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COMPARATIVE ASSESSMENT OF ADAPTIVE-STENCIL FINITE

DIFFERENCE SCHEMES FOR HYPERBOLIC EQUATIONS WITH JUMP

DISCONTINUITIES

Collin C. Otis, M.S.

University of Pittsburgh, 2010

High-fidelity numerical solution of hyperbolic differential equations for functions with jump

discontinuities presents a particular challenge. In general, fixed-stencil high-order numerical

methods are unstable at discontinuities, resulting in exponential temporal growth of disper-

sive errors (Gibbs phenomena). Schemes utilizing adaptive stencils have shown to be effec-

tive in simultaneously providing high-order accuracy and long-time stability. In this Thesis,

the elementary formulation of adaptive-stenciling is described in the finite difference con-

text. Basic formulations are provided for three adaptive-stenciling methods: essentially non-

oscillatory (ENO), weighted essentially non-oscillatory (WENO), and energy-stable weighted

essentially non-oscillatory (ESWENO) schemes. Examples are presented to display some of

the relevant properties of these schemes in solving one-dimensional and two-dimensional

linear and nonlinear hyperbolic differential equations with discontinuities.
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1.0 INTRODUCTION

High-fidelity numerical solution of hyperbolic differential equations for functions with jump

discontinuities presents a particular challenge. In general, fixed-stencil high-order numerical

methods are unstable at discontinuities, resulting in exponential temporal growth of dis-

persive errors (Gibbs phenomena1,2). These errors are exemplified in Fig. 2, which shows

the MacCormack scheme3 (second-order in space and time) solution of a one-dimensional

step wave traveling to the right. The transport and growth of dispersive errors significantly

pollutes the solution and often renders the results completely useless. This numerical insta-

bility can be remediated if a dissipative numerical scheme is used; however, this degrades

the accuracy. Due to these considerations, accurate solution of problems with discontinu-

ities requires further research. One such problem is associated with supersonic flows.4 In

scramjets, for example, shock diamonds exist throughout the domain. These shocks have

a significant effect on mixing and subsequent chemical reaction, which, in-turn, drastically

affects the hydrodynamics.5 To simulate the jump discontinuities and accurately account for

the coupling of physics and chemical reaction requires highly accurate and stable numerical

methods. In recent years, adaptive-stencil schemes have become popular for solution of such

problems.6−9 These schemes bias the finite difference stencil away from the discontinuity,

resulting in a greater numerical stability. In this Thesis, we consider three such methods:

essentially non-oscillatory (ENO),10 weighted essentially non-oscillatory (WENO),11,12 and

energy-stable weighted essentially non-oscillatory (ESWENO)13 schemes.
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2.0 FINITE DIFFERENCE FORMULATION

2.1 BASIC FORMULATION IN ONE DIMENSION

Our objective is to solve the one-dimensional hyperbolic equation

∂u

∂t
+
∂f

∂x
= 0 (2.1)

using finite difference methods on the domain x ∈ [a, b], t ∈ [0,∞) for the piecewise continu-

ous functions u = u(x, t) and f = f(x, t), where x and t denote space and time, respectively.

In this work we are primarily concerned with approximation of the spatial derivative,

fx =
∂f

∂x
, (2.2)

therefore, we march forward in time using the simple first-order discretization,

u(n+1) = u(n) −∆t
∂f (n)

∂x
+O(∆t), (2.3)

where u(n) denotes u(x, n∆t), n = 0, 1, ... . To compute fx, the domain is discretized via

N + 1 evenly-spaced half-points,

a = x 1
2
< x 3

2
< ... < xN− 1

2
< xN+ 1

2
= b, (2.4)

with cells, grid-points, and grid-spacing given by

Ii ≡
[
xi− 1

2
, xi+ 1

2

]
,

xi ≡
1

2

(
xi− 1

2
+ xi+ 1

2

)
, (2.5)

∆x ≡ xi+ 1
2
− xi− 1

2
, i = 1, 2, ..., N .

2



Figure 1: Example of a finite difference discretization centered at grid-point xi. Grid-points,

half-points, and numerical fluxes are shown.

