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Particles floating on the surface of an incompressible turbulent fluid cluster into intermittent, 

complex structures. This system is studied experimentally by analyzing the statistics of the 

coarse-grained particle concentration, cr, as a function of scale r, in both the inertial and 

dissipative regimes of the turbulent field. The first moment of the concentration cr exhibits scale-

free dependence on the coarse-graining scale r in both the inertial and dissipative ranges, with 

exponents αi (inertial) and αd (dissipative). The probability density function of the coarse-grained 

particle concentration exhibits a power-law decay over a broad range of values of the 

concentration: r

rr cc


 ~)( , where r  is approximately independent of scale in the dissipative 

range 05.08.0 r , and decreases with increasing r in the inertial range. The PDF then falls 

off faster than algebraically at very large values of cr. The observed steep algebraic decay is a 

manifestation of the broad distribution of particle concentrations produced by surface flow 

upwellings (sources), which lie between very dense line-like concentrations along surface flow 

downwellings (sinks). 
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1.0  INTRODUCTION 

Turbulence is widely considered the most important unsolved problem in classical physics. This 

work makes no attempt to understand turbulence at its core. Rather, this work is an exploration 

of a particular phenomenon of a turbulent system, the motion of particles at the air-water 

interface of a turbulent fluid. Given the non-equilibrium nature of turbulent systems and the 

fantastically large number of interacting degrees of freedom, turbulence has but a few number of 

“exact” theories from which to interpret any results [18]. This has spurred the need for a great 

deal of phenomenology, numerical simulation, and dimensional arguments to study turbulent 

systems. Even so, there is a celebrated “exact” theory for incompressible turbulence which has 

driven fundamental study for almost 70 years, the Kolmogorov theory of 1941 (or K41) [18]. 

This K41 theory has several strict requirements, among them isotropy and homogeneity of the 

turbulent flow. Deviations from the K41 theory have been studied extensively, and in most 

practical situations the requirements of K41 are strictly violated.  

The system studied here is no different; there is no “exact” theory for compressible 

systems, let alone the compressible free-surface turbulence in this work. Therefore, this study is 

in the spirit of many other works in turbulence which deals with explicit departures from the K41 

theory. In this experiment, buoyant particles floating on the surface of an incompressible 

turbulent fluid cluster into intermittent, complex structures. This system is studied by analyzing 

the statistics of the coarse-grained particle concentration, cr, as a function of scale r, in both the 
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inertial and dissipative regimes of the turbulent field. Before discussing the experiment further, it 

is important to define some common turbulent parameters which will be used in the analysis to 

follow. 

1.1 TURBULENT PHENOMENOLOGY 

1.1.1 Turbulent Length Scales 

There will be several turbulent parameters borrowed from the K41 theory which will be useful in 

interpreting the results of this work. These parameters will be discussed here. The specific details 

of K41 will not be discussed here, but are contained in almost any textbook on turbulence 

[18,25]. The reader may be confused as to why these parameters should be used to analyze this 

particular system, which explicitly departs from the requirements of K41. The reader is urged to 

read [5] for experiments and [6] for simulations studying this free-surface flow and the many 

similarities it has to K41 theory (and also the ways in which it departs). 

 Perhaps the most important phenomelogical device used in studying turbulence is the 

analysis of specific length scales. The two most important length scales are the largest and 

smallest scales of the turbulent motion, the integral and dissipative scales, respectively. The 

integral scale, l0, is defined as: 

 



2

| |

| || |

0

)(

)()(

xv

xvrxv
dr  

(1) 

 

Here, )(| | xv  is the component of the velocity vector which is parallel to a line drawn 

between two points in space of length r. The brackets denote an ensemble average over all points 
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in space. One can think of this definition as the largest scale over which velocity fluctuations in 

the turbulence are correlated. The integral scale establishes the largest scale of what is called the 

inertial range of the flow, the range of scales over which viscosity can be neglected and inertial 

motion dominates. According to the K41 theory, in the inertial range velocity differences over a 

scale r are “rough” [18];   3/22

| || |

2 )()()( rxvrxvrv  , which makes theoretical 

treatment in this range difficult [7,20].  

The smallest scale of the turbulent motion is the dissipative (or Kolmogorov) scale, 

defined as: 

4/1
3













diss


  

(2) 

 

Here, ν is the kinematic viscosity of the fluid, and εdiss is the energy dissipation rate [18]. 

The energy dissipation rate is defined as: 

2

10 













x

v x

diss   
(3) 

The brackets denote an ensemble average over space, and the factor of 10 comes from a 

dimensionality factor of the two-dimensional surface flow [25]. The definition of η is a 

dimensional argument requiring that all of the energy injected into the flow at the integral scale 

is dissipated due to viscosity at the dissipative scale. Hence, η is independent of the specific flow 

geometry or turbulent energy injection scheme and depends only on the viscosity and the rate of 

energy dissipation. The dissipative scale η then establishes the smallest scale of the inertial range 

of the flow.  For length scales less than η, the flow is viscous 

and   22

| || |

2 )()()( rxvrxvrv  , making theoretical predictions possible [7,20]. The 

dissipative scale will separate the analysis in this experiment which can be treated theoretically 
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(less than η) and that which cannot (greater than η). It is important to note that K41 is a mean 

field theory since it assumes that the control parameter is the mean energy dissipation rate and 

the kinematic viscosity (which is constant). Therefore, the above defined parameters are all mean 

quantities, which will also fluctuate in time and space. 

