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THE NAVIER-STOKES VOIGHT MODEL AND CONVERGENCE TO

EQUILIBRIUM AND STATISTICAL EQUILIBRIUM

Ali Koseoglu, M.S.

University of Pittsburgh, 2011

This thesis tests accelerating convergence to steady state and statistical equilibrium for

the Navier-Stokes Voight (NSV) Model motivated by the Spin-Up phase of Ocean Climate

Models. First, by adding a new parameter to Navier-Stokes equations, the NSV model is

determined. Test conditions are identi�ed for spin up, attaining equilibrium, and statistical

equilibrium. Convergence is then analyzed and the Finite Element Method with Backward

Euler discretization is programmed using Free FEM++ to simulate the NSV model. Two

problems with a known exact solution are used for a square domain. One problem with

unknown solution and one problem with known exact solution in circle domain are also

tested for convergence of the method. We �nd that the adding parameter may not accelerate

convergence to equilibrium or statistical equilibrium.
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1.0 INTRODUCTION

1.1 NAVIER STOKES VOIGHT MODEL

One important moment in the history of �uid �ow occurred in 1687 through the work of one

of the greatest scientist, Isaac Newton. That moment came to prosperity speci�cally via his

book Philosophiae Naturalis Principia Mathematica. He stated that the shear stress between

layers is proportional with the velocity gradient, which is perpendicular to those layers as

long as the �ow is smooth, parallel and monotone. In the year of 1738, Bernoulli contributed

to Newton�s work by proving that the acceleration is also proportional to the gradient of

pressure. Then, Leonhard Euler derived his equations for the �ow of incompressible and

frictionless �uids ( � = 0 ). In 1821, Navier introduced the viscosity parameter in viscous

�ows but there was still something incomplete: the physical meaning of parameter �. After

24 years, Sir George Gabriel Stokes used absolute viscosity, in other words, stated that �

is the viscosity of the �uid. That resulted in what we know the Navier-Stokes Equations

(NSE):

@u(x; t)

@t
+ u(x; t) � ru(x; t) = �rp(x; t) + �r2u(x; t) + f (1.1)

If we look at closer:

@u(x; t)

@t
: Unsteady acceleration

u(x; t) � ru(x; t) : Convective acceleration

�rp(x; t) : Pressure gradient

�r2u(x; t) : Viscosity

f : Body force.
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where x is a spatial point, t is time, u(x; t) is the velocity vector �eld and � is the constant

dynamic viscosity.

As the years evolved, Navier-Stokes Equations were modi�ed. In 1934 J. Leray ([24],[25])

studied the regularizations of the NSE and in 1973 Oskolov ([28]) studied the Navier-Stokes

Voight Model for the viscoelastic incompressible �uid. This model is known as the 3D

Navier-Stokes Voight Model of viscoelastic �uids. The model is given by

��2�ut + ut � ��u+ u � ru+rp = f;

r � u = 0;

where � is the regularization parameter, r � u = 0 is the incompressibility (divergence free)

condition (see also ([5], [6])). This model is globally well posed ([28], [29]) and in Kalantarov

and Titi ([20]), it is shown that it has a �nite dimensional global attractor.

My thesis was greatly inspired by works that we have mentioned above. We will be using

NSV Model further taking � instead of �2where � > 0. The model presented below will be

tested with Backward Euler Method as we will look how adding ���ut to NSE a¤ects the

convergence behavior of the NSE-steady state solution.

� ��ut + ut � ��u+ u � ru+rp = f; (1.2)

r � u = 0;

where � is a positive parameter.

1.2 SPIN UP AND STATISTICAL EQUILIBRIUM

The universe is hiding considerable knowledge from us. It is waiting to be discovered. One

of the most interesting elements about the universe is climate. Indeed, to better understand

climate we need to utilize the Nature�s own language and that is undeniably Mathematics:

In 1967, Kirk Bryn [Bryan and Cox, [3]] introduced that the �rst Ocean General Circulation

Model that is the root of many Ocean Models now currently being used. As the years passed,

many ocean models have been undergoing various developments. In order to initialize a

2



climate model simulation, an initial velocity (that is in statistical equilibrium) is needed. It

is then taken as an initial condition for a climate model evolution. This interesting process

is called "spin up" and is de�ned as the time taken for an ocean model to reach statistical

equilibrium with mean data. The main fact here is without spin up, the model cannot be

studied.

Mostly, the researchers concentrated on stable equilibrium.Constantin, Foias and Temam

([13]) dealt with the problem numerically. They found the existence of stable equilibrium

was a result of numerically computed stable equilibrium solution. Stability of solutions and

error estimates were studied by Heywood and Rannacher ([18]). However, the factor of

time imposed another problem. Attaining a spin up state needs very long time scales. One

example is in paleoclimatology. Using the Community Climate System Model Version 3

[Collins et al., 2006 ([11])], for the Cenomanian-Turonian epoch, the model is used forward

in time for 2000 years [Alexandre et al., 2010 ([1]), see ([2]) for clear explanation]. Another

example is Ocean General Circulation Model that takes approximately 8000 years for a spin

up run with an ocean depth of 5000m ([2]).

Since the spin up phase costs huge amounts of CPU time and takes a long real time,

methods need acceleration. Bryan ([4]), Klinger ([22]) and Khatiwala and co-workers ([21])

used so-called distorted physics method, exponential extrapolation and so-called matrix-

method, respectively, to accelerate convergence to equilibrium solution (see more in ([2])).

With this idea we will test NSV in (1.2). First we will count number of steps that the

equilibrium required. This is measured by 



un+1 � un�t





 � � (Test 1)



un+1 � un�t





+ 



run+1 � un�t





 � �

where � is the TOLERANCE.

Second we will test accelerating convergence to statistical equilibrium. Let�s look at this

closer. If u and p is a smooth solution of (1.1), taking inner product with u and integrating

over domain 
 and integrating in time T the energy equation of the NSE becomes:

1

2
jju(T )jj2 +

Z T

0

�jjru(t)jj2dt = 1

2
jju0jj2 +

Z T

0

(f(t); u(t))dt
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This equation has the interpretation:

Kinetic Energy (T )+Total Energy Dissipated over [0; T ]

= Initial Kinetic Energy + Total Power Input over [0; T ]

If we divide the integrals with T then they become time averages and we have

1
2
jju(T )jj2 � 1

2
jju0jj2

T
+
1

T

Z T

0

�jjru(t)jj2dt = 1

T

Z T

0

Z



f(x; t) � u(x; t)dxdt

This equation is statistical steady state if

1

T

Z T

0

�jjru(t)jj2dt = 1

T

Z T

0

Z



f(x; t) � u(x; t)dxdt

Thus, statistical steady state occurs if���� 12 jju(T 0)jj2 � 1
2
jju0jj2

T 0

���� � � for all T 0 � T
If we apply this to the (1.2) from the term ���ut, there will be an extra term coming from

(���ut; u) and integrated over time T , statistical equilibrium becomes���� 12 jju(T 0)jj2 � 1
2
jju0jj2

T 0
+ �

1
2
jjru(T 0)jj2 � 1

2
jjru0jj2

T 0

���� � � for all T 0 � T (Test 2)
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2.0 PRELIMINARIES

In this chapter we introduce the basic facts that will be used for the development of this

thesis. We use de�nitions and notations as in Layton ([23]).