Figure 1 shows an example of this discretization notation near the point xi. Given the point

values fi ≡ f(xi), i = 1, 2, ..., N , we wish to construct a numerical flux, f̂ (see Fig. 1), such

that the kth order approximation of the derivative at the grid-point, xi, of cell Ii is given by

1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
= fx(xi) +O(∆xk) , i = 1, 2, ..., N . (2.6)

We begin by choosing a stencil, Si, at the point xi, based on the point xi itself, r points to

the left of xi, and s points to the right of xi,

Si = {xi−r, ..., xi+s}, (2.7)

with r, s ≥ 0 and r + s + 1 = k. We seek a flux, f̂ , that is a function of the projection of f

onto the stencil Si,

f̂i+ 1
2

= f̂(fi−r, ..., fi+s) , i = 0, 1, ..., N . (2.8)

If a function h(x) can be found such that

f(x) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

h(η)dη, (2.9)

then

fx(x) =
1

∆x

[
h

(
x+

∆x

2

)
− h

(
x− ∆x

2

)]
. (2.10)

Comparing Eqs. (2.6) and (2.10), we choose the flux function to be

f̂i+ 1
2

= h
(
xi+ 1

2

)
+O(∆xk) . (2.11)

3



It would seem that an O(∆xk+1) term is needed in Eq. (2.11) to recover Eq. (2.6), due to the

1
∆x

multiplier in Eq. (2.10). In practice, however, the O(∆xk) term in Eq. (2.11) is typically

smooth.14 Hence, the difference in Eq. (2.6) yields an extra O(∆x) term that cancels the ∆x

term in the denominator. It is not easy to evaluate Eq. (2.9) for h, as it is only implicitly

defined. It is shown in Ref. [14] that a kth order approximation to h can be computed from

a linear combination of the k point values in the stencil, Si,

h
(
xi+ 1

2

)
=

k−1∑
j=0

crjfi−r+j +O(∆xk), h
(
xi− 1

2

)
=

k−1∑
j=0

c̃rjfi−r+j +O(∆xk) (2.12)

where crj and c̃rj are constants. Substituting Eq. (2.12) into Eq. (2.11) yields

f̂−
i+ 1

2

=
k−1∑
j=0

crjfi−r+j, f̂+
i− 1

2

=
k−1∑
j=0

c̃rjfi−r+j (2.13)

where the superscripts ± are due to the possibility of different stencils at points xi and xi+1.

By symmetry, it is apparent that

c̃rj = cr−1,j. (2.14)

The stencil coefficients, crj, are given in Table 1 for k = 1, 2, ..., 5. The numerical flux in Eq.

(2.6) is recovered from Eq. (2.13) via

f̂i+ 1
2

= m
(
f̂+

i+ 1
2

, f̂−
i+ 1

2

)
(2.15)

where the function m is a monotone flux satisfying certain properties.14 There are many

possibilities for m. In this work we limit ourselves to the Lax-Friedrichs flux,15

m(a, b) =
1

2
[f(a) + f(b)− α(b− a)] , (2.16)

where

α = max
u

∣∣∣∣∂f∂u
∣∣∣∣ . (2.17)

The Lax-Friedrichs flux is implemented by first splitting the physical fluxes at each grid

point into right-moving and left-moving waves via

f±i =
1

2
(fi ± αui). (2.18)
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Table 1: Stencil coefficients, crj, in Eq. (2.13)

k r j=0 j=1 j=2 j=3 j=4

1 -1 1

0 1

2 -1 3/2 -1/2

0 1/2 1/2

1 -1/2 3/2

3 -1 11/6 -7/6 1/3

0 1/3 5/6 -1/6

1 -1/6 5/6 1/3

2 1/3 -7/6 11/6

4 -1 25/12 -23/12 13/12 -1/4

0 1/4 13/12 -5/12 1/12

1 -1/12 7/12 7/12 -1/12

2 1/12 -5/12 13/12 1/4

3 -1/4 13/12 -23/12 25/12

5 -1 137/60 -163/60 137/60 -21/20 1/5

0 1/5 77/60 -43/60 17/60 -1/20

1 -1/20 9/20 47/60 -13/60 1/30

2 1/30 -13/60 47/60 9/20 -1/20

3 -1/20 17/60 -43/60 77/60 1/5

4 1/5 -21/20 137/60 -163/60 137/60

5



The ± numerical fluxes at the half-points are reconstructed as

f̂−
i+ 1

2

=
k−1∑
j=0

crjf
+
i−r+j, f̂+

i− 1
2

=
k−1∑
j=0

c̃rjf
−
i−r+j. (2.19)

Finally, the numerical flux is computed as

f̂i+ 1
2

= f̂+
i+ 1

2

+ f̂−
i+ 1

2

, (2.20)

yelding the desired Lax-Friedrichs flux.

