
DYNAMICS OF TRAPPED POLARITONS IN

STRESSED GaAs QUANTUM

WELL-MICROCAVITY STRUCTURES:

EXPERIMENTS AND NUMERICAL SIMULATIONS

by

Vincent Edward Hartwell

B.S., Univeristy of Texas at Austin, 1990

M.S., University of South Florida, 1995

Submitted to the Graduate Faculty of

the Department of Physics and Astronomy in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2008

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF PHYSICS AND ASTRONOMY

This dissertation was presented

by

Vincent Edward Hartwell

It was defended on

September 3, 2008

and approved by

Dr. David Snoke, Physics and Astronomy

Dr. Robert Coalson, Chemistry

Dr. Kevin Chen, Electrical Engineering

Dr. Rainer Johnsen, Physics and Astronomy

Dr. Robert P. Devaty, Physics and Astronomy

Dissertation Director: Dr. David Snoke, Physics and Astronomy

ii

DYNAMICS OF TRAPPED POLARITONS IN STRESSED GaAs

QUANTUM WELL-MICROCAVITY STRUCTURES: EXPERIMENTS AND

NUMERICAL SIMULATIONS

Vincent Edward Hartwell, PhD

University of Pittsburgh, 2008

Microcavity polaritons have been studied for a decade and a half. Soon after their discovery

they were proposed as candidates for the observation of BEC in a solid. In consideration of

this possibility, microcavity polaritons have been studied experimentally, analytically, and

numerically. Most of the numerical studies have been qualitative. This thesis continues that

analysis and for the first time fits experimentally obtained distributions with that obtained

by numerical simulations.

For this thesis, experiments were performed on a GaAs quantum well-microcavity struc-

ture. Excitations of this structure are manifested as polaritons when the quantum well

excitons are strongly coupled to the cavity mode. The experimental study of these polari-

tons provides interesting results. The experiments where the polariton density is the highest

show that there is accumulation of polaritons in the low energy states near k = 0. Below this

high density it is seen that the distribution becomes flat and maintains that shape as density

is decreased. Neither the high density nor the low density data has a thermalized distribu-

tion. Can the accumulation at high density be explained with Boson statistics? What can

explain the flat, nonthermalized distribution at low densities. To answer these questions a

numerical model was developed. The model has shown that the distribuition functions from

the experiments can be numerically simulated. The model has shown that the accumulation

at k = 0 is due to Boson statistics. Through the model, an explanation as to why the

distribution curves are flat is also provided.

iii

This thesis is presented as follows. An introduction to microcavity polaritons and to our

experimental system is presented in chapter 1. Chapter 2 describes the scattering processes

that regulate the dynamics of the polaritons and the equations that are used in the model.

Chapter 3 gives a review of previous numerical models on microcavity polaritons. Chapter 4

describes the experimental techniques used to acquire the data while chapter 5 compares the

data with that given by the simulation. Chapter 6 then discusses directions for continued

research.

iv

TABLE OF CONTENTS

PREFACE . xvi

1.0 INTRODUCTION . 1

1.1 CAVITY MODES . 2

1.2 QUANTUM WELL EXCITONS . 4

1.3 POLARITONS . 7

1.4 POLARITON TRAPPING . 15

1.5 EXPERIMENTAL SETUPS . 18

1.5.1 MIRA . 20

1.5.2 AO MODULATION . 22

1.5.3 CRYOSTAT AND STRESSOR INSERT 22

1.5.4 IMAGING SPECTROMETER AND CCD CAMERA 24

2.0 THE MODEL . 26

2.1 SCATTERING . 26

2.1.1 POLARITON-POLARITON INTERACTIONS 26

2.1.2 POLARITON-LONGITUDINAL ACOUSTICAL

PHONON INTERACTIONS . 31

2.1.3 POLARITON-TRANSVERSE ACOUSTICAL PHONON

INTERACTIONS . 34

2.1.4 POLARITON-PHONON INTERACTION BY PIEZOELECTRICTY 34

2.1.5 POLARITON-OPTICAL PHONON INTERACTIONS 36

2.1.6 FREE ELECTRON-POLARITON INTERACTIONS 37

2.2 ENERGY CORRECTIONS . 39

v

2.2.1 FIRST-ORDER ENERGY CORRECTION 39

2.2.2 SECOND-ORDER ENERGY CORRECTION 40

2.2.3 PHASE-SPACE FILLING . 41

3.0 REVIEW OF OTHER KINETIC MODELS FOR MICROCAVITY

POLARITONS . 42

3.1 LOW-DENSITY STUDIES . 42

3.2 HIGH-DENSITY STUDIES . 45

4.0 EXPERIMENTS . 54

4.1 ANGLE-RESOLVED MEASUREMENTS 54

4.1.1 THE EFFECT OF STRESS . 63

4.1.2 LINE BROADENING AND LINE NARROWING 65

4.1.3 ERROR ESTIMATES . 68

4.2 TIME RESOLVED SPECTROSCOPY . 71

5.0 NUMERICAL RESULTS . 78

5.1 SIMULATION . 78

5.2 MODELING THE EXPERIMENTAL DATA 81

5.2.1 INITIAL FIT WITH CHANGING THE EFFECTIVE SCATTER-

ING CROSSECTION . 82

5.2.2 FITS USING POLARITON-ELECTRON

SCATTERING AND PIEZOELECTRIC SCATTERING 85

6.0 FUTURE DIRECTIONS AND CONCLUSION 95

6.1 ACCOMPLISHMENTS . 95

6.2 WHAT’S NEXT . 96

APPENDIX A. KINETICS OF BOSON-BOSON SCATTERING IN A 2D

FLAT POTENTIAL . 98

A.0.1 Results . 99

A.0.2 Conclusion . 100

APPENDIX B. FULL CODE . 107

B.1 Integrate.c . 107

B.2 Constants.h . 110

vi

B.3 Parameters.h . 111

B.4 Polpara.h . 113

B.5 Ecset.h . 113

B.6 Getk3.h . 114

B.7 dEdk.h . 114

B.8 DOS.h . 115

B.9 del.h . 115

B.10 getf4.h . 117

B.11 polcheck.h . 118

B.12 polEnergy.h . 118

B.13 polfraction.h . 118

B.14 pulseflat.h . 118

B.15 updatef.h . 119

B.16 polpMatx.h . 121

B.17 polelMatx.h . 123

B.18 polpTAMatx.h . 126

B.19 polpTA PiezoMatx.h . 129

B.20 2Dpolscat.h . 133

B.21 2Dpolelscat.h . 136

B.22 2DpolpLAscat.h . 137

B.23 2DpolpTAscat.h . 139

B.24 fvsEsave.h . 141

B.25 gauleg.h . 144

B.26 initiate.h . 144

B.27 scat.h . 145

APPENDIX C. CODE USER MANUAL . 148

C.1 Introduction . 148

C.2 Header Functions . 149

C.2.1 Inputs . 149

C.2.2 Initialization . 151

vii

C.2.3 Scattering . 152

C.2.4 Updating . 153

C.2.5 Renormalization . 153

C.2.6 Saving . 153

C.2.7 Miscellaneous Functions . 154

BIBLIOGRAPHY . 156

viii

LIST OF TABLES

1.1 Thicknesses and indicies of refraction for materials used in the rear distributed

Bragg reflector. 3

ix

LIST OF FIGURES

1.1 The two shaded regions on each side represent the stacks of material making

the distributed Bragg reflectors (DBR’s). The thick dark lines in the central

part represent groups of quantum wells. The optical intensity of a cavity mode

is drawn between the DBR’s. The quantum wells are placed at the antinodes. 4

1.2 GaAs quantum well between Ga0.8Al0.2As. kBT << Eg at 4 K implies that

the chemical potential is near the middle of the band gap for both materials.

The chemical potential is the dashed line halfway between the valence and

conduction bands in this illustration. The type of structure shown is known

as a Type I heterostructure. 6

1.3 The dashed lines represent the cavity and exciton modes. When brought

together there is level repulsion leading to the upper polariton and lower po-

lariton modes, solid lines. For large k‖ the modes decouple and become the

constituent cavity and exciton modes. 8

1.4 Light gets refracted upon traversing the sample-air interface. ~k‖ is conserved.

A microcavity has a θ which is only dependent on ~k‖ since kz,air is a constant

for a microcavity. 12

1.5 The density of states as a function of k‖. Large values of k are the density of

states for uncoupled excitons. 13

1.6 Momentum and energy are conserved when two particles scatter from km.

Particles efficiently populate k = 0 when km is pumped directly. 14

x

1.7 Trapping polaritons with stress[18]. The gray line across the figure shows the

k = 0 mode as a function of position. The dip in this line is where the stress is

applied and the trap is created. Polaritons created on the side of the trap(blue)

can be seen to be migrating toward the bottom of the trap. 16

1.8 A plot showing the critical temperature as a function of the power law of a

trapping potential from [20]. 19

1.9 A composite reflectivity measurement showing the high energy edge of the

stop band, the upper polariton, and the lower polariton. 20

1.10 The layout for the angle resolved experiments. 21

1.11 Light incident on an AO cell gets diffracted by the sound waves propagating

through the cell. 23

1.12 Stressor, sample, mount, and laser. 24

2.1 The angle θ1 that ~k1 makes to the direction of the difference between ~k0 and ~k2. 28

3.1 From [12], the calculated formation coefficient, C, for the equation F (E) =

Cn2
c(E) where F (E) is formation rate of upper and lower polaritons for a non-

resonant pump and nc(E) is the carrier density. E = 0 is the bare exciton

energy. 44

3.2 Occupation number vs energy for polaritons. The polariton density for each

simulation is given in the upper right hand corner of each graph. The existence

of the bottleneck, the peak in the curve, remains when polariton-polariton

scattering is considered along with polariton-phonon scattering from [26]. E =

0 is the bare exciton energy. The bottleneck is pushed to lower energies with

higher density, but never goes to the lowest energy. 51

3.3 Porras, et al. [45], showed that numerical simulation suggested the possibility

that strongly pumping a material like CdTe, with higher saturation density

than GaAs, would result in a large occupation of the lowest energy states.

Their pumping density was less than, but on the same order of magnitude, as

the saturation density for CdTe. Px is the pumping rate into the system in

cm−2/100 ps. Px is shown for 1, 2, 5, 8, and 15. Notice that the distribution

is sloped, not flat, for energies below the bottleneck. 52

xi

3.4 Numerical simulation of polaritons from [48]. GaAs parameters for the effec-

tive masses, deformation potential to acoustic phonons, and Coulombic and

Pauli exclusion terms. 53

4.1 Optical set up near the cryostat. At the time this picture was taken the

cryostat had been replaced by a mirror. The cryostat sits in the background. 55

4.2 A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the

intensity is color plotted as a function of energy. This figure is for 1 mW of

incident pump power. 57

4.3 A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the

intensity is color plotted as a function of energy. This figure is for 6 mW of

incident pump power. 58

4.4 A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the

intensity is color plotted as a function of energy. This figure is for 24 mW of

incident pump power. 59

4.5 A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the

intensity is color plotted as a function of energy. This figure is for 35 mW of

incident pump power. 60

4.6 A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the

intensity is color plotted as a function of energy. This figure is for 80 mW of

incident pump power. 61

4.7 CW pumping the side of the stress well. The evolution of the luminescence over

five seconds. Thermal effects cause a delay in the build up of the luminescence.

The hotter particles also drift farther into the trap since they have a higher

average kinetic energy. Each image is integrated over 200 ms. The intensity

scale is the same for all images. 62

xii

4.8 A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function

of energy. This figure is for 0.05 mW of incident pump power. 63

4.9 A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function

of energy. This figure is for 0.2 mW of incident pump power. 64

4.10 A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function

of energy. This figure is for 0.4 mW of incident pump power. 65

4.11 A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function

of energy. This figure is for 0.6 mW of incident pump power. 66

4.12 A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function

of energy. This figure is for 0.8 mW of incident pump power. 67

4.13 Dispersion curve fit to the 1 mW CW laser data shown in Figure 4.2 68

4.14 Occupation of the lower polariton states for different incident pump powers.

These were deduced from the spatially integrated images in Figures 4.2-4.6 for

CW pumping conditions. 69

4.15 Occupation of the lower polariton states for different incident pump powers.

These were deduced from the spatially integrated images in Figures 4.8-4.12

for the quasi-CW pumping condition of 2.4% pump duty cycle. The dotted

line represents a T = 90 K Maxwell-Boltzmann distribution and the solid line

is for a T = 90 K, µ = −0.15kT Bose-Einstein distribution 70

4.16 The effect of the stress well. From top to bottom the stress is increasing from

no stress to resonant stress. Without stress the polaritons are held in high k

states. With stress the polaritons are able to make it past the bottle neck.

The intensity scales are different for all three plots. 71

4.17 The k = 0 spectrum with quasi-CW pumping of 0.05 mW. 72

xiii

4.18 A schematic of the time resolved set up. The beamsplitter splits the pump

beam. Part of the pump beam is sent to a delay stage. The rest of the

pump beam is incident on the microcavity sample. The solid red line from the

microcavity represents luminescence. 75

4.19 The luminescence from the microcavity lasts much longer than the gate pulse.

Only a fixed portion of the luminescence mixes inside the BBO with the gate

pulse for a given delay. That portion is denoted by the dashed lines. Changing

the delay in the gate pulse will sample another point in the microcavity’s

luminescence. 76

4.20 The integrated intensity from a resolved spectroscopy of the ~k = 0 lower

polariton with 141 mW of incident pump power above the stop band. 77

5.1 The energy step size as a function of bin number on the mesh. The dispersion

curve for the polaritons is plotted on the secondary vertical axis. 79

5.2 The distribution function of the polaritons as it evolved for one set of param-

eters. Simulated time and the number of iterations are given. 81

5.3 A fit to the CW pumped data using polariton-polariton and polariton-phonon

scattering. “A” stands for the coefficient used in front of the polariton-

polariton scattering cross-section and “P” is the generation rate used. Simu-

lated plots are shown next to their corresponding experimental pump power. 83

5.4 A fit to the quasi-CW pumped data using polariton-polariton and polariton-

phonon scattering. “A” stands for the coefficient used in front of the polariton-

polariton scattering cross-section and “P” is the generation rate used. Simu-

lated plots are shown next to their corresponding experimental pump power. 84

5.5 Plot of the coefficient used for the polariton-polariton scattering matrix ele-

ment as a function of simulated polariton density. 85

5.6 Plot of the simulated generation rates to the corresponding experimental pump

powers. The line is a guide for the eye. 87

5.7 Plot of the simulated generation rates to the corresponding experimental pump

powers. The line is a guide for the eye. 88

xiv

5.8 Plot of the steady state simulated polariton density as a function of simulated

generated rate. 89

5.9 Plot of the total simulated free electron density as a function of simulated

generated rate. 90

5.10 The final fits to the CW experimental data. In the legend, “T” stands for the

simulated lattice temperature, “np” is the simulated polariton density, “ne”

is the simulated electron density. Simulated plots are shown next to their

corresponding experimental pump power. 91

5.11 The final fits to the quasi-CW experimental data. In the legend, “T” stands

for the simulated lattice temperature, “np” is the simulated polariton density,

“ne” is the simulated electron density. Simulated plots are shown next to their

corresponding experimental pump power. 92

5.12 The steady state results of using (1) polariton-phonon interactions, (2) polari-

tons interacting with polaritons, electrons and phonons, but no Bose statisitcs,

and (3) polaritons interacting with polaritons, electrons, and phonons with

Bose statistics included. 94

6.1 The steady state simulated distribution function for the polaritons using the

same parameters as the highest generation rate for the quasi-CW data without

the free electron-polariton interaction included. 97

A1 Low density energy distribution at scattering times 0, 1, 3, 5 102

A2 The evolution of the fitting parameters, chemical potential and temperature,

to the distributions for three different densities. Time is measured in scattering

events. The chemical potential is in units of the equilibrium chemical potential

and the temperature is in units of the lattice temperature. 103

A3 Scattering rate per particle in the lowest energy bin as as a function of density

below the quantum concentration . 104

A4 Scattering rate per particle in the lowest energy bin as as a function of density 105

A5 Close up of figure 4. 106

C1 A flow chart of the main code . 155

xv

PREFACE

I would like to thank Dr. David Snoke, my advisor, for his patience and support while I

prepared this thesis. I would also like to thank the faculty and staff in the Department of

Physics and Astronomy without whom I would not have been able to complete this. I also

thank those graduate students who I had contact with which made my graduate studies

invaluable. Mostly among these is Ryan Balili. I also want to thank three generations of

family, from my parents to my sons, for their support through the whole of my academic

career.

Vincent E. Hartwell

Pittsburgh, PA

xvi

1.0 INTRODUCTION

The material for this thesis was acquired during the quest for a solid state Bose-Einstein

Condensation(BEC). While atomic BEC was produced a decade ago, finding a solid state

BEC is very relevant. The more systems that can be found to obey Bose-Einstein statis-

tics increases our confidence in the theory. It also provides new interesting phenomena to

explore. It is also important to define how composite bosons behave at high densities. On

the practical side, a solid state condensate is much easier to create and maintain than an

atomic condensate. The temperatures, a few Kelvin as opposed to nanoKelvin, and trapping

methods, a simple pin as opposed to large magnetic and optical traps, are much less heroic.

Also, practical applications such as ones that would use the interference of two condensates,

will need to be at room temperature. While the experiments for this thesis were done at four

degrees Kelvin, it is reasonable to believe that similar systems can be engineered to allow

BEC at room temperature. A publication regarding room temperature polariton lasers in

GaN microcavities has already appeared[1].

This thesis is a study of the dynamics of two dimensional quasi-particles, called polari-

tons, which exist in a semiconductor microcavity structure. This chapter gives an overview

of what microcavity polaritons are and what experimental equipment was used to study

them. Chapter 2 defines the theory behind the numerical simulations used to simulate the

experiments, while a review of numerical studies is provided in Chapter 3. The experimental

measurements (Chapter 4) and the numerical simulations (Chapter 5) regarding the steady

state of these quasi-particles will be provided. A nonthermalized steady state results from the

interplay between the short lifetime of the polaritons and the rate at which excitons are able

to scatter into the polaritonic region of the dispersion curve. The result being that at most

densities the lower energy polariton states have lower occupation, a negative temperature.

1

Chapter 6 gives final conclusions and direction for the continued work on polaritons.

Conceptually, the microcavity structures used in our experiments are composed of two

main parts. One part consists of two Bragg reflectors which makes up a cavity for photon

modes, the other part consists of quantum wells which confine the exciton modes. Strong

coupling of the photon modes to the exciton modes allows polariton modes to exist.

1.1 CAVITY MODES

An optical cavity is created when two reflective surfaces are placed such that their surface

normals are parallel. The general term for optical cavities is an etalon, of which the Fabry-

Perot interferometer and the laser cavity are examples. The spacing between the end mirrors

in a cavity causes a resonant condition for specific wavelengths. Standing waves are created

for those optical frequencies given by νm = cm/2nL, where c is the speed of light, n is the

effective index of refraction for the space between the mirrors, L is the distance between the

mirrors, and m is an index that begins at 1, the fundamental. It is simple to show that

∆ν = νm+1 − νm = c/2nL. This equation can be used to calculate the mode spacing for the

cavity.

A semiconductor microcavity is made by epitaxial growth of a distributed Bragg reflector

(DBR) on a substrate. For our microcavities the substrate is GaAs. The rear Bragg reflector

is made of twenty groups of alternating regions of semiconductor materials, in this case, AlAs,

GaAs, and Ga0.8Al0.2As. Table 1.1 provides the thickness and indicies of refraction for each

material. Indices are quoted for photon energies of 1.62 eV. The quarter wave stacks are

thus made of AlAs and Ga0.8Al0.2As and a transition material, GaAs, is used between them

to make the structure grow with fewer defects. The internal part of the optical cavity which

contains the quantum wells is grown next and will be discussed in the next section. The

top part of the cavity is grown last. For our sample, the top Bragg reflector consists of

sixteen groups of alternating layers of Ga0.8Al0.2As (579 Å thick) and AlAs, (672 Å thick)

and capped with a final layer of 579 Å thick Ga0.8Al0.2As.

Thus, through multiple-beam interference of quarter-wave stacks, two mirrors are cre-

2

material thickness(Å) of layer index of refraction

AlAs 672 3.0 [2][3]

GaAs 30 3.6 [4]

Ga0.8Al0.2As 548 3.5 [5]

Table 1.1: Thicknesses and indicies of refraction for materials used in the rear distributed

Bragg reflector.

ated. The cavity has a region of high reflectivity called the stop band. This region spans

energies from around 1.55 eV to around 1.72 eV for the sample studied here. Within this

stop band, only light that is resonant with the cavity can have an appreciable field inside the

cavity. For photon energies around 1.6 eV, our Bragg reflectors are spaced L = 3
2
λ apart.

Such a spacing creates a cavity resonance which is called a cavity mode, (see Figure 1.1 for an

illustration). The actual value for the resonant energy varies somewhat at different positions

on the sample. The growth procedure does not create a sample of uniform thickness but

a sample that is slightly wedged. As the thickness changes over the sample, the resonant

mode’s wavelength shifts.

However, there is only one resonant mode within the stop band at any particular position

on the sample. This is because ∆ν = c/2nL = c/3nλ = ν/3. Since ∆E = h∆ν, then the

energy spacing is Ecavity/3. For all values of energy in the stop band the next resonant energy

is well outside the stop band.

The energy of a photon is given by

E =
h̄ck

n
, (1.1)

where k is the wavenumber. The cavity wavenumber, kz, is constrained in the growth

direction since the only allowed wavevector in the z-direction is kz = 2π/λ = 3π/L and L is

a constant. Then the energy can be written as

Ecavity =
h̄c

n

√
k2

z + k2
‖ =

h̄c

n

√(
3π

L

)2

+ k2
‖ (1.2)

3

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Figure 1.1: The two shaded regions on each side represent the stacks of material making

the distributed Bragg reflectors (DBR’s). The thick dark lines in the central part represent

groups of quantum wells. The optical intensity of a cavity mode is drawn between the DBR’s.

The quantum wells are placed at the antinodes.

with k‖ the in-plane wavenumber of the photon. The energy of the cavity mode at any

particular spot on the sample is only a function of k‖.

1.2 QUANTUM WELL EXCITONS

The ground state of a semiconductor has its valence band full of electrons and its conduction

band empty. A photon of energy larger than the band gap can promote an electron from

the valence band to the conduction band. The semiconductor is then in an excited state,

having an electron in the conduction band and a hole in the valence band. Such a state is

analogous to an atom that has been ionized. As with an atom, there are also discrete states

of lower energy in a semiconductor. These are bound states known as excitons.

The exciton can be shown[6] to have a dispersion relationship relative to the band gap

energy equal to

4

E = −
E∗

Ry

n2
+

h̄2|~k|2

2M
, (1.3)

where E∗
Ry is the binding energy, n is the principal quantum number, and the last term is

the kinetic energy of the exciton with M the sum of the effective masses of the electron and

hole that make up the exciton. The binding energy is similar to that of the hydrogen atom,

but is adjusted for the different effective masses of the electron and hole. Additionally, the

charges of the electron and hole are screened. Taking into account the dielectric constant of

the material, ε, gives

E∗
Ry =

13.6eV

m0

µ

ε2
, (1.4)

with m0 the mass of the bare electron and µ the reduced effective mass of the exciton. E∗
Ry

can be used to calculate the size of the exciton, as the hydrogen atom’s size can be calculated

from its energy. The exciton Bohr radius, aex
B , is

aex
B =

e2

4πE∗
Ryεε0

. (1.5)

So far this discussion has been about excitons in bulk material. The excitons studied in

this thesis exist in quantum wells between our cavity’s distributed Bragg reflectors. As shown

in Figure 1.1, there are three groups of quantum wells. Each group consists of alternating

layers of 70 Å thick GaAs followed by 30 Å thick Ga0.8Al0.2As barriers to make four quantum

wells. Ga0.8Al0.2As has a band gap, ∼ 1.8 eV, and GaAs has a band gap, ∼ 1.5 eV, when the

temperature is near 4 Kelvin[7]. In a quantum well, the GaAs in this case, the excitons are

confined due to this difference in band gap. This shifts the minimum energy of the exciton

if the confining thickness is small enough. The |~k|2 in Equation 1.3 gets replaced with

|~k|2 =
(

nπ

L

)2

+ k2
‖, (1.6)

where n is the principal number of the quantum level in the well, and L is the width of the

quantum well. Like the cavity mode, the quantum well exciton’s energy is only a function

5

of k‖. The lowest energy of the kinetic part of the exciton’s energy in Equation 1.3 then

becomes,

EQW =
h̄2π2

2ML2
. (1.7)

Our excitons are confined to the 7.0 nm thick quantum wells, for which the first allowed

state is shifted to 1.6 eV, which has a corresponding free-space optical wavelength near 770

nm.

A schematic for a quantum well is shown in Figure 1.2. This configuration is known as a

Type I heterostructure where both the valence band and the conduction band are confined

in the same material.

Figure 1.2: GaAs quantum well between Ga0.8Al0.2As. kBT << Eg at 4 K implies that

the chemical potential is near the middle of the band gap for both materials. The chemi-

cal potential is the dashed line halfway between the valence and conduction bands in this

illustration. The type of structure shown is known as a Type I heterostructure.