Let 
 denotes a bounded, open and connected domain in R2 that the �uid �ows. The

Hilbert space L2(
) is the most important tool in �uid dynamics. If we look at closer, we

will see that velocity with the total kinetic energy forms the function space L2(
): Let �0 be

the constant density and u be the velocity for a �uid with domain 
:

Kinetic Energy =
1

2
mass � velocity2

which can be presented as

Total Kinetic Energy =
1

2

Z



juj2 dx:

So, as stated in Layton ([23]), the space L2(
) is just the set of all velocity �elds with �nite

kinetic energy.

2.1 THE HILBERT SPACE L2(
) AND X := H1
0 (
)

De�nition 1. (L2(
) functions). L2(
) denotes the set of all Lebesgue measurable func-

tions p : 
! R with Z



jpj2 dx <1:
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An inner product on L2(
) and its produced norm can be de�ned as

(p; q) :=

Z



p(x)q(x)dx

and the norm on the continuous functions C0(
) is,

kpk :=
�Z




jpj2 dx
�1=2

respectively. In this thesis, L2(
) norm and the inner product denoted as k�k and (�; �)

respectively. We also give the de�nitions of velocities and tensors with �nite kinetic energy.

De�nition 2. (velocities) L2(
)d = fv = (v1; :::; vd) : 
! Rd : each component vj 2 L2(
)

where j = 1::dg and

kvk = kvkL2(
)d := [kv1k
2 + kv2k2 + :::+ kvdk2]

1
2 :

De�nition 3. (tensors) L2(
)d�d := V = f(Vij); i; j = 1; :::; d : Vij 2 L2(
)g ; i:e:; kV k <

1; where

kV k :=
"

dX
i;j=1

kVijk2
# 1
2

The notations that we use for complete, normed, linear L2(
) Hilbert space with inner

product (�; �) are

(p; q) : =
Z



p(x)q(x)dx for p; q : 
! R and p; q 2 L2(
);

(u; v) : =
Z



dX
i=1

uividx for u; v 2 L2(
)d;

(S; T ) : =
Z



dX
i;j=1

Sij(x)Tij(x)dx for S; T 2 L2(
)d�d

where the norm of a vector u in L2(
) is

kuk =
p
(u; u) 8u 2 L2(
):

While a �uid is �owing, each section of �uid applies a force to another section of �uid so

that this battle generates local changes in velocity and makes complex patterns in a domain

of �uid. This fact is represented mathematically with the �rst derivatives of u: Since the

velocity is in L2(
); its gradient should be in L2(
)d�d

6



De�nition 4. Let d = dim(
) = 2 or 3: If u = uij; i = 1; :::; d; then ru is the d� d matrix

of all possible �rst derivatives of u,

(ru)ij =
@uj
@xi

; i; j = 1:::d; and kruk2 =
dX

i;j=1





@uj@xi





2 :

Let u be a C1(
) function vanishing on @
 . Then,

kukX := [kuk
2 + kruk2] 12

is a norm which is induced by an inner product,

(u; v)X := (u; v) + (ru;rv);

where (ru;rv) =
Pd

i;j=1(
@ui
@xj
; @vi
@xj
):

De�nition 5. X=H1
0 (
) is the closure in k�kX of

fv : 
! Rd : v 2 C1and v = 0 on @
g

Now, we are ready to de�ne our spaces. We will seek the velocity u and the pressure p

in the region with the space

X : = H1
0 (
) =

�
v 2 L2(
) : rv 2 L2(
)d�d and v j@
 = 0

	
Q : = L2(
)d =

�
q : q 2 L2(
) :

Z



q = 0

�
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2.2 THE NAVIER-STOKES EQUATIONS

Consider the �ow of a �uid in a region 
 in R2. The Navier-Stokes equations (NSE) describe

the motion of �uid �ow as a continuum model. They are based on the conservation of mass

and conservation of momentum laws. For compressible and incompressible �uids, NSE is the

most accepted model. For the incompressible case the equation is given by

ut + u � ru+r(
p

�0
) =

�

�0
�u , in 
: (2.1)

Here �0 is the density, the parameter � dynamic viscosity so that

�

�0
:= � = kinematic viscosity. (2.2)

and replacing the pressure by a scaled pressure p:

p =
p

�0

we give the de�nition of time dependent incompressible NSE:

De�nition 6. The time dependent NSE are given by

u : 
� [0; T ]! Rd ; p : 
� [0; T ]! R

satisfying

ut + u:ru� ��u+rp = f (x; t) for x 2 
; 0 < t � T; (2.3)

r � u = 0; x 2 
 for 0 < t � T;

u = 0 on @
 for 0 � t � T;

u(x; 0) = u0(x) for x 2 


and the usual normalization condition that
R


p(x; t)dx = 0 for 0 < t � T:

8



where u denotes the �uid velocity, � is the viscosity, p denotes the pressure, f(x; t) is

the body force, r � u is the incompressible condition and u0 2 L2(
) is a divergence free

condition. The derivation of these equations can be found in Chorin and Marsden ([10]).

Here, we want to give more information about viscosity as described in Layton ([23]). Since

the �ow occurs in a domain 
, there must be a characteristic length L of the �ow geometry.

If we rescale the variables in (2.1), where L is the reference length and V is the reference

speed of �ow,


� : =



L

x� : =
x

L

u� : =
u

V

t� : =
V t

L

p� : =
p� p0
��0V

2

After rescaling the values in (2.1) the equation becomes

u�t� + u
� � ru� +rp� = ( �

�0V L
)��u�

We de�ne this dimensionless parameter as Reynolds Number and represent it as

Re :=
�0V L

�

Generally the term V L is taken as 1 and from (2.2), the equation become

� =
1

Re

The equation in (2.3) has a solution. Although there is an open question about strong

solution vs. weak solution in 3D. In 2D it is clearly shown that a weak solution is actually

a strong solution in Manica ([26]). De�nitions and proof of this also can be found in many

books such as Galdi ([16]) and Shor ([30]). We give the de�nition of strong solution as in

Layton ([23])

De�nition 7. (u; p) is a strong solution of (2.3) if u 2 L2(0; T ;X) \ L1(0; T ;L2(
)) and

9



1. u : [0; T ] ! X is a di¤erentiable map with ut 2 L2(0; T ;X) and p : (0; T ] ! Q is an

integrable map with p 2 L2(0; T ;Q)

2. For all t0 2 (0; T ]; (u; p) satis�esZ t0

0

[(ut; v) + (u � ru; v) + v (ru;rv)� (p;r � v)] dt0 =
Z t0

0

(f; v) dt0

for all v 2 L2(0; T ;H1
0 (
)) \ L1(0; T ;L2(
)) and

Z t0

0

(q;r � u) dt0 = 0 for all q 2

L2(0; T ;L20(
)):

3. u0 2 V and ku(t)� u0k ! 0 as t! 0:

4. u 2 L4(0; T ;X):

In Chapter 3, we will use the trilinear form in Section 2 and 3. We give the de�nition

with referring Manica([26])

De�nition 8. (Skew-symmetric trilinear form) On X�X�X, b� : X�X�X ! R is de�ned

as

b�(u; v; w) =
1

2
(u � rv; w)� 1

2
(u � rw; v) :

10



3.0 FINITE ELEMENT METHOD

Finite Element Method (FEM) is a method that gives numerical solution of �eld problems.

This method takes a structure of a �eld and splits it into several pieces. Then, connect pieces

with nodes and with this process the �eld quantity becomes interpolated over the structure.

This method has several advantages in terms of wide variety of engineering problems espe-

cially in �uids.

� FEM is a powerful method that is capable to handle very complex geometry

� It can also handle complex restraints so that makes indeterminate structures solvable

� Although FEM acquires approximate solution, it is the fastest and closest solution in its

own �eld

� Number of degrees-of-freedom is �nite.