2.2 FIXED-STENCIL APPROXIMATION

In fixed stencil approximations, the left shift r and the right shift s do not change with

location i. Fixed-stencil central and biased difference schemes can be recovered from Eq.

(2.13) and Table 1. For example, the traditional first-order upwind-biased scheme,16,17

∂f

∂x
=


fi−fi−1

∆x
: u > 0

fi+1−fi

∆x
: u ≤ 0

, (2.21)

is recovered from the numerical flux reconstruction procedure using k = 1, and

r =

 1 : u > 0

0 : u ≤ 0.
(2.22)
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2.3 ESSENTIALLY NON-OSCILLATORY (ENO) SCHEMES

The essentially non-oscillatory (ENO) methodology, first introduced by Harten, et al.,10

involves the use of an adaptive-stenciling procedure to avoid inclusion of cells with disconti-

nuities in the stencil. This is achieved by “sensing” discontinuities using Newton undivided

differences and altering the left shift, r, to bias the stencil away from the discontinuity. We

begin by calculating the Newton undivided differences, Fij, on the entire domain, where

Fi0 = fi (2.23)

Fij = F(i+1)(j−1) − Fi(j−1) , j = 1, 2, ..., k (2.24)

To form the stencil Si, we seek to assemble the set of k consecutive points, which must

include the point xi, such that f(x) is “smoothest” on this stencil as compared to the other

k − 1 possible stencils. We begin the stencil assembly process with only the point xi in the

stencil,

S
(1)
i = xi, (2.25)

and add one point at a time until the stencil is filled. The second point in Si is chosen by

comparing the first undivided differences at xi−1 and xi+1 and adding the point with the

smaller absolute-valued Newton undivided difference, |Fj1|, to Si. Subsequent points are

added to the stencil by comparing the higher-order Newton undivided differences of the left

and the right neighbors of the partially constructed stencil. In general, the jth point is

chosen as

xj =

 xr′ : |F(i−1)j| < |Fij|

xs′ : |F(i−1)j| ≥ |Fij|
(2.26)

where r′ and s′ are the indices of the left and right neighbors of the partially constructed

stencil. Once the stencil is chosen at each grid-point, the reconstruction procedure in section

2.1 is carried out using the appropriate stencil coefficients, crj, chosen from Table 1.

7



2.4 WEIGHTED ESSENTIALLY NON-OSCILLATORY (WENO) SCHEMES

Instead of using the smoothest stencil at point xi, weighted essentially non-oscillatory (WENO)11,12

schemes use a convex combination of all k possible stencils. This increases the accuracy to

O(∆x2k−1) in regions where the solution is smooth, while maintaining ENO biasing near dis-

continuities. To compute the numerical flux, WENO schemes utilize a weighted combination

of the k different reconstructions of the value f̂i+ 1
2
. Equation (2.13) is used to evaluate

f̂
− (r)

i+ 1
2

=
k−1∑
j=0

crjfi−r+j, f̂
+ (r)

i− 1
2

=
k−1∑
j=0

c̃rjfi−r+j, r = 0, ..., k − 1, (2.27)

and a convex combination of all f̂
± (r)

i+ 1
2

, r = 0, ..., k − 1 is taken,

f̂−
i+ 1

2

=
k−1∑
r=0

ωrf̂
− (r)

i+ 1
2

, f̂+
i− 1

2

=
k−1∑
r=0

ω̃rf̂
+ (r)

i− 1
2

, (2.28)

using weights ωr and ω̃r with the constraints

ω̃r, ωr ≥ 0,
k−1∑
r=0

ωr =
k−1∑
r=0

ω̃r = 1. (2.29)

It is apparent that if the function is smooth in all k candidate stencils, there exist the

constants dr, called target weights (see Table 2), such that

f̂i+ 1
2

=
k−1∑
r=0

drf̂
(r)

i+ 1
2

= f̂
(
xi+ 1

2

)
+O(∆x2k−1). (2.30)

Clearly, we would like the weights, ωr and ω̃r, to recover this O(∆x2k−1) accuracy in regions

where f is smooth. These considerations lead to the weights:14

ωr =
αr∑k−1
s=0 αs

, ω̃r =
α̃r∑k−1
s=0 α̃s

(2.31)

with

αr =
dr

ε+ βr
2 , α̃r =

d̃r

ε+ βr
2 (2.32)

where, by symmetry,

d̃r = dk−1−r (2.33)

