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University of Pittsburgh, 2008

While nonparametric methods have been well established for inference on competing risks

data, parametric methods for such data have not been developed as much. Because the

cumulative incidence functions are improper by their nature, flexible distribution families

accommodating improperness are needed for modeling competing data more accurately. Ad-

ditionally, different types of events present in a competing risks setting may be correlated,

yet current inference methods do not permit inferring such data taking into account the cor-

relation between failure time distributions. This work first presents two new distributions

which are well-suited for modeling competing risks data. In existing inference procedures

for competing risks data, it appears that the correlation between failure time distributions

of competing events are fixed as a constant. In the second part of this dissertation, a novel

approach is proposed which allows researchers to model competing risks data by taking the

correlation into account by estimating it. The methods are illustrated by analyzing survival

data from a breast cancer trial of the National Surgical Adjuvant Breast and Bowel Project.

Simulation studies are also presented for each of the proposed new distributions.

Public Health Significance: Competing risks occur often in many clinical studies, and

must be accounted for whenever researchers are interested in only one type of event. For ex-

ample, researchers may be interested in investigating only local recurrences of breast cancer,

but must also take into account all other possible types of events as competing. Parametric

methods are not currently as well established as other methods for competing risks data.

Development of flexible parametric inference procedures suitable for modeling competing

risks data would provide more accurate information, which will serve to improve patient

care in clinical settings.
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1.0 INTRODUCTION

In most settings where survival analysis is used, it is assumed that there is only one event of

interest. However, in many situations, investigators may wish to infer survival or hazard rates

for events of interest under two or more competing types. Since generally only the event that

occurred first is analyzed, the occurrence of either event precludes the observation of other

events. For the case where two competing events are present, the cumulative probability of

events of primary interest differs from the same quantity in situations without competing

events. In particular, the cumulative incidence function have to been used to correctly

estimate the cumulative probability.

Parametric methods are more accurately able to predict future behavior of a situation,

if the model has been correctly specified, than the corresponding nonparametric procedures.

While nonparametric methods have been well-defined for competing risks data (Korn and

Dorey, 1992; Pepe and Mori, 1993), parametric methods are not as well established. The

nature of the cumulative incidence function being improper indicate that new distributions

may need to be developed for more flexible yet precise models. As the hazard function may

take on a number of different shapes which describe the underlying processes of failure time

distributions, it may be useful to develop various improper distributions which can capture

a variety of different hazard shapes.

Additionally, the current methods of inference for competing risks data assume that

cause-specific event times are independent. This is a strong assumption and may not be

correct in practice. A direct approach was proposed by Jeong and Fine (2006), which assumed

a specific dependence structure among cause-specific event times.

To this end, we propose two new distributions which are applicable to competing risks

data and can capture a variety of hazard shapes, including unimodal. Additionally, we
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formulate a competing risks model for joint inference on two correlated lifetimes.

First, new 3-parameter and 4-parameter Gompertz distributions are proposed, which are

suitable to model improper distributions for competing risks data, and, more importantly, are

able to capture both monotone and unimodal hazard shapes. Related regression models are

developed which can incorporate covariates using a generalized odds rate transformation for

the link function. In Chapter 3, we extend the common 2-parameter Gompertz distribution

to a three parameter distribution, give some of its basic properties and show that they are

regular in that its parameter space does not depend on the support of the distribution.

In Chapter 4, the Gompertz distribution is extended to a four parameter one. For both

new distributions, simulation results are presented to assess the properties of the maximum

likelihood estimates of the parameters. Both models and their covariate extensions of each are

applied to a dataset from a breast cancer trial conducted by the National Surgical Adjuvant

Breast and Bowel Project (NSABP). Finally, we discuss benefits and limitations of the two

models.

Second, a copula-based model for joint modeling on competing risks data is proposed.

This method allows for parametric inference on competing risks data without the indepen-

dence assumption between competing failure time distributions. Furthermore, using this

method, one can make inference about the level of dependence between competing events.

We apply the approach to data from a breast cancer trial of the NSABP and discuss the

approach in comparison to previously-established inference methods.

In Chapter 2, we present background details pertinent to this work. Chapters 3 and 4

are devoted to each of the extended Gompertz distributions. The new approach to modeling

competing risks data jointly is presented in Chapter 5. Chapter 6 concludes with a discussion

of the proposed methods and possibilities for future work.

2



2.0 BACKGROUND

In this chapter, we present important background information relating to the rest of this

work. Competing risks are defined and the related important quantities are discussed. Max-

imum likelihood estimation for competing risks data is presented, as well as nonparametric

estimation the cumulative incidence function. Parametric methods for survival data are

introduced, and the (2-parameter) Gompertz distribution is presented. A review of assump-

tions made in analysis of competing risks data is made. Finally, previous works relating to

inference on competing risks are discussed.

2.1 THE CUMULATIVE INCIDENCE FUNCTION

In some experiments, a subject may fail due to one of K different causes, for some K ≥ 2.

For example, patients in a breast cancer trial may experience a recurrence of the original

cancer or die while still in remission. Alternately, investigators may be interested in cause-

specific mortality, e.g. death from heart disease, death from cancer, or death by some other

cause. Since generally only the event that occurred first is of interest, the occurrence of

either event precludes the observation of the other events.

It has been demonstrated (Korn and Dorey, 1992; Pepe and Mori, 1993; Gooley et al.,

1999) that the complement of the nonparametric Kaplan-Meier (1958) estimate (1-KM)

does not yield an unbiased estimate of the cumulative probability of failure due to the cause-

specific event of interest. This occurs because the Kaplan-Meier estimates depend on the

hazard of failure from the event of interest alone, and fail to take into account other causes

3



of failure. The cumulative incidence function (CI), while similar to the 1-KM estimator, is

an unbiased estimator of the same quantity where competing risks are present.

2.1.1 Important Quantities

We define two basic quantities to analyze competing risk data, the cause-specific hazard

(denoted hk(t)) and the cumulative incidence function (Fk(t)). The cause-specific hazard

for event of type k is the probability that an event of type k occurs just after time t, given

that the subject survived until time t, or had a prior event that was not of type k. The

cumulative incidence function for event k, Fk(t) = P (T ≤ t,K = k), can be interpreted as

the marginal cumulative probability of observing an event of type k by time t.

Let T = min(T1, . . . , TK) be the time to the first event, and K be the total number of

event types. We assume that no subject can experience two different types of events at the

same time point. The cause-specific hazard rate for the kth event type can be defined as

hk(t) = lim
∆t→0

P (t < T < t+ ∆t,K = k|T ≥ t)

∆t
. (2.1)

Thus, for small ∆t, it can be noted that

P (t < T < t+ ∆t,K = k)

∆t
≈ p(T ≥ t)hk(t). (2.2)

Integrating both sides, the cumulative incidence function for the kth event can be calculated

as

Fk(t) =

∫ t

0

S(u)dHk(u). (2.3)

It should be noted that the cumulative incidence function, Fk(t), is improper since

limt→∞ Fk(t) = P (K = k) and
∑

k Fk(t) = F (t). To characterize this behavior for each

of the cumulative incidence functions, it is beneficial to look at limt→∞(1 − Fk(t)), repre-

senting the proportion of individuals that will never experience an event of type k. This is

often referred to as the cure fraction for an event type, and can be found explicitly using a

parametric modeling approach.

4



2.1.2 Maximum Likelihood Estimation

Using the traditional approach to parametric inference, we assume that the competing events

are uncorrelated. Therefore the likelihood (for K = 2) can be constructed as the product of

two cause-specific likelihoods as

LCS =
n∏
i=1

[
f1(t;ψ1)δ1iS1(t;ψ1)1−δ1if2(t;ψ2)δ2iS2(t;ψ2)1−δ2i

]
, (2.4)

for some vector of parameters, φk, for event type k. It is assumed in this method that

all distributions are proper. This approach will be denoted “cause-specific” (CS) in later

sections.

An alternative method was presented in Jeong and Fine (2006). This method, denoted

the direct method (D), does not assume independence, but does require improper distribu-

tions. Here, the likelihood function for parametric inference can be constructed as:

LD =
n∏
i=1

{ K∏
k=1

fk(t;ψk)
δki

}{
1−

K∑
k=1

Fk(t;ψk)

}(1−
PK
k=1 δki)

 , (2.5)

for K distinct event types, vector of parameters ψk characterizing Fk, vector of covariates

covariate Zi = Zi, and fk = dFk/dt. In the case where K = 2, then this reduces to

LD =
n∏
i=1

f1(ti, ψ1)δ1if2(ti, ψ2)δ2i {1− F1(ti, ψ1)− F2(ti, ψ2)}1−δ1i−δ2i . (2.6)

Unlike the likelihood function from the standard methodology (CS), the expression (2.5)

cannot be factored into the product of cause-specific functions. Therefore, misspecification

of one of the cause-specific hazard functions may affect the estimates of the others (Jeong

and Fine, 2006).

Taking the first derivative of logLD with respect to ψ = (ψ1, ψ2, . . . , ψK) under the given

model, the maximum likelihood estimates (MLEs), ψ̂k may be determined using a numerical

algorithm, such as the Newton-Raphson method. The maximum likelihood estimator of the

cumulative incidence function is then Fk(t, ψ̂k), by using the invariance property of MLEs.

We assume certain regularity conditions for the MLEs, including consistency and asymp-

totic normality. Thus, the observed information matrix can be derived by taking the second

5



derivatives of the log of the likelihood function with respect to ψ. Applying the delta method,

we can find the variance of Fk(t, ψ̂k) by evaluating the expression

v̂ar(Fk(t; ψ̂k)) =

(
∂Fk(t;ψk)

∂ψk

)∣∣∣∣
ψk=ψ̂k

v̂ar(ψ̂k)

(
∂Fk(t;ψk)

∂ψk

)T ∣∣∣∣∣
ψk=ψ̂k

. (2.7)

When ψk = (ρk, κk) , which characterizes the Gompertz distribution, ∂Fk(t;ψk)/∂ψk is equiv-

alent to (
∂Fk(t;ψk)

∂ρk
,
∂Fk(t;ψk)

∂κk

)
.

This method is also applicable when there are covariates involved.

The delta method can also be applied to estimate the variance of the estimated cure

fraction (see Section 2.1.1), v̂ar(CF ). If the estimated value of the cure fraction is equal to

φ(ψ), then

v̂ar(CF ) =

(
∂φ(ψ)

∂ψ

)∣∣∣∣
ψk=ψ̂k

var(ψ̂)

(
∂φ(ψ)

∂ψ

)T ∣∣∣∣∣
ψk=ψ̂k

. (2.8)

2.1.3 Nonparametric Estimation of the CI Function

The cumulative incidence function can be estimated nonparametrically as

Fk(t) =
s∑
i=1

Ŝ(ti)dĤk(ti), (2.9)

where s = maxi(ti < t). Let n be the total number of patients on study and ni the number

of patients at risk beyond time ti. Further, define ei as the number of patients who fail due

to the cause of interest at time ti, ri as the number who fail due to all other causes at time

ti, and ci as the number censored at that time (using the notation of Gooley et al., 1999).

Then, h1(tj), the hazard rate for events of type 1, can be estimated as
ej
nj−1

, the proportion

of patients at risk at time tj who fail due to the cause of interest at time tj.

To estimate S(t), the Kaplan-Meier estimate of the survival function (for any possible

event) may be used:

KM(t) =
s∏
i=1

(
1− ei

ni−1

− ri
ni−1

)
. (2.10)
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So, the nonparametric estimator of the cumulative incidence function for the event of interest

is given by

F1(t) =
s∑
i=1

ei
ni−1

{
s∏
i=1

(
1− ei

ni−1

− ri
ni−1

)}
. (2.11)

Note that the complement of the Kaplan-Meier estimate for the event of interest would be

1−KM1(t) = 1−
s∏
i=1

(
1− ei

ni−1

)
,

which does not account for the hazard of failing due to any other causes, and therefore

overestimates the failure rate of the event of interest in the presence of competing events.

2.2 PARAMETRIC INFERENCE

2.2.1 Distributions

Although nonparametric methods, such as that of Kaplan and Meier (1958), and semi-

parametric methods, such as the proportional hazards model presented in Cox (1972), are

used extensively in practice, there are many parametric models that are also applicable to

survival data. Parametric modeling may result in estimates of the hazard function and

other quantities that accurately fit the data, assuming that the model is correctly specified.

Nonparametric modeling does not require assumptions to be made about the nature of the

data, but, while it may closely fit the data, does not give the additional insight about data

that parametric methods allow. There are several distributions that are commonly applied

to survival data. Five such distributions are reviewed below.

1. The exponential distribution is characterized by the survival function,

S(t) = exp (−λt),

for λ > 0. The density function is f(t) = λ exp (−λt). This distribution has a constant

hazard function, h(t) = λ. The exponential distribution has the memoryless property,

given by P (T ≥ t+ s|T ≥ t) = P (T ≥ s).

7



2. The Weibull distribution, one of the more popular models for survival data, is charac-

terized by the survival function,

S(t) = exp {−(ρt)κ}.

In this model, ρ, the scale parameter, and κ, the index parameter, must both be greater

than 0. The hazard function, h(t) = ρκκtκ−1, is relatively flexible and allows for increas-

ing, decreasing, or constant hazard shapes. Note that the exponential distribution is a

special case of the Weibull, where κ = 1.

3. Mudholkar et al. (1996) presented a 3-parameter Weibull distribution characterized by

the survival function

S(t) =

{
1− λ

(
t

σ

)1/α
}1/λ

,

for α, σ > 0 and λ real and finite. The hazard function,

h(t) =
(t/σ)

1
α
−1

ασS(t)

allows for a wide range of hazard shapes, including monotone increasing and decreasing,

bathtub and unimodal. The regular Weibull distribution is a special case, where λ→∞.

4. The Gompertz (1825) distribution has a survival function,

S(t) = exp

[
−κ
ρ

(eρt − 1)

]
,

and a hazard function h(t) = κeρt. A more detailed discussion of this distribution can be

found in Section 2.2.2.

5. A relatively new parametric model is that described in Jeong (2006). Related to the

Weibull distribution, this parameterization of Hougaard’s family of stable distributions

(1986) is characterized by the survival function

S(t) = exp

[
−θ

1−α {(ρt)κ + θ}α − θ
α

]
,

where, (ρt)κ is the cumulative hazard function of the Weibull distribution (κ > 0 and

ρ > 0), θ > 0 and −∞ < α < ∞. This model reduces to the Weibull distribution as

8



α → 0. Jeong’s distribution is regular, in that the domain of t does not depend on α,

and has a very flexible hazard function, given by

h(t) =
κ(ρt)κθ1−α

t {(ρt)κ + θ}1−α .

