likelihood func-

tions. Therefore the maximum likelihood method can be used to estimate parameters of

interest without any difficulty.

For analysis of missing data, the maximum likelihood method may not always be easy

to use especially when the missing–data mechanism is NMAR because the selection mod-

els require the full specification of the missing–data mechanism. Mis–specification of the

missing–data mechanism often leads to biased estimates.

2.2.2 Generalized Estimating Equations

Generalized estimating equation model (GEE) is another method to analyze missing data.

The GEE is widely used for longitudinal analysis (Liang & Zeger, 1986) because the joint

distribution of the repeated responses does not have to be fully specified, so it is easy to

be applied to data with repeated measurements. The likelihood–based method requires the

full specification of a joint probability structure, but the objective function of GEE is only

associated with the mean and variance function as follows:

∂µ

∂α
V −1(Y − µ) = 0

Where µ = µ(α) and α denote the mean function and the parameters of interest, GEE only

specifies the mean and the variance, the shape of the distribution remains free. So, it is

especially useful in analysis of non–gaussian data. In addition, a correlation structure is

treated like a nuisance parameter in generalized estimating equation (GEE), only mean and

variance are used to estimate a parameter of interest. If data are complete, the solution of
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the above equation is known to provide asymptotically consistent estimates of α under mild

regularity conditions (Liang & Zeger, 1986). However, this method is sometimes problematic

in analysis of missing data. Because this method is based on the observed data to estimate

parameters of interest, MCAR should be assumed for missing data. If the missing–data

mechanism is not MCAR, simple generalized estimating equations do not yield consistent

estimates. One can use weighted GEE (Robins,Rotnitsky and Zhao, 1995) using a auxiliary

variable zi that predict whether or not yi is completed as follows:

∂µ

∂α
w(η̂)V −1(Y − µ) = 0

Where w(η̂) is the inverse of an estimate of the probability of being a complete case obtained

by a logistic regression of Ri on xi and zi, and η is the parameter of the logistic regression by

maximum likelihood, w(η̂) allows the missingness to depend on the auxiliary variables as well

as the covariates, so weighted GEE is known to correct the bias of unweighted GEE that

attribute to the dependency of the missing–data mechanism on zi (Robins,Rotnitsky and

Zhao, 1995). However, the dissertation is focused on NMAR missing data, the generalized

estimating equation is not considered in the dissertation.

2.2.3 Multiple Imputation

Imputation methods are direct and simple for missing data analysis. Because the imputed

datasets are treated as the complete data, most standard statistical analysis can be employed

to these imputed datasets. Imputation methods fill missing values with predictive values,

and there are two generic methods to generate these predictive values. The first method is to

draw predictive values from formalized statistical models, and the second method is to draw

predictive values from underlying models. The first method is refered to explicit modeling

method and the second method is refered to implicit modeling method. The dissertation is

focused on explicit model based imputation method, and mean imputation, regression im-

putation, and stochastic imputation are included in explicit based modeling method. Those

imputation methods can be summarized as follows:

12



• Mean Imputation

Missing values are substituted by means from the responding units in the sample in the

mean imputation. Means can be formed within cells or classes, and mean imputation

leads to estimates similar to those found by weighting provided the sampling weights are

constant within weighting classes (Little & Rubin, 2002).

• Regression imputation

Missing values are imputed by predictive values from a regression of the missing item on

items observed for the unit in regression imputation methods. The regression equation

to draw the predictive values is usually calculated from the units with both observed and

missing variables are present together. Mean imputation method is regarded as a spe-

cial case of regression imputation method if the predictor variables are dummy indicator

variables for the units (Little & Rubin, 2002).

• Stochastic regression imputation

Stochastic regression imputation method fills missing values with predictive values that

are computed with values predicted by regression imputation method plus a residual.

If normal linear regression is considered, one can assume the residual following normal

distribution where the expectation is zero and the variance is the residual variance in

regression. Because stochastic regression imputation method reflects the sampling un-

certainty in the predicted value, it is more preferred to regression imputation (Little &

Rubin, 2002).

Imputation methods are characterized according to how to draw predictive values for missing

values, but it can be also categorized as single imputation and multiple imputation. Single

imputation fills missing value once, and creates one complete data, and analyze the imputed

dataset. Multiple imputation creates D complete datasets by separate and independent D

imputations. Generally, multiple imputation is D repetition from the posterior predictive

distribution of Ymis for the considered model, and each repetition corresponds to an inde-

pendent drawing of parameters and missing values.
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The mulitiply–imputed dataset is analyzed using the same complete data method. Let

α̂i and Wi for i = 1, · · · , D be the estimates of interest and their associated variances of α̂

from D imputed datasets. The combined estimate of ᾱ is calculated by (2.4).

ᾱ =
1

D

D∑
i=1

α̂i (2.4)

Averaging over D imputed datasets increases the efficiency of estimates over a single imputed

dataset (Little & Rubin, 2002). The variability by multiple imputations consists of two

components: One is the ’Within imputation variance’ component of (2.5), and the other is

the ’Between imputation’ component as (2.6). But the variability by single imputation is

only expressed with the ’Within imputation variance’component, and the variance estimate

by the single imputation may not be valid when the data are not–missing at random (NMAR)

because the variances between the complete cases and the missingcases are not generally

same.

W̄D =
1

D

D∑
i=1

Wi (2.5)

BD =
1

D − 1

D∑
i=1

(α̂i − ᾱD)2 (2.6)

According to (2.5) and (2.6), total variability of ᾱD is computed by adding together in mul-

tiple imputation as (2.7).

TD = W̄D +
D + 1

D
·BD (2.7)

Multiple imputation helps reducing the imputation bias (Little & Rubin, 1983) and it per-

forms favorably to produce the unbiased estimate in comparison with single imputation

[Graham & Schafer, (1999), Schafer & Graham, (2002)]. We conduct both single imputa-

tion and multiple imputation in a simulation study, and compare their performances with

regards to 95% coverage rates. Also, we use (2.7) to compute the variance estimates of the

first moment and the second moment for multiple imputation.
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3.0 A PSEUDOLIKELIHOOD METHOD FOR ANALYSIS OF

MULTIVARIATE MONOTONE MISSING DATA

The likelihood–based method, which is the most common method for missing data analysis,

needs to fully specify the joint distribution of the missing data indicator and variables of in-

terest under a assumed missing–data mechanism. The likelihood functions can be expressed

as two model frameworks depending how to express the joint distribution of [Y,R]. One

is the selection model framework (Heckman, 1976) and the other is the pattern–mixture

model framework (Glynn, Laird & Rubin, 1986). The selection models express the joint

distribution of [Y,R] as the product of a marginal distribution of the dependent variables

[Y ] and a conditional distribution of the missing data indicators given the dependent vari-

ables [R|y] while the pattern–mixture models express [Y,R] as a conditional distribution of

the dependent variables given the missing data indicators [Y |R] after stratifying the missing

data according to the missing data patterns. As mentioned in the previous chapter, the

pattern–mixture models compute the population parameters of interest as the combination

of the parameters which are driven from the conditional distributions of all strata, so the se-

lection model is more natural to interpret the population parameters in the likelihood–based

method. Between these two model frameworks, we use the selection model framework in the

likelihood–based method in the dissertation.

If missing data are missing at random (MAR), the selection model does not require

the specification of the missing–data mechanism in the likelihood functions. Under those

assumptions, the parameters of interest are not associated with the parameter about the

missing–data mechanism, so maximum likelihood method can be used to estimate the pa-

rameters of interest by the ignorable likelihood function. However, the selection models need

a full specification of the missing–data mechanism in the likelihood functions when the data
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are not–missing at random, and the mis–specification of the missing–data mechanism leads

to inconsistent estimates. Hence, maximum likelihood method is not easy to conduct with

not–missing at random missing data, but one can conduct the pseudolikelihood method to

estimate paramters of interest instead of maximum likelihood method with not–missing at

random missing data under certain assumptions. The first assumption is that distributions

of dependent variables follow known parametric functions, and the second assumption is

that the missingness only depends on the underlying values of a dependent variable. Un-

der these two assumptions, one can estimate parameters of interest without specifying the

missing–data mechanism by the pseudolikelihood method (Tang et al. 2003). They used

the pseudolikelihood method to compute regression parameters estimates, and compute the

asymptotic distribution of these regression parameter estimates. The covariance matrix of

these regression parameter estimates are also suggested, and the estimate of the covariance

matrix can be refered to Appendix A.

We study the pseudolikelihood method to estimate regression parameter estimates with

not–missing at random data which have a monotone missing pattern in this chapter where

the monotone missing pattern is the pattern that all outcomes are missing since the pre-

vious outcome is missing. This monotone pattern frequently occurs due to drop–outs in a

longitudinal study design. In the first section, we study the pseudolikelihood method with

bivariate monotone missing data, and extend this pseudolikelihood method to the multivari-

ate monotone missing data in the second section. For these not–missing at random missing

data, we assume that the missing–data mechanisms depend upon the response variables, and

the conditional distributions of the response variables are known parametric functions.

3.1 A PSEUDO LIKELIHOOD METHOD FOR BIVARIATE MONOTONE

MISSING DATA

Consider a bivariate monotone missing dataset of {xi, yi} for i = 1, · · · , n such that the

covariate X is fully observed and the response variable Y is partially but monotonely missing.

According to the monotone missing pattern, yi are observed for i = 1, · · · ,m, but yi are
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missing for i = m+1, · · · , n where n > m > 0. The missing data indicator Ri is defined as 1

if corresponding yi is observed, and Ri is defined as 0 if yi is missing. We concern estimating

the parameters of interest from the conditional distribution of Y given X, [Y |X;α], where α

is the vector of parameters of interest. The missingness of Y is assumed to depend upon a

function of Y as (3.1) where ω(·) is an arbitrary function.