Exciton binding energies are increased when the exciton is confined to a quantum well

since the bands become nonparabolic, there is Coulombic coupling of excitons in different

subbands, there is valence-band mixing of the different hole states, and also the effect the

6

different dielectric constants of the well and barrier materials have[8]. The binding energy

as a funtion of well thickness can be modeled

EQW
Ry = E∗

Ry

L0

L
(1.8)

where L0 is a parameter that characterizes the rate at which the energy changes with quan-

tum well width, L. The binding energy of excitons in GaAs is 10 meV in 7 nm quantum

wells[8], up from 4 meV in bulk. For a 10 meV binding energy this implies that the excitonic

radius is about 100 Å. This is important since the exciton size is larger than the quantum

well width, which emphasizes that the exciton must be contained in the plane of the quan-

tum well and should therefore behave as if it were in a two dimensional system. This is also

important because the planar density of particles, n, must satisfy

na2
B << 1, (1.9)

for the particles to be treated as a weakly interacting Bose gas. The exciton is a composite

boson since together the electron and hole give the exciton an integer value for spin. For

the excitons not to see the fermionic structure of their nearest neighbors and behave as

bosons, the above condition on the density must be met. For our case, this limiting density

is n ∼ 2.0× 1010 cm−2 per quantum well for na2
B < 0.1. Our samples have twelve quantum

wells so that total densities, n ∼ 2.4× 1011 cm−2 are acceptable.

1.3 POLARITONS

Our system of interest consists of an optical cavity in which the photon mode is nearly

resonant with the exciton mode that exists in quantum wells within the cavity. When the

cavity photon mode couples to the excitonic mode, polaritons are created. If we plot the

dispersion curves for the photons and the excitons when there is no coupling, we would see

that the modes overlap at zero detuning. Detuning is the difference in energy between the

two modes at k‖ = 0. However, when the modes couple, there is level repulsion of the modes.

The resulting plots, which I will give a derivation for, are shown in Figure 1.3. The dashed

7

lines represent the uncoupled modes and the solid lines represent the lower polariton and

upper polariton. The lower polaritons are the quasiparticles with which we are concerned.

Note that there can also be phonon polaritons when phonon modes couple to photon modes,

but we will not consider these.

0 2 4 6 8 1 0
0

2

4

6

8

1 0

Figure 1.3: The dashed lines represent the cavity and exciton modes. When brought together

there is level repulsion leading to the upper polariton and lower polariton modes, solid lines.

For large k‖ the modes decouple and become the constituent cavity and exciton modes.

Since the two modes are coupled, the energy in the system sloshes back and forth between

the two. This coupling results in a splitting of the energy levels, or in the language of quantum

mechanics, repulsion of the levels. Two different methods of deriving the polariton dispersion

curve will be described. Both give the same answer. For the first method, we start with the

photon dispersion relation,

n =
ck

ω
. (1.10)

The index of refraction, n, is the square root of the dielectric function ε(ω). Thus,

ε(ω) =
c2k2

ω2
, (1.11)

8

where k is for that for a cavity,

√(
3π
L

)2
+ k2

‖ with L the cavity length. Now we introduce

a system that has optical absorption, the excitons. The dielectric function of the system is

then described by the equation

ε(ω) = ε∞ +
q2N

mV

1

ω2
0 − ω2

, (1.12)

where ω0 is the exciton resonance frequency and q2N/mV is known as the oscillator strength

of the system, q is the charge, m is the mass, and N/V is the density of available oscillators.

A damping term in the denominator of the right hand side has been neglected. Setting

Equation 1.11 and Equation 1.12 equal and rearranging, we get the quartic equation in

terms of ω,

ω4 −
(
ω2

0 +
q2N

mV ε(∞)
+

c2k2

ε(∞)

)
ω2 + ω2

0

c2k2

ε(∞)
= 0. (1.13)

We take the two positive solutions of this equation since energies are positive. This leads

to

ω2 =
1

2

ω2
0 +

q2N

mV ε(∞)
+

c2k2

ε(∞)
±

√√√√(ω2
0 −

q2N

mV ε(∞)
− c2k2

ε(∞)

)2

− 4ω2
0

c2k2

ε(∞)

 . (1.14)

When the exciton energy is nearly resonant with the cavity modes we can take the approxi-

mation ω0 ≈ ck/n which leads to

Eu,l =
1

2

h̄ω0 +
h̄ck

ε(∞)
±

√√√√(h̄ck

ε(∞)
− h̄ω0

)2

+

(
h̄2q2N

4mV ε(∞)

) . (1.15)

The Eu,l are commonly referred to as the upper(lower) polariton. The constant energy,

h̄ΩR=h̄
√

q2N/(4mV ε(∞)) is a measure of the splitting of the energy levels at resonance. It

is usually referred to as the Rabi splitting of the system. The Rabi frequency, ΩR, is the

rate at which the energy is moving back and forth between the exicitons and photons.

Additional information is obtained about the polariton eigenstates by solving the problem

with quantum mechanics. We have the exciton, a dipole, interacting with the photons, an

9

external electric field. Collectively, dipoles provide a polarization. The interaction between

the polarization and electric field gives the interaction Hamiltonian[6],

Hint = −
∫

d3r ~P · ~E. (1.16)

The quantized electric field is writen as

~E(~r) = −i
∑
~k′

√
h̄ω~k′

2ε∞V

(
ak′e

i~k′·~r − a†k′e
−ik′·r

)
, (1.17)

with a†k(ak) are photon creation(destruction) operators. The polarization is given by

~P (~r) =
qN

V

√
h̄

2mNω0

∑
k

(
bke

ik·r + b†ke
−ik·r

)
, (1.18)

with b†k(bk) are exciton creation(destruction) operators. Making these substitutions and

performing the integral for Hint, with ωk ≈ ω0, the full Hamiltonian for the cavity modes

(ak), the exciton modes (bk), and the interaction is given by

H =
∑

Ec(~k)a†~ka~k +
∑

Ex(~k)b†~kb~k + i
∑

h̄ΩR

(
b†~ka~k − a†~kb~k

)
. (1.19)

This Hamiltonian is non-diagonal because of the coupling term. The mixed terms can be

removed through a unitary transformation

l~k

u~k

l†~k

u†~k

=

X~k C~k 0 0

−C~k X~k 0 0

0 0 X~k C~k

0 0 −C~k X~k

b~k

a~k

b†~k

a†~k

(1.20)

where C~k and X~k are Hopfield coefficients[9]. Working through this transformation it is

found that these coefficients are given by

X2
~k

=
1

2

 Eck − Exk√
(Exk − Eck)2 + (2h̄ΩR)2

+ 1

 (1.21)

and

C2
~k

= 1−X2
~k
. (1.22)

10

X2
~k

is the fraction of the polariton that is excitonic, and C2
~k

is the fraction that is photonic.

At zero detuning, the lower polariton is half exciton and half photon and the polariton

becomes increasingly excitonic with larger k‖. The eigenvalues found by this method are the

same as those found in the classical derivation, Equation 1.15.

In the graph of the dispersion relationship (Figure 1.3), the cavity mode is curved instead

of a straight near k‖ = 0, as a free photon would be. This occurs because |~kc| =
√

k2
z + k2

‖

and kz is a constant. The cavity mode then has an effective mass given by the general

relationship for particles,

m∗ =
h̄2

2 ∂E
∂k2

. (1.23)

The exciton also has a mass, but it is much larger than the photon’s mass, thus it appears

flat on the scale provided in that figure.

The constant kz provides us an easy way to study the microcavity polaritons. In the bulk

case, kz is not a constant for the polaritons. Even though ~k‖ is a conserved optical quantity

across the boundary for two and three dimensional systems, the light leaving the surface of a

three dimensional system at a given angle can contain a continuum of k‖ and kz wavevectors.

In the two-dimensional case, the single value for kz allows for direct measurement of ~k‖ by

detecting the angle of the light emitted from the surface of the sample, as illustrated in Figure

1.4. By measuring the intensity and energy of the photoluminescence at various angles from

the sample, the polaritons can be studied in k-space.

The polaritons, being the actual eigenstates of the system, have a mass comparable to

the cavity photon mass, which is on the order of 10−4 smaller than the exciton mass. This

has some implications. The density of states is given by a general formula,

D(E) =
Ag

(2π)2

∫ ∞

0
2πkdkδ(Ek − E), (1.24)

where A is the sample area and g is a degeneracy factor. Taking the derivative of the

relationship between energy and wavenumber, E = h̄2k2/2m gives,

dE =
h̄2

2m
kdk. (1.25)

11

Substituting this into Equation 1.24 and using
∫

dEδ(E) = 1 gives,

D(E) =
Ag

2π

m

h̄2 . (1.26)

This equation shows that the density of states is proportional to mass. The density of states

is a constant in two dimensions when the mass is constant, but for polaritons near k = 0, it

is orders of magnitude smaller than the bare exciton as shown in Figure 1.5. This plot was

calculated by using Equation 1.15 and Equation 1.23 in 1.26. As pointed out in Figure 1.3,

at large k‖ the constituent modes decouple and become cavity and exciton modes again.

Figure 1.4: Light gets refracted upon traversing the sample-air interface. ~k‖ is conserved. A

microcavity has a θ which is only dependent on ~k‖ since kz,air is a constant for a microcavity.

The light mass is one of the main reasons for studying polaritons. A phase transition,

which would be a Kosterlitz-Thouless phase transition[10] in a potential-free geometry, is

expected when the particle density is around the quantum concentration,

nQ =
gmkT

πh̄2 . (1.27)

The required particle density is linear in mass and we expect that the concentration of

polaritons can be much smaller than excitons for a phase transition at the same temperature.

Even at room temperature, two orders of magnitude higher temperature than when excitons

12

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0.E+00 2.E+07 4.E+07

D
e

n
si

ty
 o

f
St

at
e

s
(a

rb
. l

o
g

sc
al

e
)

k||

Excitons

Polaritons

Figure 1.5: The density of states as a function of k‖. Large values of k are the density of

states for uncoupled excitons.

have the possiblity of condensing, the required concentration for a polariton phase transition

is still one hundred times less than that for bare excitons. This is good because it allows the

required concentration to remain low enough that the particles behave as bosons (Equation

1.9).

There are some possible difficulties when using polaritons to study BEC. The main one

is time. The lifetime of the polaritons is only a few picoseconds. There may not be enough

time for long range order to build up between the particles and allow for a true BEC[11].

This was the earliest concern. It was predicted and experimentally observed that there was

a bottleneck effect in the scattering toward the lowest polariton states[12][13]. The lower

polaritons simply escaped the cavity before they could accumulate at the bottom of the

dispersion curve. Not until higher polariton densities were attained was it realized that the

bottleneck could be overcome. Higher polariton densities were attained by increasing the

number of quantum wells in the samples. This allowed for more intense pumping without

saturating the exciton density. Our sample had twelve quantum wells, reducing the effective

exciton density per quantum well for a given pump power by a factor of twelve.

A way to bypass the bottleneck is to use “magic angle” scattering[14]. The “magic angle”

13

scattering occurs because there is a point on the dispersion curve, km, that bisects a line

drawn from the k‖ = 0 to the region where the lower polariton starts to become excitonic,

see Figure 1.6. Two particles at this point can then scatter, one to k‖ = 0 and the other to

k‖ = 2km, conserving energy and momentum. Experimentally, this requires the laser to be

incident on the sample at the “magic angle” with the corresponding wavelength. However,

this method leads one to question if any coherence in the k‖ = 0 state is due to the pump

coherence tuned to km.

 kII

km

Figure 1.6: Momentum and energy are conserved when two particles scatter from km. Par-

ticles efficiently populate k = 0 when km is pumped directly.

Another problem with polaritons is that intense pumping can take the system from a

strong coupling regime to a weak one. Photonic lasing then occurs[15]. The density at which

this occurs is related to the Bohr radius of the excitons, n ∼ 1/a2
B.

There is another phenomenon related to the excitonic Bohr radius and particle density.

Experimentally, a blueshift in the emission can occur. A blueshift occurs because of the

repulsive energy of the excitonic part of the polaritons[16]. This may cause a problem in

14

a trap. It may blueshift the bottom of the trap enough that the polaritons spread out,

decreasing the particle density at the bottom of the trap. Smaller excitons, as in some other

materials, should reduce this effect.

Despite all these issues, microcavity polaritons behave like particles. They have mass and

can move around. Questions about their dynamics immediately arise. Will they condense

under suitable conditions? Can they, how do they, and how long does it take for them to

come to thermal equilibrium from a nonequilibrium state? If they cannot thermalize can

they come to some steady state? Can they exhibit any spontaneous coherence in a steady

state? This thesis studies the polariton dynamics experimentally and numerically to try to

answer a few of these questions.

1.4 POLARITON TRAPPING

In the experiments for this thesis the polaritons are trapped. While the numerical models

shown later do not consider trapping, I mention it here as part of the experimental intro-

duction and its importance with regard to creating a two dimensional BEC. Negoita, et

al. showed that when quantum wells were stressed, a spatial trap for excitons could be

created[17], and Balili, et al.[18] showed that polaritons could be trapped by this method as

well, Figure 1.7. The trapping occurs because the stress geometry stretches the lattice of the

sample on the side opposite of where the stress is applied. The band gap is related to the

lattice spacing. When the lattice spacing increases, the band gap decreases, thereby shifting

the energy of the exciton as well.

In these experiments the experimental site on the sample is chosen such that the exciton

mode is positively detuned from the cavity mode. Positive detuning means the exciton mode

is at a higher energy than the cavity mode. The stress applied to the site then depresses

the exciton energy until it is resonant with the cavity mode. This resonant point has the

highest energy splitting for the polaritons. Nearby positions, which are not as resonant,

do not experience the same magnitude of splitting and their lower polaritons are at higher

energies. Thus a spatial trap is created at the point of maximum stress.

15

Figure 1.7: Trapping polaritons with stress[18]. The gray line across the figure shows the

k = 0 mode as a function of position. The dip in this line is where the stress is applied

and the trap is created. Polaritons created on the side of the trap(blue) can be seen to be

migrating toward the bottom of the trap.

The number of particles in a low density system is given by

N =
∫

dE D(E) f(E) (1.28)

where D(E) is the density of states and f(E) is the occupation for the type of statistics

under consideration, Bose statistics in our case. If the total number of this integral does not

16

equal the total number of particles in the system then the additional particles must be in

the ground state, measured by N0, giving,

N = N0 +
∫

dE D(E) f(E). (1.29)

This integral diverges whenever the temperature is greater than zero and D(Emin) 6= 0.

Figure 1.5 shows that the density of states for the polaritons is not zero for Emin(k‖ = 0).

Hohenberg has shown that no long range order can exist in such a system, if the particles

are free[19]. It has also been shown[20, 21] that two-dimensional systems in a power-law

potential can achieve a condensate. This is because the density of states in the integral in

Equation 1.29 allows the integral to converge.

Each degree of freedom for a harmonic oscillator has energy

Ei =
(
ni +

1

2

)
h̄ωi. (1.30)

In a two-dimensional system with a harmonic trap, the energy levels are given by

E = (nx + ny + 1)h̄ω = (n + 1)h̄ω, (1.31)

with nx and ny the integer quantum numbers (0, 1, 2,...) for the independent motions. The

value of n is also an integer since nx and ny are integers. For any value of n there are n + 1

ways to choose nx and ny and the degeneracy of each energy level is simply given by n + 1.

The number of particles in a system is then given by the sum of the degeneracy of each state

times the occupation of each state,

N =
∑
n

n + 1

e((n+1)h̄ω−µ)/kBT − 1
. (1.32)

When the average energy, E = kBT , is much larger than the energy spacing, h̄ω, we take

the Stringari-Pitaevskii limit[22], N → ∞, ω → 0 such that Nω2 = constant. We multiply

the sum by h̄ω2[23],

N(h̄ω)2 =
∑
n

h̄ω
(n + 1)h̄ω

e((n+1)h̄ω−µ)/kBT − 1
. (1.33)

17

Since ∆E = h̄ω, we can change the sum over n to a sum over En and in the limits discussed

above, switch to the integral

N =
1

(h̄ω)2

∫
dE

E

e
E−µ
kBT − 1

. (1.34)

Through a change of variables, ε = E/kBT and letting µ = 0, the integral becomes

N =

(
kBT

h̄ω

)2 ∫ ∞

0
dε

ε

eε − 1
(1.35)

Performing the integral provides the result for the critical number,

Nc = 1.645

(
kBT

h̄ω

)2

(1.36)

An alternative derivation was given by Bagnato and Kleppner [20]. They showed that

the highest critical temperature in a two-dimensional system was for a potential with an r2

dependence, a harmonic potential, Figure 1.8. Our method of trapping creates a harmonic

potential for the polaritons.

1.5 EXPERIMENTAL SETUPS

A general setup is described here to introduce the main equipment used. Any deviations

will be described in more detail in the chapter on experiments.

The sample, as has been described in Sections 1.1 and 1.2, grown by L. Pfeiffer and K.

West at Bell Labs, was cut and the substrate chemically thinned by polishing with bromine

and methanol. Etching helps to facilitate the stress trapping method discussed above by

reducing the sample’s thickness from 0.5 microns to 0.15 microns. It was then placed in a

Janis cryostat and cooled to near four Kelvin by continuously flowing helium gas over the

sample. We used an 18 W Coherent Verdi to pump a Coherent MIRA Ti:Sapphire laser. The

MIRA was run in CW mode and tuned to the first main gap in the sample’s stop band (see

Figure 1.9). For some of the experiments, output of the MIRA was focused through an AO

Modulator, Brimrose TEM-200-50-633, that was driven at 1 kHz by driver model FFA-200-

B1(50). The electrical pulse to the AO cell had a duty cycle of 2.4%. Thus, the diffracted

18

Figure 1.8: A plot showing the critical temperature as a function of the power law of a

trapping potential from [20].

laser light from the AO cell made a choppped beam. The pump beam was then transmitted

through a continuously variable attenuator, Edmund Optics NT41-960. The attenuator

allows for controlling the power incident on the sample. The beam was then focused on to

a spot size of 30 µm. The focus of the beam was then incident on the sample at an oblique

angle of incidence of 15 degrees. Photoluminescence from the sample was collected with a

fiber optic bundle, Edmund Optics NT39-368, mounted on an arm that could rotate about

an axis centered on the sample. The entrance to the fiber optic was positioned 21 cm from

the sample. With an aperture of 1.6 mm, the fiber optic collected light from the sample in

a 7 mrad solid angle. During an angle-resolved experiment the arm was rotated in 1 degree

(∼ 17 mrad) steps. The other end of the fiber optic was rigidly mounted and aligned with

a Spectra Pro spatial imaging spectrometer. A CCD camera, Cascade512B, captured the

optical information at the output of the spectrometer. The CCD images were saved to a

19

computer. Figure 1.10 shows a general set up. This figures leaves out optics such as lenses,

mirrors, and filters. While these are important optics, they do not add anything significant

to the diagram or to understanding the experimental procedure.

 Energy (eV)

Figure 1.9: A composite reflectivity measurement showing the high energy edge of the stop

band, the upper polariton, and the lower polariton.

1.5.1 MIRA

The Coherent MIRA is a diode-pumped Ti:Sapphire laser capable of producing 200 fs pulses

at 76 MHz repetition with 1.5 W output and ∆ν ∼20 nm bandwidth. The self-mode-locking

mode of the MIRA has a narrow transverse spot relative to the non mode-locked mode. By

20

Figure 1.10: The layout for the angle resolved experiments.

allowing the internal beam path to conduct the non-mode-locked mode, the pulsed mode

is suppressed and CW output is achieved. This CW mode has a full width half maximum

bandwidth of 0.1 nm.

Depending on the optic set in a Ti:Sapphire, it is capable of lasing from 700 nm to

1000 nm. The output wavelength is determined by a birefringent filter at Brewster’s Angle

which only passes a relatively small fraction of these wavelengths without losses. The laser

is tunable by correct orientation of this filter. For the data presented here, the MIRA was

set to lase around 718 nm. The exact wavelength may vary. It depends on where the stop

21

band ends for the sample position being excited by the laser.

1.5.2 AO MODULATION

We use an acoustic-optic modulator to chop our pulses for some of the experiments. Our

modulator is made of a photo-elastic TeO2 crystal that is interfaced to a piezoelectric quartz

crystal. An electric pulse is applied to the quartz causing sound waves to emanate from it

which get transmitted to the TeO2. Sound waves are variations in the density of the crystal.

To first order, the change in index of refraction is proportional to this change in density.

The sound waves therefore create a variation in index of refraction that acts as a grating, as

illustrated in Figure 1.11. The spacing of the grating is determined by the wavelength of the

sound. Our acousto-optic modulator has a frequency, ν = 200 MHz, and the sound waves

travel at a velocity, v = 4200 m/s. Light incident on this grating will diffract according to

the grating equation λ = 2a sin(θ) where a = λsound/2 = v/2ν is the spacing of the grating.

Since the sound wave is travelling it also imparts some momentum to the lightwave and thus

changes the lightwave’s frequency. However, the change in wavelength of our lightwave is

negligible for the type of experiment done here.

1.5.3 CRYOSTAT AND STRESSOR INSERT

We used a Janis optical cryostat. This device is capable of cooling down to the λ-point

of liquid He. A sample is loaded into the cryostat by an insert fabricated by Ryan Balili.

The top of the insert has a micrometer which is attached to a spring loaded tube. The

spring loaded tube is a piston inside another tube. This outer tube is rigidly mounted to the

micrometer base. The spring loaded tube has a needle on the end where the sample holder

is. The sample holder is attached to the outer tube by springs. The sample holder clamps

around the outer edge of the sample and the needle is positioned just above the sample.

When the micrometer is turned, the needle pushes against the sample. The springs in the

sample mount help to reduce the rate at which stress is applied, making it less likely to break

a sample with overstress. Figure 1.12 depicts the sample mount geometry. An additional

micrometer was built into the insert to allow vertical translation of the whole insert without

22

Figure 1.11: Light incident on an AO cell gets diffracted by the sound waves propagating

through the cell.

moving the cryostat or changing the stress. This is important because as the system cools

down, the insert undergoes thermal contraction. Thus, if optical alignment of the system was

done before cooling, the alignment could be easily recovered with this second micrometer.

Additionally, the insert has an electrical connection to a silicon diode. Monitoring the

temperature near the sample is accomplished with this device. Its resistance changes by

a known amount with temperature. By flowing a constant current through it, the voltage

across it could be measured and compared to a known voltage-versus-temperature chart.

The bottom of the cryostat has four windows. We use one view window to inject our

exciting laser and use the same window to transmit the photoluminescence from the micro-

cavity.

23

Figure 1.12: Stressor, sample, mount, and laser.

1.5.4 IMAGING SPECTROMETER AND CCD CAMERA

Angle-resolved data was taken with a fiber optic mounted on an arm that rotated about an

axis below the cryostat. The arm could be positioned so that its rotation was centered on the

sample. Photoluminescence from the sample could be collected by the fiber optic and fed into

a spectrometer. We used a Specta Pro Imaging spectrometer. The optical properties of the

spectrometer preserve the vertical spatial intensity upon transmission through the device.

This particular property of the spectrometer is not relevant when using the fiber optic since

spatial information is lost in going through the fiber optic. A grating in the spectrometer,

with 1800 lines/mm, disperses in a horizontal direction the light that makes it through the

front slit. Thus the output of the spectrometer contains information about the intensities

of different energies in the horizontal direction while showing how the energies are spatially

related in the vertical direction. Figure 1.7 and Figure 1.9 are examples of spectrograms that

were recorded by the CCD Camera placed at the output of the spectrometer. For Figure 1.7

24

the axes have been switched with vertical measuring energy as opposed to in the horizontal

direction for Figure 1.9. In both cases, light from the sample has been imaged directly on

to the front slit of the spectrometer instead of going through the fiber optic.

Our Photometrics Cascade 512B CCD camera has 16 µm pixels in a 512 x 512 array. The

CCD can be exposed for as little as 1 ms and requires 30 ms to read out the data. It has a

split screen so that one image can be moved into a readout area while another image is being

exposed, which for long enough exposure times allows for continuous exposure. Typically

we did not push the limits of the readouts as we exposed it for 300 ms or more.

25

2.0 THE MODEL

2.1 SCATTERING

The theoretical model which I present accounts for three types of scattering: polariton-

polariton scattering, polariton-phonon scattering, and polariton-electron scattering.

A derivation of the scattering equations used is provided in the following subsections.