For the one-sample case with right censoring, the likelihood function for any parametric

model can be constructed as

L =
n∏
i=1

f(ti)
δiS(ti)

1−δi . (2.12)

2.2.2 Gompertz Distribution

The Gompertz distribution was first proposed by Benjamin Gompertz in 1825. (Its statis-

tical properties are also explained in some detail in Garg, Rao and Redmond (1970).) The

Gompertz (G2) survival function can be written as

SG2(t) = exp

{
−κ
ρ

(eρt − 1)

}
, (2.13)

with the hazard function given by hG2(t) = κeρt. While κ must be positive, ρ may take

on any finite real value. A plot of a possible hazard shape captured by this distribution is

presented in Figure 1.
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Figure 1: Plot of Gompertz Hazard Function with κ = 0.5

In the case where ρ is positive, the Gompertz distribution is proper; that is, its survival

function ranges between 0 and 1. On the other hand, if ρ < 0, then this distribution is

improper, with minS(t) = exp (κ/ρ) as t → ∞. As will be discussed in Section 2.1.1, this

property makes the Gompertz distribution well-suited to modeling competing risks data.
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2.2.3 Regression Models

Parametric models can be extended to include a number of time-independent covariates.

The accelerated failure-time model (AFT) states that survival time for an individual at time

t with a vector of covariates Z is the same as that of an individual with a baseline survival

function at time t exp (ZTβ), for β, a vector of regression coefficients. That is,

S(t|Z) = S0

{
t exp (ZTβ)

}
, (2.14)

implying that h(t|Z) = exp (ZTβ)h0[t exp (ZTβ)].

Alternatively, the linear model representation states that the relationship between the

values of the covariates and survival time is linear on a log scale, that is, log(T ) = u(T )+ZTβ.

Here u(T ) is an invertible and monotonically increasing function, Z is a p×1 vector of time-

independent covariates, and β is a p × 1 regression parameter vector. This model can be

generalized so that γ(F (t|Z)) = u(t)+ZTβ (Cheng et al., 1995; Fine, 1999), for γ(t), a known

increasing function. If γ is the logit function, then a proportional odds model is used, and the

regression parameters correspond to a log-odds ratio per unit increase in the covariates. If,

however, γ is the c-log-log function (ln(− ln(1−ν))), then proportional hazards are assumed.

Under competing risks, the proportional hazards model may be considered to model the

subdistribution hazard function of events of type k as presented in Fine and Gray (1999):

hCIk (t; Z) = hk0(t) exp (ZTβk), (2.15)

where hCIk (t; Z) is the cause-specific hazard function for the hazard of the kth event type.

This cause-specific hazard function can be evaluated based on the improper random variable

T ∗ = I(K = k) × T + I(K 6= k) ×∞, which is equivalent to T if an event of type k was

observed for the subject, and ∞ otherwise (Gray, 1988). At T ∗ = ∞, a mass point exists,

equal to 1− Fk(∞; Z), the “cure fraction” for the kth event.

Jeong and Fine (2007) proposed an extension of their direct parameterization method

(Jeong and Fine, 2006) that can handle covariates. They employed the generalized odds
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rate regression model of Dabrowska and Doksum (1988) that encompasses both the propor-

tional hazards and proportional odds models as special cases. This transformation takes the

following form:

g(ν) = log

[
(1− ν)−φ − 1

φ

]
, (2.16)

where Fk(t; Z) is the (improper) cumulative distribution function for events of type k, and

Hk(t) is the baseline cumulative hazard function.

Fine (1999) considered the transformation model (equation (2.16)) such that, for events

of type k,

gk(Fk(t; Z)) = lnHk(t) + ZTβk. (2.17)

If we solve this equation for Fk, we arrive at a cumulative incidence function for events of

type k which accounts for the covariates Z:

Fk(t; Z) = 1− {1 + φk exp (ZTβk)Hk(t)}−1/φk . (2.18)

When φk = 1, the transformation assumes proportional odds. That is,

Fk(t; Z) =
eZ

T βkHk(t)

1 + eZT βkHk(t)
. (2.19)

Additionally, proportional hazards are assumed as φk → 0:

Fk(t; Z) = 1− exp {− exp (ZTβk)Hk(t)}. (2.20)

With or without covariates, the maximum likelihood estimates of the parameters (and

their standard errors) can be estimated using the techniques given in Section 2.1.2. Sup-

pose that the (2-parameter) Gompertz distribution is assumed for the cumulative incidence

function for event types 1 and 2. The likelihood function then involves four parameters, two

for each event type, and all four are estimated simultaneously in the direct approach (Jeong

and Fine, 2006). The cumulative incidence function can then be estimated by Fk(t, ψ̂k) for

events of type k (k = 1, 2), where ψ̂k denotes the MLEs for some vector of parameters ψk.

Because the models for each event type are fitted jointly, model misspecification of one event

type may affect the validity of the estimates for the other event type (Jeong and Fine, 2006).

Therefore, there is a need to choose a distribution that is as flexible as possible for modeling

competing risks data.
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2.3 ASSUMPTIONS

Underlying this discussion of analysis of competing risks data is a number of important

assumptions. First, we assume that the set of K types of competing events are mutually

exclusive and exhaustive. A second assumption is that subjects can experience only one type

of event at any particular time point. It is this second point that we would like to discuss in

greater detail (Jeong, 2008).

Figure 2 shows the setup of a general competing risks problem. The failure times for

the event of interest (T1) are shown along the horizontal axis, while the failure times for

other events (T2) are shown along the vertical axis. We define T , the observed failure time

as T = min(T1, T2). The times where T1 = T2 are represented by the diagonal line. The area

above that line (with dashed lines) represents times when T1 < T2, or the event of interest

is observed first, while the area below the line represents times when T1 > T2, or some other

event is observed first.

Figure 2: Schema of Competing Events

Suppose we want to determine the probability that T = t, that is, Pr(T = t). This is

equivalent to the probability that min(T1, T2) = t. Therefore, this probability can be denoted
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as:

Pr(T = t) = Pr(min(T1, T2) = t)

= Pr(T1 = t, T2 ≥ t) + Pr(T1 ≥ t, T2 = t)− Pr(T1 = t, T2 = t). (2.21)

In the continuous case, we would make no distinction between Pr(T > t) and Pr(T ≥ t),

as both are considered equivalent to
∫∞
t
fT (x)dx. If the failure times are discrete (which is

a reasonable assumption), then the two quantities are only equivalent if

Pr(T1 = T2 = t) = 0,

and some care must be taken in calculating them. Notice that this situation is equivalent to

the assumption that only one type of event may be observed on a subject at any particular

time point.

Looking at Figure 2 again, suppose we are interested in estimating the probability that

T = t. From equation (2.21), this is equivalent to Pr(T1 = t, T2 ≥ t) (shown with triangles

and the circle in Figure 2) plus Pr(T1 ≥ t, T2 = t) (shown with squares and the circle)

minus the probability Pr(T1 = t, T2 = t) (only the circle). On the other hand, if we use

Pr(T1 = t, T2 ≥ t) + Pr(T1 ≥ t, T2 = t), then the probability Pr(T1 = T2 = t) (in the circle)

is not included. Thus, these two quantities are only equivalent if the probability that T1 = t

and T2 = t is 0.

It is also clear from the form of the likelihood that we assume that a subject cannot ex-

perience two different events at the same time. Suppose that under the regular assumptions,

we have the following likelihood:

LR =
n∏
i=1

f1(ti)
δ1if2(ti)

δ2i {S(ti, ti)}1−δ1i−δ2i , (2.22)

where S(t1, t2) is equivalent to the probability Pr(T1 > t, T2 > t), and

fk(ti) =
−∂
∂tk

S(t1, t2)|T1=T2=t.

In the case where a subject has an event of type k at time ti (that is, δki = 1), then the

contribution to the likelihood for that subject at time i is fk(ti) = Pr(Tk = ti). On the other

hand, if a subject is censored at time ti, then his contribution is S(ti, ti) = Pr(T > ti). Both
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Table 1: Comparison of Event Indicators under Regular (δ) and Alternate (∆) assumptions.

Event Observed Regular Alternate

Type 1 δ1 ∆1 = δ1(1− δ2)

Type 2 δ2 ∆2 = δ2(1− δ1)

Types 1 & 2 0 ∆12 = δ1δ2

Neither 1 nor 2 1− δ1 − δ2 1−∆1 −∆2 −∆12

Assumptions δ1, δ2 ∈ {0, 1} ∆1,∆2,∆12 ∈ {0, 1}

δ1δ2 = 0 (δ1, δ2, δ1δ2 ∈ {0, 1})

of these contributions have good interpretations. Suppose, however, that a subject experi-

ences both types of events at time ti. Then his contribution will be f1(ti)f2(ti)S(ti, ti)
−1,

which has no logical interpretation.

Now, we suspend the assumption that a subject cannot experience two different types

of events at the same time point. For this situation, we employ a different set of event

type indicators. Recall that in the standard methodology, δk indicates only that an event

of type k occurred, and makes no indication about the status of other events. We present

an alternate notation to clarify the events which occur at a specific time point. Under this

alternate assumption, we have ∆k, which is defined in Table 2.3. Note that if ∆12 = 0, which

is the regular assumption, then δ1δ2 = 0 and δk = ∆k.

Thus, under the alternate assumptions, we have a likelihood of the following form:

LA =
n∏
i=1

f1(ti)
∆1if2(ti)

∆2if12(ti)
∆12 {S(ti, ti)}1−∆1i−∆2i−∆12i , (2.23)

where

f12(ti) =
∂2

∂t1∂t2
S(t1, t2)|T1=T2=t.

Here, a subject contributes fk(ti) to the likelihood if she experiences only an event of type

k at time ti. Similarly, she contributes f12(ti) = Pr(T1 = ti, T2 = ti) if she experiences

both types of events at time ti. Finally, if she is censored at time ti then the contribution
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to the likelihood is S(ti, ti). Thus, the two likelihoods are equivalent except both events are

observed for a subject at a particular time. However, if it is assumed that the probability

that both events are observed simultaneously, Pr(T1 = t, T2 = t), is 0, then δ1δ2 is always

equal to 0, and therefore the two likelihoods are equivalent.

The question then is: does it make a difference which set of assumptions are appropriate?

In many situations, a subject never experiences two different types of events simultaneously.

Thus, in these cases, the two likelihoods are equivalent and the more restrictive set of as-

sumptions (regular) can be used. There may be cases, however, when the structure of the

data is such that one or more subjects experiences more than one event at a time. In

such cases, care must be taken to clarify the assumptions and use the correct form of the

likelihood.

2.4 LITERATURE REVIEW

The study of competing risks traces back to a paper in 1959 by D. R. Cox. Using data

that had previously been presented by Mendenhall & Hader (1958), Cox presented and

discussed a number of models that could be used to analyze data where the failures were

classified into two types. Additionally, he suggests the exponential and Weibull distributions

for parametric models for fitting parametric forms to this kind of data. He also noted that

as only T = min {T1, . . . , TK} is observable, the marginal distributions are non-identifiable,

as discussed in Tsiatis (1975).

Gail (1975) introduced notation for the competing risks setting and presented assump-

tions. In addition, Gail noted that the parameterization of S(t) is crucial to the fit and

interpretation of the model. Prentice et al. (1978) present an overview of competing risk

methods up to that point, and present an alternative approach based on cause-specific hazard

functions, shown to be a basic estimable quantity in this setting.

Larson and Dinse (1985) introduced a parametric mixture model framework, where the

mixing parameters correspond to the marginal probability of failure for each type. Gray

(1988) developed a class of nonparametric tests for comparing the cumulative incidence
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among different groups. Benichou and Gail (1990) discussed fully parametric analysis of the

cumulative incidence function, using exponential or piecewise exponential distributions.

Korn and Dorey (1992) discussed the Kaplan-Meier estimator (Kaplan and Meier, 1958),

noting that 1-KM overestimates the true proportion of survival estimates in the presence of

competing risks. Later, Pepe and Mori (1993) compared nonparametric methods for compet-

ing risks data. Bryant and Dignam (2004) proposed a semi-parametric method for cumulative

incidence functions which was more efficient than related non-parametric methods.

Jeong (2006) presented a new parametric family for modeling competing risks data that

is based on Hougaard’s family of stable distributions, and had the generalized Weibull distri-

bution as a special case. Jeong and Fine (2006) proposed a direct, rather than cause-specific,

method for drawing inference in the presence of competing risks. Recently, Jeong and Fine

(2007) proposed a method to incorporate covariates in such parametric inference.
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3.0 AN EXTENSION OF THE GOMPERTZ DISTRIBUTION

In this chapter, we present the first of two extensions of the Gompertz distribution. Both

distributions were developed to allow more flexible modeling of cause-specific cumulative in-

cidence functions. Specifically, the Gompertz distribution (as presented previously in Section

2.2.2) cannot capture unimodal hazards. Each of models presented in this chapter repre-

sent a different approach to creating a more flexible Gompertz model. The new distribution

developed in this chapter extends the Gompertz distribution from two to three parameters.

The first of extended models has three parameters, and is implied directly from the

original Gompertz (G2) distribution. As noted earlier, the G2 model is characterized by the

hazard function hG2(t) = κeρt. The 3-parameter Gompertz distribution (G3) was developed

so that hG3(t) is able to capture unimodal hazards, and contains hG2(t) as a special case.

3.1 THREE PARAMETER GOMPERTZ DISTRIBUTION

Suppose that hG3(t;κ, ρ, η) is of the form κeρte−ηg(t) for some function g(t). Then the max-

imum value of hG3(t) over t can be found as the solution to ρ − ηg′(t) = 0. We can then

choose g(t) so that hG3(t) is integrable. Here, we let g(t) = eρt. This choice of g was made

primarily so that h(t) is easily integrable.

Thus, hG3(t;κ, ρ, η) = κeρt−ηe
ρt

. This hazard function leads to a survival distribution

given by

SG3(t;κ, ρ, η) = exp

{
− κ

ρη

(
e−η − e−ηeρt

)}
. (3.1)
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When modeling cause-specific cumulative incidence functions, Fk can be expressed as 1 −

S(t; ρk, κk, ηk).

3.1.1 Properties

The G3 distribution is characterized by the hazard function κeρt−ηe
ρt

. This implies that the

regular Gompertz model is a special case of the G3 model, where η = 0. Thus, we can

test whether the fit of G3 model is significantly better than that of the G2 by performing a

Wald-type test of Ho : η = 0.

The parameter space for this distribution is as follows: κ > 0, and ρ and η both real and

finite. In this parameter space, the distribution is regular; that is, the domain of t is not

dependent on any of the parameters. A proof will be presented in Section 3.1.2.

