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DESIGN & IMPLEMENTATION OF A REAL-TIME, SPEAKER INDEPENDENT, 

CONTINUOUS SPEECH RECOGNITION SYSTEM USING A VLIW DIGITAL 

SIGNAL PROCESSOR ARCHITECTURE 

Wai-Ting Ng 

University of Pittsburgh, 2006 

 

This thesis explores the feasibility of mapping a real-time, continuous speech 

recognition system onto a multi-core Digital Signal Processor architecture. While a pure 

hardware solution is capable of implementing the entire recognition process in real-time, the 

design process can be lengthy and inflexible to changes. However, a low-end embedded 

processor such as ARM7 is insufficient to execute in real-time. As a result, a more flexible 

and powerful DSP solution w ith T exas Instrum ents’ C 6713 m ulti-core DSP is used to exploit 

the instruction level parallelism within the speech recognition process. By exploiting the 

parallelism using 7 optimization techniques, the performance of the recognition process can 

be real-time on a 300 MHz DSP for a 1000 word vocabulary. 

At its core, continuous speech recognition is essentially a matching problem. The 

recognition process can be divided into four major phases: Feature Extraction, Acoustic 

Modeling, Phone Modeling and Word Modeling. Each phase is analyzed in detail to identify 

performance issues. In short, the major issues are its massive computations and large memory 

bandwidth. After applying various optimizations, the overall computational performance has 

improved from about 15 times slower than real-time to 1.6 times faster than real-time with 

the hardware. Through utilization of Direct Memory Access and larger cache memory, the 

memory bandwidth problem can be solved. The conclusion is that a multi-core DSP running 

at 300 MHz would be sufficient to implement a 1000 word Command & Control type 

application using the optimization techniques described in this thesis.  
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1.0 INTRODUCTION 

Voice communication is one of the most primary and fundamental interactions between 

human beings in everyday life. The technological curiosity to build a machine that 

understands humans and the desire to simplify daily life through automation have driven the 

speech research community for the past few decades. Speech recognition began as people 

tried to allow computers to recognize isolated words. As progress has been made though the 

years, researchers have shifted focus to continuous speech recognition. With the increased 

understanding of human speech, significant improvements have been made within different 

areas of Automatic Speech Recognition (ASR). Recent advancements in computer hardware 

has enabled more practical software-based speech recognition applications to emerge. 

Commercial software running on desktop computers is slowly becoming more mature and 

usable. Most cellular phones are equipped with a simple recognition process that recognizes 

names and digits fairly accurately. However, speech-enabled applications have not yet been 

integrated into our daily life due to the fact that the efficiency level of embedded speech 

recognition applications is still low. In order to incorporate more speech-enabled applications 

into human life and to automate daily tasks, recognition processes must run on a portable 

device, and these processes must also be able to recognize continuous speech with high 

accuracy in real-time.  
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1.1  THE PROBLEM 

Simply stated, the problem of continuous Automatic Speech Recognition is that the process is 

computationally intensive. Many approaches have been taken to solve this problem but none 

have yet tried to map the entire recognition process on a multi-core DSP. 

Speech recognition started with the attempt to decode isolated words. As time 

progressed, research focus has shifted to continuous speech. With years of research effort, the 

start-of-the-art recognition systems are capable of recognizing continuous speech with 

acceptable accuracy. Furthermore, recognition systems that are built for Command and 

Control type applications have achieved accuracy greater than 90% [2]. However, most of 

these recognition systems are designed to run on a computer system with a high-clock-rate 

General Purpose Processor (GPP) and a large amount of memory bandwidth available. 

The difficulties of recognizing continuous speech can be summarized into the following 

areas: large variable nature of speech signal, difference in speakers, dictionary size and 

environment distortions. Through years of study, researchers have obtained a better 

understanding of speech signals. Statistical models trained by people for thousands of hours 

are used to compensate for different speakers. Environment distortions can be minimized 

using various signal processing techniques. Among these difficulties, dictionary size has the 

most important effect on the system performance. 

At its core, speech recognition is a matching problem between observed signals and a set 

of pre-defined words, or word library. The larger set of the pre-defined words implies that 

more computations are required. More importantly, the time available to complete all 

computations remains the same regardless of the dictionary size. State-of-the-art systems are 

mostly software based that are designed to run on computer platforms with the General 

Purpose Processor architecture. One limitation of using these GPP architectures is the lack of 

multiple processing units to take advantage of the instruction parallelism within the 
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recognition process. Furthermore, speech recognition process requires massive amounts of 

memory bandwidth between the processing unit and memory. The cache architectures that are 

designed to provide quick access to recently accessed data can take advantage of the locality 

for parts of the recognition process where data accesses are more sequential. However, some 

parts of the process inherit a highly irregular memory access pattern where cache would be 

less useful. For the GPP systems, these limitations are usually compensated by the high clock 

rate processor and the large amount of cache memory available.  

These software-based systems produce relatively good results as long as a 

high-clock-rate processor is available. However, such a machine might not always be 

available or even desired for certain applications. For example, mobile phones and PDAs are 

platforms where hardware resources are limited. Various approaches have been taken to scale 

down the number of computations. Using a smaller sized dictionary reduces the number of 

computations but also reduces the usability of the application. Another approach is to reduce 

the bit precision of the calculation. 

1.2  THE SOLUTION 

The process of ASR is generally divided into multiple stages. The first stage typically 

involves extracting useful information from the voice signal. The next few stages take the 

extracted information and perform word matching at different levels. The differences in 

functional characteristics and requirements of each stage creates an uneven amount of 

processing cycle consumption. One study [1] has shown that the Acoustic Modeling stage can 

potentially consume up to 95% of the entire process. As a result, more effort is spent 

investigating and optimizing areas that consume the majority of processing time.  
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A close examination reveals that speech algorithms inherit substantial instruction-level 

parallelism (ILP) at various stages of the process. It has been shown that custom designed 

hardware with a deep pipeline is capable of implementing a 1000 word Command and 

Control based application in real-time [1]. However, custom designed hardware lacks the 

flexibility for changes due to the evolutionary process of speech recognition. Also, the design 

cycle of such custom architecture is rather lengthy. This thesis investigates a more flexible 

software approach with a multi-core Digital Signal Processor (DSP) architecture. This thesis 

utilizes the Texas Instruments TMS320C6713 DSP Starter Kit as a demonstration that 

real-time Automatic Speech Recognition is possible an embedded DSP processor. 

DSP technology has improved significantly in recent years. Advanced architecture such 

as Very Long Instruction Word (VLIW) enables a single DSP to execute multiple instructions 

simultaneously. The VLIW architecture is designed specially for computationally intensive 

applications such as speech recognition. Furthermore, these DSPs are usually equipped with 

highly efficient and flexible cache architecture along with multiple channel Direct Memory 

Access (DMA). With careful design and optimization, the cache system and DMA can be 

used together to solve the memory bandwidth issue.  

This research focuses on the exploitation of the parallelism within speech recognition for  

multi-core DSP and predicts the resources requirement for real-time. The result has shown 

that by taking advantage of the multiple execution units and by using various compiler 

optimizations, a single DSP running at 300 MHz with at least 3MB of on-chip memory would 

be sufficient to implement a 1000 word Command and Control based application running in 

real-time. This research will expand the applicability of speech recognition from high clock 

rate general purpose computers to low-power, portable devices such as cellular phones and 

PDAs.  
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1.3  CONTRIBUTIONS & ORGANIZATION OF THE THESIS 

The major contributions of this thesis are:  

 Redesigned and mapped a real-time, speaker independent, command and control based 

speech recognition system onto a multi-core DSP architecture. Also examined and 

optimized each stage of the recognition process including Feature Extraction, Acoustic 

Modeling, Phone & Word Modeling. 

 Optimized Feature Extraction using various optimization techniques including Memory 

Aliasing, Software Pipeline, Loop Unrolling and Packed Data Memory Access. 

 Investigated Acoustic Modeling in two different approaches, Component Approach and 

Dimension Approach. 

 Optimized the Component Approach using various optimization techniques. 

 Optimized the Dimension Approach using various optimization techniques. 

 Resolved the memory bandwidth problem in Acoustic Modeling by eliminating the 

delay effect of accessing external memory using DMA and Cache Buffering technique.  

 Examined and implemented Phone & Word Modeling and determined that they are 

computationally simple but require a large memory bandwidth. 

1.3.1  Organization of the Thesis 

The remainder of this thesis is organized as follows: Chapter 2 reviews recent works 

pertaining to Automatic Speech Recognition. Different approaches including pure software 

and dedicated custom hardware architecture had been taken to implement speech recognition. 

The characteristics and performances of these different approaches will be presented and 

discussed briefly. 
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 Chapter 3 provides an overview of the Automatic Speech Recognition process. In 

addition, the system design specifications and requirements will be presented. The 

specifications of the DSP including the VLIW architecture, the memory system and the DMA 

will be described in detail along with the real-time requirements. Finally, the basic 

performance measurements are presented. These measurements will be used to determine 

how well an algorithm is optimized. 

 With all the pieces in place, Chapter 4 begins to focus on the detail implementation and 

optimization of the first stage of the ASR process, Feature Extraction. This section will 

provide the background theory of Feature Extraction along with its operations performed. 

The implementation will then be presented. After applying various optimizations, the 

performance result improved 332% from 231,577 cycles to 69,684 cycles. Furthermore, the 

implementation is functionally verified against the Sphinx 3 system using the data samples 

extracted from Sphinx 3.  

Chapter 5 focuses on the next phase, Acoustic Modeling. This chapter will discuss the 

background theory, performance issues and different implementations and the performance 

result. As shown in [1], AM is the most computational intensive phase of the entire 

recognition process. As a result, two different approaches, Component Approach and 

Dimension Approach, are implemented. Each approach is optimized with numerous different 

optimization techniques to obtain the best performance possible with the given DSP 

architecture. After comparing the optimal performances, the Dimension approach has the best 

performance of 0.75 million cycles, an improvement of 4500% from 33.8 million cycles 

without any optimization. Another performance problem for AM is that it requires a large 

amount of data that must be stored in the external memory. However, accessing the external 

memory requires significant amounts of cycle delay. One solution is to use Direct Memory 

Access as the detail will be presented in (section.5.2) All implementations are functionally 

verified against the original Sphinx 3 system using the same input samples from Sphinx 3. 
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Finally, Charter 6 discusses both Phone Modeling and Word Modeling. PM and WM are 

relatively insignificant from the computation perspective. However, a memory bandwidth 

problem similar to AM exists and the same solution used for AM is not applicable in this case. 

The best solution is that a traditional cache system large enough for all required data for PM 

and WM is sufficient. Similar to the previous sections, the theory, functions and 

implementations of Phone Modeling will be provided in detail. 

In conclusion, all performance results from different phases will be summarized. Each 

phase is implemented and functionally verified against Sphinx 3. Although the integration of 

all phases of the 1000 w ord com m and and control application doesn’t execute in real-time on 

the 225 MHz DSP. However, it a multi-core DSP running at 300 MHz would be sufficient for 

real-time implementation. 
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2.0  LITERATURE REVIEW 

Speech recognition has been a popular research topic for the past several decades. Various 

methods of implementation have been applied to solve the problem of Automatic Speech 

Recognition. These implementations range from pure software designed to run on GPP to 

dedicated custom hardware architectures.  

 With the recent advancement of computer hardware, more promising software-based 

solutions have been developed not only in the research community, but also in the 

commercial market. Carnegie Mellon University’s S P H IN X  [3] and U niversity of C olorado’s 

SONIC [11] are two examples of successful research systems. For the commercial systems, 

IB M ’s V iaV o ice [12] and N uance’ D ragon N aturally S peaking [13] are two popular 

recognition software. However, all these software-based systems are designed to run on 

computer systems with high clock rate GPP. They also require a large memory footprint for 

data storage.  

 Various works have been done in the research community to characterize speech 

recognition system and to investigate the implementation of speech recognition in embedded 

applications. Agaram, et al [15] characterized the speech recognition process in 2001. Aside 

from the characterization, their research group also performed an extensive analysis on the 

effect of various cache sizes. The investigated result shows that speech recognition processes 

substantially exercise the memory system and exhibit a low level of Instruction Level 

Parallelism. They then proposed various methods to improve the throughput of the system. 

As a result, they were able to increase the instruction per cycle (IPC) from 0.64 to 3.55. 
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 Binus, et al [10] profiled and characterized Sphinx 3 system in the block levels and their 

results indicate that the majority of computations in speech recognition is spent in Acoustic 

Modeling.  

 Hagen, et al [16] characterized the speech recognition process in hand-held mobile 

devices. Their work evaluated the performance of the SONIC [11] recognition system from 

the University of Colorado on a PDA-like architecture. Their work focused on optimizing the 

code using a strategic set of compiler optimizations. The result shows that real-time 

recognition is close to being possible with a 500 MHz processor with moderate levels of ILP 

and cache resources. 

The results of the above work conclude that speech recognition is extremely 

computational intensive where special attention should be paid to Acoustic Modeling. 

Significant amounts of memory bandwidth is required and recognition algorithms exhibits 

moderate level of ILP. 

2.1  SPHINX 3 

A software-based speech recognition system developed by Carnegie Mellon University called 

Sphinx [3] is used as the basis for this research. Specifically, version 3 of Sphinx is used. 

Sphinx 3 is a speaker independent, continuous speech, software recognition system. Sphinx 3 

had shown that it is capable of archiving 10x more than real-time in a broadcasting news 

transcription system [7]. Ten times real-time is considered a fairly solid result due to the fact 

that the system was implemented in 1999 and the word library used contains 64,000 words.  

In Sphinx 3, all words are decomposed into sub-word units, called phonemes. 

Specifically in Sphinx 3, all phonemes are decomposed into sub-phoneme units called 
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senones [8]. More information about the modeling of phoneme and senone will be presented 

in later sections. The word library used for this research is based on the D A R PA ’s R esource 

Management (RM1) corpus [6], which contains 1000 words used in command and control 

type tasks. All algorithms used in this research are either partially or fully derived from 

Sphinx 3. 

2.2  DIGITAL SIGNAL PROCESSORS 

Digital Signal Processors (DSPs) are special-purpose microprocessors designed with 

specialized architectures very suitable for different type of signal processing applications. 

The flexibility though reprogramming and the power efficiency provided by the DSP made it 

very suitable for most embedded applications. Compared to most general purpose processors 

(GPP), DSPs offer the instruction sets that typically reduce the number of instructions needed 

to perform the same operations. For example, most signal processing algorithms perform 

multiple-and-add (MAC) operations. Typically, a MAC takes a few cycles to complete in 

GPP but only takes one cycle to execute in VLIW DSP. The ability to execute multiple 

instructions is enabled by the advanced Very Long Instruction Word (VLIW) architecture. At 

the same time, the use of VLIW architecture increases the memory bandwidth. For parts of 

the recognition process where all required data fit on the on-chip memory, no significant 

performance decrease will be imposed from the memory access latency. However, if external 

memory is needed, the performance will decrease considerably due to the long latency of 

external memory accesses. If external memory is necessary, it is possible to reduce the 

latency effect through careful use of the on-chip memory along with Direct Memory Access, 

or DMA.  
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2.2.1  Very-Long-Instruction-Word Architecture 

Most state-of-the-art DSPs are designed based on the VLIW architectures [9]. VLIW 

architectures are developed with the purpose to exploit and to increase the instruction-level 

parallelism (ILP) in programs. These processors contain multiple functional units that are 

capable of executing multiple instructions simultaneously. The instruction sets of these VLIW 

architectures are usually simpler than GPP instructions. In order to take advantage of these 

architectures, enough ILP is necessary. State-of-the-art compilers can exploit ILP through 

code scheduling techniques such as Software Pipelining [28] and generate codes that group 

together independent instructions that can run in parallel. A Very-Long-Instruction Word, that 

contains multiple independent instructions, can then be fetched from the instruction cache 

together and dispatched to the different functional units in parallel. The DSP used for this 

research has eight functional units: two floating-point multipliers, two 

floating-point/fixed-point ALUs and four fixed-point ALUs.  

2.2.2  Memory Architecture 

Most state-of-the-art DSPs are equipped with two level cache architecture along with a large 

sized on-chip fast memory, typically SRAM. More often, the second level cache is 

configurable to either as another cache or on-chip SRAM. For example, the targeted DSP 

used for this research has 192 Kbytes of on-chip SRAM along with a 2-level cache system. 

The capacity of the Level 1 (L1) cache is 4 Kbytes organized into 2 direct mapped, or 2-way 

associative, caches. The capacity of the Level 2 (L2) cache is 64 Kbytes. Furthermore, the 

Level 2 cache can be configured to be all on-chip SRAM, part SRAM and part cache, or all 

cache.  
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 Typically a cache hit in L1 cache does not impose any latency while a cache miss in L1 

will result in a few cycles delay if the data is resided in L2 cache. If the data is not in L2, then 

more cycles are needed to access the data from the external memory. 

2.2.3  Direct Memory Access 

DMA is a mechanism used to transfer data between peripherals and memory or between 

different memory sections without the interference of the processor. In other words, data 

movement and data processing can be executed in parallel. With this capability and the 

configured L2 cache as all on-chip SRAM, the latency effect of external memory access can 

be completely eliminated. This can be accomplished by configuring L2 as a double buffer so 

while the processor is using the data of one buffer; the other buffer be being filled with new 

data by the DMA. One last requirement is that the two buffers are located in separate memory 

banks so simultaneous accesses by the processor and DMA are possible.  

2.3  DEVELOPMENT PLATFORM SPECIFICATIONS 

The development platform used in this research is the TMS320C6713 DSP Starter Kit (DSK) 

from Texas Instruments. The DSK features a TMS320C6713 DSP running at 225 MHz. Other 

important peripherals available with this DSK are a 24-bit stereo codec, a 32-bit External 

Memory Interface (EMIF) and 16 Mbytes of external SDRAM. A basic block diagram taken 

from the TI TMS320C6713 DSK technical reference [27] is shown in Figure 2.1. 
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C6713 DSP

External Memory 
Interface

SDRAM

AIC23 Codec

 
Figure 2.1: A simplified block diagram of the C6713 DSK showing the key components 

 

2.3.1  Texas Instruments C6713 DSP 

The C6713 DSP is the high performance floating-point DSP from Texas Instruments. It has 

32 32-bit registers and is capable of loading either a 32-bit single word or a 64-bit double 

word per cycle. The DSP is designed based on an advanced VLIW architecture with eight 

functional units: 2 fixed-point ALUs (.D units), 4 floating-point/fixed-point ALUs (.L and .S 

units) and 2 floating-point multipliers (.M units). Figure 2.2 lists the type of operation(s) 

dedicated to each type of the functional units.  

 

 

 
Figure 2.2: Illustrates the operation(s) support by different functional unit 
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Eight functional units enable 8 independent instructions to be executed in parallel. These 

functional units are divided into two separate clusters where each cluster has 4 units each. 

The 32 registers are organized into 2 register files, each has 16 registers. Each cluster has its 

own register file, and each functional unit has its own access port to its corresponding register 

file. To pass data from one cluster to the other, a cross path (.X) must be used. A detailed 

architectural diagram [27] is shown in Figure 2.3 illustrating the functional units’ 

arrangement. 

 

 

Register A 
(A0-A15)

Register B 
(B0-B15)

L1

S1

M1

D1

D2

M2

S2

L2

1X

2X

 

Figure 2.3: A architectural diagram showing the functional units and registers arrangement 
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2.3.2  Memory System 

Three memory systems are available on the TMS320C6713 DSK, cache system, on-chip 

SRAM and external SDRAM. The C6713 DSP utilizes a two-level cache memory system. 

Level 1 (L1) is a two-way set-associative cache with the total capacity of 4 KB. The capacity 

of the level 2 (L2) cache is 64 KB, which can be configured to be all cache, all SRAM, or 

part cache and part SRAM. In addition to the 2 levels cache, 192 KB of on-chip SRAM is 

also available for both data and programming storage. If more memory space is needed, there 

are 16 MB of Synchronous DRAM available through the external memory interface. Table 

2.1 summarizes the memory systems available and the configurations used for this research: 

 

 

Table 2.1: Memory systems and configurations summary 

 
 

 

In addition to the memory type and the capacity, Table 2.1 also summarized other 

characteristics. Line Size is the number of bytes allocated from the next level memory when a 

read miss occurs. Read Hit Penalty is the number of cycles for the processor to access the 

data if the data exists in that particular memory section. Read Miss Action is the process that 
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occurs when the data requested is not available. Finally, Read Miss Penalty is the number of 

stall cycles when a miss occurs. Note that for this research, L2 is configured as all SRAM. 

2.4  OPTIMIZATIONS OVERVIEW 

The overall performance of a speech recognition system depends mostly on the efficiency of 

the algorithms and the mapping of the algorithm onto the available hardware. There are 

numerous compiler optimization techniques available to help improve the performance of the 

algorithm. This section will describe the different optimization techniques available and how 

they are applied. 

2.4.1  Variable Registering 

Variable Registering is one of the basic optimization techniques. Instead of reading and 

writing data from memory outside of the processor for every instruction, registers are used to 

temporarily store data until the data is no longer needed. This optimization reduces the 

number of memory accesses significantly and resulting major performance improvement. 

2.4.2  Constant Propagation 

Constant Propagation is an optimization that replaces local copies of the global variable with 

the actual value. This technique increases the code size slightly but also improves the code 

performance. 
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2.4.3  Data Dependency 

Data dependency occurs when the next instruction cannot be executed because it requires the 

result from the previous instruction. An example is illustrated in Figure 2.4. 

 

 

 
Figure 2.4: An example of data dependency 

 

 

As illustrated, the second calculation cannot be executed until diff is computed by the 

previous instruction. If the software code is executed sequentially, data dependency would 

not be an issue. However, almost all modern processors are capable of executing multiple 

instructions in parallel in order to improve performance. As a result, data dependency can 

post a significant performance limitation on parallel executed code. 

2.4.4  Loop Carried Dependency and Memory Aliasing 

Loop carried dependency occurs when the next iteration of the loop cannot start until the 

previous iteration is completed. This is an issue that only exists in software code executed in 

parallel. An example is shown in Figure 2.5. 
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Figure 2.5: A code sample illustrating loop carried dependency 

 

 

It is not immediately obvious why multiple iterations cannot be executed in parallel since 

each iteration involves only one element from the each of the ary and the window array and 

the result of the multiplication is stored back to the ary array. From the compiler prospective, 

it has no idea if any part of the ary and window arrays are overlapped in the memory, or 

memory aliasing. If some parts of the two arrays are overlapped, then executing this code in 

parallel would produce incorrect results.  