3.1 FINITE ELEMENT SPACE

FEM is the approach that we will be using in this thesis in order to solve NSV Model.

Assume the problem has a known velocity u(x; y) de�ned in a region 
 and also assume

uh(x; y) is an approximate velocity representing u(x; y) with a �nite number of degrees of

freedom.

In two dimensions, approximating a velocity is achieved by introducing a triangulation

T h(
) and de�ning uh(x; y) on each triangle with a small number of degrees of freedom. To

begin constructing the approximate surface a triangulation T h(
) is constructed satisfying

a few basic conditions as stated in Layton ([23]):

11



� Conforming: The triangles are all edge to edge; meaning a vertex of one triangle cannot

lie on the edge of another.

� Nondegeneracy: The triangles are not close to straight line segments. This is measured

in di¤erent ways. It is common to ask that the smallest angle in the triangulation be

bounded away from either zero or the largest from 180 degrees.

� The boundary is followed appropriately: Generally this means that (i) the boundary

of the computational domain is within the targeted error of the boundary of the real

domain, and (ii) no triangle has all three vertices on a part of the boundary where

Dirichlet boundary conditions are imposed.

Once a mesh is generated, either by direct input or automatically, the possible approx-

imations on that mesh must be selected. We are considering the approximate velocity to

be globally continuous over each triangle and the nodes are just the vertices of T h(
). The

superscript h represents the triangle �neness measure:

h = max
K2�h

d(K):

The Finite Element Method is formed by Galerkin approximation and the proper choice

of �nite dimensional space Xh: Once we have a partial di¤erence equation, we can solve it

by simply solving its equivalent variational formulation. The fact of using this formulation

rather than pointwise di¤erential equation leads the stability and the power of FEM. Gener-

ally, given a bounded linear function F 2 X�(dual space of X) the problem is to �nd u 2 X

satisfying,

a(u; v) = F (v); 8v 2 X: (3.1)

The form of (3.1) is continuous and coercive. The Galerkin method begins by selecting a

�nite dimensional subspace Xh � X. The Galerkin approximation uh 2 Xh is the solution

of the equations: �nd uh 2 Xh satisfying

a(uh; vh) = F (vh); 8vh 2 Xh:

The complete convergence theory of Galerkin method can be found in many Finite Element

books such as Layton([23])

12



Figure 1: Triangulated mesh in a square domain (-1,1)x(-1,1)
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3.2 FINITE ELEMENT SOLUTION OF NS-VOIGHT MODEL AND

EQUILIBRIUM PROBLEM

Now, we are ready to discretize our model for spin up problem. Recall our model:

ut � ��ut + u:ru� ��u+rp = f (x; t) for x 2 
; 0 < t � T; (3.2)

r � u = 0; x 2 
 for 0 < t � T;

u(x; 0) = u0(x) for x 2 


Let Xh � X and Qh � Q be respectively the velocity and pressure �nite element spaces

which satisfy the following LBBh (discrete inf-sup) condition,

inf
q2Qh

sup
v2Xh

(q;r � v)
jvj1 kqk

� C > 0:

The approximate velocity and pressure are represented as maps

uh : [0; T ]! Xh ;

ph : (0; T ]! Qh

for all vh 2 Xh and qh 2 Qh

�
uht ; v

h
�
+ �

�
rut;rvh

�
+ b�

�
uh; uh; vh

�
+ v

�
ruh;rvh

�
�
�
ph;r � vh

�
=

�
f; vh

�
�
r � uh; qh

�
= 0�

uh(�; 0)� u0; vh
�
= 0 .

Under LBBh; select vh to be the set of discretely divergence free functions and de�ned as

V h :=
�
vh 2 Xh :

�
qh;r � vh

�
= 0; 8qh 2 Qh

	
. The variational formulation of (3.2) is, �nd

u 2 X; p 2 Q and 8v 2 X such that,

(ut; v) + � (rut;rv) + (u � ru; v) + v (ru;rv)� (p;r � v) = (f; v)

(r � u; q) = 0 ; 8q 2 Q
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or using trilinear form which is equivalent to

(ut; v) + b
�(u; u; v) + v (ru;rv)� (p;r � v) + � (rut;rv) = (f; v) (3.3)

(r � u; q) = 0 ; 8q 2 Q:

In this thesis, since we are looking at accelerating convergence to equilibrium, we need to

give the equilibrium problem associated with (3.2). When t!1; the following equilibrium

problem is to �nd u1; p1 satisfying

u1 � ru1 � ��u1 +rp1 = f (x) for x 2 
 (3.4)

r � u1 = 0; x 2 


u1 = 0; on @
;Z



p1dx = 0:

Finite element approximations uh1 and ph1 satisfy the equations

v
�
ruh1;rvh

�
+ b�(uh1; u

h
1; v

h)�
�
ph1;r � v

�
= (f1; v

h) 8vh 2 X

(r � uh1; qh) = 0 8qh 2 Q

and the variational formulation of equilibrium problem is, �nd u1; p1 such that

v (ru1;rv) + b�(u1; u1; v)� (p1;r � v) = (f1; v) 8v 2 X

(r � u1; q) = 0 8q 2 Q
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3.3 FULLY-DISCRETE APPROXIMATION

The semi-discrete FEM reduces the NSV model to a large, sti¤ system of ordinary di¤erential

equations in time. This system must still be solved by an appropriate time-stepping scheme.

Now, let us consider a full-discretization of (3.2) via Backward Euler linearization time-

stepping by following a similar development as for the semi-discrete formulation. Let k =

�t > 0 be time-step. The algorithm given below computes uh1 ; u
h
2 ; : : : ; p

h
1 ; p

h
2 ; : : : where

uhj (x)
�= u(x; tj), phj (x) �= p(x; tj) and tj = jk:

Algorithm 9. (BELFEM) For each n = 1; 2; : : : ;M � 1; �nd (uhn+1; phn+1) 2 Xh � Qh

satisfying

�
uhn+1 � uhn

�t
; vh
�
+ �

�ruhn+1 �ruhn
�t

;rvh
�

(3.5)

+ b�
�
uhn; u

h
n+1; v

h
�
+ v

�
ruhn+1;rvh

�
�
�
phn+1;r � vh

�
=
�
fn+1;r � vh

�
�
r � uhn+1; qh

�
= 0; 8qh 2 Qh:

In the next chapter, we will try to specify whether adding the term "� ��ut" increase

the accelerating convergence to steady state or not. We also will try to specify the statistical

equilibrium and spin-up problem, i.e., adding " � ��ut" to NSE satis�es




un+1 � un�t





 < �
(tolerance) with the time reduction faster than NSE.