An example of the G3 hazard function is shown in Figure 3, for parameters κ = 0.5,

ρ = −0.8, and η in the interval [−1, 2]. Notice that at η = 0, the hazard is monotone, but

that for positive values of η, it has a unimodal shape.
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Figure 3: Plot of 3-parameter Gompertz Hazard Function with κ = 1 and ρ = −1

Given the relation noted in the previous section, we can calculate t∗, the value of t at

which the hazard function reaches its maximum, as the solution to ρ− ηρeρt = 0. Thus, the

hazard function for the 3-parameter Gompertz distribution occurs at

t∗ =
1

ρ
ln

(
1

η

)
. (3.2)
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This distribution, like the G2 model, may be improper. For the G3 model, we can show

that it is proper only where both ρ > 0 and η < 0. The cure fraction, defined as limt→∞ S(t),

is thus an important quantity here. This quantity can be interpreted as the proportion of

subjects who never experience the event under consideration. For the 3-parameter Gompertz

model, the cure fraction is equal to

lim
t→∞

SG3(t) =


0 if ρ > 0 and η < 0;

exp
(
−κ
ρη
e−η
)

if ρ > 0 and η > 0;

exp
{
−κ
ρη

(e−η − 1)
}

if ρ < 0.

(3.3)

3.1.2 Regularity

We can show that the G3 model is regular in that ψ3 = {κ, ρ, η} are not boundary parameters.

To prove this, we need only show that SG3(t;ψ3) is in the interval [0, 1] for all values of the

parameter space. Since

SG3(t;κ, ρ, η) = exp

{
− κ

ρη

(
e−η − e−ηeρt

)}
,

this is equivalent to
κ

ρη

(
e−η − e−ηeρt

)
> 0. There are four cases, depending on whether ρ

and η are positive or negative; we show only one here. In all cases, assume κ > 0.

First, note that
κ

ρη

(
e−η − e−ηeρt

)
is equivalent to

κ

ρη
e−η

(
1− eη−ηeρt

)
. Suppose ρ < 0

and η > 0. Thus, e−η/η > 0, and therefore, 1− exp (η − ηeρt) is less than 0. This simplifies

to η(1− eρt) > 0. Since η is assumed in this case to be positive, 1− e−ρt must also be, which

is true wherever ρ < 0. Thus, all conditions hold for negative ρ and positive η. The other

three cases can be proved in a similar fashion. The 3-parameter Gompertz distribution is

therefore regular in its parameter space.
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3.2 SIMULATION STUDY

The 3-parameter Gompertz distribution as previously presented in this chapter is a new

distribution. It is of great importance to determine if this distribution produces unbiased

maximum likelihood estimates for each of the parameters. However, due to the complexity of

its distributional form, it is impossible to compute MLEs analytically. Thus, it is necessary

to perform a simulation study to determine whether or not the estimates are biased.

3.2.1 Data Generation Algorithm

Data sets of size n were generated using the following method. As survival data generally

contain some amount of censored data, we considered three scenarios: 5%, 10% and 20%

censoring. Failure times were generated according to a 3-parameter Gompertz distribution,

using a modifed form of the probability integral transform method (Casella and Berger, 2002,

Chapter 2) which accounted for the improper form of the distribution.

First, n/2 observations, denoted U1, were generated from a uniform distribution on the

interval (0, 1−CF1), where CF1 is equal to the cure fraction for the given set of parameters

according to equation (3.3). Another n/2 observations, U2, are generated in a similar fashion

from UNIF(0, 1 − CF2). Next, we calculated T1 and T2 according the probability integral

transform as

Tki =
1

ρk
log

[
− 1

ηk
log

{
e−ηk +

ηkρk
κk

log(1− Uki)
}]

for k = 1, 2 and i = 1, . . . ,
n

2
. For observations in T1, the event indicators were set as δ1 = 1

and δ2 = 0. Conversely, for observations in T2, we set the event indicators as δ1 = 0 and

δ2 = 1. Then, to combine the data, let T = {T11, . . . , T1n
2
, T21, . . . , T2n

2
} and combine the

event indicators in a similar fashion. Finally, to specify the desired censoring proportion,

generate n observations, denoted C, from a uniform distribution on the interval (2, cmax),

where cmax is chosen to guarantee the desired proportion. If Ci < Ti, set: Ti = Ci, δ1i = 0

and δ1i = 0.
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3.2.2 Optimization

For the simulation study, we completed 1000 iterations for datasets with n = 1000, and three

different censoring levels: 5%, 10% and 20%. The parameters used to generate the data were

ψ1 = {0.021,−0.107, 0.118}

and

ψ2 = {0.014,−0.013,−1.118}.

The optimization for each iteration was a two-step process. First, a cause-specific model

was used for each type of event. That is, we maximized lnLk =
∑

i{δik ln(f(ti;ψk)) + (1 −

δik) ln(S(ti;ψk))} for each k = 1, 2, using initial values of {1, 1, 1, 1}. This is equivalent to

using a cause-specific approach of obtaining MLEs, which does not take into account the

correlation between the parameters of each type. This approach does, however, provide good

initial estimates, denoted ψ̃1 and ψ̃2, for the direct approach. Thus, the results of each cause-

specific model became the initial values for the joint model. Second, the direct model was

used to estimate parameters for both types of events simultaneously, based on the likelihood

function (2.6), giving MLEs denoted ψ̂1 and ψ̂2.

The likelihood functions may be optimized using any optimization procedure. While

the Newton-Raphson algorithm is commonly used, the method is very sensitive to choice of

starting values. Given the complexity of this distribution, the results of the optimization

may be more accurate using another method, such as Nelder-Mead (Nelder and Mead, 1965)

or conjugate gradient. For the purposes of this simulation, the Nelder-Mead simplex method

was used. Data generation and optimization where performed SAS using PROC IML and

PROC NLP. Sample code can be found in the Appendix.

3.2.3 Results

The results from the simulation study indicate that there is no significant bias in the maxi-

mum likelihood estimates produced by 3-parameter Gompertz distribution. Specific results

for each censoring proportion can be found in Table 2. Three values are given for each

parameter at each censoring level: bias (computed as
1

n

∑
β̂ − β), the standard error of
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Table 2: Results of 3-parameter Gompertz Simulation (1000 simulated data sets with n =

1000)

5% Censoring 10% Censoring 20% Censoring

Bias SE p Bias SE p Bias SE p

κ1 51.80 (669.22) 0.47 89.57 (758.63) 0.45 110.78 (851.81) 0.45

ρ1 0.06 (1.10) 0.48 -0.01 (1.74) 0.50 0.09 (0.20) 0.33

η1 1.60 (2.51) 0.26 1.24 (2.74) 0.32 0.56 (3.34) 0.43

κ2 55.18 (495.28) 0.46 5.86 (114.66) 0.48 18.93 (191.46) 0.46

ρ2 0.01 (0.0001) 0.00 0.00 (0.36) 0.50 0.00 (0.28) 0.50

η2 0.81 (2.50) 0.37 1.94 (2.31) 0.20 1.96 (3.59) 0.29

the estimates, and p-values (computed from the Wald statistic Z =

(
1

n

∑
β̂ − β

)
/SE(β̂),

where β ∈ {ψ1, ψ2}). As evident in the table, the parameter estimates are approximately

unbiased, and the standard errors generally increase as the censoring proportion increases.

3.3 APPLICATION TO DATA

The 3-parameter Gompertz model can be readily applied for parametric estimation of the

cumulative incidence function, where the event of interest is local and regional recurrences of

breast cancer. One data set comes from a clinical trial (B-14) conducted by the National Sur-

gical Adjuvant Breast and Bowel Project (NSABP). This phase III trial investigated the use

of tamoxifen in breast cancer patients who had negative axillary lymph nodes and estrogen

receptor positive breast cancer. There were 1453 patients randomized to the placebo arm,

1413 of which were eligible and had follow-up. Additionally, 1439 patients were randomized

to the tamoxifen arm, but only 1404 were eligible with follow-up. The mean time on study

for both treatment groups was approximately 20.4 years. Fisher et al. (1989) reported that
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patients treated with tamoxifen had a better outcome than those treated with placebo. This

analysis will focus on the effects of treatment and tumor size on the cumulative probabilities

of local-regional recurrence and other events.

For this analysis, we use a cohort of a 2817 eligible patients on either the placebo or

tamoxifen treatment arms for whom there was follow-up and who had known pathological

tumor size. There were 1413 patients from the placebo treatment arm and 1410 from the

tamoxifen arm.

3.3.1 Simple Model

To begin with, we apply the model to the B-14 dataset from the NSABP. At this stage, we

will stratify on treatment; however, when we are interested in the effect of covariates, we will

compare to an unstratified model. Maximum likelihood estimates of the parameters were

obtained using the direct likelihood presented in Section 2.1.2 and the survival function given

in Section 3.1. Then parametric estimates of the cumulative incidence functions could be

obtained by substituting the MLEs (κ̂k, ρ̂k, η̂k) into the 3-parameter Gompertz cumulative

distribution function, 1−Sk(t; κ̂k, ρ̂k, η̂k) (from equation (3.1)). Nonparametric estimates of

the cumulative incidence were computed using a SAS macro (Medical College of Wisconsin

Division of Biostatistics, 2007). Figure 4 shows the estimated cumulative incidence for each

event type from the NSABP B-14 dataset. It is clear from the plots that the parametric esti-

mates calculated using the 3-parameter Gompertz distribution are very close to the estimates

made without a distributional assumption for the data.

Maximum likelihood estimates of the parameters for the stratified model are given in

Table 3. The cause-specific survival functions for both types of events and both treatment

arms are improper. As is evident from equation (3.3), the 3-parameter Gompertz distribution

is proper only when ρ̂ > 0 and η̂ < 0. For both types of event on the placebo arm, ρ̂ is

negative. For the tamoxifen arm, ρ̂ is negative for other events, and both ρ̂ and η̂ are positive

for local-regional recurrences.
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(a) Local-regional Events (a) Other Events

Figure 4: Plot of nonparametric (NP) and 3-Parameter Gompertz (G3) estimates of the

hazard of (a) local-regional and (b) other events by treatment arm (Placebo vs. Tamoxifen)

from NSABP B-14
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Table 3: NSABP B-14 Parameter Estimates for G3 Model, by Treatment. For Local-Regional

recurrences, k = 1, while for all other events, k = 2.

Var. Placebo Tamoxifen

κ1 0.021 (0.021) 0.011 (0.009)

ρ1 -0.107 (0.059) 0.064 (0.040)

η1 0.118 (1.175) 0.807 (0.577)

κ2 0.014 (0.035) 8.372 (0.009)

ρ2 -0.012 (0.015) -0.001 (0.002)

η2 -1.118 (2.432) 5.619 (0.072)

3.3.2 Models with Covariates

Next, we were interested in the effect of two covariates: treatment and tumor size. Treatment

(trt) was coded 0 for patients on the placebo arm, and 1 for patients on tamoxifen. Tumor

size (tsize) was measured in centimeters. Both of these models were compared with a model

without covariates.

The first model looked only at treatment as a predictor for the two event types. The

estimates for this model can be found in Table 4. We can test the proportional odds and

proportional hazards assumptions based on the parameter estimates for this model, using a

Wald-type statistic of the following form:

Zφk =
φ̂k − φk0

SE(φ̂k)
, (3.4)

and φk0 = 0 if testing the proportional hazards assumption, and φk0 = 1 for the proportional

odds assumption. Such a test statistic will test the hypothesis H0 : φ̂k = φk0. As we will be

testing both assumptions simultaneously, a Bonferroni correction will be used. For the test of

proportional hazards (odds) assumptions, the p-values are 0.0077 (0.0023) for local-regional

recurrences and 0.0125 (0.0102) for other events. Thus, we reject both model assumptions

for both event types, and we should focus our attention on the model which estimates φ.

25



Next, we fit a model for both treatment and tumor size (measured in centimeters). As

was the case with the treatment-only model, we reject both the proportional hazards and

proportional odds assumptions. The p-values for the proportional hazards (odds) models

are 0.0017 (< .0001) and 0.0029 (0.0002) for local-regional recurrences and other events

respectively.

It is also of interest to determine whether treatment and tumor size were significant

predictors of either of the two event types. For the treatment only model, β̂trt = −1.386

(p < .0001) for recurrences, and -0.513 (p = .0008) for other events. Similarly in the model

with both treatment and tumor size, p < .0001 for treatment and p = .0091 for tumor size

for local-regional recurrences, while for other events, p = .0008 for treatment and p < .0001

for tumor size. Thus, both treatment and tumor size have significant effects on recurrence

for these patients. In both models, β̂trt is negative, indicating a protective effect of tamoxifen

on both local-regional recurrences and all other events, though the degree of the effect varies

by event type. As β̂tsize is positive for both event types, increased tumor size is associated

with increased risk for recurrences and all other events.

For both events, the results are relatively consistent across models. Both treatment

and tumor size are statistically significant predictors of recurrence and other events for

the patients in B-14. Further, treatment is shown to decrease the recurrence rate among

patients, while an increase in tumor size is associated with an increase in recurrence rates.

These results are important for breast cancer patients, as well as investigators.
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Table 4: NSABP B-14 G3 Parameter Estimates for all models: Model without Covariates

(NoCovs); Treatment only (Trt); and Treatment and Tumor Size (Trt, Tsize). For Local-

Regional recurrences, k = 1, while for all other events, k = 2. In the models with covariates,

a separate intercept has been fit for each event type.

Var. NoCovs Trt Trt, Tsize

κ̂1 0.014 (0.013) 0.059 (0.457) 0.063 (2.017)

ρ̂1 -0.085 (0.048) -0.101 (0.022) -0.105 (0.020)

η̂1 0.173 (1.054) 3.014 (1.015) 3.634 (1.024)

φ̂1 – 15.811 (5.930) 19.292 (6.139)

β̂10 – 1.775 (7.854) 1.643 (32.117)

β̂1trt – -1.386 (0.323) -1.500 (0.324)

β̂1tsize – – 0.276 (0.117)

κ̂2 0.016 (0.026) 0.006 (0.028) 0.038 (2.192)

ρ̂2 -0.005 (0.005) 0.006 (0.008) 0.188 (0.050)

η̂2 -0.804 (1.582) -30.743 (51.075) -0.001 (0.007)

φ̂2 – 6.371 (2.091) 5.932 (1.337)

β̂20 – -28.564 (51.284) -0.530 (58.322)

β̂2trt – -0.513 (0.164) -0.479 (0.147)

β̂2tsize – – 0.344 (0.065)
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4.0 A SECOND EXTENSION OF THE GOMPERTZ MODEL

4.1 FOUR PARAMETER GOMPERTZ DISTRIBUTION

Jeong (2006) proposed a parameterization of Hougaard’s family of distributions (1986), and

used the generalized Weibull distribution to model the cumulative incidence function. The

generalized Weibull distribution can be used in many cases, as it has a flexible hazard function

that can be monotonically decreasing or increasing, unimodal, or U-shape.