2.1.1 POLARITON-POLARITON INTERACTIONS

The scattering rates for the simulation follow Fermi’s Golden Rule,

∂f~k0

∂t
=

2π

h̄

∑
~kf

|〈~kf |Vint|~ki〉|2δ(Efinal − Einitial), (2.1)

where two particles scatter from state |~ki〉 = |~k0
~k3〉 to state 〈~kf | = 〈~k2

~k1|. This is done

through a scattering interaction Vint, which for a two-body elastic scattering process is

Vint = |M |b†~k1
b†~k2

b~k3
b~k0

, (2.2)

where M is the matrix element for the interaction and the b†’s(b’s) are creation(destruction)

operators. |Vint| becomes, after the b’s operate on a bosonic Fock state,

|Vint| = |M |
√

n~k0
n~k3

(n~k2
+ 1)(n~k1

+ 1) (2.3)

where n~km
is the occupation number of the state ~km. Squaring Vint and putting it back into

Fermi’s Golden Rule gives the scattering out of state ~k0 for bosons as

∂n~k0

∂t
=

2π

h̄

∑
~k1

~k2

|M(|~k0−~k2|)|2n~k0
n~k3

[1+n~k1
][1+n~k2

]δ(E(~k0)+E(~k3)−E(~k2)−E(~k1)), (2.4)

26

where momentum has been conserved through ~k3 + ~k0 = ~k1 + ~k2. The sums over ~k1 and ~k2

can be converted to integrals by taking the thermodynamic limit:

∂n~k0

∂t
=

S2

(2π)3h̄

∫
d2~k1d

2~k2|M(|~k0 − ~k2|)|2 ×

n~k0
n~k3

[1 + n~k1
][1 + n~k2

]δ(E(~k0) + E(~k3)− E(~k2)− E(~k1)). (2.5)

where S is the area of the sample. We assume the system is isotropic in k-space. Then

n~k = f(E(~k)), which is independent of θ, and n(E) = n|k| = f(E(~k))D(E(~k))dE, where

D(E)dE is the number of states with dE of E. The change to the number of particles

within dE of E0 per unit time for scattering out of a state is

∂n(E0)

∂t
=

S2D(E0)

(2π)3h̄
dE0

∫
d2~k1d

2~k2|M(|~k0 − ~k2|)|2 ×

f(E0)f(E3)[1 + f(E1)][1 + f(E2)]δ(E0 + E3 − E2 − E1). (2.6)

This equation can be analytically simplified to reduce the numerical work necessary to solve

it. We need to integrate over ~k1 and ~k2, or over the variables, k1 = |~k1|, θ1, k2 = |~k2|, and

θ2. The delta function arguments, E1, E2, and E3 depend on these variables. We pick one

variable, θ1, to integrate out the delta function. We could pick any of the variables, but only

E3(|~k3|2) is dependent on the angles. By integrating over an angle, the derivation is simpler.

We can integrate θ1 relative to any direction and we choose that direction to be ~k2 − ~k0, as

shown in Figure 2.1.

Since the delta function is not explicitly defined in terms of θ1 we must make a change

of variables, or use the following identity,

δ(g(θ)) =
∑ δ(θ − a)

|g′(a)|
. (2.7)

where the sum is over all values of a such that the argument of the delta function is zero

and the derivative with respect to θ1 of the argument of the delta function is not zero.

27

Figure 2.1: The angle θ1 that ~k1 makes to the direction of the difference between ~k0 and ~k2.

Then, with E(|~k3|2) written out explicitly in terms of θ1,

g(θ1) = E0 + E3(|~k2 − ~k0|2 + k2
1 + 2|k1||~k2 − ~k0| cos(θ1))− E1 − E2 (2.8)

and using the chain rule for differentiation,

|g′(θ1)| =
∂E3

∂(k2
3)

2|k1||~k2 − ~k0| sin(θ1). (2.9)

For polaritons, the expression for ∂E/∂(k2) is reasonably compact and easier to derive

than ∂E/∂k. For this reason, the expression, ∂E/∂(k2), is used several places in this thesis

instead of ∂E/∂k. Equation 1.23 is usually written with ∂2E/∂k2, for example. ∂E/∂(k2)

is given by,

∂E

∂(k2)
=

h̄2
[

Exk

m
(E2

ck − E2
k) + c2

n2 (E
2
xk − E2

k)
]

2Ek(E2
xk + E2

ck + (2h̄Ω)2 − 2E2
k)

, (2.10)

where Ek refers to the polariton and Eck and Exk refer to the uncoupled cavity and uncoupled

exciton modes respectively, m is the excitonic mass, n is the effective index of refraction in

the microcavity, and Ω is the Rabi frequency of the coupling.

Now, we set g(θ1) = 0 and derive the values of a by solving for θ1. This results in,

δ(θ1 − a) ⇒ a = cos−1

k2(E3)− |~k2 − ~k0|2 − |k1|2

2|k1||~k2 − ~k0|

 , (2.11)

28

where k2(E3) is the wavenumber squared for energy E3 = E1 + E2−E0. k(E3) is written as

k3 from now on.

The argument of the Arccos must be less than 1 and greater than -1. Each of these limits

is taken separately after replacing |~k2 − ~k0|2 with |~k2|2 + |~k0|2 − 2|~k2||~k0| cos θ2, where θ2 is

measured relative to θ0. We solve the resulting two equations for the limits of integration

over θ2 and obtain,

θ2min = cos−1

[
k2

0 − k2
1 + k1k3

k0k2

]
(2.12)

θ2max = cos−1

[
k2

0 − k2
1 − k1k3

k0k2

]
. (2.13)

Using the relationship sin(cos−1(m)) = [1−m2]
1
2 ,

|g′(θ1)| =
∂E3

∂(k2
3)

2|k1||~k2 − ~k0|

1−

k2(E3)− |~k2 − ~k0|2 − |k1|2

2|k1||~k2 − ~k0|

2

1
2

. (2.14)

Substituting this result and replacing d2~k with kdkdθ in Equation 2.6 and integrating over

θ1 gives,

∂n(E0)

∂t
=

S2D(E0)

(2π)3h̄
dE0

∫
k1dk1k2dk2θ2

|M(|~k − ~k2|)|2f(E0)f(E3)[1 + f(E1)][1 + f(E2)]

∂E3

∂(k2
3)

2|k1||~k2 − ~k|
(
1−

[
k2(E3)−|~k2−~k|2−|k1|2

2|k1||~k2−~k|

]2) 1
2

.

(2.15)

This is converted to an integral over energy using,

dk =
dE

∂E
∂(k2)

2k
. (2.16)

We obtain

∂n(E0)

∂t
=

S2D(E0)

4(2π)3h̄
dE0

∫
dE1dE2dθ2 ×

|M(|~k − ~k2|)|2f(E0)f(E3)[1 + f(E1)][1 + f(E2)]

∂E3

∂(k2
3)

∂E1

∂(k2
1)

∂E2

∂(k2
2)

2|~k1||~k2 − ~k0|
(
1−

[
k2(E3)−|~k2−~k0|2−|k1|2

2|k1||~k2−~k0|

]2) 1
2

. (2.17)

29

The denominator can be simplified to give,

∂n(E0)

∂t
=

S2D(E0)

8(2π)3h̄
dE

∫
dE1dE2dθ2 ×

|M(|~k − ~k2|)|2f(E0)f(E3)[1 + f(E1)][1 + f(E2)]

∂E3

∂(k2
3)

∂E1

∂(k2
1)

∂E2

∂(k2
2)

2|~k0||~k2|
(
[cos(θ2min)− cos(θ2)][(cos(θ2)− cos(θ2max)]

) 1
2

,(2.18)

where θ2min and θ2max are given above in Equation 2.12 and Equation 2.13.

The integral for ∂n(E)/∂t is now evaluated numerically. The integral over θ2 can be

transformed so as to be done with Gaussian Quadrature. Gaussian Quadrature allows for

better results with fewer points and thus speeds up the calculation. Additionally, the trans-

formation avoids the poles that result from the limits of integrating over θ2. In the simulation,

the code for calculating the abscissa points and weights for the Gaussian Quadrature are

taken from Numerical Recipes in C [24]. This book also gives a good review of the theory

behind Gaussian Quadrature.

The polariton-polariton interaction matrix element, M(|~k0 − ~k2|), was studied by Ciuti,

et al.[25] In this interaction, only the excitonic components of the polaritons are interacting.

A factor, Xk,k′ , is used in the interaction model to account for this. Xk,k′ stands for the

product of the Xk Hopfield coefficients for the participating polaritons (see Equation 1.21).

There are four polaritons involved here, so Xk,k′ = X~k0
X~k1

X~k2
X~k3

. M is given by

M =
1

S

∑
~k~k′

Xk,k′V~k−~k′φ~kφ~k′(φ
2
~k
− φ~kφ~k′). (2.19)

The interaction potential ,V~k−~k′ , is proportional to 1/|~k − ~k′| for two dimensional Coulomb

interactions, and φ~k =
√

8πa2
B/S(1 + k2a2

B)−3/2. An approximation for M was determined

by Tassone and Yamamoto [26] to be

M ∼ 6Xk,k′EB
a2

B

S
. (2.20)

This value, representing hard core scattering, is used for the matrix element for polariton-

polariton scattering in the models for this thesis.

Scattering into a given k-state can be calculated with an equation similar to Equation

2.18. The difference is in the statistical part. We replace the statistical factors as follows:

f(E0)f(E3)[1 + f(E1)][1 + f(E2)] → f(E1)f(E2)[1 + f(E0)][1 + f(E3)]. (2.21)

30

2.1.2 POLARITON-LONGITUDINAL ACOUSTICAL

PHONON INTERACTIONS

The derivation given in the last section was for a four body process in two dimensions.

The derivation in this section is for a three-body process in which the polaritons are con-

strained to two dimensions, but the phonons are three-dimensional. The polariton-phonon

model is based on the exciton-phonon interaction [27], which itself is based on the electron-

deformation potential interaction.[6] The deformation potential interaction has the form

M(|~k, ~q|) = iXk,k′

√√√√√ h̄
(
q2
‖ + q2

z

) 1
2

2ρV u

[
aeI

‖
e (|(~q|)I⊥e (qz)− ahI

‖
h(|~q|)I⊥h (qz)

]
(2.22)

where ρ, V, u, and q are the material density, volume, longitudinal sound velocity, and phonon

wavenumber, respectively. The deformation potentials are given for each band as ae and ah.

These values are taken to be the bulk value for GaAs, ae = −7 eV and ah = 2.7 eV [27]. The

Xk,k′ is only the product of two Hoppfield Coefficients since there are only two polaritons

involved. The other factors are overlap integrals between the excitons in the quantum wells

and the phonons in the sample using the envelope function approximation[8, 12, 27, 28, 29]:

I⊥e(h)(qz) =
8π2

Lzqz (4π2 − L2
zq

2
z)

sin
(

Lzqz

2

)
(2.23)

and

I
‖
e(h) =

[
1 +

(
mh(e)

2M

∣∣∣q‖∣∣∣ aB

)2
]− 3

2

, (2.24)

where Lz is the quantum well thickness.

As with the polariton-polariton interactions, we use Fermi’s Golden rule for scattering.

One process is scattering out of state ~k while creating a phonon:

∂n~k

∂t
=

2π

h̄

∑
~k1,~qz

|M(|~k, ~q)|2n~k[1 + n~k1
][1 + n~q]δ(E(~k)− E(~q)− E(~k1)). (2.25)

The in-plane momentum has been conserved through ~q‖ = ~k − ~k1 with ~q =
√

~q2
z + ~q|parallel.

31

Then changing the sums to an integral gives

∂n~k

∂t
=

1

ρu8π2

∫
d2~k1dqzXk,k1

(
q2
‖ + q2

z

) 1
2
[
aeI

‖
e (|(~q|)I⊥e (qz)− ahI

‖
h(|~q|)I⊥h (qz)

]2
×

n~k[1 + n~k1
][1 + n~q]δ(E(~k)− E(~q)− E(~k1)). (2.26)

We replace d2~k1 with k1dk1dθ1. Also, we assume the system is isotropic in k-space as we

did for the polariton-polariton scattering. Therefore, the change to the number of particles

within dE of energy E per unit time is

∂n(E)

∂t
=

D(E)

ρu8π2
dE

∫
k1dk1dθ1dqzXk,k1

(
q2
‖ + q2

z

) 1
2
[
aeI

‖
e (|(~q|)I⊥e (qz)− ahI

‖
h(|~q|)I⊥h (qz)

]2
×

f(E)[1 + f(E1)][1 + F (h̄u|~q|)]δ(E − h̄u|~q| − E1). (2.27)

Here, F (q) is the Bose distribution for phonons.

Instead of integrating out the delta function by integrating over an angle we integrate

over qz. We again make use of Equation 2.7 and use the form:

δ(g(qz)) =
∑ δ(qz − a)

|g′(a)|
, (2.28)

so that

g(qz) = E − E1 − h̄u
√

(|q‖|2 + q2
z) (2.29)

and

|g′(qz)| =
h̄uqz√

(|q‖|2 + q2
z)

. (2.30)

We set g(qz) = 0 and derive the values of a by solving for qz. The result is

a =

[
(E − E1)

2

(h̄u)2
− q2

‖

] 1
2

. (2.31)

We now obtain

|g′(a)| =
(h̄u)2

[
(E−E1)2

(h̄u)2
− |~k − ~k1|2

] 1
2

E − E1

. (2.32)

32

This derivative cannot equal zero and must be real, so we write,

(E − E1)
2

(h̄u)2
− |~k − ~k1|2 > 0. (2.33)

Physically, this means that the created phonon has some momentum in the z-direction. The

elastic wave propagates in both the positive and negative z directions. Since, |~k − ~k1|2 =

|~k|2 + |~k1|2 − 2|~k||~k1| cos θ1, we make this substitution and solve for cos θ1,

cos θ1 >

k2 + k2
1 −

(E−E1)2

h̄2u2

2kk1

 < 1. (2.34)

In the denominator of g′(a), E 6= E1, since if the two energies were the same there would

not be a phonon created.

Using these results in Equation 2.27 and integrating over qz gives

∂n(E)

∂t
=

D(E)

ρu8π2
dE

∫
k1dk1dθ1

Xk,k1(E − E1)
2

(h̄u)3
[

(E−E1)2

(h̄u)2
− |~k − ~k1|2

] 1
2

×

[
aeI

‖
e (|(~q|)I⊥e (a)− ahI

‖
h(|~q|)I⊥h (a)

]2
f(E)[1 + f(E1)][1 + F (E − E1)].(2.35)

Now, converting to integrate over energy, we get

∂n(E)

∂t
=

D(E)

ρu16π2
dE

∫ dE1dθ1

∂E1

∂(k2
1)

Xk,k1(E − E1)
2

(h̄u)3
[

(E−E1)2

(h̄u)2
− |~k − ~k1|2

] 1
2

×

[
aeI

‖
e (|(~q|)I⊥e (a)− ahI

‖
h(|~q|)I⊥h (a)

]2
f(E)[1 + f(E1)][1 + F (E − E1)].(2.36)

This equation is used for scattering out of a state ~k while emitting a phonon. There are

three other possibilities for phonon interaction. These are scattering out of a state ~k while

absorbing a phonon, scattering into a state ~k while emitting a phonon, and scattering into

a state ~k while absorbing a phonon. Two of these processes are the inverse of the other two

and that symmetry is used as a check on the numerical calculation.

33

2.1.3 POLARITON-TRANSVERSE ACOUSTICAL PHONON

INTERACTIONS

The polaritons interact with transverse acoustical phonons as well. Essentially the scattering

is the same as for scattering with longitudinal phonons except transverse phonon values are

used. Snoke et al.,[30] showed that the effective deformation potential, Ξ, for transverse

phonons can be given by

Ξ =

(
4

5
∗
(
b2 +

d2

2

)) 1
2

, (2.37)

with b and d as deformation potentials in the Pikus-Bir notation[31]. Measurements on GaAs

show the holes to have b = 1.8 eV and d = 5.4eV [32]. The electrons have b = 0 and d = 0

since the conduction band is nondegenerate.

There are two directions of polarization for transverse phonons. A factor of two is

included in the polariton-transverse phonon scattering calculation.

2.1.4 POLARITON-PHONON INTERACTION BY PIEZOELECTRICTY

The squeezing of the lattice due to a phonon can cause a local electric field. This effect is

called piezoelectricity. The matrix element for polaritons interacting with phonons through

piezoelectricity is given by[6],

M(|~k, ~q|) = Xk,k′
e

4πε

∑
λ

∑
ijl

eijl
qiqj

q2
η(qλ)l

√√√√ h̄

2ρV ωqλ

[
I‖e (|(~q|)I⊥e (qz)− I

‖
h(|~q|)I⊥h (qz)

]
(2.38)

where ρ, V, and q are the material density, volume, and phonon momentum, respectively,

η is a unit vector with polarization in the l’th direction, eijl is the piezoelectric tensor for

the material being considered, and the I ′s have been defined in Equation 2.23 and Equation

2.24.

When two or more terms describe interactions of the same particle types, e.g. acoustic

phonons with polaritons in this section and the previous sections, the terms must be added

before squaring and using them in Fermi’s Golden Rule. However, the deformation potential

is an imaginary term while the piozoelectric term is real. Thus, they are completely out of

phase with each other and there are no mixed terms upon squaring.

34

Squaring the above M gives, using u, the speed of sound, and ω = h̄uq,

M2 =
X2

k,k′

32π2ρV u

∑∑
ijl

e2
ijl

η2
(qλ)le

2

ε2

q2
i q

2
j

q5

[
I‖e (|(~q|)I⊥e (qz)− I

‖
h(|~q|)I⊥h (qz)

]2
(2.39)

For GaAs, eijl only has three non-zero values, e14 = e25 = e36 = −0.16 C/m2 [33].

Reduced notation has been used here[6]. Since all three indices must be different, then the

polaritons only have piezoelectric interaction with transverse phonons. Performing the sum

over i, j, and l gives,

M2 ∝ 2

q5

(
q2
xq

2
y + q2

xq
2
z + q2

yq
2
z

)
. (2.40)

In cylindrical coordinates this becomes,

M2 ∝ 2

q5

(
q2
zq

2
‖ + q4

‖ cos2 θq sin2 θq

)
. (2.41)

The angle, θq, is measured with respect to the polariton wavevector ~k in the q‖ plane. To

simplify the numerical calculation I find the average magnitude that the trigonometric terms

could have, which is

〈
cos2 θq sin2 θq

〉
=

1

2π

∫
dθq cos2 θq sin2 θq =

1

8
. (2.42)

The total matrix element squared for piezoelectric scattering is then

M2
piezo =

X2
k,k′

16π2ρV u

e2
14e

2

ε2

q2
‖

(
q2
z +

q2
‖
8

)
q5

[
I‖e (|(~q|)I⊥e (qz)− I

‖
h(|~q|)I⊥h (qz)

]2
. (2.43)

35

2.1.5 POLARITON-OPTICAL PHONON INTERACTIONS

The numerical work for this thesis does not use a Frohlich interaction; the polaritons are

at low temperature. Optical phonons in GaAs have h̄ω ∼= 36 meV, which is much greater

than kBT. The code is capable of modeling such an interaction, though. The analytical

manipulation of the scattering equation is very similar to the previous sections. For scattering

out of state ~k for bosons while creating an optical phonon we use:

∂n~k

∂t
=

2π

h̄

∑
~k1,~qz

|M(|~k, ~q)|2n~k[1 + n~k1
][1 + n~q]δ(E(~k)− E(~q)− E(~k1)), (2.44)

where the matrix element is given by

M(|~k, ~q|) = iXk,k′

√√√√ 2πe2h̄ωLO

(~q2
‖ + q2

z)V

(
1

ε∞
− 1

ε0

) 1
2 [

aeI
‖
e (|(~q|)I⊥e (qz)− ahI

‖
h(|~q|)I⊥h (qz)

]
(2.45)

and

I⊥e(h)(q) =
8π2

Lzq (4π2 − L2
zq

2)
sin

(
Lzq

2

)
(2.46)

and

I
‖
e(h) =

[
1 +

(
mh(e)

2M

∣∣∣q‖∣∣∣ aB

)2
]− 3

2

. (2.47)

An optical phonon has an almost flat dispersion relationship so we take the optical

phonon energy as a constant, E(~q) = h̄ωLO.

Changing the sums to integrals gives

∂n~k

∂t
=

e2ωLO

2π

(
1

ε∞
− 1

ε0

) ∫
d2~k1dqz

Xk,k′

(q2
z + q2

‖)

[
aeI

‖
e (|(~q|)I⊥e (qz)− ahI

‖
h(|~q|)I⊥h (qz)

]2
×

n~k[1 + n~k1
][1 + n~q]δ(E(~k)− E(~q)− E(~k1)), (2.48)

where the in-plane momentum has been conserved through ~q‖ = ~k − ~k1.

The integration with the delta function is the same as for acoustic phonons, Equations

(2.28) - Equations (2.34), and the final result is

36

∂n~k

∂t
=

e2u

2πωLO

(
1

ε∞
− 1

ε0

) ∫ dE1dθ1

∂E1

∂(k2
1)

Xk,k′

[
aeI

‖
e (|(~q|)I⊥e (a)− ahI

‖
h(|~q|)I⊥h (a)

]2
×

n~k[1 + n~k1
][1 + n~q]. (2.49)

Here, E − E1 has been replaced with h̄ωLO and

a =

√(
ωLO

u

)2

− q2
‖, (2.50)

with ωLO = 1.07 x 1013 Hz for GaAs.

2.1.6 FREE ELECTRON-POLARITON INTERACTIONS

The matrix elements for direct and exchange interactions for free electron-polariton scat-

tering have been calculated in the literature [34]. This paper shows that the direct term

for electron-exciton scattering is much smaller than the exchange term for ∆k < 1/aB, and

me = mh. This is reasonable since it can be expected for the free electron to interact equally

with the electron and the hole of the exciton. The exchange term provided by [34] was

difficult to implement. We set out to derive our own form of the equation.

We start with the 2D excitonic wavefunction, using the symbol k to mean k‖,

φ(k) =

√
2a2

B

π

1(
1 + (kaB)2

)3/2
. (2.51)

The Hamiltonian term for electron-electron exchange is given by

Hex =
1

2A

e2

ε (|∆k|+ κ)
c†k−∆kc

†
k+∆kckck. (2.52)

Here, κ is a screening parameter[35] and the c†k(ck) are creation(destruction) operators for

electrons.

The Debye-Hŭckel screening parameter is given by,

κ = − e2

2ε∞

∑
~k

∂f(E(~k))

∂E
. (2.53)

37

Substituting a Fermi-Dirac thermalized distribution for f(E) and performing the sum by

converting it to an integral results in the two-dimensional Debye screening formula,

κ =
e2

2ε∞

n

kBT
, (2.54)

where n is the two-dimensional density of electrons, kB is Boltzmann’s constant and T is the

electron temperature.

Using the exciton wavefunction for the probability amplitude of each electron state, the

matrix element, M = 〈f |Hex|i〉, becomes the integral,

M =
e2

ε

a2
B

(2π)2

∫
d2ke

1(
(k2

2 + k2
e + ∆k2

2 − 2k2 · ke + 2k2 ·∆k2 − 2ke ·∆k2)
1/2

+ κ
) ×

1(
1 + (k2

e + ∆k2
2 + 2k2 ·∆k2)

2
a2

B

)3/2

1

(1 + k2
ea

2
B)

3/2
. (2.55)

We simplify this by assuming the dot products average to zero. Also, we assume the inte-

gration replaces ke with 1/aB and provides a multiplier of 2/a2
B as determined by numerical

integration. The result is

M =

√
2Ae2

4π3ε

1

((k2
2 + (1/a2

B) + ∆k2
2)

1/2 + κ)

1

(2 + ∆k2a2
B)3/2

. (2.56)

This element is placed into Fermi’s Golden Rule as was done in the previous sections.

The distribution function for the particles that the polaritons interact with is replaced with

the distribution function for electrons. This is because the electrons are fermions and not

bosons. If high density is considered, the statistical part in Fermi’s Golden Rule is changed,

such that the factor (1 + n) becomes (1− n).

38

2.2 ENERGY CORRECTIONS

The dispersion curve shown in Figure 1.3 is the dispersion that a single exciton-polariton

in the system would have. Once another particle is introduced into the system, there is an

interaction between the particles. If the density of particles is high enough, there can be a

noticable change in the dispersion curve.

The simulation can take into account the energy shifts discussed in the following three

subsections and calculate a new dispersion relationship. The scattering rates depend on

the density of states of the particles, which in turn, depend on the dispersion relationship.

Without these shifts all but the statistical parts of the integrals can be done once. When

these energy shifts are taken into account, all parts of the scattering rate must be recalculated

for each time step and the whole calculation proceeds much slower. The results shown in

Chapter 5 do not use these energy corrections.

2.2.1 FIRST-ORDER ENERGY CORRECTION

Two polaritons will interact through their excitonic components. To first order the Hamil-

tonian can be written as

H =
∑
k

h̄ωkb
†
kbk +

1

2S

∑
kk′q

Vint(q)b
†
k+qb

†
k′−qbkbk′ , (2.57)

where S is the sample area.