P [R = 1|X, Y ] = ω(Y ;ψ) (3.1)

Under the assumption of (3.1), the full likelihood function based on the selection model can

be expressed as follows:

L(α, η, ψ;X, Y,R) =
m∏
i=1

p(xi, yi, Ri|α, η, ψ)
n∏

i=m+1

∫
p(xi, y, Ri|α, η, ψ)dy

=
m∏
i=1

p(xi, yi|α, η)ω(y|ψ)
n∏

i=m+1

∫
p(xi, y|α, η)(1− ω(y|ψ))dy

=
m∏
i=1

p(xi|η)p(yi|xi, α)ω(y|ψ)
n∏

i=m+1

p(xi|η)

∫
p(y|xi, α)(1− ω(y|ψ))dy

=
n∏
i=1

p(xi|η)
m∏
i=1

p(yi|xi, α)ω(y|ψ)
n∏

i=m+1

∫
p(y|xi, α)(1− ω(y|ψ))dy

=
n∏
i=1

p(xi|η)
m∏
i=1

p(yi|xi, α)∫
p(yi|x, α)p(x|η)dx

×
m∏
i=1

ω(yi|ψ)

∫
p(yi|xi, α)p(xi|η)dx

n∏
m+1

∫
p(y|xi, α)(1− ω(y|ψ))dy

From (3.1), the complete cases are a random sample of the conditional distribution of X

given Y, Tang et al. (2003) considered the following conditional likelihood to make inference

on α.

L(α; η) ∝
m∏
i=1

p(yi|xi, α)∫
p(yi|x, α)p(x|η)dx

(3.2)

Where α is the parameters of interest and η is the nuisance parameter from the marginal

distribution of X.
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This term of (3.2) is completely factored from the distribution of the missingness and the

nuisance parameter of η. Because one only concerns the estimation of the parameters of

interest, α, a natural approach is to substitute the nuisance parameter η in (3.2) by a con-

sistent estimate η̂. This leads to a pseudolikelihood function in (3.3).

L2(α; η̂) =
m∏
i=1

p(yi|xi, α)∫
p(yi|xi, α)p(xi; η̂)dx

(3.3)

If the parameteric form of p(X; η) is unknown, one can use empirical distribution instead of

p(X; η). The distribution function of [X] is denoted F (x) and the empirical distribution of

[X] is denoted Fn(X). In the following context, we consider the pseudolikelihood method

that substitutes F(x) by its empirical estimate Fn(X), and corresponding pseudolikelihood

function becomes (3.4).

L2(α;Fn(x)) ∝
m∏
i=1

p(yi|xi, α)
1
n

∑n
j=1 p(yi|xj, α)

(3.4)

According to the above expressions, parameter estimates of interest α̂ are defined as follows:

α̂ = arg maxα

m∑
i=1

[log p(yi|xi;α)− log{ 1

n

n∑
j=1

p(yi|xj, α)}]

By the above definitions, the score functions are obtained by taking the first derivatives

about α from the log pseudolikelihood function, and the regression parameter estimates of

α̂ are computed by setting these score functions to zeros. However, these score functions do

not help to estimate the parameters of interest due to a complicated form of the denominator

in the pseudolikelihood function, so the regression parameters of interest should be numeri-

cally obtained. Asymptotically, these regression parameter estimates α̂ follow a multivariate

normal distribution as follows:

√
n(α̂− α0)

d→ N(0,Σ), as N →∞
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The estimate of the covariance matrix, Σ̂ was derived by Tang et al. (2003), and is referred

to Appendix A. in detail. This estimate of variance of the PL estimates is used to estimate

the first moment and the second moment later in a simulation study in the dissertation.
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3.2 THE EXTENSION TO ANALYSIS OF MULTIVARIATE MONOTONE

MISSING DATA

The pseudolikelihood method for multivariate missing data is conducted by extending the

pseudolikelihood method for bivariate not–missing at random missing data described in the

previous section to a multivariate dataset. Generally, the pseudolikelihood method factors

the joint conditional distribution of k–variate data as k different pseudolikelihood functions

where each function has a distinct parameter of interest, and estimates this distinct param-

eter of interest from the corresponding pseudolikelihood function. This procedure can be

illustrated with k-variate data as follows.

Suppose a multivariate dataset of {xi, yi} for i = 1, · · · , n such that a covariate X is fully

observed and a dependent variable Y is partially but monotonely missing where Y is a k–

dimension vector as Y = {Y1, · · · , Yk}. Then, the missing data indicator of R is defined as a

k–dimension vectore as R = {R1, · · · , Rk} where Ri corresponds to Yi. Namely, Ri is defined

as 1 if Yi is observed, and Ri is defined as 0 if Yi is not observed. Because the missing pattern

is monotone, the dataset has k− 1 missing patterns from k–variate dependent variable, and

Ri = j indicates that subject i belongs to a j missing pattern such that {yi,1, · · · , yi,j} are

observed and {yi,j+1, · · · , yi,k} are missing. The missing–data mechanism of the j missing

pattern is specified as (3.5) where j is between 1 and k − 1 and ωj(·) indicates a arbitrary

function of Yj.

P [R = j|x, y1, · · · , yk, R ≥ j] = ωj(Yj) (3.5)

The joint conditional distribution of these multivariate data of {Y1, · · · , Yk|x;α} is expressed

as follows where parameters of α = {α1, · · · , αk} are distinct parameters of interest as (3.6).

We assume that the each factorized distribution on (3.6) follows a different known parametric

distribution, and this known parametric distribution is denoted as gj(·) for j = 1, · · · , k and

is plugged in the pseudolikelihood function instead of the conditional distribution on (3.6).
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p[Y1, · · · , Yk|x;α] = p[Y1|x;α1]p[Y2|y1, x;α2] · · · p[Yk|y1, · · · , yk−1;αk]

= p[Y1|x;α1]p[Y2|Y1, · · · , Yk, x, R ≥ 2;α2]

· · ·

p[Yk|Y1, · · · , Yk, x, R ≥ k;αk] (3.6)

The pseudolikelihood function of these multivariate data are driven from these factorized

conditional distributions of the multivariate data, {Y1, · · · , Yk|x;α}, on (3.6). Analogous to

the pseudolikelihood function from a bivariate missing data on (3.3), the pseudolikelihood

function of k–variate data can be set up with k pseudolikelihood functions for j = 1, · · · , k

as follows because the parameters of interest, α = {α1, · · · , αk}, are distinct.

L1(α1) =
n∏
i=1

g1(Y1|x;α1)

L2(α2) =
∏
R≥2

g2(Y2|Y1, x;α2)∫
g2(Y2|Y1, x;α2)dFn(x, y1)

· · ·

· · ·

Lk(αk) =
∏
R≥k

gk(Yk|y1, · · · , yk−1;αk)∫
gk(Y2|y1, · · · , yk−1;αk)dFn(x, y1, · · · , yk−1)

According to (3.7), one has k pseudolikelihood functions. Because each function is only

associated with one parameter of interest out of α, each associated αi is computed with the

pseudolikelihood function of Li(αi). Same as the pseudolikelihood method with a bivariate

missing data, one can obtain k log pseudolikelihood functions by taking logarithm to these k

pseudolikelihood functions where the log pseudolikelihood function about the parameter of

interest, αi, is denoted as li(αi). Hence, the regression parameter estimates α̂ = {α̂1, · · · , α̂k}

are obtained by maximizing corresponding log pseudolikelihood functions as (3.7).

α̂k = arg maxαk
lk(αk) where k = 1, · · · , K (3.7)
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Both these pseudolikelihood functions and log pseudolikelihood functions have complicated

forms of the denominators like the case of the bivariate missing data, so one can not expect

the regression parameter estimates as closed–forms by setting the score functions to zeros

where the score functions are defined as log pseudolikelihood functions that are taken the

first derivative about the corresponding parameters of interest. Therefore, the regression

parameter estimate α̂k should be numerically computed, and these regression parameter

estimates follow aysmptotic normal distribution also.
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4.0 THREE METHODS FOR VARIANCE ESTIMATION UNDER THE

PSEUDOLIKELIHOOD METHOD

Consider regression analysis of a dataset where all covariates are observed and the response

variable is partially observed. If the missingness only depends on the response itself, consis-

tent estimates and the corresponding asymptotic variance matrix of the regression parameter

estimates can be obtained by the pseudolikelihood method (Tang et al. 2003). However,

because the empirical process of the covariates are involved in the pseudolikelihood method,

the regression parameter estimates and the covariance matrix of these regression parameter

estimates are computationally very intensive.

Suppose that one concerns estimating the variance of the PL estimates of a function of

missing data Y. We denote a function of the missing data as h(X, Y ), and denote the func-

tion of interest as φ, which is the expectation of a function from missing data, E[h(X, Y )].

E[h(X, Y )] can be expressed as the function of the distribution of [X] and the regression

parameters of [Y |X]. Then the function of interest φ is formally expressed as follows:

φ = E[h(X, Y )]

= E[E[h(X, Y )|x]]

= E[

∫ ∞
−∞

h(X, y) · g(y|X;α)dy] (4.1)

g(·) indicates a known parametric function, and α is the unknown regression parameters from

the conditional distribution of [Y |X] on (4.1). From (4.1), the estimate of the function of in-

terest, φ̂ can be obtained by replacing unknown regression parameters of α to the estimates of

the regression parameters, α̂ as follows where α̂ is computed by the pseudolikelihood method.
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φ̂ =
1

n
·

n∑
i=1

[

∫ ∞
−∞

h(xi, y) · g(y|xi; α̂)dy] (4.2)

According to the formalization of (4.1) and (4.2), we can compute the variance estimate of

the function of interest with missing data. One of the most widely used standard methods

for variance estimation is the Delta method with a missing dataset. The Delta method is

an analytical method to estimate a variance of a function of interest using the first order

approximation of the Taylor series expansion. The Delta method uses the extended co-

variance matrix estimates between the regression parameter estimates and covariates, and

derives the variance estimate of the function of interest from this extended covariance matrix

estimate and the first derivatives of the function of interest about all related variables. The

theory of the Delta method is mathematically solid, and if the covariance matrix and the

first derivatives about the regression parameters are easy to compute, the Delta method is

a good way to obtain the variance of the estimates. However, the covariance matrix of the

regression parameter estimates has a complicated form under the pseudolikelihood method,

so its computation is not simple. In addition, this function of interest is associated with

empirical distribution of covariates, so the application of the Delta method to the function

of the PL estimates is computationally very intensive in practice.