An additional length scale which lies between l0 and η is the Taylor microscale λ, defined 

as: 

 2

2

/ xv

v

x

rms


  

(4) 

 

Here, v
2

rms is the root mean square (RMS) velocity: 

22 vvvrms   
(5) 

 

The Taylor microscale lies strictly between l0 and η as defined above. 

1.1.2 Additional Turbulent Parameters 

Using the above definitions, additional parameters can be defined to characterize the 

turbulent flow. Typically, a Reynolds number based on velocity fluctuations and a turbulent 

length scale is used instead of one defined by mean velocities and geometrical length scales. The 

Taylor microscale Reynolds number Reλ is defined as: 






rmsv
Re  

(6) 

Where ν is the kinematic fluid velocity, and vrms and λ are defined above. This Reynolds number 

is typically smaller than Reynolds numbers based on flow geometries and mean velocities, but is 

often independent of the specific flow geometry and turbulent energy injection mechanism.  
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A useful time scale is the large eddy turnover time (LETT) τ0, defined as: 

rmsv

0

0


  

(7) 

This gives a quantitative measure of how long an eddy of size l0 survives before it is removed 

from the flow by viscosity [18]. The final parameter which will be useful in this work is the 

compressibility C, defined as: 

 

 22

2

2

v

v

C








  

(8) 

The subscript 2 on 2


 is meant to remind that the operator acts over only the two 

dimensional turbulent fluid’s surface with coordinates x and y. For (2D) incompressible, 

isotropic flows, the compressibility lies between C = 0 (incompressible) and C = 1 (irrotational). 
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2.0  STATISTICS OF PARTICLE CONCENTRATION 

 

2.1 INTRODUCTION 

Understanding tracer advection in a turbulent flow is of practical interest in areas as 

diverse as pollutant transport, cloud formation due to inertial clustering, and dispersion of 

flotsam and phytoplankton at the ocean surface [1,2]. Whereas turbulent mixing and dispersion 

of passive tracers in incompressible flows has been studied for long [3,4], the preferential 

clustering of particles due to inertial effects or boundary conditions that lead to an effective 

compressibility has invited theoretical and experimental study only in recently [5-12].   

This dissertation is concerned with the Lagrangian evolution of tracer particle 

concentrations at the two-dimensional air-water interface of a three dimensional turbulent flow. 

Although the underlying turbulence is incompressible, the tracer particles, which are lighter than 

water, are constrained to move only along the two-dimensional surface; they cannot follow water 

into the bulk. The tracers flee fluid upwellings (sources) and cluster into temporally-fluctuating 

string-like structures along fluid downwellings (sinks), thus forming a compressible system. It is 

perhaps helpful to view the coagulation phenomena in action, see Figure 2. These are actual 

photographs of the experiment, where the surface was initially blanketed uniformly at t=0s. The 
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effect of the surface flow causes the particles to concentrate along line-like structures in several 

fractions of a second. A simple model for this type of flow can be seen in Figure 3, where the 

bulk motion creates fluid sources where particles flee and sinks where particles accumulate.  In 

the actual experiment, the locations of these sources and sinks fluctuate in time and space. 

The floaters cluster due to the compressibility of the two-dimensional surface flow, 

quantified by the effective compressibility C (Eq. (8)). Past experiments and Direct Numerical 

Simulations (DNS) have consistently measured 2/1C  at the free-surface [5]. Inertial particles, 

such as raindrops in a storm, cluster because they are too massive to follow the local flow in 

which they move [2]. In the present case, even inertia-free particles cluster because their motion 

is confined to the air-water interface. In both cases, the flows are effectively compressible 

because the particle’s velocity pv


 does not follow the fluid velocity exactly; fp vv


 . Properties 

of clusters in free-surface flows thus share many similarities with their inertial counterparts 

[8,13]. Theoretical advances have taken advantage of these similarities. These theories [7,20] 

specifically exploit the statistical properties of stretching fields of fluids that exist at the smallest 

spatial scales (below the dissipative scale η Eq. (2)). Further progress has been made by treating 

the floaters as a dynamical system coupled to an incompressible turbulent reservoir [6-11]. In the 

inertial range of turbulence, where the velocity field is rough, theoretical guidance has proven to 

be difficult. The only available study comes from a surface flow model that suggests that 

particles cluster into multifractal distributions in both the dissipative and inertial ranges [12]. 

This study varied the compressibility C  in numerical simulations of synthetic free-surface 

turbulence and quantified its effects on particle distributions. This compressibility C  is not a free 

control parameter in this experiment  
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This study focuses on the concentration statistics of particle clusters as a function of the 

dimensionless coarse-graining scale r  in the steady state (discussed in 2.2.3). The distribution of 

the coarse-grained concentration rn  (see 2.2.3), is very intermittent, the more so as the scale r  

decreases (see Figure 8). Quantitatively, intermittency can be characterized by measuring the 

second moment 
2

rn  of the concentration field rn , averaged over all points in space (Eulerian 

frame representation). This work will instead focus on the concentration rc  averaged over a sub-

domain of size 
2~ r  around each particle in the system (Lagrangian frame representation). As 

explained in 2.2.3, the Eulerian and Lagrangian representations provide essentially equivalent 

information.  

There are two main results in this work. The first concerns rc , the first moment of the 

concentration distribution, which shows two separate scaling regimes in the dissipative and 

inertial ranges, in qualitative agreement with [12]. Second, the probability distribution function 

(PDF) of the coarse-grained concentration )( rc  exhibits a very pronounced maximum close to 

0rc . Over a large range of values of rc , the PDF exhibits a power-law decay, r

rr cn


 )( . 