In taking the expectation value of this equation, the only terms that survive are when

the momentum is conserved. In the following we separate out the term for q = 0. The

expectation value of Equation (2.57) is given by

〈H〉 = 〈|
∑
k

h̄ωkb
†
kbk −

1

2S

∑
k

Vint(0)b
†
kbk +

1

2S

∑
kk′

Vint(|k − k′|)b†kbkb
†
k′bk′|〉 (2.58)

This equation can be written with the k’s and k′’s separated and rearranged, giving

〈H〉 = 〈|
∑
k

[
h̄ωk −

1

2S

(
Vint(0) +

∑
k′

Vint(k − k′)b†k′bk′

)]
b†kbk|〉. (2.59)

39

The new energy for a given k-state is then

E(k) = h̄ω(k)− 1

2S

(
Vint(0) +

∑
k′

Vint(k − k′)〈|b†k′bk′|〉
)

. (2.60)

Converting the sum to an integral results in a first order change in energy,

∆E(1)(~k) = −Vint(0)

2S
+

1

4π

∫
dk′k′Vint(|~k − ~k′|)〈|n(k′)|〉, (2.61)

where n(k′) = b†k′bk′ is the occupation number, and the integration over θ′ resulted in a factor

of 2π. The details of Vint(k−k′) are covered by Ciuti et al. [25] This Vint(k−k′) is the same

interaction used for the polariton-polariton scattering. The model for energy corrections

does not use this quantity as a constant as was done for polariton-polariton scattering, but

as C exp(−q
qo

). C is a parameter that models the strength of the interaction and qo models

how quickly the interaction strength weakens as q = |~k − ~k′| increases.

2.2.2 SECOND-ORDER ENERGY CORRECTION

Second-order perturbation theory gives,

E ′ = E + 〈i|V |i〉+
∑
m6=i

|〈m|V |i〉|2

Ei − Em

. (2.62)

Here E is the unperturbed energy and 〈i|V |i〉 is the interaction described in the previous

section.

The second order term is more complicated because the intermediate state, 〈m|, does

not have to be energy conserving. Nevertheless, converting the sum to an integral results in

the second order energy correction,

∆E(2) = Vintnk

∫
dθq

dEq

2 ∂E
∂k2 |q

∫
dθk′

dEk′

2 ∂E
∂k2 |k′

C2exp(−2q2

q2
o

)(1 + nk′′)(1 + nk′′′)nk′

Ek′′′ + Ek′′ − Ek′ − Ek

. (2.63)

40

2.2.3 PHASE-SPACE FILLING

As the density of particles increases, the excited states in the sample begin to fill up. The

fermionic constituents of the polaritons begin to have trouble being created. As a result, the

excitons start to decouple from the photons. Experimentally, this is seen as the polariton

splitting becoming weaker. This leads to a blue shift of the lower polariton line and a red shift

of the upper polariton line, i.e. a closing of the line splitting. We deduce from experiment the

magnitude of this effect. To fit the data, a parameter is found to change the Rabi splitting

in the model as the simulated particle density increases.

41

3.0 REVIEW OF OTHER KINETIC MODELS FOR MICROCAVITY

POLARITONS

Numerical solutions to the Boltzmann Equation have been done for some time now. In

general, the equation to be solved has the form,

∂n~k

∂t
= P~k(t) + Γ~k(t) +

∑
i

W
(i)
~k→~k′

(t). (3.1)

Here n is the occupation for the state ~k, P and Γ are pumping and recombination/loss terms

respectively, and the W (i)′s are whatever kind of interaction integrals are to be considered.

Using this form, a solution for elastic scattering in bulk material was found by Snoke and

Wolfe[36] and Snoke [35]. They analytically reduced the interaction integral down as far as

possible, as was done in chapter 2, and then used a computer to numerically calculate that

which remained. This significantly reduced the amount of time required for the calculation.

Numerous groups have applied the same process to microcavity polaritons with various

approximations being made. This chapter will review their publications.

3.1 LOW-DENSITY STUDIES

The early numerical simulations on microcavity polaritons had emphasis on studying the

behavior of the low density system in order to understand the interplay between the re-

laxation rates and the recombination rates. Tassone, et al.,[37] used a model with only

exciton(polariton)-phonon scattering and polariton recombination(photoluminescence),

where they modeled the behavior of the distributed Bragg reflector exactly. P (t), the pump-

ing term, was an instantaneous pulse at the beginning of the simulation on the excitonic

42

part of the lower polariton branch. Their interest was (1) in the recombination rate given by

Γ(t) as a function of emission angle, and (2) in the photoluminescence rise and decay times

as the temperature and detuning were varied.

They found that the dependence on detuning of the radiative rate was determined by the

composition of the polariton being considered. As the polariton became more photonic, the

radiative rate increased, and the opposite occurred as the polariton became more excitonic.

They also concluded that photoluminescence decay times increased with temperature, while

rise times decreased. Neither were significantly affected by detunings of up to 2ΩR. These

two times are mostly a function of the dynamics occurring in the excitonic region of the

dispersion curve. Their calculations indicated that the excitonic region of the lower polariton

was nearly thermalized, but that relaxation to the lower energy states may be inhibited, a

so-called bottleneck. This is similar to what is observed in the dynamics of the bulk.

The possible existence of a bottleneck led Tassone, et al., [12] to numerically study that

phenomenon next. A full calculation for the Bragg reflectors was again taken into account.

Instead of an instantaneous pulse of excitons on the lower polariton branch, this study

included a non-resonant pumping term. They calculated the formation rate of the lower

polaritons as a function of polariton energy while taking into account acoustical scattering

and optical phonon emission (see Figure 3.1). The simulations discussed in Chapter 5 of

this thesis assume the pumping rate into all states to be a constant. Tassone’s simulations

remained in the low density regime and they continued to only consider phonon scatter-

ing. They concluded that indeed there is a bottleneck effect in the microcavity polariton

dynamics.

The bottleneck was an obvious barrier to the thermalization of the polaritons. A way

to overcome the barrier was needed. Exciton-exciton scattering rates become important at

higher densities (scattering rate is proportional to n). This was first numerically considered

by Tassone and Yamamoto [26]. In this study, exciton-exciton scattering rates were consid-

ered along with the exciton-phonon scattering rates. Additionally, the pumping term was

returned to being resonant. They included a term that accounts for the interaction of the

excitons and the strong electromagnetic field due to the pump. Even at high densities their

model still showed that polariton-phonon scattering could not overcome the bottleneck. The

43

Figure 3.1: From [12], the calculated formation coefficient, C, for the equation F (E) =

Cn2
c(E) where F (E) is formation rate of upper and lower polaritons for a non-resonant

pump and nc(E) is the carrier density. E = 0 is the bare exciton energy.

peak occupation occurs at the lower energies of the uncoupled excitonic energies (see Fig-

ure 3.2) and polariton occupations decrease as their energies decrease without thermalizing.

Only with a pumping term into the lower polariton branch could large populations below

the bottleneck be achieved.

Tassone’s and Yamamoto’s publication provides useful insight for those researchers doing

a numerical simulation. They describe four criteria important for determining the step size

44

for the energy bins. These are:

1. ∆E < kBT. The distribution functions, which at low density are proportional to

exp(−E/kBT), are best approximated by small steps of energy.

2. ∆E < h̄cq̄. q̄ is the average phonon momentum exchanged. In GaAs quantum wells

this energy is near 1 meV.

3. Good results with changes in ∆E. They found energy steps between 0.05 meV and

0.4 meV gave consistent results.

4. ∆E > h̄Γ. Γ is the exciton-exciton scattering rate. ∆E represents an uncertainty in

E. The larger ∆E is, the smaller the uncertainty in ∆t, the time step for each iteration. This

∆t needs to be much smaller than the time it takes for the average particle to scatter. This

is because Fermi’s Golden Rule assumes the scattering process is quick compared to the time

between scatterings so that no information of the scattering is retained. They report energy

steps of 0.1 meV as adequate for exciton-exciton scattering with density, nexc ∼ 109cm−2.

3.2 HIGH-DENSITY STUDIES

Numerous groups have used the Boltzmann equation to explore polariton condensation and

polariton lasers. To overcome the bottleneck, without pumping directly into the lower polari-

ton region, higher densities were needed. Experimentally, high density can lead to problems

with the polaritons losing their bosonic behavior and this should be kept in mind when

considering numerical results.

As the density increases, one mechanism that becomes important is polariton-polariton

scattering. Polariton-phonon scattering rates are proportional to the density of phonons,

that is, there is a dependence on the lattice termperature. Polariton-polariton scattering

rates are proportional to the density of polaritons squared. This type of scattering can

become significant, in some samples, at densities before the polaritons lose their bosonic

behavior. Various papers have considered this term and made other approximations to

study the kinetics.

Malpuech, et al.,[38] explored free electron-polariton scattering in addition to polariton-

45

polariton and polariton-phonon scattering. Since free electrons rapidly cool, the polaritons

near the bottleneck could effectively lose energy. Additionally, the dipole-charge scattering

matrix element is larger than that for dipole-dipole[39],[40]. With this mechanism included

they were able to show large populations in the lower polaritons near k = 0.

In a series of papers [41, 42, 43, 44], Doan, et al., showed the possibility of large accumula-

tions in the ground state. The first paper [41] showed with the correct choice of parameters

that it was theoretically possible for acoustic phonons to overcome the bottleneck. They

chose cavity lifetimes of 50 ps as opposed to typical lifetimes of current samples of about 1

ps. In [43] an approximation was made that the sample thickness was on the order of 10

µm. This causes the first excited polariton state to be at k‖ = 6 x 105 m−1. This wavevector

occurs at about 1/20 of the lower polariton wavevector space. In [44] a similar study was

done for II-VI materials. With these approaches, this group was able to show a steady state

Bose-Einstein distribution could occur.

Porras, et al., [45] followed Tassone and Yamamoto’s 1999 model with some simplifi-

cations to the numerics. Many models assume that the polaritons are interacting with a

phonon bath at constant temperature. The interaction of polaritons with phonons is a quick

calculation compared to the time taken to calculate the interaction with lower polaritons and

low energy excitons. One way to speed up the calculation is to separate the lower polariton

dispersion curve into a polariton region and a thermalized exciton region. Thus, for the

exciton region,

nxi = nxe
−βxεxi,(3.2)

with nx the occupation for the lowest energy exciton, β = kBT , and εxi the energy of excitons

with higher energy. In so doing, the populations become disjoint at the bottleneck and this

region is neglected.

To further simplify the system they use a quantized area. As in the case of the papers

[41, 42, 43, 44], this causes the wavevectors to be discrete. They also do the calculation in

k-space instead of doing the calculation in energy space. This makes it easier to have a large

number of low energies, the main region of interest, but does not simplify the calculation.

In three dimensions the equations can be analytically reduced further in energy space than

in k-space. In two dimensions there is an integral that cannot not be simplified which makes

46

doing the calculation in k-space equivalent to doing the calculation in energy space.

With these methods, they get two coupled equations, one for the lower polaritons,

∂nlp
k

∂t
= Wph + Wxp − Γlp

k (3.3)

and one for the excitons,
∂nx

k

∂t
= Wph + Wxp − Γx

k + Px. (3.4)

Px is a pumping term that populates the exciton reservior with excitons at the lattice temper-

ature. They assume that the polaritons do no interact since there is no polariton-polariton

scattering term.

In a scattering process that moves an exciton to the lower polariton state, another exciton

must gain energy. This process heats the excitons. To complete their model they use the

following equation,

∂ex

∂t
= − 1

S

∑
k

εlp
k dglp

k [W in
l

(
nx

S

)2

(1 + nlp
k)−W out

k

(
nx

S

)
nlp

k +

(
∆Enx

kBTxS

)∑
i

εx
i

∑
j

W phTLe−βxεx
i + px − Γx. (3.5)

where ex is the energy in the exciton reservior. There is only this term for the reservior,

where the sums are over the lower polariton k-space. This one term replaces a large number

of bins in the excitonic k-space and reduces the time demand for the calculation.

They were able to show that their model reproduces the calculations of Tassone and

Yamamoto[26] at low densities. They were also able to show, using values consistent with

CdTe, that large occupation numbers in the lower polariton states could be achieved with

pumping levels as high as 1.5 x 1011 cm−2. This density is 20 times more than what Tassone

and Yamamoto had used but is less than Porras’s calculated saturation density of 6.7 x

1011 cm−2[45]. Figure 3.3 shows their published calculations.

Chaves and Rodriquez [46] included polaritons scattering with free electrons as well as

scattering with acoustical phonons. They ignored polariton-polariton scattering mechanisms

where Malpuech et al.[34] had included them in their study. To obtain free electrons an

experimental sample would have to be doped. They, too, were able to show that transition

47

beyond the bottleneck region was possible. They did not provide the details of the polariton-

electron scattering matrix element.

Some of the most elaborate models have started with a condensed phase already present

and then take into account a Bogoliubov transformation[47], [48]. Sarchi and Savona’s model

follows along a path given for atomic condensates discussed in [49], [50]. In these studies

not only do they keep track of occupation numbers, but allow the dispersion relationship to

shift in the energy due to particle-particle interactions. The previous chapter discussed how

many body interactions cause energy shifts. Their method breaks the population up into

three regions: a condensed polariton region, an excited polariton region, and an uncoupled

exciton region.

There are three equations that model the occupation of the states, one for each region:

the condensate
∂nc

∂t
= γ0nc +

∂nc

∂t
|ph +

∂nc

∂t
|XX +

2

h̄

∑
v

(k)
k,−kIm(m̃k) (3.6)

the excited polaritons

∂nk

∂t
= γ0nk +

∂nk

∂t
|ph +

∂nk

∂t
|XX +

2

h̄

∑
v

(k)
k,−kIm(m̃k) (3.7)

and the uncoupled excitons,

∂nx

∂t
= −γxnx +

∂nx

∂t
|ph +

∂nx

∂t
|XX + f. (3.8)

Here γ′s are inverse particle lifetimes, v′s are polariton-polariton interaction terms, and f

is an incoherent pumping term into the excitons. ph and XX stand for interactions with

phonons and excitons respectively. These terms have been discussed in Chapter 2. The lower

polariton parts have a new term with m̃, the scattering amplitude. It is given by

48

∂m̃

∂t
= −2

[
γ0 + iωk +

i

h̄
v

(0)
k,0(nc − nk − 5/2)

]
m̃k −

i

h̄

[∑
q

v
(k−q)
q,−q m̃q − 2v

(k)
k,−knc(nc − 1)

]
(1 + 2nk) +

2
i

h̄
Υ(n)

{
v

(k)
k,−k

[
2χkn̄k

(
χkn̄k + 2|Vk|2

)
+ 2|Vk|4

]
+

UkV
∗
k (1 + 2n̄k)

∑
k

v
(q)
k,−kU

∗
q Vq(1 + 2n̄q)

}
. (3.9)

Here

|Vk|2 = ξk

[Ek − (ωk + v
(0)
k,0ξk)]

2

(v
(k)
k,kξk)2

k − [Ek − (ωk + v
(0)
k,0ξk]2

, (3.10)

Υ(n) = n2 1 + 2nc

(nc + 1)(nc + 2)
, (3.11)

χk = ξk + 2|Vk|2, (3.12)

|Uk|2 + |Vk|2 = ξk, (3.13)

and

ξk =
nc + nk

n
. (3.14)

The total number of particles is given by, n.

They simultaneously solve these equations. Figure 3.4 shows the results of their calcu-

lation. The lower curve in the plot is from an analytical equilibrium calculation. The break

in the upper plots are because they have continued to ignore effects due to the bottleneck

region.

Using GaAs parameters, quantization lengths of between 10µm and 30µm, and a Rabi

splitting of around 7 meV, their main conclusion was that cavities need to be designed with

49

only moderately longer polariton lifetimes, τpol ∼ 10 ps, to give the possiblility of studying

thermalized distributions.

All of the reports on numerical simulations in this section have shown that the k = 0

state can have orders of magnitude more population than more energetic polaritons below

the bottleneck. None of these groups have compared numerically simulated distribution

functions to experimental data.

50

Figure 3.2: Occupation number vs energy for polaritons. The polariton density for each

simulation is given in the upper right hand corner of each graph. The existence of the

bottleneck, the peak in the curve, remains when polariton-polariton scattering is considered

along with polariton-phonon scattering from [26]. E = 0 is the bare exciton energy. The

bottleneck is pushed to lower energies with higher density, but never goes to the lowest

energy.

51

Figure 3.3: Porras, et al. [45], showed that numerical simulation suggested the possibility

that strongly pumping a material like CdTe, with higher saturation density than GaAs,

would result in a large occupation of the lowest energy states. Their pumping density was

less than, but on the same order of magnitude, as the saturation density for CdTe. Px is the

pumping rate into the system in cm−2/100 ps. Px is shown for 1, 2, 5, 8, and 15. Notice

that the distribution is sloped, not flat, for energies below the bottleneck.

52

Figure 3.4: Numerical simulation of polaritons from [48]. GaAs parameters for the effec-

tive masses, deformation potential to acoustic phonons, and Coulombic and Pauli exclusion

terms.

53

4.0 EXPERIMENTS

This thesis provides data from two main experiments. The first is angle-resolved lumines-

cence from the microcavity. Data for this experiment was taken using CW and quasi-CW

pumping conditions. The second experiment is time resolved luminescence from the ground

state of the microcavity under pulse pumping conditions. Data from the angle-resolved

experiments is compared to numerical simulation in the next chapter.

4.1 ANGLE-RESOLVED MEASUREMENTS

Figure 4.1 is a picture of a set up near one of the cryostats used. The lower portion of the

cryostat is visible as well as some of the opto-mechanics used in its vicinity. The arrows (red

when in color) drawn in the picture represent the path of the pump beam. The metallic arms

in the foreground of the picture meet underneath the cryostat. The center of their rotation

is placed to coincide directly underneath the front surface of the microcavity based on an

optical path. The arms are constructed so that they can be moved past each other. In this

way, the sample can be pumped from various angles and the luminescence can be collected

from various angles.

Once the microcavity is cooled to liquid helium temperatures, preparation for angle-

resolved experiments is made by imaging reflected white light from the sample onto the

front slit of the spectrometer. The spectrometer is tuned to near the edge of the stop

band for the microcavity. Figure 1.9, between the energies of 1.7 eV and 1.75 eV, provides

an example of what the spectrometer would show. Weak laser light is then scattered off

the sample which shows up as a dim line on the spectrometer. The laser is tuned to the

54

0 2 4 6 8 1 0
0

2

4

6

8

1 0

Figure 4.1: Optical set up near the cryostat. At the time this picture was taken the cryostat

had been replaced by a mirror. The cryostat sits in the background.

wavelength of the sample’s first minimum reflectivity above the stop band. Pumping this

region excites free electrons and holes well above the energies of the exciton, which is 1.59 eV.

These particles must interact with several optical phonons, 37 meV, to relax to the exciton

states. Interacting with the optical phonons ensures that coherence from the laser pump is

not preserved in the exciton states. After a time of less than a nanosecond, the polariton

distributions reach a steady state.

The pump laser is incident on the sample in a region where the excitons are detuned

from the cavity mode. The luminescence from the sample is imaged onto the spectrometer,

which has now been tuned to the cavity energy, around 1.6 eV. A bright cavity mode is seen

on the CCD image. Stress is then applied to the sample via the pin, which was described

in the cryostat section of Chapter 1. As the stress is increased, the exciton mode begins to

55

come into resonance with the cavity mode. A spatial dip in the polariton mode creates our

trap as shown in Figure 1.7.

Polaritons decaying into external photons are measured as luminescence from the micro-

cavity. As stated in the introduction, each momentum state of the polaritons emits photons

at its own specific angle to the normal of the microcavity surface. A fiber optic collects

this luminescence at a given angle. This luminescence through the fiber optic is analyzed

with the spectrometer. The ouput of the spectrometer is collected by a CCD that integrates

over time. This measurement is repeated by moving the fiber optic through a total arc from

−19◦ to 19◦ in 1◦ steps. Aggregated images of the data by angle are shown for each pump

power, 1 mW in Figure 4.2, 6 mW in Figure 4.3, 24 mW in Figure 4.4, 35 mW in Figure 4.5,

and 80 mW in Figure 4.6. The CCD’s spatial information has been integrated over since all

spatial information is lost going through the fiber optic. These aggregated images show the

dispersion relationship of the lower polaritons.

There are two effects to increased pumping power that are noticable between Figure 4.2

and Figure 4.6. The first is that as the density of polaritons increases, the population

becomes concentrated near ~k = 0, which occurs at an angle of 0◦. While this is good, we

also see that the dispersion curves become distorted. There is a blue shift related to the

exciton component of the polaritons interacting with other polaritons. At high powers, > 80

mW, the ~k = 0 state is no longer the lowest energy state and the polaritons drift into higher

momentum states.

We found while experimentally investigating the polariton dynamics, as shown in Figure

4.7, that there are thermal effects from using a CW laser that take several seconds to stabilize.

These thermal effects become apparent when pumping the side of the stress well. The system

should reach steady state in much less time than the integration time for each frame. In

steady state the luminescence should be nearly constant, but it takes three seconds to reach a

constant luminescence. Also, as the sample heats up from having a laser focused onto it, the

drift speed of the polaritons increases, allowing them to travel farther within the integration

time. An explanation may be that it takes time for the heated lattice to come to steady

state with the helium gas that is cooling the sample. To limit the heating of the sample,

an acousto-optic modulator was introduced into the set up. This chopped the CW beam

56

Figure 4.2: A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the intensity is color

plotted as a function of energy. This figure is for 1 mW of incident pump power.

and provided pulses of 24 µs at 1 kHz repetition. Repeating the experiment of pumping the

side of the stress well showed that luminescence intensities were constant immediately at the

beginning of pumping. The drift of the polaritons was also constant. This pulse duration

of 24 µs is still hundreds of time longer than the time it takes for the polaritons to reach

steady state from initial excitation. We continue then to integrate over at least 300 of these

steady state emissions for each angle. Aggregated data similar to Figures 4.2-4.6 are shown

in Figures 4.8-4.12.

Figures 4.2-4.6 and Figures 4.8-4.12 can be analyzed to obtain a quantity proportional

57

Figure 4.3: A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the intensity is color

plotted as a function of energy. This figure is for 6 mW of incident pump power.

to the occupation of each state. First, for each angle the peak energy can be determined.

Second, the total intensity at each angle is determined and adjusted for any differences in

integration time. This integrated intensity for each angle is related to the occupation of the

corresponding state. The emission is inversely proportional to the lifetime of that state and

proportional to the state’s occupation number. That is, a state that has half the lifetime

of another state but equal population will emit twice as strongly over a given time. The

integrated intensity is adjusted for the relative lifetime of our states as follows:

The lifetime of a state, τk, is given by [51]

58

Figure 4.4: A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the intensity is color

plotted as a function of energy. This figure is for 24 mW of incident pump power.

1

τk

=
X2

k

τx

+
C2

k

τc

. (4.1)

Here, X2
k is the fraction of the polariton at state k that is exciton and C2

k is the fraction of

the polariton that is photon (see Equations 1.21 and 1.22). τx and τc are the lifetimes of the

uncoupled excitons and photons in the cavity. The exciton lifetime is substantially longer

than the cavity mode so it can be discounted from the equation. The fraction of the lower

polariton that is photonic is given by the square of the Hoppfield coefficient,

59

Figure 4.5: A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the intensity is color

plotted as a function of energy. This figure is for 35 mW of incident pump power.

C2
k =

1

2

1− Eck − Exk√
(Exk − Eck)2 + (2h̄Ω)2

 . (4.2)

To use the preceding equation, the energies of the uncoupled exciton and photon modes

need to be known. They can be deduced from either the CW or quasi-CW data. Figure 4.13

shows a plot of the energy versus k‖ for the 1 mW CW data. A least-squares calculation

of the polariton dispersion, Equation ?? was done by varying the bare exciton energy, bare

photon energy, and the Rabi energy, h̄ΩR. The solid line in Figure 4.13 shows the result

60

Figure 4.6: A composite of the angular resolved data under CW pumping conditions. For

each angle the image on the CCD is integrated over the spatial axis and the intensity is color

plotted as a function of energy. This figure is for 80 mW of incident pump power.

of this fit. The best results are for h̄ΩR = 15 meV and a detuning of about Ex − Ec = 1

meV. Detuning to within 1 meV is within the limit of uncertainty of our experiments. The

right-hand side of the plot shows some deviation. An explanation is that even at low pump

intensities the excitonic part of the dispersion curve is still very dense. Excitonic interactions

may blue shift their energies, pulling the high k-state polaritons energies up. Nevertheless,

a small amount of detuning will not affect the relative lifetimes to be calculated.

Having deduced the uncoupled exciton and photon energies, the relative lifetimes as a

function of angle are computed. Once these are calculated, a lifetime adjustment is made and

61

Figure 4.7: CW pumping the side of the stress well. The evolution of the luminescence over

five seconds. Thermal effects cause a delay in the build up of the luminescence. The hotter

particles also drift farther into the trap since they have a higher average kinetic energy. Each

image is integrated over 200 ms. The intensity scale is the same for all images.

plots of the occupation per state versus energy can be made and are shown in Figures 4.14

and 4.15. This data shows the steady-state distribution of the polaritons for the different

pumping conditions. They also show attempts to fit the higher density plots with Maxwell-

Boltzmann distributions and Bose-Einstein distributions. None of the higher density data

are fit well by either distribution. I address this problem in the beginning of the next chapter.

62

Figure 4.8: A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function of energy.

This figure is for 0.05 mW of incident pump power.

4.1.1 THE EFFECT OF STRESS

In the region on the microcavity where the experiments were done, the microcavity is far

from resonance without stress. To investigate the effect of detuning, an experiment was

performed that varied the stress. Varying the stress varies the detuning because stress shifts

the exciton mode relative to the cavity mode. Figure 4.16 shows angle-resolved data of

three cases. The top picture is without stress and far from resonance. In this case, the

lower polariton is highly photonic. Photons do not interact strongly with themselves and

63

Figure 4.9: A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function of energy.