Another method to estimate the variance of the function of interest is the Bootstrap.

The Bootstrap is a resampling technique that generates random samples of missing data

with replacement. One estimates the regression parameters per each bootstrap sample, and

computes the functions of interest with the regression parameter estimates. Then, one can

compute the sample variance among the functions of interest, and this sample variance be-

comes the variance estimate of the function of interest in the Bootstrap method. This method

is known to provide a consistent variance estimate especially as the number of sample size or

the number of bootstrap samples increases (Efron, 1979). However, if the regression param-

eters need to be estimated by the pseudolikelihood method, the Bootstrap needs a procedure

to numerically estimate the regression parameters from each bootstrap sample, which takes

a lot of the computation time in practice.

24



Besides these standard methods, a direct resampling method is newly developed in the

dissertation. Because the Delta method and the Bootstrap have their own difficulties in

practice, the direct resampling method attempts to address some of these difficulties. This

method is designed to draw multiple samples of parameter estimates from the asymptotic

normal distribution of the regression parameter estimates, so one can expect to save the

computation time which is required to estimate the regression parameters by the pseudolike-

lihood method in the Bootstrap.

We review these three methods, and study their properties as well as their procedures

in this chapter. These three methods are employed to estimate the variances of the PL

estimates of the first moment and the second moment of Y in a simulation study, and their

performances are compared with regard to averages of 95% confidence interval widths and

95% coverage rates. In addition, we examine the advantages and the disadvantages of these

three methods in practice.

4.1 DESCRIPTION OF THE THREE METHODS

4.1.1 The Delta Method

The Delta method is a widely used method to estimate the variance of a function of interest

based on the first order approximation of the Taylor series expansion, and can be applied to

both univariate and multivariate data. The Delta method derives an approximate probability

of distribution function for a function of the asymptotic normal estimator from limiting the

variance of that estimator, and provides an analytical solution about the variance of the

function of interest.

Denote the first set of parameters and the corresponding estimates as α and T. Assume

that T follows an asymptotic normal distribution as follows:

√
n(T − α)→ N(0,Σ) (4.3)
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For h(α), a smooth function of α, the natural estimate is h(T). Then, by the Delta method,

one can compute the asymptotic variance of h(T ) as follows:

h(T )− h(α) = (T − α)(
∂h(α)

∂α
) + o(1) (4.4)

√
n(h(T )− h(α)) → N(0, (

∂h(α)

∂α
)T Σ̂(

∂h(α)

∂α
)) (4.5)

If the distribution of the missing–data mechanism is (3.1), one can obtain the regression

parameter estimates and corresponding covariance matrix estimate of these regression pa-

rameter estimates by the pseudolikelihood method. However, the covariance matrix estimate

of the regression parameter estimates, Σ̂, has a complicated form, which requires a compu-

tationally intensive procedure. In addition, if the function of interest is a function of the

PL estimates, the extended covariance matrix for the Delta method is more complicated

where it consists of the empirical distribution of covariates and the regression parameter

estimates. Therefore, the Delta method is a computationally intensive practice. We conduct

the Delta method to estimate the first moment and the second moment in a simulation study

after estimating the regression parameters by the pseudolikelihood method, and examine the

advantages and the disadvantages in practice.

4.1.2 The Bootstrap Method

The Bootstrap, which was first introduced by Efron (1979), generates random samples with

replacement from an independent and identically distributed dataset. Unlike the Delta

method, this method is a computer–intensive resampling method, and is known to perform

better and consistent relatively in comparison to other non–parametric techniques (Efron,

1981). The Bootstrap is simple and straightforward to derive estimates of variances and

confidence intervals although a function of interest is composed of a complex form of the

parameters.

Let φ denote a function of interest which is composed of the regression parameter esti-

mates α̂, and one is interested in estimating the variance of φ. If φ̂ indicates an estimate

of φ from the original dataset, φ̂boot indicates a Bootstrap estimate of φ. Accordingly, V (φ̂)
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denotes the variance of the estimate of the function, and Vboot denotes the Bootstrap vari-

ance estimate of the estimate of the function. When one conduct the Bootstrap to estimate

the variance of φ, it is known that the Bootstrap estimate of φ̂boot is less biased than the

estimate of the function of interest with the original dataset, φ̂, (Little& Rubin, 2002), and

the Bootstrap variance estimate, Vboot is known as a consistent estimate especially as the

sample size of the original dataset, N, or the number of the repetition, B, tends to infinity

[Efron, 1979, Little& Rubin, 2002].

Suppose that the regression parameters, α, are estimated by the pseudolikelihood method

under the assumption of that the distribution of the missing–data mechanism of this dataset

depends only on the response variables. If one conducts the Bootstrap to compute the

variance of φ with this dataset, one has to compute the regression parameter estimates by

the pseudolikelihood method per each bootstrap sample after generating the random sam-

ples with replacement from the original dataset. With these regression parameter estimates

obtained from the bootstrap samples, the Bootstrap estimate of the function of interest is

computed from each bootstrap samples, and the Bootstrap variance estimate is computed.

Therefore, the computation procedure is multiplied as much as the number of the bootstrap

samples in this case, and the computation time increases a lot for implementing the Boot-

strap with not–missing at random missing data.

The general procedure of the Bootstrap with missing data is summarized to estimate

the variance of a function of interest as follows where regression parameter estimates and a

function of interest are denoted as α̂ and φ. The sample size of the original dataset is N,

and the number of the repetition of the Bootstrap is B. The original dataset is denoted as

D, and the Bootstrapping datasets are denoted as D(b) for b = 1, · · · , B.

• Step 1. Generate a sample D(b) with replacement from the original missing dataset of D.

• Step 2. Estimate the regression parameters, α̂(b) from the bootstrap sample of D(b).

• Step 3. Estimate the function of interest, φ̂(b) based on D(b).

• Step 4. Repeat Step 1.– Step 3. for b = 1, · · · , B.

• Step 5. Compute the bootstrap estimate of φ̂boot = 1
B

∑B
b=1 φ̂

(b).

• Step 6. Compute the bootstrap variance estimate V̂boot = 1
B−1

∑B
i=1 (φ̂(b) − φ̂boot)2
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4.1.3 A Direct Resampling Method

A direct resampling method is newly introduced here to estimate a variance of a function of

interest in the dissertation. The direct resampling method depends on a repeated sampling

technique like the Bootstrap, but one can expect less computation time than the Bootstrap

when data are incomplete. This direct resampling method is designed to draw the samples

from asymptotic normal distribution of regression parameter estimates and the samples of

covariates by the Bootstrap. Then, predictive values for missing values are generated from

normal distribution where the parameters are made up of the samples of the regression

parameter estimates and the covariates, and these predictive values are used to estimate the

function of interest and corresponding sample variance.

Let α denote regression parameters and φ is the function of interest where φ is a function

of the parameter α. The consistent estimate of the parameter, α̂, is obtained from missing

data, and α̂ asymptotically follows normal distribution such that the expectation is α, and

the variance is Σ. Then the general procedure of the direct resampling method is summarized

to estimate the variance of the function of interest as follows:

• Step 1. Estimate consistent estimates of α̂ from the original dataset.

• Step 2. Obtain the asymptotic distribution of α̂.

• Step 3. Randomly draw a sample of α(b) from N(α̂, Σ̂).

• Step 4. Generate a bootstrap sample from covariates X.

• Step 5. Randomly draw {y(b)1 , · · · , y(b)n } from asymptotic normal distributions whose

means and variances are composed of α(b) and the bootstrap samples of the covariates.

• Step 6. Estimate φ̂(b) using {y(b)1 , · · · , y(b)n }.

• Step 7. Repeat Step 1.– Step 6. for b = 1, 2, · · · , B.

• Step 8. Compute the resamling estimate for the function of interest, φ̂r = 1
B

∑B
b=1 φ̂

(b).

• Step 9. Compute the variance estimate by Vr = 1
B−1

∑B
b=1 (φ̂(b) − φ̂r)2.

Based on the above procedure, φ̂r and Vr are the direct resampling estimates and correspond-

ing variance estimate of the function of interest. There are some common procedures with

the Bootstrap, but the direct resampling method does not require estimating parameters
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of α per each repetition time because it directly draws α̂ from the asymptotic distribution

obtained from the original dataset while the Bootstrap computes α̂ from each bootstrap

sample. Therefore, once the asymptotic distribution of the parameter estimates from the

original dataset is well defined, one can obtain the variance estimate of the function of in-

terest faster than the Bootstrap.
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4.2 A SIMULATION STUDY FOR THE THREE METHODS

4.2.1 Simulation Procedure

The simulation is conducted with a bivariate dataset such that the covariate X is fully

observed and the response variable Y is partially but monotonely observed. The bivariate

datasets have four different sample sizes of 100, 300, 500 and 1000, and 1000 bivariate missing

datasets are generated per each different sample size. The missing data are created from the

complete bivariate datasets after specifying the designed missing–data mechanism, and the

specific procedure for the bivariate missing data is summarized as follows:

• Step 1. Generate randomly the covariate X according to standard normal distribution

N(0,1).

• Step 2. Generate the response variable Y based on the conditional distribution of [Y |X]

from N(β0 + β1 · x, σ2) where α = {β0, β1, σ2} = (1, 1, 1).

• Step 3. Specify the cases whose response variables are missing according to the following

mechanism (4.6).

P [R = 0|x, y] = Φ(ψ0 + ψ1 · y) (4.6)

Where (ψ0, ψ1) = (−1, 1) and Φ(·) refers to the cumulative distribution function(C.D.F.)

of standard normal distribution.