This power-law decay reflects the highly intermittent spatial distribution of particle 

concentrations, Figure 8, and the strong tendency for the compressible flow to expel particles 

from large areas of the surface. PDFs with power-law behavior are frequently encountered in 

nature in many different contexts [19]. The shapes of the PDFs )( rc  are shown to vary 

systematically with scale r, and this evolution is quantitatively different in the dissipative and 

inertial ranges. The variation of the PDF’s with scale r in the dissipative range is consistent with 

the theoretical predictions of a multi-fractal distribution of particles [7]. The PDFs also vary with 

r in the inertial range, leading to a multi-fractal distribution which is generally consistent with 
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the results in [12]. In section 2.2, the experimental setup, as well as the method used to evolve 

the Lagrangian tracer particles, will be discussed. Then, in section 2.3, the results concerning the 

first moment of the coarse-grained particle concentration rc  as well as the PDFs ),( rcr , will 

be analyzed and discussed. This work is concluded with a discussion of the results in section 3.0  

 

 

Figure 1: Photograph of experimental tank. Steady-state incompressible turbulence is created in the bulk 

of the tank by a grid of rotating sprinkler jets. Motion of buoyant particles at the surface are illuminated by laser and 

captured by a high-speed camera. 
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Figure 2: Photographs of the surface experiment. The evolution of particle clusters on a turbulent 

surface is shown for four snapshots in time as they evolve from a nearly homogeneous distribution at t = 30 ms 

towards an inhomogeneous distribution through t = 150 ms and 300 ms. The experiment is virtually over by t = 600 

ms, by which time particles have almost completely clustered into string-like structures. 
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Figure 3: Simple model of surface flow. Bulk turbulent motion creates locations of fluid upwellings 

(sources) where particles flee and downwellings (sinks) where particles accumulate. In the actual experiment, the 

location of these sources and sinks fluctuates in time and space. 

2.2 EXPERIMENT 

2.2.1 Flow Measurements 

The experiments in this work were carried out in a tank of water (ν=0.01 cm
2
/s), 1m x 1m in 

lateral dimensions and filled with water to a depth of 30cm. A schematic of this experimental 

setup can be seen in Figure 4: . Turbulence is generated by a pump (8hp) that draws water from 

the tank and re-circulates it through a system of 36 rotating jets placed horizontally across the 

tank floor. This system ensures that the source of turbulent injection is far removed from the 

free-surface where the measurements are made. More importantly, it minimizes the amplitude of 

surface waves which are unavoidable but are an additional mechanism for floater clustering that 

has been studied elsewhere [9]. The maximum amplitude of waves generated at the surface does 
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not exceed 0.5mm [5]. Further evidence that wave motion is not responsible for the effects 

reported here come from simulations where wave motion is totally absent [5]. These simulations 

are in very good quantitative agreement with prior laboratory experiments, where many aspects 

of floater coagulation were studied and compared [5]. 

There are several other issues to be mindful of in this experiment. First is the role of 

surface impurities in the form of an amphiphile layer that can cover the air-water interface. The 

experiment cannot be performed in the presence of these surface impurities since they suppress 

the coagulation seen in Figure 2. Therefore, just prior to each experimental run, the surface is 

cleaned by skimming off these impurities.  

The second concerns the meniscus between the particles and the air-water interface and 

the role they play via capillary interactions, as studied in [9,14]. Particles separated by a distance 

comparable to their radius a will minimize their surface energy by clumping together. As a 

measure of the relative effects of surface tension and turbulence, a capillary number 

auCa  / can be defined where u is the Kolmogorov velocity (0.5 cm/s),   is the dynamic 

viscosity of water (1 g/cm s), a is the particle radius (0.0025 cm), and   is the surface tension of 

water (70 dynes/cm). Here, 3Ca , indicating that at the dissipative scale η the turbulent 

fluctuations are 3 times that of the effect of surface tension. For length scales much greater than 

η, the relevant capillary number is avCa rms  / , which is much greater than 1. 

Finally, as a test of the non-inertial character of the particles, their Stokes number is 

calculated as avSt rmss / , where a is the particle radius, vrms is the RMS velocity of the 

turbulent fluid at the free-surface, and τs is the stopping time of the particle [11]. In order to be 

considered non-inertial, St for the particles must be much less than unity [15]. In the experiments 

discussed here, 1.0St . 
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During a typical run, particles are constantly seeded into the fluid from the tank floor. 

They undergo turbulent mixing as they rise due to buoyancy and are uniformly dispersed by the 

time they rise to the surface. Once at the free-surface, their motion is constrained to the two-

dimensional plane; they cannot return to the bulk. Therefore, they are expelled from the surface 

sources and cluster at the surface sinks. This scheme of particle injection ensures that both 

sources and sinks receive (nearly) equal coverage of particles on the surface. Furthermore, the 

constant seeding is necessary to replace any particles that leave the field of view during the 

experiment. A beam from a solid-state laser (5.5W) is passed through a cylindrical lens to 

generate a sheet of light that grazes the fluid surface. The 50µm floaters then scatter the incident 

laser light. The positions of the particles are captured by a high-speed camera (Phantom version 

5.0), which is suspended vertically above the tank. Typically, the camera frame speed was set at 

100Hz.  