This figure is for 0.2 mW of incident pump power.

the polaritons are trapped in high k states(large angle). Also, due to the steepness of the

dispersion curve, phonons are less effective in interacting with the polaritons and allowing

transitions to lower k states(small angle, near zero degrees). Stress is increased until, in the

bottom picture, the microcavity is in resonance. The lower polaritons are now half excitonic

and the dispersion curve is less steep, by 2 meV. Phonons are able to interact better with

excitons than with photons. Additionally, the dispersion curve of the phonons is better

matched to the dispersion curve of the polaritons, allowing more transitions to the lower k

states. The polaritons are able to overcome the bottleneck region of the dispersion curve.

64

Figure 4.10: A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function of energy.

This figure is for 0.4 mW of incident pump power.

4.1.2 LINE BROADENING AND LINE NARROWING

In a noninteracting system the energy of a state is exact. The angle resolved data, Figures

4.2-4.6 and Figures 4.8-4.12, show that for a given angle each emission spectrum has a

measurable band of energies. Figure 4.17 shows the spectrum for k = 0 when the microcavity

is being quasi-CW pumped with 0.05 mW. The linewidth is indicative of the time spent in

that state. Using the uncertainty principle, the time that each particle exists in that state is

τ ∼ h̄

2∆E
. (4.3)

65

Figure 4.11: A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function of energy.

This figure is for 0.6 mW of incident pump power.

For a linewidth of 1.68 meV this corresponds to a time of 200 fs.

The uncertainty principle does not show the full richness of the system. Starting with the

uncertainty principle, the linewidth indicates that the particles spend a finite time in that

state, but it does not indicate what would be the cause if the linewidth were to change. Fig-

ures 4.2-4.6 and Figures 4.8-4.12 show the linewidth narrow as the particle density increases

and Figure 4.17 is a plot of the spectral density function when the sample is pumped with

quasi-CW light of 0.05 mW. This spectral density function can be modeled as a Lorentzian

66

Figure 4.12: A composite of the angular resolved data under quasi-CW pumping conditions.

Each angle is spatially integrated and the intensity is color plotted as a function of energy.

This figure is for 0.8 mW of incident pump power.

lineshape,

S(ω) =
2γ

(ω − ωo)
2 + γ2

, (4.4)

where γ is a damping term that parameterizes the interaction of the system. For N particles,

γ ∝ 1/N . As N increases, S(ω) goes to δ(ω), it becomes very narrow. Line narrowing is an

indication that a state has become heavily populated [6].

67

1.591

1.592

1.593

1.594

1.595

1.596

1.597

-4.E+06 -2.E+06 0.E+00 2.E+06 4.E+06

Energy
(eV)

K|| (meter-1)

1 mW CW Pump
Power

Figure 4.13: Dispersion curve fit to the 1 mW CW laser data shown in Figure 4.2

4.1.3 ERROR ESTIMATES

There are experimental limitations. I discuss those in this section.

The slit width at the entrance to the spectrometer provides some uncertainty in the

wavelength. The experiments used a 40 µm slit width which is approximately 3 pixels when

imaged on the CCD. Three pixels on the CCD when using the 1800 lines/mm grating in the

spectrometer represents an uncertainty in the wavelength, ∆λ = 0.029 nm for a wavelength

of 775 nm. The percent uncertainty in the photon energy due to the spectrometer/CCD is

given by ∆E = ∆λ/λ = 0.004%, or about 0.06 meV. This is less than 1/10 the significant

68

0.01

0.1

1

10

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

O
cc

u
p

at
io

n
 (

ar
b

.
u

n
it

s)

Energy (eV)

80 mW

35 mW

24 mW

6 mW

1 mW

Figure 4.14: Occupation of the lower polariton states for different incident pump powers.

These were deduced from the spatially integrated images in Figures 4.2-4.6 for CW pumping

conditions.

digit we present in the data.

A large error in the distribution functions could come from the fiber optic if it is collecting

from a different number of states at each angle. Since k‖ = k sin θ, then dk‖ = k cos θdθ. For

the angles in our experiment, cos θ ∼ 1 so that dk‖ is essentially constant. At each angle we

expect to collect emission from the same number of states. Therefore, we do not make any

correction for the collected number of states in Figure 4.14 and Figure 4.15. Additionally,

69

0.1

1

10

0.000 0.001 0.002 0.003

O
cc

u
p

at
io

n
 (

A
rb

. U
n

it
s)

E - Emin (eV)

Bose-Einstein Distribution, T = 90 K, μ=-0.15T

Maxwell-Boltzmann, T = 90 K

0.05 mW

0.2 mW

0.4 mW

0.6 mW

0.8 mW

Figure 4.15: Occupation of the lower polariton states for different incident pump powers.

These were deduced from the spatially integrated images in Figures 4.8-4.12 for the quasi-

CW pumping condition of 2.4% pump duty cycle. The dotted line represents a T = 90

K Maxwell-Boltzmann distribution and the solid line is for a T = 90 K, µ = −0.15kT

Bose-Einstein distribution .

the fiber optic aperture has a finite width of 1.6 mm. It collected the luminescence at about

21 cm from the sample. This leads to an uncertainty in the angle of emission from the

sample of ∆θ ∼ 7 mrad = 0.4◦. The angle is then measured to within ±0.2◦. This is 1/5 of

the angular spacing between our data points.

70

 -20 -15 -10 -5 0 5 10 15 20

Angle (degrees)

Figure 4.16: The effect of the stress well. From top to bottom the stress is increasing from no

stress to resonant stress. Without stress the polaritons are held in high k states. With stress

the polaritons are able to make it past the bottle neck. The intensity scales are different for

all three plots.

4.2 TIME RESOLVED SPECTROSCOPY

A time resolved spectroscopy (TRS) setup was made that used sum-frequency generation

from a BBO crystal. Sum-frequency generation is the process of converting two photons

into one photon. The frequency of the new photon is the same as adding the frequencies

71

-100

0

100

200

300

400

1.593 1.595 1.597 1.599 1.601 1.603 1.605 1.607

Lu
m

in
e

sc
e

n
se

(a

rb
. U

n
it

s)

Energy (eV)

Figure 4.17: The k = 0 spectrum with quasi-CW pumping of 0.05 mW.

of the two destroyed photons. In general, any atom interacting with light will have some

portion of that light converted to the sum of the frequencies of photons in the light. If there

are many atoms, like in a crystal, the points where the sum-frequency light is generated

will be out of phase with light created from other points and will encounter destructive

interference. Phase matching is a method where the sum-frequency generated light interacts

constructively and becomes amplified. The index of refraction monotonically changes with

wavelength for linear optical materials and it is not possible to find a direction to maintain

the constructive interference. A birefringent crystal, such as BBO, has ordinary and extra-

72

ordinary indices of refraction. Paths through the crystal can be found such that the index

of refraction for light polarized along the ordinary axis permits the wavefronts to proceed

at the same rate as those for light of a different wavelength and different index of refraction

along the extra-ordinary axis.

The above described process is most easily described through conserving the energies,

ω′s, and wavevectors, ~k′s. I summarize the result given by Shah[52]. I start with,

ω1 + ω2 = ωsfg (4.5)

and

~k1 + ~k2 = ~ksfg. (4.6)

where the indices, 1 and 2, refer to incident beams and the index, sfg, refers to the sum-

frequency generated signal. This last equation, when considering collinear beams, becomes

nsfg = n1
λsfg

λ1

+ n2
λsfg

λ2

. (4.7)

n is the index of refraction for a given polarization in the crystal and λ is the free space

wavelength.

For a uniaxial crystal, the index of refraction for propagation along a direction θ to the

optic axis is given by

1

n2
=

sin2 θ

n2
e

+
cos2 θ

n2
o

. (4.8)

Our experiments were done with incident beams polarized parallel to the ordinary axis

(subscript o). The angle, θsfg, necessary to create the sum-frequency generation along the

extra-ordrinary axis is found from the preceding equations,

sin2 θsfg =

1
n2

sfg
− 1

n2
o

1
n2

e
− 1

n2
o

. (4.9)

The indices of refraction for the different beams can be looked up in tables or calculated

from a Sellmeier Equation [53].

The preceding equations describe theoretically how the sum frequency generation is ac-

complished using collinear light. Experimentally, the time-resolved spectroscopy method

73

does not use collinear incident beams, but the above theory can be used to calculate the

approximate angle at which the crystal should be aligned. Beyond this basic calculation the

alignment of the crystal is most easily done by trial and optimization.

The sum-frequency generation is used as a gate to allow a signal to be incident on a

detector at a specific time. Figure 4.18 gives a simplified experimental set up. In a TRS

experiment a short pulse(200 fs) pump beam is split in two by a beamsplitter. One beam

continues on to excite the sample. The other beam is sent through a delay stage with a

retroreflector. Luminescence from the excited sample is then mixed with the delay pulse

in a BBO crystal. The sum frequency generation only occurs when the delayed pulse is

incident on the BBO. Thus, the gate only allows a luminescence signal of 200 fs duration

through. The intensity of the sum-frequency output is proportional to the luminescence from

the sample during the time it is mixed with the delayed pulse.

Figure 4.19 illustrates that only the portion of the microcavity’s luminescence that is

incident on the BBO at the same time as the laser pulse will create a signal for the detector.

Changing the path length of the delay pulse allows different points in time in the photolumi-

nescence to be sampled. The signal from one shot is quite weak but the MIRA is working at

76 MHz. In one second the experiment can be repeated for a given delay position 76 million

times. This provides an adequate signal.

An experiment was performed that shows the temporal dynamics of the ~k = 0 lower

polariton. Figure 4.20 gives the results of the integrated intensity of the sum frequency

generated light as a function of time. The pumping wavelength, around 718 nm, was the

same as that used in the angle resolved experiments. This pumping method then populates

the upper polariton, large k uncoupled exciton states, as well as the lower polariton. The

excitonic states and upper polariton states have some transition time to the lower polariton.

In effect, these other particles act as a reservoir that can feed the lower polaritonic states

as they become photons. For this reason it is reasonable to believe that this measurement

does not give the lifetime of the lower polariton. At best it gives some upper bound on the

lifetime. From Figure 4.20 this measurement gives a lifetime of 7.7 ps.

The models use the polariton lifetime, and it would be useful to have an experimental

measurement of this value. It would reduce the parameter space that is searched when

74

retroreflector on a

delay stage

from

laser

Figure 4.18: A schematic of the time resolved set up. The beamsplitter splits the pump beam.

Part of the pump beam is sent to a delay stage. The rest of the pump beam is incident on

the microcavity sample. The solid red line from the microcavity represents luminescence.

trying to simulate the steady state results of the previous section. Another method is to

pump the lower polariton directly. This method would not excite the upper polariton and

exciton reservoirs. Its drawback is that the doubling of the gate pulse is close to the sum-

frequency of the luminescence pulse with the gate pulse. The much stronger gate pulse

makes it difficult to set the CCD sensitivity to detect the luminescence signal. The results

of those experiments have been inconclusive but have suggested a much shorter lifetime. An

75

Figure 4.19: The luminescence from the microcavity lasts much longer than the gate pulse.

Only a fixed portion of the luminescence mixes inside the BBO with the gate pulse for a

given delay. That portion is denoted by the dashed lines. Changing the delay in the gate

pulse will sample another point in the microcavity’s luminescence.

approximate value for the lifetime will be deduced from the models. They are consistent

with the value suggested from Figure 4.20.

76

2.0E+04

2.0E+05

0 10 20 30 40

G
ro

u
n

d
 s

ta
te

 o
cc

u
p

at
io

n

Delay Time (ps)

y ~ exp(-Time/7.7 ps)

Figure 4.20: The integrated intensity from a resolved spectroscopy of the ~k = 0 lower

polariton with 141 mW of incident pump power above the stop band.
77

5.0 NUMERICAL RESULTS

The steady state results provided in the previous chapter are not well fit by Boltzmann

statistics or Bose-Einstein statistics. Therefore, the polariton population is not completely

thermalized, either to itself or to a bath. Indeed, some of the lower density plots would have

a negative temperature. We desire to have an explanation for this result. The scattering

rates described in Chapter 2 can be used to simulate, through numerical calculation, the

steady state evolution of the polariton population. This chapter describes how the numerical

simulation is set up and the results that it provided.

5.1 SIMULATION

To simulate the dynamics of the polaritons we define a mesh in energy space. The mesh is

a group of bins; each bin holds the number of particles within the width of that bin for that

energy. The whole energy space spans a region up to a point where the highest energies are

many times that of the modeled lattice temperature, typically Emax ∼ 10kBT. This ensures

that the highest energy has a very low occupation number, it acts as a boundary condition

to control the simulation. We desire to have many points near E = 0 and fewer points at

higher energies. To accomplish this, the k-space step size for each bin is some multiple of

the previous bin’s step size. Since the dispersion curve for the polaritons is somewhat flat

for low energies, the mesh spacing has very many points near k = 0, then becomes sparse

near the bottleneck region, and then becomes dense again for the flat exciton region. The

number of points is chosen so that the largest ∆E remains below the thermal energy. A plot

of bin width versus wavenumber is given in Figure 5.1.

78

0

2

4

6

8

10

12

14

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

En
e

rg
y

(k
T)

M
e

sh
 s

te
p

 s
iz

e
 (

kT
)

k|| (m-1)

Figure 5.1: The energy step size as a function of bin number on the mesh. The dispersion

curve for the polaritons is plotted on the secondary vertical axis.

Once this mesh has been defined, then an average occupation per state at each energy

bin is assigned. The assignment depends on the pumping conditions. Our model allows for

any length of pulse. A CW laser is modeled by having a pulse longer than the total time

simulated. This pulse can have a variety of characteristics. For example, it can model a laser

with a gaussian distribution of energies that is pumping the lower polaritons resonantly. In

our case, we were simulating the laser being non-resonant, greater than 100 meV above the

lower polariton energies. Since the free electrons and holes were created with such high initial

79

energy, leading to complete randomonization in the relaxation into the polariton states, we

assumed that each polariton-exciton state was pumped with equal probability.

After this initial assignment, the simulation calculates the scattering rate in and scatter-

ing rate out for each bin on the mesh. In general, the equation is

∂n~k

∂t
=
∑

W~k→~k′(t). (5.1)

Here the W~k→~k′(t)
′s are obtained from the scattering elements presented in Chapter 2.

The simulation determines the scattering rate for each type of interaction being consid-

ered and then linearly combines them. Then the occupation number of each bin is updated.

The amount of change is such that the whole system has a certain fraction of particles redis-

tributed. Each bin’s change, ∆nk, is proportional to its respective ∂nk/∂t. The simulation

then calculates what time step is needed to move that certain fraction of the population

around since

∆t =
∆nk

∂nk

∂t

, (5.2)

is a reasonably good approximation if ∆nk is small enough. The losses for recombination

and the particles added due to the pumping were accounted for using this time step. The

overall process is described by,

∂n~k

∂t
= P~k(t) + Γ~k(t) +

∑
W~k→~k′(t). (5.3)

P~k(t) represents the pumping term and is functionally the same as the term that provides

the initial occupation levels. Γ~k(t) represents any loss, and we model it with an exponential

decay, exp(-t/τ), where τ is a characteristic lifetime. This process of calculating the changes

to nk continues in a loop, with the new nk being used to find the new W~k→~k′(t). Figure 5.2

gives an example of how the distribution function evolves over many iterations.

80

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 5 10

N
u

m
b

e
r

p
e

r
st

at
e

Energy (meV)

50 ps, 1000 iterations

100 ps, 3500 iterations

150 ps, 7000 iterations

400 ps, 35000 iterations

Figure 5.2: The distribution function of the polaritons as it evolved for one set of parameters.

Simulated time and the number of iterations are given.

5.2 MODELING THE EXPERIMENTAL DATA

Plots were given in Chapter 4 for angle-resolved data and time-resolved data from the exper-

iments, Figures 4.14, 4.15, and 4.20. The first two are steady state measurements while the

third is a time-resolved measurement on the ground state. The simulation can model this

data if the correct parameters can be determined. This chapter describes that determination.

The parameter space is rather large and includes a number of variables. Nevertheless,

81

we can constrain these parameters with experimental input. One is the polariton lifetime,

which is related to the cavity mode lifetime and the exciton mode lifetime. Experiments

were not able to give a definite value for this. In the early stages of running the simulation,

lifetimes for the cavity mode from 100 fs to 20 ps were used. It was found that lifetimes

for the cavity mode between 2 ps and 5 ps gave a steady state result that most resembled

the data. A cavity mode lifetime of 5 ps was used from then on, which is equivalent to the

polariton lifetime being 10 ps. This value is consistent with the upper bound results shown

in the time-resolved spectroscopy presented in Figure 4.20. The values of the deformation

potentials for the transverse and longitudinal acoustic phonons are given in the literature for

GaAs, but they have some uncertainty. The possibility of varying them was investigated but

eventually kept at the book value. The lattice temperature, the free electron temperature,

the effective polariton-polariton scattering cross-section, the effective polariton-electron scat-

tering cross-section, and the free electron density are other parameters that can be varied

in the simulation. The electron temperature was taken to be the same as the lattice tem-

parature. A final parameter is the scaling factor for the experimental data. The simulation

gives occupation numbers in absolute values. This scaling parameter is used to shift the

experimental data, which is in arbitrary units, to the simulation’s results. It must be the

same for all the different set of data for different laser powers. The final fits were made by

searching the parameter space for lattice temperature, polariton-polariton scattering cross-

section, a combined value of polariton-electron cross-section with the free electron density,

and the overall data scaling value. The values that were consistent between the CW and

quasi-CW cases and for the different polariton densities were found. On one hand there is

a large parameter space, but on the other hand, we have a large amount of data at many

densities which must be fit, so the parameters were tightly constrained.

5.2.1 INITIAL FIT WITH CHANGING THE EFFECTIVE SCATTERING

CROSSECTION

The initial best fits were done using only polariton-polariton and polariton-phonon scatter-

ing. It was found by increasing the polariton-polariton scattering rate and adjusting the

82

lattice temperature that these two scattering mechanisms were sufficient. Figure 5.3 and

Figure 5.4 show the results of these fits. The quasi-CW plot has the lattice temperature set

at 4 Kelvin for all generation rates. The plot for CW pumping required the lattice tempera-

ture to be increased with increasing power. This is to be expected since we know that there

is a lot of excess heat created when pumping in CW mode.

0.01

0.1

1

10

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Si
m

u
la

te
d

 O
cc

u
p

at
io

n

Energy (eV)

1 mW A=400, T=4, P=0.013

6 mW A=26, T=10, P=0.1

24 mW A=15, T=10, P=0.2

35 mW A=10, T=12, P=0.37

80 mW A=5, T=30, P=1.3

Figure 5.3: A fit to the CW pumped data using polariton-polariton and polariton-phonon

scattering. “A” stands for the coefficient used in front of the polariton-polariton scattering

cross-section and “P” is the generation rate used. Simulated plots are shown next to their

corresponding experimental pump power.

A plot of the magnitude of the scattering rate used for the polariton-polariton inter-

action versus polariton density is shown in Figure 5.5. At low density for CW and for

83

0.1

1

10

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

P
ar

ti
cl

e
s

p
e

r
st

at
e

Energy (eV)

0.05 mW A=60, P= 0.083

0.2 mW A=13, P=0.33

0.4 mW A=7, P = 0.58

0.6 mW A=5, P=0.75

0.8 mW A=3.5, P=0.96

Figure 5.4: A fit to the quasi-CW pumped data using polariton-polariton and polariton-

phonon scattering. “A” stands for the coefficient used in front of the polariton-polariton

scattering cross-section and “P” is the generation rate used. Simulated plots are shown next

to their corresponding experimental pump power.

quasi-CW the necessary coefficient to the scattering rate is inversely proportional to the

density of the polaritons. The need for this can be seen in the data of Figures 5.3 and

5.4 because the polariton steady-state distribution stays essentially the same as density

approaches zero. One would expect the polariton-polariton cross section to be constant.

This would imply polariton-polariton scattering becomes unimportant at low density and

84

only polariton-phonon scattering is important. However, polariton-phonon scattering alone

would not give the low density distributions. We thus needed another scattering mechanism

that would be constant at low density.

1

10

100

1000

0.01 0.1 1 10

Ef
fe

ct
iv

e
 s

ca
tt

e
ri

n
g

ra
te

Total simulated polariton
density (1010 cm-2)

Pulsed data

CW data

1/n

Figure 5.5: Plot of the coefficient used for the polariton-polariton scattering matrix element

as a function of simulated polariton density.

5.2.2 FITS USING POLARITON-ELECTRON

SCATTERING AND PIEZOELECTRIC SCATTERING

As discussed above, we reasoned that there was some scattering process that was constant

as polariton density decreased. The flatness of the polariton distribution at low density, as

85

shown in Figure 4.14 and Figure 4.15 led us to investigate another process. The deforma-

tion potential interaction with the polaritons is relatively weak compared to the polariton-

polariton and polariton-electron interactions and has little effect on the lower polariton dis-

tribution, hence the bottleneck. However, the piezo-electric phonon interaction is inversely

related to the momentum exchanged. We considered that for the small momentums of the

lower polaritons they might be strongly influenced by this effect. Our estimates concluded

that the piezo-electric interaction was stronger than the deformation potential interaction

for small exchanges. When considering all possible interactions, however, by using the sim-

ulation, we found the piezoelectric scattering to be only a small term. The results were

essentially the same with or without the piezo-electric interaction as parameters were varied.

This is because most of the piezo-electric interaction happens within the k-space defined by

the width of each bin. Nevertheless, we kept the scattering mechanism in the total model.

This is primarily because the phonon process is easily calculated and only increases the time

required to process the simulation by 2%.

Next, we hypothesized that a small population of free electrons would create a constant

scattering process as polariton density was decreased. When polariton-electron scattering

was included, we found we could get good fits at high density when the polariton-polariton

cross-section was increased only about 20% greater than the literature value (see Equation

2.20). We then found the cross-sectional coefficient for the polariton-electron interaction that

would match the lower-density polariton data with a nearly constant density of electrons,

which we estimated to be around ∼ 2 x 108 cm−2.

Using a constant value for the polariton-polariton cross-section that is 20% larger than

the literature value, we found that we could fit all the data if we allowed the lattice tem-

perature and free-electron density to vary over reasonable ranges. Figure 5.6 shows how the

chosen simulated generation rate correlates to the experimental pump intensity for the CW

data and Figure 5.7 is for the quasi-CW data. Essentially, the fits show a linear dependence.

The simulated polariton and electron densities as a function of the simulated generation rate

are shown in Figure 5.8 and 5.9 for CW and quasi-CW. The polariton density begins to

saturate with increasing pump power. This is to be expected. As the density increases the

polaritons get shifted to lower momentum values. These states have shorter lifetimes than

86

the higher energy states. Thus it takes a higher generation rate to keep a steady state. The

electron density is essentially constant.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80 100

Si
m

u
la

te
d

 G
e

n
e

ra
ti

o
n

 R
at

e

Pump Power (mW)

Figure 5.6: Plot of the simulated generation rates to the corresponding experimental pump

powers. The line is a guide for the eye.

The final best fits to the CW data are shown in Figure 5.10. Keeping the polariton-

polariton scattering cross-section the same as was used for the CW fits, we made fits to

the quasi-CW data to check for consistency (see Figure 5.11). As in the case without the

polariton-electron interaction, the fit to the CW data again has a larger spread in tempera-

tures compared to the fits for the quasi-CW data.

The fits to the data are good, and the parameter values are physically reasonable. We

found reasonable fits when the polariton-electron scattering cross section was a constant

87

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1

Si
m

u
la

te
d

 G
e

n
e

ra
ti

o
n

 R
at

e

Pump Power (mW)

Figure 5.7: Plot of the simulated generation rates to the corresponding experimental pump

powers. The line is a guide for the eye.

factor of 30 times larger than the value for the theory presented in Chapter 2 (see Equation

2.56) and for simulated electron densities around 7 x 108 cm−2. There is a large amount

of uncertainty in the cross-section for electron-polariton scattering [35]. Experimentally, we

don’t have a measured electron density. Theoretically, there is also much uncertainty in the

value of the electron-polariton scattering cross-section. As such, we do not claim these fits

to be a measure of the electron-polariton scattering cross-section.

Where do these electrons come from? Figure 5.9, shows that the electron densities are

88

1.00E+08

1.01E+10

0.0 0.5 1.0 1.5

Si
m

u
la

te
d

 P
ar

ti
cl

e
 D

e
n

si
ty

(c

m
-2

)

Simulated Generation Rate

quasi-CW polariton density
CW polariton density

Figure 5.8: Plot of the steady state simulated polariton density as a function of simulated

generated rate.

nearly constant with an average density of 7 x 108 cm−2. One explanation for this is that

there is an induced electron density at the interface between the GaAs and GaAlAs making

the quantum wells [54]. The stress used in the experiments creates a piezoelectric polarization

in each material. At the interface there is a polarization mismatch. This mismatch manifests

itself as a surface charge. We provide the following estimate for this surface charge.