• Step 4. The missing datasets are created by erasing Y values of the specified cases from

the datasets.

As a result of the above procedure, about 50% of Y’s are missing on average, and these

missing datasets are not–missing at random. In the simulation, we consider estimating the

variances of two functions of interest. We denote the functions of interest as φ1 and φ2, and

φ1 and φ2 are specified the first moment and the second moment of missing data Y. At first,

we compute the regression parameter estimates of α̂ = {β̂0, β̂1, σ̂2} and the covariance matrix

estimates of these parameter estimates, Σ̂, by the pseudolikelihood method to compute the

variance estimates of two specified moments. The first moment and the second moment are

expressed as (4.7) and (4.8).

φ1 = β0 + β1 · µx (4.7)
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φ2 = β2
1 · µ2 + σ2 + β2

0 + 2β0 · β1 · µx (4.8)

Where µx = E[X] and µ2 = E[X2].

The estimates of the functions of interest are denoted as φ̂1 and φ̂2, and they are obtained

by replacing the regression parameters to the regression parameter estimates as follows:

φ̂1 = β̂0 + β̂1 · µ̂x (4.9)

φ̂2 = β̂2
1 · µ̂2 + σ̂2 + β̂2

0 + 2β̂0 · β̂1 · µ̂x (4.10)

Where µ̂x = 1
n

∑n
i=1 xi and µ̂2 = 1

n

∑n
i=1 x

2
i , and n is the sample size.

The variances of these estimates are obtained by three methods : One is the Delta

method, another is the Bootstrap, and the other is the direct resampling method. According

to (4.7) and (4.8), φ1 is a function of {µx, α}, and φ2 is a function of {µx, µ2, α}. The Delta

method computes the variances of φ̂1 and φ̂2 by taking the first derivatives about those

components of the functions of interest with the extended covariance matrix estimates. The

Delta method directly compute the variance estimates, so it does not provide estimates of

the functions of interest unlike the Bootstrap and the direct resampling method. The spe-

cific procedures of the Delta method for the first moment and the second moment of Y are

referred to Appendix A–Appendix B in detail. Unlike the Delta method, the Bootstrap and

the direct resampling method are computer–intensive techniques, and have multiple regres-

sion parameter estimates, α̂(b) for b = 1, · · · , B in different ways where B is the number of

repetition. These two methods compute multiple functions of interest from multiple regres-

sion parameter estimates. The Bootstrap and the direct resampling method compute the

variances of φ̂1 and φ̂2 as sample variances among the multiple functions of interest. The

Bootstrap and the direct resampling method are conducted with repetition of two different

numbers 50 and 128 in the simulation.
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The specific procedure for φ̂1 by the Bootstrap method is summarized as follows:

1. Generate a random sample of D(b) from the original sample D with replacement.

2. Estimate the regression parameters of [β̂
(b)
0 , β̂

(b)
1 , σ̂2(b)] using the pseudolikelihood method

which is described on (3.3) and µ̂
(b)
x on the bootstrap sample of D(b).

3. Compute φ̂(b) = β0
(b)+β

(b)
1 ·µ

(b)
x on the bootstrap sample of D(b) where µ

(b)
x = 1

N

∑N
i=1 x

(b)
i .

4. Repeat 1.–3. for b = 1, 2, · · · , B

5. Compute the bootstrap estimate of φ̂boot = 1
B

∑B
b=1 φ̂

(b) from {φ̂(1), φ̂(2), · · · , φ̂(B)}.

6. Compute the estimate of the variance,V̂boot = 1
B−1

∑B
b=1 (φ̂(b) − φ̂boot)2

from {φ̂(1), φ̂(2), · · · , φ̂(B)}.

The specific procedure for φ̂1 by the direct resampling method is summarized as follows:

1. Derive the regression parameter estimates, α̂ = [β̂0, β̂1, σ̂
2] of [Y |x] by the pseudolikeli-

hood method, and estimates the variance of α̂ using (A.8).

2. Randomly draw α̂(b) = [β̂
(b)
0 , β̂

(b)
1 , σ̂2(b)] from N(α̂, ˆV ar(α̂)) with restriction of (σ̂2)b > 0.

3. Generate random samples of {x(b)1 , · · · , x(b)n } with replacement from X.

4. Randomly draw y
(b)
i from N(β0

(b) + β1
(b) · xi(b), σ2(b)).

5. Estimate the function of interest, φ̂(b) = 1
N
·
∑N

i=1 y
(b)
i from (4).

6. Repeat 1.–5. for b = 1, 2, · · · , B.

7. Compute the mean of the estimate of parameter of interest, φ̂d = 1
B
·
∑B

b=1
ˆφ(b).

8. Compute the sample variance, ˆV ar(φ̂) = 1
B−1 ·

∑B
b=1 ( ˆφ(b) − φ̂d)2

from {φ̂(1), φ̂(2), · · · , φ̂(B)}.

When the function of interest is the second moment of missing data Y, the φ̂(b) is based

on (4.8) for b = 1, · · · , B on the above procedures of the Bootstrap and the direct resam-

pling method. After we obtain the variance estimates of the first moment and the second

moment by three different methods, we compare their performances with 1000 bivariate

datasets with regard to averages of 95% confidence interval widths and 95% coverage rates.

Averages of biases are also computed.
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4.2.2 Simulation Results

We estimate the variances of the first moment and the second moment with 1000 bivariate

datasets of sizes 100, 300, 500 and 1000 by three different methods in the simulation. One

method is the Delta, another is the Bootstrap and the other is the direct resampling method.

According to the above procedures of three methods, we obtained averages of biases, aver-

ages of 95% confidence interval widths and 95% coverage rates.

Table 2 and Table 3 show averages of biases, averages of 95% confidence interval widths

and 95% coverage rates for the first moment and the second moment which are obtained

with 1000 bivariate missing datasets by the different sample sizes. True values of the first

moment and the second moment are 1 and 3, and the averages of 95% confidence interval

widths are multiplied by 1000 in the tables. Averages of biases are computed by the average

differences of the true values from the estimates with 1000 datasets, and those values are

negligible for both estimates of the first moment and the second moment regardless of the

sample sizes on Table 2 and 3. Therefore, we concern more about averages of 95% confidnece

interval widths and 95% coverage rates than averages of biases. According to Table 2 and 3,

we can see that the averages of 95% confidence interval widths become similar among these

three methods as the sample size increases. Also, 95% coverage rates of the first moment

and the second moment are distributed around 95% and none go below 90%, so these three

methods show stable performances with regard to the coverage rates. In addition, there

are no distinct repetition effect between 50 and 128 in both the Bootstrap and the direct

resampling method in our simulation, and this result is consistent with Efron’s (1979).

However, these values on Table 2 and 3 are overestimated values. Because the regression

parameter estimates are numerically obtained, and the estimate of the covariance matrix

of the regression parameter estimates is not expressed as a closed form, one can encounter

some difficulties to estimate the variances of the estimates of two moments in practice. If

the regression parameter estimates are too different from the true values in a dataset, then

the dataset is considered having a convergence problem, and the dataset and the regression

parameter estimates are excluded from the computation. Also, if a covariance matrix does

not satisfy the positive definite condition, the dataset are also excluded from the computa-
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tion. The Delta method is an analytical way to compute variances based on the Taylor series

expansion. This method is theoretically solid and it does not require repeated calculation.

However, when the missing–data mechanism depends on a function of response variables

and the regression parameters are estimated by the pseudo–likelihood, the Delta method is

not the best way to use for the variance estimation. Because a covariance matrix by the

pseudolikelihood method is not a closed form, the Delta method is computationally intensive

to derive the variance estimates of the moments from the covariance matrix of the regression

parameter estimates. Compared to the Delta method, one does not have to estimate the

complicated covariance matrix of the regression parameter estimates in the Bootstrap. The

Bootstrap randomly generates multiple samples with replacement, and estimates regression

parameters from the generated samples, and computes the moments and their variances of

these moments. Because the variances of these moments are estimated with the sample

variances from the samples, the variance estimation is straightforward in the Bootstrap.

However, the regression parameters should be estimated with each bootstrap sample, so the

Bootstrap needs a large amount of computation time to search the regression parameter

estimates per each sample by the pseudolikelihood method when the missing–data mecha-

nism depends on a function of response variables. For example, it takes about 25 hours to

compute 1000 datasets of size 300 with 50 bootstrap samples per each dataset on Table 1.

The direct resampling method attempts to reduce a large amount of the computation time

by a repeated calculation. This method is based on the resampling technique, but it gener-

ates regression parameter estimates directly from the asymptotic normal distribution unlike

the Bootstrap. Although this method needs a repeated computation, but its computation

time is much less than the Bootstrap because the regression parameters are directly drawn

from a normal distribution. Also, the direct resampling method does not require computing

the covariance matrix between the PL estimates α̂ and µ̂x or the covariance between α̂ and

(µ̂x, µ̂2) unlike the Delta method. However, it has a similar difficulty to the Delta method

in that one has to compute the asymptotic covariance matrix of the regression parameter

estimates by the pseudolikelihood method.

Table 1 shows the computation time of the three methods in our simulation, and the

computation time is measured with CPU time of the three methods with 1000 datasets of
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Table 1: Computing Time Comparison

Computing Time Delta Method Bootstrap Resampling

Hour : Minute :Second 2 : 01 : 48 25 : 23 : 20 2 : 01 : 31

size 300. Regarding this computation time, these three methods have advantages and disad-

vantages to apply to not–missing at random missing data under pseudolikelihood in practice.
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Table 2: The Variance Estimate For The First Moment Under Three Methods

N B Bias Delta Method Bootstrap Resampling

Width Cvg Width Cvg Width Cvg

100 50 -0.0030 1246 972 982 940 1163 966

128 981 938 1156 966

300 50 -0.0020 607 966 546 945 566 950

128 551 946 561 949

500 50 0.0026 462 959 451 949 457 951

128 452 950 454 950

1000 50 0.0006 309 961 308 961 309 961

128 308 961 307 960

Table 3: The Variance Estimate For The Second Moment Under Three Methods

N B Bias Delta Method Bootstrap Resampling

Width Cvg Width Cvg Width Cvg

100 50 0.0277 7339 971 6988 952 6611 956

128 7649 963 6776 959

300 50 0.0018 2786 956 2685 952 2690 954

128 2688 952 2701 954

500 50 0.0102 2112 961 2101 956 2079 951

128 2107 956 2086 952

1000 50 0.0125 1163 957 1154 953 1121 943

128 1156 953 1116 941
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5.0 IMPUTATION METHODS UNDER THE PSEUDOLIKELIHOOD

METHOD FOR BIVARIATE MISSING DATA

5.1 INTRODUCTION

Most statistical analysis methods require the complete data, but missing data frequently

occur in many areas of research with various reasons such as non–response in survey data,

or drop–outs in clinical trial data. The methods to analyze these missing data are relatively

few, and imputation methods are one of them.