The high-speed camera images were stored in a computer and subsequently fed into a 

particle imaging velocitmetry (PIV), developed in-house. This PIV program takes a consecutive 

pair of images and correlates individual particles to generate an instantaneous velocity field of 

the turbulent surface. This special version of PIV software was developed to deal with the 

compressible nature of the surface flow, which naturally places a bias on particle densities 

around sink regions of the surface flow. This program has been checked rigorously and used in 

several other publications prior to this work [5,10,11]. Typically, continuous data spanning 5-10s 

was taken of the floaters motion at the surface, containing 500-1000 instantaneous velocity 

vector fields at discrete intervals in time. Figure 5 shows a visualization of a particular 

instantaneous velocity vector field measured during the experiment. Figure 6 shows the 

divergence field ),( yxv

  (normalized by the absolute value of the maximum divergence) for 
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the velocity vector field shown in Figure 5. One can clearly see the existence of sources and 

sinks (seen as regions of positive and negative divergence, respectively) which lead to the 

accumulation of particles along the string-like sinks of the flow field. 

The turbulent parameters that characterize the various experimental runs in this work are 

calculated in. The camera field-of-view (FOV) is a square area of side length L=9cm. Its height 

above the water surface was chosen so that a pixel size is roughly 0.1mm. This length is 

comparable to the dissipative scale of the turbulence. This height above the water also allows one 

to capture the large scale features of the coagulated floaters. The integral scale (Eq. (1)), is of the 

order of 1 cm. The high-speed camera is then able to capture the entire inertial range of the 

turbulent motion at the surface. Data were taken at several Reλ=150-170 with an average 

160Re  . These data showed no systematic dependence on the Reλ. A total of 15 independent 

realizations of the concentration field nr(t), separated by a large eddy turnover time 0 , were 

produced from the various experimental runs. These independent runs were then used as an 

ensemble to produce the measurements in 2.3. 
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Figure 4: Schematic of the experimental setup. (Top) 36 rotating capped jets are placed horizontally on 

the tank floor (show in a randomly oriented Z-shaped pattern) that pumps water into the tank re-circulated by an 8hp 

pump. The central region of the surface is illuminated by a laser-sheet. (Bottom) A high-speed camera suspended 

vertically above the illuminated surface area captures images of the light scattered by the floating particles (50 µm 

hollow-glass spheres with specific gravity 0.25). 
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Figure 5: Visualization of the experimental velocity vector field. A snapshot of an instantaneous 

velocity field, as constructed by the particle tracking (PIV) program. The field is plotted in units of the spatial 

dimensions x and y divided by the dissipative scale η. A complete set of these fields spanning 5-10s are used to 

evolve the Lagrangian tracers. 
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Figure 6: divergence field ),( yxv

 . Visualization of a typical divergence field (normalized by the 

absolute value of the maximum measured divergence). The field is plotted in units of the spatial dimensions x and y 

divided by the dissipative scale η.  The divergence field shows clearly the existence of fluid upwellings (sources, 

shown as positive divergence values) and downwellings (sinks, shown as negative divergence values).  
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Table 1. Turbulent parameters measured at the experiment’s surface. These parameters are defined in section 1.1. 

Parameter Equation Measured Value 

Taylor microscale:   

 2

2

/ xv

v

x

rms


  

0.46-0.47(cm) 

Taylor microscale Reynolds: Re  






rmsv
Re  

150-170 

Integral Scale: 0  

 



2

| |

| || |

0

)(

)()(

xv

xvrxv
dr  

)(5.145.1 cm  

Large Eddy Turnover time: 0  

rmsv

0

0


  

)(5.043.0 s  

Energy Dissipation Rate: diss  2

10 













x

v x

diss   
)/(1.69.5 32 scm  

Dissipative (Kolmogorov) length scale:   4/1
3













diss


  

)(02.0 cm  

RMS Velocity: rmsv  22 vvvrms   
)/(3.3 scm  

Compressibility: C   

 22

2

2

v

v

C








  

03.049.0   
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2.2.2 Particle Evolution 

Once the velocity field is stored, it is then fed into a Lagrangian tracking program that solves the 

advection equation for a set of computer generated (massless) particles (labeled i=1...m) that are 

tracked in the Lagrangian frame of reference: 

)),(( ttxv
dt

xd
i




  
(9) 

Here )),(( ttxv i


 is the velocity field and the particle coordinates (in the Eulerian frame) are 

labeled by ))(),(()( tytxtx iii 


. To achieve sub-pixel resolution of the particle locations, as is 

required to measure nr in the dissipative range, the vector field used to solve Eq. (9) was 

interpolated from the experimentally determined velocity fields via a cubic interpolation scheme 

developed for numerical simulations, as discussed in [22] and implemented in [5]. This scheme 

takes advantage of the smooth flow between velocity grid points which are separated by length 

scales comparable to the dissipative scale η to interpolate the velocity field between measured 

velocity grid points. To use this scheme it is necessary for the measured velocity grid spacing to 

satisfy the criterion δx<πη [22], where δx is the average velocity field grid spacing, which is 

δx=2.5η in this experiment. The results presented in this work have been shown to be insensitive 

to the velocity grid spacing by varying δx=2.5η to δx=4η. 

 All analysis discussed in this work is conducted on the computer generated particle tracks 

evolved according to Eq. (9). The real particles were only used to obtain the experimental 

velocity fields used in Eq. (9). Much like the real experiment, the virtual particle tracks may also 

extend beyond the area of the measured velocity vectors in Eq. (9). If this happens, the particle is 

removed from the data in the next frame and replaced by randomly re-seeding a new particle 

inside the experimental field of view. By extensive trial and error analysis, the minimum number 
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of Lagrangian particles required to perform the following analysis is approximately 10
5
/frame. 