The effect of strain in the system is based on the Pikus-Bir strain Hamiltonininan [31],

89

0.00E+00

1.00E+09

2.00E+09

0.0 0.5 1.0 1.5

Si
m

u
la

te
d

 P
ar

ti
cl

e
 D

e
n

si
ty

(c

m
-2

)

Simulated Generation Rate

quasi-CW electron density

CW electron density

Figure 5.9: Plot of the total simulated free electron density as a function of simulated

generated rate.

HPB = a(εxx + εyy + εzz) + 3b

[(
J2

x −
j2

3

)
εxx + c.p.

]
+

6d√
3

[
1

2
(JxJy + JyJx) εxy + c.p.

]
, (5.4)

where a is the hydrostatic deformation potential, b and d are shear deformation poten-

tials, εij is a strain component, and J ′s are the spin states of the valence band, m =

90

0.01

0.1

1

10

0 0.001 0.002 0.003

Si
m

u
la

te
d

 O
cc

u
p

at
io

n

Energy (eV)

1 mW
T=4, np =1.1e9 , ne = 4.0e8
6 mW
T=4, np = 5.2e9, ne = 4.0e8
24 mW
T=7, np = 7.0e9, ne = 7.7e8

Figure 5.10: The final fits to the CW experimental data. In the legend, “T” stands for the

simulated lattice temperature, “np” is the simulated polariton density, “ne” is the simulated

electron density. Simulated plots are shown next to their corresponding experimental pump

power.

3/2, 1/2,−1/2,−3/2. The deformation potentials are the same that were used in the simu-

lation. For a band shift of about 15 meV, as in our experiments, then the strain is on the

order 10−4. The polarization, P , induced by piezoelectricity in a material is given by,

Pi = eijεj, (5.5)

91

0.1

1

10

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Si
m

u
la

te
d

 p
ar

ti
cl

e
s

p
e

r
st

at
e

Energy (eV)

0.05 mW
T=4, np = 3.4e9, ne=4e8
0.2 mW
T=7, np=6.8e9, ne=7.7e8
0.4 mW
T=8 np =8.3e9 ne = 8.8e8
0.6 mW

Figure 5.11: The final fits to the quasi-CW experimental data. In the legend, “T” stands for

the simulated lattice temperature, “np” is the simulated polariton density, “ne” is the simu-

lated electron density. Simulated plots are shown next to their corresponding experimental

pump power.

where eij is the piezoelectric constant. For Ga0.8Al0.2As, e41 = 0.173 C/m2,[55] and for GaAs,

e41 = 0.16 C/m2[33]. The difference in the two polarizations provides a surface charge at

their interface. The estimate is an electron density of 8 x 108 e/cm2, close to the average

value of electron density used in the simulations. Again, though, there is much uncertainty.

We have twelve quantum wells in the sample and there are two GaAs-GaAlAs interfaces for

92

each quantum well. This is a possible explanation why the scattering cross-section needs to

be much larger than the expected value. Another possibility is that there is the presence of

low density donor impurities. These may contribute electrons if they become ionized by local

electric fields caused by the stress. Instead of there being free electrons, another possibility is

that there is disorder in the quantum well widths. Polariton-structural-disorder interactions

have been discussed as inducing coherent elastic scattering[56][57]. This disorder introduces

a broadening of the polariton states and we have not ruled out this as a posible explanation

of at least some of the broadening that we see in the experimental data. The broadening

of the states means that the delta function used for the density of states in Fermi’s Golden

Rule becomes a Lorentzian,

δ(E) → ρ ∝ ∆E

(E − Eo)2 + ∆E2
. (5.6)

Here, ∆E is the broadening caused by the disorder, Eo is the nonbroadened energy, and ρ is

the density of states. At this time we have not thoroughly studied this possibility and the

effect it might have on the distribution curves.

We give a final plot for this chapter, Figure 5.12. This plot shows three different nu-

merical simulations for the highest pumping density of the quasi-CW data. The first case

is for only polariton-phonon interaction, the next uses the full simulation (polariton-phonon

scattering, free electron-polariton scattering and polariton-polariton scattering) but no Bose

statistics, and the third includes Bose statistics. We conclude that the upturn in the polari-

ton distribution is really the effect of Bose statistics.

Recent theoretical works have shown that lack of complete thermalization does not pre-

vent the polaritons from making a phase transition[58, 59, 60]. Instead, a bimodal distri-

bution occurs. The higher energy polaritons, being constantly heated from higher energy

particles form one distribution. The lowest polariton energies, where the upturn is, form an-

other distribution and can make a phase transition to a condensate. Simulations, like ours,

cannot model the onset of coherence since they use Fermi’s Golden Rule, which assumes

incoherence. These simulations can show the buildup of population due to statistics just

before coherence appears.

93

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 2 4 6 8 10 12

Si
m

u
la

te
d

 P
ar

ti
cl

e
s

p
e

r
St

at
e

Energy, E - Eo (meV)

With Bose Statistics

Without Bose Statistics

Polariton-phonon scattering only

Figure 5.12: The steady state results of using (1) polariton-phonon interactions, (2) po-

laritons interacting with polaritons, electrons and phonons, but no Bose statisitcs, and (3)

polaritons interacting with polaritons, electrons, and phonons with Bose statistics included.

94

6.0 FUTURE DIRECTIONS AND CONCLUSION

6.1 ACCOMPLISHMENTS

We set out to show that polariton microcavities are good candidates for achieving a solid-

state BEC. Experimentally, we have taken data that is highly suggestive of the existence of

a BEC. However, the distribution functions are definitely not completely thermalized and

we wanted an explanation for their appearance. The numerical model has provided a good

fit to data and confirmed that the accumulation at k = 0 at the highest densities presented

is due to Bose statistics. Also, the numerical model has shown that a possible explanation

for the flat distribution curves at low density is that the polaritons are interacting with a

population of electrons. At the time of writing this thesis we did not have experimental

evidence that there are free electrons in the system and do not have a strong case as to why

there should be any free electrons. Using the numerical model, we intend to investigate other

interactions that may explain the distribution curves through the possibility that there is

disorder in the quantum well structure. This may be a cause of the energy broadening in the

polariton states and lead to a breakdown of energy-momentum conservation when Fermi’s

Golden Rule is applied.

The models have also shown that the increase in population of the low energy polaritons

are due to bosonic interactions. This is the beginning of the onset of a macroscopic occu-

pation of a single state, a necessary step toward reaching coherence. The model presented

here cannot model coherence, since it assumes Fermi’s golden rule, which implies incoherent

processes. Nevertheless, we can model right up to the onset and show that the peaking is

truly due to bosonic effects.

This thesis has provided a model that accurately describes the microcavity polariton

95

dynamics. It is capable of describing how to get to the experimental steady-state results.

Showing how to obtain the results of an experiment through calculation is one use of a model.

Another use is how the model can be extended and used to suggest further experiments.

The polaritonic system is very complicated with many interactions taking place. The model

allows for parameters to be varied, detuning for instance, to see if the dynamical rates can

be increased and produce steady state results which are more favorable for coherent effects.

6.2 WHAT’S NEXT

The conclusion of one set of experiments always leads to another set of experiments. There

are numerous paths to be taken. I suggest a few here.

The experimental data shows blueshifts in the energy dispersion curves. The models have

the ability to calculate the magnitudes of these shifts. An exploration of how the interactions

affect the polariton dynamics may provide important information as regards to experimental

directions and microcavity engineering.

Experimentally, additional time resolved spectroscopy measurements could be a direc-

tion to go. Experiments have shown that it is difficult to determine the polariton lifetime.

Measurement of the uncoupled excitonic lifetimes and photonic lifetimes independently may

resolve this problem. The experiment would have to be done in a region of the sample where

the two modes are uncoulpled. Knowing the two modes separately would allow the polariton

lifetime to be calculated.

What would we expect the results to be without the strain induced charge? Figure

6.1 shows an example of what the model provides without the polariton-electron scattering

included. The simulation suggests that the bottleneck would persist under these pumping

conditions.

This thesis has suggested that the presence of free electrons is primarily induced by

stress used in the trapping method. Figure 4.16 shows that without stress the polaritons

are stopped by the bottleneck. As stress is increased, the polaritons flow down to lower

energy states. Perhaps this is because the system is far from resonance in the upper picture

96

0.1

1.0

10.0

0 1 2 3

Si
m

u
la

te
d

 O
cc

u
p

at
io

n
 p

e
r

St
at

e

Energy (meV)

Figure 6.1: The steady state simulated distribution function for the polaritons using the

same parameters as the highest generation rate for the quasi-CW data without the free

electron-polariton interaction included.

of Figure 4.16 or perhaps it is because there are no free electrons. A next step would be to

take the data without stress but in resonance. If the polaritons were still kept above the

bottleneck, this would further the assertion that the polaritons make it past the bottleneck

because of the stress induced charge.

97

APPENDIX A

KINETICS OF BOSON-BOSON SCATTERING IN A 2D FLAT POTENTIAL

Numerous analytical descriptions of phase transitions for composite bosons in various two-

dimensional systems have been reported. In this section we offer numerical support to

those descriptions which apply to a superfluid transition for free bosons. We continue to

only consider the bosonic nature of the composite particles and completely disregard any

fermionic composition. The bosonic nature studied is stimulated scattering and the allowance

for states to have an occupation greater than one.

As discussed previously, it is analytically proven that free bosons only form a BEC

when the dimensionality of the system is greater than two. However, a phase transition

to a superfluid state may still occur. Kosterlitz and Thouless[10] presented a theoretical

description for this transition. Their work puts an upper limit on the required density of

the superfluid state at transition as that of the two dimensional quantum concentration, nQ.

We use nQ as our unit of density and assume the superfluid density, nS = nQ, at transition.

Along with a superfluid component there also exists a normal component, nN , and together

they make up a total density,

nT = nS + nN . (A.1)

Kosterlitz and Thouless put the density of the normal component of helium as it undergoes

a transition around 3.5nQ. The normal component density is studied in this paper.

Berman, et al [61] presented results for a model of indirect excitons in double quantum

wells with and without an external random potential. Their part of the theory without an

98

external potential applies to the results of this work. That theory shows the density of the

normal component after a superfluid transition occurs is nN = 0.4nQ.

Fischer and Hohenberg[62] presented results based on Bogoliubov theory for a weakly

interacting Bose gas in two dimensions. In a sufficiently dilute system the normal component

density is on the order of the quantum concentration when a transition occurs.

The theory for our calculations follows that presented in Chapter 2 for polarition-

polariton interactions except that we exclude the fractional part due to the polariton. We

continue to use the matrix element as a constant. This models hard core scattering.

A.0.1 Results

One possible initial condition is to assume that bosons are injected into the system with a

gaussian distribution. For low density the average energy is kBT. As the density increases

this average energy must decrease to keep the same temperature. Figure A1 shows a plot

of a low density, n < 0.01nQ, distribution. By the fifth scattering event the profile of the

initial distribution has disappeared and the distribution begins to look like a Boltzmann

distribution. A least squares fit is made to this distribution using the chemical potential

and temperature as parameters. Figures A2 shows how these parameters evolve in time,

normalized to their equilibrium values for three different densities all starting at the same

temperature. For low densities, n < 0.01nQ, the distributions evolve at the same rate and

are very near equilibrium after about twenty scattering events. For n = nQ the systems reach

their equilibrium values after about forty scattering events. Note, however, that the actual

time for this density to come to equilibrium is much less than the lower density. While it

takes twice as many scattering events each scattering event is rouchly 75 times shorter based

on classical hard core scattering calculations. When n = 3.6nQ the system is still far from

equilibrium after sixty scattering events, T = 1.55TL and µ = 4.2µ0. Note that this effective

T is lower than the critical temperature for a system with this density.

The results presented are based on using an equilibrium distribution and calculating the

scattering per particle in the lowest energy bin. At a constant temperature the chemical

potential can be assigned to give a specific distribution based on the Bose-Einstein distribu-

99

tion,

f(Ei) =
1

exp[β(Ei − µ)]− 1
(A.2)

This leads to a particular density. The density of the normal component for such a distri-

bution is then found from

nN =
∫

D(E)f(E)dE (A.3)

where in the flat potential two dimensional system the density of states per unit area, D(E),

is a constant. To make our plots the temperature is held fixed and the chemical potential is

changed over an array of values. The equilibrium distribution function and density are then

calclulated.

Using equilibrium solutions, the scattering rate per particle in the lowest energy bin is

calculated as a function of density at a constant temperature. Figure A3 shows a plot of

this scattering rate for densities below the quantum concentration. At low densities a linear

dependence on density is expected. A line is fit to the first 50 points. The plot begins to

deviate from this line around nN = 0.3nQ. For f(0) = 1 the scattering rate is twice as large

as that for the linear fit. This occurs for nN = 0.67nQ. Figure A4 shows the same data over

a larger range of densities. This log-linear plot shows an exponential dependence as shown

by the straight line. The solid line represents an exponential fit to the results at the highest

densities. Figure A5 shows a close up of Figure A4. It is seen that the change in scattering

behavior asymptotically reaches a constant exponential dependence around nN = 3nQ.

A.0.2 Conclusion

We assume that a change in behavior of the scattering rate is indicative of when a phase

transition takes place. The numerical results of this model imply some ambiguity as to when

the transition to a superfluid occurs. An argument could be made for 0.3nQ < nN < 3nQ.

These values are consistent with what can be inferred from a broad range of other models.

Indirect excitons in double quantum wells without a random potential are near the low end

of this scale. Weakly interacting Bosons are within this range. Films of helium are at the

upper end.

100

Comparison shows that the 2D system equilibrates at about the same rate as the 3D

system. Low density systems will be near equilibrium within twenty scattering events. Den-

sities at the quantum concentration will take around forty scattering events. Densities above

the quantum concentration will take many more scattering events.

101

0 2 4

0 2 4

0 2 4

0 2 4

E n e r g y (k B T)

t = 1

t = 3

t = 5

Oc
cu

pa
tio

n n
um

be
r

t = 0

Figure A1: Low density energy distribution at scattering times 0, 1, 3, 5

102

0 1 0 2 0 3 0 4 0 5 0 6 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0
0 1 0 2 0 3 0 4 0 5 0 6 0

0

2

4

6

8

1 0

1 2

1 4

n = n Q

T s/T L

S c a t t e r i n g E v e n t s

n < 0 . 0 1 n Q

n = 3 . 6 n Q

n = n Q

n = 3 . 6 n Q

n < 0 . 0 1 n Q

u s/ u
o

Figure A2: The evolution of the fitting parameters, chemical potential and temperature, to

the distributions for three different densities. Time is measured in scattering events. The

chemical potential is in units of the equilibrium chemical potential and the temperature is

in units of the lattice temperature.

103

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

Γ in / p
art

icle

d e n s i t y (n Q)

Figure A3: Scattering rate per particle in the lowest energy bin as as a function of density

below the quantum concentration

104

0 5 1 0 1 5

Γ in / p
art

icle

d e n s i t y (n Q)

Figure A4: Scattering rate per particle in the lowest energy bin as as a function of density

105

0 1 2 3

Γ in / p
art

icle

d e n s i t y (n Q)

Figure A5: Close up of figure 4.

106

APPENDIX B

FULL CODE

The code used in this thesis is presented here. The code uses SI units except for energies

which are in electron-Volts. The main C program is Integrate.c. It is listed first, here. All

header files are listed afterwards in the order that they appear in the #include list.

B.1 INTEGRATE.C

#include<stdio.h>

#include<string.h>

#include<math.h>

#include "constants.h" /* file where constants are defined */

#include "variables.h" /* file where variable are defined */

#include "parameters.h" /* file where important parameters for a specific calculation are defined */

#include<stdlib.h>

#include<string.h>

/*#include "Errors.h" */

#include "polpara.h"

#include "Ecset.h"

#include "getk3.h"

#include "dEdk.h"

#include "DOS.h" /* function for calculating the density of states */

#include "rand.h"

#include "del.h" /* function for creating the mesh for the calculation */

#include "getf4.h"

#include "getb4.h"

#include "polcheck.h"

#include "polEnergy.h"

#include "polfraction.h" /* function for determining the excitonic fraction of a polariton */

#include "ktilii.h"

#include "gaussian.h" /* gaussian f vs E */

#include "boltzmann.h" /* boltzmann distribution */

/*#include "boltzmann2.h" */

#include "pulseadd.h" /* pulse input, thermalized */

#include "pulsegauss.h" /* pulse input, gaussian */

#include "pulseflat.h" /* pulse input, all states equally populated */

/*#include "pulseflat2.h" */

#include "neareq.h" /* input an instantenous nearly thermalized distribution */

#include "phononfvsE.h"

#include "updatef.h" /* function for updating occupation numbers for scattering, decay, and pumping*/

#include "polpMatx.h" /* determine the scattering matrix elements for polariton-longitudinal acoustic phonon scattering */

#include "polelMatx.h"

#include "polpTAMatx.h" /* determines the scattering matrix elements for polariton-transverse acoustic phonon scattering */

#include "polpTA_PiezoMatx.h"

#include "polpFmatx.h" /* determine the scattering matrix elements for polariton-optical phonon scattering */

107

#include "bospMatx.h" /* determine the scattering matric elements for exciton-exciton scattering */

#include "findf.h"

#include "3Dbosescat.h" /* 3D boson-boson scattering integral */

#include "3Dfermiscat.h" /* 3D fermi-fermi scattering integral */

#include "2Dbosescat.h" /* 2D boson-boson scattering integral */

#include "2Dpolscat.h" /* 2D polariton-polariton scattering integral */

#include "2Dpolelscat.h"

#include "2DpolFscat.h" /* 2D polariton-optical phonon scattering integral */

#include "2DxpEexchange.h" /* 2D exciton-acoutic phonon scattering integral */

#include "2DpolpEexchange.h"

#include "3DxpEexchange.h"

#include "2DpolpLAscat.h" /* 2D polariton-3D longitudinal acoustical phonon scattering integral */

#include "2DpolpTAscat.h" /* 2D polariton-3D transverse acoustical phonon scattering integral */

#include "2Dbospscat.h" /* 2D exciton- 3D acoustical phonon scattering integral */

#include "Vvsq.h"

#include "uniform.h" /* uniform f vs E */

/*#include "datafit.h" */

#include "fvsEsave.h" /* function for saving calculated values */

#include "GQtest.h"

#include "gauleg.h" /* function for generating the Gaussian Quadrature points and weights */

#include "fromfile.h" /* function for reading in values from a text file */

#include "initiate.h" /* function for directing the initialization of the calculation */

#include "scat.h" /* function for directing the type of scattering to occur */

/*#include "MinEn.h" */

#include "polReNorm.h" /* function for renormalizing the dispersion curve of polaritons */

#include "zeta.h"

int main()

{

inj1 = inj;

Ntau = 0;

indexr = sqrt(einf);

kcz = setkcz(detune, Exo, kxy); /* in polpara.h */

Ec = setEc(kcz, kxy);

gauleg(-1,1,yy,ww,GQp);

mu *= kb * TT;

/*if (initial == 1)

{*/

Tm = zeta(2, exp(mu / (kb * T))) / (-log(1 - exp(mu / (kb * T)))); /* zeta(dimensionality,) */

/*

g = log(1 - exp(mu / (kb * T))) * log(1 - exp(mu / (kb * T))) / (2 * zeta(3, exp(mu / (kb * T))));

}*/

hw *= kb * T;

srand((unsigned)time(NULL)); /* seed the random numbers from clock*/

m = -1; /* m = # of steps to max energy for uniformfvsE */

/* determined in uniform.h */

initiate(initial, del, p, DOS, m, f, Nin, Nout, N, mu, hw, expp, Tm, statype, Ec, indexr); /* initial particle distribution */

if(initial == 0) initial = 9; /* after reading in the data a flat pulse is added in */

Ntotal = 0;

Etotal = 0;

/* determine total number of particles and total energy */

for(i = 0; i <= p; i++)

{

Ntotal += N[i];

Etotal += N[i] * (f[i][0] + f[i+1][0]) / 2;

}

Ntotal += N[p+3];

Nbegin = Ntotal;

fvsEsave(del, 0, N, f, Nin, Nout, tau, taut, dataname, Etotal, Norf, fname, y, o, Ntotal, Geo, kpp, Ninpol, Ninpolel, Ninph, Avetau);

do

{

/* do the scattering integrals */

scatter(scattype, f, Nin, Nout, m, zzz, del, Geo, kpp, delk, y, indexr, kcz, disp);

/* update the occupation numbers for scattering, pumping, and recombination */

x = updatef(Ntotal, uprate, x, dN, N, f, Nin, Nout, Geo, kpp, Stime, taut, Avetau);

/* renormalize polariton distribution if set for in parameters.h */

if(disp == 3)

ReNorm(indexr);

/* determine total number of particles and total energy */

Etotal = 0;

Ntotal = 0;

dNtotal = 0;

for(l = 0; l <= p; l++)

{

Ntotal += N[l];

108

dNtotal += Nin[l] * del[l];

Etotal += N[l] * (f[l][0] + f[l+1][0]) / 2;

}

Ntotal += N[p+3];

/* determine time step */

change = x / Ntotal;

tau += change;

taut += Stime[p+3];

Ntau += Stime[p+3] * N[p+3];

if(Stime[p+3] < 1e-16) uprate[0] *= 1.1;

if(uprate[0] > 1) uprate[0] = 1;

/* record the calculation at the interval set in parameters.h */

if(y > (n1 * count) - 1)

{

fvsEsave(del, n1, N, f, Nin, Nout, tau, taut, dataname, Etotal, Norf, fname, y, o, Ntotal, Geo, kpp, Ninpol, Ninpolel, Ninph, Avetau);

n1++;

x = 0;

}

y++;

sprintf(outfile3, ynum);

ft = fopen(outfile3, "w");

fprintf(ft, "y = %d\n", y);

fclose(ft);

}

while((n1*count <= o) && (taut < maxtime));

}

109

B.2 CONSTANTS.H

double D2A = 0.0001; /* 2D sample area in m^2 */

double aB = 130E-10; /* exciton Bohr radius in m */

double beta = 2; /* polariton - exciton volumic oscillator strength */

const int dg = 4; /* degeneracy */

const double dn = 1.28E20; /* particle density in particles/m^3 */

const double e = 1.2; /*2.718281828;*/ /* in energy step size. see del.h */

double EB = 0.010; /* exciton binding energy in eV */

const double eC = 1.60219E-19; /* charge on an electron in Coulombs */

#define Ex0 1.61945 /* polariton --> exciton base energy in eV */

double einf = 10.9; /* dielectric constant at infinity, set for GaAs */

double estat = 12.5 ; /* static dielectric constant */

#define em 9.1095E-31 /* electron rest mass */

#define eo 8.85E-12 /* permitivity of free space, C^2 / N m^2 */

double Exo = 1.61945;

const double gs = 0.0149; /* polariton splitting at resonance in eV, 2 times the Rabi frequency */

#define hb 6.5822E-16 /* planck’s constant in eV s */

#define Itaup 0.2e12 /* 0.2e12 */ /* inverse of photon lifetime, s^-1 */

#define Itaux 1e6 /* 1e6 */ /* inverse of exciton lifetime, s^-1 */

#define kb 0.00008617 /* boltzmann constant in eV/K */

double Lata = 5.6533E-10; /* Lattice constant, set for GaAs, meters */

double Lz = 7E-9; /* quantum well thickness, meters */

double Me = 0.067; /* exciton electron mass, in em, electron rest mass Piermarocchhi PRB 53 15834 (1996)*/

double Mh = 0.18; /* For exciton total mass, exciton hole mass, in units of em, electron rest mass */

double Mh1 = 0.08; /* Used for calculating Beta in polariton-photon interaction */

const double Pd = 6; /* 3D crystal density */

double piezo14 = 0.16; /* piezoelectic constant, set for GaAs e_(14) */

double qo[1]; /* screening parameter coefficient, e^2 / (2 * e(inf)) */

#define pi 3.14159265358979

const double Sd = 5316; /* set for GaAs */ /* 2D density kg/m^3 */

double sig = 0.5; /*0.00001; 0.000196764; */ /* injected gaussian width */

const double T = 10; /* Lattice temp in K */

#define vc 2.998E8 /* speed of light, m/s */

#define v 5.117E3 /*rough average for GaAs */ /* longitudinal speed of sound in medium, m/s */

#define vTA 3.012E3 /* transverse speed of sound in medium, m/s */

#define wLO 1.070E13 /* longitudinal optical phonon frequency, GaAs */

/* see parameters.h for count, g, o, p, uprate, and others */

110

B.3 PARAMETERS.H

int count = 1000; /* number of iterations per data writing */

double defpote = -7; /* hydrostatic deformation potential in eV for electron, (Pikus-Bir, "a" for conduction band) */

double defpoth = 2.7; /* hydrostatic deformation potential in eV for hole, (Pikus-Bir, "a" for valence band) */

double defpoteT = 0; /* shear deformation potential in eV for electron, (Pikus-Bir, "b" and "d" for conduction band */

double defpothT = 3.8; /* shear deformation potential in eV for hole, (Pikus-Bir, ((4/5)*(b^2 + d^2/2))^1/2, GaAs --> b = 1.8, d = 5.4 */

int delc = 5; /* key for del.h

0: not sure

1: e ^ i, e is in constants.h

2: i ^ 2

3: i ^ 3

4: uniform

5: polariton i

*/

int disp = 2; /* dispersion relationship to be used,

1 = exciton

2 = polariton

3 = renormalized

*/

double detune = 0.00; /* polaritons --> cavity mode detuning from resonance with excitons, eV */

int dopiezo = 2; /* use piezoelectric interaction with phonons

1 = no

2 = yes

*/

double g = 0.1; /* initial occupation number for uniform dist., not used right now */

const int Geo = 5; /* free particle dimensionality (1,2,3), harmonic potential (4), free polariton (5) */

const int GQp = 25; /* Number of GQ points */

double hw = 0.001; /*0.001 */ /* harmonic potential ground state in kb T */

#define inj 5e18 /*2E18 405.4725 1000 2000*/ /*injected gaussian density */

int initial = 9; /* initial determines the initial configuration of

particles;