3.3.1 Accelerating convergence to steady-state

Although the focal point of this thesis lies on more numerical approach. However we �nd

it essential to include the theory that highlights the convergence rate analysis of to steady

state solution of NSE and NSV. If we do time discretization of 2.3 we get

un+1 � un
�t

+ un+1 � run+1 � ��un+1 +rpn+1 = f n+1 (3.6)
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To �nd the convergence rate to steady-state solution of NSE, let�s subtract (3.6) from (3.4),

adding subtracting the term un+1 � ru1 and writing en+1 = un+1 � u1 give us

en+1 � en
�t

+ un+1 � ren+1 + en+1 � ru1 � v�en+1 +rpn+1 �rp1 = 0:

Multiplying by en+1 gives

( e
n+1�en
�t

; en+1) + (un+1 � ren+1; en+1) + (en+1 � ru1; en+1)

�v(�en+1; en+1) + (rpn+1; en+1)� (rp1; en+1) = 0

Using skew-symmetry (u � rv; w) = �(u � rw; v) and the trick that x2 � xy = x2�y2+(x�y)2
2

;

ken+1k2�kenk2+ken+1�enk2
2�t

+ (en+1 � ru1; en+1) (3.7)

�v (�en+1; en+1) + (r(pn+1 � p1); en+1) = 0

By the divergence theorem

(�u; v) =

Z



�u � v:dx =
Z



ru � rvdx+
Z
@


ruvends:
Since u = 0 on the boundry @
,

(�u; v) =

Z



ru � rvdx (3.8)

Similarly, since u vanishes on @


(rp; v) =
Z



rp � vdx = �
Z



pr � vdx: = 0 (3.9)

Deleting ken+1 � enk2, using (3.8) and (3.9) equation becomes

ken+1k2

2�t
+ v

�
ren+1;ren+1

�
� �

�
en+1 � ru1; en+1

�
+
kenk2

2�t
:

Using continuity of the trilinear form,

ju � rv; wj � N kruk krvk krwk ; N is a �nite constant

and the bound on u1

krvk � ��1 kfk� where kfk� = sup
v2V

(f; v)

krvk
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inequality holds and become

ken+1k2

2�t
+ v



ren+1

2 � Nv�1 kfk� 

ren+1

2 + kenk22�t
:

rearranging them



en+1

2 + v2�t�1� N
v2
kfk�

�

ren+1

2 � kenk2 : (3.10)

Using Poincaré�Friedrichs�inequality

kuk � Cpf kruk where Cpf is a positive constant

and under the small data condition, N
v2
kfk� � � < 1 and 1� N

v2
kfk� > 0;

)


en+1

2 +�t
 

en+1

2 � kenk2 ; 
 = 2v

�
1� N

v2
kfk�

�
C�2pf (3.11)

)


en+1

2 � � 1

1 + 
�t

�
kenk2 (3.12)

)


en+1

 � � 1

1 + 
�t

�n=2 

e0

 ; � = �
ln
�

1
1+
�t

�
�t

> 0;

)


en+1

 � e�n�t�

2



e0

 :
Thus, the error sequence converge to zero with the speed O(e�

n�t�
2 ):

Let us construct similar steps for (3.2). Time discretization of (3.2) is

un+1 � un
�t

+ un+1 � run+1 � v�un+1 +rpn+1 � ��
�
un+1 � un

�t

�
= f

r � un+1 = 0:

we only have extra term

���
�
un+1 � un

�t

�
Using (3.8), the same trick in (3.7) and the fact that en+1 = un+1�u1 and then multiplying

en+1 �nally gives

���
�
un+1 � un

�t

�
= �

kren+1k2 � krenk2 + kr(en+1 � en)k2

2�t
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If we add this to inequality in (3.10), the inequality in (3.11) becomes



en+1

2 +�t
 

en+1

2 + �(

ren+1

2 � krenk2 +


r(en+1 � en)

2) � kenk2 (3.13)

If the term

�(


ren+1

2 � krenk2 +



r(en+1 � en)

2) (3.14)

is positive each time step, then we can write

�(


ren+1

2 � krenk2 +



r(en+1 � en)

2) = � 

en+1

2 ; � > 0
then (3.13) will be

(1 + �)


en+1

2 +�t
 

en+1

2 � kenk2

and �nally 

en+1

2 � � 1

1 + � + 
�t

�
kenk2 :

Since the coe¢ cient in the right hand side is smaller than the coe¢ cient ( 1
1+
�t

) in (3.12),

the rate of the convergence to zero is faster, i.e., uNSVn+1 ! u1 is faster than uNSEn+1 ! u1. If

the term in (3.14)

�(


ren+1

2 � krenk2 +



r(en+1 � en)

2)
is not positive for each step, it cannot be guaranteed for accelerating converge to equilibrium

and statistical equilibrium. Next chapter we will see this in numerical experiments.
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4.0 NUMERICAL EXPERIMENTS AND RESULTS

In this chapter, we test some examples to see behavior of convergence of our model. We use

the software FreeFEM + +([17]) to run numerical tests with taking tolerance � = 10�6 as

a stopping criterion. We give the FreeFEM ++ codes for each example and results of our

test are given with tables and supported with the �gures of velocity and pressure. Since we

also look some problems with known solutions we will look at 4 tests:



uh � u1

 < � (Test 1)



un+1 � un4t





 � � (Test 2)



un+1 � un�t





+ 



run+1 � un�t





 � � (Test 3)���� 12 jju(T 0)jj2 � 1
2
jju0jj2

T 0
+ �

1
2
jjru(T 0)jj2 � 1

2
jjru0jj2

T 0

���� � � (Test 4)

All tests are calculated in L2 norm: Tests are made with di¤erent values of Reynolds

numbers; h and dt. Tables summarize the most convenient results so that one can check the

results easily.

4.1 THE PROBLEM 1

First problem is tested for a known exact solution in a square domain 
 = (�1; 1)� (�1; 1)

where the boundary approximation is exact. The uniform mesh is obtained by dividing 


into squares and drawing a diagonal each square in same direction. We choose the exact

solution by:
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u1(x; y; t) = e�2�t(� cos(x) sin(y))

u2(x; y; t) = e�2�t sin(x) cos(y))

p(x; y; t) = 0

where initial conditions are for t = 0 :

u0 = (� cos(x) sin(y); sin(x) cos(y))

and the equilibrium for t!1

u1(x; y) = 0

Here is the code for Square Domain with true solution of NSE:

///� � � � � � � � � � � � � � � � � � � � � � �

/* SquareExact.edp �linearization with Backward Euler Time Discrization

u_t + u .* grad(u) - nu div(grad(u)) + grad(p0) = f,

div(u)=0 in omega

u=(exp(-2*nu*t)*(-cos(x)*sin(y)),exp(-2*nu*t)*(sin(x)*cos(y))) on the boundry

time discrization;

(U(n+1)-U(n))/dt+U(n).*grad[U(n+1)]-nu*div(grad[U(n+1)]+grad[P(n+1)]=f(n+1)

Ali Koseoglu

*/

//********************************************************************//

//********************************************************************//

real T0 = 0.0; // initial time

real Tf = 10.0; // �nal time

real dt = 0.1; // time step size

int maxits=(Tf-T0)/dt;

real t; // time step counter

real Re=1.; // Reynolds

real nu = 1./Re; // viscosity
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real alpha=0.; // accelerating parameter

real tol=1.0e-6;

real energyerror,stepspinup,spinuperror,energyerror1,spinuperror1;

real eqerror,eqgraderror,eqerror1,eqgraderror1;

real step,stepeq,stepgradeq;

int numsteps,numstepseq,numstepsgradeq,c;

int numstepspinup;

int a1=1;

int a2=1;

int a3=1;

int a4=1;

string test="not small enough or blow up";

// de�ne macros

macro grad(u) [dx(u),dy(u)] //

macro div(u1,u2) (dx(u1)+dy(u2)) //

macro dot(u1,u2,v1,v2) (u1*v1+u2*v2) //

macro ugradv1(u1,u2,v1) (u1*dx(v1)+u2*dy(v1)) //

macro cc(u1,u2,v1,v2,w1,w2) (ugradv1(u1,u2,v1)*w1+ugradv1(u1,u2,v2)*w2) //

macro cch(u1,u2,v1,v2,w1,w2) (0.5*(cc(u1,u2,v1,v2,w1,w2)-cc(u1,u2,w1,w2,v1,v2))) //

macro contract(u1,u2,v1,v2)(dx(u1)*dx(v1)+dx(u2)*dx(v2)