One way to identify loop carried dependency is to use a dependency graph if the source 

code is available. A simpler way to find the dependency is by using the compiler generated 

assembly. Figure 2.6 displays a sample code and Figure 2.7 shows the generated assembly 

from the sample code. 

 

 

 
Figure 2.6: Sample source code 
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Figure 2.7: Generated assembly from source code in Figure 2.6 

 

 

Instructions with dependency are indicated by (^) symbol as shown in Figure 2.7. Clearly, the 

problem exists between the LDW (load word) and the STW (store word) instructions. Figure 

2.6 shows that the core calculation requires two loads, a multiply and a store. Within the 

scope of the local function, the compiler cannot assume that pointers ary and window do not 

overlap. The compiler cannot execute another load instruction for the next iteration until the 

store instruction from the previous iteration is completed.  

 Assuming that the two input pointers do not overlap in memory, the dependency can be 

removed by explicitly informing the compiler that there is no aliasing using the restrict 

keyword [25]. The restrict keyword is a type qualifier that represents a guarantee by the 

programmer that within the scope of the pointer declaration the object pointed to can only be 

access by that pointer. It is applied to the variable in the function declaration as shown in the 

following code sample: void function_name (int * restrict variable). For more information on 

restrict type qualifier, please refer to [25]. 
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2.4.5  Software Pipeline 

Software Pipelining [28] significantly improves code performance by executing multiple 

iterations of the loop in parallel. This is enabled by the advanced VLIW architecture. Figure 

2.8 illustrates a software pipelined loop. A, B, C, D and E are five independent stages of a 

loop. 

 

 

 
Figure 2.8: Example of a software pipelined loop 

 
 

In Figure 2.8, cycle 5 to 7 are known as the kernel. All five stages of instructions from five 

different iterations are executed in parallel. Cycles 1 to 4 are known as the prologue, which 

set up the software pipeline. Cycles 8 to 11 are known as the epilogue, which finishes the 

pipeline. Since all five stages are executed in parallel during the kernel, the iteration interval 

(ii) is only one cycle. Software Pipelining has the most advantage when the kernel can 

continue to execute with a minimum iteration interval and all functional units are fully 

utilized. 
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Before applying any optimization techniques to improve the code performance, 

problems must first be identified. A very useful way to identify performance issues, is by 

using the software pipeline feedback table. This feedback information is generated along with 

the assembly by the compiler. An example of a feedback table generated using the source 

code showing in Figure 2.6 is shown in Figure 2.9. 

 

 

 
Figure 2.9: A feedback table generated with the source code showing in Figure 2.6 

 

 

It is very important to understand the information from the feedback table showing in Figure 

2.9 as many performance issues can be identified using this information. 

 Loop source line: The line number of loop declaration in the source code. 

 Loop opening brace source line: T he line num ber for the loop opening brace, “{“. 

 Loop closing brace source line: The line number for the loop closing brace, “ }” . 
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 Known Minimum Trip Count: The minimum number of loop iterations determined by 

the compiler. 

 Known Max Trip Count Factor: The number of times the loop can be unrolled as 

determined by the compiler. This factor must be evenly divided into the Known 

Minimum Trip Count. 

 Loop Carried Dependency Bound (^): The number of cycles needed to execute one 

iteration of the loop if a loop carried dependency existed. This line can be used to 

identify any loop carried dependency. 

 Unpartitioned Resource Bound: The maximum number of times that any particular 

resource is being used for one iteration. This figure is determined by the compiler before 

instructions are partitioned to two resource clusters. 

 Partitioned Resource Bound (*): The maximum number of times that any particular 

resource is being used for one iteration after instructions are partitioned by the compiler 

to the two resource clusters. The resource that is used most is indicated by (*) on the A- 

and B- side resource listing. This information can also be used to identify any uneven 

partitioning between two resource clusters. 

 .L units: Floating-point arithmetic execution units. Two units total are available, one on 

side-A and one on side-B. The number under each side indicates the number of times this 

unit is used for one iteration. F o r exam ple, a “1” under side-A for .L units means that this 

floating-point unit on side-A is used by one instruction only for one iteration. 

 .S units: Fixed-point arithmetic execution units. There are total of two, one on side-A 

and one of side-B. The number under each side indicates the number of times this unit is 

used for one iteration. 

 .D units: Address calculation units. There are total of two, one on side-A and one of 

side-B. The number under each side indicates the number of times this unit is used for 

one iteration. 
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 .M units: Floating-point multiplier units. There are total of two, one on side-A and one of 

side-B. The number under each side indicates the number of times this unit is used for 

one iteration. 

 .X cross path: Cross path used for transfer data from one side of the register file to the 

other side for execution. There are two paths total. One path between side-A execution 

units and side-B register file and the other path between side-B execution units and 

side-A register file. 

 .T address path: Address path used to pass the calculated address from .D units to its 

associated register file. 

 ii = xx: Iteration interval. This is the number of cycles needed for one loop iteration 

determined by the compiler. From the example in Figure 2.9, 10 cycles are required for 

one loop iteration because a loop carried dependency exists. 

 x iterations in parallel: This indicates the number of iterations executed in parallel. 

2.4.5.1  Instruction Latency  Instruction latency is an important factor that affects the 

performance of the code. Although an instruction can be issued to a functional unit every 

cycle, the result usually is not available until a few cycles later, this is the instruction latency. 

The number of cycles required after the execution and before the result is ready is called the 

delay slot. Different instructions have varied amounts of delay slots. Figure 2.10 shows the 

delay slot and the functional latency for some common C67x instructions. To minimize the 

effects of long instruction latency, optimization techniques like Loop Unrolling and Software 

Pipelining are used. For a full list of C67x instructions delay slot and functional latency, 

please refer to [24]. 
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Figure 2.10: Example of delay slot and functional unit latency of some C67x instructions 

 
 

2.4.6  Loop Unrolling To Balance Resources 

The DSP architecture and the number of functional units available limit the performance of a 

software pipelined loop. The C6713 DSP used in this research has eight functional units 

divided into two separate channels. Each channel has four units, one type of functional unit 

each, with two cross path between the channels. The number of functional units available is 

known as the resource constraint. An example would be a loop with too many load and store 

operations but too few multiplications. The two-channel architecture also presents aproblem 

of resource partitioning. For example, if a loop contains three load/store operations, the two 

channels will not be balanced since one channel would have two operations while the other 

channel only has one. 

The software pipeline feedback table is a good tool to identify any unbalanced 

utilization of resources. The line Partitioned Resource Bound (*) from Figure 2.9 shows that 

there are unbalanced resources between the two channels. The reason is that the loop has an 

odd number of instructions, two loads and one store that would use both the .D and .T 

functional units. 
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 To balance the resources for this loop, loop unrolling can be considered. Notice that to 

perform loop unrolling, the loop count must be a multiple of the unrolling factor. For example, 

to unroll the loop by a factor of 2 correctly without doing extra calculations, the loop count 

must also be even. Similarly, to unroll a loop by a factor of 3, the loop count must be a 

multiple of 3. In Figure 2.6, the compiler does not know the len value from the local view of 

the function so the compiler does not perform loop unrolling. A MUST_ITERATE (MIN 

LOOP COUNT, MAX LOOP COUNT, UNROLL FACTOR) pragma can be used to pass the 

minimum loop count, maximum loop count (optional) and the unrolling factor information to 

the compiler. With the information explicitly stated, the compiler can perform loop unrolling 

for our example loop. Figure 2.11 shows the modified source code and Figure 2.12 shows the 

newly generated feedback table. 

 

 

 

Figure 2.11: Modified source code with restrict type qualifier 

 

 



 26 

 
Figure 2.12: Feedback table with modified source code 

 

 

Looking at the new feedback information, the loop now is unrolled by a factor of 2x (Loop 

Unroll Multiple). Also, both A-side and B-side channels have the same amount of instructions 

scheduled. 

2.4.7  Packed Data Memory Access 

This optimization technique can also help balancing resources for certain situations. The 

C6713 DSP is capable of loading a single 32-bit word or a 64-bit double word per cycle. An 

example of the situation where this optimization is suitable would be the example loop shown 

in Figure 2.6. The loop contains two loads, one multiply and one store. Without unrolling the 

loop, there will be unbalanced usage on the D function units. Packed data optimization 

reduces the number of load instruction from two to one. Notice that in order to apply this 

optimization technique, the data in the memory must be continuous and double-word-aligned. 
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Double-word-aligned means the lower 3 bits of the address are zero. To explicitly instruct the 

compiler that data are double-word-aligned, a function is used to assert that data are 

double-word-aligned. Figure 2.13 shows the modified code from the previous example and 

Figure 2.14 shows the newly generated assembly with two 32-bit loads is now combined to 

one 64-bit load. 

 

 

 
Figure 2.13: Modified code with new function to assert data are double-word-aligned 

 

 

 
Figure 2.14: Assembly showing two LDWs combined into one double load LDDW 
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3.0  OVERVIEW OF AUTOMATIC SPEECH RECOGNITION AND SYSTEM 
DESIGN SPECIFICATIONS 

Automatic Speech Recognition (ASR) is essentially a matching problem. The goal is to find 

the best match between a set of existing words and an observed speech. Continuous speech 

recognition extends the matching from single word to a series of words. Figure 3.1 shows the 

basics of an ASR system in block levels: 

 

 

 

Figure 3.1: Basic ASR system in block levels 

 

 

The speech signal is first sampled by an analog-to-digital converter. The digital 

representation of the speech is then processed by the Feature Extraction (FE) block. In FE, 
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characteristics of the speech are extracted to form a vector of 39 features. Each feature 

corresponds to the characteristics of a different frequency band. A new feature vector is 

generated every 10 millisecond interval, which is the basic requirement for real-time speech 

processing. The next three blocks, Acoustic Modeling (AM), Phone Modeling (PM) and 

Word Modeling (WM) combine to perform word matching at different levels. The feature 

vector is matched against each word available from the word library. The Word Modeling 

block keeps track of words that have the probabilities higher than a certain threshold and 

eliminates words that have probabilities below that threshold. Once a word is recognized by 

the WM block, it will be passed onto the Application block. Usually the duration of a spoken 

word requires multiple 10 ms frames. As a result, several frames are needed before a word 

can be recognized. This is the basic idea of word recognition in ASR. Continuous speech 

recognition is archived at the Application block. As words are observed by the WM block, a 

model of inter-words probability from the LM_SET of the Database can be used to determine 

how these recognized words are related, hence, forming a continuous speech. This task is 

done by the Application block. 

3.1  FORMAL DEFINITION 

The goal of ASR is to transcribe speech into words and sentences. From a statistical point of 

view, the goal is that given an acoustic observation X = X1… X n, find the corresponding word 

sequence W = W1… W n that maximizes the posterior probability P(W|X). This expression 

implies finding the probability of every word within the given word library. For large sized 

word library, it is very impractical. Instead, B ayes’ rule can be applied to decom pose the 

posterior probability, P(W|X), into two components: 
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P(W|X) = P
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

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






X              Eq. 3.1 

 

P(W|X) is the probability of the word sequence W given the observed sequence X. P(X|W) is 

the probability of the observed sequence X given the word sequence W. P(W) is the 

probability of the word sequence W. P(X) is the probability of the observed sequence. 

Equation 3.1 can be further simplified by removing P(X) because the probability of the 

observed sequence is random for every case. Furthermore, the purpose of speech recognition 

is to find the best match between the observed sequence and the word library. Hence, the 

modified equation looks like the following: 

 

max P(W|X) = max P(X|W)P(W)           Eq. 3.2 

 

Equation 3.2 indicates that finding the best match is to maximize the product of P(X|W) and 

P(W). The probability of each word, P(W), is generated by comparing the relative occurrence 

frequency against other w ords in the dictionary. F or exam ple, the w ord “the” has a m uch 

higher probability of occurrence than other w ords like “coefficients” or “G aussian”. P(W) is 

used by the Word Modeling block and is pre-generated and stored in the WM_SET of the 

Database. P(X|W) is determined by the Acoustic Modeling and the Phone Modeling blocks. 

3.2  BLOCK LEVEL OVERVIEW 

This section provides a functional overview for each processing block in Figure 3.1. From 

Figure 3.1, speech is first sampled then propagated from the FE block through AM, PM, WM 

and Application blocks. This system model is simple and straightforward since data flow 
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sequentially and all words are evaluated against the sampled speech. However, evaluating all 

words is sometime impossible to achieve in real-time for certain applications. All words 

needed to be evaluated due to the assumptions that any word is possible to be the starting 

word of a sentence, and any word can transit into another word. However, in reality, the 

probability of certain words being the starting word is very small relative to other words. For 

exam ple, the w ord “he” has a higher probability o f being the start of a sentence than the w ord 

“only”. Hence, the number of computations can be reduced by only evaluating those probable, 

o r “active”, w ords at any given frame. Tracking these active words is the responsibility of the 

Application block.  

For a word library that only contains a few words, it may be possible to recognize each 

word as a whole. However, for a large word library that contains similar words, it is no longer 

possible to recognize each word as a whole. In order to distinguish similar words; all words 

are further divided into multiple sub-word units called phonemes. With this new word 

definition, ASR can be viewed as phoneme recognition instead of word recognition. While 

the Application block is responsible for word tracking, WM block is responsible for phoneme 

tracking. Similar to word tracking, phoneme tracking is necessary because not all phonemes 

can be the starting part of a word and not all phonemes are allowed to be followed by any 

phonemes. Only those active phonemes are evaluated by the Phone Modeling block at any 

given frame. The list of active phonemes passed from WM to PM is referred as Feedback. 

The system model with Feedback is more complex as extensive data management is required. 

However, from the computational stand point, Feedback helps improve the overall system 

performance by reducing the required number of evaluations. A modified block diagram with 

Feedback is shown in Figure 3.2. Pseudo-code of the data flow with Feedback is also 

provided in Figure 3.3.  
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Figure 3.2: Block diagram for ASR with Feedback 

 

 

 

Figure 3.3: Block level pseudo-code for data flow 
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The pseudo-code in Figure 3.3 shows the inputs, outputs along with all the tasks performed 

for each of the processing block.  

The Database divides the word library into four datasets, one for each processing block 

as shown in Figure 3.2. Each dataset contains the necessary information needed for each 

block to complete its tasks. For example, the AM dataset stores the means and covariants 

needed for Gaussian evaluations. 

3.3  Performance Characteristics 

The differences in functionality have created different performance characteristics and 

memory bandwidth requirements for each processing block. The performance of these speech 

recognition processes had been characterized and profiled in [10]. It shows that FE takes up 

less than 1% of the overall computation cycles while AM takes up about 55%-95% and PM 

combined with WM consumes about 5%-45%. The actually percentages depend mainly on 

the size of the word library used. The larger the dictionary size, the more the performance of 

AM becomes significant over the other blocks. 

The most computation intensive function in Feature Extraction is the Fast Fourier 

Transform (FFT), which converts the data samples from the time scale to the frequency scale. 

Utilizing the hand optimized signal processing library [26] available along with the DSP, the 

amount of computational cycles required to perform FFT is reduced to almost negligible 

relative to other parts of the recognition process, which corresponds to [10]. Also, all data 

required with FE can be stored within the on-chip SRAM which eliminates the performance 

effect that will be caused by accessing to the external memory. 
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          The main function of Acoustic Modeling is to take the sample characteristics and 

match them against its own library. Part of this process is the Gaussian evaluation. Each of 

these evaluations includes two multiplications and two subtractions. The size of the 

dictionary dictates the number of Gaussian evaluations required. For the 1000 word 

dictionary used in this research, approximately 604,000 evaluations are performed every 10 

milliseconds, which translates into 1.2 million multiplications and subtractions each. In 

Sphinx 3, all of these computations are evaluated in float point precision. Other research [1] 

had shown that reducing the bit precision does not impose significant decrease in system 

performance; however, the number of computations does not change.  

While it is a challenge to perform such massive amounts computations with a limited 

amount of computing cycles, the bigger problem is feeding these computations with the 

required data. Each Gaussian evaluation takes three inputs and produces one output. 

Depending on the method of implementation, the required number of input data can be varied. 

However, regardless of the implementations, a minimum of two inputs are necessary. With 

each input data stored with 4 bytes each regardless of fixed-point or floating-point, 

approximately 4.83 Megabytes of data bandwidth is needed for every 10 ms. This amount of 

data is larger than most of the cache available on any system. As a result, these data will be 

stored in the external memory.  

The primary function of Phone Modeling is to evaluate all of the active phonemes within 

a 10 ms frame. Phonemes are made active based on the previous frame of data by the Word 

Modeling block. In Sphinx 3 and for this research, each phoneme is modeled as a 3 states 

Hidden Markov Model (HMM). More information about HMM will be discussed in 

(section.6.0) Computational wise, each HMM evaluation consists of 9 additions and 3 

comparisons. All operations are done in integer form. From the study of [1], at most 

approximately 4000 phonemes can be active at any given frame for the 1000 words dictionary, 

which are significantly fewer computations compared to AM. On the other hand, the amount 
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of data required per HMM evaluation is more than Gaussian evaluation. A total of 15 integers 

are needed for each HMM evaluation. Further, unlike AM where data are accessed in a 

regular manner, data required for PM are from multiple different locations and these locations 

are more random and irregular. This type of irregular memory access pattern presents a 

different type of challenge than AM. 

The final stage considered in this research is Word Modeling. WM keeps track of all 

phonemes, removing unpromising ones and adding new ones to the active list. Since the 

operation of WM is tightly coupled with PM, they will be analyzed together from this point 

and on. 

Summarizing these performance characteristics, it should be clear that AM should be the 

main focus since AM requires the most processing power and the largest memory bandwidth. 

3.4  TIMING REQUIREMENT 

The standard technique used for speech processing is based on frame processing. Sphinx 3 

processes speech data at 10 millisecond intervals. In order to be real-time, all computations 

must be completed within the 10 ms interval. The number of computation cycles available, 

however, depends on the speed of the processor. For example, if the processor is operating at 

100 MHz, that means all calculations must be done in 1 million cycles, 1/100 of a second. For 

this research, the DSP operates at 225 MHz. As a result, the cycle budget available for this 

research to satisfy the real-time requirement is 2,250,000 cycles.  
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3.5  PERFORMANCE MEASUREMENTS 

As presented in the (section 3.3), different processing blocks have different computational 

and memory requirements. Feature Extraction is the least computational intensive relative to 

other parts of the recognition process. Also the memory footprint is small enough to be stored 

entirely in the on-chip SRAM. However, in embedded environment where a high speed 

processor isn’t available, F E  remains a performance bottleneck. As a result, FE must also be 

optimized using several compiler optimizations. The optimized performance of FE improved 

332% from 231,000 cycles to 69,000 cycles, which is 3.07% of the real-time budget. 

 Acoustic Modeling is the most computational intensive and requires the largest memory 

bandwidth in the entire recognition process. For these reasons, most efforts are spent trying to 

optimize AM. AM implementation presents two separate problems: a large number of 

computations and massive memory bandwidth. AM performs 1.2 million multiplications and 

subtractions each. For a fair comparison with Sphinx 3, all operations are performed in 

floating-point precision. With eight functional units available where two of them are 

float-point multipliers and two are floating-point ALUs, it seems possible to execute a single 

Gaussian evaluation per cycle. However, data dependency and functional unit latency prevent 

the achievement of such performance. Data dependency exists due to the fact that not all 4 

operations are independent. In other word, the output of one operation is the input for the 

other operations. Further, although all functional units are capable of executing most 

instructions in a single cycle, but there exists some latency before the result is available. This 

latency is due to the deep pipeline architecture of these functional units. 

 Although it is impossible to archive one cycle per Gaussian evaluation with the available 

DSP architecture, it is possible to get close to it. Two different implementations methods were 

analyzed in this research where each of them is optimized through software pipeline and 

various compiler techniques. The best performance obtained is 1.25 cycle per Gaussian 
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evaluation resulting an approximately 754,000 total cycles. This result is obtained based on 

the assumption that all data are available to the processor without any latency. In reality, this 

is impossible since the L1 cache size is too small. The DSP and cache architecture used in 

this research impose a 4 cycles delay whenever L1 misses and L2 hits, regardless of L2 being 

on-chip SRAM or cache. Further, if L2 misses and external memory is accessed, over 100 

cycles of delay is possible. To eliminate this memory latency effect, the L2 cache is 

configured to be used as all on-chip SRAM where it is divided into two different buffers. 

While one buffer is being accessed by the processor, the other buffer can be filled with new 

data using DMA. This method will completely eliminate the effect of external memory 

latency. Since the line size of the L1 cache is 8 32-bits words, the actual performance would 

now be the total number of data required divided by 8 and multiples by 4 cycles. With 

603,000 total evaluations and 3 pieces of float-point data each, total of 1.81 million 

float-point data is needed. Dividing by 8 and multiplying by 4 resulting 905,000 cycles. With 

the processor running at 225 MHz, a 10 ms frame would have 2.25 million real-time cycle 

budget. After optimizing AM, the overall cycle performance would be 1,659,000 

(computation + memory latency, 754,000 + 905,000), which is about 73.7% of the real-time 

cycle budget.  

 Finally, for PM and WM, all computations are integer based with no data dependency. 

The only problem is that PM and WM also require a fairly large memory bandwidth and the 

access pattern is more irregular. Due to the irregularity, DMA would not be as useful in this 

case since data are coming from different locations of the memory rather than accessed as a 

block in sequential fashion. The only solution would be to have all the required data to be 

stored in the on-chip SRAM. However, since PM and WM do not present any computational 

issues, they are only implemented for the completeness of the project.  
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3.5.1  Register Utilization 

Registers are temporary stores within the processor. Their purpose is to allow the processor to 

have quick access to often used variables. Certain complex algorithms require storing more 

temporary variables than the number of registers available. Whenever the processor runs out 

of register, external memory is accessed. In other word, the number of registers available 

limits the performance of execution of an algorithm. The registers also play an important role 

on the efficiency of a software pipeline code since the number of registers along with the 

number of execution units available limits how many iterations of a loop can be execute in 

parallel. An example of a register utilization table generated by the compiler is shown in 

Figure 3.4.  

 

 

 

Figure 3.4: An example of a compiler generated register utilization table 

 

 

As mentioned before, C6713 DSP has 32 registers that are divided into 2 register files, each 

has 16 registers. The example showing in Figure 3.4 indicates that each loop takes 3 cycles to 

execute (ii = 3). As a result, the Register Usage Table shows 3 cycles of usage, 0-2. Each (*) 

indicates that register is used in that particular cycle. For example, registers A00, A01, 
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A03-A09 are used in cycle 0. Register utilization is used as a measurement to determine how 

well an algorithm is optimized. In other word, a 100% utilization of registers for every cycle 

is best while more unused register means more possible optimizations can be applied.  
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4.0  FEATURE EXTRACTION 

This section discusses the theory, implementation and optimizations used for Feature 

Extraction (FE). Although FE takes up less than 1% of the overall cycle budget on systems 

with high speed processors, FE can become a significant performance issue in embedded 

environments. As a result, FE must also be optimized using various compiler optimization 

techniques. The optimized performance of FE improved 332% from 231,000 cycles to 69,000 

cycles, which is 3.07% of the real-time budget. 