0: from file

1: uniform, fermi distribution

2: bose, equilibrium distribution

3: bose phonon distribution, gaussian free boson dis-

tribution

4: gaussian distribution, free particles

gaussian distribution, harmonic potential

5: 2D bose phonon distribution, gaussian free

boson distribution

6: from near equilibrium

7: pulsed thermalized input

8: pulsed gaussian input

9: pulse with flat occupation number distribution

*/

const double kpb = 0.25; /* base wavevector for polaritons */

double kxy = 5330000; /* polaritons --> injected in plane wavevector, m^-1 */

const double maxkp = 1.54E8; /*1.54E8; */ /* maximum k-parallel used in polaritons, m^-1 */

const double maxkT = 10; /*10.5;*/ /* maximum energy used in calculation in kT */

double maxtime = 5e-1; /* maximum time calculation will run */

double mu = -4;

double mue[1] = {-3.88}; /* chemical potential of free electrons in units of kT (eV) */

const char fname[20] = {"pol05.25.08e.d"}; /* data file name */

const char ynum[10] = {"y1value"}; /* file to check calculation progress */

const int Norf = 2; /* flag for saving density(1) or occupancy(other) */

int o = 40000; /* number of iterations */

int p = 170; /* p + 2 is number of energy points */

double pulseT = 1e-8; /* pulse length for intial = 7, 8, or 9*/

double Sa = 1; /* confinement size of system for ground state, m^2 */

int scattype = 14; /* type of scattering

1: 3D flat boson-boson

2: 2D flat boson-boson

3: 3D boson-phonon

4: 2D boson-phonon

5: gaussian quadrature testing

6: 2D polariton-polariton

7: stirctly 2D, polariton-phonon(edit before use, 7/24/04)

8: 2D polariton - 3D acoustical phonon(longitudinal and transverse)

9: 2D polariton - 2D polariton/3D acoustic phonon(longitudinal and transverse)

10: 3D flat fermi-fermi

11: 2D polariton - 2D polariton/3D acoustic and optical phonon

111

12: 2D boson - 2D boson/3D acoustic phonon

13: 2D polariton - free electron / 3D acoustic phonon(longitudinal and transverse)

14: 2D polariton - 2D polariton / free electron / 3D acoustic phonon(longitudinal and transverse)

15: 2D polariton - free electron

*/

int ScreenType = 2; /* flag for the way the screening is handled,

1: epsilon -> epsilon * (1 + qo / (k - k’))

2: epsilon -> epsilon * (1 + qo * aB)

*/

int statype = 1; /* statistics used

1: Bose-Einstein

2: Boltzmann

3: Fermi-Dirac

*/

double uprate[1] = {0.1}; /* {1E16}{0.4};*/ /* fraction of total number of particles

actually scattered per iteration */

double TT = 4; /* Used for setting a different initial temperature than lattice */

double TTT[1] = {10}; /* Temperature of free electrons */

112

B.4 POLPARA.H

double setkcz(double det, double Ex, double kp)

{

return((Ex + det) * indexr / (hb * vc));

}

B.5 ECSET.H

double setEc(double k, double kx)

{

return(hb * vc * sqrt((k * k) + (kx * kx)) / indexr);

}

113

B.6 GETK3.H

double Determinek3(double E4, double f[1000][6], int zzz)

{

if (E4 == f[0][0])

zzz = 0;

else if (E4 < f[p+1][0])

{

while (E4 >= f[zzz][0])

{

zzz++;

if (zzz > p + 1)

zzz = 0;

}

zzz--;

if (zzz < 0)

{

printf("error in getk3.h, zzz < 0\n");

printf("E4 = %e, E(0) = %e\n", E4, f[0][0]);

exit(1);

}

if(E4 < f[zzz][0] || E4 > f[zzz+1][0])

{

printf("k3 error\n");

printf("E4 = %.20e, E(z) = %.20e, E(z-1) = %.20e, z = %d, point = %f\n", E4, f[zzz][0], f[zzz-1][0], zzz, point);

exit(1);

}

point = (E4-f[zzz][0])/(f[zzz+1][0] - f[zzz][0]);

ff4 = kpp[zzz] + (point * delk[zzz]);

}

else

ff4 = kpp[p+1];

polD[0] = zzz;

return(ff4);

}

B.7 DEDK.H

double getdEdk(double EE, double KK, int disp, double indexr, int zzz, int y)

{

int up, down;

if(disp == 1)

{

EEKK = hb * hb * eC / (2 * em * (Me + Mh));

}

if(disp == 2 || (disp == 3 && y == 1))

{

Exkt = Ex0 + (hb * hb * KK * KK * eC/ (2 * em * (Me + Mh)));

Eckt = hb * vc * sqrt(kcz * kcz + KK * KK) / indexr;

/* E2EE = (Exkt * Exkt) + (Eck * Eck) + (gs * gs) - (2 * EE * EE);

E4EE = (Exkt / (Me + Mh)) + (vc * vc / (indexr * indexr));*/

/* E3EE = 2 * Exkt * hb * hb * KK / (em * (Me + Mh));

dE/dk^2 ---> */

EEKK = hb * hb * ((Exkt / (em * (Me + Mh))) * eC * (Eckt * Eckt - EE * EE) +

(vc * vc / (indexr * indexr)) * (Exkt * Exkt - EE * EE)) / (2 * EE * ((Exkt * Exkt) + (Eckt * Eckt) + (gs * gs) - (2 * EE * EE)));

/*

dE/dk --> EEKK = ((2 * E3EE) / (4 * EE * E2EE)) * ((Eck * Eck) - (EE * EE));

*/

/* EEKK = hb * hb * KK * (E4EE - (E2EE * ((Exkt * Exkt + Eckt * Eckt + gs * gs) * E4EE - 2 * (Exkt * Exkt * Eckt / (Me + Mh) +

114

(vc * vc * Exkt * Exkt / (indexr * indexr)))) / (2 * EE);*/

if (EEKK < 1e-22)

EEKK = 1e-22;

}

if(disp == 3 && y != 1)

{

Determinek3(EE, f, zzz);

up = polD[0] + 1;

down = polD[0] - 1;

EEKK = (f[up][0] - f[down][0]) / ((kpp[up] * kpp[up]) - (kpp[down] * kpp[down]));

}

return(EEKK);

}

B.8 DOS.H

/* number of states / unit volume / differential energy */

double DOSf(double DOS[1000], double f[1000][6], double indexr, int y)

{

DOS[p+3] = dg / Sa; /* ground state density of states */

for (jj = 0; jj <= p + 1; jj++)

{

if (Geo == 3)

DOS[jj] = dg * em * Me * sqrt(em * Me * f[jj][0] / (2 * eC)) / (pi * pi * hb * hb * hb * eC);

if (Geo == 2)

DOS[jj] = dg * em * Me / (pi * hb * hb * eC);

/*if (Geo == 1)

{ DOS1 = 1 / sqrt(f[jj][0]);}*/

if (Geo == 4)

DOS[jj] = (f[jj][0] / hw);

if (Geo == 5)

/* DOS[jj] = kpp[jj] / (2 * pi); */

/* DOS[jj] = (dg / (4 * pi * hb * hb)) * f[jj][0] * (Elp1[jj] - (2 * f[jj][0] * f[jj][0])) /

(((Exk[jj] / (em * (Me + Mh))) * ((Eck[jj] * Eck[jj]) - (f[jj][0] * f[jj][0]))) +

((vc * vc / (index * index)) * (Exk[jj] * Exk[jj] - f[jj][0] * f[jj][0]))); */

DOS[jj] = (dg / (4 * pi)) / getdEdk(f[jj][0], kpp[jj], disp, indexr, 0, y);

}

return(1);

}

B.9 DEL.H

void delSet(double del[1000], double expp, int delc, double f[1000][6], double indexr)

{

int p1; /* p - 20 */

switch(delc)

{

case 0:

/* ----- uniform change in occupation number del ----- */

uu = log(1 - exp(-2*g));

fff0 = 1 / (exp(-uu) - 1);

fffm = 1 / (exp(maxkT - uu) - 1);

ch = 1 - exp(log(fffm/fff0)/p);

offs = log(1 / (1 + ch));

for (i = 0; i <= p+1; i++)

{

115

del[i] = kb * T * (offs + log((1 + fff0 + ch * fff0)/(1 + fff0)));

fff0 = fff0 * (1 - ch);

}

break;

case 1:

/* ----- exp(i) del ---- */

expp = 1;

for (j = 0; j <= p; j++)

expp *= e;

/*printf("%e\n", expp);*/

dels = (expp - e) / ((e - 1) * maxkT);

expp = 1;

for (i = 0; i <= p + 1; i++)

{

expp *= e;

del[i] = kb * TT * expp / dels;

}

break;

case 2:

/* ----- quadratic del ----- */

dels = ((p * p * p) + (1.5 * p * p) + (0.5 * p)) / (3 * maxkT);

for (i = 0; i <= p + 1; i++)

del[i] = kb * T * (i+1) * (i+1) / dels;

break;

case 3:

/* ----- cubic del ----- */

dels = (p * p) * (p * p + 2 * p + 1) / (4 * maxkT);

for (i = 0; i <= p + 1; i++)

del[i] = kb * T * (i+1) * (i+1) * (i+1) / dels;

break;

case 4:

/* ----- Linear del ----- */

for (i = 0; i <= p; i++)

{

if (i <= 50)

del[i] = kb * T / 100;

else

del[i] = kb * T / 100;

}

break;

case 5:

/* ----- polariton del ----- */

/* dk quadratic in k */

dels = ((p * p * p) + (1.5 * p * p) + (0.5 * p)) / (3*maxkp);

if(disp == 1)

{

kpp[0] = 0;

f[0][0] = 0;

for(i = 1; i <= p + 2; i++)

{

kpp[i] = kpp[i-1] + delk[i-1];

f[i][0] = hb * hb * eC * kpp[i] * kpp[i] / (2 * em * (Me + Mh));

}

}

if(disp == 2 || disp == 3)

{

kpp[0] = 0;

Exk[0] = Ex0;

Eck[0] = hb * vc * kcz / indexr;

Elp1[0] = Exk[0] * Exk[0] + Eck[0] * Eck[0] + gs * gs;

f[0][0] = sqrt((Elp1[0] - sqrt(Elp1[0] * Elp1[0] - 4 * Exk[0] * Exk[0] * Eck[0] * Eck[0])) / 2);

f[0][4] = f[0][0];

delk[0] = 1 / dels;

for (i = 1; i <= p + 2; i++)

{

delk[i] = (1+i)*(1+i) / dels;

kpp[i] = kpp[i-1] + delk[i-1];

Exk[i] = Ex0 + (hb * hb * kpp[i] * kpp[i] * eC) / (2 * em * (Me + Mh));

Eck[i] = hb * (vc / indexr) * sqrt((kcz * kcz) + (kpp[i] * kpp[i]));

Elp1[i] = Exk[i] * Exk[i] + Eck[i] * Eck[i] + gs * gs;

f[i][0] = sqrt((Elp1[i] - sqrt(Elp1[i] * Elp1[i] - 4 * Exk[i] * Exk[i] * Eck[i] * Eck[i])) / 2);

f[i][4] = f[i][0];

f[i][5] = f[i][0];

}

116

}

for (i = 0; i <= p + 1; i++)

{

del[i] = f[i+1][0] - f[i][0];

dEdki[i] = getdEdk(f[i][0], kpp[i], disp, indexr, i, 1);

}

/* for free electrons */

DOSe[0] = 2 * em * Me / (pi * hb * hb * eC);

Ne[0] = 0;

qo[0] = 0; /*eC / (2 * einf * eo);*/ /* added (2 * pi) on 3/27/08 */

for(i = 0; i <= p+1; i++)

{

Eek[i] = hb * hb * kpp[i] * kpp[i] * eC / (2 * em * Me);

fe[i] = 1 / (exp((Eek[i] / (kb * TTT[0])) - (mue[0])) + 1);

}

for(i = 0; i <= p; i++)

Ne[0] += fe[i] * DOSe[0] * (Eek[i+1] - Eek[i]);

/*printf("Ne = %e\n", Ne[0]);

exit(1); */

break;

}

}

B.10 GETF4.H

double Determinef4(double E4, double KK, double f[1000][6], int m, int lll,

int zzz, int Geo, double fpp[1000], double delk[1000], double del[1000])

{

if (lll == -1)

{

if (E4 < f[p+1][0])

{

while (E4 > f[zzz][0])

{

zzz++;

if (zzz > p + 1)

zzz = 0;

}

zzz--;

if((E4 < f[zzz][0]) || (E4 > f[zzz+1][0]))

{

printf("f4 error\n");

printf("E4 = %.12f, E(z) = %f, z = %d, point = %f\n", E4, f[zzz][0], zzz, point);

exit(1);

}

point = (E4-f[zzz][0])/ del[zzz];

ff4 = f[zzz][1] + (point * (f[zzz+1][1] - f[zzz][1]));

}

else

ff4 = 0;

}

else

{

if (lll == m)

point = 0;

else

{

if (Geo == 5)

point = (KK - kpp[lll]) / delk[lll];

else

point = (E4-f[lll][0])/ del[lll];

}

ff4 = f[lll][1] + (point * (f[lll+1][1] - f[lll][1]));

}

return(ff4);

}

117

B.11 POLCHECK.H

void polprint(double kpp[1000], long double f[1000][4], double DOS[1000], double N[1000], double indexr, int y)

{

double dddd;

printf("i k E DOS dE/dk N\n");

for(i=0;i<=p;i++)

{

printf("%d %.6e ", i, kpp[i]);

printf("%e ", f[i][0]);

printf("%f ", DOS[i]);

dddd = getdEdk(f[i][0], kpp[i], disp, indexr, i, y);

printf("%e ", dddd);

printf("%e\n", N[i]);

}

}

B.12 POLENERGY.H

double polE(double kpp1, double index, int disp)

{

if(disp == 1)

Elpt = hb * hb * kpp1 * kpp1 * eC / (2 * em * (Me + Mh));

if(disp == 2)

{

Exkt = Ex0 + (hb * hb * kpp1 * kpp1 * eC) / (2 * em * (Me + Mh));

Eckt = hb * vc * sqrt((kcz * kcz) + (kpp1 * kpp1)) / index;

Elp1t = Exkt * Exkt + Eckt * Eckt + gs * gs;

Elpt = sqrt((Elp1t - sqrt((Elp1t * Elp1t) - (4 * Exkt * Exkt * Eckt * Eckt))) / 2);

}

return(Elpt);

}

B.13 POLFRACTION.H

int polfrac()

{

for(i = 0; i <= p; i++)

{

if(disp == 1)

Xp[i] = 1;

if(disp == 2 || disp == 3)

Xp[i] = (((Eck[i] - Exk[i]) / sqrt(Elp1[i] - 2 * Eck[i] * Exk[i])) + 1) / 2;

ki[i] = (kpp[i] + kpp[i+1]) / 2;

/* printf("Xp%d = %e\n", i, Xp[i]); */

}

return(1);

}

B.14 PULSEFLAT.H

int pulseflatf(double del[1000], int p, double DOS[1000], double f[1000][6], double N[1000], double expp, double indexr, int y)

{

118

delSet(del, expp, delc, f, indexr);

for(i = 0; i <= p; i++)

{

for(j = 0; j <= p; j++)

deldel[i][j] = del[i] * del[j];

}

if(Geo != 5)

{

if (Geo == 4)

f[0][0] = hw;

else

f[0][0] = 0;

for (j = 1; j <= p + 1; j++)

f[j][0] = f[j-1][0] + del[j-1];

}

for (j = 0; j <= p; j++)

f[j][1] = (4E-15/pulseT)*g;

f[p+1][1] = f[p][1] * exp(-del[p] / (kb * T));

f[p+2][1] = f[p+1][1] * exp(-del[p+1] / (kb * T));

DOSf(DOS, f, indexr, y);

for (j = 0; j <= p+1; j++)

{

f[j][2] = (DOS[j] + DOS[j+1]) * del[j] / 2;

N[j] = f[j][1] * f[j][2];

}

N[p+3] = (4E-15 / pulseT) * DOS[p+3] * g;

f[p+3][1] = N[p+3] / DOS[p+3];

return(1);

}

B.15 UPDATEF.H

double updatef(double Ntotal, double uprate[1], double x,

double dN[1000], double N[1000], double f[1000][6], double Nin[1000], double

Nout[1000], int Geo, double kpp[1000], double Stime[200], double taut, double Avetau[0])

{

double Nnewtau, Nnewtau1; /* for calculating average total lifetime */

double deltaN;

deltaN = 0;

Ntotalin = 0;

Ntotalout = 0;

for (j = 0; j <= p; j++)

{

Ntotalin += Nin[j];

Ntotalout += Nout[j];

}

/* printf("Ntotalin %e Ntotalout %e Ntotal %e uprate %e\n", Ntotalin, Ntotalout, Ntotal, uprate[0]); */

x = uprate[0] * Ntotal;

for (j = 0; j <= p; j++)

{

f[j][3] = (Nin[j]/Ntotalin) - (Nout[j]/Ntotalout);

/* printf ("N%d = %e changes by %e with Nin%d = %e and Nout%d = %e\n", j, N[j], x * f[j][3], j, Nin[j], j, Nout[j]); */

N[j] += x * f[j][3];

deltaN += f[j][3];

if(N[j] < 0)

{

N[j] -= x * f[j][3];

N[j] /= 2;

}

}

deltaNAll[0] += deltaN;

if(N[p+3] < 0) N[p+3] = 0;

Stime[p+3] = 0;

for (j = 0; j <= p; j++)

{

if(Nin[j] != Nout[j]*Ntotalin/Ntotalout)

{

119

Stime[j] = f[j][3] / (Nin[j] - (Nout[j]*Ntotalin/Ntotalout));

Stime[p+3] += fabs(Stime[j]);

}

}

Stime[p+3] *= x / (p+1);

/* Stime[p+3] = 0;

for (j = 0; j <= p; j++)

{

if(Nin[j] != Nout[j])

{

Stime[p+3] += fabs(f[j][3]);

Stime[j] = f[j][3] / (Nin[j] - Nout[j]);

}

}

Stime[p+3] *= x / fabs(Ntotalin - Ntotalout);*/

/* system losses */

Nnewtau = 0;

Nnewtau1 = 0;

for(j = 0; j <= p; j++)

{

if(f[j][0] - f[0][0] < 0.0035) Nnewtau1 += N[j];

N[j] -= Stime[p+3] * N[j] * ((Itaux * Xp[j]) + (Itaup * (1 - Xp[j])));

/*N[j] -= Stime[p+3] * Itau * N[j] / Xp[j];*/ /* *Xp[j]*Xp[j]*Xp[j]*Xp[j]*Xp[j]*Xp[j]);*/ /*Xp? see 7/10/06 in notes.

Should depend on photon fraction. Why Xp^7?*/

f[j][1] = N[j] / f[j][2];

if(f[j][0] - f[0][0] < 0.0035) Nnewtau += N[j];

}

Avetau[0] = (Stime[p+3] * Nnewtau1) / (Nnewtau1 - Nnewtau);

/*printf("particle loss = %e \n", Stime[p+3] * Itau);*/

N[p+3] -= Stime[p+3] * ((Itaux * Xp[j]) + (Itaup * (1 - Xp[j]))) * N[p+3]; /* 2^7 = 128 */

if(N[p+3] < 0) N[p+3] = 0;

f[p+3][1] = f[0][1]; /*N[p+3] / DOS[p+3];*/

if(initial == 7 && (taut + Stime[p+3]) < pulseT) /* puts in a boltzmann distribution at a given temperature */

{

for(j = 0; j <= p; j++)

{

f[j][1] += (50 * Stime[p+3] / pulseT) / (exp((((kpp[j] * kpp[j] * hb * hb * eC) / (2 * em * (Me + Mh))) - mu) / (kb * TT)) - 1);

/* set to put in thermalized excitons */

/* (exp((f[j][0] - mu - f[0][0]) / (kb * TT)) - 1); */

N[j] = f[j][1] * f[j][2];

}

N[p+3] += (50 * Stime[p+3] / pulseT) / (exp(- mu / (kb * TT)) - 1);

f[p+3][1] = N[p+3] / DOS[p+3];

}

if(initial == 8 && (taut + Stime[p+3]) < pulseT) /* puts in a gaussian distribution at a specific energy */

{

for(j = 0; j <= p; j++)

{

f[j][1] += (Stime[p+3] / pulseT) * No[j] * 2 / (DOS[j] + DOS[j+1]);

N[j] = f[j][1] * f[j][2];

}

f[p+3][1] += (Stime[p+3] / pulseT) * No[0] * 2 / (DOS[0] + DOS[1]);

N[p+3] = f[p+3][1] * DOS[p+3];

}

if(initial == 9 && (taut + Stime[p+3]) < pulseT) /* puts in a flat distribution in k space */

{

for(j = 0; j <= p; j++)

{

f[j][1] += (Stime[p+3]/ pulseT) * g;

N[j] = f[j][1] * f[j][2];

}

f[p+3][1] += (Stime[p+3] /pulseT) * g;

N[p+3] = f[p+3][1] * DOS[p+3];

}

f[p+1][1] = f[p][1] * exp(-del[p] / (kb * T));

f[p+2][1] = f[p+1][1] * exp(-del[p+1] / (kb * T));

/*printf("f(0) = %e\n", f[0][1]);

exit(1); */

return(x);

}

120

B.16 POLPMATX.H

int polelMatx(double f[1000][6], double Ninpolel[1000], double Noutpolel[1000], int m,

double del[1000], int zzz, int Geo, double kpp[1000], double delk[1000], double index, int disp, int y)

{

double Fin0, Fout0, Fin00, Fout00, dEdk3, den00, rado, dEdki2, dEdki3, kmk1, kmk12, kxk, k1xk1, qo2;

nnn=0;

/* include a loop for each integration variable in this list */

/* E, E1, E2 */

/* Allconst1 = 6 * 196 * EB * EB * aB * aB / (hb * 32 * pi * pi * pi); */ /* eC * eC / (128 * hb * eo * eo * einf * einf * pi * pi * pi); */

Allconst1 = 1000 * EB * EB * aB * aB / (hb * pi * pi * pi * pi * pi * pi);

qo2 = qo[0] * qo[0] * Ne[0] * Ne[0] / (kb * kb * TTT[0] * TTT[0]);

/*

Be = Me / (Me + Mh1);

Bh = Mh1 / (Me + Mh1);

*/

den00 = 0;

if (y == 1 || disp == 3)

{

for(i = 0; i <= p; i++)

{

if(i == 0)

kxk = 1;

else

kxk = kpp[i] * kpp[i];

for(ii = 0; ii <= p; ii++)

{

if(i == 0 && ii != 0)

kxk1 = kpp[ii];

else if(i != 0 && ii == 0)

kxk1 = kpp[i];

else if(i == 0 && ii == 0)

kxk1 = 1;

else kxk1 = kpp[i] * kpp[ii];

if(ii == 0)

k1xk1 = 1;

else

k1xk1 = kpp[ii] * kpp[ii];

dEdki2 = dEdki[ii];

for(iii = 0; iii <= p; iii++)

{

E3 = f[ii][0] - f[i][0] + Eek[iii];

dEdki3 = dg / (4 * pi * DOSe[0]); /* DOS is a constant for the electron */

if (E3 > Eek[0] && E3 < Eek[p+1])

{

k3 = sqrt((2 * em * Me * (E3 - Eek[0])) / (hb * hb * eC));

jj = 0;

while (kpp[jj] <= k3)

jj++;

I[i][ii][iii] = jj--;

k2k3 = kpp[iii] * k3;

/* if (kpp[I[i][ii][iii]] > k3)

{

printf("error in polelMatx.h with I[i][ii][iii]\n");

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

printf("kpp - k3 = %e\n", kpp[I[i][ii][iii]] - k3);

printf("k3 = %e\n", k3);

exit(1);

} */

dEdk3 = dg / (4 * pi * DOSe[0]);

fnew[i][ii][iii] = (k3 - kpp[I[i][ii][iii]]) / delk[I[i][ii][iii]];

/* take out k = 0 ’point’ if (i == 0)

{

E40[ii][iii] = f[iii][0] + f[ii][0] - f[0][0];

k40[ii][iii] = Determinek3(E40[ii][iii], f, zzz);

if((k40[ii][iii] < (kpp[ii] + kpp[iii])) && ((k40[ii][iii]*k40[ii][iii]) > (kpp[ii]-kpp[iii])*(kpp[ii]-kpp[iii])))