We propose an extension of Jeong’s model that will account for a “cured population”

for each of the possible cause-specific events. Additionally, Jeong’s model assumed that the

distribution came from a family with expected value 1 (Hougaard, 1986), while this model is

more flexible. Finally, this 4-parameter Gompertz model (G4) has a flexible hazard, which

can be either monotone or unimodal.

From the distribution presented by Hougaard (1986), a survival function can be developed

from equation 4.2:

S(t) = exp

[
−δθ

α

α

{(s
θ

+ 1
)α
− 1
}]
. (4.1)

Then we reparameterize δ so that δ = θ2−α. This substitution allows for a reduction in the

dimension of the parameter space as well as permitting the expected value of the underlying

function to be θ. Furthermore, noting that s in equation (4.1) represents the cumulative

hazard function, here we will adopt that of the Gompertz distribution to allow the proposed

distribution to be improper. Hence, we have a 4-parameter survival function related to the

Gompertz distribution that can be written as follows:

SG4(t;α, θ, ρ, κ) = exp

[
−θ

2

α

{(
κ

θρ
(eρt − 1) + 1

)α
− 1

}]
. (4.2)
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The parameters space is as follows: θ, κ > 0, and α and ρ must be finite. In this

parameter space, the distribution is regular, which will be shown in Section 4.1.2.

4.1.1 Properties

The hazard function for this model can be obtained directly from (4.2), as

hG4(t;α, θ, κ, ρ) =
− d
dt
SG4(t)

SG4(t)
= θκeρt

{
κ

θρ
(eρt − 1) + 1

}α−1

. (4.3)

Setting the first derivative of hG4(t) equal to zero, we can find the maximum of the hazard

function, occurring at

t∗ =
1

ρ
ln

{
κ− θρ
ακ

}
, (4.4)

provided that κ−θρ
ακ

> 0. Figure 5 shows the flexibility of the hazard function, and its

unimodality.
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Figure 5: Plot of 4-parameter Gompertz Hazard Function with θ = 1, κ = 0.02, and ρ = 5

The cure fraction is also an important quantity here since this distribution is improper,

wherever ρ or α is negative. For the 4-parameter Gompertz model, the cure fraction is equal

to

lim
t→∞

SG4(t) =


0 if ρ > 0 and α > 0;

exp
(
θ2

α

)
if ρ > 0 and α < 0;

exp
[(
−θ2
α

){
(1− κ

θρ
)α − 1

}]
if ρ < 0.

(4.5)
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Thus, for the case where both ρ and α are greater than zero, the distribution is proper.

If either ρ or α is less than zero, the survival function for this distribution is improper.

Since the cumulative incidence function is generally improper (see Section 2.1.1), it is not

necessary to use proper distributions to model competing risks data. It should be noted that

even for the proper case of this distribution, it may be improper for the length of time that

is of interest (for example, 25 years), and will therefore be in all cases applicable.

4.1.2 Regularity

Because SG4(t) is a survival function, it must only take on values between 0 and 1. That is,

θ2

α

{(
κ

θρ
(eρt − 1) + 1

)α
− 1

}
> 0.

This must be true for all values in the parameter space.

If α > 0, then

(
κ

θρ
(eρt − 1) + 1

)α
−1 must be greater than 0. So,

(
κ

θρ
(eρt − 1) + 1

)α
>

1, implying that
κ

θρ
(eρt−1) > 0. Since κ and θ are both greater than 0, we need only to look

at ρ. Where ρ > 0, this implies that eρt− 1 > 0 or eρt > 1, which is always true. Conversely,

if ρ < 0, then eρt − 1 < 0 and eρt < 1, which is also always true. Thus, the conditions hold

for all α > 0. A similar proof can be constructed for the case where α < 0.

4.2 SIMULATION STUDY

The 4-parameter Gompertz distribution as previously presented in this chapter is a new

distribution. As with the G3 model, we are interested in the unbiasedness of the maximum

likelihood estimates. The G4 distribution is however quite complex and MLEs cannot be

computed analytically.

30



4.2.1 Data Generation and Optimization

Data sets were simulated according to an algorithm like that presented in Section 3.2.1. At

the probability integral transform step, the failure times where generated as:

Tki =
1

ρk
log

[
θkρk
κk

{((
1− αk

θ2
k

log(1− Uki)
)1/αk

)
− 1

}
+ 1

]

for k = 1, 2, and i = 1 . . . n. For the simulation study, we completed 1000 iterations for

datasets with n = 1000, and three different censoring levels: 5%, 10% and 20%. The

parameters used to generate the data were

ψ1 = {0.2, 0.4, 0.15,−0.1}

and

ψ2 = {0.1, 0.5, 4.0,−0.08}.

As in the G3 case, he optimization for each iteration was a two-step process. First,

a cause-specific model was used for each type of event. That is, we maximized lnLk =∑
i{δik ln(f(ti;ψk))+(1−δik) ln(S(ti;ψk))} for each k = 1, 2, using initial values of {1, 1, 1, 1}.

This is equivalent to using a cause-specific approach of obtaining MLEs, but does not take

into account the correlation between the parameters of each type. This approach does,

however, provide good initial estimates, denoted ψ̃1 and ψ̃2, for the direct approach. Thus,

the results of each cause-specific model became the initial values for the direct model. Second,

the direct model was used to estimate parameters for both types of events simultaneously,

using the direct approach given in equation (2.6), which would give the MLEs denoted ψ̂1

and ψ̂2.

The likelihood functions may be optimized using any optimization procedure. While

the Newton-Raphson algorithm is commonly used, the method is very sensitive to choice of

starting values. Given the complexity of this distribution, the results of the optimization

may be more accurate using another method, such as Nelder-Mead (Nelder and Mead, 1965)

or conjugate gradient. For the purposes of this simulation, the Nelder-Mead simplex method

was used. Data for the simulation was generated using SAS PROC IML, while optimizations

were performed using PROC NLP. Sample code can be found in the Appendix.
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Table 5: Results of G4 Simulation (1000 simulated data sets with n = 1000)

5% Censoring 10% Censoring 20% Censoring

Bias SE p Bias SE p Bias SE p

α1 -0.03 (0.37) 0.23 -0.18 (4.40) 0.24 0.05 (0.83) 0.74

θ1 0.37 (0.56) 0.63 1.10 (4.95) 0.71 0.54 (1.36) 0.67

κ1 0.51 (3.15) 0.72 0.53 (2.40) 0.71 0.50 (1.80) 0.69

ρ1 0.46 (1.04) 0.67 0.56 (1.37) 0.67 0.42 (1.00) 0.67

α2 -0.01 (0.15) 0.24 0.01 (0.16) 0.73 0.06 (0.15) 0.68

θ2 0.12 (0.11) 0.57 0.10 (0.12) 0.61 0.09 (0.11) 0.61

κ2 0.52 (4.95) 0.73 0.91 (7.76) 0.73 1.04 (2.10) 0.66

ρ2 0.29 (0.17) 0.52 0.36 (0.25) 0.54 0.36 (0.25) 0.54

4.2.2 Results

The results from the simulation study indicate that there is no significant bias in the max-

imum likelihood estimates produced by the 4-parameter Gompertz distribution. Specific

results for each censoring proportion can be found in Table 5. Three values are given for

each parameter at each censoring level: bias (computed as
1

n

∑
β̂ − β), the standard error

of the estimates, and p-values (computed from the Wald statistic Z = bias/SE(β̂), where

β ∈ {ψ1, ψ2}). As evident in the table, the parameter estimates are approximately unbiased,

and the standard errors generally increase as the censoring proportion increases.

4.3 EXAMPLE

The 4-parameter Gompertz model can be readily applied for parametric estimation of the

cumulative incidence function, where the event of interest is local and regional recurrences of

breast cancer. One data set comes from a clinical trial (B-14) conducted by the National Sur-
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gical Adjuvant Breast and Bowel Project (NSABP). This phase III trial investigated the use

of tamoxifen in breast cancer patients who had negative axillary lymph nodes and estrogen

receptor positive breast cancer. There were 1453 patients randomized to the placebo arm,

1413 of which were eligible and had follow-up. Additionally, 1439 patients were randomized

to the tamoxifen arm, but only 1404 were eligible with follow-up. The mean time on study

for both treatment groups was approximately 20.4 years. Fisher et al. (1989) reported that

patients treated with tamoxifen had a better outcome than those treated with placebo. This

analysis will focus on the effects of treatment and tumor size on the cumulative probabilities

of local-regional recurrence and other events.

For this analysis, we use a cohort of a 2817 eligible patients on either the placebo or

tamoxifen treatment arms for whom there was follow-up and who had known pathological

tumor size. There were 1413 patients from the placebo treatment arm and 1410 from the

tamoxifen arm.

4.3.1 Simple Model without Covariates

First, we apply the model without covariates to the data. Two models are presented, one

which stratifies by treatment, and another which models the entire dataset. Maximum

likelihood estimates of the parameters were obtained using the direct likelihood presented

in Section 2.1.2 and the survival function given in Section 4.1. Then parametric esti-

mates of the cause-specific cumulative incidence functions could be obtained by substituting

the MLEs (α̂k, θ̂k, ρ̂k, κ̂k) into the 4-parameter Gompertz cumulative distribution function,

1 − SG4
k (t; α̂k, θ̂k, ρ̂k, κ̂k) (from equation (4.2)). Nonparametric estimates of the cumulative

incidence were computed using a SAS macro (Medical College of Wisconsin Division of Bio-

statistics, 2007). Figure 6 shows the estimated cumulative incidence for each event type using

data from NSABP B-14. It is clear from the plots that the parametric estimates calculated

using the 4-parameter Gompertz distribution are very close to the estimates made without

assuming a distributional form for the data.

Maximum likelihood estimates of the parameters for the model stratified by treatment

group are presented in Table 6. The cause-specific survival functions for both types of events
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(a) Local-Regional Events (b) Other Events

Figure 6: Plot of nonparametric (NP) and 4-Parameter Gompertz (G4) estimates of the

hazard of (a) local-regional and (b) other events by treatment arm (Placebo vs. Tamoxifen)

from NSABP B-14
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Table 6: NSABP B-14 Parameter Estimates for G4 Model, by Treatment. For Local-Regional

recurrences, k = 1, while for all other events, k = 2.

Var. Placebo Tamoxifen

κ1 0.008 (0.011) 0.002 (0.006)

ρ1 6.415 (3.261) 10.391 (8.606)

α1 -0.019 (0.010) -0.004 (0.004)

θ1 0.058 (0.016) 0.025 (0.011)

κ2 0.119 (0.032) 12.271 (29.183)

ρ2 0.086 (0.084) -0.020 (0.013)

α2 0.170 (0.309) 1.177 (0.085)

θ2 0.444 (0.080) 0.000 (0.001)

are improper, since α < 0 for local-regional recurrences, and ρ < 0 for all other events.

4.3.2 Models with Covariates

Next, we were interested in the effect of two covariates: treatment and tumor size. Treatment

(trt) was coded 0 for patients on the placebo arm, and 1 for patients on tamoxifen. Tumor

size (tsize) was measured in centimeters. For comparison, we also present here the parameter

estimates for a model without covariates, and without stratification. The first model looked

only at treatment as a predictor for the two event types. The second model examined both

treatment and tumor size. The estimates for these models can be found in Table 7.

We can test the proportional odds and proportional hazards assumptions based on the

parameter estimates for this model, using a Wald-type statistic of the following form:

Zφk =
φ̂k − φk0

se(φ̂k)
, (4.6)

and φk0 = 0 if testing the proportional hazards assumption, and φk0 = 1 for the proportional

odds assumption. Such a test statistic will test the hypothesis H0 : φ̂k = φk0, and we use
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Table 7: NSABP B-14 G3 Parameter Estimates for all models: Model without Covariates

(NoCovs); Treatment only (Trt); and Treatment and Tumor Size (Trt, Tsize). For Local-

Regional recurrences, k = 1, while for all other events, k = 2. In the models with covariates,

a separate intercept has been fit for each event type.

Var. NoCovs Trt Trt, Tsize

κ̂1 0.005 (0.007) 0.952 (2.249) 0.262 (0.973)

ρ̂1 8.096 (3.774) -0.026 (0.026) -0.020 (0.026)

α̂1 -0.011 (0.006) 1.789 (0.224) 1.929 (0.246)

θ̂1 0.041 (0.010) 0.00005 (0.0003) 0.000001 (0.0001)

φ̂1 – 25.031 (7.596) 29.185 (8.084)

β̂10 – -1.458 (4.968) -1.100 (0.137)

β̂1trt – -1.836 (0.367) -1.928 (0.375)

β̂1tsize – – 0.430 (0.155)

κ̂2 11.178 (17.216) 0.109 (0.648) 0.080 (0.0001)

ρ̂2 -0.018 (0.009) 3.843 (1.095) 4.147 (1.139)

α̂2 1.054 (0.050) 0.115 (0.060) 0.065 (0.026)

θ̂2 0.002 (0.003) 0.264 (1.564) 0.165 (0.0001)

φ̂2 – 14.265 (4.719) 8.839 (1.924)

β̂20 – -0.878 (11.881) -1.387 (0.0001)

β̂2trt – -0.872 (0.243) -0.683 (0.184)

β̂2tsize – – 0.445 (0.078)
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a Bonferroni correction to account for the multiple testing. For the test of the proportional

hazards assumptions for the treatment only model, the p-values are 0.0010 and 0.0025 for

local-regional recurrences and other events respectively. For the test of the proportional odds

assumptions, the p-values are 0.0016 and 0.0049 respectively. Thus, we reject both model

assumptions for both event types, and we should focus our attention on the model which

estimates φ.

Next, we fit a model for both treatment and tumor size (measured in centimeters). The

parameters ρ and α are each tested to determine if either of the cause-specific distributions

are improper. Based on these tests, it cannot be rejected that either of the distributions are

proper. Additionally, φ must be tested to determine if we can assume either proportional

odds or hazards. The p-values for the proportional hazards (odds) models are 0.0003 (0.0005)

and < 0.0001 (< 0.0001) for local-regional recurrences and other events respectively. So, both

the proportional odds and hazards assumptions are rejected for this model.

