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THE NAVIER-STOKES VOIGHT MODEL AND CONVERGENCE TO
EQUILIBRIUM AND STATISTICAL EQUILIBRIUM

Ali Koseoglu, M.S.

University of Pittsburgh, 2011

This thesis tests accelerating convergence to steady state and statistical equilibrium for
the Navier-Stokes Voight (NSV) Model motivated by the Spin-Up phase of Ocean Climate
Models. First, by adding a new parameter to Navier-Stokes equations, the NSV model is
determined. Test conditions are identified for spin up, attaining equilibrium, and statistical
equilibrium. Convergence is then analyzed and the Finite Element Method with Backward
Euler discretization is programmed using Free FEM++ to simulate the NSV model. Two
problems with a known exact solution are used for a square domain. One problem with
unknown solution and one problem with known exact solution in circle domain are also
tested for convergence of the method. We find that the adding parameter may not accelerate

convergence to equilibrium or statistical equilibrium.
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1.0 INTRODUCTION

1.1 NAVIER STOKES VOIGHT MODEL

One important moment in the history of fluid flow occurred in 1687 through the work of one
of the greatest scientist, Isaac Newton. That moment came to prosperity specifically via his
book Philosophiae Naturalis Principia Mathematica. He stated that the shear stress between
layers is proportional with the velocity gradient, which is perpendicular to those layers as
long as the flow is smooth, parallel and monotone. In the year of 1738, Bernoulli contributed
to Newton’s work by proving that the acceleration is also proportional to the gradient of
pressure. Then, Leonhard Euler derived his equations for the flow of incompressible and
frictionless fluids (¥ = 0 ). In 1821, Navier introduced the viscosity parameter in viscous
flows but there was still something incomplete: the physical meaning of parameter v. After
24 years, Sir George Gabriel Stokes used absolute viscosity, in other words, stated that v
is the viscosity of the fluid. That resulted in what we know the Navier-Stokes Equations

(NSE):

% u(z,t) - Vu(r,t) = —Vp(x,t) + oVu(x,t) + f (1.1)
If we look at closer:
aug’ 2 Unsteady acceleration
u(z,t) - Vu(x,t) : Convective acceleration

—Vp(z,t) : Pressure gradient
vVu(x,t) : Viscosity

f : Body force.



where z is a spatial point, ¢ is time, u(z,t) is the velocity vector field and v is the constant
dynamic viscosity.

As the years evolved, Navier-Stokes Equations were modified. In 1934 J. Leray ([24],[25])
studied the regularizations of the NSE and in 1973 Oskolov ([28]) studied the Navier-Stokes
Voight Model for the viscoelastic incompressible fluid. This model is known as the 3D
Navier-Stokes Voight Model of viscoelastic fluids. The model is given by

—a?Au +u —vAu+u-Vu+Vp = f,
V-u = 0,

where « is the regularization parameter, V - u = 0 is the incompressibility (divergence free)
condition (see also ([5], [6])). This model is globally well posed ([28], [29]) and in Kalantarov
and Titi ([20]), it is shown that it has a finite dimensional global attractor.

My thesis was greatly inspired by works that we have mentioned above. We will be using
NSV Model further taking « instead of a*where o > 0. The model presented below will be
tested with Backward Euler Method as we will look how adding —aAu; to NSE affects the

convergence behavior of the NSE-steady state solution.

—aAus +u —vAu+u-Vu+Vp = f, (1.2)

V-u = 0,

where « is a positive parameter.

1.2 SPIN UP AND STATISTICAL EQUILIBRIUM

The universe is hiding considerable knowledge from us. It is waiting to be discovered. One
of the most interesting elements about the universe is climate. Indeed, to better understand
climate we need to utilize the Nature’s own language and that is undeniably Mathematics.
In 1967, Kirk Bryn [Bryan and Cox, [3]] introduced that the first Ocean General Circulation
Model that is the root of many Ocean Models now currently being used. As the years passed,

many ocean models have been undergoing various developments. In order to initialize a



climate model simulation, an initial velocity (that is in statistical equilibrium) is needed. It
is then taken as an initial condition for a climate model evolution. This interesting process
is called "spin up" and is defined as the time taken for an ocean model to reach statistical
equilibrium with mean data. The main fact here is without spin up, the model cannot be
studied.

Mostly, the researchers concentrated on stable equilibrium.Constantin, Foias and Temam
([13]) dealt with the problem numerically. They found the existence of stable equilibrium
was a result of numerically computed stable equilibrium solution. Stability of solutions and
error estimates were studied by Heywood and Rannacher ([18]). However, the factor of
time imposed another problem. Attaining a spin up state needs very long time scales. One
example is in paleoclimatology. Using the Community Climate System Model Version 3
[Collins et al., 2006 ([11])], for the Cenomanian-Turonian epoch, the model is used forward
in time for 2000 years [Alexandre et al., 2010 ([1]), see ([2]) for clear explanation]. Another
example is Ocean General Circulation Model that takes approximately 8000 years for a spin
up run with an ocean depth of 5000m ([2]).

Since the spin up phase costs huge amounts of CPU time and takes a long real time,
methods need acceleration. Bryan ([4]), Klinger ([22]) and Khatiwala and co-workers ([21])
used so-called distorted physics method, exponential extrapolation and so-called matrix-
method, respectively, to accelerate convergence to equilibrium solution (see more in ([2])).

With this idea we will test NSV in (1.2). First we will count number of steps that the

equilibrium required. This is measured by

un—i—l —un
_— < Test 1
unJrl — " un+1 —um
e | S 1) /e ——
At H At = €

where € is the TOLERANCE.
Second we will test accelerating convergence to statistical equilibrium. Let’s look at this
closer. If u and p is a smooth solution of (1.1), taking inner product with u and integrating

over domain {2 and integrating in time 7' the energy equation of the NSE becomes:

SIDIF+ [ olvuolFa = il + [ (@), u0)



This equation has the interpretation:

Kinetic Energy (7')+Total Energy Dissipated over [0, T]

= Initial Kinetic Energy + Total Power Input over [0, 7]

If we divide the integrals with 7" then they become time averages and we have

Lo (T2 = L 2 1 (7T
sl — 3lluoll +_/ ol V()| [2di = / /fﬂ u(x, t)dadt
0

T T

This equation is statistical steady state if

17 e
7 | ovunp =% [ rw0 - s

Thus, statistical steady state occurs if

sllu(T)I? = 5lluol?

7 <eforal " >T

If we apply this to the (1.2) from the term —aAuwy, there will be an extra term coming from
(—aAuy, u) and integrated over time T, statistical equilibrium becomes

sl = slluol* - sIVe(T)I = 51 VuolP

w0 7 <eforall T" >T (Test 2)




2.0 PRELIMINARIES

In this chapter we introduce the basic facts that will be used for the development of this
thesis. We use definitions and notations as in Layton ([23]).

Let © denotes a bounded, open and connected domain in R? that the fluid flows. The
Hilbert space L?(Q) is the most important tool in fluid dynamics. If we look at closer, we
will see that velocity with the total kinetic energy forms the function space L*(9). Let p, be

the constant density and u be the velocity for a fluid with domain €2.
S 1 2
Kinetic Energy = §mass X wvelocity
which can be presented as

1
Total Kinetic Energy = 5/ u|? da.
Q

So, as stated in Layton ([23]), the space L*(Q) is just the set of all velocity fields with finite

kinetic energy.