Consider a bivariate dataset {X, Y } where an independent variable of X is fully ob-

served and a response variable of Y is partially observed. The missing data are not–missing

at random (NMAR), and we assume that the distribution of the missing–data mechanism is

only composed of a dependent variable and the conditional distribution of [Y |X;α] follows a

parametric distribution. Under these assumptions, one can estimate regression parameters

of α by the pseudolikelihood method without specifying the missing–data mechanism with

this dataset. However, the pseudolikelihood method by Tang (2003) has some difficulties

to perform in practice. Suppose that one is interested in estimating the variance of the PL

estimates of any function of missing data Y. Let h(X, Y ) denote an arbitrary function of the

missing data of {X, Y }, and E[h(X, Y )] be the expectation of this function. E[h(X, Y )] is

the function of interest φ, and φ̂ is computed by the pseudolikelihood method. This specific

problem of interest is to estimate the variance of φ̂. One can consider the standard methods

to estimate the variance of φ such as the Delta method and the Bootstrap for this problem.

However, these standard methods have some difficulties to be employed in practice when

the missing–data mechanism depends on a function of response variables and the regression

parameter estimates of α̂ are obtained by the pseudolikelihood method.
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As mentioned in chapter 4, the covariance matrix of regression parameter estiamtes by

the pseudolikelihood method is very complicated. The Delta method derives the variance

estimate of this function from the covariance matrix estimate of the regression parameter

estimates and the first derivatives about regression parameters, α, so the computation by

the Delta method is computationally very intensive. The Bootstrap has also difficulty in

implementation with missing data. Because regression parameter estimates have to be nu-

merically searched per each bootstrap sample, it takes a lot of time in implementation with

missing data when the missing–data mechanism depends on the response variables.

Besides these standard methods, the imputation method can be used for the variance

estimation. The imputation method is simple. One can draw predictive values from a formal

statistical model, and replace missing values with them. Once imputation is completed, one

can apply standard statistical analysis with this imputed data. Therefore, the imputation

method can be more advantageous for the variance estimation of the PL estimates. But many

imputation methods assume missing at random (MAR), so these imputation methods bring

about severe biases in estimation with not–missing at random missing data. Tang devised

a mean imputation method for NMAR multivariate normal data (2002). The missing–data

mechansim of missing data is assumed to be only expressed with functions of dependent

variables, and the conditional distribution of [Y |X;α] is assumed to be known parameteric

distribution with unknown paramters of α. He estimated predictive values that are drawn

from the estimated conditional distribution of the missing values given the observed values

for complete cases. He computed parameter estimates of entire population α̂ by the pseudo-

likelihood method, and used Natharaya–Watson regression estimator to derive means from

the complete cases. But his approach does not show satisfactory peformance with regard

to coverage rates. In this dissertation, we propose a mean imputation method by replacing

the NW estimator to piece–wise linear regression estimator from his approach, and newly

introduce stochastic imputation method. These imputation methods take into account the

population mean in the predictive distribution, so one can prevent a severe bias with NMAR

missing data where the estimated condition mean of entire population is predicted with re-

gression parameter estimates obtained by the pseudolikelihood method in the imputation

methods. These methods are studied in the following section in detail.
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5.2 TWO IMPUTATION METHODS UNDER THE PSEUDO

LIKELIHOOD METHOD

5.2.1 A Mean Imputation Method

Suppose a bivariate missing dataset such that a covariate of X is fully observed and a response

variable of Y is partially observed. The missing data indicator is denoted as R, and R is

defined as 1 if Y is observed, and R is defined as 0 if Y is missing. Based on the definition of

the missing data indicator of R, the conditional distribution of entire population of [Y |x] is

expressed as (5.1) where R = 0 is a group of missingcases and R = 1 is a group of complete

cases.

pr[Y |x] =
1∑

k=0

pr[Y |x,R = k] · pr[R = k|x] (5.1)

From (5.1), pr[Y |x,R = 0] is expressed as follows where pr[R = 0|x] = 1− pr[R = 1|x].

pr[Y |x,R = 0] =
pr[Y |x]− pr[R = 1|x] · pr[Y |x,R = 1]

(1− pr[R = 1|x])
(5.2)

E[Y |x,R = 0] is derived from above (5.2) as (5.3).

E[Y |x,R = 0] =

∫
y · pr[Y |x]dy − p[R = 1|x]

∫
y · pr[Y |x,R = 1]dy

(1− pr[R = 1|x])

=
E[Y |x]− pr[R = 1|x] · E[Y |x,R = 1]

(1− pr[R = 1|x])
(5.3)

Using the representation of (5.3), Tang (2002) introduced a mean imputation method for

multivariate normal missing data under the assumption of (3.1) on the missing–data mech-

anism. According to the above representation of (5.3), one needs to specify the estimates of

three components of E[Y |x],pr[R = 1|x] and E[Y |x,R = 1]. In Tang (2002), Ê[Y |x] were de-

rived from regression parameter estimates of α̂ by the pseudolikelihood method. p̂r[R = 1|x]

and Ê[Y |x,R = 1] were derived from the kernel regression estimators as (5.4) and (5.5).

p̂r[R = 1|xi] =

∑N
i=1K(x−xi

ĥ
) · I(Ri = 1)∑N

i=1K(x−xi
ĥ

)
(5.4)
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Ê[Y |xi, R = 1] =

∑N
i=1K(x−xi

ĥ
) · yi∑N

i=1K(x−xi
ĥ

)
(5.5)

In this dissertation, we use a PWL estimator to estimate the conditional mean from the

complete cases instead of the kernel regression estimator of (5.5). The piece–wise linear

regression (PWL) segments the range of X with the minimum number of breakpoints to

consider the changes of the slopes where the breakpoints are defined as the thresholds where

the slopes change (Quandt.R, 1958). The piece–wise linear (PWL) regression assumes that

(1) a linear model is continuous within a segment and (2) it enforces the continuity at break-

points (Sprent, 1961). Because PWL is a non–parametric method, its consistent coefficents

are determined iteratively as the arguments that minimize the sum of square errors. As the

number of breakpoints increases, the flexibility of the model increases, but it needs more

computation procedures because the number of coefficients, which we have to estimate, in-

creases together.

We choose the PWL model for Ê[Y |X,R = 1] using approximated F–test under the

fixed significant level α = 0.05 by a forwording algorithm which increases the number of

breakpoints by one. Because the sum of square errors decreases as the number of break-

points increases, this algorithm stops at the model with the minimum possible number of

breakpoints under the fixed α. The general procedure for the forwarding algorithm of the

piece–wise linear (PWL) model selection can be summarized to compute the estimates of

E[Y |x,R = 1] on (5.3) as follows :

• Step 1. Begin with no breakpoint, and conduct a linear regression using the whole range

of X where a and b are the PWL coefficients. After calculating â, b̂ which minimize

the sum of square errors according to the following model, and test approximated F–test

under α0 = 0.05.

Y = a+ b ·X

If p–value from the approximated F–test is significant, one may add breakpoint one more

and compare the change of F-statistics value. If F-statistics does not increase, one derives

E[Y |x,R = 1] using â+ b̂ ·X.

40



• Step 2. If the previous model is not significant, we increase the number of breakpoints

by one, and set a new model as follows:

Y = a+ b ·X X ≤ x0

Y = a+ x0 · (b− b1) + b1 ·X X > x0

where x0 is the breakpoint, and it is determinted together with the coefficients of a, b, b1

that minimize the sum of square errors by the above model. After numerically estimat-

ing the coefficient estimates with the breakpoint, we test the model fitness according

to approximated F–test under fixed significant level again. If p–value is significant, but

F-statistics is not increased comparing with the previous model, one chooses the pre-

vious model and derives Ê[Y |x,R = 1] from the previous model. However, p–value is

significant and F-statistics is increased comparing with the previous model, one adds one

breakpoint more, and compares F-statistics with current model to make a decision to

derive Ê[Y |x,R = 1]. But if p–value is not significant, one discards the current model,

and increase the number of breakpoints by one and set a new model again.

We can repeat this procedure until a PWL model is significant under the fixed significant

level to estimate Ê[Y |x,R = 1]. Once one determine the PWL model according to the above

algorithm, the estimates of the conditional means hatE[Y |x,R = 1] are computed, and these

values are plugged in (5.3) for imputation. p̂r[R = 1|x] is computed using a kernel estimator

of (5.4), and Ê[Y |X] is computed using the PL regression estimates. Therefore, predictive

values of ŷi at given xi by the proposed mean imputation method is derived from (5.6).

ŷi =
Ê[Y |xi;α = α̂]− p̂r[R = 1|xi] · Ê[Y |xi, R = 1]

(1− p̂r[R = 1|xi])
(5.6)
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5.2.2 A Stochastic Imputation Method

Stochastic imputation methods draw predictive values by adding residuals to the predictive

values that are drawn by mean imputation method on (5.6) for missing values in not–

mssing at random (NMAR) missing data. Namely, pr[R = 1|x] and E[Y |x,R = 1] have the

same estimators specified in mean imputation method: p̂r[R = 1|x] is drawn from a kernel

regression estimator of (5.4), and Ê[Y |x,R = 1] is drawn from piece–wise linear regression

procedure explained in the above section. In addition, population means of E[Y |x;α] are

derived from regression parameter estimates of α̂ which are computed by the pseudolikelihood

method.