+dy(u1)*dy(v1)+dy(u2)*dy(v2))//

// de�ne the triangulated mesh

mesh Th=square(20,20,[2*x-1,2*y-1]); //h=1/10

//plot(Th,wait=1,ps="Th.eps",value=true);

func f1 = 0;

func f2 = 0;

func g1 =exp(-2*nu*t)*(-cos(x)*sin(y));

func g2 =exp(-2*nu*t)*(sin(x)*cos(y));

func uinf1=0;

func uinf2=0;
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// create the FE velocity space Vh of continuous piecewise quadratics

//and pressure space Ph of continuous piecewise linears

fespace Vh(Th,P2);

fespace Ph(Th,P1);

// de�ne the FE functions

Vh u1,u2,u1old,u2old,v1,v2,u1err,u2err,U01,U02,u1ex,u2ex;

Ph p,q;

// de�ne the variational formulation of NSE with adding alpha

problem NSE([u1,u2,p],[v1,v2,q]) =

int2d(Th)(

(1/dt)*dot(u1,u2,v1,v2)

+(1/dt)*alpha*contract(u1,u2,v1,v2)

+ cch(u1old,u2old,u1,u2,v1,v2)

+ nu*contract(u1,u2,v1,v2)

- p*div(v1,v2)

+ q*div(u1,u2))

-int2d(Th)(

(1/dt)*dot(u1old,u2old,v1,v2)

+(1/dt)*alpha*contract(u1old,u2old,v1,v2)

+ dot(f1,f2,v1,v2))

+ on(1,2,3,4,u1=g1,u2=g2);

u1 =-cos(x)*sin(y);

u2 = sin(x)*cos(y);

U01 =-cos(x)*sin(y);

U02 = sin(x)*cos(y);

// begin time stepping loop

c=0;

t=T0;

while (t < Tf)

{
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u1old = u1;

u2old = u2;

t = t+dt;

// solve NSE output=[u1,u2,p]

NSE;

//

u1err=u1-u1old;

u2err=u2-u2old;

u1ex=abs(uinf1-u1);

u2ex=abs(uinf2-u2);

if (t>1)

{

eqerror =(1/dt)*sqrt(int2d(Th)(dot(u1err,u2err,u1err,u2err)));

eqgraderror=(1/dt)*sqrt(int2d(Th)(contract(u1err,u2err,u1err,u2err))) + eqerror;

energyerror=(1/t)*0.5*(int2d(Th)(dot(u1,u2,u1,u2))

-int2d(Th)(dot(U01,U02,U01,U02)))

+(1/t)*0.5*alpha*(int2d(Th)(contract(u1,u2,u1,u2))

-int2d(Th)(contract(U01,U02,U01,U02)));

spinuperror=sqrt(int2d(Th)(u1ex^2+u2ex^2));

if ((abs(energyerror) < tol )&(energyerror!=0)&(a1==1))

{ numsteps=c;

energyerror1=abs(energyerror);

a1=2;}

if ((eqerror<tol)&(eqerror!=0)&(a2==1))

{ numstepseq=c;

eqerror1=eqerror;

a2=2;}

if ((eqgraderror < tol )&(eqgraderror!=0)&(a3==1))

{ eqgraderror1=eqgraderror;

numstepsgradeq=c;

24



a3=2;}

if ((spinuperror < tol )&(eqgraderror!=0)&(a4==1))

{ numstepspinup=c;

spinuperror1=spinuperror;

a4=2;}

}

c=c+1;

plot([u1,u2],wait=0,value=true);

//if((t>1)&(spinuperror<tol)&(eqerror<tol)&(energyerror < tol )&(eqgraderror < tol

))

//{break;}

} // end while loop

// plot the computed pressure and velocity

plot(p,�ll=1,wait=1,ps="pressure�nal1.eps",value=true);

plot([u1,u2],wait=1,ps="velocity�nal1.eps",value=true);

// print number of steps and values

cout << "***********************************************************"<<endl;

cout << "Time Interval = [0,"<<Tf<<"] dt="<<dt<<" max iterations="<<maxits

<<endl;

if (energyerror1==0)

{cout << "energy error for < Tol =" << test <<endl;

numsteps=c;}

else

{cout << "energy error for < Tol =" << energyerror1 <<endl;}

cout << "energy error at "<<Tf<<" is =" << abs(energyerror) <<endl;

if (eqerror1==0)

{cout << "equilubrum error for <Tol =" << test <<endl;

numstepseq=c;}

else

{cout << "equilubrum error for <Tol =" << eqerror1 <<endl;}
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cout << "equilubrum error at "<<Tf<<" is =" << eqerror <<endl;

if (eqgraderror1==0)

{cout << "equilubrumgrad error for < Tol=" << test <<endl;

numstepsgradeq=c;}

else

{cout << "equilubrumgrad error for < Tol =" << eqgraderror1 <<endl;}

cout << "equilubrumgrad error at "<<Tf<<" is =" << eqgraderror <<endl;

if (spinuperror1==0)

{cout << "spin-up error for < Tol =" << test <<endl;

numstepspinup=c;}

else

{cout << "spin-up error for < Tol =" << spinuperror1 <<endl;}

cout << "spin-up error at "<<Tf<<" is =" << spinuperror <<endl;

cout << "****if steps = "<<c<<" then max steps is exceeded!!! ****" <<endl;

cout << "number of steps for energy error steps=" <<numsteps<<endl;

cout << "number of steps for equilibrum steps=" <<numstepseq<<endl;

cout << "number of steps for equilibrumgrad steps=" <<numstepsgradeq<<endl;

cout << "stopping time for spinup error steps=" <<numstepspinup<<endl;

We ran the code for di¤erent values of h and �, starting with h = 1
10
and � = 0 where

1
10
< h < 1

40
and 0 � � � 1. For di¤erent Re, di¤erent time intervals such as [0; 10] to

[0; 80]and di¤erent dt where 0:1 to 0:0001. For this test all we got is, for the values of � > 0;

number of steps to reach equilibrium and statistical equilibrium are increasing. We give the

table of the number of steps for equilibrium tests and values of L2�norm of the energy. We

pick the values for final time = 20, dt = 0:1; Re = 1 and viscosity � = 1 for the Table 1.

Here, tolerance = 10�6 and for Test 4, it is the value of Test 4 at final time: Note that for

� = 0; it is the model of NSE in (2.3).
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Table 1: Test results for Problem 1, h=1/10

value number of steps Value

� Test 1 Test 2 Test 3 Test 4

0 70 74 79 0.0396647

0.1 70 74 79 0.0517317

0.2 70 74 79 0.0637988

0.3 108 112 119 0.0758658

0.4 115 119 130 0.0879329

0.5 165 169 181 0.0999999

0.6 93 96 107 0.112067

0.7 114 116 135 0.124134

0.8 116 117 131 0.136201

0.9 148 148 170 0.148268

1 exceeded exceeded exceeded 0.155149

As we see in Table 1, as the � is getting bigger, number of steps that NSV model reaches

equilibrium and value of statistical equilibrium are clearly increasing. After trying for small

and big �0s we concluded that convergence is getting worse as the � increases. Later, we

tried it for small h and the results were very similar, � makes convergence the worse. We

will see it also in the plots.
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The plots of the computed pressure and velocity for each value of h at the �nal time are

displayed in the following �gures starting with Figure 2.