It is also of interest to determine whether treatment and tumor size were significant

predictors of either of the two event types. For the treatment only model, β̂trt = −1.84

(p < .0001) for recurrences, and -0.87 (p = .0001) for other events. Similarly in the model

with both treatment and tumor size, p < .0001 for treatment and p = .0003 for tumor size for

local-regional recurrences, while for other events, p < .0001 for both event types. Thus, both

treatment and tumor size have significant effects on recurrence for these patients. In both

models, β̂trt is negative, indicating a protective effect of tamoxifen on both local-regional

recurrences and all other events, though the degree of the effect varies by event type. As

β̂tsize is positive for both event types, increased tumor size is associated with increased risk

for recurrences and all other events.

For both events, the results are relatively consistent across models. Both treatment

and tumor size are statistically significant predictors of recurrence and other events for the

patients in B-14. Further, treatment is shown to decrease the recurrence rate among patients,

but an increase in tumor size is associated with an increase in recurrence rates. These results

are important for both investigators and breast cancer patients.
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4.4 DISCUSSION

In Chapters 3 and 4, we have presented two novel extensions of the Gompertz distribution.

The addition of a third parameter, η, or third and fourth parameters, α and θ, allow the

models to capture unimodal hazards, while still containing the original model as a special

case. This feature is important as it protects against model misspecification when performing

parametric analysis of competing risks data. Since the Gompertz distribution is well-suited

to fitting cumulative incidence functions, these new distributions would broaden the scope

of parametric inference on competing risks data..

For the G3 model, the effect of η on the hazard rate is not straightforward. The rela-

tionship between hG2(t) and hG3(t) is such that hG3(t) is not a simple function of hG2(t) and

the additional parameter η. Rather, the two hazard functions can be related as

hG3(t) = hG2(t) exp
{
−η
κ
hG2(t)

}
, (4.7)

which is also a function of κ. Thus, the effect of η on the hazard rate is neither additive nor

multiplicative, and the hazard of the G3 model cannot be determined solely as a function of

the hazard of the G2 model and the additional parameter. The G3 model, however, remains

well-defined because it captures the standard Gompertz model as a special case. However,

while G3(κ, ρ, 0) is equivalent to G2(κ, ρ), there is no such relation between the G4 and

G3 models. It might be beneficial to have a G4 model that is more closely related to its

counterparts. This is clearly an area for future research.

Because the models are not directly related, assessing the goodness-of-fit of one model

of the other is not simply a matter of testing the significance of a parameter. Some other

method must therefore be used to assess the fit of the distributions to the data, such as the

Akaike information criteria (Akaike, 1974).
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5.0 JOINT MODELING OF COMPETING RISKS

In the previous chapters, we have used the direct approach of Jeong and Fine (2006) (pre-

sented in section 2.1.2) to make inference about the parameters for the two distinct event

types. This method assumes that the times T1, the time to an event of type 1, and T2, the

time to an event of type 2, are not independent. However, this approach specifies that the

overall survival function be

SD(t1, t2) = 1− F1(t1)− F2(t2) (5.1)

≈ S1(t1) + S2(t2)− 1.

With the direct approach, it is assumed that the cumulative incidence functions for two

types of events are additive: F (t) = F1(t) + F2(t). It is unclear whether this assumption

is always applicable. Another approach, called “cause-specific,” assumes that the hazards

for two competing events are mutually exclusive, and thus that the parameters for each

cause-specific event can be estimated separately. The overall survival function assumed in

the cause-specific case is

SCS(t1, t2) = S1(t1)S2(t2). (5.2)

This is equivalent to the cause-specific hazard rates being additive: h(t) = h1(t) + h2(t).

Both of these methods make specific assumptions about the form of the joint distribution

of T1 and T2. (This chapter will assume that we have a situation with only two competing

risks.) Here, we present a generalized approach to the modeling of competing risks which

encompasses both the direct (D) and cause-specific (CS) methods as special cases. This

joint method (J) is simple to employ, and estimates a parameter which allows investigators

to test the independence of the two lifetime distributions under competing risks.
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5.1 RELATED WORK

Bivariate survival data were first discussed by Clayton (1978), where Clayton developed a

nonparametric method for bivariate lifetables, and presented a method of estimating the

association between the two correlated lifetime distributions. Oakes (1982) later presented

an alternate association parameter which measured concordance between the two lifetime

distributions. Oakes (1989) developed theory for bivariate survival modeling, including the

use of frailty to construct an Archimedean copula, which could be used to model bivariate

survival data.

Zheng and Klein (1995) presented a nonparametric copula-graphic estimator of the

marginal distributions for competing risks data. Bunea and Bedford (2002) present an

Archimedean copula model used on dependent competing risks models. Escarela and Carrière

(2003) fit competing risks models using an assumed copula, and Weibull marginal distribu-

tions.

More recently, Jeong and Fine (2006) proposed a direct modeling approach for the cu-

mulative incidence function, contrasting it with the cause-specific approach which assumes

independence. Chen et al. (2007) proposed three two-sample tests for correlated competing

risks data. Nonparametric estimators of the cumulative hazard and incidence functions were

presented by Cheng et al. (2007) for bivariate competing risks, and also discussed summary

statistics for the dependence between failure times. Finally, Cheng and Fine (2008) discuss

nonparametric estimation of a cause-specific cross-hazard ratio for bivariate survival data.

To date, copulas have not been applied to bivariate competing risks models in cases

where the marginals are modeled with improper distributions. In this chapter, we present

such an approach.

5.2 COPULAS

We begin with a discussion of copulas, as the joint method will be developed using an

Archimedean copula. However, as the distributions used in competing risks model are im-
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proper, and copula models assume proper marginals, it is necessary to confirm that it is

possible to use copulas (as defined in the literature) with improper marginal distributions.

A literature review revealed no work to this point on copulas for improper marginals. It is

therefore necessary to describe copulas in some detail and discuss their use with improper

marginals before the joint approach to modeling competing risks is presented.

Copulas were introduced in Sklar (1959) as bivariate functions that combine two uni-

variate distribution functions, the marginal distributions, which are uniform on the unit

interval. Though an overview of copulas is presented here, readers may wish to refer to

Nelsen (2006); Oakes (1989); Genest and MacKay (1986); Genest and Rivest (1993). A

number of definitions are needed to properly define a copula (adapted from Nelsen (2006)).

5.2.1 Basic Properties

Let S1 and S1 by subsets of the real line [−∞,∞]. Further, let C by a real function with

domain S1 × S2 and range [−∞,∞].

C-Volume: Suppose B = [u1, u2] × [ν1, ν2] is contained in the domain of C. Then the C-

Volume of B is defined as

VC(B) = C(u2, ν2) + C(u1, ν2) + C(u2, ν1)− C(u1, ν1).

2-increasing: Here, the notion of nondecreasing functions is extended to bivariate functions.

A function C is said to be 2-increasing if VC(B) ≥ 0 for all rectangles B which are inside

the domain of C.

Grounded: Suppose a1 and a2 are the least elements of S1 and S2 respectively. Then, a

function C is said to be grounded if C(a1, ν) = 0 and C(u, a2) = 0.

It can be shown that if C is a grounded, 2-increasing function, then the function is nonde-

creasing in both S1 and S2. One example of a function that is both grounded and 2-increasing

is C(u, ν) = min(u, ν), pictured in Figure 7.

Using the previous definitions, both subcopula and copula can now be defined. A sub-

copula is a function C ′ such that;
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Figure 7: C = min(x, y) is a good example of a 2-increasing, grounded function

i) the domain of C ′ is S1×S2, where S1 and S2 are subsets of the interval [0, 1] and contain

both 0 and 1,

ii) C ′ is both grounded and 2-increasing, and

iii) C ′(u, 1) = 1 and C ′(1, ν) = 1 for all u in S1 and ν in S2.

A related function is the copula, C, which is defined as a subcopula, C ′, which has a domain

[0, 1]× [0, 1].

Sklar’s theorem (Sklar, 1959) is important to the use of copulas in that it shows that a

copula can be used to create a joint distribution function from two marginal distributions.

Suppose that F12 is a joint distribution function that has marginals denoted F1 and F2.

Then, Sklar’s theorem states that there exists a copula F12 such that

F12(x, y) = C(F1(x), F2(y))

for all real x and y. The copula will be unique for continuous F1 and F2. If F1 and F2

are not continuous, then F12 is determined by their ranges. Conversely, if F12 is a copula,

and F1 and F2 are distribution functions, then the function F12 defined previously is a joint

distribution function for marginals F1 and F2.
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5.2.2 Archimedean Copulas

One important class of copulas is known as Archimedean copulas. These are widely applica-

ble, as they are easy to construct, and the family encompasses a wide variety of functions.

Archimedean copulas take the form

C(u, ν) = p[q(u) + q(ν)] (5.3)

where u and ν are uniformly distributed on the interval [0, 1], and p(·) is a decreasing non-

negative function such that p(0) = 1 and p′′(·) ≥ 0, and q is the inverse function of p. That

is,

p(0) = 1; p(u) ≥ 0; p′(u) ≤ 0; p′′(u) ≥ 0. (5.4)

The function p is known as the generator for an Archimedean copula. According to Theorem

4.1.4 in Nelsen (2006), such a function can be used to construct an Archimedean copula if

and only if p is also convex.

One such generator gives the Clayton copula as presented in Oakes (1989). Oakes dis-

cusses the use of copulas in the survival setting, which varies slightly from their use with

cumulative distribution functions. In that case, a copula model may be constructed as in

equation (5.3). Clayton (1978) proposed that p(u) = (u + 1)−1/(λ−1). As λ tends to 1, it

is evident that C(u, ν) = uν, representing the case where u and ν are independent. When

λ = 0, then C(u, ν) achieves its lower Fréchet bound of u+ ν − 1 (Fréchet, 1951; Hoeffding,

1940).

5.2.3 Copulas for Improper Marginals

The discussion of copulas to this point has assumed that the marginal distributions are

proper, with a range on the entire interval [0, 1]. As we are modeling competing risks data

here, the marginal distributions will not be proper. This is, however, not an issue that

must be addressed with new methods. As improper distributions are just subsets of proper

distributions, we would like the copulas of such distributions to be subsets of the copula

of the related proper distributions. The simplest way to accomplish this goal is to use

previously-established copula models, such as the Clayton copula.
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5.3 JOINT APPROACH

The joint approach (J) to inference on competing risks data involves using an Archimedean

copula to specify the overall survival function of the two cause-specific events. Let T1 be

the time until an event of type 1 and, similarly, let T2 be the time until an event of type 2.

Then we can model the joint survival function of T1 and T2 by using a Clayton copula in

this form:

SJ(t1, t2) = (S1(t1)1−λ + S2(t2)1−λ − 1)
1

1−λ , (5.5)

where Sk = 1−Fk(tk), and λ allows us to estimate the dependence between T1 and T2. This

copula is a bivariate survival function by Sklar’s theorem. As λ tends to 1, SJ(t, t)→ SCS,

and when λ = 0, the joint survival function is approximately equal to SD.

A key component to the joint approach is a definition of the likelihood which works in

general, and maintains the usual form in both of the special cases. Suppose S(t1, t2) is some

definition of the joint survival distribution. Then the likelihood can be defined generally as

L =
n∏
i=1

[{
−d
dt1i

S(t1i, t2i)|t1i=t2i=ti
}δ1i {−d

dt2i
S(t1i, t2i)|t1i=t2i=ti

}δ2i
S(ti, ti)

1−δ1i−δ2i

]
. (5.6)

We can use this method to construct a likelihood for the the joint approach. If

S(t1, t2) = SJ(t1, t2) = (S1(t1)1−λ + S2(t2)1−λ − 1)
1

1−λ ,

then we calculate the negative first derivatives as f1(t)S1(t)−λSJ(t, t)λ and f2(t)S2(t)−λSJ(t, t)λ

respectively. The corresponding form of the generalized likelihood given in equation (5.6) is

then:

LJ =
n∏
i=1

[{
f1(ti)S1(ti)

−λSJ(ti, ti)
λ
}δ1i {

f2(ti)S2(ti)
−λSJ(ti, ti)

λ
}δ2i

×
{

(S1(ti)
1−λ + S2(ti)

1−λ − 1)
1

1−λ

}1−δ1i−δ2i
]

=
n∏
i=1

[
f1(ti)

δ1iS1(ti)
−λδ1if2(ti)

δ2iS2(ti)
−λδ2i

(
S1(ti)

1−λ + S2(ti)
1−λ − 1

) 1
1−λ−δ1i−δ2i

]
.

(5.7)
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If we were to use the generalized form of the likelihood and assume additive cumulative

incidence (that is, use the direct approach), then S(t1, t2) = SD(t1, t2) = 1−F1(t1)−F2(t2).

Then the first derivatives are f1(t) and f2(t) respectively. The likelihood for the direct

approach then is

LD =
n∏
i=1

[
{f1(ti)}δ1i {f2(ti)}δ2i {1− F1(ti)− F2(ti)}1−δ1i−δ2i

]
, (5.8)

which is exactly what was presented in Section 2.1.2. It should be noted that f1 and f2, are

improper pseudo-survival distributions, and the direct approach is not appropriate when the

marginal survival distributions are proper.

The same procedure can also be used to derive the likelihood used with the cause-specific

approach. In this case, S(t1, t2) = SCS(t1, t2) = S1(t1)S2(t2) and the corresponding first

derivatives are f1(t)S2(t) and S1(t)f2(t) respectively. The likelihood is then constructed as:

LCS =
n∏
i=1

[
{f1(ti)S2(ti)}δ1i {S1(ti)f2(ti)}δ2i {S1(ti)S2(ti)}1−δ1i−δ2i

]
(5.9)

=
n∏
i=1

[
f1(ti)

δ1if2(ti)
δ2iS1(ti)

1−δ1iS2(ti)
1−δ2i

]
,

which also corresponds with the likelihood presented in Section 2.1.2. In this situation, both

fk and Sk are proper distributions, but the product fk(t)S3−k(t) is improper.

Thus, it is clear that both the direct model and the cause-specific model are special cases

of the joint model. We can use this fact to test whether either the direct or cause-specific

approach is correct by using a Wald-type statistic of the form

Z =
λ̂− λ0

SE(λ̂)
, (5.10)

where λ0 is either 0 for the direct approach or 1 for the cause-specific approach, which can

then be compared to the standard normal distribution to obtain a p-value.

Once the maximum likelihood estimation has been completed, there is still the question

of how to correctly estimate the cumulative incidence function for each of the event types.

Suppose some distribution has been assumed for the marginals, and that the MLEs are ψ̂1
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and ψ̂2 for events of type 1 and 2, respectively. It was stated earlier that the negative first

derivative of SJ with respect to tk is equal to

SJ(t; ψ̂1, ψ̂2)λSk(t; ψ̂k)
−λfk(t; ψ̂k).