2.1 THE HILBERT SPACE L*(Q) AND X := H}(Q)

Definition 1. (L*(Q) functions). L*(Q) denotes the set of all Lebesque measurable func-

/ Ip|? dz < 0.
Q

tions p : Q2 — R with



An inner product on L?(Q) and its produced norm can be defined as

(p,q) == /Q p(x)q(z)dx

and the norm on the continuous functions C°() is,

1/2
2
Ipl) == [ [1v dw}
Q

respectively. In this thesis, L?(Q2) norm and the inner product denoted as ||-|| and (-,-)

respectively. We also give the definitions of velocities and tensors with finite kinetic energy.
Definition 2. (velocities) L?()? = {v = (v1,...,v4) : © — R?: each component v; € L*()
where j = 1..d} and

2 2 2,1
[oll = lloll L2 gya = [loall”™ + lJoall” 4. 4 [Jval T2

Definition 3. (tensors) L*(Q)™>? .=V = {(Vi;),i,j =1,...,d: Vi € L*(Q)},i.e., |V <

oo, where

1
2

d
VI = [Z IVigll”

ij=1
The notations that we use for complete, normed, linear L?(Q2) Hilbert space with inner

product (-,+) are

(p,q) : Z/p(:v)q(:v)dx for p,q : @ — R and p,q € L*(Q),
Q

d
(u,v) : z/Zuividm for u,v € L*(Q)%,
Q

i=1
d
(S, 7) :/ Z Sii(2)Tij(z)dx for S, T € L*(Q)**?
Q=1

where the norm of a vector v in L?(Q) is

lull = v/ (u,u) Yu € L*(£).

While a fluid is flowing, each section of fluid applies a force to another section of fluid so
that this battle generates local changes in velocity and makes complex patterns in a domain
of fluid. This fact is represented mathematically with the first derivatives of u. Since the

velocity is in L2((Q), its gradient should be in L%(2)%*¢



Definition 4. Let d = dim(2) =2 or 3. If u = w;;, i = 1,...,d, then Vu is the d x d matriz

of all possible first derivatives of u,

a A d 2
(Vu);; = 8—;‘?,2',3' = L.d, and |Vul? =Y

an
6@»

,j=1

Let u be a C1(Q) function vanishing on 99 . Then,

2 271
lullx == [lull” + [IVul"]2

is a norm which is induced by an inner product,

(u,v)x = (u,v) + (Vu, Vv),

where (Vu, Vo) = S2¢ (2 du),

’l',j:]- 81‘j7 8Ij

Definition 5. X=H;(Q) is the closure in ||-||y of
{v: Q=R veCrand v =0 on N}

Now, we are ready to define our spaces. We will seek the velocity u and the pressure p

in the region with the space

: = Hj(Q) = {ve L*Q): Vve L) and v]sq =0}
Q :L2(Q)d:{q:q€L2(Q):/ﬂq:O}



2.2 THE NAVIER-STOKES EQUATIONS

Consider the flow of a fluid in a region € in R?. The Navier-Stokes equations (NSE) describe
the motion of fluid flow as a continuum model. They are based on the conservation of mass
and conservation of momentum laws. For compressible and incompressible fluids, NSE is the

most accepted model. For the incompressible case the equation is given by

u +u - Vu + V(ﬁ) = L Au , in Q. (2.1)
Po Po

Here p, is the density, the parameter ;1 dynamic viscosity so that

M.~ ) = kinematic viscosity. (2.2)

Po

and replacing the pressure by a scaled pressure p:

we give the definition of time dependent incompressible NSE:

Definition 6. The time dependent NSE are given by
uw:Qx[0,T] —-R* | p:Qx[0,T] =R
satisfying

u+uNVu—vAu+Vp = f(x,t) foreeQ, 0<t<T, (2.3)
Viu = 0, 2€Q forO0<t<T,
u = 0 on 00 for 0<t<T,

uw(z,0) = wup(x) for e

and the usual normalization condition that [, p(x,t)de =0 for0 <t <T.



where u denotes the fluid velocity, v is the viscosity, p denotes the pressure, f(z,t) is
the body force, V - u is the incompressible condition and uy € L*(2) is a divergence free
condition. The derivation of these equations can be found in Chorin and Marsden ([10]).
Here, we want to give more information about viscosity as described in Layton ([23]). Since
the flow occurs in a domain €2, there must be a characteristic length L of the flow geometry.
If we rescale the variables in (2.1), where L is the reference length and V' is the reference

speed of flow,

0
O = —
L
. T
x = —
L
% u
U = =
1%
o Vi
L
p* :p_po
PV

After rescaling the values in (2.1) the equation becomes

1

i v v =
0

) A

We define this dimensionless parameter as Reynolds Number and represent it as

_ pVL
!

Re:

Generally the term VL is taken as 1 and from (2.2), the equation become

The equation in (2.3) has a solution. Although there is an open question about strong
solution vs. weak solution in 3D. In 2D it is clearly shown that a weak solution is actually
a strong solution in Manica ([26]). Definitions and proof of this also can be found in many
books such as Galdi ([16]) and Shor ([30]). We give the definition of strong solution as in
Layton ([23])

Definition 7. (u,p) is a strong solution of (2.3) if u € L*(0,T; X) N L>(0,T; L*(R)) and



1. w:[0,T] — X is a differentiable map with v, € L*(0,T;X) and p : (0,T] — Q is an
integrable map with p € L*(0,T;Q)
2. For allt' € (0,T], (u,p) satisfies

/0 [(ug, v) + (u - Vu,v) + v (Vu, Vo) — (p, V- 0)] dt’ = /0 (f,v)dt

for all v € L*(0,T; H}(2)) N L>(0,T; L*)) and /t (¢, V-u)dt' = 0 for all q €
L2(0,T5 L3(9)). 0

3. ug € V and |Ju(t) — upl| — 0 as t — 0.

J. ue LY0,T; X).

In Chapter 3, we will use the trilinear form in Section 2 and 3. We give the definition
with referring Manica([26])

Definition 8. (Skew-symmetric trilinear form) On Xx Xx X, b* : X x X x X — R is defined
as

1 1
b*(u,v,w) = §(u-Vv,w)—§(u-Vw,v).

10



3.0 FINITE ELEMENT METHOD

Finite Element Method (FEM) is a method that gives numerical solution of field problems.
This method takes a structure of a field and splits it into several pieces. Then, connect pieces
with nodes and with this process the field quantity becomes interpolated over the structure.
This method has several advantages in terms of wide variety of engineering problems espe-

cially in fluids.

e FEM is a powerful method that is capable to handle very complex geometry
e It can also handle complex restraints so that makes indeterminate structures solvable

e Although FEM acquires approximate solution, it is the fastest and closest solution in its

own field

e Number of degrees-of-freedom is finite.

3.1 FINITE ELEMENT SPACE

FEM is the approach that we will be using in this thesis in order to solve NSV Model.
Assume the problem has a known velocity u(z,y) defined in a region © and also assume
u"(x,y) is an approximate velocity representing u(z,y) with a finite number of degrees of
freedom.