Feature extraction, often referred to as the front-end processing, generates a set of 

39-dimension features representing the important characteristics of the digitized speech 

samples. This is accomplished by dividing the input speech samples into blocks and derives a 

smoothed spectral estimate from each divided block. The typical spacing of each block is 10 

milliseconds, resulting 100 frames per second. To obtain the required spectral estimates, 

numerous processes have been developed [17]. However, the most standard method, 

Mel-Frequency Cepstral Coefficients (MFCC) [18], is used by Sphinx 3. MFCC is a 

representation of a windowed signal derived from the FFT of that signal. The process of 

MFCC is divided into six stages as shown in Figure 4.1 and is described in detail in the 

following sections. 
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Figure 4.1: Different stages of Mel Frequency Cepstral Coefficients 

4.1  PRE-EMPHASIS 

In the spectrum of a human speech signal, the energy of the signal decreases as the signal 

frequency increases. The pre-emphasis process is applied to the input speech samples by 

using a first order FIR filter to increase the signal energy inversely proportional to its signal’s 

frequency. This will equalize the power across all frequencies. The computation performed in 

Sphinx is show in Equation 4.1. 

Pre-Emphasis 

Framing 

Windowing 

Power Spectrum 

Mel Spectrum 

Mel Ceptrum 

Frame Blocking 

Delta,  

Double Delta 
39 Features Vector 

Speech 
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y[n] = x[n] –  α x[n-1] , w here 0.9< = α< = 1          Eq. 4.1 

 

In this research, α  is set to be 0.97, same as Sphinx. This operation is performed on every 

speech sample.  

Pre-emphasis is implemented as a for-loop when each loop iteration performs a 

multiplication and an addition. The source code is shown in Figure 4.2.  

 

 

 
Figure 4.2: Implementation code for pre-emphasis 

 

 

Since all iterations are independent of each other, there is no data dependency issue. Further, 

restrict keyword is used to guarantee that in and out are non-overlapping arrays. However, 

Loop unrolling, Packed Data Load and other techniques are not applicable due to the fact that 

the loop count can be varied depending on the sampling rate. Finally, this loop is further 

optimized with software pipeline. The optimized assembly is shown in Figure 4.3. 
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Figure 4.3: Optimized assembly showing pipelined instruction 

 

 

Figure 4.3 shows that the loop kernel is made up of two sets of parallel instructions. During 

the 1st cycle, six instructions are executed including 1 data load (LDW) and 1 floating-point 

subtraction (SUBSP). The 2nd cycle executes 7 instructions including another LDW and a 

floating-point multiplication. Finally the optimized result is shown in the software pipeline 

table in Figure 4.4.  

 

 

 

Figure 4.4: Optimized result showing in the software pipeline table 
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As indicated in Figure 4.4, it takes 2 cycles to complete an iteration (ii = 2) and 10 iterations 

are executed in parallel. In other words, the overall performance of this loop is 2n cycles. The 

n in this research is set to be 2000 and so the overall performance would be 4000 cycles with 

the assumption that all data is available in the L1 cache. However, this is not the case since 

all data will reside in the L2 SRAM. The cache miss effect would be the total number of 

samples divided by the L1 cache line size, multiplied by L1 cache miss penalty. Since each 

sample is a short type integer, the total effect would be 2000 sample x 2 bytes / 32 bytes 

cache line x 4 cycles penalty = 500 cycles. The combined result is 4500 cycles. Table 4.1 

summarizes the performance gain for Pre-emphasis. 

 

 

Table 4.1: Performance summary for Pre-Emphasis 

Pre-emphasis  Performance  Improvement 

*Standard Optimizations  14,500 cycles  - 

Optimized with MA & SP  4500 cycles  322%  

 

4.2  WINDOWING 

The remaining operations are performed on a frame basis. Each frame consists of 2000 

speech samples with 160 samples overlapped from the previous frame. 

Each of the 2000 sample frames are multiplied with a Hamming Window to minimize 

the effect of discontinuities at the edges of the frame during Fast Fourier Transform 
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performed in the later stage. The Hamming Window is shown in Equation 4.2 and this 

operation is performed 2000 times, same as the size of a frame. 

 

w[n] = 0.54 - 0.46 cos 






2  n
N 1 , where N = length of the frame      Eq. 4.2 

 

The Windowing function simply multiplies the Pre-Emphasis data samples with a set of 

Hamming Windows coefficients. It is implemented as a simple for-loop. The Sphinx version 

of the source code without any optimizations is shown in Figure 4.5.  

 

 

 
Figure 4.5: Sphinx version source code for Windowing function 

 

 

Unlike Pre-Emphasis, where the loop count is variable, the loop count (len) for the 

Windowing function is fixed at 410 for this research. Further, knowing that the loop count is 

an even number, Loop Unrolling and Packed Data Load optimizations can be applied. It is 

also clear that there is no data or loop carried dependency and the compiler should be 

guaranteed that no memory aliasing between the input and output arrays use the restrict 

keyword. The optimized source code is shown in Figure 4.6.  
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Figure 4.6: Optimized source code for Windowing function 

 

 

As shown in Figure 4.6, each array is guaranteed that there are no memory overlaps exist. 

Further improvement can be made by unrolling the loop by a factor of 2. This is done by 

using the MUST_ITERATE pragma. With the loop unrolled by 2 means that each cycle 

would require 4 pieces of input data instead of 2. Packed Data Load can be used to load 4 

32-bit words as long as the compiler is guaranteed that data is aligned in 64-bit. The 

WORD_ALIGNED macro is used to explicitly instruct the compiler that data is double-word 

(64 bits) aligned so that double-word load is safe. Finally, software pipeline is also enabled so 

that multiple instructions can be executed in parallel. The final optimized assembly is shown 

in Figure 4.7. 

 

 

 

Figure 4.7: Optimized assembly for Windowing function 
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Illustrated in Figure 4.7 is that instructions are executed in parallel (indicated by ||) and that 

all 4 pieces of data are loaded in the same cycle (indicated by LDDW). The final software 

pipeline feedback table is shown in Figure 4.8.  

 

 

 

Figure 4.8: Software pipeline feedback table for Windowing function 

 

 

The final result shows that (by ii) each loop rotation takes 2 cycles to complete while 5 

iterations are executed in parallel. Again, assuming all data is available in L2 SRAM with 4 

cycles of penalty for every L1 cache miss, the overall performance would be 410 x 2 = 820 

cycles plus cache miss penalty, which are 412 x 2 / 8 x 4 = 410 cycles. Total cycles would be 

1230 cycles. Table 4.2 summarizes the performance of Windowing. 
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Table 4.2: Performance summary for Windowing 

Windowing  Performance  Improvement 

*Standard Optimizations  2,050 cycles  - 

Optimized with MA, SP, LU & PD 1,230 cycles  167%  

 

4.3  POWER SPECTRUM 

The power spectrum process obtains the frequency domain representation of the time domain 

windowed speech samples. This is accomplished by performing Fast Fourier Transform 

(FFT). Before FFT can be applied, the 2000 samples are zero-padded to the length of a power 

of 2. Instead of using the FFT algorithm that is used in Sphinx, a hand optimized FFT 

algorithm from Texas Instruments (TI) is used. This hand optimized algorithm is part of the 

signal processing library made available from TI to be used on their DSPs. Once the 

frequency spectrum is acquired, the square of the magnitude is then computed to obtain a real 

result instead of the complex output from FFT. Equation 4.3 shows the computation of the 

square magnitude. 

 

S[k] = (real(X[k]))2 + (img(X[k]))2, where 0<n<=N/2       Eq. 4.3 

 

Power Spectrum is implemented in 3 different stages: Pre-FFT, FFT and Square Magnitude.  

Pre-FFT is basically data rearrangement. It is made up of 2 FOR loops. After eliminating 

Memory Alias and performing Loop Unrolling, the source codes looks like in Figure 4.9: 
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Figure 4.9: Pre-FFT stage source code for Power Spectrum function 

 

 

The performance of the first loop is 1.5 cycle/iteration and the second loop is 1 cycle/iteration. 

With data_len = 410 and fftsize = 512, the computation performance is 1.5 x 410 = 615 

cycles plus 512 cycles, total of 1127 cycles. L1 cache miss penalty would be 410 / 8 x 4 = 

105 cycles.  

The FFT section is further divided into 4 sub-stages: generates twiddle-factors, bit 

reverses the twiddle factors, 512 point single precision floating point FFT and Bit reverses 

the FFT result. The gen_twiddle function is extracted from  the T I C 6713’s S ignal P rocessing 

library. The source code is shown in Figure 4.10.  

 

 

 
Figure 4.10: Generates twiddle-factors source code from TI 
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Due to the function calls (sin and cosine) inside the for-loop, none of the optimization 

techniques can be applied. One way to improve the run-time performance of this loop is to 

pre-calculate the sin and cosine values during setup time and performing a table lookup 

during run-time. However, this optimization is desired only if the run-time performance is 

more important than the size of the memory footprint. The pre-calculations source code is 

listed in Figure 4.11.  

 

 

 
Figure 4.11: Pre-calculate the sin and cosine values during initialization 

 

 

After eliminating the function calls, optimization techniques including Software Pipeline, 

eliminating Memory Aliases and Loop Unrolling can now be applied. The optimized 

performance is 2 cycles per iteration resulting 512 / 2 x 2 = 512 cycles total. Cache miss 

penalty is 256 samples x 2 (sin & cosine) / 8 (cache line size) x 4 (cycles penalty) = 256 

cycles. 

The bit reversal function can only be optimized using software pipelining. The 

conditional complexity makes it very difficult to apply other optimizations. The profiled 

performance for the pre- and post-FFT bit reversal functions are 12,000 and 24,000 cycles, 

respectively. As for the FFT function itself, it is hand optimized from TI and the performance 

is 11,500 cycles.  
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The final stage is Square Magnitude. The source code is displayed in Figure 4.12. 

 

 

 

Figure 4.12: Source code for Square Magnitude 

 

 

Each iteration requires 2 input data and performs 2 multiplications and 1 addition. Since the 

loop count is fftsize (512) / 2 = 256, Software Pipeline, Memory Aliases and Packed Data 

Optimization are applied. The software pipeline feedback table is shown in Figure 4.13. An 

overall of 512 cycles are needed for computation with 2 cycles per iteration. Cache miss 

penalty would be 512 / 8 x 4 = 256 cycles. 

 

 

 
Figure 4.13: Software pipeline feedback after applying different optimizations 
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The overall computation performance for power spectrum is the sum of all sections: Pre-FFT 

(1,232 cycle), Generate Twiddle Factor (768 cycles), Bit Reversal of Twiddle Factor (12,000 

cycles), FFT (11,500 cycles) and Bit Reversal of FFT result (24,000 cycles), Square 

Magnitude (768 cycles). Total of 50,268 cycles. Table 4.3 summarizes the optimization result. 

 

 

Table 4.3: Performance summary for Power Spectrum (FFT) 

Power Spectrum (FFT) Performance  Improvement 

*Standard Optimizations  193,210 cycles  - 

Optimized with MA, SP, LU & FFT Lib 50,268 cycles  384%  

 

4.4  MEL SPECTRUM 

Mel spectrum attempts to model the human perceptual system. In principle, human auditory 

system performs frequency analysis on different frequency components of sounds. The 

cochlear, part of the inner ear, acts as if it was a set of overlapping filters. The bandwidths of 

these filters are modeled by a non-linear scale, called mel-scale [19]. This frequency scale is 

linear up to 1000 Hz and logarithmic afterward. The use of mel-scale attempts to replicate the 

fact that the sensitivity of the human ear does not seem to be linear across all frequencies. 

 In Sphinx, a set of L triangular bandpass filter banks is used to approximate the 

frequency resolution of the human ear. These filters mimic the frequency analysis that take 

place in cochlear. Mel spectrum is computed by multiplying the power spectrum by each of 
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the filters and integrating the result [20]. Equation 4.4 shows the function that transforms 

linear frequencies to mel frequencies while Equation 4.5 displays the computation to obtain 

the mel spectrum, 

 

Mel[f] = 2595 log






1 







f
700             Eq. 4.4 

 

S ’[l] =  
N
2

l 0

(S[k]mell[k]), where l =  0, 1, … , L -1        Eq. 4.5 

 

where N is the length of the DFT and L is the total number of triangular mel filters. In Sphinx 

and this research, 40 mel filters are used.  

The source code from Sphinx for Mel Spectrum  contains a nested for-loop as shown in 

Figure 4.14. Since both loop counts for the outer loop (FE->MEL_FB->num_filters, 40) and 

the inner loop (FE->MEL_FB->width[whichfilt], vary) is small, none other than Software 

Pipeline optimization is applied. The feedback table generated is shown in Figure 4.15. 

 

 

 
Figure 4.14: Source code for Mel Spectrum 
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Figure 4.15: Software pipeline feedback table for Mel Spectrum 

 

 

Note that the feedback result is generated only for the inner loop. The result shows that 4 

cycles/iteration and the overall performance depends on the summation of all the filter widths. 

By inspection, this summation is 370 and the performance would be 4 x 370 + cache misses 

penalty. Since 3 input data are needed per iteration, a total of 3 x 370 = 1110 input data are 

loaded from the L2 SRAM. L1 cache miss penalty would be 1110 / 8 x 4 = 555 cycles. The 

overall performance would be 2035 cycles. Table 4.4 summarizes the performance.  

 

 

Table 4.4: Performance summary for Mel Spectrum 

Mel Spectrum Performance  Improvement 

*Standard Optimizations  3,145 cycles  - 

Optimized with SP 2,035 cycles  155%  
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4.5  MEL CEPSTRUM 

Mel Cepstrum, the static feature of speech signal, is obtained by applying DCT on the natural 

logarithm of mel spectrum. Equation 4.6 shows the operations performed: 

 

c[n] =
L 1

n 0

ln(S ’[i])cos((πn/2L )(2i+ 1)), where c =  0, 1, … , C -1     Eq. 4.6 

 

As Specified in Sphinx [20], 13 mel cepstra are produced from the above operation. By 

taking the 1st and 2nd derivative of the 13 mel cepstra, 26 more dynamic features are obtained 

forming a vector of 39 features, which is the output of FE and the input to the AM. 

The source code for Mel Cepstrum is displayed in Figure 4.16. 

 

 

 
Figure 4.16: Source code for Mel Cepstrum 
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The source code for Mel Spectrum contains two for-loops with one being a nested loop. The 

first for-loop contains a log function call if the condition is satisfied. No optimizations are 

applied due to the function call. As for the nested for-loop, the outer loop count would be 40 

(num_filters) and the inner loop count is 13 (num_cepstra). Again, the loop count of the core 

loop is relatively small, as a result, software pipelining only improves the performance 

slightly. The performance obtained after optimization of the inner for-loop is 2 cycle per 

iteration. With the total number of rotations to be 40 x 13 = 520, the total computation cycles 

required would be 1040 cycles. Cache penalty would be 520 x 3 / 8 x 4 = 780 cycles. Table 

4.5 summarizes the performance for Mel Cepstrum. 

 

 

Table 4.5: Performance summary for Mel Cepstrum 

Mel Cepstrum Performance  Improvement 

*Standard Optimizations  12,580 cycles  - 

Optimized with SP 7,900 cycles  159%  

 

4.6  DYNAMIC FEATURE: DELTA, DOUBLE DELTA 

Acoustic Modeling assumes that each cepstrum is unrelated to its predecessors and 

successors. However, since speech is continuous, this assumption may not be correct. This is 

usually compensated by appending the first and second derivation of the cepstrum. 
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The final stage for FE is to take the 13 generated cepstras and to calculate the 1st and 2nd 

derivatives. The source code is relatively large and complex. It is attached with this thesis in 

APPENDIX. The overall performance is measured using the Texas Instruments profiler and 

the result is 3,751 cycles. Table 4.6 shows the performance summary for Dynamic Feature. 

 

 

Table 4.6: Performance summary for Dynamic Feature 

Dynamic Feature Performance  Improvement 

*Standard Optimizations  6,092 cycles  - 

Optimized with SP 3,751 cycles  162%  

 

4.7  PERFORMANCE SUMMARY 

All optimizations used for each FE stage is summarized in Table 4.7 while Table 4.8 provides 

the summary of the computation performance along with the cache miss penalty for each FE 

stages and the overall result. The overall performance for FE with cache miss penalty is about 

69,600 cycles, which is 3.1% of our real-time cycle budget of 2,250,000 cycles.  

 

 

 

 

 



 58 

 

Table 4.7: Optimization summary for FE 

 

 

 

Table 4.8: Performance summary for FE 
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5.0  ACOUSTIC MODELING PERFORMANCE 

This chapter will discuss the background theory, performance issues, different 

implementations and the performance result. As shown in [1], Acoustic Modeling is the most 

computational intensive phase of the entire recognition process. As a result, two different 

approaches, Component Approach and Dimension Approach, are implemented. Each 

approach is optimized with numerous different optimization techniques to obtain the best 

performance possible with the given DSP architecture. After comparing the optimal 

performances, the Dimension approach has the best performance of 0.75 million cycles, an 

improvement of 4500% from 33.8 million cycles without any optimization. Another 

performance problem for AM is that it requires large amounts of data that must be stored in 

the external memory. However, accessing the external memory requires significant amounts 

of cycle delay. One solution is to use Direct Memory Access, as the detail will be presented 

later in (section.5.2) 

As mentioned in Section 3.1, the main purpose of Acoustic Modeling along with Phone 

Modeling is to find max P(X|W), the maximum probability of the observed input given a set 

of words. In other words, AM tries to determine the best match between the observed speech 

and the set of pre-defined words. Acoustic Modeling computes these probabilities at the 

senone level while PM completes the task at the phone level. Senone level probability 

evaluation means the evaluation of Gaussian distributions used to model senones. Aside from 

Gaussian evaluation, Acoustic Modeling also performs other functions including logarithm 

addition, relative scoring of senone scores and senone scores normalization. 
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Speech signal varies tremendously depending on the speakers. Due to that same reason, 

a single Gaussian distribution is found to be insufficient to represent a senone. To more 

accurately model a wide data distribution, a mixture of Gaussian distributions is used to 

model each senone. 

 Typically, speech recognition systems use between 2 to 64 distributions. For Sphinx 3, 8 

Gaussian distributions are used and they are referred as Components. Since the weights of 

these distributions depend upon the nature of the data in the corpus, a weighting factor known 

as Mixture Weight is used to adjust the contribution of each distribution toward the overall 

component score. The senone score is computed as shown in Eq. 5.1. 

 

Senone_Scores =
C

c 1
(Mixture_Weights,c * Component_Scores,c)     Eq. 5.1 

 

Furthermore, since the output of the FE block is a vector of 39-dimension features, 

multi-dimension Gaussian distribution is used instead of 1-D distribution to represent each 

component. The equation used to calculate multi-dimension Gaussian probability for Senone, 

s, and Component, c, is shown in Equation 5.2: 

 

Component_Scores,c = 1

 







2d | 2  s,c |
 e









xd s,c,d
2

22
s,c,d


D

d 1        Eq. 5.2 

 

where, 

 x = Feature Input 

 μ  = Mean 
 σ  = Variance 
 |σ 2

s,c| =σ 2
x,c,1 * σ 2

x,c,2 * …  σ 2
x,c,D 
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Notice that the exponential term implies multiplications in the above equation, which 

imposes a significant amounts of complexity to the calculation. A logarithmic transformation 

can be applied [1] to convert these multiplications into additions. The transformed equation is 

shown below: 

 

Senone_Scrs = LOG
8

c 1

[Ws,c + f * GAUS_DIST]       Eq. 5.3 

 

where, 

 Senone_Scrs = logss3[Senone_Scores] 

 Ws,c = logs3(Mix_Wts,c) = f * loge(Mix_Wts,c) 

 f = logs3 e = 3333.83 

 Ks,c = loge 






 1

  







239 | 2  s,c,d |
 

 σ '2
s,c,d = 1

22
s,c,d

 

 GAUS_DIST = Ks,c –
39

d 1
[(xd –  μ s,c,d)2* σ '2

s,c,d] 

 

By applying logarithmic transformation, Equation 5.3 allows Gaussian probability to be 

calculated in log-domain. The core computation lies in the GAUS_DIST calculation where the 

distance between the observed input, xd, and Gaussian mean, μ s,c,d, scaled by the variance, 

σ '
s,c,d. The only input, xd, to this equation is the 39-dimension features that are obtained from 

FE. Each GAUS_DIST is then scaled by the scaling factor, f, and the mixture weight factor, 

Ws,c. The result is accumulated in the log domain, referred as log-add, to get the final 

Senone_Scrs. 
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From a computational prospective, GAUS_DIST calculations are very computationally 

intensive. Each GAUS_DIST calculation performs 39 distance calculations, namely (x-m)2*v, 

and each distance calculation requires 2 multiplications and 2 subtractions. For RM1 corpus 

used for this research, there are 1935 senones. A senone is modeled with a mixture of 8 

components and each component is a 39-dimension distribution. The total number of 

multiplication or subtraction would be well over 1.2 million (1935x8x39x2). To worsen the 

problem, most speech recognition systems perform these operations in floating point to 

maintain the accuracy of the overall system. A table is presented below showing the 

calculation statistics for various speech corpuses.  

 

 

Table 5.1: Calculation statistic in AM for various speech corpuses 

 

5.1  IMPLEMENTATIONS OF GAUSSIAN EVALUATION 

Gaussian evaluation is performed 39 times per component. For the RM1 corpus, there are 

total of 1,935 senones with 8 components each. As a result, a total of 603,720 evaluations are 

required to be completed in a frame of 10 milliseconds. These large amounts of calculations 
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consume between 55-95% of the overall computation cycle [1]. It is extremely important that 

all evaluations are completed in the most efficient way. To ensure that the optimal 

performance is archived, two different approaches are investigated. 

5.1.1  Individual Component Approach 

In the individual component approach, the score of each senone is computed individually. 