8



Table 2: Target weights, dr, in Eq. (2.30)

k r = 0 r = 1 r = 2

1 1

2 2
3

1
3

3 3
10

3
5

1
10

and ε > 0 is a small number used to prevent a zero denominator. We take ε = 10−6 as

suggested in Ref. [12]. The parameters βr are smooth indicators given by

β0 = (fi+1 − fi)
2

β1 = (fi − fi−1)2 (2.34)

for third order WENO (k = 2) and

β0 =
13

12
(fi − 2fi+1 + fi+2)2 +

1

4
(3fi − 4fi+1 + fi+2)2

β1 =
13

12
(fi−1 − 2fi + fi+1)2 +

1

4
(fi−1 − fi+1)2 (2.35)

β2 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2

for fifth order WENO (k = 3).

2.5 ENERGY-STABLE WENO (ESWENO) SCHEMES

While ENO and WENO schemes are robust, their discrete spatial derivative operators do

not satisfy the summation by parts (SBP) rule.18,19 Therefore, generalized stability of

these schemes cannot be shown.13 The energy-stable weighted essentially non-oscillatory

(ESWENO)13 scheme is a modification of the WENO scheme to explicitly provide stabil-

ity in the energy norm by requiring that the discrete spatial derivative operator satisfies

9



SBP.13,20,21 The ESWENO scheme utilizes modifications of αr (and α̃r) in the weight func-

tions, Eq. (2.32), to satisfy SBP:

αr = dr

(
1 +

τ

ε+ βr

)
, (2.36)

where

τ =

 (fi+1 − 2fi + fi−1)2 : k = 2

(fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2)2 : k = 3 .
(2.37)

ESWENO schemes also utilize a modified numerical flux given by

f̂
(ES)

i+ 1
2

= f̂i+ 1
2

+ f̂
(D)

i+ 1
2

, (2.38)

where f̂
(D)

i+ 1
2

is a dissipative term added to guarantee stability:

f̂
(D)

i+ 1
2

=

(
µi+1 +

ω1,i+ 3
2
− ω1,i+ 1

2

8

)
(fi − fi+1),

µi =
1

8

√(
ω1,i+ 1

2
− ω1,i− 1

2

)2

+ δ2, (2.39)

δ =

(
1

N

)2

.

2.6 EXTENSION TO TWO DIMENSIONS

Two-dimensional reconstruction requires a straightforward component-wise application of

the one-dimensional procedures above. For example, the derivative, wx, of a function,

w = w(x, y) is computed by fixing y = yj and utilizing the one-dimensional reconstruc-

tion procedure above in the x-direction, substituting w(x, yj) for f . A similar procedure is

followed to compute wy.

10



3.0 NUMERICAL TESTS

Numerical calculations are performed to comparatively assess the ENO, WENO, and ESWENO

methodologies. Fixed-stencil cases are also considered for comparison. For fixed-stencil cal-

culations, spatial derivatives at the boundaries are calculated using interior-biased stencils

with the same accuracy as that within the domain interior. For adaptive-stencil calcula-

tions, stencil-biasing is reduced at the boundaries to include only stencils that lie within

the domain. Time discretization is first-order explicit (see Eq. (2.3)) for all cases except for

the MacCormack scheme.3 This scheme is second-order in time and space. A time step of

∆t = 0.001 is used for all cases, which satisfies the CFL condition.22

3.1 ONE-DIMENSIONAL CASES

All one-dimensional simulations are conducted over the spatial domain x ∈ [−1, 1] on a

uniform Cartesian grid using N = 40 grid points and t ∈ [0, 2].

3.1.1 LINEAR SCALAR WAVE EQUATION

The one-dimensional form of the linear scalar wave equation for a right-moving step is given

by

∂c

∂t
+ u

∂c

∂x
= 0, u = 0.25,

c(x, 0) =

 1 : x < −0.5

0 : x ≥ −0.5
(3.1)

c(0, t) = 1

11



for scalar c = c(x, t). Because information propagates only in the positive x-direction, the

boundary value c(1, t) is calculated using the conservation equation in Eq. (3.1) with an

interior-biased stencil. Calculations are performed using the MacCormack scheme (Fig. 2),

kth order (k = 1, ..., 5) upwind-biased, fixed-stencil schemes (Fig. 3), and kth order (k = 3, 5)