The statistics presented in this work was obtained by evolving ~4x10
5
 Lagrangian particles per 

frame in order to ensure high statistical significance in the data. For each complete velocity field 

data set, a uniform distribution of Lagrangian tracers is generated at time t=0s and evolved using 

Eq. (9) for approximately 1.5 s, which is required for the individual moments of the 

concentration distribution cr to reach a steady-state value. 
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Figure 7: Visualization of the steady-state particle distribution. (Top) Resulting particle distribution at 

t=1.5s using the interpolation scheme described in 2.2.2. The net result of the Lagrangian particle evolution is the 

accumulation of high concentrations of particles along the line-like sinks, like those shown in Figure 6. (Bottom) 

Zoomed in view of the top figure showing structures at scales comparable to the dissipative scale η. 
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2.2.3 Concentration Fields: Eulerian vs. Lagrangian 

 The concentration statistics are collected at each time-step by coarse graining the domain 

at the chosen spatial scale r=s/η. Here, s is the size of the coarse-grained box in cm and η is the 

dissipative scale (in cm), thus making r dimensionless. The Eulerian concentration field, coarse-

grained over scale r, is defined by dividing the system into square cells of size r, and by counting 

the number of particles N(r,t) in each of them. The dimensionless Eulerian concentration is then 

defined as: 
),(

),(
)(

trN

trN
tnr  , where ),( trN  is the mean number of particles in a square of size 

r. This can be simply expressed in terms of the total number of particles in the system, Nt, the 

total size L of the system, and scale r: 2)/(),( LsNtrN t . With this definition, the mean 

dimensionless concentration: 1
),(

),(
)( 

trN

trN
tnr . 

Similarly, the Lagrangian concentration field (coarse-grained over a scale r) is defined 

around each particle in the system by simply counting the number of particles NL(r,t) in a ball of 

size r centered around a particle. The (dimensionless) Lagrangian concentration is then defined 

as: 
),(

),(
)(

trN

trN
tc L

r  , where ),( trN  is the Eulerian frame mean concentration. With this 

definition, the Lagrangian concentration around any particle is at least: 
),(

1
)(

trN
tcr  .   

From a physical point of view, measuring a concentration in the Eulerian frame may be 

more intuitive, but averaging a quantity over a set of Lagrangian particles is equivalent to 

averaging over space with a weight proportional to the particle density [17]. The relation 

between the moments of nr and cr is then: 
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1 p

r

p

r nc  (10) 

 

This relation holds when the number of particles in the system is large and the value of r is small 

[16]. Likewise, the PDF’s of nr and cr are related: rrr nnc )()(  , by the simple relation of all 

of the individual moments in Eq. (10). 

Experimentally, it is much easier to obtain accurate results by using the Lagrangian field 

cr, rather than nr [17]. The two representations of the concentration field have been 

systematically checked to ensure that the results of the more accurate Lagrangian field cr is 

consistent with the less accurate Eulerian field nr, using Eq. (10). In the following analysis, the 

results are expressed in terms of the Lagrangian concentration field cr, keeping in mind the 

simple relation expressed in Eq. (10). 

In this study of the concentration field statistics, care has been taken to focus only on the 

steady-state properties. To this end, the low order moments of the concentration fields, such as 

the first moment )(tcr , were measured systematically as a function of time. These moments 

first grow during a time of the order of the large eddy turnover time (Eq. (7)), and then fluctuate 

around a limiting value. This allowed the transient effects to be clearly separated from the 

steady-state regime. The following results correspond exclusively to the steady-state regime. 
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Figure 8: Visualization of the particle concentration field rn . The Eulerian concentration field nr in the 

statistically steady-state shows a very intermittent distribution, with very large spikes concentrated along string-like 

structures. Surrounding the string-like structure are (comparatively) depleted regions which are nearly flat. The x 

and y axes are in units of the dissipative scale η. The coarse-graining scale chosen here is r=1.8, which is in the 

dissipative range. Decreasing the coarse-graining scale r increases the intermittent nature of the particle 

concentration, and vice versa for increasing r. 
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2.3 RESULTS 

2.3.1 Analysis 

The results of the steady-state distribution of the coarse-grained particle concentration cr are 

discussed in this section. The first result is the lowest non-trivial moment: rc , and its 

dependence on the dimensionless coarse-graining scale r [11]. The existence of a scaling 

relation, such as: 

rcr ~  (11) 

 

Provides a characterization of the area where particles accumulate [17]. For simple geometrical 

structures such as points, lines, and surfaces, the scaling exponent α takes on the simple integer 

values 0,1,2 , respectively. For more complicated structures, as in the present case, the value 

of α is a non-integer and gives a quantitative measure of the complex topological structure. 

Systems with non-integer scaling exponents α are normally referred to as fractals, and in 

dynamical systems these fractal objects are called Strange Attractors [23].   

Figure 9 shows that rc  exhibits two different scaling regions, at small ( 4.3r ) and at 

larger scales ( 5r ), which corresponds to dissipative and inertial ranges, respectively. These 

data can be fit with an exponent 92.0d  in the dissipative range and 79.0i  in the inertial 

range. The difference between the two scaling domains can be best seen by plotting the 

derivative rdcd r ln/ln  (see the inset of Figure 9). The qualitative impression from Figure 7 

and Figure 8, that the result of the coagulation process is line-like structures, is completely 
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consistent with the values of the exponents di ,  being close to 1. Higher order moments of the 

coarse-grained concentration also exhibit unique scaling in the inertial and dissipative ranges, 

transitioning between the two scales at approximately 5η. The results here are thus in qualitative 

agreement with the observations of [12] for 
2

rn , which also shows two separate scaling 

regions corresponding to inertial and dissipative ranges. 