Eight components of each senone are evaluated sequentially and each component score is 

added in the log domain. Finally, for each component, 39 Gaussian evaluations are performed 

and the running sum is recorded. The overall calculation is shown in Eq. 5.2 while the core 

Gaussian evaluation is highlighted in Eq. 5.3 . The source code for this implementation is also 

given in Figure 5.1. 
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Figure 5.1: Source code for Individual Component Approach 

 

 

This source code contains 3 nested for-loops. The outermost for-loop represents the iterations 

of all 1,935 senones. A senone score is obtained at the end of each iteration. The first inner 

for-loop represents the 8 components of each senone. Each component score acquired from 

the innermost loop is added in the log domain. Finally, the innermost loop represents the 39 

Gaussian dimensions for each component. An iteration of the innermost loop executes a 

Gaussian evaluation core. From the software prospective, the core requires 3 variables to 

perform 2 floating-point subtractions and 2 floating-point multiplications. A data-flow 

diagram is shown in Figure 5.2 to illustrate the calculation of the core. 
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Figure 5.2: Data Flow Diagram for the Gaussian Evaluation core 

 

 

There are four implications associated with the above data flow diagram. The first 

implication is data dependency. Each of the operations must be completed in the exact order 

from the top to the bottom because the input of the next operation is the output of the 

previous operation. This dependency significantly limits the performance of the software 

pipeline since none of these operations can be executed out of order.  

The second implication is memory access. Three variables, x, m and v, are needed to 

perform the calculation. That means these variables must be stored in the registers, the 

on-chip memory, or the external memory. For each 10 milliseconds frame, there are total of 

39 features, 603,720 means and 603,720 variances. It is clear that register is not an option 

since only 32 registers are available for the 6713 DSP. As a result, three memory accesses are 
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required for each of the core calculations regardless if storing location is the on-chip memory 

or the external memory. However, storing these data in the external memory would further 

worsen the performance since pipeline stalls would occur whenever there is a cache miss. 

 The third implication is register usage. If the code was executed sequentially from the 

top to the bottom, only four registers (x, m, v, and dval) would be required. However, if the 

code was to be executed in parallel, each input variable and all intermediate results would 

need to be stored separately. In other words, each arc in Figure 5.2 would represent a register 

result minimum of 7 registers. The register usage is important because the total number of 

registers available from the hardware architecture would dictate how many iterations of this 

core calculation can be executed in parallel. 

 The last implication is instruction latency. The rectangular box in the data flow diagram 

indicates how many cycles are required to complete each of the operations. E.g. 5 cycles are 

required to load the x, m, or v from the memory. Although an instruction can be issued to the 

functional unit every cycle, the result would require a few cycles before it is available due to 

the deeply pipelined hardware architecture. This effect can be minimized by using 

optimization techniques such as loop unrolling and software pipeline. In summary, each of 

the implications above must be considered carefully before the optimal code performance can 

be archived. 

5.1.1.1  Algorithm Characteristics  As discussed in the previous section, the Gaussian 

Evaluation core consists of 3 memory accesses, 2 FP subtractions and 2 FP multiplications. 

Clearly, the limiting factor is the number of memory accesses. Without applying any 

optimization, the DSP can execute 2 memory accesses per cycle. As a result, the ideal number 

of cycles required to complete 603,720 Gaussian evaluations would be 905,580 (603,720 

calculations * 3 memory access / 2 functional units) cycles. On the other hand, if the Packed 
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Data optimization is applied, 4 32-bit words, 2 words per functional unit, can be loaded per 

cycle. The new ideal number of cycles would be limited by the number of FP 

subtractions/multiplications instead. With 2 FP subtractions/multiplications per core 

calculation, a total of 1,207,440 would be required. The new ideal performance would be 

603,720 (603,720 calculations * 2 multiplications / 2 functional units) cycles. However, other 

factors such as data dependency, instruction latency and registers availability, would limit the 

possibility of archiving such ideal performance. A list of important characteristics is 

summarized in Table 5.2. 

 

Table 5.2: A list of important characteristics of the Gaussian Evaluation 

 

 

5.1.1.2  Baseline Performance  Before applying any optimizations, the baseline 

performance of this implementation is measured. The source code in Figure 5.1 is compiled 

without any optimizations and the generated assembly is shown in Figure 5.3.  
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Figure 5.3: Generated assembly with no optimizations 

 

 

The generated assembly shows that 56 cycles are needed to complete one Gaussian 

evaluation. The total number of cycles required for all senones would be approximately 33.81 

million (1935 senones x 8 components x 39 Gaussians x 56 cycles). This result is about 15x 

the real-time constraint, which is 2.25 million cycles with a 225 MHz DSP. This baseline 

performance will be compared against by the results obtained after a series of optimizations 

are applied. Optimizations will be applied are as follows: 

 Variable Registering 

 Constant Propagation 

 Software Pipeline 
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 Removing Memory Aliasing 

 Loop Unrolling by 3x 

 Packed Data Memory Access 

 Loop Unrolling by 2x 

 

 

5.1.1.3  Optimization: Variable Registering  The first optimization applied is variable 

registering. For the baseline code, all input variables for each instruction are loaded from the 

memory and all output values including all intermediate calculated results are written back to 

the memory. This large amount of memory accesses impose significant amounts of overhead 

into the code. This optimization is applied simply by switching a flag in the compiler option 

to indicate to the compiler that registers should be used wherever appropriate. In the case of 

the TI compiler used in this research, an option of multiple levels of optimizations is 

available in the compiler option. By changing the optimization level from none to zero, the 

compiler will try to use registers whenever possible. This simple optimization improves the 

performance over the baseline performance from 56 cycles to 51 cycles on average per 

Gaussian evaluation. The overall performance is reduced to 30.79 million cycles and a 

speedup of 1.1x over the baseline performance. 

 

 

5.1.1.4  Optimization: Constant Propagation  Constant propagation is a technique that 

replaces constants into equations in compiler time. This technique further reduces the 

amounts of memory accesses required. The result shows that 37 cycles are required per 

Gaussian evaluation, which produces the overall cumulative performance of 22.34 million 

and a cumulative speedup of 1.51x over the baseline. 
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5.1.1.5  Optimization: Software Pipeline  Software pipeline enables multiple instructions 

to be executed by multiple functional units at the same time. By applying software pipeline, a 

considerable amounts of performance improvement can potentially be obtained. To accurately 

measure the performance of the code and to determine if the optimal performance is obtained, 

two other measurements are used in addition to the number cycle per Gaussian evaluation. 

These two measurements are register utilization and functional unit utilization. Register 

utilization measures how many registers are used from the total number of register available 

for one iteration of the loop. For example, if a single Gaussian evaluation takes 2 cycles to 

complete, iteration is defined to be 2 cycles. Every cycle there are 32 register available, 

totaling 64 registers for 2 cycles. If a total of 10 registers are used during the evaluation, then 

the register utilization defined as 10 out of 64, or 15.63%. 

 Functional unit utilization is a similar measurement to register. This measurement is 

further divided into 4 sub-measurements. One measurement for each type of functional unit. 

For example, 2 floating-point multipliers are available per cycle. If an iteration takes 2 cycles, 

then a maximum of 4 multiplications can be performed. If only one multiplication is 

performed during the 2-cycle period, then the utilization for the FP multiplier is 1 out of 4, or 

25%.  

 An optimal performance is said to be achieved when the resource utilizations are 

maximized. In other word, if all functional units are operating and all registers are used every 

cycle, resource utilizations are maximized.  

 Software pipeline is usually applied by changing a flag in the compiler option. This is 

the case for T I’s com piler. T he source code in F igure 5.1 is compiled with software pipeline 

optimization, and the generated assembly is shown in Figure 5.4. 
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Figure 5.4: Software pipeline feedback table 

 

 

As indicated by the line ii = 4, 4 cycles are required per iteration, resulting a cumulative 

performance of 2.41 million cycles and a cumulative speedup of 14x over the baseline.  

With software pipeline enabled, register utilization can also be used as a performance 

measurement. Recall that 3 memory accesses, 2 FP multiples and 2 FP subtractions are 

performed during the evaluation. These operations match the functional units used, 3 (.D), 

2(.M ) and 2(.L ), during each iteration. F ro m  these statistics, each functional unit’s utilization 

can be obtained. The load/store unit is 3 out of 8, or 37.5%. As for the FP multiplier and FP 

ALUs, the utilizations are 2 out of 8, or 25% while the Fixed-Point ALUs is only used for 

operations not directly related to the core calculation. So the utilization of Fixed-Point ALU 

is 0%. As for the register utilization, the register table shown at the bottom of the feedback 
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table indicated that only 36 are used out of 128 (32 registers x 4 cycles), or 28.13%. It should 

be clear that since all resource utilizations are fairly low, more optimizations can be applied 

to achieve better performance.  

 

 

5.1.1.6  Optimization: Removing Memory Aliasing  A closer examination of the 

feedback table in Figure 5.4 reveals that a Loop Carried Dependency Bound (^) of 4 is the 

limiting factor of the code performance. An examination of the generated assembly would be 

required to identify such dependency. This assembly is shown in Figure 5.5.  

 

 

 
Figure 5.5: Generated assembly with the Loop Dependency Bound identifier 

 

 

As identified by the (^) symbol in the assembly, there is a dependency bound with the FP 

subtraction instruction and the multiplication instruction. Typically a carried dependency 

bound is caused by the load and store to memory instructions. However, in this case, the 

dependency is caused by the delay slot that is required for those two floating-point operations. 

As mentioned before, both FP subtraction and multiplication are 4-cycle type instruction 
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which takes one cycle to execute and 3 cycles of delay slots. The cycles of delay slot is 

caused by the deeply pipeline hardware architecture of the functional unit itself. As a result, 

nothing can be done to remove such dependency since 4 cycles are needed to perform both 

subtraction and multiplication. 

 It is clear that the minimum number of cycles to execute a single Gaussian evaluation is 

determined to be 4. Since the reduction of the cycle count is no longer possible, the only way 

to improve the code performance would be to try to do more operations during the 4 cycles. 

For example, multiple iterations, or Gaussian evaluations, can be executed in parallel. This 

can be done by performing loop unrolling optimization. 

 

 

5.1.1.7  Optimization: Loop Unrolling by 3x  Loop unrolling allows multiple iterations 

of the loop to be executed in parallel. This optimization increases the resource utilizations by 

executing more operations during the 4-cycle minimum period.  

 Most compilers, by default, would try to perform loop unrolling without any additional 

instructions. However, depending on the amount of the loop information available, the 

compiler might not be able to determine the best unrolling factor. The original source of the 

core calculation is copied below in Figure 5.6 for convenience. 

 

 

 
Figure 5.6: Source code for the core Gaussian evaluation 
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Within the scope of the function itself, the compiler has no information on the minimum or 

maximum number of the loop iteration. Hence, the compiler cannot unroll the loop safely. As 

discussed in the previous section, the code designer can use a pragma instruction to pass the 

trip count information to the compiler. Since the trip count is exactly 39 in this case, the only 

possible loop unroll factor would be by 3x. The modified source code is shown in Figure 5.7. 

 

 

 
Figure 5.7: Modified source code with the pragma instruction 

 

 

As indicated, the MUST_ITERATE pragma passed 3 variables to the compiler: maximum 

trip count, minimum trip count and an unroll factor that is always divisible by the minimum 

trip count. With this information, the compiler can now safely unroll the loop by a factor of 3, 

executing 3 Gaussian evaluations in parallel. The result is shown in Figure 5.8. 
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Figure 5.8: Feedback result after performing loop unrolling 

 

 

The feedback shows 6 cycles are required to complete an iteration, which evaluates 3 

Gaussians. The effective cycle per calculation is 6/3 = 2 cycles per evaluation. The 

cumulative performance would be 1.22 million cycles and the cumulative speedup over 

baseline is 28x.  

For the load/store (.D) functional unit, the utilization is 9/12, or 74%. As for the FP 

multipliers and FP ALUs, 6/12, or 50% are used for evaluation operations. Fixed-point unit 

utilization can be ignored since it is not used to perform any operations directly involved in 

the evaluation. Finally, the register utilization is 103 out of 192 total, 53.65%. Although all 
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resource utilizations increased compared to the non-loop-unrolled version, the levels of 

utilizations are still relatively low. It is worth exploring other optimization techniques or 

another unrolling factor in an attempt to increase the utilization levels and to reduce the 

effective cycle per iteration.  

 

 

5.1.1.8  Optimization: Packed Data Memory Access  Before applying another unrolling 

factor, it is worth trying to further reduce the cycle per iteration first. From the feedback 

result obtained in Figure 5.8, the limiting factor appeared to be the Partitioned Resource 

Bound as pointed out by the (*). The load/store (.D) unit on the B-side is used 5 times while 

the A-side is used 4 times per iteration. A total of 9 memory accesses are due to the fact that 3 

evaluations being executed in parallel. If the number of memory accesses can be reduced, the 

effective cycle per iteration can potentially be further reduced.  

Packed Data optimization utilizes the load double-word instruction specifically available 

in this DSP architecture. Each load/store unit is capable of loading 2 32-bit words per cycle. 

This technique can potentially reduce the number of memory accesses from 9 to 5 if applied 

appropriately. This optimization is only appropriate if the trip count, or the minimum trip 

count after loop unrolling, is an even number. If the trip count is an odd number, additional 

operations will be performed and errors will be produced. For this particular case, the 

minimum trip count after the loop is unrolled by a factor of 3 is 13. Hence, applying Packed 

Data could induce undesired errors.  

 

 

5.1.1.9  Optimization: Loop Unrolling by 2x  In an attempt to further increase the 

resource utilizations, another unrolling factor is investigated. Another possible unrolling 

factor is 2. The loop can be unrolled by 2, if the first of the 39 evaluations is performed 
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outside of the loop. This will reduce the trip count from 39 to 38, which results in the loop 

being unrolled by 2. The modified source code and the result are shown in Figure 5.9 and 

Figure 5.10, respectively. 

 

 

 
Figure 5.9: Modified source code with loop unrolling factor of 2 
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Figure 5.10: The result of unrolling the loop by 2 

 

 

Unrolling the loop by a factor of 2 produced the same result as the loop being unrolled by 3. 

The effective cycle per iteration is 4/2, or 2. Load/store unit utilization is 6/8, 75%. FP 

ALU/multiplier is used 4/8, 50%. Register usage is 64/128 or 50%. Furthermore, Packed 

Data optimization cannot be applied due to the minimum trip count of 19. Hence, no 

significant performance increase is acquired by unrolling the loop by 2 instead of 3.  
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5.1.1.10  Individual Component Approach Performance Summary  All optimization 

results are summarized in Table 5.3 while the resource utilization results are listed in Table 

5.4.  

 

 

Table 5.3: Summary of different optimization results 

 

 

 

Table 5.4: Summary of resource utilizations with different optimizations 

 

 

 

So far, the optimal code performance is produced by applying these following optimizations: 

Variable Registering, Constant Propagation, Software Pipeline, Removing Memory Aliasing 

and Loop Unrolling by a factor of 2 or 3. The effective cycle per Gaussian evaluation is 2 
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cycles, yielding a total of 1.21 million cycles to evaluate all senones. Compared to the 

baseline performance, the best result produces a speed up of 28x. Although significant 

performance improve had been made, this is still far from the ideal performance of 603,720 

cycles. It is easy to see the problem is that the resource utilizations are fairly low. It is 

impossible to further increase the utilization levels under the current nested loop structures. 

Hence, other loop structure must be investigated in attempt to improve the performance.  

5.1.2  Individual Dimension Approach 

The Individual Dimension Approach essentially merges the senone and component loops and 

alters the order of the calculation. Since each senone is made up of 8 components, the senone 

and component loops can be combined to form a larger loop, a loop with trip count of 15,480 

(1935 x 8) components. Furthermore, instead of evaluating each component individually, 

each dimensions for all 15,480 components are evaluated sequentially and separately. For 

example, the first dimension of all components is evaluated first before the 2 dimension. The 

advantage of this approach is that the trip count of the inner loop is large enough so that other 

unrolling factors can be applied. The higher order of the unrolling factor means higher 

utilization levels across all resources. Furthermore, Packed Data optimization maybe applied 

if the unrolled trip count is even number. Figure 5.11 shows the source code with for this 

implementation approach. 
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Figure 5.11: Source code with the Individual Dimension Approach 

 

 

Beside from the structure differences compared to the previous approach, the computations 

are also slightly different. Since the feature used to compute the first Gaussian dimensions 

across all components is the same, a memory access for the feature is no longer needed. 

However, two additional memory accesses are introduced by the lrd vector. Recalls from Eq. 

5.3 that a component score is the sum of 39 Gaussian scores. For the individual component 

approach, the running sum of the 39 Gaussian scores is computed within the inner loop 

simply using a register. As for this approach, the running sum of the 39 dimension for each 

component is computed once per iteration of the outer loop. A vector of 15,480 words is 

required instead to track the running sum of each component. Each position of the vector is 

loaded from the memory and the new result is stored back on every iteration of the inner loop. 

Hence, 1 load and 1 store are introduced. 
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 Although the total number of memory accesses actually increased to 4 comparing to 3 in 

the previous approach, the potential of performance gain is still possible since a higher order 

of loop unrolling factor can be used. Also, the effect of increased in memory accesses can be 

offset by applying the Pack Data Memory Access optimization.  

 

 

5.1.2.1  Optimization: Software Pipeline  The analysis of the second approach begins by 

applying Variable Registering, Constant Propagation and Software Pipeline since the 

individual result for the first two optimizations is relatively insignificant at this point. The 

software pipeline feedback generated by the compiler using the source code in Figure 5.11 is 

shown in Figure 5.12. The result indicates that 22 cycles is needed per iteration, which only 

computes one Gaussian evaluation, due to a Loop Carried Dependency Bound (^). The 

cumulative performance at this point is 13.28 million cycles and the cumulative speedup over 

baseline is 2.55x. The load/store utilization is 4/44, or 9.09%, while the FP ALUs and 

multipliers are 2/44, 4.55%. It is obvious that other optimizations are needed to gain better 

performance. 
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Figure 5.12: Software pipeline result with the individual dimension approach 
 
 

5.1.2.2  Removing Memory Aliasing  By examining the generated assembly shown in 

Figure 5.13, it is clear that exists a dependency path: LDW (5) –  SUBSP (4) –  MPYSP (4) – 

MPYSP (4) – SUBSP (4) –  STW (1). The number next to each instruction is the cycles 

required to complete that operation.  

 

 

 
Figure 5.13: Assembly code showing the Loop Carried Dependency Path 
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Again, since the compiler has no information about the memory locations of the input 

pointers from the local scope of the function, the compiler must wait until the result of the 

current iteration is computed and written back to the memory before the next iteration can be 

started. On the other hand, if the code designer can guarantee no overlap are between the 

input pointer arrays, a restrict type qualifier can be used to guarantee that there are no 

memory aliasing among all input pointers. A modified version of the source code is shown in 

Figure 5.14 and the new feedback is shown in Figure 5.15. 

 

 

 
Figure 5.14: Modified source code with the use of restrict keyword 
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Figure 5.15: Feedback result after removing memory aliasing 

 

 

With the dependency path removed, 2 cycles are needed per iteration result 1.21 million 

cycles of cumulative performance and 28x speedup over baseline. Resource utilizations also 

increased to 100% (4/4) for the load/store while the FP ALUs/Multipliers are raised to 50% 

(2/2). Register utilization is 28/64, or 43.75%. 

 

 

5.1.2.3  Optimizations: Packed Data Memory Load and Loop Unrolling By 2x  The 

feedback table in Figure 5.15 also points out the new limiting factor is the Partitioned 

Resource Bound (*). Since 3 loads and 1 store are required per iteration while subtractions 

and multiplications are performed twice respectively, it is easy to understand that the 
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load/store unit would become the bottleneck. The Packed Data optimization technique can 

reduce to number of memory accesses. However, a packed memory load means that 2 

consecutive words for the same variable are loaded. For example, m[0] and m[1] can be 

loaded together but not m[0] and v[0]. Hence, packed data load by itself in this case will not 

be useful since 3 double-words loads are still required to get the three input variable: m, v and 

lrd. 

 On the other hand, if the loop is unrolled by a factor of 2, double-word load would 

become very beneficent. Loop unrolling by 2x would mean 6 loads and 2 stores are needed 

per iteration. Further, 3 pairs of consecutive words are required per input variable. Packed 

data optimization can be applied here to reduce the number of loads from 6 to 3. The 

modified source code with both Packed Data optimization and Loop Unrolling by 2x is 

shown in Figure 5.16.  

 

 

 
Figure 5.16: Modified source code with double-word load and loop unrolling of 2x 
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Note that if either of the two optimizations applied here was used alone, no improvement 

would be gained. Double-word load alone would not reduce the number of loads while loop 

unrolling would only increase the cycle per iteration by the effective cycle per calculation 

would reminds at 2. The performance result is shown in Figure 5.17.  

 

 

 
Figure 5.17: Performance after applying double-word load and loop unrolling 

 

 

Surprisingly, the result obtained at this point is already better than the optimal result obtained 

using the Individual Component Approach. As shown in the feedback table, each iteration, 

which evaluates two Gaussians, takes 3 cycles. This produces the effective cycle per 

calculation of 3/2, or 1.5. With 1.5 cycles per evaluation, only 905,580 cycles are required to 



 88 

compute all senone scores. This result also produces a 37.3x speed up over the baseline 

performance obtained from the previous approach. As for the resource utilization levels, 

load/store units are used 6/6, 100%. FP ALUs and multipliers are used 4/6, or 66.7%. Finally, 

the register usage is at 53/96, or 55.21%. 

 With the performance archived so far, it is clear that the Individual Dimension Approach 

is a better. Yet, more performance gain is seemed to be possible since the resource utilization 

levels are still low, only 66.7% for the FP ALUs/multiplier and 55.21% for the register usage. 

Clearly, increasing the utilization levels would be ideal if all possible. This can be done by 

using a higher loop unrolling factors. 

 

 

5.1.2.4  Optimization: Loop Unrolling by 4x, 6x And Summary  Further performance 

analysis had been done by using higher loop unrolling factors. The overall performance 

results are summarized in Table 5.5 and the resource utilization results are listed in Table 5.6.  

 

 

Table 5.5: Performance Summary for the Individual Dimension Approach 
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Table 5.6: Resource Utilization Summary 

 

 

 

As highlighted in the two summary tables, the maximum performance archived is 1.25 cycles 

per Gaussian evaluation. This is obtained by performing the following optimizations: 

Software Pipeline, Removing Memory Aliasing, Packed Data Memory Load, and Loop 

Unrolling by 4. Furthermore, load/store utilization is at 100% while FP ALUs/multiplier is at 

80%. Although register utilization is not the highest, however, the overall performance is best 

when the loop is unrolled by 4. 