In two dimensions, approximating a velocity is achieved by introducing a triangulation
T"(Q) and defining u"(z, y) on each triangle with a small number of degrees of freedom. To
begin constructing the approximate surface a triangulation 7"(£2) is constructed satisfying

a few basic conditions as stated in Layton ([23]):

11



e Conforming: The triangles are all edge to edge; meaning a vertex of one triangle cannot
lie on the edge of another.

e Nondegeneracy: The triangles are not close to straight line segments. This is measured
in different ways. It is common to ask that the smallest angle in the triangulation be
bounded away from either zero or the largest from 180 degrees.

e The boundary is followed appropriately: Generally this means that (i) the boundary
of the computational domain is within the targeted error of the boundary of the real
domain, and (ii) no triangle has all three vertices on a part of the boundary where

Dirichlet boundary conditions are imposed.

Once a mesh is generated, either by direct input or automatically, the possible approx-
imations on that mesh must be selected. We are considering the approximate velocity to
be globally continuous over each triangle and the nodes are just the vertices of T7"(Q). The

superscript h represents the triangle fineness measure:

h = max d(K).

Kerh
The Finite Element Method is formed by Galerkin approximation and the proper choice
of finite dimensional space X". Once we have a partial difference equation, we can solve it
by simply solving its equivalent variational formulation. The fact of using this formulation
rather than pointwise differential equation leads the stability and the power of FEM. Gener-
ally, given a bounded linear function F' € X*(dual space of X) the problem is to find u € X
satisfying,

a(u,v) = F(v), Yv € X. (3.1)

The form of (3.1) is continuous and coercive. The Galerkin method begins by selecting a
finite dimensional subspace X" C X. The Galerkin approximation u" € X" is the solution

of the equations: find u"* € X" satisfying

a(ul,v") = F(u"), Yo" € X"
The complete convergence theory of Galerkin method can be found in many Finite Element

books such as Layton([23])

12



Figure 1: Triangulated mesh in a square domain (-1,1)x(-1,1)
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3.2 FINITE ELEMENT SOLUTION OF NS-VOIGHT MODEL AND
EQUILIBRIUM PROBLEM

Now, we are ready to discretize our model for spin up problem. Recall our model:

up — aAuy +u.Vu —vAu+Vp = f(x,t)forzeQ, 0<t <T, (3.2)
Viu = 0, 2€Q for0<t<T,

u(z,0) = wup(z) for =€

Let X" ¢ X and Q" C Q be respectively the velocity and pressure finite element spaces

which satisfy the following LBB" (discrete inf-sup) condition,

(¢,V-v)

inf sup >C > 0.

)
9€Q" yexn |V|; |la|l

The approximate velocity and pressure are represented as maps

u o [0,7] — X",

p* o (0,7 — Q"
for all v" € X" and ¢" € Q"

(u, v") + o (Vuy, Vo) + 0% (0, o 0") + 0 (VU Vo) = (", V- o") = (f,0")
(V-uh,qh) =0

(uh(-,O)—uo,vh) = 0.

Under LBB", select v" to be the set of discretely divergence free functions and defined as
Vhi={v"e X (¢",V-v") =0, V¢" € Q"}. The variational formulation of (3.2) is, find
u€e X, pe and Vv € X such that,

(ug, v) + @ (Vug, Vo) + (u - Vu,v) + v (Vu, Vo) = (p, V-v) = (f,v)
(van) = O,VC]GQ

14



or using trilinear form which is equivalent to

(ug, v) + 0" (u, u,v) +v (Vu, Vo) — (p,V - v) + o (Vu, Vo) = (f,v) (3.3)
(V-u,q) = 0,VqeQq.

In this thesis, since we are looking at accelerating convergence to equilibrium, we need to
give the equilibrium problem associated with (3.2). When ¢t — oo, the following equilibrium

problem is to find ., pso satisfying

Uso * Voo — VAU + VDoo = f (x) for z € Q (3.4)
Viue = 0, 2€Q

U = 0, on 09,

/poodx = 0.
Q

Finite element approximations u” and pf satisfy the equations

v (VUZO,VUh) + b*(ul ul o) — (pZO,V . v) = (fo, ") V" € X

(e ohihae ob)

(V-ul,¢") = 0Y¢"eQ
and the variational formulation of equilibrium problem is, find 1, ps such that

U (Vo VU) 4+ 0" (oo, Uoos V) — (Poo, V- 0) = (foo,v) Yo € X
(V- too,q) = 0VgeQ

15



3.3 FULLY-DISCRETE APPROXIMATION

The semi-discrete FEM reduces the NSV model to a large, stiff system of ordinary differential
equations in time. This system must still be solved by an appropriate time-stepping scheme.
Now, let us consider a full-discretization of (3.2) via Backward Euler linearization time-
stepping by following a similar development as for the semi-discrete formulation. Let & =
At > 0 be time-step. The algorithm given below computes u? u%, ... pt ph ... where

uh(z) = u(z,ty), pl(z) = p(x,t;) and t; = jk.

Algorithm 9. (BELFEM) For each n = 1,2,...,M — 1, find (u" ,,p! ;) € X" x Q"

satisfying
h h h h
Uy g — Uy 5 Vuy , — Vu, A
<—At v ) +« <—At , Vo ) (3.5)
+b* (uZ, uzﬂ, vh) +o (VUZ_H, Vvh) — (pZH, V- vh)
== (fn+17 v : Uh)

(V-ubiy,q") =0, V" eQ"

Y

In the next chapter, we will try to specify whether adding the term ” — aAwu,” increase

the accelerating convergence to steady state or not. We also will try to specify the statistical
Unp4+1 — Un

< €
At

equilibrium and spin-up problem, i.e., adding ” — aAu,;” to NSE satisfies

(tolerance) with the time reduction faster than NSE.

3.3.1 Accelerating convergence to steady-state

Although the focal point of this thesis lies on more numerical approach. However we find
it essential to include the theory that highlights the convergence rate analysis of to steady

state solution of NSE and NSV. If we do time discretization of 2.3 we get

un+1 —un

A7 +u™ Ve — p AT 4ttt = f (3.6)

16



To find the convergence rate to steady-state solution of NSE, let’s subtract (3.6) from (3.4),
adding subtracting the term u"*! - Vu,, and writing "' = u,, 11 — us give us
enJrl —en

A T Untre Vet + e Vg — vAe™™ + Vp, i1 — Vpoo = 0.

Multiplying by e"*! gives

(en%t_—en , en+1) + (un+1 . V€n+1’ en+1> + (e”“ - Voo, 6n+1)
_/U<Aen+17 €n+l) + (vpn—i—lu en+1) _ (vpoo, €n+1) _ O

2 —y?+(z—y)?