Besides these three components on (5.3), one needs to specify a residual term in stochastic

imputation method. We assume that residuals follow normal distribution where expectation

of the residuals is zero, and variance of the residuals is V ar[Y |x,R = 0]. When missing data

are not–missing at random (NMAR), V ar[Y |x,R = 0] and V ar[Y |x,R = 1] usually depend

on the values of X. Naturally, the conditional variance of V ar[Y |x,R = 0] can be obtained

using similar technique to the previous section. The conditional variance of the population

is simply expressed as follows:

V ar[Y |x] = E[Y 2|x]− E[Y |x]2

= (pr[R = 1|x] · E[Y 2|x,R = 1] + pr[R = 0|x] · E[Y 2|x,R = 0])

−(pr[R = 1|x] · E[Y |x,R = 1] + pr[R = 0|x] · E[Y |x,R = 0])2

= pr[R = 1|x] · V ar[Y |x,R = 1] + pr[R = 0|x] · V ar[Y |x,R = 0]

+pr[R = 1|x] · pr[R = 0|x] · (E[Y |x,R = 1]− E[Y |x,R = 0])2 (5.7)

From (5.7), we can rearrange the above expression about V ar[Y |x,R = 0] using the rela-

tionship between the conditional variance of the population,V ar[Y |x] and the variance of

V ar[Y |x,R = 1] as follows:

V ar[Y |x,R = 0] =
V ar[Y |x]− pr[R = 1|x] · V ar[Y |x,R = 1]

(1− pr[R = 1|x])

−pr[R = 1|x] · (1− pr[R = 1|x]) · (E[Y |x,R = 1]− E[Y |x,R = 0])2

(1− pr[R = 1|x])

(5.8)
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Therefore, (5.8) is the residual variance for stochastic imputation, and an estimate of the

residual is randomly drawn from N(0, V̂ar[Y |xi, R = 0]). After randomly drawing a residual

estimate from N(0, V̂ar[Y |xi, R = 0]), a predictive value of ŷi at given xi is drawn from (5.9)

for stochastic imputation where ε̂i denotes an estimate of the residual as follows:

ŷi =
Ê[Y |xi; α̂]− p̂r[R = 1|xi] · Ê[Y |xi, R = 1]

(1− p̂r[R = 1|xi])
+ ε̂i (5.9)

5.3 SIMULATION STUDY FOR THE TWO IMPUTATION METHODS

5.3.1 Simulation Procedure

We conduct mean imputation and stochastic imputation, and observe their performances

with 1000 bivariate missing datasets. The bivariate missing datasets are generated from

bivariate normal distribution, and the missing–data mechanisms of missing datasets are

specified as (3.1). We consider four different sample sizes as 100, 300, 500 and 1000 for this

simulation, and an independent variable X is fully observed, and a dependent variable of Y

is partially observed. The specific procedure for this bivariate missing dataset is summarized

as follows:

• Step 1. Generate an independent variable of X randomly according to a parametric

distribution function of N(0,1).

• Step 2. Generate Y based on the conditional distribution of [Y |x] which is specified to

be N(β0 + β1 · x, σ2) where α = {β0, β1, σ2} are set to be (1, 1, 1).

• Step 3. The missing mechanisms of the missing datasets are specified as follows:

P [R|X, Y ] = Φ(ψ0 + ψ1 · y)

Where (ψ0, ψ1) = (−1, 1), specify the cases whose response variables have missing values

according to the above missing–data mechanism.

• Step 4. The missing datasets are created by erasing Y values of the specified cases from

the datasets.
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With 1000 incomplete datasets, mean imputation and stochastic imputation are performed.

Regression parameter estimates α̂ = {β̂0, β̂1, σ̂2} are computed from the original dataset by

the pseudolikelihood method, and the predictive values for mean and stochastic imputations

are derived from (5.6) and (5.9) after fixing regression parameter estimates at α̂ on (5.6)

and (5.9). The detail procedure for these two imputation methods can be summarized as

follows:

• Step 1. Compute regression parameter estimates of α̂ = {β̂0, β̂1, σ̂2} by the pseudolikeli-

hood method from the original data of [Y |x;α].

• Step 2. Derive Ê[Y |x;α] with α̂ = {β̂0, β̂1, σ̂2}, and plug Ê[Y |x;α] in (5.6) and (5.9).

• Step 3. Reproduce a bivariate missing dataset which is the same to the original bivariate

missing dataset.

• Step 4. Draw predictive values for missing values in a reproduced bivariate missing

dataset from (5.6) and (5.9) and replace the missing values with the predictive values.

• Step 5. Repeat Step 3.–Step 5. for 20 times.

• Step 6. Estimate the variance of the function of interest with 20 complete datasets.

In this simulation, we consider estimating the variances of the first moment and the sec-

ond moment of missing data Y by mean imputation and stochastic imputation. According

to the above procedure, the mean imputation method is the same to single imputation, but

the stochastic imputation is mulitple imputation because we have 10 imputed datasets after

the imputation. The variance estimates of the first moment and the second moment are com-

puted from these 10 imputed datasets per each original dataset. After implementing these

procedures with 1000 missing datasets, we compared their performances of two imputation

methods with regard to the imputation biases, averages of 95% confidence interval widths

and 95% coverage rates.
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5.3.2 Simulation Results

We conduct mean and stochastic imputation methods under the specified algorithm. After

imputation, we compute the variance estimates of the first moment and the second moment

with the imputed datasets according to (2.7), and examine their performances with regard

to imputation biases, averages of 95% confidence interval widths and 95% coverage rates.

Under the specified algorithm, we fix the regression parameter estimates of the population

to the estimates which are obtained from the original dataset, so the mean imputation is the

same to single imputation, but the stochastic imputation is multiple imputation. Table 4

shows the imputation biases, averages of 95% confidence interval widths and 95% coverage

rates of the first moment, and Table 5 shows those results of the second moment

Total variance consists of two components in multiple imputation: One is the within im-

putation variance component, and the other is the between imputation variance component.

But the variance of single imputation is only composed of the within imputation variance

component. The variance estimate by single mean imputation may not be valid with NMAR

missing data because the ’Within imputation variance’ component of the complete cases is

not generally the same to that of the population. According to Table 4, the imputation biases

of the first moment are negligible, but 95% coverage rates based on the variance estimates

by the mean imputation are below 90%. Also, the coverage rates of the second moment

are poor for the mean imputation, and the imputation estimates of the second moment are

negative–biased on Table 5. However, the stochastic imputation results in nominal coverage

rates with negligible imputation biases for both the first moment and the second moment.

In comparison with Table 2 and 3, averages of 95% confidence interval widths are smaller

because these imputations fix the regression parameters α̂.

Fig. 1 displays biases and 95% coverage rates obtained by mean and stochastic imputa-

tion methods under the specified algorithm. Black lines and blue lines represent the mean

imputation method and the stochastic imputation method on the plots. Two upper plots

show biases at each different sample sizes for the first moment and the second moment, and

two lower plots show 95% coverage rates at each different sample sizes for the first moment

and the second moment. The absolute values are used for bias in the plots. In terms of
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biases, the second moments by the mean imputation show much higher values than the

stochastic imputation. Accordingly, the mean imputation shows poor coverage rates while

the stochastic imputation shows the nominal coverage rates.
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Table 4: The Variance Estimate of φ̂1 Under Two Imputation Methods (1)

N Mean Imputation Stochastic Imputation

Bias C.I.Width Cvg.rate Bias C.I.Width Cvg.rate

100 -0.0046 513 914 -0.0060 610 949

300 -0.0020 293 898 -0.0013 351 944

500 0.0026 226 891 0.0024 271 933

1000 0.0009 161 872 0.0013 192 921

Table 5: The Variance Estimate of φ̂2 Under Two Imputation Methods (2)

N Mean Imputation Stochastic Imputation

Bias C.I.Width Cvg.rate Bias C.I.Width Cvg.rate

100 -0.2898 1099 675 0.0498 1840 933

300 -0.3237 621 480 0.0253 1072 953

500 -0.3232 481 351 0.0232 832 936

1000 -0.3258 338 353 0.0311 592 937
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Figure 1: Comparison about biases & 95% coverage rates
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6.0 APPLICATION TO A SCHIZOPHRENIA TRIAL

We consider the positive and negative syndrome scale data (PANSS) from the Schizophrenia

trial which was introduced in Diggle et al. (2002) as an example to illustrate the imputation

methods as well as the standard methods for the variance estimation with missing data.

The positive and negative syndrome scale or PANSS is a medical scale used for measuring

symptom severity of patients with schizophrenia, where higher PANSS scores indicate more

severe symptoms. This data set is collected from a Phase III clinical trial data to compare

the different drug regimes of the treatment of schizophrenia by Diggle et al. (2002). The

clinical study has a longitudinal study design with five time–points of 1, 2, 4, 6 and 8 weeks

besides the baseline and the selection procedure, and the PANSS scores are measured at

each designed time–points. The total sample size of the trial is 523 subjects selected be-

tween ages of 18 and 65. All subjects are randomly assigned to three different drug regimes

of placebo, haloperidol and risperidone. Haloperidol is common drug for schizophorenia pa-

tients at present, but risperidone is newly developed drug for the patients. Among these

drug regimes, the risperidone group has been treated with four different dosages of 2mg,

6mg, 10mg, and 16mg. The risperidone group has the most subjects and shows faster de-

crease of PANSS scores by the time than other groups.