Figure 2: Problem 1, h =1/10, alpha = 0, Computed Velocity

Here we see the velocity vectors for the NSE as in(2.3). Velocity vectors are getting

smaller and the NSE reaches equilibrium. Notice that the "vec value"s at the right top of

the picture. We are expecting that these values will increase as the � is getting bigger.

28



Figure 3: Problem 1, h =1/10, alpha = 0; Computed Pressure

This �gure is the computed pressure p for the NSE model. The reason that plot is like

square-shaped is the value of h. Also notice that the values of "Iso value" at the top right

of the picture. We are expecting that these values will increase as the � is getting bigger

though h is getting smaller.
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Figure 4: Problem 1, h =1/20, alpha = 0:5, Computed Velocity

We see the velocity vectors for the NSV as in(3.2). As we see here the velocity vectors

getting smaller, the NSV reaches equilibrium. Note that the density of the vectors. When

h is getting smaller, �gure comes out more detailed. There is also one thing we should pay

attention the "vec values" right top of the picture. Although h is twice smaller, values of

velocity vectors increasing when we compare to Figure 2. We will see it other pictures too.
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Figure 5: Problem 1, h =1/20, alpha = 0:5, Computed Pressure

This �gure is the computed pressure p for NSV model for h = 1
10
. Since the value of h

is twice smaller, the plot comes out smoother. Besides, if we look at the "Iso Values", they

are bigger than the Figure 3. If � was 0; because of the h; these values would be smaller,

but this � make them bigger which is also we can see from the picture clearly
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Figure 6: Problem 1, h =1/40, alpha = 1, Computed Velocity

We see the velocity vectors for the NSV as in(3.2). As we see here, the velocity vectors

getting smaller, the NSV reaches equilibrium but a little slower. Note that the density of

the vectors, when h is getting smaller, �gure comes out more detailed but "vec values" are

getting bigger when we compare to Figure 4 because of �: If we pay attention the value of

h = 1
40
, we can clearly see that � makes convergence worse.
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Figure 7: Problem 1, h =1/40, alpha = 1, Computed Pressure

This �gure is the computed pressure p for NSV model for the � = 1. Since the value of h

is smaller, the plot comes out with perfect smoothness. Also the Iso value�s are getting bigger

which means that big � makes convergence worse no matter pressure or velocity vectors and

no matter h:
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4.2 THE PROBLEM 2

Second problem is tested for a true solution in a square domain 
 = (�1; 1) � (�1; 1)

with periodic boundary conditions. Our report in this case is performed using Taylor-Green

vortices on the square as a true solution, Taylor-Green vortices are a solution of the NSE

with driving force f = 0, given by:

u1(x; y; t) = e�2N
2�2�t(� cos(N�x) sin(N�y))

u2(x; y; t) = e�2N
2�2�t sin(N�x) cos(N�y))

p(x; y; t) = �1
4
e�2N

2�2�t cos(2N�x) cos(2N�y)

we choose N = 2 as in Connors([12]) and � = 1; where initial conditions are

u0 = (� cos(x) sin(y); sin(x) cos(y))

and the equilibrium for t!1

u1(x; y) = 0

p1(x; y) = 0

Code is same as Problem 1, just changing the functions. We picked longer time scales

such as [0; 20]; [0; 30] and [0; 40] with dt = 0:01. For these time scales, the bigger 0 � � � 1

and 100 � Re � 1000 makes convergence worse. Mostly, our tests exceeded the max number

of steps and then blow up, so we give the results for time interval [0; 10], 0 � � � 0:5, Re = 1

and dt = 0:01 to see progress with Table 2.
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Table 2: Test results for Problem 2, h=1/10, T=10,

value number of steps Value

� Test 1 Test 2 Test 3 Test 4

0 69 90 103 0.0997447

0.1 455 484 510 0.88844

0.2 536 571 615 1.67713

0.3 exceeded exceeded exceeded 2.16677

0.4 exceeded exceeded exceeded 3.2544

0.5 blow up blow up blow up blow up

In Table 2, the bigger � makes our convergence really bad this time. After the exceeded

steps, it makes them blow up. We also wanted to show for one example of long time scale.

Table 3 shows results for time interval : [0; 30] and dt = 0:01

Table 3: Test results for Problem 2, h=1/10, T=30,

value number of steps Value

� Test 1 Test 2 Test 3 Test 4

0 69 90 103 0.0332815

0.1 455 484 510 0.296443

0.2 536 571 615 0.559604

0.3 1449 1486 1593 blow up

0.4 exceeded exceeded exceeded blow up

0.5 blow up blow up blow up blow up

As we see in Table 3, nothing much change. After � = 0:5 we could not �nd a value

which does not cause a blow up.
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We want to give some �gures to show velocity vectors when h = 1
10
; 1
20
and � = 0; 0:2; 0:4.

Figure 8: Problem 2, Re=1, h =1/10, alpha = 0, Computed Velocity

When � = 0 and h = 1
10
; as we see the picture, velocity vectors go to equilibrium. Next

picture, we will see that how the �gure changes when h= 1
20
and � = 0:2.
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Figure 9: Problem 2, Re=1, h =1/20, alpha = 0:2, Computed Velocity

Very small increase of � makes "vec values" bigger than the � = 0 NSE case when we

decrease the h = 1
20
:When we tried for large ��s with this h, the results were worse. In other

words, when h = 1
20
and � is large, say � > 0:5, tests are starting to blow up. One can test

this with using the code that is given. For convenience, we only gave results for h = 1
10
in

the Table 2 and Table 3.

37



Figure 10: Problem 2, Re=1, h =1/10, alpha = 0:4, Computed Velocity at Final Time

As we see here this picture shows us how � changes the values and the velocity vectors.

When T = 10, the values show us it does not reach the equilibrium for given tolerance

� = 10�6 when we compare to values at Figure 8.

4.3 THE PROBLEM 3

The third problem is tested for an unknown solution in a circle domain 
 with radius = 1:

We choose the initial values for t = 0 :

u0 = (�y; x);

with the body force

f(x; y) = 2 < �y; x >
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The code for this problem is:

///� � � � � � � � � � � � � � � � � � � � � � �

/*CircularNoSolution.edp �linear with Backward Euler Time Discrization

u_t + u .* grad(u) - nu div(grad(u)) + grad(p0) = f,

div(u)=0 in omega

u=0 on the boundary of omega

time discrization;

(U(n+1)-U(n))/dt+U(n).*grad[U(n+1)]-nu*div(grad[U(n+1)]+grad[P(n+1)] =f(n+1)

Ali Koseoglu

//********************************************************************//

//********************************************************************//

real T0 = 0.0; // initial time

real Tf = 10.0; // �nal time

real dt = 0.1; // time step size

real t;

real reynolds=500.;

real nu =1./reynolds; // viscosity

real alpha=0.;

real tol=1.0e-6;

real energyerror,stepspinup,spinuperror,energyerror1,spinuperror1;

real eqerror,eqgraderror,eqerror1;

real step,stepeq,stepgradeq;

int numsteps,numstepseq,numstepsgradeq,c;

int numstepspinup;

c=0;

int a1=1;

int a2=1;

int a3=1;

int a4=1;

real PRESSURESTABLIZE = 1.0e-12;
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// de�ne macros

macro grad(u) [dx(u),dy(u)] //

macro div(u1,u2) (dx(u1)+dy(u2)) //

macro dot(u1,u2,v1,v2) (u1*v1+u2*v2) //

macro ugradv1(u1,u2,v1) (u1*dx(v1)+u2*dy(v1)) //

macro cc(u1,u2,v1,v2,w1,w2) (ugradv1(u1,u2,v1)*w1+ugradv1(u1,u2,v2)*w2) //

macro cch(u1,u2,v1,v2,w1,w2) (0.5*(cc(u1,u2,v1,v2,w1,w2)-cc(u1,u2,w1,w2,v1,v2)))//

macro contract(u1,u2,v1,v2) (dx(u1)*dx(v1)+dx(u2)*dx(v2)