Thus, we can calculate the cumulative incidence function for events of type k as

Fk(t) =

∫ t

0

SJ(u; ψ̂1, ψ̂2)λSk(u; ψ̂k)
−λfk(u; ψ̂k)du. (5.11)

While this cannot always be computed analytically, numerical integration techniques such

as Simpson’s rule or a similar method can be used. For a pair of consecutive failure times

observed in study, ti and ti+1, we can approximate the integral on that interval as:

∫ ti+1

ti

g(u)du ≈ ti+1 − ti
6

[
g(ti) + 4g

(
ti + ti+1

2

)
+ g(ti+1)

]
, (5.12)

where g(t) = SJ(t; ψ̂1, ψ̂2)λSk(t; ψ̂k)
−λfk(t; ψ̂k). Consecutive sums of such integrals form an

approximation for Fk.

One clear advantage that joint modeling has over the other two approaches is that λ can

be used to estimate a global measure of dependence between the two failure times (Oakes,

1989; Genest and Rivest, 1993). One often-used measure of dependence is Kendall’s τ (1938),

a measure of concordance. Genest and Rivest (1993) show that, with a copula of the form

presented previously, τ can be calculated as

τ = 4

∫ 1

0

q′(v)

q(v)
dv + 1. (5.13)

For the Clayton model, Kendall’s τ is then equivalent to
λ− 1

λ+ 1
, as shown in Figure 8. Under

the assumptions of the direct approach, where λ → 1, then τ = 0. Additionally, under the

assumptions of the cause-specific or independence approach, where λ = 0, then τ = −1.

This implies that for all values of λ ≥ 1, there is a positive correlation between the two

failure time distributions. On the contrary, for values of λ that are less than one, then the

correlation is negative.
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Figure 8: Plot of Kendall’s τ as a function of λ

5.4 EXAMPLE WITH NSABP B-14

The joint modeling approach can be easily applied to parametric estimation of the cumu-

lative incidence function. One data set comes from a clinical trial (B-14) conducted by the

National Surgical Adjuvant Breast and Bowel Project (NSABP). This phase III trial in-

vestigated the use of tamoxifen in breast cancer patients who had negative axillary lymph

nodes and estrogen receptor positive breast cancer. Here, the event of interest (type 1) was

local-regional recurrences, while all other events were considered to be of type 2. There were

1453 patients randomized to the placebo arm, 1413 of which were eligible and had follow-up.

Additionally, 1439 patients were randomized to the tamoxifen arm, but only 1404 were eli-

gible with follow-up. The mean time on study for both treatment groups was approximately

20.4 years. Fisher et al. (1989) reported that patients treated with tamoxifen had a better

outcome than those treated with placebo. For this analysis, we use a cohort of a 2817 eligible
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patients on either the placebo or tamoxifen treatment arms for whom there was follow-up

and who had known pathological tumor size. There were 1413 patients from the placebo

treatment arm and 1410 from the tamoxifen arm. All analysis was stratified on treatment

group.

In this analysis, the marginal distributions are modeled using the 2-parameter Gom-

pertz distribution for simplicity. The joint approach can of course be used with any possible

marginal distributions, including the 3 and 4-parameter Gompertz models. The maximum

likelihood estimates for both the joint and direct approaches are presented in Table 8. Sim-

ilarly, the plot of the estimated cause-specific cumulative incidence functions are shown in

Figure 9 for both approaches.

Table 8: Maximum Likelihood Estimates for Joint Modeling of NSABP B-14 by Treatment

(using 2-parameter Gompertz marginal distributions)

Joint Model Direct Model

Placebo Treatment Placebo Treatment

MLE (SE) MLE (SE) MLE (SE) MLE (SE)

κ̂1 0.021 (0.003) 0.006 (0.001) 0.019 (0.002) 0.006 (0.001)

ρ̂1 0.008 (0.023) 0.033 (0.094) -0.102 (0.014) -0.036 (0.017)

κ̂2 0.047 (0.003) 0.030 (0.002) 0.043 (0.003) 0.030 (0.002)

ρ̂2 0.002 (0.007) 0.019 (0.011) -0.024 (0.007) 0.006 (0.007)

λ̂ 3.323 (1.073) 1.997 (3.101)

It is important for the comparison of the three approaches to consider whether λ̂ is signif-

icantly different from 0 (for the direct approach) or from 1 (for the cause-specific approach).

To test this, a Wald-type test as presented earlier may be used. For the placebo group,

λ̂ = 3.323 with a standard error of 1.073, while for the tamoxifen group, λ̂ = 1.997 with

a standard error of 3.101. The Bonferroni adjusted p-values (presented in Table 9) for the

tests of λ compared with the direct (cause-specific) approach are 0.0007 (0.0094) for the

placebo group and 0.1299 (0.1869) for the tamoxifen group. Thus, for the placebo group,

the joint model is significantly different from both the direct and cause-specific models, and
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(a) Joint Modeling (b) Direct Modeling

Figure 9: Comparison of (a) Joint and (b) Direct modeling approaches for NSABP B-14 data

by treatment using the G2 distribution to model the marginals
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neither additive cause-specific hazards nor additive cause-specific cumulative incidence can

be assumed. For the tamoxifen group, however, the joint model is significantly different from

neither the direct nor the cause-specific models, and it is unclear which assumption is more

appropriate. In such a case, any of the approaches may be appropriate. Given that the joint

approach is significantly different from the other two approaches for one of the treatment

arms, it is more appropriate to use the joint model here.

Table 9: Wald statistics and Bonferroni-Adjusted p-values for Tests of λ

Treatment Joint vs. Direct (λ0 = 0) Joint vs. Cause-Specific (λ0 = 1)

Placebo 3.0102 (0.0007) 2.078 (0.0094)

Tamoxifen 0.644 (0.1299) 0.322 (0.1869)

5.5 DISCUSSION

The joint method presented here generalizes previously-established inference methods of

inference for competing risks data. This novel approach, new for inference on cumulative

incidence functions, encompasses both of the previous inference methods. Further, it allows

investigators to test the appropriateness of the two possible assumptions which may be

used in analysis of such data: additive cause-specific hazards, and additive cause-specific

cumulative incidences. The method is robust, and may be used with any improper marginal

distributions. The joint approach, however, requires the use of non-standard probability

distribution function for each of the types of events. While with either the direct or the

cause-specific methods, the cause-specific densities are simply calculated as the negative

first derivatives of the marginal survival distributions, the joint method requires that the

cause-specific densities be computed as the negative first derivatives of the joint survival

distribution. Therefore, for the joint approach, the cause-specific densities are functions of

all the parameters for all types of events. This fact means that the densities explicitly account

for all event types simultaneously, yet makes the densities more difficult to interpret than in
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either of the other approaches. Despite this disadvantage, the method for computing such

densities is simple, and may be computed for any possible marginal distribution. Further,

since Kendall’s τ can be computed based on the results of parametric analysis using the joint

method, we now have a global dependence statistic which relates tho two types of events.
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6.0 DISCUSSION AND FUTURE WORK

Competing risks arise naturally in many situations where multiple failure types are present,

yet investigators are interested primarily in only a subset of the event types. Parametric

methods for such data are important as they may provide more precise estimates of important

quantities and allow for prediction. In cases of model misspecification, however, parametric

methods may estimate important quantities incorrectly, thereby introducing invisible bias in

inference about the data. Flexible models are therefore needed which can accurately capture

the features of the data. In the case of competing risks data, we are interested primarily

in two properties of a model: ability to capture various hazard shapes, and the ability to

capture improper distributions.

The first aim of this work has been to develop models which are flexible and appropriate

for the analysis of competing risks data. To this end, two novel distributions have been

presented, which are extensions of the Gompertz distribution to 3 and 4 parameters. Each

model has the ability to capture improperness and a variety of hazard shapes, including

monotone and unimodal. These novel extensions of the Gompertz distribution were devel-

oped using different approaches, and are therefore unrelated, except by their relationship to

the traditional Gompertz distribution. The 3-parameter Gompertz distribution was devel-

oped explicitly so that the hazard can capture unimodal shapes and contains the regular

Gompertz distribution as a special case. The other extension, the 4-parameter Gompertz,

was developed on the basis of Hougaard’s family of stable distributions. Both models capture

a broad range of hazard shapes and both are improper in a subset of their parameter space.

Because the two distributions are not closely related, one potential path for future research

would be to develop a different 4-parameter distribution which contains the 3-parameter

model as a special case.
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While the extensions of the Gompertz distribution help to prevent model misspecifica-

tion, they do not affect the inference methods used in competing risks settings. The second

aim of this work has been to develop a generalized inference method which accounts for

the correlation between the cause-specific marginal distributions. A copula approach was

used, and the marginal distributions were modeled with a (2-parameter) Gompertz distri-

bution, which can capture the improper nature of the cumulative incidence function. This

joint modeling approach includes two important special cases which have been established

previously: the direct approach and the cause-specific (independence) approach. While it

is possible to test whether the proposed approach is significantly better than either of the

other two approaches based on a Wald-type test on the dependence parameter, there are no

current methods available to assess the goodness-of-fit of such models. This is a possible

area for future research.

Nonparametric methods of estimating the joint survival function may also be of inter-

est. Currently, the copula-graphic method (Zheng and Klein, 1995) makes it possible to

nonparametrically estimate marginal distributions in cases where a joint survival function

is known. A nonparametric method to estimate the joint survival function when estimates

of the marginals are known would be beneficial, especially if it could be used to estimate a

measure of dependence between the two failure time distributions, such as Kendall’s τ , in a

manner similar to that of the parametric joint approach. Investigators are also commonly

interested in the effect of covariates, such as treatment group, on survival times. For this

reason, the development of a covariate extension to the joint modeling approach may be of

interest.
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APPENDIX

SAS CODE

A.1 OPENING CODE STATEMENTS

The statements presented in this section are necessary to run all of the optimization and

simulation code. The code for the incidence macro can be found in the last section of the

appendix.

libname reg ’C:\Regression’;
%include ’C:\datasteps.sas’;
%inc "C:\incidence.sas"; *Reads in the CI macro from Dr. John Klein;

%let bounds4=theta&k.>0, kappa&k.>0;
%let b4=theta1>0, kappa1>0, theta2>0, kappa2>0;
%let parms4=%str(alpha&k.=1, theta&k.=1, kappa&k.=1, rho&k.=1);
%let parms14=%str(alpha1 theta1 kappa1 rho1);
%let parms24=%str(alpha2 theta2 kappa2 rho2);
%let LL4=%str(
kappa=kappa&k; rho=rho&k; theta=theta&k; alpha=alpha&k;
R = (kappa/(rho*theta))*(exp(rho*t)-1) + 1;

Q = -(1-R**alpha)*(theta**2)/alpha;
LL = log(kappa*theta)*d&k + rho*d&k*t + (alpha-1)*d&k*log(R) - Q);

%let LLd4=%str(R1 = (kappa1/(rho1*theta1))*(exp(rho1*t)-1) + 1;
R2 = (kappa2/(rho2*theta2))*(exp(rho2*t)-1) + 1;
Q1 = -(1-R1**alpha1)*(theta1**2)/alpha1;
Q2 = -(1-R2**alpha2)*(theta2**2)/alpha2;

f1 = d1*(-Q1 + log(theta1*kappa1) + rho1*t + (alpha1-1)*log(R1));
f2 = d2*(-Q2 + log(theta2*kappa2) + rho2*t + (alpha2-1)*log(R2));

surv=exp(-Q1)+exp(-Q2)-1;
if 1-d1-d2=0 then surv=1;
if 1-d1-d2^=0 and surv<0 then surv=.001;
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LL = f1 + f2 + (1-d1-d2)*log(surv));
%let LLj4=%str(R1 = (kappa1/(rho1*theta1))*(exp(rho1*t)-1) + 1;

R2 = (kappa2/(rho2*theta2))*(exp(rho2*t)-1) + 1;
Q1 = -(1-R1**alpha1)*(theta1**2)/alpha1;
Q2 = -(1-R2**alpha2)*(theta2**2)/alpha2;

S1=exp(-Q1);
S2=exp(-Q2);
logh1 = log(theta1*kappa1) + rho1*t + (alpha1-1)*log(R1);
logh2 = log(theta2*kappa2) + rho2*t + (alpha2-1)*log(R2);
S12=(S1**(1-lambda)+S2**(1-lambda)-1)**(1/(1-lambda));
LL = d1*(logh1 - (1-lambda)*Q1 + lambda*log(S12)) +
d2*(logh2 - (1-lambda)*Q2 + lambda*log(S12)) + (1-d1-d2)*log(S12)
);
%let haz4=%str(R1 = (kappa1/(rho1*theta1))*(exp(rho1*t)-1) + 1;

R2 = (kappa2/(rho2*theta2))*(exp(rho2*t)-1) + 1;
h1=theta1*kappa1*exp(rho1*t)*(R1**(alpha1-1));
h2=theta2*kappa2*exp(rho2*t)*(R2**(alpha2-1));
CH1= (theta1*theta1/alpha1)*(R1**alpha1-1);
CH2= (theta2*theta2/alpha2)*(R2**alpha2-1);

);

%let bounds3=kappa&k.>0;
%let b3=kappa1>0,kappa2>0;
%let parms3=%str(kappa&k.=1, rho&k.=-1, eta&k.=1);
%let parms13=%str(kappa1 rho1 eta1);
%let parms23=%str(kappa2 rho2 eta2);
%let LL3=%str(
kappa=kappa&k; rho=rho&k; eta=eta&k;
Q=(kappa/(eta*rho))*(exp(-eta)-exp(-eta*exp(rho*t)));
LL = d&k*(log(kappa) + rho*t - eta*exp(rho*t)) - Q);
%let LLd3=%str(Q1=(kappa1/(eta1*rho1))*(exp(-eta1)-exp(-eta1*exp(rho1*t)));
Q2=(kappa2/(eta2*rho2))*(exp(-eta2)-exp(-eta2*exp(rho2*t)));
f1 = d1*(log(kappa1) + rho1*t - eta1*exp(rho1*t) - Q1);

f2 = d2*(log(kappa2) + rho2*t - eta2*exp(rho2*t) - Q2);
surv=exp(-Q1)+exp(-Q2)-1;

if 1-d1-d2=0 then surv=1;
if 1-d1-d2^=0 and surv<0 then surv=.001;