Using skew-symmetry (u - Vv, w) = —(u - Vw,v) and the trick that z? — zy =

2 2
e[ =tem P+ {[er* —en ]

241 + (€™ Vg, ") (3.7)

—v (Ae" e ) + (V(pni1 — o), €)= 0

By the divergence theorem
(Au,v) = / Au - v.dr = / Vu-Vudr + [ Vuvnds.
Q Q o0
Since u = 0 on the boundry 02,
(Au,v) = /QVU-Vvd:U (3.8)

Similarly, since v vanishes on 0f2

(Vp,v) = /va cvdr = — /QpV cvdz. =0 (3.9)
Deleting ||e"™ — "%, using (3.8) and (3.9) equation becomes

le+)1”
2At

Using continuity of the trilinear form,

e
2At

+ v (V6n+l, V€n+1) < - (e""H Vi, €”+1> +

lu- Vo, w| < N [|Vul| ||Vo| ||[Vw]||, N is a finite constant
and the bound on u™

Vol <v! where =su (f,v)
Vol < v [ ], £l AT
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inequality holds and become

H€n+1H2 +UHV€n+1H2 < Not||f] V€n+1||2_|_ He”HQ
2At - * 2At
rearranging them
N
et + w2t <1 - ||f||*> Ve < flen). (3.10)

Using Poincaré—Friedrichs’ inequality

|lul] < Cpy [[Vul|| where C,f is a positive constant

and under the small data condition, % ||f||, <n < 1and 1 — % | f]|, > 0,

02

N
= (e + Aty e P < e, v =20 (1—;||f||*) C.2 (311)

n+11|2 1 ni2

= e < () Il B2
n 1 n/2 1n(1+1At>

= He +1H < (m) HGOH ) ﬁ = _TZ > 0,

= Jle ] < e = e

Thus, the error sequence converge to zero with the speed O(e™ 5 ).

Let us construct similar steps for (3.2). Time discretization of (3.2) is

Un41 — Un Unp41 — Un
+T + U1 - Vg — VAU 1 + VDppr — aA <+T> = f
V- Unt1 — 0.

we only have extra term

Up+1 — Un
—aA\ | —/————
2 ()

Using (3.8), the same trick in (3.7) and the fact that "™ = w,, ;1 — us and then multiplying

et finally gives

o (B = IV = Ve Vet - e
At 2At
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If we add this to inequality in (3.10), the inequality in (3.11) becomes
e+ ey e 4 a(Tersi [T+ [V - ) < el @13

If the term
af|[ve P = Ve + || V(e — em)|*) (3.14)

is positive each time step, then we can write

oz(HVe”HH2 — Ve |® + HV(@”Jrl — e”)Hz) =0 He”“‘ 2, oc>0

then (3.13) will be
(1+0) H6n+1H2 +At7H€n+1”2 < HenHz

and finally

n+11|2 1 ni2
e e L

Since the coefficient in the right hand side is smaller than the coefficient (ﬁ) in (3.12),

the rate of the convergence to zero is faster, i.e., u)?) — uy is faster than u)PF — ueo. If
the term in (3.14)

a|[ve )P = Ve + || V(e — em)|]?)

is not positive for each step, it cannot be guaranteed for accelerating converge to equilibrium

and statistical equilibrium. Next chapter we will see this in numerical experiments.
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4.0 NUMERICAL EXPERIMENTS AND RESULTS

In this chapter, we test some examples to see behavior of convergence of our model. We use
the software FreeF’EM + +([17]) to run numerical tests with taking tolerance ¢ = 107° as
a stopping criterion. We give the Free FFEM + + codes for each example and results of our
test are given with tables and supported with the figures of velocity and pressure. Since we

also look some problems with known solutions we will look at 4 tests:

Huh_uooH < € (Test 1)
n+l _ . n
% < ¢ (Test 2)
-7 - | < Test
Al +Hv Al = (Test 3)
LNu(T)? = Huoll2 LIVW(T)]|? = L||Vuol 2
al|ul )||T, 2lluol| +a2|| u( )||T, 2l Vuol| < (Test 4)

All tests are calculated in L? norm. Tests are made with different values of Reynolds
numbers, h and dt. Tables summarize the most convenient results so that one can check the

results easily.

4.1 THE PROBLEM 1

First problem is tested for a known exact solution in a square domain 2 = (—1,1) x (—1,1)
where the boundary approximation is exact. The uniform mesh is obtained by dividing (2
into squares and drawing a diagonal each square in same direction. We choose the exact

solution by:
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~20t(_ cos(z) sin(y))

uy(z,y,t) = e
ug(x,y,t) = e *'sin(x)cos(y))

0

p(z,y,1)

where initial conditions are for ¢t =0 :

up = (— cos(z) sin(y), sin(x) cos(y))

and the equilibrium for ¢ — oo

Uso(T,y) =0

Here is the code for Square Domain with true solution of NSE:

/1]

/* SquareExact.edp —linearization with Backward Euler Time Discrization

u_t + u.* grad(u) - nu div(grad(u)) + grad(p0) = f,

div(u)=0 in omega
u=(exp(-2*nu*t)*(-cos(x)*sin(y)),exp(-2*nu*t)*(sin(x)*cos(y))) on the boundry
time discrization;
(U(n+1)-U(n))/dt+U(n).*grad[U(n+1)]-nu*div(grad[U(n+1)]4+grad [P (n+1)]=f(n+1)
Ali Koseoglu

*/

real TO = 0.0; // initial time

real Tf = 10.0; // final time

real dt = 0.1; // time step size

int maxits=(Tf-T0)/dt;

real t; // time step counter

real Re=1.; // Reynolds

real nu = 1./Re; // viscosity
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real alpha=0.; // accelerating parameter

real tol=1.0e-6;

real energyerror,stepspinup,spinuperror,energyerrorl,spinuperrorl;
real eqerror,eqgraderror,eqerrorl,eqgraderrorl;

real step,stepeq,stepgradeq;

int numsteps,numstepseq,numstepsgradeq,c;

int numstepspinup;

int al=1;

int a2=1;

int a3=1;

int ad=1;

string test="not small enough or blow up";

// define macros

macro grad(u) [dx(u),dy(u)] //

macro div(ul,u2) (dx(ul)+dy(u2)) //

macro dot(ul,u2,v1,v2) (ul*vl4+u2*v2) //

macro ugradvl(ul,u2,vl) (ul*dx(vl)4u2*dy(vl)) //

macro cc(ul,u2,v1,v2,wl,w2) (ugradvl(ul,u2,vl)*wl4ugradvl(ul,u2,v2)*w2) //

macro cch(ul,u2,v1,v2,wl,w2) (0.5%(cc(ul,u2,v1,v2,wl,w2)-cc(ul,u2,wl,w2,v1,v2))) //

macro contract(ul,u2,v1,v2)(dx(ul)*dx(vl)+dx(u2)*dx(v2)

+dy(ul)*dy(v1)+dy(u2)*dy(v2))//

// define the triangulated mesh
mesh Th=square(20,20,[2*x-1,2*y-1]); //h=1/10
//plot(Th,wait=1,ps="Th.eps",value=true);

func f1 = 0;
func 2 = 0;
func gl =exp(-2*nu*t)*(-cos(x)*sin(y));

func g2 =exp(-2*nu™t)*(sin(x)*cos(y));
func uinf1=0;

func uinf2=0;
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// create the FE velocity space Vh of continuous piecewise quadratics
//and pressure space Ph of continuous piecewise linears
fespace Vh(Th,P2);

fespace Ph(Th,P1);

// define the FE functions

Vh ul,u2,ulold,u2old,v1,v2,ulerr,u2err,U01,U02,ulex,uex;
Ph p,q;