+dy(u1)*dy(v1)+dy(u2)*dy(v2)) //

// de�ne the triangulated mesh

border C(t=0,2*pi){x=cos(t);y=sin(t);}

border obs(t=0,2*pi){x=0.5+0.1*cos(t);y=0.1*sin(t);}

mesh Th = buildmesh(C(50)+obs(-15));

savemesh(Th,"mesh.msh");

func f1 =-2*y;

func f2 = 2*x;

// create the FE velocity space Vh of continuous piecewise quadratics and

pressure space Ph of continuous piecewise linears

fespace Vh(Th,P2);

fespace Ph(Th,P1);

// de�ne the FE functions

Vh u1,u2,u1old,u2old,v1,v2,u1err,u2err,U01,U02,u1ex,u2ex;

Ph p,q,pold;

// de�ne the variational formulation of NSE with adding alpha

problem NSE([u1,u2,p],[v1,v2,q]) =

int2d(Th)(

(1/dt)*dot(u1,u2,v1,v2)

+(1/dt)*alpha*contract(u1,u2,v1,v2)

+ cch(u1old,u2old,u1,u2,v1,v2)

+ nu*contract(u1,u2,v1,v2)
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- p*div(v1,v2)

+ q*div(u1,u2)

+ PRESSURESTABLIZE * p * q)

-int2d(Th)(

(1/dt)*dot(u1old,u2old,v1,v2)

+(1/dt)*alpha*contract(u1old,u2old,v1,v2)

+ dot(f1,f2,v1,v2)

+ PRESSURESTABLIZE * pold * q)

+ on(C,u1=0,u2=0)+on(obs,u1=0,u2=0);

//initial values

u1 =-y;

u2 =x;

U01=-y;

U02=x;

// begin time stepping loop

c=1;

t=0;

while (t < Tf)

{

u1old = u1;

u2old = u2;

pold=p;

t = t+dt;

// solve for [u1,u2,p]

NSE;

//

u1err=u1-u1old;

u2err=u2-u2old;

if (t>1)

{

41



eqerror=(1/dt)*sqrt(int2d(Th)(dot(u1err,u2err,u1err,u2err)));

eqgraderror=(1/dt)*sqrt(int2d(Th)(contract(u1err,u2err,u1err,u2err))) + eqerror;

energyerror=(1/t)*0.5*(int2d(Th)(dot(u1,u2,u1,u2))

-int2d(Th)(dot(U01,U02,U01,U02)))

+ (1/t)*0.5*alpha*(int2d(Th)(contract(u1,u2,u1,u2))

-int2d(Th)(contract(U01,U02,U01,U02)));

if ((abs(energyerror) < tol )&(energyerror!=0)&(a1==1))

{ numsteps=c;

energyerror1=abs(energyerror);

a1=2;}

if ((eqerror<tol)&(eqerror!=0)&(a2==1))

{ numstepseq=c;

eqerror1=eqerror;

a2=2;}

if ((eqgraderror < tol )&(eqgraderror!=0)&(a3==1))

{ eqgraderror1=eqgraderror;

numstepsgradeq=c;

a3=2;}

}

}

c=c+1;

plot([u1,u2],wait=0,value=true);

//if ((eqerror!=0)&(eqerror<tol)&(energyerror < tol )&(eqgraderror < tol ))

//{break;}

} // end while loop

// plot the computed pressure

plot(p,�ll=1,wait=1,ps="pressure�nal1.eps",value=true);

// print number of steps and values

cout << "***********************************************************"<<endl;

42



cout << "Time Interval = [0,"<<Tf<<"] dt="<<dt<<" max iterations="<<maxits

<<endl;

if (energyerror1==0)

{cout << "energy error for < Tol =" << test <<endl;

numsteps=c;}

else

{cout << "energy error for < Tol =" << energyerror1 <<endl;}

cout << "energy error at t="<<Tf<<" is =" << abs(energyerror) <<endl;

if (eqerror1==0)

{cout << "equilubrum error for <Tol =" << test <<endl;

numstepseq=c;}

else

{cout << "equilubrum error for <Tol =" << eqerror1 <<endl;}

cout << "equilubrum error at t="<<Tf<<" is =" << eqerror <<endl;

if (eqgraderror1==0)

{cout << "equilubrumgrad error for < Tol=" << test <<endl;

numstepsgradeq=c;}

else

{cout << "equilubrumgrad error for < Tol =" << eqgraderror1 <<endl;}

cout << "equilubrumgrad error at t="<<Tf<<" is =" << eqgraderror <<endl;

cout << "****if steps = "<<maxits<<" then max steps is exceeded!!! ****" <<endl;

cout << "number of steps for energy error steps=" <<numsteps<<endl;

cout << "number of steps for equilibrum steps=" <<numstepseq<<endl;

cout << "number of steps for equilibrumgrad steps=" <<numstepsgradeq<<endl;

We ran the code for di¤erent values of h and �, starting with h = 0:172742 and � = 0

where 0 � � � 10. Also we ran the code for di¤erent Reynolds number, di¤erent final time

and di¤erent dt. For this test all we got is, for the values of � > 0; the value of statistical

equilibrium is decreasing until � = 1:6 then starts to increase again. We give the table of

the values number of steps for equilibrium tests and L2 � norm of the energy. We pick the
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values for final time = 10 and dt = 0:01. Also, Re = 500 and viscosity � = 1
500
: Here,

tolerance = 10�6 and the values that in the Table 4 are the values at final time: Note that

for � = 0 it is the model of NSE in (2.3).

The results are given for h = 0:172742 and di¤erent values of � :

Table 4: Test results for Problem 3, Re=500, T=10, h=0.172742

Test 4

� value at T � value at T

0 0.705566 0.9 0.668468

0.1 5.43379 1 0.541023

0.2 3.51808 1.1 0.430156

0.3 2.52956 1.2 0.331935

0.4 1.92563 1.3 0.243577

0.5 1.51939 1.4 0.163061

0.6 1.22492 1.5 0.088882

0.7 0.999073 1.6 0.019898

0.8 0.818238 1.7 0.044775

Table 4 shows that this test in inconclusive. The simulations did not reach statistical

equilibrium by T = 10 for any value of �. Just to be sure, let us to see Re = 1 case for

� = 0, � = 1, and � = 1:6.

Table 5: Test results for Problem 3, Re=1, T=10, h=0.172742

Test 4

� #steps value at T

0 exceeded 0.0772927

1 exceeded 0.378334

1.6 exceeded 0.559005

Here, we see the e¤ect of Reynolds Number. This test also inconclusive.

We the plot the computed pressure and velocity for value of � = 0 and � = 1:6 at the
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�nal time for the Re = 1. We will see the e¤ect of � with the pictures. Here is our mesh

and following that are the �gures:

Figure 11: Unit circle mesh C(50)+obs(-15)

Here is the example of our mesh. For this mesh h = 0:174722 roughly because of obstacle.
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Figure 12: Problem 3, h =0.172742, alpha = 0, Computed Velocity at Final Time

As we see here for � = 0; velocity vectors are big and complicated. The reason is

Re = 500: For a given tolerance �; statistical equilibrium test (Test 4) passes over the

maximum number of steps.
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Figure 13: Problem 3, h =0.172742, alpha = 0, Computed Pressure at Final Time

Here, we see the calculated pressure at �nal time. Since we do not know the true solution

of pressure, we cannot make a certain statement. But, since we know velocity vectors come

big for the case � = 0 and pressure is clearly depending on velocity errors, we might say the

values of Iso Value�s are bad. Next, we will see the pictures of velocity vectors and pressure

for � = 1:6.