LL = f1 + f2 + (1-d1-d2)*log(surv)
);
%let LLj3=%str(Q1=(kappa1/(eta1*rho1))*(exp(-eta1)-exp(-eta1*exp(rho1*t)));
Q2=(kappa2/(eta2*rho2))*(exp(-eta2)-exp(-eta2*exp(rho2*t)));
S1=exp(-Q1);
S2=exp(-Q2);
logh1 = log(kappa1) + rho1*t - eta1*exp(rho1*t);
logh2 = log(kappa2) + rho2*t - eta2*exp(rho2*t);
S12=(S1**(1-lambda)+S2**(1-lambda)-1)**(1/(1-lambda));
LL = d1*(logh1 - (1-lambda)*Q1 + lambda*log(S12)) +
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d2*(logh2 - (1-lambda)*Q2 + lambda*log(S12)) + (1-d1-d2)*log(S12)
);
%let haz3=%str(h1=kappa1*exp(rho1*t-eta1*exp(rho1*t));
h2=kappa2*exp(rho2*t-eta2*exp(rho2*t));
ch1=(kappa1/(eta1*rho1))*(exp(-eta1)-exp(-eta1*exp(rho1*t)));
ch2=(kappa2/(eta2*rho2))*(exp(-eta2)-exp(-eta2*exp(rho2*t)));
);

%let bounds2=kappa&k.>0;
%let b2=kappa1>0,kappa2>0;
%let parms2=%str(kappa&k.=1, rho&k.=-1);
%let parms12=%str(kappa1 rho1);
%let parms22=%str(kappa2 rho2);
%let LL2=%str(kappa=kappa&k; rho=rho&k;
LL = d&k*(log(kappa) + rho*t) - (kappa/rho)*(exp(rho*t)-1));
%let LLd2=%str(Q1=(kappa1/rho1)*(exp(rho1*t)-1);
Q2=(kappa2/rho2)*(exp(rho2*t)-1);
f1 = d1*(log(kappa1) + rho1*t - Q1);
f2 = d2*(log(kappa2) + rho2*t - Q2);
surv=exp(-Q1)+exp(-Q2)-1;

if 1-d1-d2=0 then surv=1;
if 1-d1-d2^=0 and surv<0 then surv=.001;
LL = f1 + f2 + (1-d1-d2)*log(surv));

%let LLj2=%str(Q1=(kappa1/rho1)*(exp(rho1*t)-1);
Q2=(kappa2/rho2)*(exp(rho2*t)-1);
S1=exp(-Q1);
S2=exp(-Q2);
logh1 = log(kappa1) + rho1*t;
logh2 = log(kappa2) + rho2*t;
S12=(S1**(1-lambda)+S2**(1-lambda)-1)**(1/(1-lambda));
LL = d1*(logh1 - (1-lambda)*Q1 + lambda*log(S12)) +
d2*(logh2 - (1-lambda)*Q2 + lambda*log(S12)) + (1-d1-d2)*log(S12)
);
%let haz2=%str(h1=kappa1*exp(rho1*t);
h2=kappa2*exp(rho2*t);
ch1=(kappa1/rho1)*(exp(rho1*t)-1);
ch2=(kappa2/rho2)*(exp(rho2*t)-1)
);

A.2 OPTIMIZATION CODE (DIRECT METHOD)

/* Produces a data set of initial values for the Gompertz
parameters, one event at a time. Using data variable from
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%GompRegNLP.

k = event type
lp = line search precision, (same as LSPRECISION option
in PROC NLP) */
%macro Init(k,p, lp=.0001, method=newrap);
proc nlp data=&data tech=&method
outest=opar&k

cov=2 vardef=n noprint
LSPRECISION=&lp MAXFUNC=5000 maxiter=2500;

max LL;
bounds &&bounds&p.;

parms &&parms&p.;
&&LL&p;

run;
Data ginit&k;
set opar&k;
where _Type_ in (’PARMS’,’TERMINAT’);
keep _name_ &&parms&k.&p _RHS_ ;

run;
*proc print data=ginit&k noobs;
*run;
Data ginit&k;
set ginit&k;
_type_=’parms’;
drop _name_ _RHS_;
run;
%mend Init;

/* Produces a dataset containing initial values for
covariate parameters using PHREG. Variable data comes
from %GompRegNLP.

k = event number (1,2, ...) */
%macro Phreg(k);
ods output ParameterEstimates=beta&k;
ods listing close;
PROC PHREG data=&data;
model t*d&k(0)=&vars / ties=efron;
run;
ods listing;
ods output close;

Data beta&k;
set beta&k;
beta=trim(right(put(&k,3.)))||trim(left(put(_n_,3.)));
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keep Variable Estimate beta;
run;
%mend Phreg;

/* Performs Gompertz regression with out covariates, for two event types,
assuming event indicators are assigned as d1 and d2 respectively.

Data = dataset name
p = number of parameters in Gompertz model (2, 3, or 4)
vars = covariates (leave blank if regression without covariates is requested)
phi = value of phi desired to use a specific value, or . to estimate
(ignored if no covariates)
method = optimization method (same as TECH option in PROC NLP)

outvar = dataset containing variance estimates
ls = line search precision (LSPRECISION in PROC NLP)
maxf = maximum number of function calls permitted
maxit = maximum number of iterations permitted

A dataset containing the estimated parameters will be saved
as &data._&vars._&p.&phi */

%macro GompRegNLP(data, p, vars=v1, phi=., method=NRRIDG, outvar=varest,
ls=.001, maxf=1000, maxit=500);
title ’Estimating Initial Values’;
%Init(1,&p);
%Init(2,&p);

%if &vars= %then %do;
Data parinit(type=est);
merge ginit1 ginit2;
if kappa1^=.;
by _type_;
run;

title "&p Par. Gompertz Regression";
PROC NLP data=&data tech=&method inest=parinit outest=parms

cov=2 vardef=n pcov LSPRECISION=&ls MAXFUNC=&maxf maxiter=&maxit;
max LL;
parms &&parms1&p. &&parms2&p.;

bounds &&b&p.;
&&LLd&p.;
run;

%let dataname=&data._&p.est;
%end;
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%else %do;
%phreg(1);
%phreg(2);
Data beta;
set beta1 beta2;
run;
proc transpose data=beta out=beta prefix=beta; id beta; run;
proc transpose data=beta out=names; run;
PROC SQL; *Getting Names of Betas;
select count(variable)
into :numvars
from beta1;
select _name_
into :betas separated by " "
from names;
select variable
into :varc separated by ""
from beta1; *variable names in one string without space;
select _name_
into :beta1-:beta%left(%eval(2*&numvars))
from names;
select variable
into :z1-:z%left(&numvars)
from beta1;
quit;

data beta;
set beta;

keep &betas;
run;
%let zb_1 = 0;
%let zb_2 = 0;
%if &numvars=1 %then %do;
%let zb_1 = &beta1*&z1;
%let zb_2 = &beta2*&z1;
%end;
%if &numvars>1 %then %do i = 1 %to &numvars;
%let zb_1 = &zb_1 + &beta%left(&i)*&z%left(&i);
%let zb_2 = &zb_2 + &beta%left(%eval(&numvars+&i))*&z%left(&i);
%end;
%put &numvars;
%put &zb_1;
%put &zb_2;
Data ginit(type=est);
merge ginit1 ginit2 beta;
run;
%if &phi=. %then %do;
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title "&p Par Gompertz Regression estimating phi";
Data bounds(type=est);
keep _type_ &&parms1&p. &&parms2&p.
phi1 phi2 beta10 beta20 &betas;
data parinit(type=est);
set ginit bounds;
if _type_=’parms’ then do;
phi1=-.5; phi2=-.5;
beta10=-.5; beta20=-.5;
end;
run;
PROC NLP data=&data tech=&method inest=parinit outest=parms

cov=2 vardef=n pshort pcov
lsprecision=&ls MAXFUNC=&maxf maxiter=&maxit;

max LL;
parms &&parms1&p. &&parms2&p.

phi1 phi2 beta10 beta20 &betas;
bounds &&b&p.;
zb1=beta10+&zb_1;
zb2=beta20+&zb_2;
&&haz&p.;
M1=1+phi1*exp(zb1)*ch1;
M2=1+phi2*exp(zb2)*ch2;
f1=d1*(-(1+1/phi1)*log(M1)+zb1+log(h1));
f2=d2*(-(1+1/phi2)*log(M2)+zb2+log(h2));
surv=M1**(-1/phi1)+M2**(-1/phi2)-1;
if 1-d1-d2=0 then surv=1;
if 1-d1-d2^=0 and surv<0 then surv=.001;
cdf=(1-d1-d2)*log(surv);

LL = f1 + f2 + cdf;
run;

%end;

%else %if &phi=0 %then %do;
title "&p Par Gompertz Regression with phi= 0";
Data bounds(type=est);
keep _type_ &&parms1&p. &&parms2&p.
beta10 beta20 &betas;
data parinit(type=est);
set ginit bounds;
if _type_=’parms’ then do;
beta10=-.5; beta20=-.5;
end;
run;
*phi=0;
PROC NLP data=&data tech=&method inest=parinit outest=parms

cov=2 vardef=n pshort pcov lsprecision=&ls MAXFUNC=&maxf maxiter=&maxit;
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max LL;
parms &parms1&p. &&parms2&p.

beta10 beta20 &betas;
bounds &&b&p.;
&&haz&p.;
zb1=beta10+&zb_1;
zb2=beta20+&zb_2;

f1=d1*(-exp(zb1)*ch1+zb1+log(h1));
f2=d2*(-exp(zb2)*ch2+zb2+log(h2));
surv=exp(-exp(zb1)*ch1)+exp(-exp(zb2)*ch2)-1;
if 1-d1-d2=0 then surv=1;
if 1-d1-d2^=0 and surv<0 then surv=.001;
cdf=(1-d1-d2)*log(surv);

LL = f1 + f2 + cdf;
run;

Data parms;
set parms;
phi1=&phi; phi2=&phi;
run;
%end;

%else %do;

title "&p Par Gompertz Regression with phi=" &phi;
Data bounds(type=est);
keep _type_ &&parms1&p. &&parms2&p.
beta10 beta20 &betas;
data parinit(type=est);
set ginit bounds;
if _type_=’parms’ then do;
beta10=-.5; beta20=-.5;
end;
run;*phi=anything else;
PROC NLP data=&data tech=&method inest=parinit outest=parms

cov=2 vardef=n pshort pcov
lsprecision=&ls MAXFUNC=&maxf maxiter=&maxit;

max LL;
parms &&parms1&p. &&parms2&p.

beta10 beta20 &betas;
zb1=beta10+&zb_1;
zb2=beta20+&zb_2;
&&haz&p.;
M1=1+&phi*exp(zb1)*ch1;
M2=1+&phi*exp(zb2)*ch2;
f1=d1*(-(1+1/&phi)*log(M1)+zb1+log(h1));
f2=d2*(-(1+1/&phi)*log(M2)+zb2+log(h2));
surv=M1**(-1/&phi)+M2**(-1/&phi)-1;
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if 1-d1-d2=0 then surv=1;
if 1-d1-d2^=0 and surv<0 then surv=.001;
cdf=(1-d1-d2)*log(surv);

LL = f1 + f2 + cdf;
run;

Data parms;
set parms;
phi1=&phi; phi2=&phi;
run;
%end;

%if &phi^=. %then %let dataname=&data._&varc._&p.&phi;
%if &phi=. %then %let dataname=&data._&varc._&p.est;
%end;

data &dataname;
set parms;
where _Type_=’PARMS’ or _Type_=’STDERR’;
drop _tech_ _name_ _rhs_ _iter_;
run;

data &outvar;
set parms;
where _Type_=’COV2: H’ and _rhs_^=.;
drop _tech_ _type_ _iter_ _rhs_;
run;
%mend GompRegNLP;

A.3 OPTIMIZATION CODE (JOINT METHOD)

/* Produces a data set of initial values for the Gompertz
parameters, one event at a time. Using data variable from
%GompJointNLP.

k = event type
lp = line search precision, (same as LSPRECISION option
in PROC NLP)
*/
option mprint;
%macro Init(k,p, lp=.0001, method=newrap); *by trt version;
%put k= &k;
%put p= &p;
proc sort data=&data; by trt; run;
proc nlp data=&data tech=&method
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outest=opar&k
cov=2 vardef=n pshort pcov

LSPRECISION=&lp MAXFUNC=5000 maxiter=2500;
max LL;

by trt;
bounds &&bounds&p.;

parms &&parms&k.&p.;
&&LL&p;

run;
Data ginit&k;
set opar&k;
where _Type_ in (’PARMS’);
keep TRT &&parms&k.&p _RHS_ ;

run;
*proc print data=ginit&k noobs;
*run;
Data ginit&k;
set ginit&k;
_type_=’parms’;
drop _name_ _RHS_;
run;
%mend Init;

/* Performs joint modeling of the Gompertz distribution, for two event types,
assuming event indicators are assigned as d1 and d2 respectively.