// define the variational formulation of NSE with adding alpha
problem NSE([ul,u2,p],[vl,v2,q]) =

int2d(Th)(

(1/dt)*dot(ul,u2,v1,v2)
+(1/dt)*alpha*contract(ul,u2,v1,v2)

+ cch(ulold,u20ld,ul,u2,v1,v2)

+ nu*contract(ul,u2,vl,v2)

- p*div(vl,v2)

+ q*div(ul,u2))

-int2d(Th)(

(1/dt)*dot(ulold,u2o0ld,v1,v2)
+(1/dt)*alpha*contract(ulold,u2old,v1,v2)

+ dot(f1,f2,v1,v2))

+ on(1,2,3,4,ul=gl,u2=g2);

ul =-cos(x)*sin(y);

u2 = sin(x)*cos(y);

U01 =-cos(x)*sin(y);

U02 = sin(x)*cos(y);

// begin time stepping loop

c=0;

t=TO0;

while (t < Tf)

{
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ulold = ul;
u2old = u2;
t = t+dt;
// solve NSE output=[ul,u2,p|
NSE;
//
ulerr=ul-ulold;
u2err=u2-u2old;
ulex=abs(uinfl-ul);
u2ex=abs(uinf2-u2);
if (t>1)
{
eqerror =(1/dt)*sqrt(int2d(Th)(dot(ulerr,u2err,ulerr,u2err)));
eqgraderror=(1/dt)*sqrt(int2d(Th)(contract(ulerr,u2err,ulerr,u2err))) + eqerror;
energyerror=(1/t)*0.5*(int2d(Th)(dot(ul,u2,ul,u2))
-int2d(Th)(dot(U01,U02,U01,U02)))
+(1/t)*0.5*alpha*(int2d(Th)(contract(ul,u2,ul,u2))
-int2d(Th)(contract(U01,U02,U01,U02)));
spinuperror=sqrt(int2d(Th)(ulex "~ 2+u2ex"2));
if ((abs(energyerror) < tol )&(energyerror!=0)&(al==1))
{ numsteps=c;
energyerrorl=abs(energyerror);
al=2:}
if ((eqerror<tol)&(eqerror!=0)&(a2==1))
{ numstepseq=c;
eqerrorl=eqerror;
a2=2;}
if ((eqgraderror < tol )&(eqgraderror!=0)&(a3==1))
{ eqgraderrorl=eqgraderror;

numstepsgradeq=c;
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a3=2;}
if ((spinuperror < tol )&(eqgraderror!=0)&(ad==1))
{ numstepspinup=c;
spinuperror1=spinuperror;
ad=2;}
}
c=c+1;
plot([ul,u2],wait=0,value=true);

//if((t>1)&(spinuperror<tol)&(eqgerror<tol)&(energyerror < tol )&(eqgraderror < tol

//{break;}
} // end while loop

// plot the computed pressure and velocity

plot(p,fill=1,wait=1,ps="pressurefinall.eps" ,value=true);

plot([ul,u2],wait=1,ps="velocityfinall.eps" ,value=true);

// print number of steps and values

cout << H>|<>l<>|<>l<*******************************************************"<<end1;

cout << "Time Interval = [0,"<<Tf<<"] dt="<<dt<<" max iterations="<<maxits
<<endl;

if (energyerrorl==0)

{cout << "energy error for < Tol =" << test <<endl;

numsteps=c; }

else

{cout << "energy error for < Tol =" << energyerrorl <<endl;}

cout << "energy error at "<<Tf<<" is =" << abs(energyerror) <<endl;

if (eqerrorl==0)

{cout << "equilubrum error for <Tol =" << test <<endl;

numstepseq=c; }

else

{cout << "equilubrum error for <Tol =" << eqerrorl <<endl;}
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cout << "equilubrum error at "<<Tf<<" is =" << eqerror <<endl;

if (eqgraderrorl==0)

{cout << "equilubrumgrad error for < Tol=" << test <<endl;
numstepsgradeq=c;}

else

{cout << "equilubrumgrad error for < Tol =" << eqgraderrorl <<endl;}

cout << "equilubrumgrad error at "<<Tf<<" is =" << eqgraderror <<endl;

if (spinuperrorl==0)

{cout << "spin-up error for < Tol =" << test <<endl;

numstepspinup=c; }

else

{cout << "spin-up error for < Tol =" << spinuperrorl <<endl;}

cout << "spin-up error at "<<Tf<<" is =" << spinuperror <<endl;

cout << "FFRHf gteps = "<<c<<" then max steps is exceeded!!! ¥ < <endl;
cout << "number of steps for energy error steps=" <<numsteps<<endl;

cout << "number of steps for equilibrum steps=" <<numstepseq<<endl;

cout << "number of steps for equilibrumgrad steps=" <<numstepsgradeq<<endl;
cout << "stopping time for spinup error steps=" <<numstepspinup<<endl;

We ran the code for different values of h and «, starting with h = 1—10 and o = 0 where
1—10 < h < ﬁ and 0 < o < 1. For different Re, different time intervals such as [0, 10] to
[0, 80]and different dt where 0.1 to 0.0001. For this test all we got is, for the values of a > 0,
number of steps to reach equilibrium and statistical equilibrium are increasing. We give the
table of the number of steps for equilibrium tests and values of L?> — norm of the energy. We
pick the values for final time = 20, dt = 0.1, Re = 1 and viscosity v = 1 for the Table 1.
Here, tolerance = 107% and for Test 4, it is the value of Test 4 at final time. Note that for
a = 0, it is the model of NSE in (2.3).
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Table 1: Test results for Problem 1, h=1/10

value number of steps Value

Q Test 1 Test 2 Test 3 Test 4

0 70 74 79 0.0396647
0.1 70 74 79 0.0517317
0.2 70 74 79 0.0637988
0.3 108 112 119 0.0758658
0.4 115 119 130 0.0879329
0.5 165 169 181 0.0999999
0.6 93 96 107 0.112067
0.7 114 116 135 0.124134
0.8 116 117 131 0.136201
0.9 148 148 170 0.148268

1 exceeded exceeded exceeded 0.155149

As we see in Table 1, as the « is getting bigger, number of steps that NSV model reaches
equilibrium and value of statistical equilibrium are clearly increasing. After trying for small
and big o's we concluded that convergence is getting worse as the « increases. Later, we
tried it for small h and the results were very similar, & makes convergence the worse. We

will see it also in the plots.
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The plots of the computed pressure and velocity for each value of h at the final time are

displayed in the following figures starting with Figure 2.
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Figure 2: Problem 1, h =1/10, alpha = 0, Computed Velocity

Here we see the velocity vectors for the NSE as in(2.3). Velocity vectors are getting
smaller and the NSE reaches equilibrium. Notice that the "vec value’s at the right top of

the picture. We are expecting that these values will increase as the « is getting bigger.
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Figure 3: Problem 1, h =1/10, alpha = 0, Computed Pressure

This figure is the computed pressure p for the NSE model. The reason that plot is like
square-shaped is the value of h. Also notice that the values of ” Iso value” at the top right
of the picture. We are expecting that these values will increase as the « is getting bigger

though h is getting smaller.
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Figure 4: Problem 1, h =1/20, alpha = 0.5, Computed Velocity

We see the velocity vectors for the NSV as in(3.2). As we see here the velocity vectors
getting smaller, the NSV reaches equilibrium. Note that the density of the vectors. When
h is getting smaller, figure comes out more detailed. There is also one thing we should pay
attention the "vec values” right top of the picture. Although h is twice smaller, values of

velocity vectors increasing when we compare to Figure 2. We will see it other pictures too.