 

 

Figure 9: First moment of the Lagrangian concentration field cr. The average rc  exhibits two 

scaling regimes. In the dissipative range, for 5r , rc  scales as dr


 with 92.0d , whereas for 5r , it 

scales as ir


 with 79.0i . The inset shows the derivative rdcd r ln/ln  and demonstrates the quality of 

the reported power-law behavior.  
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Next, the probability distribution function (PDF) of the Lagrangian concentration field 

)( rc  is examined in both the inertial and dissipative ranges. Figure 10 shows the PDF 

(normalized by the mean concentration rc ) in the dissipative range of scales r, while Figure 11 

shows the PDFs in the inertial range. In the inertial range, and for r=3.4 in the dissipative range, 

the PDFs display a clear maximum in the distribution, with this maximum occurring at smaller 

values of rr cc /  as r decreases. For values of rr cc /  less than this maximum, the PDFs 

exhibit a plausibly linear behavior: rr cc  )( , which corresponds to a PDF in the Eulerian 

frame .)( constnr   (see Eq. (10)). This ensures that the PDF is normalizable in both the 

Lagrangian and Eulerian frames.  

The very small rr cc /  wing of the PDF is not observed deep in the dissipative range, for 

1.1r , due to the fact that values of rr cc /  corresponding to less than one particle are not 

resolved (these calculations were carried out with 5104~ tN  particles). If the value of tN is 

doubled, the power-law range of the PDF’s for 1.1r  is extended to smaller values of the 

concentration rr cc 2/ . This does not affect the power-law region of the PDF’s discussed 

below, or the positive moments 
p

rc  for 1p , which are dominated by the behavior of the 

PDF’s at large rr cc / . 

The most interesting aspect of the PDFs in both ranges is the power-law behavior at 

values of rr cc /  greater than the PDF’s maximum, which correspond to the depleted 

concentration regions lying between the string-like structures in Figure 7 and Figure 8. In both 

ranges, the PDFs can be characterized by a power-law behavior: r

rr cc


 )( , over a limited 

range of rr cc /  followed by a faster than algebraic cut-off at large rr cc /  (see the insets of 
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Figure 10 and Figure 11). The variation of the exponent r  characterizing the algebraic behavior 

in the dissipative range (Figure 10) is very small: 05.08.0 r  for 4.3r . In comparison, the 

exponent r  decreases when the scale r increases in the inertial range (Figure 12), with 5.0r  

at r=28.6 and 75.0r  at r=5.0. The faster than algebraic decay of the PDFs in both ranges 

(inset of Figure 10 and Figure 11) ensures that all the moments of the distribution 
p

rc  exist for 

all 1p . The observed cut-off is plausibly exponential over a limited range of large rr cc / , 

before the PDF drops off to zero. The extent of the exponentially decaying range increases when 

the scale r decreases. The power-law decay corresponds to particle concentrations with an 

average spacing much larger than the particle radius a (2.2.1). Thus, surface tension effects play 

a negligible role in the formation of the power-law behavior. 
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Figure 10: Probability distribution )( rc  in the dissipative range. The PDFs of the concentration, 

scaled by the mean value rc , exhibit a power-law distribution at low values of rr cc / : r

rr cc


 )(  with 

05.08.0 r  (approximately independent of scale r). The PDFs decay faster than algebraically 

for 1/ rr cc , see inset. The observed cut-off is plausibly exponential, over a range of rr cc /  that grows when 

the scale r decreases.  
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Figure 11: Probability distribution )( rc  in the inertial range. The PDFs of the concentration scaled 

by the mean rc , exhibit a power-law distribution at low values of rr cc /  greater than the PDF’s 

maximum: r

rr cc


 )( , where the exponent r  decreases when r increases. Here, 5.0r  at r=28.6 and 

75.0r  at r=5.0. The PDFs decay faster than algebraically for 1/ rr cc , see inset. The range of rr cc /  

where the exponential decay is observed shrinks when the scale r increases. The PDFs in the main figure have been 

shifted vertically to see the evolution of the power-law region. 
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Figure 12: Exponent βr as a function of scale r. The exponent characterizing the power-law behavior of 

the PDFs varies with scale r in the inertial range and is approximately constant in the dissipative range. 

2.3.2 Discussion 

The first important result of this work is the first moment of the particle distribution rc , 

which exhibits two different scaling regimes in the dissipative and inertial ranges for scales 

smaller and larger than ~5η.  The existence of an inertial range scaling regime is qualitatively 

consistent with [12] for 
2

rn , which also showed two scaling regimes in the inertial and 

dissipative ranges, with id    also. This numerical study used a “synthetic” turbulent flow 

model which allowed the compressibility C to be adjusted freely. The compressibility in this 

experiment is not a free parameter, and so the quantitative results of [12] cannot be compared 

usefully. 
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The PDF’s in both ranges show a systematic evolution of the shape of the PDF of 

rr cc /  as a function of scale r, qualitatively similar to the evolution of the velocity increment 

PDF in turbulence [18]. In the dissipative range, this observation is consistent with the 

theoretical arguments of [7], leading to the prediction that the particle distribution is multi-

fractal. A multi-fractal distribution is defined by the scaling exponents of the moments of the 

concentration distribution prc p

r


 . For a multi-fractal distribution, 11  pp  . This relation 

is implied if the PDF of the concentration depends on the coarse-grained scale r.  