5.2  MEMORY BANDWIDTH ISSUE 

5.2.1  The Problem 

Beside the enormous amount of computations required, Acoustic Modeling also presents 

another problem with the memory bandwidth. As mentioned in previous sections, AM 

performs about 60,000 Gaussian evaluations where each evaluation requires 3 32-bit words 
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as the input. In other words, almost 2 Mbytes of memory bandwidth would be required for 

every 10 ms frame. The computational performances obtained in previous sections are all 

based on the assumption that all data are available to the processor without any delay. In 

reality, 2 Mbytes of data is much larger than the size of the L1 cache. It is inevitable that 

these data must be stored in the external memory. The issue is that the processor could takes 

well over 100 cycles to access the external memory. The actual number of cycle delay 

depends mainly on the ratio between the processor speed and the speed of the external 

memory interface. It is easy to see that it is completely infeasible to allow data to be accessed 

from the external memory.  

5.2.2  The Solution 

One solution is to find a processor with large enough cache size that fit all the required data. 

Another solution is to setup the L2 SRAM into a double buffer and use Direct Memory 

Access to eliminate the direct access of the external memory by the processor. Since the L2 

SRAM is divided into 4 banks and two different banks can be accessed in the same cycle, the 

processor can access the data in one buffer while the other buffer is being filled with new data 

by the DMA. Although this setup removes the external memory penalty, however, L1 cache 

misses would still occur since all data are loaded from the L2 SRAM. With 4 cycles L1 cache 

miss/L2 cache hit penalty, total memory latency can be calculated. A L1 cache miss would 

allocates 8 words from the L2 SRAM so the total number of L1 cache miss would be 603,000 

x 3 / 8 = 226,125 misses. Each miss takes 4 cycles so the total memory latency would be 

226,125 x 4 = 905,500 cycles. Combining the computation requirement and the memory 

latency, the overall best optimized performance obtained is 750,000 + 905,500 = 1,655,500 

cycles, which is about 73.7% of the total cycle budget.  
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6.0  PHONE AND WORD MODELING 

This chapter covers both Phone Modeling and Word Modeling since both processing blocks 

works hand to hand together. The theory for both processing blocks will first be discussed 

and then the implementations and results.  

Aside from continuous speech recognition, automatic speech recognition basically is 

finding the most probable match from a set of pre-defined words given an observed speech 

input. This set of pre-defined words is given as the dictionary for the system is chosen. The 

two key functions of the Word Modeling block are to track a list of active words and to prune 

the words that seem non-promising. 

For a small sized dictionary, each word is different enough to be recognized based on 

w ord m atching. H ow ever, for large sized dictionary, w ords like “capacity” and “capacities” 

can be difficult to differentiate. As a result, words are decomposed into multiple sub-word 

units called phonemes, or phones. A phoneme is a unique sound and there are 45 base 

phonemes RM1 corpus. Figure 6.1 illustrates an example of a word decomposed into multiple 

phones. With this new sub-word definition, the process of speech recognition can be seemed 

as phone matching instead of word matching.  

 

 

 
Figure 6.1: An example of word decomposed into multiple phones 
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In continuous speech, there isn’t a clear boundary betw een phones. A s a result, a concept of 

context-dependent phone or triphone is introduced. A triphone is made up of a base phone, a 

left context phone and a right context phone. With 45 base phones, well over 90,000 of 

tri-phones can be formed. However, not all triphones occur in real life, RM1 corpus only uses 

30,080 tri-phones. Further reduction is archived by grouping triphones that are very similar. 

As a result, 5605 triphones are used in Sphinx 3. From this point on, the term phone will refer 

to all base phones and triphones. 

The basic of ASR can be described as traversing each of the lists of phones and finding 

the best match. Each word in the word dictionary is represented by a composite of multiple 

phones. Table 6.1 shows a few words and their phonetic representations.  

 

 

Table 6.1: Example of words in phonetic representation 

Word Phonetic Representation 

ONE W-AH-N 

CALEDONIA K-AE-L-IX-D-OW-N-IY-AY 

CALIFORNIA K-AE-L-AX-F-AO-R-N-Y-AX 

 

 

In order to efficiently traverse through the large list of phones, words with the same 

beginning phone are grouped together in the dictionary. The entire dictionary structure can be 

visualized as the composition of multiple subtree structures where each subtree represents a 

group of words that share the same beginning phone. Figure 6.2 displays an example of a 

subtree. 
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Figure 6.2: An example of a subtree with two words. 

 

 

Notice that for continuous speech recognition, typically a triphone model is used. In other 

words, two phones are not considered to be the same if their previous and their next phones 

are not the same. For example, the phone /L/ in Figure 6.2 is not considered the same since 

the next phones of each /L/ phone is different.   

Tracking a list of active phones for a large dictionary can be very challenging even with 

the optimized tree structure. According to [15], the number of active phones at a given time 

can be well over 10,000. Keeping track of such a large amount of data implies that 

substantially memory bandwidth is needed to operate efficiently. The cache structure of the 

system also plays a significantly role on the overall performance of the system [15]. 

The function of Word Modeling is word tracking. Since each word is modeled by 

multiple HMM nodes, word tracking means that the determination of which HMM node 

should be evaluated or eliminated. The complexity of WM is determined by the organization 

used to represent all HMM nodes from the words library. The total number of HMM nodes 

for the full dictionary of the RM1 corpus is 6305. 
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6.1  PHONE MODELING THEORY 

Each phone is a unique representation of certain frequency characteristic. However, a phone 

spoken by different people would have slightly different characteristics. This variation can be 

caused by number of factors such as age, gender or speaking rate. To account for these 

variations, a statistical model called Hidden Markov Model (HMM) [21,22] is used to model 

phonemes. A phone is further broken down into multiple of states in HMM model. The HMM 

topology used in Sphinx 3 is a simple 3-states HMM where phones are divided into 3 states 

representing the beginning, middle and the end of a phone. Figure 6.3 displays a simple 

3-state HMM.  

 

 

 
Figure 6.3: A simple 3-state HMM 

 

 

Aside from the states, each HMM state (Hn) is also associated by two transition probabilities 

(tn,n and tn,n+1), one transition back to the same state and the other transition to the next state. 

In Sphinx 3, the states of a HMM is referred as Senones [8]. Each senone represents 

different part of the frequency characteristics of a phone. In a 3-state HMM, 3 senones are 

used to model the beginning, middle and the end of a phone. Each senone is modeled by a 

mixture of Gaussian Probability Density Distributions. The evaluations of these Gaussian 

distributions are done in Acoustic Modeling as the details will be discussed in section.5.0  



 95 

 Composite senones can be described as an optimization used to minimize the effects of 

the problem created by the use of context-dependent phones. The problem arises between the 

transitions of words. At the end of a word, any words are possible to be spoken. To represent 

this fact at the context-dependent phone level, the left context represents the end of the 

previous word. The middle and the right contexts, which represent the beginning of the next 

word, can be a significant amount of combinations. In other words, the number of phone 

evaluations needed increases exponentially as word is transited to the next. This problem is 

simplified by using a special phone instead of a tri-phone to represent these word transitions. 

The senones of this special phone is modeled not by one mixture Gaussian distribution but 

the composite of all mixture Gaussians distributions that are possible in different context 

positions, hence, formed Composite Senones. Furthermore, the number of senones that 

makeup a composite senone can vary depends on the dictionary. When composite senones are 

evaluated at AM, the score is said to be the best score among all senones that makeup such 

composite senone. 

Phone Modeling is basically divided into 3 sections: HMM Evaluation, Finding Local 

Maximum and Node Pruning. HMM evaluation calculates the probability of each HMM 

nodes while Finding Local Max determines the maximum state score from all current active 

HMM nodes. The maximum score is then used as the basis for Node Pruning.  

6.2  PHONEMES EVALUATION 

There are two functions performed in PM. First is to compute the probability of the input 

frame given a phone model, this is referred to as Phone Score calculation. The other 

computation involves finding the phone models that are below certain threshold. 
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 The following equations are performed during Phone Score calculation. 

 

Hin(t) = Negative Infinity            Eq. 6.1 

H0(t) = MAX [Hin(t) , H0(t-1) + t00] + S0(t)         Eq. 6.2 

H1(t) = MAX [H0(t-1) + t01 , H1(t-1) + t11] + S1(t)        Eq. 6.3 

H2(t) = MAX [H1(t-1) + t12 , H2(t-1) + t22] + S2(t)        Eq. 6.4 

Hout(t) = H2(t) + t2E              Eq. 6.5 

where 

 t and t-1 represent the current and the previous frames, 

 Hn(t) and Hn(t-1) represent the current and previous state phone scores, 

 Hin(t) and Hout(t) represent the exit phone score for the previous frame and the exit phone 

score for the current frame, 

 tnn represents the transition probabilities, 

 Sn(t) are senone score obtained from the AM block. 

 

The equations above indicate that the state scores from the previous frame are needed to 

computer the state scores of the current frames.  

 Once the current phone scores are calculated, each of them can be evaluated. A phone 

can be classified into three states: pruned, exit to next phone, exit to next word. Three relative 

threshold values are calculated and used to determine the phone status. Three pre-defined 

values are needed to calculate these thresholds: HMM_BEAM, PHONE_BEAM and 

WORD_BEAM. The entire evaluation requires several steps of calculations. These steps and 

equations associated with each step are described below: 

 Finding the local best phone score (BEST_SCORE). For every active HMM, the best 

state score between the HMM states is first determined. 

 



 97 

BEST_SCORE = MAX[H0(t), H1(t), H2(t)]        Eq. 6.6 

 

 Finding the global best phone scores (B_HMM). The best score among all 

BEST_SCOREs is determined. 

 

B_HMM = MAX[BEST_SCOREn]         Eq. 6.7 

 

 Perform beam pruning [23]. Instead of using absolute threshold, a relative threshold, 

called HMM_TH, is calculated every frame using the B_HMM and a pre-defined 

HMM_BEAM to account for variation in speech. 

 

HMM_TH = B_MM + HMM_BEAM         Eq. 6.8 

 

 Pruning and generating a dead phone list. If the local BEST_SCORE < HMM_TH, it is 

moved to the dead list. This dead list is passed to the WM later so that the WM can track 

on which phones should keep active. Pruning non-promising phones implies that any 

branches in the subtree structure associated with these phones are also eliminated. This 

will effectively improves the performance of the overall system by reducing the required 

computations. 

 Calculate exit to next phone threshold (PHONE_TH).  

 

PHONE_TH = B_HMM + PHONE_BEAM        Eq. 6.9 

 

 Generate a list of phones that are ready to exit to the next phone. If Hout(t) >= 

PHONE_TH, that phone is moved to the exit phone list. 
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 Calculate B_HMM among only active and word-exit phones (B_HMM_WORD). 

 

B_HMM_WORD = MAX[BEST_SCOREn]        Eq. 6.10 

where n only for active and word-exit phone 

 

 Calculate exit to next word threshold (WORD_TH). 

 

WORD_TH = B_HMM_WORD + WORD_BEAM      Eq. 6.11 

 

 Generate a list of phones that are ready to exit to the next word. If Hout(t) >= WORD_TH, 

that phone is moved to the exit word list. 

 

Three lists are generated as the output of PM block. Dead phone list, exit phone list and exit 

word list. All three lists are passed back to the WM block, which will remove phones that are 

on the dead list from the active list and generate new phones according to the exit phone list 

and exit word list.  

6.3  WORD ORGANIZATION 

In Sphinx and other work [1], all HMM nodes are organized in a tree structure where all 

similar words are grouped to form a sub-tree. This organization reduces the number HMM 

evaluations but requires more logic for node tracking and pruning. For this research, however, 

another organization is used. Each word is modeled as an individual linked list. This 

organization requires more HMM evaluation since common HMM node between two 
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different words are actually modeled as two different nodes. However, the logic needed to 

track active node become very simple. Further, the linked list structure offers a very 

important advantage over the tree structure that will be discussed in the next (section.6.4)  

6.4  IMPLEMENTATION AND RESULT 

From the computational prospective, HMM evaluation is very simple. Three HMM state 

scores plus an exit scores are computed for each HMM. The source code for HMM core 

evaluation is shown in Figure 6.4. Note that the full list of the source code is attached in 

APPENDIX.  

 

 

 
Figure 6.4: Source code for the core part of the HMM evaluation function 

 

 

Each state score (statescr0, statescr1, statescr2) computation involves 3 integer additions and 

1 integer comparison. The HMM exit score (stateout) only requires an integer addition. It is 

clear that an HMM evaluation is simple computational wise. However, similar to Gaussian 

evaluation, memory bandwidth is the problem. The 1st state score requires 4 integer inputs 

while the 2nd and 3rd state score requires 5 integers each. Exit score requires another integer. 

Total 15 integers are needed for each HMM evaluation. It should be clear now that the 

performance of HMM evaluations are memory bound instead of computational bound. 
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 As mentioned in the previous section, 6305 HMM nodes are used for the RM1. Each 

HMM node contains the data for HMM evaluation in addition to all the status information 

required for node tracking. As a result, a data structure of size about 3 Mbytes is needed 

where each entry of this data structure represents a node with all the information. Since the 

size of the cache available is too small, external memory is used instead. As a node is 

activated by Word Modeling, all the possible branching nodes from the active node must be 

pre-loaded. In other words, numbers of entries from the Phone data structure must be 

accessed from the external memory and be loaded into the cache memory to avoid significant 

delay. As indicated in AM that accesses to the external memory requires long cycle delay and 

DMA is a solution that can solve this problem. However, under the tree structure, the effect of 

DMA is very limited. DMA works well to access a block of data that are stored sequentially 

where different entries of the branching nodes cannot be stored in sequential manner. On the 

other hand, under the linked list structure, all of the data can be stored sequentially according 

to the order of the HMM nodes that makes up a word. As a result, when the first node of a 

word is activated, the rest of the nodes of that active word can be load as a block using DMA. 

The size of the block being transferred depends on the number of words that are active and 

then number of nodes associated with each of the active word. As shown in [1], each word is 

made up of 8 HMM nodes where each entry of the HMM data structure is about 68 bytes (60 

bytes of HMM data and 8 bytes of status information) in size. If assuming 10% of all words 

are active on average, then the average transfer block size would be (6305 x 10%) x 68 bytes 

x 8 nodes = 342,992 bytes. By using the linked list structure, a significant amount of cycle 

delay can be avoided enabling the process to be executed in real-time. 

 From the pure computational perspective, the performance of Phone Modeling can be 

measured at one HMM evaluation and a sub-function that determine the maximum scores 

among the 3 state scores and the exit score. If all data are available on-chip, 85 cycles would 

be required while 388 cycles would be needed if data are stored off-chip. 
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As for Word Modeling, the implementation source code is listed in APPENDIX. The  

code is functionally verified with senone scores obtained from Sphinx that represents the 

word “california” and “capacity”. Table 6.2 summarizes the characteristics and performance. 

 

 

Table 6.2: HMM Characteristics and Performance 
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7.0  CONCLUSION 

Automatic Speech Recognition is extremely computational intensive. Many design 

approaches had been taken to solve such problem but none has yet attempted to map this 

recognition process onto a VLIW DSP. The work of this research is to explore the possibility 

and the feasibility of mapping this recognition process onto T I’s C 6713 V L IW  D S P.  

The work of this research has discovered that the problem is not only the massive 

amount of computation required but feeding the necessary information from memory to the 

processor to perform these calculations. One solution is to use DMA and the on-chip memory 

buffer to allow data to be moved from outside memory while the processor is performing 

calculations. This method works well for sequential memory accesses such as those in 

Acoustic Modeling. For Phone and Word modeling where memory accesses are more 

irregular, the solution is to organize the HMM nodes in the linked list structure instead of the 

tree structure. The linked list structure enables the use of DMA to transfer HMM data as a 

block from the external memory where tree structure would not be able to do so. 

Although it is not possible to map the entire 1000 words recognition real-time process 

onto the TI C6713 development platform due to the processor speed, however, each 

individual processing block is implemented and tested. Table 8.1 summarized the results of 

each processing block.  
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Table 7.1: Summary of results of all processing blocks 

 

7.1  MAJOR CONTRIBUTIONS 

The major contributions of this thesis are as follows: 

 Redesigned and mapped a real-time, speaker independent, command and control based 

speech recognition system onto a multi-core DSP architecture. Also examined and 

optimized each stage of the recognition process including Feature Extraction, Acoustic 

Modeling, Phone & Word Modeling. 

 Optimized Feature Extraction using various optimization techniques including Memory 

Aliasing, Software Pipeline, Loop Unrolling and Packed Data Memory Access. The 

overall optimized performance is 69,684 cycles, which is 3.1% of the real-time cycle 

budget of 2.25 million cycles. 

 For Pre-Emphasis, performance improved 322% from 14,500 to 45,00 cycles 

 For Windowing, performance improved 167% from 2,050 to 1,230 cycles 

 For Power Spectrum, performance improved 384% from 193,210 to 50,268 cycles 

  Optimized the FFT part of Power Spectrum using Texas Instruments Signal 

Processing Library 
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 For Mel Spectrum, performance improved 155% from 3,145 to 2,035 cycles 

 For Mel Cepstrum, performance improved 159% from 12,580 to 7,900 cycles 

 For Dynamic Feature, performance improved 162% from 6,092 to 3,751 cycles 

 Investigated Acoustic Modeling in two different approaches, Component Approach and 

Dimension Approach, and determined that the Dimension Approach has a better optimal 

performance of 0.75 million cycles (33.3% of the real-time cycle budget of 2.25 million 

cycles) than 1.22 million cycles performance of the Component Approach. 

 Optimized the Component Approach using various optimization techniques. The 

baseline performance measured before any applying any optimization is 33.8 million 

cycles, which is 15x the real-time cycle budget of 2.25 million. The best optimized 

performance obtained is 1.22 million cycles, 54% of the real-time cycle budget. 

 Applying standard optimizations (Variable Registering and Constant Propagation), 

performance improved 151% from 33.8 to 22.34 million cycles 

 Plus Software Pipeline, performance improved 1,400% over baseline to 2.41 

million cycles 

 Plus Loop Unrolling by 2x or 3x, performance improved 2,800% over baseline to 

1.22 million cycles 

 Optimized the Dimension Approach using various optimization techniques. The optimal 

performance archived is 0.75 million cycles, which is 33.3% of real-time. 

 Applying standard optimizations and Software Pipeline, performance improved 

255% over baseline to 13.28 million cycles 

 Plus Memory Aliasing, performance improved 2,800% to 1.21 million cycles 

 Plus Packed Data Memory Access and Loop Unrolling by 2x, performance 

improved 3733% to 0.91 million cycles 

 Or Packed Data Memory Access and Loop Unrolling by 6x, performance improved 

4211% to 0.80 million cycles 
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 Or Packed Data Memory Access and Loop Unrolling by 4x, performance improved 

4480% to 0.75 million cycles 

 Resolved the memory bandwidth problem in Acoustic Modeling by eliminating the 

delay effect of accessing external memory using DMA and Cache Buffering technique. 

The result is 4 cycles of delay for every cache miss instead of ~100 cycles of delay when 

external memory is accessed (exact delays depends on the speed of the processor and the 

speed of the external memory device). 

 Examined and implemented Phone & Word Modeling and determined that they are 

computationally simple but requires a large memory bandwidth. A HMM evaluation 

would only consumes 85 cycles (data in cache) rather than 388 cycles (data in external 

memory). The best solution is to organize each word as an individual linked list and to 

store all the information for each HMM node in the order of the nodes that make up a 

word. This method will allow the use of DMA to solve the memory bandwidth problem. 

 

7.2 FUTURE WORK 

The work of this thesis demonstrated that it is possible to implement a speech recognition 

process with a fairly large sized word library onto an embedded hardware platform. The next 

step would be to complete the entire implementation provided that another DSP platform with 

sufficient on-chip SRAM is available. 
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APPENDIX 

 

SOURCE CODE 

 

 

This section of the appendix contains the C code for the implementations for all phases. 

 
#include "c:\\ti\\c6700\\dsplib\\include\\dspf_sp_cfftr2_dit.h" 

#include "tw_r2fft.c" 

 

extern far LOG_Obj trace; 

extern Int INRAM; 

extern Int L2SRAM; 

extern Int EXRAM; 

extern Int EXRAM1; 

 

float *sin_n, *cos_n; 

 

/* FE CONSTANTS */ 

#define invlogB    ((float) 3333.280269) 

#define base     ((float) 1.000300) 

#define invBase    ((float) 0.999700) 

#define NEG_INFINITY   ((Int)  -939524096) 

 

/* SPHINX CONSTANTS */ 

#define MEL_SCALE 1 

 

#define M_PI (3.14159265358979323846) 



 107 

 

#define CMN_WIN_HWM     800       /* #frames after which window shifted */ 

#define CMN_WIN         500 

 

#define LIVEBUFBLOCKSIZE        256    /* Blocks of 256 vectors allocated for 

livemode decoder */ 

 

/* Default feature extraction values */ 

#define DEFAULT_SAMPLING_RATE   16000.0 

#define DEFAULT_FRAME_RATE    100 

#define DEFAULT_FRAME_SHIFT    160 

#define DEFAULT_WINDOW_LENGTH   0.025625 

#define DEFAULT_FFT_SIZE     512 

#define DEFAULT_FB_TYPE     MEL_SCALE 

#define DEFAULT_NUM_CEPSTRA    13 

#define DEFAULT_NUM_FILTERS    40 

#define DEFAULT_LOWER_FILT_FREQ   133.33334 

#define DEFAULT_UPPER_FILT_FREQ   6855.4976 

#define DEFAULT_PRE_EMPHASIS_ALPHA  0.97 

#define DEFAULT_START_FLAG    0 

 

/* Defaults for MEL_SCALE for different sampling rates. */ 

#define BB_SAMPLING_RATE     16000 

#define DEFAULT_BB_FFT_SIZE    512 

#define DEFAULT_BB_FRAME_SHIFT   160 

#define DEFAULT_BB_NUM_FILTERS   40 

#define DEFAULT_BB_LOWER_FILT_FREQ  133.33334 

#define DEFAULT_BB_UPPER_FILT_FREQ  6855.4976 

 

#define NB_SAMPLING_RATE     8000 

#define DEFAULT_NB_FFT_SIZE   512 

#define DEFAULT_NB_FRAME_SHIFT  80 

#define DEFAULT_NB_NUM_FILTERS  31 

#define DEFAULT_NB_LOWER_FILT_FREQ  200 

#define DEFAULT_NB_UPPER_FILT_FREQ  3500 

 

#define DEFAULT_BLOCKSIZE 200000 
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#define feat_name(f)    ((f)->name) 

#define feat_cepsize(f)   ((f)->cepsize) 

#define feat_cepsize_used(f) ((f)->cepsize_used) 

#define feat_n_stream(f)  ((f)->n_stream) 

#define feat_stream_len(f,i) ((f)->stream_len[i]) 

#define feat_window_size(f) ((f)->window_size) 

 

#define MIN(a,b) (((a) < (b))? (a):(b)) 

#define MAX(a,b) (((a) > (b))? (a):(b)) 

 

// MEMORY REQ: 10 x 4 = 40 bytes 

typedef struct { 

 

 float SAMPLING_RATE; 

 Int   FRAME_RATE; 

 float WINDOW_LENGTH; 

 Int   FB_TYPE; 

 Int   NUM_CEPSTRA; 

 Int   NUM_FILTERS; 

 Int   FFT_SIZE; 

 float LOWER_FILT_FREQ; 

 float UPPER_FILT_FREQ; 

 float PRE_EMPHASIS_ALPHA; 

 

} param_t; 

 

// MEMORY REQ: Total: 84,344 bytes. 