30



5o alue
- 6. Tafdge - 013

W-5.7497e-013
W-6.74801e-013
W-5.74632e-013
W-6.74463e-013
W-5.74293e-013
B-6.74124e-013
W-6.73954e-01%
W-5.73785e-013
W-6.73616e-01%
W-6.73446e-013
W-6.73277e-01%
W-5.73108e-013
W-6.72938:-01%
W-5.72769e-013
W-6.726e-013
W-5.72431e-013

Figure 5: Problem 1, h =1/20, alpha = 0.5, Computed Pressure

This figure is the computed pressure p for NSV model for h = 1—10. Since the value of h
is twice smaller, the plot comes out smoother. Besides, if we look at the "Iso Values", they
are bigger than the Figure 3. If o was 0, because of the h, these values would be smaller,

but this @ make them bigger which is also we can see from the picture clearly
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Figure 6: Problem 1, h =1/40, alpha = 1, Computed Velocity

We see the velocity vectors for the NSV as in(3.2). As we see here, the velocity vectors
getting smaller, the NSV reaches equilibrium but a little slower. Note that the density of
the vectors, when h is getting smaller, figure comes out more detailed but "vec values” are
getting bigger when we compare to Figure 4 because of . If we pay attention the value of

h = ﬁ, we can clearly see that o makes convergence worse.
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Figure 7: Problem 1, h =1/40, alpha = 1, Computed Pressure

This figure is the computed pressure p for NSV model for the a = 1. Since the value of h
is smaller, the plot comes out with perfect smoothness. Also the Iso value’s are getting bigger
which means that big a makes convergence worse no matter pressure or velocity vectors and

no matter h.
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4.2 THE PROBLEM 2

Second problem is tested for a true solution in a square domain Q = (—1,1) x (=1,1)
with periodic boundary conditions. Our report in this case is performed using Taylor-Green
vortices on the square as a true solution, Taylor-Green vortices are a solution of the NSE

with driving force f = 0, given by:

w(z,y,t) = e N7~ cos(Nmz) sin(Nwy))
us(z,y,t) = e 2NV gin(Nra) cos(Ny))
1

p(z,y,t) = —Z—le_gN%Q“t cos(2Nmz) cos(2N1y)

we choose N = 2 as in Connors([12]) and v = 1, where initial conditions are

up = (— cos(z) sin(y), sin(x) cos(y))

and the equilibrium for ¢ — oo

Uso(Z,y) = 0

Pool(z,y) = 0

Code is same as Problem 1, just changing the functions. We picked longer time scales
such as [0, 20], [0, 30] and [0, 40] with dt = 0.01. For these time scales, the bigger 0 < a <1
and 100 < Re < 1000 makes convergence worse. Mostly, our tests exceeded the max number
of steps and then blow up, so we give the results for time interval [0,10], 0 < « < 0.5, Re =1
and dt = 0.01 to see progress with Table 2.
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Table 2: Test results for Problem 2, h=1/10, T=10,

value number of steps Value

«Q Test 1 Test 2 Test 3 Test 4

0 69 90 103 0.0997447
0.1 455 484 510 0.88844
0.2 536 o971 615 1.67713

0.3 exceeded exceeded exceeded 2.16677
0.4 exceeded exceeded exceeded 3.2544
0.5 blowup blowup blow up  blow up

In Table 2, the bigger o makes our convergence really bad this time. After the exceeded
steps, it makes them blow up. We also wanted to show for one example of long time scale.

Table 3 shows results for time interval : [0,30] and dt = 0.01

Table 3: Test results for Problem 2, h=1/10, T=30,

value number of steps Value

«Q Test 1 Test 2 Test 3 Test 4

0 69 90 103 0.0332815
0.1 455 484 510 0.296443
0.2 536 571 615 0.559604
0.3 1449 1486 1593 blow up

0.4 exceeded exceeded exceeded blow up

0.5 blowup blowup blowup blow up

As we see in Table 3, nothing much change. After « = 0.5 we could not find a value

which does not cause a blow up.
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5 and v = 0,0.2,0.4.
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Very small increase of o makes "vec values" bigger than the @ = 0 NSE case when we

. When we tried for large a’s with this h, the results were worse. In other

L
20

decrease the h

is large, say o > 0.5, tests are starting to blow up. One can test

1
% and «

words, when h
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1
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we only gave results for A

ience,

. For conven

is given

this with using the code that
the Table 2 and Table 3.
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Figure 10: Problem 2, Re=1, h =1/10, alpha = 0.4, Computed Velocity at Final Time

As we see here this picture shows us how o changes the values and the velocity vectors.
When T = 10, the values show us it does not reach the equilibrium for given tolerance

¢ = 107% when we compare to values at Figure 8.

4.3 THE PROBLEM 3

The third problem is tested for an unknown solution in a circle domain 2 with radius = 1.

We choose the initial values for t = 0 :

Up = (_y7 33'),
with the body force

f(xvy):2< —Y, T >
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The code for this problem is:

/1]

/*CircularNoSolution.edp —linear with Backward Euler Time Discrization

u_t + u.* grad(u) - nu div(grad(u)) + grad(p0) = f,

div(u)=0 in omega

u=0 on the boundary of omega

time discrization;
(U(n+1)-U(n))/dt+U(n).*grad[U(n+1)]-nu*div(grad[U(n+1)]+grad[P(n+1)] =f(n+1)
Ali Koseoglu

//********************************************************************//

//********************************************************************//

real TO = 0.0; // initial time

real Tf = 10.0; // final time

real dt = 0.1; // time step size

real t;

real reynolds=500.;

real nu =1./reynolds; // viscosity

real alpha=0.;

real tol=1.0e-6;

real energyerror,stepspinup,spinuperror,energyerrorl,spinuperrorl;
real eqerror,eqgraderror,eqerrorl;

real step,stepeq,stepgradeq;

int numsteps,numstepseq,numstepsgradeq,c;
int numstepspinup;

c=0;

int al=1;

int a2=1;

int a3=1;

int ad=1;

real PRESSURESTABLIZE = 1.0e-12;
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// define macros

macro grad(u) [dx(u),dy(u)] //

macro div(ul,u2) (dx(ul)+dy(u2)) //

macro dot(ul,u2,v1,v2) (ul*vl4+u2*v2) //

macro ugradvl(ul,u2,v1l) (ul*dx(vl)4+u2*dy(vl)) //

macro cc(ul,u2,v1,v2,wl,w2) (ugradvl(ul,u2,vl)*wl4ugradvl(ul,u2,v2)*w2) //

macro cch(ul,u2,v1,v2,wl,w2) (0.5%(cc(ul,u2,v1,v2,wl,w2)-cc(ul,u2,wl,w2,v1,v2)))//

macro contract(ul,u2,v1,v2) (dx(ul)*dx(vl)+dx(u2)*dx(v2)
dy(ul)*dy(v)+dy(u2) dy(v2)) //