We selected the PANSS scores of the risperidone group at the baseline and four weeks

for the illustration. From this selected dataset, three cases which have missing values at

baseline are excluded, and 345 cases total are selected for our analysis. The PANSS scores

at baseline are all observed, and those at four weeks are partially missing. Table 6 shows the

frequency of the risperidone group at four weeks where ’Complete’ and ’Drop–out’ indicate

observed cases and missing cases.
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Table 6: The Frequency of The Risperidone Group at 4 weeks

2mg 4mg 10mg 16mg Total

Complete 49 56 39 55 199

Drop–out 36 31 48 31 146

Total 87 86 87 86 345

146 patients dropout at four week out of 345 patients, so about 42.3% of our dataset

have missing values according to Table 6, and the PANSS scores range from 40 to 147 in the

dataset. The mean PANSS score of the complete cases is 92.23 at baseline, and that of the

missingcases is 92.76 at baseline. The subjects with the higher PANSS scores tend to drop

out more at four weeks. With this tendency, we assume that the missing–data mechanism

of the selected dataset follows (3.1) and the distribution of the PANSS scores follows a para-

metric density function.

Let Y4 denote the PANSS scores of the risperidone group at four weeks. The conditional

distribution of [Y4|y1] are assumed to follow normal distribution as (6.1) where [β0, β1, σ
2]

are unknown parameters.

p[Y4|y1] ∼ N(β0 + β1 · y1, σ2) (6.1)

The parameter estimates of [β̂0, β̂1, σ̂
2] are numerically obtained by the pseudolikelihood

method described in (3.7) without specifying the missing–data mechanism, and the covari-

ance matrix estimate of these parameter estimates is also computed. Once we obtain both

the parameter estimates and the covariance estimate of these paramter estimates, we can

compute the variances of the functions of interest φ where φ = E[Y4]. We employ two

imputation methods as well as three standard methods to estimate the variances of the

first moment of Y4 with our dataset. Two imputation methods are mean imputation and

stochastic imputation. Three standard methods are the Delta, the Bootstrap and the direct

resampling method.
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The same algorithm in chapter 5 is applied to the stochastic imputation with this dataset.

This algorithm does not consider the variability of the regression parameter estimates from

the conditional distribution of [Y4|y1]. The population paramter estimates of [β̂0, β̂1, σ̂
2] are

fixed after obtaining them from the original dataset. Because the mean imputation according

to the specified algorithm in chapter 5 does not provide a valid inference about the variance

estimates of the functions of interest, we do not perform the mean imputation under this

algorithm. Instead, we generated 20 bootstrap samples, and estimates regression parame-

ter estimates of the population with these bootstrap samples according to (6.1). With these

twenty different population parameters, we conducted mean imputation. After the mean and

the stochastic imputations, we estimated the first moment of Y4 and corresponding standard

error with 20 multiply–imputed datasets.

Besides these two imputation methods, we conduct three standard methods with this

dataset, and compute the estimates of the first moment and their corresponding standard

error estimates. The Delta method is conducted with the covariance matrix estimate of these

regression parameter estimates and empirical distribution of Y1 which are obtained from the

original dataset. The estimates of the first moment in the row of the Delta method are

computed with regression parameter estimates of the original dataset on Table 7. The detail

procedure for the Delta method is analogous to Appendix A–Appendix B.

The Bootstrap estimates and the Direct resampling estimates are computed with 100

random samples per each. The Bootstrap generates 100 random samples with replacement,

and computes regression parameter estimates with 100 bootstrap samples. We compute the

Bootstrap estimates of the first moment with these regression parameter estimates, and cal-

culate the sample variance of the first moment with these bootstrap samples. The direct

resampling method randomly draws 100 regression parameter estimates from the asymp-

totic normal distribution of the regression paramter estimates that are computed with the

original dataset. We resample the predictive values of Y4 from normal distributions hav-

ing paramters that are composed of randomly drawn regression parameter estimates, and

compute the resampling estimates of the first moment. The variance estimate of the first

moment is computed with sample variances.
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Table 7: The Performance Comparison Among Five Different Methods

Method The first moment (φ)

Estimate Standard Error

Delta method 76.69 1.4639

Bootstrap 76.82 1.4098

Resampling Method 76.59 1.5653

Mean Imputation 76.48 1.5142

Stochastic Imputation 76.52 1.2875
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Figure 2: The Performance Comparison Among Five Different Methods
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Table 7 shows the estimates of the first moment of Y4 and the corresponding standard–

errors by five different methods. The estimates in the row of the Delta method are directly

computed with the parameter estimates of [β̂0, β̂1, σ̂
2] with the original dataset on Table 7,

but those estimates in other rows are computed with multiple sample sets generated by

the four different methods: the estimates in the row of the Bootstrap are computed from

the randomly generated bootstrap samples, and those in the direct resampling method are

computed from the predictive values which are drawn from normal distributions. In addition,

the estimates in the rows of the imputations are deriven from the multiply–imputed datasets

on Table 7. We can examine the performances of the five different methods according to

Table 7. At fisrt, the estimates of the first moment of Y4 are closely distributed among the

five methods. All figures are distributed between 76.48 and 76.82, so those methods show

similar results. The corresponding standard errors of the first moment range from 1.2875 to

1.5653. The stochastic imputation method with the specified algorithm in chapter 5 shows

the smallest standard error and the resampling method shows the largest standard error.

But, these estimated standard errors are very similar each other.

Figure 2 is a comparison plot based on Table 7 among these methods where ’o’ indicates

the location of the estimate and ’|’ indicates the magnitude of the standard error from the

location of the estimate. The plot displays the comparison result about the estimates of

the first moment and the lengths of corresponding standard errors among the methods. We

can see the location of the first moment estimates are almost parallel in Figure 2, and the

estimates and corresponding standard errors by the imputation methods show the equivalent

patterns to the other methods with regard to the locations of the estimates and the lengths

of the standard errors. However, the stochastic imputation method results in the smallest

standard error. In addition, we would like to know whether the risperidone group shows

clinical improvement for schizophrenia patients at four weeks based on PANSS data or not

according to the estimates of the first moment of Y4 in Table 7. The clinical improvement can

be defined based on (6.2), and if (6.2) is over 20%, then we can conclude that the risperidone

group is clinically improved at four weeks based on PANSS data.

E[Y4]− E[Y1]

E[Y1]
× 100(%) (6.2)
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The estimate of the first moment at baseline and four weeks are 92.34 and 76.69. The

declination rate at four weeks is computed as about 16.94% according to (6.2). Therefore,

there is no clear clinical proof for the improvement of the risperidone group based on the

declination rate at four weeks with PANSS data even though the PANSS score seems to be

decreased at four weeks.
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7.0 DISCUSSION

When the missing–data mechanism only depends on the response variables, one can com-

pute regression parameter estimates by the pseudolikelihood method without specifying the

missing–data mechanism (Tang et al, 2003). However, the covariance estimates of the re-

gression parameter estimates are computationally intensive. If one concerns estimating a

variance of the PL estimates, then standard methods like the Delta method and the Boot-

strap may not be the best methods. For this case, imputation methods may be more ad-

vantageous because they do not require complicated form of covariance estimates by the

pseudolikelihood method. However, many imputation methods assume MAR missing–data

mechanism. In the dissertation, we introduce a mean imputation method which modifies a

component from Tang’s approach(2002) and newly develop a stochastic imputation method.

We conducted a simulation with 1000 bivariate datasets, and applied to a real dataset of

PANSS data for Schizophrenia patients (Diggle et al., 2002) to examine the performances

of the imputation methods. Our imputation methods showed equivalent results to other

standard methods with regard to averages of 95% confidence interval widths and 95% cov-

erage rates. Specifically, the stochastic imputation method performed showed the smallest

95% confidence interval widths for the first moment. However, the mean imputation method

showed severe bias about other than the first moment, and a residual estimate may not be

valid for the stochastic imputation when the conditional variance estimate of the complete

cases, ˆV ar[Y |x,R = 1], is greater than that of the population, ˆV ar[Y |x]. In addition, when

the complete cases are sparse or sample sizes are too small, it may encounter a convergence

problem to implement these imputation methods.
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APPENDIX A

THE DELTA METHOD FOR ESTIMATING THE VARIANCE OF THE PL

ESTIMATE OF E[Y]

Consider a bivariate missing data of [X, Y ] where X is fully observed and Y is partially

observed. The missing–data mechanism is defined as (A.1).

pr[R|x, y] = ω(y) (A.1)

Under the assumption of (A.1), the regression parameter of [Y |x] can be obtained by pseu-

dolikelihood method without specifying the missing–data mechanism. Suppose that one is

interested in estimating the variance of marginal mean of missing data Y. According to (4.2),

the marginal mean of Y, φ, is expressed by setting h(X, Y ) = y as follows.

φ = E[y] = E[E[y|X]]

= E[β0 + β1 · x]

= β0 + β1 · µx (A.2)

Where µx = E[x] and α = [β0, β1, σ
2] is regression parameter of [Y |x] in (A.2), the estimate

of φ is expressed as (A.3).

φ̂ = β̂0 + β̂1 · µ̂x (A.3)

In (A.3), µ̂x = 1
n
·
∑n

i=1 xi and α̂ = [β̂0, β̂1, σ̂
2] is the regression parameter estimates by

pseudolikelihood method. If both a vector of regression parameter estimates from [Y |x] and
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the estimate of the marginal mean of X can be pack into the vector of θ̂ = [µ̂x, β̂0, β̂1, σ̂
2],

then the variance estimate of φ̂, which is a function of θ̂, is estimated using (A.4).

V̂ar(φ̂) ≈ 1

n
D(θ̂) · Cov(

√
n · (θ̂ − θ)) ·D(θ̂)T (A.4)

On (A.4), D(θ̂) is the vector of the first derivative of φ = φ(θ) about θ at θ = θ̂. The first

derivative of D(θ̂) is computed as (A.5), and the covariance matrix of θ̂ is denoted as (A.6).