// Variables-24 

// filter_coeff (# of filter x FFT size x 4) = 81920 

// mel_cosine (# of filter x # of cepstra x 4) = 2080 

// left_apex, width (# of filter x 4) = 160 

typedef struct { 

 

 float sampling_rate; 

 Int   num_cepstra; 

 Int   num_filters; 

 Int   fft_size; 

 float lower_filt_freq; 
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 float upper_filt_freq; 

 float **filter_coeffs; 

 float **mel_cosine; 

 float *left_apex; 

 Int   *width; 

   

} melfb_t; 

 

// MEMORY REQ: Total: 87,672 bytes. 

// Variables (12 x 4) = 48 bytes 

// overflow_samp (frame_size x 4) = 1640 

// MEL_FB = 84,344 

// HAMMING_WINDOW (frame_size x 4) = 1640 

typedef struct { 

 

 float  SAMPLING_RATE; 

 Int    FRAME_RATE; 

 Int    FRAME_SHIFT; 

 float  WINDOW_LENGTH; 

 Int    FRAME_SIZE; 

 Int    FFT_SIZE; 

 Int    FB_TYPE; 

 Int    NUM_CEPSTRA; 

 float  PRE_EMPHASIS_ALPHA; 

 Int   *OVERFLOW_SAMPS; 

 Int    NUM_OVERFLOW_SAMPS;     

 melfb_t  *MEL_FB; 

 Int    START_FLAG; 

 Int   PRIOR; 

 float  *HAMMING_WINDOW; 

     

} fe_t; 

 

// MEMORY_REQ: 34 bytes 

typedef struct feat_s { 

 

 Char *name;    /* Printable name for this feature type */ 
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 Int  cepsize;   /* Size of input speech vector (typically, a 

cepstrum vector) */ 

 Int  cepsize_used; /* No. of cepstrum vector dimensions actually used (0 

onwards) */ 

 Int  n_stream;   /* #Feature streams; e.g., 4 in Sphinx-II */ 

 Int  *stream_len;  /* Vector length of each feature stream */ 

 Int  window_size;  /* #Extra frames around given input frame needed 

to compute 

            corresponding output feature (so total = 

window_size*2 + 1) */ 

 Int  cmn;    /* Whether CMN is to be performed on each utterance 

*/ 

 Int  varnorm;   /* Whether variance normalization is to be 

performed on each utt; 

            Irrelevant if no CMN is performed */ 

 Int  agc;    /* Whether AGC-Max is to be performed on each 

utterance */ 

 Void (*compute_feat)(struct feat_s *fcb, float **input, float **feat); 

 /* Function for converting window of input speech vector 

   (input[-window_size..window_size]) to output feature vector 

   (feat[stream][]).  If NULL, no conversion available, the 

   speech input must be feature vector itself. 

   Return value: 0 if successful, -ve otherwise. */ 

      

} feat_t; 

 

typedef struct { float r, i; } complex; 

 

// Condition Check. Die if Condition is not True // 

#define xassert(cond) \ 

  do { if (!(cond)) LOG_printf(&trace, "Assertion failed!  (%s:%i)\n", \ 

                        __LINE__, __FILE__); } while (0) 

 

/* ======================================================================== 

*/ 

/*  GEN_TWIDDLE -- Generate twiddle factors for TI's custom FFTs.           */ 

/*      The routine will generate the twiddle-factors directly into the     */ 

/*      array you specify.  The array needs to be N elements long.          */ 
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/* ======================================================================== 

*/ 

 

int gen_twiddle(float * restrict w, int n) 

{ 

    int i; 

     

    /* 

    double delta = 2 * PI / n; 

    for(i = 0; i < n/2; i++) 

    { 

        w[2 * i + 1] = sin(i * delta); 

        w[2 * i] = cos(i * delta); 

    } 

    */ 

 

 for (i = 0; i < n/2; i++) 

 { 

  w[2 * i + 1] = sin_n[i]; 

  w[2 * i] = cos_n[i]; 

 } 

  

 return n; 

} 

 

// obtain_fe_params: fill a param_t with the correct values 

static Void obtain_fe_params(param_t *p) 

{ 

 // initials structure to 0 - JN 

 memset(p, 0, sizeof(param_t)); 

  

 p->SAMPLING_RATE    = 16000.f; 

 p->FRAME_RATE     = 100; 

 p->PRE_EMPHASIS_ALPHA  = .97f; 

 p->LOWER_FILT_FREQ   = 133.33334f; 

 p->UPPER_FILT_FREQ   = 6855.49756f; 

 p->NUM_FILTERS    = 40; 

} 
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Void fe_parse_general_params(param_t *P, fe_t *FE) 

{ 

 #define priv_def_int(x) (FE->x = ((P->x) == 0)? \ 

                         (DEFAULT_##x) : (P->x)) 

 #define priv_def_flt(x) (FE->x = ((P->x) == 0)? \ 

                         ((float)DEFAULT_##x) : (P->x)) 

 priv_def_int(SAMPLING_RATE); 

 priv_def_int(FRAME_RATE); 

 priv_def_flt(WINDOW_LENGTH); 

 priv_def_int(FB_TYPE); 

 priv_def_flt(PRE_EMPHASIS_ALPHA); 

 priv_def_int(NUM_CEPSTRA); 

 priv_def_int(FFT_SIZE); 

   

 #undef priv_def_int 

 #undef priv_def_flt 

} 

 

// fe_create_hamming: compute a Hamming filter as an array  

// of floats of length len, into the array specified by ary. 

Void fe_create_hamming(float *ary, Int len) 

{ 

 Int i; 

  

 if (len > 1) { 

 for (i = 0; i < len; i++) 

  ary[i] = 0.54 - 0.46*cos(2*M_PI*i/(len-1)); 

 } 

} 

 

// fe_parse_melfb_params: initialize MEL_SCALE parameter  

// values from a param_t struct 

Void fe_parse_melfb_params(param_t *P, melfb_t *MEL) 

{ 

 MEL->sampling_rate = DEFAULT_SAMPLING_RATE; 

 MEL->num_cepstra = DEFAULT_NUM_CEPSTRA; 
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 // Converted to invert block structure 

 if (MEL->sampling_rate == BB_SAMPLING_RATE) { 

  MEL->fft_size = DEFAULT_BB_FFT_SIZE; 

  MEL->num_filters = DEFAULT_BB_NUM_FILTERS; 

  MEL->upper_filt_freq = (float)DEFAULT_BB_UPPER_FILT_FREQ; 

  MEL->lower_filt_freq = (float)DEFAULT_BB_LOWER_FILT_FREQ; 

 } else if (MEL->sampling_rate == NB_SAMPLING_RATE) { 

  MEL->fft_size = DEFAULT_NB_FFT_SIZE; 

  MEL->num_filters = DEFAULT_NB_NUM_FILTERS; 

  MEL->upper_filt_freq = (float)DEFAULT_NB_UPPER_FILT_FREQ; 

  MEL->lower_filt_freq = (float)DEFAULT_NB_LOWER_FILT_FREQ; 

 } else { 

  MEL->fft_size = DEFAULT_FFT_SIZE; 

  if (P->NUM_FILTERS == 0) 

    LOG_printf (&trace, "Error initializing MEL_SCALE filter params: 

number of necessary filters is undefined!\n"); 

  if (P->UPPER_FILT_FREQ == 0) 

    LOG_printf (&trace, "Error initializing MEL_SCALE filter params: 

upper filter frequency is undefined!\n"); 

  if (P->LOWER_FILT_FREQ == 0) 

    LOG_printf (&trace, "Error initializing MEL_SCALE filter params: 

lower filter frequency is undefined!\n"); 

 } 

  

 // allow args file to set the parameters 

 if (P->FFT_SIZE != 0)        MEL->fft_size = P->FFT_SIZE; 

 if (P->NUM_FILTERS != 0)     MEL->num_filters = P->NUM_FILTERS; 

 if (P->SAMPLING_RATE != 0)   MEL->sampling_rate = P->SAMPLING_RATE; 

 if (P->NUM_CEPSTRA != 0)     MEL->num_cepstra = P->NUM_CEPSTRA; 

 if (P->UPPER_FILT_FREQ != 0) MEL->upper_filt_freq = P->UPPER_FILT_FREQ; 

 if (P->LOWER_FILT_FREQ != 0) MEL->lower_filt_freq = P->LOWER_FILT_FREQ; 

} 

 

float fe_mel(float x) 

{ 

  return (float)(2595.0*(float)log10(1.0+x/700.0)); 

} 
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float fe_melinv(float x) 

{ 

  return(float)(700.0*((float)pow(10.0,x/2595.0) - 1.0)); 

} 

 

// Run-Time MEMORY REQ: Total = 228 bytes 

// variables (15 x 4 = 60 bytes) 

// filt_edge ( (# of filters + 2) x 4 ) = 168 bytes 

Int fe_build_melfilters(melfb_t *MEL_FB) 

{     

 Int  i, whichfilt, start_pt; 

 float  leftfr, centerfr, rightfr, fwidth, height, *filt_edge; 

 float  melmax, melmin, dmelbw, freq, dfreq, leftslope, rightslope; 

 

 /* estimate filter coefficients */ 

 MEL_FB->filter_coeffs = (float **)xcalloc_2d(INRAM, 

(Int)MEL_FB->num_filters, (Int)MEL_FB->fft_size, sizeof(float)); 

  

 MEL_FB->left_apex = (float *) MEM_calloc (INRAM, 

sizeof(float)*MEL_FB->num_filters, 0); 

 if (MEL_FB->left_apex == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for: MEL_FB->left_apex"); 

    

 MEL_FB->width = (Int *) MEM_calloc (INRAM, sizeof(Int)*MEL_FB->num_filters, 

0); 

 if (MEL_FB->width == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for: MEL_FB->width"); 

  

 filt_edge = (float *) MEM_calloc (INRAM, 

sizeof(float)*(MEL_FB->num_filters+2), 0); 

 if (filt_edge == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for: filt_edge"); 

 

 dfreq = MEL_FB->sampling_rate/(float)MEL_FB->fft_size; 

  

 melmax = fe_mel(MEL_FB->upper_filt_freq); 

 melmin = fe_mel(MEL_FB->lower_filt_freq); 

 dmelbw = (melmax-melmin)/(MEL_FB->num_filters+1); 
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 for (i = 0; i <= MEL_FB->num_filters+1; i++) { 

  filt_edge[i] = fe_melinv(i*dmelbw + melmin); 

 } 

     

 for (whichfilt=0;whichfilt<MEL_FB->num_filters; ++whichfilt) { 

  /* line triangle edges up with nearest dft points... */ 

  leftfr   = (float)((Int)((filt_edge[whichfilt]/dfreq)+0.5))*dfreq; 

  centerfr = (float)((Int)((filt_edge[whichfilt+1]/dfreq)+0.5))*dfreq; 

  rightfr  = (float)((Int)((filt_edge[whichfilt+2]/dfreq)+0.5))*dfreq; 

     

  MEL_FB->left_apex[whichfilt] = leftfr; 

     

  fwidth = rightfr - leftfr; 

     

  /* 2/fwidth for triangles of area 1 */ 

  height = 2/(float)fwidth; 

  leftslope = height/(centerfr-leftfr); 

  rightslope = height/(centerfr-rightfr); 

     

  start_pt = 1 + (Int)(leftfr/dfreq); 

  freq = (float)start_pt*dfreq; 

  i = 0; 

     

  while (freq <= centerfr) { 

   MEL_FB->filter_coeffs[whichfilt][i] = (freq-leftfr)*leftslope;

      

   freq += dfreq; 

   i++; 

  } 

  while (freq < rightfr){ 

   MEL_FB->filter_coeffs[whichfilt][i] = (freq-rightfr)*rightslope; 

   freq += dfreq; 

   i++; 

  } 

     

  MEL_FB->width[whichfilt] = i; 

 } 
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 MEM_free (INRAM, filt_edge, sizeof(float)*(MEL_FB->num_filters+2)); 

  

 return(0); 

} 

 

// Run-Time MEMORY REQ: Total = 16 bytes 

// variables (4 x 4 = 16 bytes) 

Int fe_compute_melcosine(melfb_t *MEL_FB) 

{ 

 float period, freq; 

 Int i, j; 

  

 period = (float)2*MEL_FB->num_filters; 

  

 MEL_FB->mel_cosine = (float **) xmalloc_2d (INRAM, MEL_FB->num_cepstra, 

MEL_FB->num_filters, sizeof(float)); 

 if (MEL_FB->mel_cosine == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for MEL_FB->mel_cosine"); 

   

 for (i = 0; i < MEL_FB->num_cepstra; i++) { 

  freq = 2*(float)M_PI*(float)i/period; 

  for (j=0;j< MEL_FB->num_filters;j++) 

   MEL_FB->mel_cosine[i][j] = (float)cos((float)(freq*(j+0.5))); 

 }     

 

  return 0; 

} 

 

// fe_init: initialize a feature extraction object from the parameters 

// in P, and set up internal state appropriately.  Parameters that are 0 

// are set to default values. 

fe_t *fe_init(param_t *P) 

{ 

 int i; 

 double delta = (2*M_PI)/DEFAULT_FFT_SIZE; 

 

 fe_t *FE = (fe_t *)MEM_calloc(INRAM, sizeof(fe_t)*1, 0); 
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 if (FE == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for FE"); 

  

 // JN: added this to reduce cycle count for FFT 

 sin_n = (float *)MEM_calloc(L2SRAM, sizeof(float)*DEFAULT_FFT_SIZE, 0); 

 if (sin_n == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for sin_n");  

  

 cos_n = (float *)MEM_calloc(L2SRAM, sizeof(float)*DEFAULT_FFT_SIZE, 0); 

 if (cos_n == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for cos_n"); 

 

 for (i = 0; i < (DEFAULT_FFT_SIZE/2); i++) 

 { 

  sin_n[i] = sin(i * delta); 

  cos_n[i] = cos(i * delta); 

 } 

  

 // transfer params to front end 

 fe_parse_general_params(P,FE); 

 

 // compute remaining FE parameters 

 FE->FRAME_SHIFT = (Int)(FE->SAMPLING_RATE/FE->FRAME_RATE + 0.5); 

 FE->FRAME_SIZE = (Int)(FE->WINDOW_LENGTH*FE->SAMPLING_RATE + 0.5); 

 FE->PRIOR = 0; 

 

 // establish buffers for overflow samps and hamming window 

 FE->OVERFLOW_SAMPS = (Int *) MEM_calloc (INRAM, sizeof(Int)*FE->FRAME_SIZE, 

0); 

 if (FE->OVERFLOW_SAMPS == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for FE->OVERFLOW_SAMPS"); 

   

 FE->HAMMING_WINDOW = (float *) MEM_calloc (INRAM, 

sizeof(float)*FE->FRAME_SIZE, 0); 

 if (FE->HAMMING_WINDOW == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for FE->HAMMING_WINDOW"); 

   

 // create hamming window 
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 fe_create_hamming(FE->HAMMING_WINDOW, FE->FRAME_SIZE);  

 

 // init and fill appropriate filter structure 

 switch (FE->FB_TYPE) { 

  

  case MEL_SCALE: { 

    

   //FE->MEL_FB = (melfb_t *)xcalloc(1,sizeof(melfb_t)); 

   FE->MEL_FB = (melfb_t *) MEM_calloc (INRAM, sizeof(melfb_t)*1, 0); 

   if (FE->MEL_FB == MEM_ILLEGAL) 

    LOG_printf (&trace, "Failed to calloc memory for MEL_FB"); 

    

   // transfer params to mel fb 

   fe_parse_melfb_params(P, FE->MEL_FB); 

   fe_build_melfilters(FE->MEL_FB); 

   fe_compute_melcosine(FE->MEL_FB); 

      

  } break; 

   

  default: 

   LOG_printf (&trace, "Can't initialize FE: invalid filter type\n"); 

 } 

 

 return FE; 

} 

 

// Duplicate a String 

static Char *xstrdup (const Char *string) 

{ 

 const Uns len = strlen(string) + 1; 

 Char *newstr = MEM_alloc (INRAM, len, 0); 

 memcpy (newstr, string, len); 

 return newstr; 

} 

 

/* feat_s3_1x39_cep2feat: do some math for converting cepstra to 

   features. */ 

static Void feat_s3_1x39_cep2feat(feat_t *fcb, float **mfc, float **feat) 
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{ 

  float *f; 

  float *w, *_w; 

  float *w1, *w_1, *_w1, *_w_1; 

  float d1, d2; 

  Int i; 

     

  /* xassert -- DPW */ 

  xassert (fcb); 

  xassert (feat_cepsize (fcb) == 13); 

  xassert (feat_cepsize_used (fcb) == 13); 

  xassert (feat_n_stream (fcb) == 1); 

  xassert (feat_stream_len (fcb, 0) == 39); 

  xassert (feat_window_size (fcb) == 3); 

     

  /* CEP; skip C0 */ 

  memcpy (feat[0], mfc[0]+1, (feat_cepsize(fcb)-1) * sizeof(float)); 

     

  /* 

   * DCEP: mfc[2] - mfc[-2]; 

   */ 

  f = feat[0] + feat_cepsize(fcb)-1; 

  w  = mfc[2] + 1; /* +1 to skip C0 */ 

  _w = mfc[-2] + 1; 

 

  for (i = 0; i < feat_cepsize(fcb)-1; i++) 

    f[i] = w[i] - _w[i]; 

     

  /* POW: C0, DC0, D2C0 */ 

  f += feat_cepsize(fcb)-1; 

 

  f[0] = mfc[0][0]; 

  f[1] = mfc[2][0] - mfc[-2][0]; 

 

  d1 = mfc[3][0] - mfc[-1][0]; 

  d2 = mfc[1][0] - mfc[-3][0]; 

  f[2] = d1 - d2; 
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  /* D2CEP: (mfc[3] - mfc[-1]) - (mfc[1] - mfc[-3]) */ 

  f += 3; 

     

  w1   = mfc[3] + 1; /* Final +1 to skip C0 */ 

  _w1  = mfc[-1] + 1; 

  w_1  = mfc[1] + 1; 

  _w_1 = mfc[-3] + 1; 

 

  for (i = 0; i < feat_cepsize(fcb)-1; i++) { 

    d1 =  w1[i] -  _w1[i]; 

    d2 = w_1[i] - _w_1[i]; 

 

    f[i] = d1 - d2; 

  } 

} 

 

/* feat_init: initialize feature conversion block and return it. */ 

feat_t *feat_init(void)  /* No arguments now -- DPW */ 

{ 

 feat_t *fcb; 

  

 //fcb = (feat_t *)xcalloc(1, sizeof(feat_t)); 

 fcb = (feat_t *)MEM_calloc (INRAM, sizeof(feat_t)*1, 0); 

 if (fcb == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for: fcb"); 

     

 /* Feature type is always "1s_c_d_dd". -- DPW */ 

 { 

 fcb->name = (Char *)xstrdup("1s_c_d_dd"); 

  

 /* 1-stream cep/dcep/pow/ddcep (Hack!! hardwired constants below) */ 

 fcb->cepsize = 13; 

 fcb->cepsize_used = 13; 

 fcb->n_stream = 1; 

 /* xcalloc -- DPW */ 

 fcb->stream_len = (Int *) MEM_calloc (INRAM, sizeof(Int)*1, 0); 

 fcb->stream_len[0] = 39; 

 fcb->window_size = 3; 
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 /* Added & for clarity -- DPW */ 

 fcb->compute_feat = &feat_s3_1x39_cep2feat; 

 } 

     

 /* cmn is always "current". 

  varnorm is always "no". 

  agc is always "none"; 

  -- DPW */ 

 fcb->cmn = 1; 

 fcb->varnorm = 0; 

 fcb->agc = 0; 

  

 return fcb; 

} 

 

/* fe_start_utt: ready a feature extraction object to accept another utterance. 