// define the triangulated mesh

border C(t=0,2*pi){x=cos(t);y=sin(t);}

border obs(t=0,2%pi){x=0.5+0.1*cos(t);y=0.1*sin(t);}

mesh Th = buildmesh(C(50)4obs(-15));

savemesh(Th,"mesh.msh");

func f1 =-2*y;

func 2 = 2*x;

// create the FE velocity space Vh of continuous piecewise quadratics and

pressure space Ph of continuous piecewise linears

fespace Vh(Th,P2);

fespace Ph(Th,P1);

// define the FE functions

Vh ul,u2,ulold,u2old,v1,v2,ulerr,u2err,U01,U02,ulex,uex;

Ph p,q,pold;

// define the variational formulation of NSE with adding alpha

problem NSE([ul,u2,pl,[vl,v2,q]) =

int2d(Th)(

(1/dt)*dot(ul,u2,v1,v2)

+(1/dt)*alpha*contract(ul,u2,vl,v2)

+ cch(ulold,u2o0ld,ul,u2,v1,v2)

+ nu*contract(ul,u2,v1,v2)
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- p*div(vl,v2)

+ g*div(ul,u2)

+ PRESSURESTABLIZE * p * q)
-int2d(Th)(

(1/dt)*dot(ulold,u20ld,v1,v2)
+(1/dt)*alpha*contract(ulold,u2old,v1,v2)
+ dot(f1,£2,v1,v2)

+ PRESSURESTABLIZE * pold * q)

+ on(C,ul=0,u2=0)+on(obs,ul=0,u2=0);
//initial values

ul =-y;

u2 =x;

U01=-y;

U02=x:

// begin time stepping loop

c=1;

t=0;

while (t < Tf)
{

ulold = ul;
u2old = u2;
pold=p;

t = t+dt;

// solve for [ul,u2,p]
NSE;

//

ulerr=ul-ulold;
u2err=u2-u2old;

if (t>1)

{
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eqerror=(1/dt)*sqrt(int2d(Th)(dot(ulerr,u2err,ulerr,u2err)));
eqgraderror=(1/dt)*sqrt(int2d(Th)(contract(ulerr,u2err,ulerr,u2err))) + eqerror;
energyerror=(1/t)*0.5*(int2d(Th)(dot(ul,u2,ul,u2))
_int2d(Th)(dot(U01,U02,U01,U02)))
+ (1/t)*0.5*alpha*(int2d(Th)(contract(ul,u2,ul,u2))
-int2d(Th)(contract(U01,U02,U01,U02)));
if ((abs(energyerror) < tol )&(energyerror!=0)&(al==1))
{ numsteps=c;
energyerrorl=abs(energyerror);
al=2;}
if ((eqerror<tol)&(eqerror!=0)&(a2==1))
{ numstepseq=c;
eqerrorl=eqerror;
a2=2;}
if ((eqgraderror < tol )&(eqgraderror!=0)&(a3==1))
{ eqgraderrorl=eqgraderror;
numstepsgradeq=c;
a3=2;}
}
}
c=c+1;
plot([ul,u2],wait=0,value=true);
//if ((eqerror!=0)&(eqerror<tol)&(energyerror < tol )&(eqgraderror < tol ))
//{break;}
} // end while loop
// plot the computed pressure
plot(p,fill=1,wait=1,ps="pressurefinal1.eps" ,value=true);

// print number of steps and values

cout << H>I<>l<************************>I<*****>I<*>I<************************H<<end1;
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cout << "Time Interval = [0,"<<Tf<<"] dt="<<dt<<" max iterations="<<maxits
<<endl;

if (energyerrorl==0)

{cout << "energy error for < Tol =" << test <<endl;

numsteps=c; }

else

{cout << "energy error for < Tol =" << energyerrorl <<endl;}

cout << "energy error at t="<<Tf<<" is =" << abs(energyerror) <<endl;

if (eqerrorl==0)

{cout << "equilubrum error for <Tol =" << test <<endl;

numstepseq=c; }

else

{cout << "equilubrum error for <Tol =" << eqerrorl <<endl;}

cout << "equilubrum error at t="<<Tf<<" is =" << eqerror <<endl,

if (eqgraderrorl==0)

{cout << "equilubrumgrad error for < Tol=" << test <<endl;

numstepsgradeq=c;}

else

{cout << "equilubrumgrad error for < Tol =" << eqgraderrorl <<endl;}

cout << "equilubrumgrad error at t="<<Tf<<" is =" << eqgraderror <<endl;

cout << "FFRHf gteps = "<<maxits<<" then max steps is exceeded!!! K" <<endl;

cout << "number of steps for energy error steps=" <<numsteps<<endl;

cout << "number of steps for equilibrum steps=" <<numstepseq<<end];

cout << "number of steps for equilibrumgrad steps=" <<numstepsgradeq<<endl;

We ran the code for different values of h and «, starting with h = 0.172742 and oo = 0
where 0 < o < 10. Also we ran the code for different Reynolds number, different final time
and different dt. For this test all we got is, for the values of @ > 0, the value of statistical
equilibrium is decreasing until @ = 1.6 then starts to increase again. We give the table of

the values number of steps for equilibrium tests and L? — norm of the energy. We pick the
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values for final time = 10 and dt = 0.01. Also, Re = 500 and viscosity v = ﬁ. Here,
tolerance = 107% and the values that in the Table 4 are the values at final time. Note that
for v = 0 it is the model of NSE in (2.3).

The results are given for h = 0.172742 and different values of « :

Table 4: Test results for Problem 3, Re=500, T=10, h=0.172742

Test 4

a valueatT o valueatT

0 0.705566 0.9  0.668468
0.1  5.43379 1 0.541023
0.2  3.51808 1.1 0.430156
0.3 252956 1.2 0.331935
0.4 192563 1.3 0.243577
0.5 1.51939 14 0.163061
0.6 1.22492 1.5 0.088882
0.7 0999073 1.6 0.019898
0.8 0.818238 1.7 0.044775

Table 4 shows that this test in inconclusive. The simulations did not reach statistical
equilibrium by 7" = 10 for any value of a. Just to be sure, let us to see Re = 1 case for

a=0,a=1,and a = 1.6.

Table 5: Test results for Problem 3, Re=1, T=10, h=0.172742

Test 4

@ ##steps  value at T

0 exceeded 0.0772927
1 exceeded 0.378334
1.6 exceeded 0.559005

Here, we see the effect of Reynolds Number. This test also inconclusive.