47



Figure 14: Problem 3, h =0.172742, alpha = 1:6, Computed Velocity at Final Time

For the value of � = 1:6; velocity vectors are smaller than the Figure 12: But as we see in

the Table 4, statistical equilibrum test going worse. So we can say this test is inconclusive.
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Figure 15: Problem 3, h =0.172742, alpha = 1:6, Computed Pressure at Final Time

The pressure seems to smooth, and when we compare to case for � = 0; "IsoV alue" of

pressure is smaller. What we concluded here is even the pictures come nicer for the case

� = 1:6, we know statistical equilibrium goes really bad as the � increases. The results that

we �nd now bring the question of reliability of �: We need to test one more example to see

reliability of �:
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4.4 THE PROBLEM 4

The fourth problem is tested for a true solution in a circle domain with radius = 1. We test

this case using no obstacle and unit circle has zero boundary conditions. True solutions are:

u1(x; y; t) = 2�t(1� x2 � y2)y

u2(x; y; t) = �2�t(1� x2 � y2)x

p(x; y; t) = �1
6
2�2t((1� x2 � y2)3 � 1

4
)

f(x; y; t) = 2�t(ln 2(1� x2 � y2)� 8�) < y;�x >

As in Connors([12]) we take � = 10�2; where initial condition are for t = 0 :

u0 = ((1� x2 � y2);�(1� x2 � y2))

and the equilibrium fot t!1

u1(x; y) = 0

p1(x; y) = 0

The Code is same as Problem 3, just changing the functions. We picked longer time

scales such as [0; 20]; [0; 30] and [0; 40] with dt = 0:01. For these time scales, the bigger

0 � � � 10 and 100 � Re � 1000 makes convergence sometimes bad sometimes good.

Mostly, our tests exceeded the max number of steps, so, we give the results for time interval

[0; 10], 0 � � � 1:6 , Re = 1 and dt = 0:01 to see progress with Table 6. We also give

the values at T , because even the numbers of steps are exceeded, values at �nal time are

increasing. For this example, the bigger � makes Test1; T est2, Test3 and Test4 worse.
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Table 6: Test results for Problem 4, Re=1, T=10, h =0.174722

Test 1 Test 2 Test 3 Test 4

� #steps value at T #steps value at T #steps value at T #steps value at T

0 exceeded 0.000493437 exceeded 0.000343239 exceeded 0.00171807 exceeded 0.0130760

0.1 exceeded 0.000532255 exceeded 0.000370241 exceeded 0.00185289 exceeded 0.0338352

0.2 exceeded 0.000577702 exceeded 0.000401854 exceeded 0.00201068 exceeded 0.0545937

0.3 exceeded 0.000631635 exceeded 0.000439370 exceeded 0.00219784 exceeded 0.0753522

0.4 exceeded 0.000696676 exceeded 0.000484612 exceeded 0.00242343 exceeded 0.0961107

0.5 exceeded 0.000776620 exceeded 0.000540188 exceeded 0.00270039 exceeded 0.116869

0.6 exceeded 0.000876896 exceeded 0.00060959 exceeded 0.00304610 exceeded 0.137627

0.7 exceeded 0.00100451 exceeded 0.000696544 exceeded 0.00347929 exceeded 0.158386

0.8 exceeded 0.00116680 exceeded 0.000803461 exceeded 0.00401234 exceeded 0.179144

0.9 exceeded 0.00136928 exceeded 0.000929834 exceeded 0.00464330 exceeded 0.199902

1 exceeded 0.00161338 exceeded 0.00107154 exceeded 0.00535221 exceeded 0.220660

1.1 exceeded 0.00189518 exceeded 0.00122127 exceeded 0.00610276 exceeded 0.241417

1.2 exceeded 0.00220528 exceeded 0.00136973 exceeded 0.00684888 exceeded 0.262174

1.3 exceeded 0.00252972 exceeded 0.00150696 exceeded 0.00754077 exceeded 0.282931

1.4 exceeded 0.00285136 exceeded 0.00162357 exceeded 0.00813124 exceeded 0.303687

1.5 exceeded 0.00315142 exceeded 0.00171153 exceeded 0.00857977 exceeded 0.324442

1.6 exceeded 0.00341091 exceeded 0.00176459 exceeded 0.00885460 exceeded 0.345198

Table 6 shows us how � makes the deviation from equilibrium or statistical equilibrium

at T = 10 increase as � increases. After trying for small and big �0s we concluded that

convergence is getting worse as the � increases. Later, we tried it for small h and the results

were very similar, � makes convergence the worse. Here we can say that adding the term

���ut to the NSE is not reliable. Now, we also see that in the pictures.
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Figure 16: Problem 4, h =0.174722, alpha = 1, Computed Velocity at Final Time

We see the velocity vectors for the case � = 1. In the Table 6, it was shown that for

large �; all tests got worse. We will see di¤erence between velocity vectors in Figure 18.
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Figure 17: Problem 4, h =0.174722, alpha = 1, Computed Pressure at Final Time

This �gure is the computed pressure p and .has an interesting color in center. Since the

value of pressure at T =1 should be zero, this is not a good solution of pressure.
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Figure 18: Problem 4, h =0.174722, alpha = 0, Computed Velocity at Final Time

For the value of � = 0; velocity vectors are smaller than the � = 0 case. This was what

we expected from the Table 6.
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Figure 19: Problem 4, h =0.174722, alpha = 0, Computed Pressure at Final Time

If we look at the Iso Values, pressure values are bigger than the � = 0 case. We can

conclude that the test is inconclusive.

55



5.0 SUMMARY AND CONCLUSIONS

A modi�cation of NSE model was made and tested for attaining equilibrium, statistical

equilibrium and convergence speed. We used true solutions for Problem 1, 2 and 4 and an

unknown solution for Problem 3. For each problem, we used di¤erent domains to see as much

as possible. After using di¤erent time steps, di¤erent Reynolds number and �nal time, we

picked most convenient results to show in tables and pictures so one can easily see using the

same code and same parameters.

For Problem 1, we see that adding ���ut to the time dependent NSE (2.3), for � > 0;

big or small, cannot make convergence to equilibrium faster. The values that we picked for

� are failed. We showed the results for most suitable values.

For Problem 2, we used a similar problem as Problem 1 with same domain. Picking small

�; makes convergence worse and big � exhibits a blow up of a solution. The values that we

picked for � failed. Since we showed the results only for 0 � � � 0:5.

For Problem 3, we changed our domain to unit circle and tried to �nd a solution with a

body force. We saw that, as the � getting bigger, the deviation from statistical equilibrium a

little decreased but then started to increase. This test was inconclusive. The case of � = 1:6

did not work for Problem 1 and 2.

For Problem 4, unit circle without obstacle and with a true solution, we saw that as the

� got bigger, all tests got worse. The values that we picked for � are failed. Also the case

of � = 1:6 did not work for this problem too. This test was also inconclusive.

After these tests, we get a result that, the adding term ���ut to the NSE, is not reliable.

Mostly, values of � makes convergence worse for the problems that we used. As a conclusion,

the � > 0 may not accelerate convergence to equilibrium or statistical equilibrium.
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