ENO, WENO, and ESWENO schemes (Fig. 4). The results are compared with the exact

solution at t = 2. As expected, the MacCormack scheme displays large dispersive errors

caused by the large gradient at the discontinuity. In the remaining fixed-stencil schemes,

upwinding is used to improve stability. The two-point-biased, even-ordered (k = 2p, p = 1, 2)

schemes display significant dispersive errors. The second-order results are shown. Higher

even-ordered schemes portray even greater instability; thus, they are not presented. The

first-order results do not display any noticeable instabilities due to their large numerical

dissipation. However, this degrades accuracy near the discontinuity. The results of the

higher odd-ordered (k = 2p − 1, p = 2, 3) schemes display the Gibbs phenomena near the

discontinuity. The adaptive-stencil schemes (ENO, WENO, and ESWENO), on the other

hand, do not display significant dispersive errors. By visual inspection, the diffusive error

is design-order and the fifth-order scheme is clearly less dissipative than the third-order

scheme.

3.1.2 INVISCID BURGERS’ EQUATION

The one-dimensional form of the inviscid Burgers’ equation23 for a right-moving step is given

by

∂u

∂t
+ u

∂u

∂x
= 0,

u(x, 0) =

 1 : x < −0.5

0 : x ≥ −0.5
(3.2)

u(0, t) = 1

for the velocity u = u(x, t). Because information propagates only in the positive x-direction,

the boundary value u(1, t) is calculated using the conservation equation in Eq. (3.2) with an

interior-biased stencil. Calculations are performed for the third-order, upwind-biased fixed

12



stencil scheme and third-order and fifth-order ENO, WENO, and ESWENO schemes. The

computed results are compared with the exact solution at t = 2 in Fig. 5 and show good

agreements. All schemes show smaller diffusive errors than those in the linear case. The

third-order fixed-stencil scheme displays the Gibbs phenomena near the discontinuity. The

adaptive-stencil methods show no noticeable dispersive errors.

3.2 TWO-DIMENSIONAL CASES

All two-dimensional simulations are performed on the spatial domain x, y ∈ [−1, 1] on a

uniform Cartesian Nx ×Ny grid using Nx = Ny = 100 grid-points.

3.2.1 LINEAR SCALAR WAVE EQUATION

The two-dimensional form of the linear scalar wave equation for a counterclockwise solid-

body rotation is given by

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 0

u = −ωy, v = ωx, ω = 0.25 (3.3)

for the scalar field c = c(x, y, t) ∈ [0, 1]. The initial condition is shown in Fig. 6. The

Dirichlet boundary condition c = 0 is imposed if flow is entering the domain; otherwise, the

boundary values are calculated using interior-biased stencils. Calculations are performed for

upwind-biased fixed-stencil schemes. However, only the first-order scheme is stable enough

to complete one rotation. Calculations are also performed for third-order and fifth-order

ENO, WENO, and ESWENO schemes. The two-dimensional contours of c are presented

and one-dimensional plots of c at y = −0.09 are compared with the exact solution after one

rotation in Figs. 7 - 9 . While the fixed-stencil calculation remains stable, the large numerical

dissipation results in a final solution that bears little resemblance to the exact solution. The

ENO, WENO, and ESWENO schemes also remain stable; however, the third-order WENO

scheme displays much greater numerical diffusion than the ENO and ESWENO schemes.

13



The fifth-order results are more accurate and show very good agreements with the exact

solution, although the ESWENO results show slight dispersive errors in the discontinuous

region.

3.2.2 INVISCID BURGERS’ EQUATION

The incompressible form of the two-dimensional inviscid Burgers’ equation is given by

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0, (3.4)

where

U =

 u

v

 , F =

 u2

uv

 , G =

 uv

v2


and u = u(x, y, t) and v = v(x, y, t) are the components of the velocity in the x and y

directions, respectively. The initial condition for u and v is shown in Fig. 10. The Dirich-

let boundary condition u = v = 0 is imposed if flow is entering the domain; otherwise

the boundary values are calculated using interior-biased stencils. The Lax-Friedrichs flux-

splitting procedure is modified to accommodate a system of equations. A flux-splitting

similar to Eq. (2.18) is used:

F±i =
1

2
(Fi ± αFu) (3.5)

with

αF = max
u

max
j
|λj| (3.6)

where λj are the eigenvalues of the Jacobian ∂Fi/∂Uj. The reconstruction procedure is

performed for each component of F+
i and F−i separately according to Eq. (2.19) and the

numerical flux is computed from Eq. (2.20). A similar procedure is performed to compute the

fluxes G±i . Two-dimensional contours of u are presented at t = 0.5 for the first-order fixed-

stencil upwind-biased scheme (Fig. 11) and third-order and fifth-order ENO, WENO, and

ESWENO schemes (Fig. 12). Higher-order fixed-stencil schemes are found to be unstable;

therefore, their results are not presented here. The adaptive-stencil schemes are stable and

show acceptable diffusive errors. Slight oscillations of unknown origin are apparent in the

fifth-order ENO results.
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4.0 RESULTS

Figure 2: MacCormack scheme solution for one-dimensional linear scalar wave equation at

t = 2. (◦) numerical solution, ( ) exact solution.
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(a) First-order (b) Second-order

(c) Third-order (d) Fifth-order

Figure 3: Upwind-biased fixed-stencil scheme solutions for one-dimensional linear scalar wave

equation at t = 2. (◦) numerical solution, ( ) exact solution.
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(a) ENO (b) WENO

(c) ESWENO

Figure 4: Adaptive-stencil scheme solutions for one-dimensional linear scalar wave equation

at t = 2. (◦) third-order numerical solution, (∗) fifth-order numerical solution, ( ) exact

solution.
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(a) Upwind fixed-stencil (b) ENO

(c) WENO (d) ESWENO

Figure 5: Solutions for one-dimensional inviscid Burgers’ equation at t = 2. (◦) third-order

numerical solution, (∗) fifth-order numerical solution, ( ) exact solution.
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Figure 6: Initial condition, c(x, y, 0), for two-dimensional linear scalar wave equation.

(a) Two-dimensional contour (b) Cross-section at y = −0.09. (◦) numerical so-
lution, ( ) exact solution.

Figure 7: First-order upwind-biased fixed-stencil c solution for two-dimensional linear scalar

wave equation after one rotation.
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(a) ENO two-dimensional contour. (b) ENO cross-section at y = −0.09.
(◦) numerical solution, ( ) exact solu-
tion.

(c) WENO two-dimensional contour. (d) WENO cross-section at y = −0.09.
(◦) numerical solution, ( ) exact solu-
tion.

(e) ESWENO two-dimensional contour. (f) ESWENO cross-section at y = −0.09.
(◦) numerical solution, ( ) exact solu-
tion.

Figure 8: Third-order adaptive-stencil c solutions for two-dimensional linear scalar wave

equation after one rotation.
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(a) ENO two-dimensional contour. (b) ENO cross-section at y = −0.09.
(◦) numerical solution, ( ) exact solu-
tion.

(c) WENO two-dimensional contour. (d) WENO cross-section at y = −0.09.
(◦) numerical solution, ( ) exact solu-
tion.

(e) ESWENO two-dimensional contour. (f) ESWENO cross-section at y = −0.09.
(◦) numerical solution, ( ) exact solu-
tion.

Figure 9: Fifth-order adaptive-stencil c solutions for two-dimensional linear scalar wave

equation after one rotation.
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Figure 10: Initial condition for velocity components u and v for two-dimensional inviscid

Burgers’ equation.

Figure 11: First-order upwind-biased fixed-stencil u-velocity solution for two-dimensional

inviscid Burgers’ equation at t = 0.5.
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(a) Third-order ENO (b) Fifth-order ENO

(c) Third-order WENO (d) Fifth-order WENO

(e) Third-order ESWENO (f) Fifth-order ESWENO

Figure 12: Adaptive-stencil u-velocity solutions for two-dimensional inviscid Burgers’ equa-

tion at t = 0.5.
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5.0 CONCLUSIONS

For the high-order numerical solution of hyperbolic differential equations in cases where

jump discontinuities exist, adaptive-stencil finite difference schemes provide a more stable

and accurate alternative to fixed-stencil schemes. In practice, ENO and WENO schemes are

very robust and the ESWENO scheme extends the WENO methodology by guaranteeing

long-time stability in the energy norm. In this Thesis, we present the formulations of ENO,

WENO, and ESWENO schemes and present the results via these schemes for numerical

solution of several hyperbolic equations. These results display the ability of adaptive-stencil

schemes to facilitate high-order accurate solutions to one- and two-dimensional linear and

nonlinear hyperbolic equations where fixed-stencil schemes either display notable dispersive

errors or excessive diffusive errors.
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