*/ 

Void fe_start_utt(fe_t *FE) 

{ 

 FE->NUM_OVERFLOW_SAMPS = 0; 

 memset(FE->OVERFLOW_SAMPS, 0, FE->FRAME_SIZE * sizeof(Short)); 

 FE->START_FLAG = 1; 

 FE->PRIOR = 0; 

} 

 

/* fe_pre_emphasis: do short->float conversion from in to out of length 

   len with pre-emphasis factor factor. */    

Void fe_pre_emphasis(Int *in, float *out, Int len, float factor, Short prior) 

{ 

 Int i; 

 

 out[0] = (float)in[0] - factor*(float)prior; 

 for (i = 1; i < len; i++)  

 { 

     out[i] = (float)in[i] - factor*(float)in[i-1]; 

   }  

} 
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/* fe_short_to_float: do short->float conversion of length len 

   from in to out with no pre-emphasis. */ 

Void fe_short_to_float(Int *in, float *out, Int len) 

{ 

  Int i; 

  for (i = 0; i < len; i++) 

    out[i] = (float)in[i]; 

} 

 

/* fe_multiply_window: multiply the float array ary in-place by the 

   window window, with length len. */ 

Void fe_multiply_window(float * restrict ary, float * restrict window, Int len) 

{ 

 Int i; 

 

 WORD_ALIGNED(ary); 

 WORD_ALIGNED(window); 

 

 // JN: since len is fe->frame_size, can assume even number for now 410 

 #pragma MUST_ITERATE(20, ,2); 

 for (i = 0; i < len; i++) 

  ary[i] *= window[i]; 

 

 return; 

} 

 

/* fe_spec_magnitude: do something or other. */ 

// JN: data_len = FE->FRAME_SIZE which can be consider constant of 410 

void fe_spec_magnitude(float * restrict data, Int data_len, float * restrict 

spec, Int fftsize) 

{ 

 Int j,k,wrap; 

 float *w, *fIN; 

     

 fIN = (float *) MEM_calloc (L2SRAM, sizeof(float)*2*fftsize, 0); 

 if (fIN == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for: fIN"); 
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 w = (float *) MEM_calloc (L2SRAM, sizeof(float)*fftsize, 0); 

 if (w == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for: w");   

 

 if (data_len > fftsize) { 

  for (j = 0, k = 0; j < fftsize; j++, k=k+2) { 

   fIN[k] = data[j]; 

   fIN[k+1] = 0.0; 

  }  

  for (wrap = 0; j < data_len; wrap=wrap+2, j++) { 

   fIN[wrap] += data[j]; 

   fIN[wrap+1] += 0.0; 

  } 

 } else { 

  // performance: 1.5 cycle per iteration. Total 1.5*410 = 615 cycles 

  #pragma MUST_ITERATE (20, , 2); 

  for (j = 0, k = 0; j < data_len; j++, k=k+2){ 

   fIN[k] = data[j]; 

   fIN[k+1] = 0.0; 

  } 

  // performance: 1 cycle per iteration. Total 1*512 = 512 cycles 

  #pragma MUST_ITERATE (20, , 2);   

  for ( ; j < fftsize; j++,k=k+2) { 

   fIN[k] = 0.0; 

   fIN[k+1] = 0.0; 

  } 

 } 

   

 // performance: 2 cycle per iteration. Total of 2*(512/2) = 512 cycles 

 gen_twiddle(w, fftsize); 

 // performance: 12000 cycles from profiler 

 bit_rev(w, fftsize>>1);   

 // performance: 11500 cycles from profiler 

 DSPF_sp_cfftr2_dit (fIN, w, fftsize); 

 // performance: 24000 cycles from profiler 

 bit_rev(fIN, fftsize); 

     

 // performance: 2 cycle/iteration. Total of 2*(512/2) = 512 cycles 
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 WORD_ALIGNED(fIN); 

 for (j = 0; j <= fftsize/2; j++) 

 {  

  spec[j] = fIN[2*j]*fIN[2*j] + fIN[2*j+1]*fIN[2*j+1]; 

 } 

  

 MEM_free (L2SRAM, fIN, sizeof(float)*2*fftsize); 

 MEM_free (L2SRAM, w, sizeof(float)*fftsize); 

  

 return; 

} 

 

Void fe_mel_spec(fe_t * restrict FE, float * restrict spec, float * restrict 

mfspec) 

{ 

 Int whichfilt, start, i; 

 float dfreq; 

  

 dfreq = FE->SAMPLING_RATE/(float)FE->FFT_SIZE; 

  

 for (whichfilt = 0; whichfilt < FE->MEL_FB->num_filters; whichfilt++){ 

  

  start = (Int)(FE->MEL_FB->left_apex[whichfilt]/dfreq) + 1; 

  mfspec[whichfilt] = 0; 

   

  for (i = 0; i < FE->MEL_FB->width[whichfilt]; i++) 

   mfspec[whichfilt] += FE->MEL_FB->filter_coeffs[whichfilt][i] * 

spec[start+i]; 

 } 

} 

 

void fe_mel_cep(fe_t * restrict FE, float * restrict mfspec, float * restrict 

mfcep) 

{ 

 Int i,j; 

 Int period; 

 float beta; 
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 period = FE->MEL_FB->num_filters; 

  

 for (i = 0; i < FE->MEL_FB->num_filters; i++){ 

  if (mfspec[i]>0) 

   mfspec[i] = log(mfspec[i]); 

  else 

   mfspec[i] = -1.0e+5; 

 } 

  

 for (i = 0; i < FE->NUM_CEPSTRA; i++)  

 { 

  mfcep[i] = 0; 

   

  beta = 0.5; 

   

  // performance: 2 cycle/iteration. Total of (13*40*2) = 1040 cycles 

  #pragma MUST_ITERATE(20, , 2); 

  for (j = 0; j < FE->MEL_FB->num_filters; j++) 

  {  

   mfcep[i] += beta*mfspec[j]*FE->MEL_FB->mel_cosine[i][j]; 

   beta = 1.0; 

  } 

  mfcep[i] /= (float)period; 

 } 

} 

 

/* fe_frame_to_fea: Convert frames to features. */ 

void fe_frame_to_fea(fe_t *FE, float *in, float *fea) 

{ 

 float *spec, *mfspec; 

 

 switch (FE->FB_TYPE) { 

  case MEL_SCALE: { 

     spec = (float *) MEM_calloc (L2SRAM, sizeof(float)*FE->FFT_SIZE, 0); 

   if (spec == MEM_ILLEGAL) 

     LOG_printf (&trace, "Failed to calloc memory for: spec"); 
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     mfspec = (float *) MEM_calloc (L2SRAM, 

sizeof(float)*FE->MEL_FB->num_filters, 0); 

   if (mfspec == MEM_ILLEGAL) 

     LOG_printf (&trace, "Failed to calloc memory for: mfspec"); 

   

     fe_spec_magnitude(in, FE->FRAME_SIZE, spec, FE->FFT_SIZE); 

     fe_mel_spec(FE, spec, mfspec); 

     fe_mel_cep(FE, mfspec, fea); 

   

     MEM_free (L2SRAM, spec, sizeof(float)*FE->FFT_SIZE); 

     MEM_free (L2SRAM, mfspec, sizeof(float)*FE->MEL_FB->num_filters); 

   } break; 

  

   default: 

     LOG_printf (&trace, "Error converting frame to features: invalid 

filtering type\n"); 

  } 

} 

 

// fe_process_utt: process the given int16 speech data and set 

// cep_block to point to the beginning of a newly-allocated (fe_*_2d) 

// array of arrays of floats.  Returns the number of frames processed. 

// RUM-TIME MEMORY REQ: 21,328 bytes 

// temp_spch (frame_size + buf_size) x4 = 9640 

// cep (# cepstra x frame_cnt x 4) = 676 

// spbuf = 9320 bytes 

// fr_data = 1640 

// fr_fea = 52 

Int fe_process_utt(fe_t *FE, Int *spch, Int nsamps, float ***cep_block) 

{ 

 Int frame_start, frame_count = 0, whichframe = 0; 

 Int i, spbuf_len, offset = 0; 

 float *spbuf; 

 float *fr_data, *fr_fea; 

 Int *tmp_spch = spch; 

 float **cep = NULL; 

 

 // are there enough samples to make at least 1 frame? 
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 if (nsamps+FE->NUM_OVERFLOW_SAMPS >= FE->FRAME_SIZE) 

 { 

   

  // if there are previous samples, pre-pend them to input speech samps 

  if ((FE->NUM_OVERFLOW_SAMPS > 0))  

  { 

   tmp_spch = (Int *) MEM_alloc (L2SRAM, 

sizeof(Int)*(FE->NUM_OVERFLOW_SAMPS + nsamps), 0); 

   if (tmp_spch == MEM_ILLEGAL) 

    LOG_printf (&trace, "Failed to calloc memory for: tmp_spch"); 

    

   memcpy(&tmp_spch[0], FE->OVERFLOW_SAMPS, FE->NUM_OVERFLOW_SAMPS 

* sizeof(Int)); 

   memcpy(&tmp_spch[FE->NUM_OVERFLOW_SAMPS], spch, nsamps * 

sizeof(Int)); 

   nsamps += FE->NUM_OVERFLOW_SAMPS; 

   FE->NUM_OVERFLOW_SAMPS = 0; // reset overflow samps count 

  } 

 

  // compute how many complete frames can be processed and which samples 

correspond to those samps 

  frame_count = 0; 

  for (frame_start=0; frame_start + FE->FRAME_SIZE <= nsamps; frame_start 

+= FE->FRAME_SHIFT) 

   frame_count++;   

 

  // 01.14.01 RAH, added +1 Adding one gives us space to stick the last 

flushed buffer 

  // assume allocation errors always die -- DPW 

  cep = (float **) xmalloc_2d (L2SRAM, frame_count+1, FE->NUM_CEPSTRA, 

sizeof(float)); 

      

  spbuf_len = (frame_count-1)*FE->FRAME_SHIFT + FE->FRAME_SIZE; 

 

  spbuf = (float *) MEM_alloc (L2SRAM, sizeof(float)*spbuf_len, 0); 

  if (spbuf == MEM_ILLEGAL) 

   LOG_printf (&trace, "Failed to calloc memory for: spbuf"); 
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  // pre-emphasis if needed, and convert from int16 to float 

  if (FE->PRE_EMPHASIS_ALPHA != 0.0) 

   fe_pre_emphasis(tmp_spch, spbuf, spbuf_len, 

FE->PRE_EMPHASIS_ALPHA, FE->PRIOR); 

  else 

   fe_short_to_float(tmp_spch, spbuf, spbuf_len); 

       

  // frame based processing - let's make some cepstra... 

  fr_data = (float *) MEM_calloc (L2SRAM, sizeof(float)*FE->FRAME_SIZE, 

0); 

  if (fr_data == MEM_ILLEGAL) 

   LOG_printf (&trace, "Failed to calloc memory for: fr_data"); 

   

  fr_fea = (float *) MEM_calloc (L2SRAM, sizeof(float)*FE->NUM_CEPSTRA, 

0); 

  if (fr_fea == MEM_ILLEGAL) 

   LOG_printf (&trace, "Failed to calloc memory for: fr_fea"); 

   

  for (whichframe = 0; whichframe < frame_count; whichframe++) 

  { 

   for (i = 0; i < FE->FRAME_SIZE; i++) 

    fr_data[i] = spbuf[whichframe*FE->FRAME_SHIFT + i]; 

   

   fe_multiply_window(fr_data, FE->HAMMING_WINDOW, FE->FRAME_SIZE); 

   fe_frame_to_fea(FE, fr_data, fr_fea); 

   

   for (i = 0; i < FE->NUM_CEPSTRA; i++) 

    cep[whichframe][i] = (float)fr_fea[i];        

  } 

  // done making cepstra 

 

  // assign samples which don't fill an entire frame to FE overflow buffer 

for use on next pass 

  if (spbuf_len < nsamps)  

  { 

   offset = frame_count * FE->FRAME_SHIFT; 

   memcpy(FE->OVERFLOW_SAMPS, &tmp_spch[offset], (nsamps-offset) * 

sizeof(Int)); 
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   FE->NUM_OVERFLOW_SAMPS = nsamps-offset; 

   FE->PRIOR = tmp_spch[offset-1]; 

   xassert(FE->NUM_OVERFLOW_SAMPS < FE->FRAME_SIZE); 

  } 

 

  if (spch != tmp_spch)  

   MEM_free (L2SRAM, tmp_spch, sizeof(Int)*(FE->NUM_OVERFLOW_SAMPS + 

nsamps)); 

 

  MEM_free (L2SRAM, spbuf, sizeof(float)*spbuf_len); 

  MEM_free (L2SRAM, fr_data, sizeof(float)*FE->FRAME_SIZE); 

  MEM_free (L2SRAM, fr_fea, sizeof(float)*FE->NUM_CEPSTRA); 

      

    } else {   // if not enough total samps for a single frame, append new samps 

to  

               //   previously stored overlap samples 

     

  memcpy(&FE->OVERFLOW_SAMPS[FE->NUM_OVERFLOW_SAMPS], tmp_spch, nsamps 

* sizeof(Short)); 

  FE->NUM_OVERFLOW_SAMPS += nsamps; 

 

  xassert(FE->NUM_OVERFLOW_SAMPS < FE->FRAME_SIZE); 

  frame_count = 0; 

 } 

   

 *cep_block = cep; 

   

 return frame_count; 

} 

 

/* cmn_prior: do CMN stuff. */ 

Void cmn_prior(float **incep, Int varnorm, Int nfr, Int ceplen, Int endutt) 

{ 

 static float *cur_mean = NULL; /* the mean subtracted from input frames */ 

 static float *sum = NULL;      /* the sum over input frames */ 

 static Int   nframe;      /* the total number of input frames */ 

 static Int   initialize = 1; 
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 float sf; 

 Int   i, j; 

   

 if (varnorm) 

  LOG_printf(&trace, "Variance normalization not implemented in live mode 

decode\n"); 

   

 if (initialize){ 

  cur_mean = (float *)MEM_calloc (L2SRAM, ceplen*sizeof(float), 0); 

    if (cur_mean == MEM_ILLEGAL) 

   LOG_printf (&trace, "Failed to calloc memory for: cur_mean"); 

     

  /* A front-end dependent magic number */ 

  cur_mean[0] = 12.0; 

     

  sum      = (float *)MEM_calloc (L2SRAM, ceplen*sizeof(float), 0); 

  nframe   = 0; 

  initialize = 0; 

 } 

 

 if (nfr <= 0) 

  return; 

   

 for (i = 0; i < nfr; i++) 

  { 

  for (j = 0; j < ceplen; j++) 

  { 

   sum[j] += incep[i][j]; 

   incep[i][j] -= cur_mean[j]; 

  } 

  ++nframe; 

 } 

   

 /* Shift buffer down if we have more than CMN_WIN_HWM frames */ 

 if (nframe > CMN_WIN_HWM) { 

  sf = (float) (1.0/nframe); 

  for (i = 0; i < ceplen; i++) 

   cur_mean[i] = sum[i] * sf; 
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  /* Make the accumulation decay exponentially */ 

  if (nframe >= CMN_WIN_HWM) { 

   sf = CMN_WIN * sf; 

   for (i = 0; i < ceplen; i++) 

    sum[i] *= sf; 

   nframe = CMN_WIN; 

  } 

 } 

   

 if (endutt) { 

  /* Update mean buffer */ 

     

  sf = (float) (1.0/nframe); 

  for (i = 0; i < ceplen; i++) 

   cur_mean[i] = sum[i] * sf; 

     

  /* Make the accumulation decay exponentially */ 

  if (nframe > CMN_WIN_HWM) { 

   sf = CMN_WIN * sf; 

   for (i = 0; i < ceplen; i++) 

    sum[i] *= sf; 

   nframe = CMN_WIN; 

  } 

 } 

} 

 

/* feat_s3mfc2feat_block: use the feature control block in fcb to convert 

   nfr cepstrum frames from uttcep into a newly allocated array of feature 

   vectors stored into *ofeat, with beginutt indicating beginning of 

   utterance and endutt indicating end of utterance. */ 

Int feat_s2mfc2feat_block(feat_t *fcb, float **uttcep, Int nfr, Int beginutt, 

Int endutt, float ***ofeat) 

{ 

 static float **feat = NULL; 

 static float **cepbuf = NULL; 

 static Int  bufpos;  

 static Int  curpos; 



 132 

 static Int  jp1, jp2, jp3, jf1, jf2, jf3; 

 Int  win, cepsize;  

 Int  i, j, nfeatvec, residualvecs; 

 

 float *w, *_w, *f; 

 float *w1, *w_1, *_w1, *_w_1; 

 float d1, d2; 

 

 xassert(nfr < LIVEBUFBLOCKSIZE); 

 win = feat_window_size(fcb); 

 

 if (fcb->cepsize <= 0)  

  LOG_printf (&trace, "Bad cepsize: %d\n", fcb->cepsize); 

 

 cepsize = feat_cepsize(fcb);  

       

 if (feat == NULL) 

  feat = (float **)xcalloc_2d(L2SRAM, LIVEBUFBLOCKSIZE, 

feat_stream_len(fcb,0), sizeof(float)); 

  

 if (cepbuf == NULL){ 

  cepbuf = (float **)xcalloc_2d(L2SRAM, LIVEBUFBLOCKSIZE, cepsize, 

sizeof(float)); 

  beginutt = 1; 

 } 

 

 if (fcb->cmn)  

 cmn_prior (uttcep, fcb->varnorm, nfr, fcb->cepsize, endutt); 

     

 residualvecs = 0; 

 if (beginutt) { 

 for (i=0;i<win;i++)  

  memcpy(cepbuf[i],uttcep[0],cepsize*sizeof(float)); 

  bufpos = win; 

  bufpos %= LIVEBUFBLOCKSIZE; 

  curpos = bufpos; 

  jp1 = curpos - 1; 

  jp1 %= LIVEBUFBLOCKSIZE; 
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  jp2 = curpos - 2; 

  jp2 %= LIVEBUFBLOCKSIZE; 

  jp3 = curpos - 3; 

  jp3 %= LIVEBUFBLOCKSIZE; 

  jf1 = curpos + 1; 

  jf2 %= LIVEBUFBLOCKSIZE; 

  jf1 %= LIVEBUFBLOCKSIZE; 

  jf2 = curpos + 2; 

  jf3 = curpos + 3; 

  jf3 %= LIVEBUFBLOCKSIZE; 

  residualvecs -= win; 

 } 

 

 for (i=0; i<nfr; i++) 

 { 

  xassert(bufpos < LIVEBUFBLOCKSIZE); 

  memcpy(cepbuf[bufpos++],uttcep[i],cepsize*sizeof(float)); 

  bufpos %= LIVEBUFBLOCKSIZE; 

 } 

 

 if (endutt){ 

  if (nfr > 0) { 

   for (i=0;i<win;i++) { 

    xassert(bufpos < LIVEBUFBLOCKSIZE); 

   

 memcpy(cepbuf[bufpos++],uttcep[nfr-1],cepsize*sizeof(float)); 

    bufpos %= LIVEBUFBLOCKSIZE; 

   } 

  } 

  else { 

   Short tpos = bufpos-1; 

   tpos %= LIVEBUFBLOCKSIZE; 

   for (i=0; i<win; i++) 

   { 

    xassert(bufpos < LIVEBUFBLOCKSIZE); 

   

 memcpy(cepbuf[bufpos++],cepbuf[tpos],cepsize*sizeof(float)); 

    bufpos %= LIVEBUFBLOCKSIZE; 
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   } 

  } 

  residualvecs += win; 

 } 

 

 nfeatvec = 0; 

 nfr += residualvecs; 

 

 for (i = 0; i < nfr; i++,nfeatvec++) 

 { 

  memcpy (feat[i], cepbuf[curpos], (cepsize) * sizeof(float)); 

     

  f = feat[i] + cepsize; 

  w  = cepbuf[jf2]; 

  _w = cepbuf[jp2]; 

 

  for (j = 0; j < cepsize; j++)  

  { 

   f[j] = w[j] - _w[j]; 

  } 

     

  f += cepsize; 

     

  w1   = cepbuf[jf3]; 

  _w1  = cepbuf[jp1]; 

  w_1  = cepbuf[jf1]; 

  _w_1 = cepbuf[jp3]; 

 

  for (j = 0; j < cepsize; j++) 

  { 

   d1 =  w1[j] -  _w1[j]; 

   d2 = w_1[j] - _w_1[j]; 

 

   f[j] = d1 - d2; 

  } 

  jf1++; jf2++; jf3++; 

  jp1++; jp2++; jp3++; 

  curpos++; 
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  jf1 %= LIVEBUFBLOCKSIZE; 

  jf2 %= LIVEBUFBLOCKSIZE; 

  jf3 %= LIVEBUFBLOCKSIZE; 

  jp1 %= LIVEBUFBLOCKSIZE; 

  jp2 %= LIVEBUFBLOCKSIZE; 

  jp3 %= LIVEBUFBLOCKSIZE; 

  curpos %= LIVEBUFBLOCKSIZE; 

 } 

  

 *ofeat = feat; 

 

 return(nfeatvec); 

} 

 

  
#include <std.h> 

#include <stdlib.h> 

#include <math.h> 

 

#include <log.h> 

#include <mem.h> 

 

#include <csl.h> 

#include <csl_cache.h> 

 

#include <csl_dat.h> 

#include <csl_edma.h> 

 

#include "asr_utility.c" 

#include "asr_fe.c" 

 

extern far  LOG_Obj trace; 

extern Int INRAM; 

extern Int L2SRAM; 

extern Int EXRAM; 

extern Int EXRAM1; 

 

/* 
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// ----- GLOBAL CONSTANTS: FEATURE EXTRACTION -----// 

#define FE_BUF_SIZE  ((Int)2000) 

 

// ----- GLOBAL VARIABLES: FEATURE EXTRACTION -----// 

Int  *all_buf; 

Int  *fe_buf; 

param_t params; 

fe_t  *fe; 

feat_t *fcb; 

float  **fe_feat; 

 

// ----- GLOBAL CONSTANTS: ACOUSTIC MODELING -----// 

#define NUM_SENONE  ((Int)1935) 

#define NUM_COMP   ((Int)8) 

#define NUM_GAUS   ((Int)39) 

#define ALL_GAUS   ((Int)603720) 

#define ALL_GAUS_PAD ((Int)604032) 

#define ALL_COMP   ((Int)15480) 

#define ALL_COMP_PAD ((Int)15488) 

 

#define L2_BUF_SIZE ((Int)3872)  // 15488/4 = 3872 (which must also 

divisible by 4) 

#define COMP_ITER_DIV ((Int)4)   // 15488/3982 = 4 

#define L2_PAD_SIZE  ((Int)224)  // padding added so buffer align at boundry 

 

#define  DIST_FLOOR   ((float) -281861.7158) 

#define  S3_LOGPROB_ZERO ((Int)  0xc8000000) 

#define  SCALING_FACTOR  ((float) 3333.280269) 

#define ADD_TBL_SIZE  ((Int)  29350) 

 

// ----- GLOBAL VARIABLES: ACOUSTIC MODELING -----// 

float  *am_mean; 

float  *am_var; 

float  *am_lrd; 

float  *am_ksum; 

Int  *am_mixw; 

float  *am_feat; 

Int  *am_add_tbl; 
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Short  *am_log_tbl; 

Int  *am_senscr; 

 

float  *l2_mbuf0; 

float  *l2_pad0; 

float  *l2_mbuf1; 

float  *l2_pad1; 

float  *l2_vbuf0; 

float  *l2_pad2; 

float  *l2_vbuf1; 

*/ 

// ----- GLOBAL CONSTANTS: PHONE MODELING ----- // 

#define SENONE_FRAMES  ((Int) 110) // 79-casulty, 117-capacity, 

110-california 

#define VALID_OFFSET  ((Int) -200000) 

#define EXIT_OFFSET   ((Int) -100000) 

#define HMM_BEAM   ((Int) -307006 + VALID_OFFSET) 

#define PHONE_BEAM   ((Int) -230254 + EXIT_OFFSET) 

 

// ----- GLOBAL VARIABLES: PHONE MODELING ----- // 

Int  **ph_nodescr; 

Int  **ph_mdef; 

Int  **ph_tmat; 

Int  *ph_pal; 

Int  *ph_ntype; 

Int  **ph_senscr; 

 

// WORD CONSTANT 

#define WORD_OFFSET   ((Int) -5000) 

#define NUM_SENONE   1978 

#define NUM_NODE   6306 

#define NUM_TMAT   45 

 

Int  word_threshold   = NEG_INFINITY; 

Int  active_node_cnt  = 6306; 

Int  EXIT_HMM_cnt  = 0; 
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//**********************************submit_qdma****************************

****** 

// Submit a QDMA request to transfer the data. 