D(θ̂) = [
∂φ

∂µx
,
∂φ

∂β0
,
∂φ

∂β1
,
∂φ

∂σ2
] = [β̂1, 1, µ̂x, 0] (A.5)

Cov(
√
n · (θ̂ − θ)) =

 Σ11 Σ12

ΣT
12 Σ22

 (A.6)

On (A.6), Σ11 is the variance of the estimate of µx, Σ22 is the variance of the regression

parameter estimates, α̂ = [β̂0, β̂1, σ̂
2], and Σ12 is the covariance between these two. Tang

et al.(2003) obtained the asymptotic variance of the regression parameter estimates of α̂ by

pseudolikelihood method, and Σ22 in (A.6) is this asymptotic variance of α̂. Each component
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of (A.6) can be expressed as follows:

Σ22 = E(−lαα(α0, P
x))−1[E{lα(α0, P

x)lα(α0, P
x)T} − Σ1 − ΣT

1 + Σ2]E(−lαα(α0, P
x))−1(A.7)

Where

l(α) =
m∑
i=1

[log g(yi|xi;α)− log
n∑
j=1

g(yi|xj;α) + log n]Where

Σ1 = −PZ̃(lα(α0, P
x; z̃)P z[g(y|X̃,α0)

I(R = 1)P xgα(y|x,α0)

{P x(g(y|x,α0))}2

− gα(y|X̃,α0)
I(R = 1)

P xg(y|x,α0)
]

Σ2 = I1 − I2 − IT2 + I3

Where

I1 = P X̃(P z[g(y|x̃,α0)
I(R = 1)P xgα(y|x,α0)

{P xg(y|x,α0)}2
]P z[g(y|x̃,α0)

I(R = 1)P xgα(y|x,α0)

{P xg(y|x,α0)}2
]T )

− P X̃(P z[g(y|x̃,α0)
I(R = 1)P xgα(y|x,α0)

{P xg(y|x,α0)}2
])P X̃(P z[g(y|x̃,α0)

I(R = 1)P xgα(y|x,α0)

{P xg(y|x,α0)}2
])T

I2 = P X̃(P z[g(y|x̃,α0)
I(R = 1)P xgα(y|x,α0)

{P xg(y|x,α0)}2
]PZ [g(y|x̃,α0)

I(R = 1)

P xg(y|x,α0)
]T )

− P X̃(P z[g(y|x̃,α0)
I(R = 1)P xgα(y|x,α0)

{P xg(y|x,α0)}2
])P X̃(PZ [g(y|x̃,α0)

I(R = 1)

P xg(y|x,α0)
])T

I3 = P X̃(PZ [g(y|x̃,α0)
I(R = 1)

P xg(y|x,α0)
]PZ [g(y|x̃,α0)

I(R = 1)

P xg(y|x,α0)
]T )

− P X̃(PZ [g(y|x̃,α0)
I(R = 1)

P xg(y|x,α0)
])P X̃(PZ [g(y|x̃,α0)

I(R = 1)

P xg(y|x,α0)
])T

More details about the asymptotic covariance matrix of the regression parameter estimates,

α̂ = [β̂0, β̂1, σ̂
2], is referred to Tang et al.(2003).

Σ11 = Var[
√
n · (µ̂x − µx)] = σ2

x (A.8)

Σ12 = Cov(
√
n · (α̂−α0),

√
n · (µ̂x − µx))

= Cov(E(−lαα)−1 · [
√
n · P z

n lα(α0, P
x) +

√
n · P z

n(lα(α0, P
x
n )− lα(α0, P

x))]

,
√
n · P z

n(x− µx)) + op(1)

= I3 + I4 + op(1) (A.9)
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where

I3 = E(−lαα)−1 · Cov(
√
n · P z

n lα(α0, P
x),
√
n · P z

n(x− µx))

= E(−lαα)−1 · E(lα(α0, P
x) · (x− µx))

= E(−lαα)−1 · E(lα(α0, P
x) · x)

I4 = E(−lαα)−1 · Cov(
√
n · P z

n(lα(α, P x
n )− lα(α0, P

x)),
√
n · P z

n(x− µx))

≈ E(−lαα)−1 · Cov(
√
n · (P x̃

n − P x̃)P z[
g(Y |x̃) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2

−gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
],
√
n · (P x̃

n − P x̃) · x̃)

= E(−lαα)−1 · Cov(P z[
g(Y |x̃,α00) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2
− gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
], x̃)

= E(−lαα)−1 · [E(P z[
g(Y |x̃,α00) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2
− gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
], x̃)

−E(P z[
g(Y |x̃,α00) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2
− gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
]) · E(x̃)] (A.10)

Where Z = [X, Y,R], and P z
n denots empirical process of (X,RY,R) on (A.8) and (A.9)
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APPENDIX B

THE DELTA METHOD FOR ESTIMATING THE VARIANCE OF THE PL

ESTIMATE OF E[Y 2]

Consider a bivariate missing data of [X, Y ] where X is fully observed and Y is partially

observed. Under the assumption of (A.1) about the missing–data mechanism, the regres-

sion parameter of [Y |x] can be obtained by pseudolikelihood method without specifying

the missing–data mechanism. Suppose that one is interested in estimating the variance of

the second moment of missing data Y. According to (4.2), the second moment of Y, φ, is

expressed by setting h(X, Y ) = Y 2 as follows.

φ = β2
1 · µ2 + σ2 + β2

0 + 2β0 · β1 · µx (B.1)

Where µx = E(x) and µ2 = E(x2), the estimate of φ is:

φ̂ = β̂2
1 · µ̂2 + σ̂2 + β̂2

0 + 2 · β̂0 · β̂1 · µ̂x

Where µ̂x = 1
n

∑n
i=1 xi and µ̂2 = 1

n

∑n
i=1 x

2
i on (B.1), and α̂ = [β̂0, β̂1, σ̂

2] are pseudolikeli-

hood estimates.

Var(φ̂) is estimated by delta method as follows where θ̂ = {µ̂x, µ̂2, β̂0, β̂1, σ̂
2}.

V̂ar(
√
n · φ̂) ≈ D(θ̂) · Cov(

√
n · (θ̂ − θ)) ·D(θ̂)T

D(θ̂) = [2 · β̂0 · β̂1, β̂2
1 , 2 · (β̂0 + β̂1 · µ̂x), 2 · (β̂1 · µ̂2 + β̂0 · µ̂x), 1] (B.2)
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Covariance matrix of α̂ is derived as below.

Cov(
√
n · (θ̂ − θ)) =

 Σ11 Σ12

ΣT
12 Σ22


(B.3)

Σ22 is same as (A.8), and Σ11 is asymptotic variance–covariance matrix of [
√
n(µ̂x −

µx),
√
n(µ̂2 − µ2)] as (B.4).

Σ11 =

 s11 s12

s12 s22

 =

 µ2 − µ2
x µ3 − µx · µ2

µ3 − µx · µ2 µ4 − µ2
2

 (B.4)

Where µ4 = E(x4), µ3 = E(x3), µ̂4 = 1
n

∑n
i=1 x

4
i and µ̂3 = 1

n

∑n
i=1 x

3
i .

Σ12 is the covariance matrix between α̂ and [µ̂x, µ̂2]
T , and it has two elements of [τ1, τ2]. Let

τ1 denote the covariance between α̂ and µ̂x, and τ2 denote the covariance between α̂ and µ̂2.

τ1 and τ2 are computed as follows:

τ1 = Cov(
√
n · (α̂−α0),

√
n · (µ̂x − µx))

= Cov(E(−lαα)−1 · [
√
n · P z

n lα(α0, P
x) +

√
n · P z

n(lα(α0, P
x
n )− lα(α0, P

x))]

,
√
n · P z

n(x− µx)) + op(1)

= I3 + I4 + op(1) (B.5)
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where

I3 = E[−lαα]−1 · Cov[
√
n · P z

n lα(α0, P
x),
√
n · P z

n(x− µx)]

= E[−lαα]−1 · E[lα(α0, P
x) · (x− µx)]

= E(−lαα)−1 · E[lα(α0, P
x) · x]

I4 = E[−lαα]−1 · Cov[
√
n · P z

n(lα(α, P x
n )− lα(α0, P

x)),
√
n · P z

n(x− µx)]

≈ E[−lαα]−1 · Cov[
√
n · (P x̃

n − P x̃)P z[
g(Y |x̃) · I(R = 1) · P xgα(Y |x,α)

(P xg(Y |x,α))2

−gα(y|x̃,α) · I(R = 1)

P xg(y|x,α)
],
√
n · (P x̃

n − P x̃) · x̃]α=α0

= E(−lαα)−1 · [E(P z[
g(Y |x̃,α00) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2
− gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
] · x̃)

−E(P z[
g(Y |x̃,α00) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2
− gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
]) · E(x̃)]

τ2 = Cov[
√
n · (α̂−α0),

√
n · (µ̂2 − µ2)]

= Cov(E(−lαα)−1 · [
√
n · P z

n lα(α0, P
x) +

√
n · P z

n(lα(α0, P
x
n )− lα(α0, P

x))]

,
√
n · P z

n(x2 − µ2)) + op(1)

= I5 + I6 + op(1) (B.6)

where

I5 = E(−lαα)−1 · Cov(
√
n · P z

n lα(α0, P
x),
√
n · P z

n(x2 − µ2))

= E(−lαα)−1 · E(lα(α0, P
x) · (x2 − µ2))

= E(−lαα)−1 · E(lα(α0, P
x) · x2)

I6 = E(−lαα)−1 · Cov(
√
n · P z

n(lα(α, P x
n )− lα(α0, P

x)),
√
n · P z

n(x2 − µ2))

≈ E(−lαα)−1 · Cov(
√
n · (P x̃

n − P x̃)P z[
g(Y |x̃) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2

−gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
],
√
n · (P x̃

n − P x̃) · x̃2)

= E(−lαα)−1 · [E(P z[
g(Y |x̃,α00) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2
− gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
] · x̃2)

−E(P z[
g(Y |x̃,α00) · I(R = 1) · P xgα0(Y |x,α0)

(P xg(Y |x,α0))2
− gα0(y|x̃,α0) · I(R = 1)

P xg(y|x,α0)
]) · E(x̃2)]
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