Consider a distribution for the Eulerian concentration which is not a function of r,  

)()( rfnr  . If there then exists a scaling relation of one of the moments prn p

r


 , then 

every 2pth moment ppp

r rn


2
, which is not a multi-fractal by definition. However, if the 

PDF’s are functions of the coarse-grained scale r, )()( rfnr  , and a given moment of the 

distribution has a scaling relation prn p

r


 , then 11  pp   for all other moments. This 

result then proves the distribution is a multifractal. This same argument applies to the Lagrangian 

concentration cr by Eq. (10).  

The change of the PDF shape with r mostly affects the large rr cc /  behavior where the 

PDF decays faster than algebraically, and also the pre-factor of the algebraic behavior, see Figure 

10 and Figure 11. When the PDFs are re-expressed in terms of the Eulerian distribution nr, 

)1(
)( r

rr nn


 , which are not even normalizable when 0rn . Such a behavior has been 

observed in [9] with 1r . The exponent r  in this study varies systematically with scale r and 

is clearly different than the caustic prediction of 1r  [9] (see Figure 10 and Figure 11). It is 

well known that solutions to the Burger’s equation will produce shocks in the velocity field [24]. 
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These shocks can produce divergences of a passive scalar field whose PDF will have power-law 

behavior(s) of 
2

)(


 rr nn  and 
3

)(


 rr nn . Although the resulting power-law behavior in the 

dissipative range in this work is close to 
2

)(


 rr nn , it is measurably different. It is also 

unlikely that the results in this work are due to caustics [21], since the particles here follow the 

measured flow field directly by Eq. (9), which is presumably governed by the full 3D Navier-

Stokes equation.  

The theoretical work in [20] predicts a power-law behavior of the coarse-grained 

concentration nr in the dissipative range, 
)1(

)( r

rr nn


 , with 0r , which ensure that the 

distribution is normalizable. This is consistent with the results in this work for the PDF at r=3.4, 

see Figure 10, which shows rr cc  )( , corresponding to a PDF in the Eulerian frame 

.)( constnr  . The PDFs in this work for intermediate values of nr (or cr) in the dissipative 

range, display power-law behavior with 0r . This does not strictly violate the prediction in 

[20], since the smallest concentrations are not resolved for r<3.4. 

 

 

 

 



 34 

3.0  CONCLUSION 

In order to characterize the statistical properties of particle clustering on the surface of a 

turbulent flow, the coarse-grained particle concentration cr around each particle in the system in 

a domain of size ~r
2
 has been measured, normalized by the expected particle concentration in the 

case of a homogeneous system. This study has covered a range of scales extending from the 

dissipative up to the inertial range scales. The first moment of the particle distribution rc  

exhibits two different scaling regimes in the dissipative and inertial ranges, for scales smaller and 

larger than ~5η. The PDF of cr vary systematically with scale r. This is consistent with a multi-

fractal particle distribution in both the inertial and dissipative ranges, which is generally 

consistent with the findings of [12]. The PDFs exhibit power-law behavior at small rr cc / , 

characterizing the broad concentration distribution of particles contained in areas between the 

line-like structures formed by surface sinks. When the PDFs are re-expressed in terms of the 

Eulerian distribution nr, 
)1(

)( r

rr nn


 , which are not even normalizable when 0rn . Such 

a behavior has been observed in [9] with 1r , while the exponent r  in this study varies 

systematically with scale r and is clearly different than the caustic prediction in [9] of 1r . 

This work thus indicates that the intermittent distribution of particles in free-surface flows is 

characterized both by very high particle concentration along string-like sinks, as well as by a 

strong depletion of particles near fluid sources. A proper description of the resulting power-law 
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tails requires a better understanding of the very efficient expulsion mechanism of particles from 

large regions of the turbulent surface flow. The proper understanding of this mechanism which 

leads to particle clustering is of both fundamental interest and practical use in understanding 

transport phenomena on the surface of turbulent flows.  

3.1 FUTURE WORK 

The results of this work have (in the author’s opinion) thoroughly probed the important length 

and time scales which are important to free-surface turbulence.  However, the Re achieved in 

this experiment (~100) is rather modest compared to other more turbulent flows [18]. Most 

theoretical work in turbulence is made possible by considering the limit that Re  (or 

equivalently, 0 ) [18]. It is thus likely that any further theoretical advancement of this flow 

type will require the asymptotic limit Re .  

However, the amplitude of surface waves is difficult to control with increasing velocity 

fluctuations. A more effective exercise may be to perform an experiment at the surface without 

minimizing the surface waves. In most practical situations, surface waves are likely to play a role 

in surface concentrations, as they did in [9]. One might then perform an experiment in an 

apparatus which produces both 3D incompressible turbulence in the tank’s bulk and waves at the 

surface, through some controlled mechanism. The two mechanisms may then be studied 

together. The surface wave’s amplitude and frequency could be controlled as they are in [9]. The 

surface compressibility ( 2/1C ) is not controllable, as noted in [5]. 
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Studying inertial particles which are buoyant would also be of fundamental interest. It 

would be difficult to satisfy both inertial and buoyancy requirements simultaneously. It’s likely 

that these particles would need to be hollow (buoyant), which would require the particle’s 

diameter to be larger than the dissipative scale η (inertial) to produce a large enough stokes 

number St to be considered inertial. In doing so, one would lose the theoretical predictions for 

the particle distribution inside the dissipative scale [2,7]. 

It would also be interesting to study how the distribution of particles changes for 

decaying turbulence at the surface.  Imagine that the particle distribution is driven into a steady 

state by a turbulent tank.  Then, the turbulence would be shut off and the distribution of particles 

would be tracked.  Assuming that the line-like structures are preserved during the decay of 

turbulent motion, these coagulations would be subject to Brownian diffusion.  They would then 

be stable for a time which is much larger than the turbulent time scales in this experiment. The 

purpose of such an experiment would be to analyze how the correlated turbulent flow which 

produces these coagulations decays in time. If the correlated flow structure which produced the 

coagulations is not preserved during the decay, the coagulations may disperse in a time 

comparable to the turbulent time scales of this experiment. 