//*************************************************************************

****** 

Void submit_qdma(Uns src, Uns dst, Uns ele) 

{ 

 EDMA_Config config; 

  config.opt = (Uns) 

  ((EDMA_OPT_PRI_HIGH << _EDMA_OPT_PRI_SHIFT ) 

  | (EDMA_OPT_ESIZE_32BIT << _EDMA_OPT_ESIZE_SHIFT ) 

  | (EDMA_OPT_2DS_NO << _EDMA_OPT_2DS_SHIFT ) 

  | (EDMA_OPT_SUM_INC << _EDMA_OPT_SUM_SHIFT ) 

  | (EDMA_OPT_2DD_NO << _EDMA_OPT_2DD_SHIFT ) 

  | (EDMA_OPT_DUM_INC << _EDMA_OPT_DUM_SHIFT ) 

  | (EDMA_OPT_TCINT_YES << _EDMA_OPT_TCINT_SHIFT ) 

  | (EDMA_OPT_TCC_OF(0) << _EDMA_OPT_TCC_SHIFT ) 

  | (EDMA_OPT_LINK_NO << _EDMA_OPT_LINK_SHIFT ) 

  | (EDMA_OPT_FS_YES << _EDMA_OPT_FS_SHIFT )); 

 

  config.src = (Uns)src; // source address 

  config.cnt = (Uns)ele; // element count 

  config.dst = (Uns)dst; // destination address 

  config.idx = (Uns)0;  // submit request 

  EDMA_qdmaConfig(&config); 

 

 return; 

} 

 

//*************************************wait********************************

****** 

// Wait until the transfer completes, as indicated by the Interrupt register 

//*************************************************************************

****** 

Void wait() 

{ 

 //while (!(EDMA_getPriQStatus() & EDMA_OPT_PRI_HIGH)); 
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 while (!EDMA_RGET(CIPR)); 

 

 IRQ_clear(IRQ_EVT_EDMAINT); 

 EDMA_resetAll(); 

 

 return; 

} 

 

//*******************************asr_init_app******************************

****** 

// Initiailizes application 

//*************************************************************************

****** 

Void asr_init_app() 

{ 

 CSL_init();   // initial Chip Support Library 

 

 CACHE_enableCaching(CACHE_CE00); // SDRAM cacheable 

 CACHE_setL2Mode(CACHE_0KCACHE); // make L2 64KB SDRAM 

} 

/* 

//*******************************asr_init_fe*******************************

****** 

// Initiailizes feature extraction block 

//*************************************************************************

****** 

Void asr_init_fe() 

{ 

 obtain_fe_params (&params); 

 fe = fe_init(&params); 

 fcb = feat_init(); 

 fe_start_utt(fe); 

 

 fe_buf  = (Int *) MEM_calloc (L2SRAM, sizeof(Int)*FE_BUF_SIZE, 0); 

 all_buf  = (Int *) MEM_calloc (EXRAM, sizeof(Int)*21992, 0); 

 

 return; 

} 
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Void asr_init_am() 

{ 

 Int i; 

 

 am_mean  = (float *) MEM_calloc (EXRAM, ALL_GAUS_PAD, 0); 

 am_var  = (float *) MEM_calloc (EXRAM, ALL_GAUS_PAD, 0); 

 am_lrd  = (float *) MEM_calloc (EXRAM, ALL_COMP_PAD, 0); 

 am_ksum  = (float *) MEM_calloc (INRAM, ALL_COMP_PAD, 0); 

 am_mixw  = (Int *) MEM_calloc (EXRAM, ALL_COMP, 0); 

 am_feat  = (float *) MEM_calloc (EXRAM, NUM_GAUS, 0); 

 am_add_tbl = (Int *) MEM_calloc (EXRAM, ADD_TBL_SIZE, 0); 

 am_log_tbl = (Short *) MEM_calloc (INRAM, ADD_TBL_SIZE, 0); 

 am_senscr = (Int *) MEM_calloc (INRAM, NUM_SENONE, 0); 

 

 l2_mbuf0  = (float *) MEM_calloc (L2SRAM, L2_BUF_SIZE, 0); 

 l2_pad0  = (float *) MEM_calloc (L2SRAM, L2_PAD_SIZE, 0); 

 l2_mbuf1  = (float *) MEM_calloc (L2SRAM, L2_BUF_SIZE, 0); 

 l2_pad1  = (float *) MEM_calloc (L2SRAM, L2_PAD_SIZE, 0); 

 l2_vbuf0  = (float *) MEM_calloc (L2SRAM, L2_BUF_SIZE, 0); 

 l2_pad2  = (float *) MEM_calloc (L2SRAM, L2_PAD_SIZE, 0); 

 l2_mbuf1  = (float *) MEM_calloc (L2SRAM, L2_BUF_SIZE, 0); 

 

 // copy Int-type log table to Short-type table 

 for (i = 0; i < ADD_TBL_SIZE; i++) 

  am_log_tbl[i] = (Short) am_add_tbl[i]; 

 

 // copy lrd onto temp array 

 submit_qdma((Uns) am_lrd, (Uns) am_ksum, ALL_COMP_PAD); 

 wait(); 

 

 // make the first transfer so AM is ready to go 

 submit_qdma((Uns) am_mean, (Uns) l2_mbuf0, L2_BUF_SIZE); 

 wait(); 

 submit_qdma((Uns) am_var, (Uns) l2_vbuf0, L2_BUF_SIZE); 

 wait(); 

 

 return; 
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} 

*/ 

 

Void asr_init_ph() 

{ 

 Int i, j; 

 

 printmem (INRAM); 

 printmem (L2SRAM); 

 printmem (EXRAM); 

 printmem (EXRAM1); 

 

 ph_nodescr = (Int **) xcalloc_2d (EXRAM, NUM_NODE, 5, sizeof(Int)); 

 ph_mdef = (Int **) xcalloc_2d (EXRAM, NUM_NODE, 4, sizeof(Int)); 

 ph_tmat = (Int **) xcalloc_2d (EXRAM, NUM_TMAT, 6, sizeof(Int)); 

 ph_pal = (Int *) MEM_calloc (EXRAM, NUM_NODE*sizeof(Int), 0); 

 ph_ntype = (Int *) MEM_calloc (EXRAM, NUM_NODE*sizeof(Int), 0); 

 ph_senscr = (Int **) xcalloc_2d (EXRAM1, SENONE_FRAMES, NUM_SENONE, 

sizeof(Int)); 

 

 printmem (INRAM); 

 printmem (L2SRAM); 

 printmem (EXRAM); 

 printmem (EXRAM1); 

 

 // initial nodescr table to all NEG_INFINITY 

 for (i = 0; i < NUM_NODE; i++) { 

  for (j = 0; j < 5; j++) { 

   ph_nodescr[i][j] = NEG_INFINITY; 

  } 

 } 

 

 // make all starting nodes active to begin 

 for (i = 0; i < NUM_NODE; i++) 

 { 

  if ( ph_ntype[i] == 3 ) 

  { 

   ph_pal[i] = 1; 
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   ph_nodescr[i][0] = -74100; 

  } 

 

  if ( ph_ntype[i] == 1 ) 

  { 

   ph_pal[i] = 1; 

   ph_nodescr[i][0] = -74100; 

  } 

 } 

 

 return; 

} 

/* 

Void asr_fe() 

{ 

 float  **features; 

 float  **cepstra; 

 Int   ncepstra; 

 Int   nfeat; 

 static const Int maxframes_feat = 128; 

 Int   beginutt = 1; 

 Int  endutt = 0; 

 Int   i, j; 

 Int  count = 0; 

  

 while (count < 20000) 

 {  

  submit_qdma ((Uns) all_buf+count, (Uns) fe_buf, 2000); 

  wait(); 

  count = count + 2000; 

 

  ncepstra = fe_process_utt(fe, fe_buf, FE_BUF_SIZE, &cepstra); 

  

   

  for (i = 0; i < ncepstra; i += maxframes_feat) 

  {    

   nfeat = feat_s2mfc2feat_block(fcb, &cepstra[i], MIN(ncepstra-i, 

maxframes_feat), beginutt, endutt, &features); 
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  } 

   

  beginutt = 0; 

   

  for (i = 0; i < nfeat; i++) 

  { 

   asr_am(i); 

  } 

 } 

  

 for (j = 0; j < 1992; j++, count++) 

  fe_buf[j] = all_buf[count]; 

   

 endutt = 1; 

  

 ncepstra = fe_process_utt(fe, fe_buf, (Int)1992, &cepstra);   

   

 for (i = 0; i < ncepstra; i += maxframes_feat) 

 {    

  nfeat = feat_s2mfc2feat_block(fcb, &cepstra[i], MIN(ncepstra-i, 

maxframes_feat), beginutt, endutt, &features); 

 }  

} 

 

//**********************************am_dist_eval***************************

****** 

// DESCRIPTION: Perform Gaussian evaluation n times 

// OUTPUT: modified compscr (running sum of component scores 

// NOTE: n must be divisible by 4 and the reminder must be even 

//*************************************************************************

****** 

Void am_dist_eval (float f, float * restrict m, float * restrict v, 

       float * restrict compscr, Int n) 

{ 

 Int i; 

 float diff; 

 

 WORD_ALIGNED(m); 
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 WORD_ALIGNED(v); 

 WORD_ALIGNED(compscr); 

 

 #pragma MUST_ITERATE (120, , 4); 

 for (i = 0; i < n; i++) 

 { 

  diff = f - m[i]; 

  compscr[i] -= diff * diff * v[i]; 

 } 

  

 return; 

} 

 

//**********************************am_log_add*****************************

****** 

// DESCRIPTION: Performs addition in the log domain 

// OUTPUT: a set of senone scores 

//*************************************************************************

****** 

Void am_log_add (float * restrict lrd, Int * restrict mw, Int * restrict senscr) 

{ 

 Int i, j, k, l; 

 Int d, r, logq; 

 Int score; 

 

 k = 0; 

 for (i = 0; i < NUM_SENONE; i++) 

 { 

  score = S3_LOGPROB_ZERO; 

 

  for (j = 0; j < NUM_COMP; j++)  

  { 

   l = lrd[k]; 

   if (l < DIST_FLOOR) 

    l = DIST_FLOOR; 

 

   logq = (Int)(SCALING_FACTOR * l) + mw[k]; 
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      if (score > logq) { 

    d = score - logq; 

    r = score; 

      } else { 

    d = logq - score; 

    r = logq; 

      } 

   

      if ((Int)d < ADD_TBL_SIZE) 

   { 

    r += am_log_tbl[d]; 

   } 

   score = r; 

    

   k++; 

  } 

   

  senscr[i] = score; 

 } 

 

 return; 

} 

 

//*************************************asr_am******************************

****** 

// Note: 8x39 additional eval are inserted so that the loop count for dist_eval 

//   remains to be divisiable by 4 (loop unroll) and the reminder is  

//   divisible by 2 (packed data) 

// Note: 1st set of the ping-pong buffer already has the required data! 

//*************************************************************************

****** 

Void asr_am(float * restrict x) 

{ 

 Int i, j; 

 Int mv_addr_cnt = 1; 

 Int mv_addr_offset = 0; 

 Int lrd_cnt = 0; 

 Int max_scr = 0; 
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 for (i = 0; i < NUM_GAUS; i++)  

 { 

  lrd_cnt = 0; 

  for (j = 0; j < COMP_ITER_DIV; j=j+2) 

  { 

   mv_addr_offset = mv_addr_cnt * L2_BUF_SIZE; 

   mv_addr_cnt++; 

   // first get the next L2_BUF_SIZE elements Into the 2nd set of the 

ping-pong buffer 

   submit_qdma((Uns) (am_mean+mv_addr_offset), (Uns) l2_mbuf1, 

L2_BUF_SIZE); 

   submit_qdma((Uns) (am_var+mv_addr_offset), (Uns) l2_vbuf1, 

L2_BUF_SIZE); 

 

   // calculate the data availabled from the 1st set of the ping-pong 

buffer 

   am_dist_eval (x[i], l2_mbuf0, l2_vbuf0, &am_ksum[j*L2_BUF_SIZE], 

L2_BUF_SIZE); 

   lrd_cnt += L2_BUF_SIZE; 

 

   if (mv_addr_cnt == (NUM_GAUS*COMP_ITER_DIV)) 

   { 

    mv_addr_offset = 0; 

   } else { 

    mv_addr_offset = mv_addr_cnt * L2_BUF_SIZE; 

    mv_addr_cnt++; 

   } 

   // then get the next L2_BUF_SIZE elements back to the 1st set of 

the ping-pong buffer 

   submit_qdma((Uns) (am_mean+mv_addr_offset), (Uns) l2_mbuf0, 

L2_BUF_SIZE); 

   submit_qdma((Uns) (am_var+mv_addr_offset), (Uns) l2_vbuf0, 

L2_BUF_SIZE); 

 

   // calculate data from 2nd set of the buffer 

   am_dist_eval (x[i], l2_mbuf1, l2_vbuf1, 

&am_ksum[(j+1)*L2_BUF_SIZE], L2_BUF_SIZE); 
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   lrd_cnt += L2_BUF_SIZE; 

  } 

 } 

 

 am_log_add (am_ksum, am_mixw, am_senscr); 

 

 // fill temp lrd with new lrd data from external ram 

 submit_qdma((Uns) am_lrd, (Uns) am_ksum, ALL_COMP_PAD); 

 

 // Find max senone scores 

 max_scr = am_senscr[0]; 

 for (i = 1; i < NUM_SENONE; i++) 

 { 

  if (am_senscr[i] > max_scr) 

   max_scr = am_senscr[i]; 

 } 

  

 // Normalize all senone scores 

 for (i = 0; i < NUM_SENONE; i++) 

 { 

  am_senscr[i] = am_senscr[i] - max_scr; 

 } 

 

 return; 

} 

*/ 

 

Void asr_word () 

{ 

 Int i, j; 

 Int WORD_BEAM = word_threshold - 153503 + WORD_OFFSET; 

 Int reset_all_start_node = 0; 

 

 if (EXIT_HMM_cnt > 0) 

 { 

  // go through all exit nodes and active new nodes (end of word and neow) 

  for (i = 0; i < NUM_NODE; i++) 

  { 
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   if (ph_pal[i] == 2) // exiting node 

   { 

    // deactivate the current exiting node 

    //ph_pal[i] = 0; 

 

    if ( ph_ntype[i] >= 2 ) // eow type node 

    { // since we assume any word can go into any other word 

so...lot of comparisons here 

     if (ph_nodescr[i][4] >= WORD_BEAM) 

     { 

      reset_all_start_node = 1; 

      for (j = 0; j < NUM_NODE; j++) 

      { // go find all starting nodes 

       if ( ph_ntype[j] == 1 ) 

       { // activate starting node and give it new score 

if necessary 

        //ph_pal[j] = 1; 

        if (ph_nodescr[j][0] < ph_nodescr[i][4]) 

         ph_nodescr[j][0] = ph_nodescr[i][4]; 

       } 

       if ( ph_ntype[j] == 3 ) 

       { // activate starting node and give it new score 

if necessary 

        //ph_pal[j] = 1; 

        if (ph_nodescr[j][0] < ph_nodescr[i][4]) 

         ph_nodescr[j][0] = ph_nodescr[i][4]; 

       } 

      } 

      LOG_printf (&trace, "find a word %d", i); 

     } 

    } 

    else // neow type node 

    { 

     // active the next node id with new score 

     ph_pal[i+1] = 1; 

     // if input score of the branch node is lesser than output 

score of current node 

     if (ph_nodescr[i+1][0] < ph_nodescr[i][4]) 
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      ph_nodescr[i+1][0] = ph_nodescr[i][4]; 

    } 

   } 

  } 

 } 

 

 EXIT_HMM_cnt = 0; 

 

 for (i = 0; i < NUM_NODE; i++) 

 { 

  if (ph_pal[i] == 2) 

   ph_pal[i] = 1; 

 

  if (ph_ntype[i] == 1) 

  { 

   ph_pal[i] = 1; 

  } 

  if (ph_ntype[i] == 3) 

  { 

   ph_pal[i] = 1; 

  } 

 } 

 

 return; 

} 

 

Int HMM_eva (Int nid, Int *senscr) 

{ 

 Int tmat, sid0, sid1, sid2; 

 Int senscr0, senscr1, senscr2; 

 Int statescr0, statescr1, statescr2, stateout; 

 Int max; 

 

 tmat = ph_mdef[nid][0]; 

 sid0 = ph_mdef[nid][1]; 

 sid1 = ph_mdef[nid][2]; 

 sid2 = ph_mdef[nid][3]; 
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 senscr0 = senscr[sid0];  // get first senone score 

 senscr1 = senscr[sid1];  // get second senone score 

 senscr2 = senscr[sid2];  // get third senone score 

 

 statescr0 = MAX(ph_nodescr[nid][0] + 0, ph_nodescr[nid][1] + 

ph_tmat[tmat][0]) + senscr0; 

 statescr1 = MAX(ph_nodescr[nid][1] + ph_tmat[tmat][1], ph_nodescr[nid][2] 

+ ph_tmat[tmat][2]) + senscr1; 

 statescr2 = MAX(ph_nodescr[nid][2] + ph_tmat[tmat][2], ph_nodescr[nid][3] 

+ ph_tmat[tmat][4]) + senscr2; 

 stateout  = statescr2 + ph_tmat[tmat][5]; 

 

 // reset input score to NEG_INFINITY 

 ph_nodescr[nid][0] = NEG_INFINITY; 

 

 // put new scores back to the ph_table (score0, score1, score2, scoreExit) 

 ph_nodescr[nid][1] = statescr0; 

 ph_nodescr[nid][2] = statescr1; 

 ph_nodescr[nid][3] = statescr2; 

 ph_nodescr[nid][4] = stateout; 

 

 // find max score 

 max = statescr0; 

 if (statescr1 > max) 

  max = statescr1; 

 if (statescr2 > max) 

  max = statescr2; 

 if (stateout > max) 

  max = stateout; 

 

 return max; 

} 

 

 

Void asr_ph () 

{ 

 Int i, j, z; 

 Int max, scr; 



 151 

 Int B_HMM, B_HMM_prune_scr; 

 Int EXIT_HMM; 

 

 for (z = 0; z < SENONE_FRAMES; z++) 

 { 

  B_HMM = NEG_INFINITY; 

 

  for (i = 0; i < NUM_NODE; i++) 

  { 

   if (ph_pal[i] == 1) 

    scr = HMM_eva (i, ph_senscr[z]); 

 

   // keep track of the max score among all active node 

   if (scr > B_HMM) 

    B_HMM = scr; 

  } 

 

  // prune node with max scr < B_HMM+HMM_BEAM 

  B_HMM_prune_scr = B_HMM + HMM_BEAM; 

  EXIT_HMM = B_HMM + PHONE_BEAM; 

  for (i = 0; i < NUM_NODE; i++) 

  { 

   if (ph_pal[i] == 1)  

   {  

    // find exit node: if output score > EXIT_HMM 

    if (ph_nodescr[i][4] >= EXIT_HMM) 

    { 

     ph_pal[i] = 2; 

     EXIT_HMM_cnt++; 

    } 

 

    // determine word threshold: best stateout score among active 

HMM 

    if ( (ph_ntype[i] == 2) || (ph_ntype[i] == 3) ) 

    { 

     if (ph_nodescr[i][4] > word_threshold) 

      word_threshold = ph_nodescr[i][4]; 

    } 
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    // find local max 

    max = ph_nodescr[i][1]; 

    for (j = 2; j < 5; j++) 

    { 

     if (ph_nodescr[i][j] > max) 

      max = ph_nodescr[i][j]; 

    } 

 

    // prune, reset all score: if local max < B_HMM_prune_scr 

    if (max < B_HMM_prune_scr) 

    { 

     ph_pal[i] = 0; 

     ph_nodescr[i][1] = NEG_INFINITY; 

     ph_nodescr[i][2] = NEG_INFINITY; 

     ph_nodescr[i][3] = NEG_INFINITY; 

     ph_nodescr[i][4] = NEG_INFINITY; 

    } 

   } 

  } 

 

  asr_word(); 

 } 

 

 return; 

} 

 

Void main() 

{ 

 asr_init_app(); 

 

 //asr_init_fe(); 

 

 //asr_fe(); 

 

 //asr_init_am(); 

  

 //asr_am(fe_feat); 
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 asr_init_ph(); 

 

 asr_ph(); 

 

 return; 

} 

 

  
extern far  LOG_Obj trace; 

extern Int INRAM; 

extern Int L2SRAM; 

extern Int EXRAM; 

extern Int EXRAM1; 

 

#define WORD_ALIGNED(x) (_nassert(((Int)(x) & 0x7) == 0)) 

 

static Void printmem (Int segid) 

{ 

 MEM_Stat statbuf; 

 MEM_stat (segid, &statbuf); 

 LOG_printf (&trace, "seg %d: 0x%x", segid, statbuf.size); 

 LOG_printf (&trace, "\tU 0x%x\tA 0x%x", statbuf.used, statbuf.length); 

} 

 

static Void **xmalloc_2d(Int segid, Int d1, Int d2, Int elem_size) 

{ 

 Void *store, **out; 

 Int i; 

 

 Uns size = d1 * d2 * elem_size; 

 

 store = MEM_alloc (segid, size, 0); 

 if (store == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to malloc memory for: store!\n"); 

 

 out = MEM_alloc (segid, d1*sizeof(Void *), 0); 

 if (out == MEM_ILLEGAL) 
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  LOG_printf (&trace, "Failed to malloc memory for: out!\n"); 

 

 for (i = 0; i < d1; i++) 

  out[i] = (Void *)((Char *)store + d2*elem_size*i); 

 

 return out; 

} 

 

static Void **xcalloc_2d (Int segid, Int d1, Int d2, Int elem_size) 

{ 

 Void *store, **out; 

 Int i; 

 

 store = MEM_calloc(segid, d1*d2*elem_size, 0); 

 if (store == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for: store!\n"); 

 

 out = MEM_calloc(segid, d1*sizeof(Void *), 0); 

 if (out == MEM_ILLEGAL) 

  LOG_printf (&trace, "Failed to calloc memory for: out!\n"); 

 

 for (i = 0; i < d1; i++) 

  out[i] = (Void *)((Char *)store + d2*elem_size*i); 

 

 return out; 

} 
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