Data = dataset name
p = number of parameters in Gompertz model
method = optimization method (same as TECH option in PROC NLP)
outparms = name of dataset containing parameter estimates
ls = line search precision (LSPRECISION in PROC NLP)
maxf = maximum number of function calls permitted
maxit = maximum number of iterations permitted*/
%macro GompJointNLP(data, p, method=NEWRAP, outparms=parmest,
ls=.1, maxf=10000, maxit=10000);
title ’Estimating Initial Values’;
%Init(1,&p);
%Init(2,&p);

Data parinit(type=est);
merge ginit1 ginit2;
if kappa1^=.;
lambda=2;
run;

title "&p Par. Joint Gompertz Regression";
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PROC NLP data=&data tech=&method inest=parinit outest=parms
cov=2 vardef=n pcov LSPRECISION=&ls MAXFUNC=&maxf maxiter=&maxit;

max LL;
by trt;

parms &&parms1&p. &&parms2&p. lambda;
bounds &&b&p., lambda>0;
&&LLj&p.;
run;

data &outparms;
set parms;
where _Type_=’PARMS’ or _type_=’STDERR’;
drop _tech_ _name_ _rhs_ _iter_;
run;

data tmp;
set &outparms;
where _type_=’PARMS’;
drop _type_;
run;
%mend GompJointNLP;

A.4 SIMULATION CODE

/* Produces a data set of initial values for the Gompertz
parameters, one event at a time. Using data variable from
%gompertznlp.

k = event type
lp = line search precision, (same as LSPRECISION option
in PROC NLP)
*/
%macro Init(k,p, lp=.0001, method=newrap); *by trt version;
%put k= &k;
%put p= &p;
*proc sort data=&data; *by trt; *run;
proc nlp data=&data tech=&method
outest=opar&k

cov=2 vardef=n noprint
LSPRECISION=&lp MAXFUNC=5000 maxiter=2500;

max LL;
bounds &&bounds&p.;

parms &&parms&k.&p.;
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&&LL&p;
run;
Data ginit&k;
set opar&k;
where _Type_ in (’PARMS’);
keep &&parms&k.&p _RHS_ ;

run;
Data ginit&k;
set ginit&k;
_type_=’parms’;
drop _name_ _RHS_;
run;
%mend Init;

%let path=C:\;
%macro GompNLPsim(data, method=NMSIMP, ls=.1, maxf=2000, maxit=1000);
title ’Estimating Initial Values’;
%Init(1,&p);
%Init(2,&p);

Data parinit(type=est);
merge ginit1 ginit2;
if kappa1^=.;
run;

title "&p Par. Gompertz Regression";
PROC NLP data=&data tech=&method inest=parinit outest=parms

cov=2 vardef=n noprint LSPRECISION=&ls MAXFUNC=&maxf maxiter=&maxit;
max LL;
parms &&parms1&p. &&parms2&p.;

bounds &&b&p.;
&&LLD&p.;
run;

data parmest;
set parms;
where _Type_=’PARMS’;
n_sim=&i;
drop _tech_ _type_ _name_ _rhs_ _iter_;
run;

data conv;
set parms;
where _Type_=’TERMINAT’;
n_sim=&i;
CONV=_name_;
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keep n_sim CONV;
run;

proc sort data=parmest; by n_sim; run;
proc sort data=conv; by n_sim; run;

data sim;
merge parmest conv;
by n_sim;
run;

%if %EVAL(&i=1) %then %do;
data outparms;
set sim;
run;
%end;
%else %if %EVAL(&i>1) %then %do;
Proc APPEND data=sim base=outparms; run;
%end;
%mend GompNLPsim;

%MACRO SIMLOOP(p, n_sim, cens, n=1000, method=NMSIMP);
%do i = 1 %to &n_sim;
%put "***ITERATION INFORMATION: "&p &i &cens;
%if (&i=%eval(&n_sim/2) or &i=%eval(&n_sim/4) or &i=%eval(3*&n_sim/4))
and &n_sim>10 %then %do;
DM ’CLEAR LOG’;
%end;

%if &p=2 %then %do;
proc iml;
n=&n; *n=1000;
i=&i; *i=1;
seed_d1=15213;
seed_d2=44691;
seed_c1=40489;
seed_c2=8001;
k1=0.0187725206; k2=0.0433120015;
r1=-0.10155527; r2=-0.024246275;
cens05=275;
cens10=175;
cens20=80;
if &cens=.05 then cmax=cens05;
if &cens=.10 then cmax=cens10;
if &cens=.20 then cmax=cens20;
LimF1=(1-exp(k1/r1))*(r1<0) + 1*(r1>0);
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LimF2=(1-exp(k2/r2))*(r2<0) + 1*(r2>0);
u1=uniform(repeat(seed_d1*i,n/2,1))*LimF1;
t1=log(1-(r1/k1)*log(1-U1))/r1;
u2=uniform(repeat(seed_d2*i,n/2,1))*LimF2;
t2=log(1-(r2/k2)*log(1-U2))/r2;
c1=uniform(repeat(seed_c2*i,n/2,1))*cmax;
c2=uniform(repeat(seed_c2*i,n/2,1))*cmax;
d1=(t1<c1);
d2=2*(t2<c2);
cens_p=1-(d1//(d2/2))[:];
t=(t1||c1)[,><]//(t2||c2)[,><];
d1=d1//j(n/2,1,0);
d2=j(n/2,1,0)//(d2/2);
data=t||d1||d2;
create thisdata var{t d1 d2};
append from data;
free data;
quit;
%end;

%if &p=3 %then %do;
proc iml;
n=&n; *n=1000;
i=&i; *i=1;
seed_d1=15213;
seed_d2=44691;
seed_c1=40489;
seed_c2=8001;
k1=0.0208374818; k2=0.0143013467;
r1=-0.107226626; r2=-0.01249532;
e1=0.1179076961; e2=-1.117743967;
cens05=390;
cens10=185;
cens20=82;
if &cens=.05 then cmax=cens05;
if &cens=.10 then cmax=cens10;
if &cens=.20 then cmax=cens20;
LimF1=(1-exp(-(k1/(e1*r1))*(exp(-e1)-1)))*(r1<0) +
(r1>0)*((e1>0)*(1-exp(-(k1*exp(-e1))/(r1*e1)))+(e1<0)*(1));
LimF2=(1-exp(-(k2/(e2*r2))*(exp(-e2)-1)))*(r2<0) +
(r2>0)*((e2>0)*(1-exp(-(k2*exp(-e2))/(r2*e2)))+(e2<0)*(1));
u1=uniform(repeat(seed_d1*i,n/2,1))*LimF1;
t1=log(-log(exp(-e1)+(r1*e1/k1)*log(1-U1))/e1)/r1;
u2=uniform(repeat(seed_d2*i,n/2,1))*LimF2;
t2=log(-log(exp(-e2)+(r2*e2/k2)*log(1-U2))/e2)/r2;
c1=uniform(repeat(seed_c2*i,n/2,1))*cmax;
c2=uniform(repeat(seed_c2*i,n/2,1))*cmax;
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d1=(t1<c1);
d2=2*(t2<c2);
cens_p=1-(d1//(d2/2))[:];
t=(t1||c1)[,><]//(t2||c2)[,><];
d1=d1//j(n/2,1,0);
d2=j(n/2,1,0)//(d2/2);

data=t||d1||d2;
create thisdata var{t d1 d2};
append from data;
free data;
quit;
%end;

%if &p=4 %then %do;
proc iml;
n=&n; *n=1000;
i=&i; *i=1;
seed_d1=15213;
seed_d2=44691;
seed_c1=40489;
seed_c2=8001;
a1 = 0.2;
a2 = 0.1;
th1 = 0.4 ;
th2 = 0.5;
k1 = 0.15;
k2 = 4;
r1 = -0.1;
r2 = -0.08;
cens05=69;
cens10=36;
cens20=16;
if &cens=.05 then cmax=cens05;
if &cens=.10 then cmax=cens10;
if &cens=.20 then cmax=cens20;
LimF1=(1-exp((-th1*th1/a1)*((1-(k1/(r1*th1)))**a1 - 1)))*(r1<0)
+ ((1-exp(th1*th1/a1))*(a1<0) + (1)*(a1>0))*(r1>0);
LimF2=(1-exp((-th2*th2/a2)*((1-(k2/(r2*th2)))**a2 - 1)))*(r2<0)
+ ((1-exp(th2*th2/a2))*(a2<0) + (1)*(a2>0))*(r2>0);
u1=uniform(repeat(seed_d1*i,n/2,1))*LimF1;
t1=log((th1*r1/k1)*((1-(a1/(th1#th1))*log(1-u1))##(1/a1)-1)+1)/r1;
u2=uniform(repeat(seed_d2*i,n/2,1))*LimF2;
t2=log((th2*r2/k2)*((1-(a2/(th2#th2))*log(1-u2))##(1/a2)-1)+1)/r2;
c1=uniform(repeat(seed_c2*i,n/2,1))*cmax;
c2=uniform(repeat(seed_c2*i,n/2,1))*cmax;
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d1=(t1<c1);
d2=2*(t2<c2);
cens_p=1-(d1//(d2/2))[:];
t=(t1||c1)[,><]//(t2||c2)[,><];
d1=d1//j(n/2,1,0);
d2=j(n/2,1,0)//(d2/2);

data=t||d1||d2;
create thisdata var{t d1 d2};
append from data;
free data;
quit;
%end;

%GompNLPsim(thisdata, method=&method, ls=.001, maxf=5000, maxit=3000);
%end;

DM ’CLEAR LOG’;

%let censi=%sysevalf(100*&cens); *as an integer;
Data outparms&method.&n_sim._&censi.;
set outparms;
run;

Data converged;
set outparms;
where CONV ^=’PROBLEMS’;
run;

PROC MEANS data=converged;
var &&parms1&p. &&parms2&p.;
*var kappa1 rho1 kappa2 rho2;
output out=means;
run;

proc transpose data=means out=means; id _stat_; run;

Data means;
set means;
where _name_ ^in ("_FREQ_" "_TYPE_");
drop min max;
run;

ods rtf file="&path.\SimResults&method.&n._&p.sim._&censi..rtf" style=minimal;
proc iml;
use means;
read all var {mean} into mean;
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read all var {std} into std;
read all var {n} into nlist;
p=&p;
n=min(nlist);
print n p;
if p=2 then do;
k1=0.0187725206; k2=0.0433120015;
r1=-0.10155527; r2=-0.024246275;
base=k1//r1//k2//r2;
end;
if p=3 then do;
k1=0.0208374818; k2=0.0143013467;
r1=-0.107226626; r2=-0.01249532;
e1=0.1179076961; e2=-1.117743967;
base=k1//r1//e1//k2//r2//e2;
end;
if p=4 then do;
a1 = 0.2;
a2 = 0.1;
th1 = 0.4 ;
th2 = 0.5;
k1 = 0.15;
k2 = 4;
r1 = -0.1;
r2 = -0.08;
base=k1//r1//a1//th1//k2//r2//e2//a2//th2;
end;
*base = {0.2, 0.4, 0.15, -0.1, 0.1, 0.5, 4, -0.08};
bias=mean-base;
Z=bias/std;
pz2=probnorm(z)/2;
Pval=(Z<=0)#(probnorm(z)) + (Z>0)#(1-probnorm(z));
print "OPTIMIZATION METHOD: &method";
print "CENSORING: &cens";
print "NUMBER OF SIMULATIONS: &n_sim";
print "NUMBER SIMULATIONS CONVERGED: " n;
print base mean bias std z pz2 pval;
quit;
ods rtf close;
%MEND SIMLOOP;
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A.5 MACRO FOR NONPARAMETRIC ESTIMATES OF THE

CUMULATIVE INCIDENCE FUNCTION

This macro can be found at http://www.biostat.mcw.edu/software/SoftMenu.html.

%macro incid(data,group,relp,trm,time,out=);
/* arguments are: dataset name,

group variable(1,2,...),
relapse indicator(1-yes, 0-no)
trm indicator(1-yes, 0-no),
dataset name for relapse incidence
dataset name for trm incidence */

data lc_one; set &data;
a=&time;
b=&relp;
c=&trm;
d=&group;
keep a b c d;

proc sort data=lc_one; by descending a;
/*proc sort data=lc_one; by d;*/
proc iml;
use lc_one;

read all into x;
n=nrow(x);
ngrp=max(x[ ,4]);
gnum=J(1,ngrp,0);
do k=1 to n;
gnum[1,x[k,4]] = gnum[1,x[k,4]]+1;
end;

t=J(1,n,0);
t[1,1]=x[1,1];
ntime=1;
tnow=x[1,1];
do j=2 to n;
if x[j,1] <tnow then do;
ntime=ntime+1;
t[1,ntime]=x[j,1];
tnow=x[j,1];
end;
end;

relap=J(ntime,ngrp,0);
trm=J(ntime,ngrp,0);
atrisk=J(ntime,ngrp,0);

do k=1 to ntime;
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do j=1 to n;
ax=x[j,1];
at=t[1,k];
ag=x[j,4];
ad=x[j,3];
ar=x[j,2];
if x[j,1] =t[1,k] then do;
relap[k,ag]=relap[k,ag]+ar;
trm[k,ag]=trm[k,ag]+ad;
end;
if x[j,1] >= t[1,k] then atrisk[k,ag]=atrisk[k,ag]+1;
end;
end;

lfs=J(ntime,ngrp,-1);
ci_rel=J(ntime,ngrp,-1);
ci_trm=J(ntime,ngrp,-1);
vci_rel=J(ntime,ngrp,-1);

vci_trm=J(ntime,ngrp,-1);
index=J(ntime,1,0);
tt=t(t[1,1:ntime]);

do ig=1 to ngrp;
p=1;
cr=0;
cd=0;
do j=1 to ntime ;
index[j,1]=j;
k=ntime-j+1;
if atrisk[k,ig] >0 then do;

cr=cr+relap[k,ig]*p/atrisk[k,ig];
cd=cd+trm[k,ig]*p/atrisk[k,ig];
p=p*(1-(trm[k,ig]+relap[k,ig])/atrisk[k,ig]);
lfs[k,ig]=p;
ci_rel[k,ig]=cr;
ci_trm[k,ig]=cd;
end;
else do;
lfs[k,ig]=.;
ci_rel[k,ig]=.;
ci_trm[k,ig]=.;
end;
end;
do j=1 to ntime;
know=ntime-j+1;
vr=0; vd=0;
if ci_rel[know,ig] = . then do;
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vci_rel[know,ig]=.;
vci_trm[know,ig]=.;
end;
else do;
do k=1 to ntime;
jnow=ntime-k+1;
if tt[jnow,1] <= tt[know,1] then do;
wr=(trm[jnow,ig]+relap[jnow,ig])/atrisk[jnow,ig]**2;
wr=wr*lfs[jnow,ig]*(ci_rel[know,ig]-ci_rel[jnow,ig])**2;
q=(relap[jnow,ig]/atrisk[jnow,ig]**2)*lfs[jnow,ig]**2;
q=q*(1-2*(ci_rel[know,ig]-ci_rel[jnow,ig]));
vr=vr+wr+q;
wd=(trm[jnow,ig]+relap[jnow,ig])/atrisk[jnow,ig]**2;
wd=wd*lfs[jnow,ig]*(ci_trm[know,ig]-ci_trm[jnow,ig])**2;
q=trm[jnow,ig]/atrisk[jnow,ig]**2*lfs[jnow,ig]**2;
q=q*(1-2*(ci_trm[know,ig]-ci_trm[jnow,ig]));
vd=vd+wd+q;
end;
end;
end;
vci_rel[know,ig]=sqrt(vr);
vci_trm[know,ig]=sqrt(vd);
end;

end;
nn=ngrp*ntime;
yout=j(nn,6,0);
k=0;
do is=1 to ngrp;
do it=1 to ntime;
k=k+1;
yout[k,1]=tt[it,1];
yout[k,2]=is;
yout[k,3]=ci_rel[it,is];
yout[k,4]=vci_rel[it,is];
yout[k,5]=ci_trm[it,is];
yout[k,6]=vci_trm[it,is];
end; end;

create dout from yout;
append from yout;
close dout;
quit;
data io; set dout;
time=col1;
group=col2;
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CI1=col3;
SE_CI1=col4;
CI2=col5;
SE_CI2=col6;
if CI1 =. then se_ci1=.;
if CI2=. then se_ci2=.;
drop col1-col6;
proc sort data=io; by time;
proc sort data=io; by group;
*proc print data=io;
data &out; set io;
run;
%mend;
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