Another interesting experiment would be to track very dense particles which are confined 

to the bottom of the tank. There they would also be subject to a turbulent flow which is driven by 

the bulk 3D incompressible turbulence.  It can be shown [6] that any 2D slice of a 3D turbulent 

incompressible flow will have a compressibility 6/1C . Thus, heavy particles which are free to 

move along the turbulent tank’s bottom should also cluster, in principle. This could help 

understand the transport of sediment at the bottom of lakes, rivers, etc.  



 37 

4.0  ACKNOWLEDGEMENTS 

The author would like to again thank those acknowledged in the foreword. The other 

contributing author’s (Dr.’s W.I. Goldburg, M.M. Bandi, and A. Pumir) would like to thank G. 

Falkovich and K. Gawedzki for very helpful discussions. Funding was provided by the US 

National Science Foundation grant # DMR-0604477 and by the French ANR (contract DSPET) 

and by IDRIS. This work was partially carried out under the auspices of the National Nuclear 

Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory 

under Contract No. DE-AC52-06NA25396. Dr. A. Pumir thanks the French ANR (contract 

DSPET), and IDRIS for support. 

 

 

 

 

 

 

 

 

 

 

 



 38 

BIBLIOGRAPHY 

[1] R.A. Shaw, Annu. Rev. Fluid Mech. 35, 183 (2003). 

[2] G. Falkovich, A. Fouxon, and M.G. Stepanov, Nature 419, 151 (2002). 

[3] L.F. Richardson, Proc. Roy. Soc. A 110, 709 (1926). 

[4] H. Stommel, J. Marine Res. 8, 199 (1949). 

[5] J.R. Cressman, J. Davoudi, W.I. Goldburg, and J. Schumacher, New J. Phys. 6, 53 (2004). 

[6] G. Boffetta, J. Davoudi, B. Eckhardt, and J. Schumacher, Phys. Rev. Lett. 93, 134501  (2004). 

[7] J. Bec, K. Gawedzki, and P. Horvai, Phys. Rev. Lett. 92, 224501 (2004). 

[8] G. Boffetta, J. Davoudi, and F. DeLillo, Europhys. Let. 74, 62 (2006). 

[9] P. Denissenko, G. Falkovich, and S. Lukaschuk, Phys. Rev. Lett. 97, 244501 (2006). 

[10] M.M. Bandi, W.I. Goldburg, and J.R. Cressman, Europhys. Lett. 76, 595 (2006). 

[11] M.M. Bandi, W.I. Goldburg, and J.R. Cressman, J. Stat. Phys. 130, 27 (2008). 

[12] L. Ducasse and A. Pumir, Phys. Rev. E 77, 066304 (2008). 

[13] G. Falkovich and A. Pumir, Phys. Fluids 16, L47 (2004). 

[14] G. Falkovich, A. Weinberg, P. Denissenko, and S. Lukaschuk, Nature 435, 1045 (2005). 

[15] G. Boffetta, F. DeLillo, and G. Gamba, Phys. Fluids 16, L20 (2004). 

[16] E. Balkovsky, G. Falkovich, and A. Fouxon, arXiv.chao-dyn p. 9912027 (1999). 

[17] P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983). 

[18] U. Frisch, Cambridge University Press (1996). 

[19] M.E.J. Newman, Contemporary Phys. 46, 323 (2005). 

[20] E. Balkovsky, G. Falkovich, and A. Fouxon, Phys. Rev. Lett. 86, 2790 (2001). 



 39 

[21] M. Wilkinson and B. Mehlig, Europhys. Lett. 71, 186 (2005). 

[22] P. Yeung and S. Pope, J. Comp. Phys. 79, 373 (1988). 

[23] J. R. Dorfman, Cambridge University Press, 1999. 

[24] J. Burgers, Dordrecht, Amsterdam, 1974. 

[25] S. Pope, Cambridge University Press, 2000. 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES

	TABLE I

	LIST OF FIGURES

	Figure 1: Photograph of experimental tank.
	Figure 2: Photographs of the surface experiment.
	Figure 3: Simple model of surface flow.
	Figure 4: Schematic of the experimental setup.
	Figure 5: Visualization of the experimental veloicty vector field.
	Figure 6: Divergence field.
	Figure 7: Visualization of the steady-state particle distribution.
	Figure 8: Visualization of the particle concentration field.
	Figure 9: First moment of the Lagrangian concentration field.
	Figure 10: Probability distirbution function in the dissipative range.
	Figure 11: Probability distribution function in the inertial range.
	Figure 12: Power-law exponent as a function of scale.

	1.0 INTRODUCTION

	1.1 TURBULENT PHENOMENOLOGY

	1.1.1 Turbulent Length Scales

	1.1.2 Additional Turbulent Parameters


	PREFACE

	2.0 STATISTICS OF PARTICLE CONCENTRATION

	2.1 INTRODUCTION

	2.2 EXPERIMENT

	2.2.1 Flow Measurements
	2.2.2 Particle Evolution
	2.2.3 Concentration Fields: Eulerian vs. Lagrangian

	2.3 RESULTS

	2.3.1 Analysis
	2.3.2 Discussion



	
3.0 CONCLUSION
	3.1 FUTURE WORK

	4.0 ACKNOWLEDGEMENTS
	BIBLIOGRAPHY