We the plot the computed pressure and velocity for value of « = 0 and o = 1.6 at the

44



final time for the Re = 1. We will see the effect of o with the pictures. Here is our mesh

and following that are the figures:
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Figure 11: Unit circle mesh C(50)+o0bs(-15)

Here is the example of our mesh. For this mesh h = 0.174722 roughly because of obstacle.
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W 47661
B 70ss
B 4016
W 1710s
W 40371

Figure 12: Problem 3, h =0.172742, alpha = 0, Computed Velocity at Final Time

As we see here for a = 0, velocity vectors are big and complicated. The reason is
Re = 500. For a given tolerance e, statistical equilibrium test (Test 4) passes over the

maximum number of steps.
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W 06624

Figure 13: Problem 3, h =0.172742, alpha = 0, Computed Pressure at Final Time

Here, we see the calculated pressure at final time. Since we do not know the true solution
of pressure, we cannot make a certain statement. But, since we know velocity vectors come
big for the case a = 0 and pressure is clearly depending on velocity errors, we might say the
values of Iso Value’s are bad. Next, we will see the pictures of velocity vectors and pressure

for « = 1.6.
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Figure 14: Problem 3, h =0.172742, alpha = 1.6, Computed Velocity at Final Time

For the value of a = 1.6, velocity vectors are smaller than the Figure 12. But as we see in

the Table 4, statistical equilibrum test going worse. So we can say this test is inconclusive.
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Figure 15: Problem 3, h =0.172742, alpha = 1.6, Computed Pressure at Final Time

The pressure seems to smooth, and when we compare to case for a« = 0, ”IsoValue” of
pressure is smaller. What we concluded here is even the pictures come nicer for the case
a = 1.6, we know statistical equilibrium goes really bad as the « increases. The results that
we find now bring the question of reliability of a. We need to test one more example to see

reliability of «a.
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4.4 THE PROBLEM 4

The fourth problem is tested for a true solution in a circle domain with radius = 1. We test

this case using no obstacle and unit circle has zero boundary conditions. True solutions are:

w(z,y,t) = 21— —y’)y

ug(z,y,t) = 271 —2* -z

popt) = —Z2 (-2 =y - )

flz,y,t) = 27" (21 —2*—y*) —8v) <y,—x >

As in Connors([12]) we take v = 1072, where initial condition are for ¢ = 0 :

up = (1 — 2% —y?), —(1 — 2> — 3?))

and the equilibrium fot ¢t — oo

Uso(Z,y) = 0

Po(r,y) = 0

The Code is same as Problem 3, just changing the functions. We picked longer time
scales such as [0,20], [0,30] and [0,40] with dt = 0.01. For these time scales, the bigger
0 < a < 10 and 100 < Re < 1000 makes convergence sometimes bad sometimes good.
Mostly, our tests exceeded the max number of steps, so, we give the results for time interval
[0,10], 0 < o < 1.6 , Re = 1 and dt = 0.01 to see progress with Table 6. We also give
the values at T', because even the numbers of steps are exceeded, values at final time are

increasing. For this example, the bigger av makes Testl, Test2, Test3 and Testd worse.
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Table 6: Test results for Problem 4, Re=1, T=10, h =0.174722

Test 1 Test 2 Test 3 Test 4

o #steps value at T #steps value at T #steps value at T #steps value at T
0  exceeded 0.000493437 exceeded 0.000343239 exceeded 0.00171807 exceeded 0.0130760
0.1 exceeded 0.000532255 exceeded 0.000370241 exceeded 0.00185289 exceeded 0.0338352
0.2 exceeded 0.000577702 exceeded 0.000401854 exceeded 0.00201068 exceeded  0.0545937
0.3 exceeded 0.000631635 exceeded 0.000439370 exceeded 0.00219784 exceeded 0.0753522
0.4 exceeded 0.000696676 exceeded 0.000484612 exceeded 0.00242343 exceeded 0.0961107
0.5 exceeded 0.000776620 exceeded 0.000540188 exceeded 0.00270039 exceeded  0.116869
0.6 exceeded 0.000876896 exceeded  0.00060959  exceeded 0.00304610 exceeded — 0.137627
0.7 exceeded 0.00100451 exceeded 0.000696544 exceeded 0.00347929 exceeded  0.158386
0.8 exceeded 0.00116680  exceeded 0.000803461 exceeded 0.00401234 exceeded  0.179144
0.9 exceeded 0.00136928  exceeded 0.000929834 exceeded 0.00464330 exceeded  0.199902
1 exceeded 0.00161338  exceeded 0.00107154  exceeded 0.00535221 exceeded  0.220660
1.1 exceeded 0.00189518  exceeded 0.00122127  exceeded 0.00610276 exceeded  0.241417
1.2 exceeded  0.00220528  exceeded  0.00136973  exceeded 0.00684888 exceeded — 0.262174
1.3  exceeded  0.00252972  exceeded  0.00150696  exceeded 0.00754077 exceeded  0.282931
1.4  exceeded 0.00285136  exceeded  0.00162357  exceeded 0.00813124 exceeded  0.303687
1.5 exceeded 0.00315142  exceeded 0.00171153  exceeded 0.00857977 exceeded  0.324442
1.6  exceeded  0.00341091  exceeded 0.00176459  exceeded 0.00885460 exceeded  0.345198

Table 6 shows us how a makes the deviation from equilibrium or statistical equilibrium
at T = 10 increase as « increases. After trying for small and big o's we concluded that
convergence is getting worse as the « increases. Later, we tried it for small h and the results

were very similar, o makes convergence the worse. Here we can say that adding the term

—aAu, to the NSE is not reliable. Now, we also see that in the pictures.
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Figure 16: Problem 4, h =0.174722, alpha = 1, Computed Velocity at Final Time

We see the velocity vectors for the case a = 1. In the Table 6, it was shown that for

large «, all tests got worse. We will see difference between velocity vectors in Figure 18.
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5 071012005

Figure 17: Problem 4, h =0.174722, alpha = 1, Computed Pressure at Final Time

This figure is the computed pressure p and .has an interesting color in center. Since the

value of pressure at T' = oo should be zero, this is not a good solution of pressure.
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Figure 18: Problem 4, h =0.174722, alpha = 0, Computed Velocity at Final Time

For the value of a = 0, velocity vectors are smaller than the a = 0 case. This was what

we expected from the Table 6.
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Figure 19: Problem 4, h =0.174722, alpha = 0, Computed Pressure at Final Time

If we look at the Iso Values, pressure values are bigger than the @ = 0 case. We can

conclude that the test is inconclusive.
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5.0 SUMMARY AND CONCLUSIONS

A modification of NSE model was made and tested for attaining equilibrium, statistical
equilibrium and convergence speed. We used true solutions for Problem 1, 2 and 4 and an
unknown solution for Problem 3. For each problem, we used different domains to see as much
as possible. After using different time steps, different Reynolds number and final time, we
picked most convenient results to show in tables and pictures so one can easily see using the
same code and same parameters.

For Problem 1, we see that adding —aAw, to the time dependent NSE (2.3), for a > 0,
big or small, cannot make convergence to equilibrium faster. The values that we picked for
« are failed. We showed the results for most suitable values.

For Problem 2, we used a similar problem as Problem 1 with same domain. Picking small
«, makes convergence worse and big o exhibits a blow up of a solution. The values that we
picked for « failed. Since we showed the results only for 0 < o < 0.5.

For Problem 3, we changed our domain to unit circle and tried to find a solution with a
body force. We saw that, as the o getting bigger, the deviation from statistical equilibrium a
little decreased but then started to increase. This test was inconclusive. The case of o = 1.6
did not work for Problem 1 and 2.

For Problem 4, unit circle without obstacle and with a true solution, we saw that as the
a got bigger, all tests got worse. The values that we picked for o are failed. Also the case
of = 1.6 did not work for this problem too. This test was also inconclusive.

After these tests, we get a result that, the adding term —aAwu; to the NSE, is not reliable.
Mostly, values of o makes convergence worse for the problems that we used. As a conclusion,

the a > 0 may not accelerate convergence to equilibrium or statistical equilibrium.
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