{

dEdk40[ii][iii] = getdEdk(E40[ii][iii], k40[ii][iii], disp, index, zzz, y);

dfac0[ii][iii] = (0.5 * Xp[ii] * Xp[iii] * Xp[I[i][ii][iii]]) * deldel[ii][iii] * 2 * pi /

(dEdki2 * dEdki3 * dEdk40[ii][iii] * (sqrt((2 * kpp[iii] * kpp[iii] * kpp[ii] * kpp[ii]) - (k40[ii][iii]*k40[ii][iii]*k40[ii][iii]*k40[ii][iii]) +

(2*k40[ii][iii]*k40[ii][iii]*(kpp[ii]*kpp[ii] + kpp[iii]*kpp[iii])) - (kpp[ii]*kpp[ii]*kpp[ii]*kpp[ii]) -

121

(kpp[iii]*kpp[iii]*kpp[iii]*kpp[iii]))));

}

else dfac0[ii][iii] = 0;

}

if (iii == 0)

{

E400[i][ii] = f[i][0] + f[ii][0] - f[0][0];

k400[i][ii] = Determinek3(E400[i][ii], f, zzz);

if((k400[i][ii] < (kpp[i] + kpp[ii])) && ((k400[i][ii]*k400[i][ii]) > (kpp[i]-kpp[ii])*(kpp[i]-kpp[ii])))

{

dEdk400[i][ii] = getdEdk(E400[i][ii], k400[i][ii], disp, index, zzz, y);

den00 = (2 * kpp[i] * kpp[i] * kpp[ii] * kpp[ii]) - (k400[i][ii] * k400[i][ii] * k400[i][ii] * k400[i][ii])

+ (2 * k400[i][ii] * k400[i][ii] * (kpp[ii]*kpp[ii] + kpp[i]*kpp[i])) - (kpp[ii]*kpp[ii]*kpp[ii]*kpp[ii]) - (kpp[i]*kpp[i]*kpp[i]*kpp[i]);

dfac00[i][ii] = 2 * (Xp[ii] * 0.5 * Xp[I[i][ii][iii]]) * del[ii] * 8 * pi * pi / (D2A * dEdki2 * dEdk400[i][ii] * sqrt(den00));

}

else dfac00[i][ii] = 0;

} */

radp = (kxk - kpp[iii] * kpp[iii] - k2k3) / kxk1;

radn = (kxk - kpp[iii] * kpp[iii] + k2k3) / kxk1;

if(radp < -1)

thetamax = pi;

else if(radp > 1)

thetamax = 0;

else

thetamax = acos(radp);

if (radn > 1)

thetamin = 0;

else if (radn < -1)

thetamin = pi;

else

thetamin = acos(radn);

if (thetamax - thetamin > 1e-3) /* 1e-13 */

{

dif = thetamax - thetamin;

ttheta = thetamax + thetamin;

GQ1 = 0;

for(j = 1; j <= GQp; j++)

{

rado = cos(((dif * yy[j]) + ttheta) / 2);

kmk12 = kxk + k1xk1 - (2 * kxk1 * rado);

/* if(kmk12 < 0) kmk12 = 0; */

/*

kmk1 = sqrt(kmk12);

Bhka = Bh * kmk1 * aB / 2; */ /* variiertes sigma_h */

Beka = kxk * aB * aB / 4;

Bcka = kmk12 * aB * aB;

Bhka3 = (2 + Beka) * (2 + Beka) * (2 + Beka);

Bhka34 = (2 + Bcka + Beka) * (2 + Bcka + Beka) * (2 + Bcka + Beka);

Beka3 = (k3 * k3) + (1 / (aB * aB)) + kmk12;

Behka = Beka3 + qo2 + (2 * sqrt(qo2 * Beka3));

/*

Bcka3 = 1 / ((1 + (Bcka * Bcka)) * (1 + (Bcka * Bcka)) * (1 + (Bcka * Bcka)));

Bhka3Beka3 = Bhka3 + Beka3 - Behka;

if (fabs(Bhka3Beka3) < 1e-15) Bhka3Beka3 = 0;

Bcka3Bhka34 = Bcka3 + Bhka34 - (2 * sqrt(Bcka3 * Bhka34));

if (fabs(Bcka3Bhka34) < 1e-15) Bcka3Bhka34 = 0;

*/

if(ScreenType = 1)

GQ1 += ww[j] / (((1 / (kmk12 * aB * aB)) * (qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) *

sqrt((radp - rado) * (-radn + rado)));

else

GQ1 += ww[j] / (Bhka3 * Bhka34 * Behka * sqrt((radp - rado) * (-radn + rado)));

/* GQ1 += (ww[j] / sqrt((radp - rado) * (-radn + rado))) *

((Bhka3Beka3 / (qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) +

122

(80 * exp(-2 * aB * aB * (qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))))); */

/*

GQ1 += ww[j] * ((Bhka3Beka3 + (80 * exp(-2 * kmk12 * aB * aB))) /

(qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) / sqrt((radp - rado) * (-radn + rado));*/

/* 3/21/08 removed (16 * Bcka3Bhka34 / ((1/(aB * aB)) + qo2))) with (225 * exp(-(kmk12 * aB * aB)) / qo2) */

/* changed 225 to 80 = (14 * 2 / pi)^2 */

}

GQ1 *= dif /(2 * kxk1);

dfacel1[i][ii][iii] = Allconst1 * Xp[ii] * GQ1 * del[ii] * (Eek[iii+1] - Eek[iii]) / (dEdki2 * dEdki3 * dEdk3);

}

else

dfacel1[i][ii][iii] = 0;

}

else

{

dfacel1[i][ii][iii] = 0;

if(i == 0) dfacel0[ii][iii] = 0;

}

if (dfacel0[ii][iii] != dfacel0[ii][iii] || dfacel0[ii][iii] > 1e60 || dfacel00[i][ii] != dfacel00[i][ii] ||

dfacel00[i][ii] > 1e60 || dfacel0[ii][iii] < -1e60 || dfacel00[i][ii] < -1e60 || dfacel1[i][ii][iii] < - 1e60 ||

dfacel1[i][ii][iii] > 1e60 || dfacel1[i][ii][iii] != dfacel1[i][ii][iii])

{

printf("error (2) in polelMatx.h\n");

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

printf("df1 = %e df0 = %e df00 = %e \n", dfacel1[i][ii][iii], dfacel0[ii][iii], dfacel00[i][ii]);

printf("GQ = %e, dEdk2 =%e, dEdk3 = %e, dEdk4 = %e, dif = %e\n", GQ1, dEdki2, dEdki3, dEdk3, dif);

printf("E400 = %e k400 = %e den00 = %e \n", E400[i][ii], k400[i][ii], den00);

printf("dEdk400 = %e, kxk1 = %e\n", dEdk400[i][ii], kxk1);

exit(1);

}

if(den00 < 0)

{

printf("den00 error in polelMatx.h, k = %e, k1 = %e,k400 = %e, den00 = %e\n", kpp[i], kpp[ii], k400[i][ii], den00);

printf("i = %d, ii = %d\n", i, ii);

exit(1);

}

/* printf("dfac = %e\n", dfacel1[i][ii][iii]); */

}

}

}

}

Ninpolel[p+3] = 0;

Noutpolel[p+3] = 0;

return(1);

}

B.17 POLELMATX.H

int polelMatx(double f[1000][6], double Ninpolel[1000], double Noutpolel[1000], int m,

double del[1000], int zzz, int Geo, double kpp[1000], double delk[1000], double index, int disp, int y)

{

double Fin0, Fout0, Fin00, Fout00, dEdk3, den00, rado, dEdki2, dEdki3, kmk1, kmk12, kxk, k1xk1, qo2;

nnn=0;

/* include a loop for each integration variable in this list */

/* E, E1, E2 */

/* Allconst1 = 6 * 196 * EB * EB * aB * aB / (hb * 32 * pi * pi * pi); */ /* eC * eC / (128 * hb * eo * eo * einf * einf * pi * pi * pi); */

123

Allconst1 = 1000 * EB * EB * aB * aB / (hb * pi * pi * pi * pi * pi * pi);

qo2 = qo[0] * qo[0] * Ne[0] * Ne[0] / (kb * kb * TTT[0] * TTT[0]);

/*

Be = Me / (Me + Mh1);

Bh = Mh1 / (Me + Mh1);

*/

den00 = 0;

if (y == 1 || disp == 3)

{

for(i = 0; i <= p; i++)

{

if(i == 0)

kxk = 1;

else

kxk = kpp[i] * kpp[i];

for(ii = 0; ii <= p; ii++)

{

if(i == 0 && ii != 0)

kxk1 = kpp[ii];

else if(i != 0 && ii == 0)

kxk1 = kpp[i];

else if(i == 0 && ii == 0)

kxk1 = 1;

else kxk1 = kpp[i] * kpp[ii];

if(ii == 0)

k1xk1 = 1;

else

k1xk1 = kpp[ii] * kpp[ii];

dEdki2 = dEdki[ii];

for(iii = 0; iii <= p; iii++)

{

E3 = f[ii][0] - f[i][0] + Eek[iii];

dEdki3 = dg / (4 * pi * DOSe[0]); /* DOS is a constant for the electron */

if (E3 > Eek[0] && E3 < Eek[p+1])

{

k3 = sqrt((2 * em * Me * (E3 - Eek[0])) / (hb * hb * eC));

jj = 0;

while (kpp[jj] <= k3)

jj++;

I[i][ii][iii] = jj--;

k2k3 = kpp[iii] * k3;

/* if (kpp[I[i][ii][iii]] > k3)

{

printf("error in polelMatx.h with I[i][ii][iii]\n");

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

printf("kpp - k3 = %e\n", kpp[I[i][ii][iii]] - k3);

printf("k3 = %e\n", k3);

exit(1);

} */

dEdk3 = dg / (4 * pi * DOSe[0]);

fnew[i][ii][iii] = (k3 - kpp[I[i][ii][iii]]) / delk[I[i][ii][iii]];

/* take out k = 0 ’point’ if (i == 0)

{

E40[ii][iii] = f[iii][0] + f[ii][0] - f[0][0];

k40[ii][iii] = Determinek3(E40[ii][iii], f, zzz);

if((k40[ii][iii] < (kpp[ii] + kpp[iii])) && ((k40[ii][iii]*k40[ii][iii]) > (kpp[ii]-kpp[iii])*(kpp[ii]-kpp[iii])))

{

dEdk40[ii][iii] = getdEdk(E40[ii][iii], k40[ii][iii], disp, index, zzz, y);

dfac0[ii][iii] = (0.5 * Xp[ii] * Xp[iii] * Xp[I[i][ii][iii]]) * deldel[ii][iii] * 2 * pi /

(dEdki2 * dEdki3 * dEdk40[ii][iii] * (sqrt((2 * kpp[iii] * kpp[iii] * kpp[ii] * kpp[ii]) - (k40[ii][iii]*k40[ii][iii]*k40[ii][iii]*k40[ii][iii]) +

(2*k40[ii][iii]*k40[ii][iii]*(kpp[ii]*kpp[ii] + kpp[iii]*kpp[iii])) - (kpp[ii]*kpp[ii]*kpp[ii]*kpp[ii]) -

(kpp[iii]*kpp[iii]*kpp[iii]*kpp[iii]))));

}

else dfac0[ii][iii] = 0;

}

if (iii == 0)

{

E400[i][ii] = f[i][0] + f[ii][0] - f[0][0];

k400[i][ii] = Determinek3(E400[i][ii], f, zzz);

124

if((k400[i][ii] < (kpp[i] + kpp[ii])) && ((k400[i][ii]*k400[i][ii]) > (kpp[i]-kpp[ii])*(kpp[i]-kpp[ii])))

{

dEdk400[i][ii] = getdEdk(E400[i][ii], k400[i][ii], disp, index, zzz, y);

den00 = (2 * kpp[i] * kpp[i] * kpp[ii] * kpp[ii]) -

(k400[i][ii] * k400[i][ii] * k400[i][ii] * k400[i][ii]) + (2 * k400[i][ii] * k400[i][ii] *

(kpp[ii]*kpp[ii] + kpp[i]*kpp[i])) - (kpp[ii]*kpp[ii]*kpp[ii]*kpp[ii]) - (kpp[i]*kpp[i]*kpp[i]*kpp[i]);

dfac00[i][ii] = 2 * (Xp[ii] * 0.5 * Xp[I[i][ii][iii]]) * del[ii] * 8 * pi * pi / (D2A * dEdki2 * dEdk400[i][ii] * sqrt(den00));

}

else dfac00[i][ii] = 0;

} */

radp = (kxk - kpp[iii] * kpp[iii] - k2k3) / kxk1;

radn = (kxk - kpp[iii] * kpp[iii] + k2k3) / kxk1;

if(radp < -1)

thetamax = pi;

else if(radp > 1)

thetamax = 0;

else

thetamax = acos(radp);

if (radn > 1)

thetamin = 0;

else if (radn < -1)

thetamin = pi;

else

thetamin = acos(radn);

if (thetamax - thetamin > 1e-3) /* 1e-13 */

{

dif = thetamax - thetamin;

ttheta = thetamax + thetamin;

GQ1 = 0;

for(j = 1; j <= GQp; j++)

{

rado = cos(((dif * yy[j]) + ttheta) / 2);

kmk12 = kxk + k1xk1 - (2 * kxk1 * rado);

/* if(kmk12 < 0) kmk12 = 0; */

/*

kmk1 = sqrt(kmk12);

Bhka = Bh * kmk1 * aB / 2; */ /* variiertes sigma_h */

Beka = kxk * aB * aB / 4;

Bcka = kmk12 * aB * aB;

Bhka3 = (2 + Beka) * (2 + Beka) * (2 + Beka);

Bhka34 = (2 + Bcka + Beka) * (2 + Bcka + Beka) * (2 + Bcka + Beka);

Beka3 = (k3 * k3) + (1 / (aB * aB)) + kmk12;

Behka = Beka3 + qo2 + (2 * sqrt(qo2 * Beka3));

/*

Bcka3 = 1 / ((1 + (Bcka * Bcka)) * (1 + (Bcka * Bcka)) * (1 + (Bcka * Bcka)));

Bhka3Beka3 = Bhka3 + Beka3 - Behka;

if (fabs(Bhka3Beka3) < 1e-15) Bhka3Beka3 = 0;

Bcka3Bhka34 = Bcka3 + Bhka34 - (2 * sqrt(Bcka3 * Bhka34));

if (fabs(Bcka3Bhka34) < 1e-15) Bcka3Bhka34 = 0;

*/

if(ScreenType = 1)

GQ1 += ww[j] / (((1 / (kmk12 * aB * aB)) *

(qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) * sqrt((radp - rado) * (-radn + rado)));

else

GQ1 += ww[j] / (Bhka3 * Bhka34 * Behka * sqrt((radp - rado) * (-radn + rado)));

/* GQ1 += (ww[j] / sqrt((radp - rado) * (-radn + rado))) *

((Bhka3Beka3 / (qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) + (80 * exp(-2 * aB * aB * (qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))))); */

/*

GQ1 += ww[j] * ((Bhka3Beka3 + (80 * exp(-2 * kmk12 * aB * aB))) /

(qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) / sqrt((radp - rado) * (-radn + rado));*/

125

/* 3/21/08 removed (16 * Bcka3Bhka34 / ((1/(aB * aB)) + qo2))) with (225 * exp(-(kmk12 * aB * aB)) / qo2) */

/* changed 225 to 80 = (14 * 2 / pi)^2 */

}

GQ1 *= dif /(2 * kxk1);

dfacel1[i][ii][iii] = Allconst1 * Xp[ii] * GQ1 * del[ii] * (Eek[iii+1] - Eek[iii]) / (dEdki2 * dEdki3 * dEdk3);

}

else

dfacel1[i][ii][iii] = 0;

}

else

{

dfacel1[i][ii][iii] = 0;

if(i == 0) dfacel0[ii][iii] = 0;

}

if (dfacel0[ii][iii] != dfacel0[ii][iii] || dfacel0[ii][iii] > 1e60 || dfacel00[i][ii] !=

dfacel00[i][ii] || dfacel00[i][ii] > 1e60 || dfacel0[ii][iii] < -1e60 || dfacel00[i][ii] < -1e60 ||

dfacel1[i][ii][iii] < - 1e60 || dfacel1[i][ii][iii] > 1e60 || dfacel1[i][ii][iii] != dfacel1[i][ii][iii])

{

printf("error (2) in polelMatx.h\n");

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

printf("df1 = %e df0 = %e df00 = %e \n", dfacel1[i][ii][iii], dfacel0[ii][iii], dfacel00[i][ii]);

printf("GQ = %e, dEdk2 =%e, dEdk3 = %e, dEdk4 = %e, dif = %e\n", GQ1, dEdki2, dEdki3, dEdk3, dif);

printf("E400 = %e k400 = %e den00 = %e \n", E400[i][ii], k400[i][ii], den00);

printf("dEdk400 = %e, kxk1 = %e\n", dEdk400[i][ii], kxk1);

exit(1);

}

if(den00 < 0)

{

printf("den00 error in polelMatx.h, k = %e, k1 = %e,k400 = %e, den00 = %e\n", kpp[i], kpp[ii], k400[i][ii], den00);

printf("i = %d, ii = %d\n", i, ii);

exit(1);

}

/* printf("dfac = %e\n", dfacel1[i][ii][iii]); */

}

}

}

}

Ninpolel[p+3] = 0;

Noutpolel[p+3] = 0;

return(1);

}

B.18 POLPTAMATX.H

int polelMatx(double f[1000][6], double Ninpolel[1000], double Noutpolel[1000], int m,

double del[1000], int zzz, int Geo, double kpp[1000], double delk[1000], double index, int disp, int y)

{

double Fin0, Fout0, Fin00, Fout00, dEdk3, den00, rado, dEdki2, dEdki3, kmk1, kmk12, kxk, k1xk1, qo2;

nnn=0;

/* include a loop for each integration variable in this list */

/* E, E1, E2 */

/* Allconst1 = 6 * 196 * EB * EB * aB * aB / (hb * 32 * pi * pi * pi); */ /* eC * eC / (128 * hb * eo * eo * einf * einf * pi * pi * pi); */

Allconst1 = 1000 * EB * EB * aB * aB / (hb * pi * pi * pi * pi * pi * pi);

qo2 = qo[0] * qo[0] * Ne[0] * Ne[0] / (kb * kb * TTT[0] * TTT[0]);

/*

Be = Me / (Me + Mh1);

Bh = Mh1 / (Me + Mh1);

*/

den00 = 0;

if (y == 1 || disp == 3)

{

for(i = 0; i <= p; i++)

126

{

if(i == 0)

kxk = 1;

else

kxk = kpp[i] * kpp[i];

for(ii = 0; ii <= p; ii++)

{

if(i == 0 && ii != 0)

kxk1 = kpp[ii];

else if(i != 0 && ii == 0)

kxk1 = kpp[i];

else if(i == 0 && ii == 0)

kxk1 = 1;

else kxk1 = kpp[i] * kpp[ii];

if(ii == 0)

k1xk1 = 1;

else

k1xk1 = kpp[ii] * kpp[ii];

dEdki2 = dEdki[ii];

for(iii = 0; iii <= p; iii++)

{

E3 = f[ii][0] - f[i][0] + Eek[iii];

dEdki3 = dg / (4 * pi * DOSe[0]); /* DOS is a constant for the electron */

if (E3 > Eek[0] && E3 < Eek[p+1])

{

k3 = sqrt((2 * em * Me * (E3 - Eek[0])) / (hb * hb * eC));

jj = 0;

while (kpp[jj] <= k3)

jj++;

I[i][ii][iii] = jj--;

k2k3 = kpp[iii] * k3;

/* if (kpp[I[i][ii][iii]] > k3)

{

printf("error in polelMatx.h with I[i][ii][iii]\n");

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

printf("kpp - k3 = %e\n", kpp[I[i][ii][iii]] - k3);

printf("k3 = %e\n", k3);

exit(1);

} */

dEdk3 = dg / (4 * pi * DOSe[0]);

fnew[i][ii][iii] = (k3 - kpp[I[i][ii][iii]]) / delk[I[i][ii][iii]];

/* take out k = 0 ’point’ if (i == 0)

{

E40[ii][iii] = f[iii][0] + f[ii][0] - f[0][0];

k40[ii][iii] = Determinek3(E40[ii][iii], f, zzz);

if((k40[ii][iii] < (kpp[ii] + kpp[iii])) && ((k40[ii][iii]*k40[ii][iii]) > (kpp[ii]-kpp[iii])*(kpp[ii]-kpp[iii])))

{

dEdk40[ii][iii] = getdEdk(E40[ii][iii], k40[ii][iii], disp, index, zzz, y);

dfac0[ii][iii] = (0.5 * Xp[ii] * Xp[iii] * Xp[I[i][ii][iii]]) * deldel[ii][iii] * 2 * pi /

(dEdki2 * dEdki3 * dEdk40[ii][iii] * (sqrt((2 * kpp[iii] * kpp[iii] * kpp[ii] * kpp[ii]) - (k40[ii][iii]*k40[ii][iii]*k40[ii][iii]*k40[ii][iii]) +

(2*k40[ii][iii]*k40[ii][iii]*(kpp[ii]*kpp[ii] + kpp[iii]*kpp[iii])) - (kpp[ii]*kpp[ii]*kpp[ii]*kpp[ii]) -

(kpp[iii]*kpp[iii]*kpp[iii]*kpp[iii]))));

}

else dfac0[ii][iii] = 0;

}

if (iii == 0)

{

E400[i][ii] = f[i][0] + f[ii][0] - f[0][0];

k400[i][ii] = Determinek3(E400[i][ii], f, zzz);

if((k400[i][ii] < (kpp[i] + kpp[ii])) && ((k400[i][ii]*k400[i][ii]) > (kpp[i]-kpp[ii])*(kpp[i]-kpp[ii])))

{

dEdk400[i][ii] = getdEdk(E400[i][ii], k400[i][ii], disp, index, zzz, y);

den00 = (2 * kpp[i] * kpp[i] * kpp[ii] * kpp[ii]) - (k400[i][ii] * k400[i][ii] * k400[i][ii] * k400[i][ii]) +

(2 * k400[i][ii] * k400[i][ii] * (kpp[ii]*kpp[ii] + kpp[i]*kpp[i])) - (kpp[ii]*kpp[ii]*kpp[ii]*kpp[ii]) - (kpp[i]*kpp[i]*kpp[i]*kpp[i]);

dfac00[i][ii] = 2 * (Xp[ii] * 0.5 * Xp[I[i][ii][iii]]) * del[ii] * 8 * pi * pi / (D2A * dEdki2 * dEdk400[i][ii] * sqrt(den00));

}

else dfac00[i][ii] = 0;

127

} */

radp = (kxk - kpp[iii] * kpp[iii] - k2k3) / kxk1;

radn = (kxk - kpp[iii] * kpp[iii] + k2k3) / kxk1;

if(radp < -1)

thetamax = pi;

else if(radp > 1)

thetamax = 0;

else

thetamax = acos(radp);

if (radn > 1)

thetamin = 0;

else if (radn < -1)

thetamin = pi;

else

thetamin = acos(radn);

if (thetamax - thetamin > 1e-3) /* 1e-13 */

{

dif = thetamax - thetamin;

ttheta = thetamax + thetamin;

GQ1 = 0;

for(j = 1; j <= GQp; j++)

{

rado = cos(((dif * yy[j]) + ttheta) / 2);

kmk12 = kxk + k1xk1 - (2 * kxk1 * rado);

/* if(kmk12 < 0) kmk12 = 0; */

/*

kmk1 = sqrt(kmk12);

Bhka = Bh * kmk1 * aB / 2; */ /* variiertes sigma_h */

Beka = kxk * aB * aB / 4;

Bcka = kmk12 * aB * aB;

Bhka3 = (2 + Beka) * (2 + Beka) * (2 + Beka);

Bhka34 = (2 + Bcka + Beka) * (2 + Bcka + Beka) * (2 + Bcka + Beka);

Beka3 = (k3 * k3) + (1 / (aB * aB)) + kmk12;

Behka = Beka3 + qo2 + (2 * sqrt(qo2 * Beka3));

/*

Bcka3 = 1 / ((1 + (Bcka * Bcka)) * (1 + (Bcka * Bcka)) * (1 + (Bcka * Bcka)));

Bhka3Beka3 = Bhka3 + Beka3 - Behka;

if (fabs(Bhka3Beka3) < 1e-15) Bhka3Beka3 = 0;

Bcka3Bhka34 = Bcka3 + Bhka34 - (2 * sqrt(Bcka3 * Bhka34));

if (fabs(Bcka3Bhka34) < 1e-15) Bcka3Bhka34 = 0;

*/

if(ScreenType = 1)

GQ1 += ww[j] / (((1 / (kmk12 * aB * aB)) *

(qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) * sqrt((radp - rado) * (-radn + rado)));

else

GQ1 += ww[j] / (Bhka3 * Bhka34 * Behka * sqrt((radp - rado) * (-radn + rado)));

/* GQ1 += (ww[j] / sqrt((radp - rado) * (-radn + rado))) *

((Bhka3Beka3 / (qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) + (80 * exp(-2 * aB * aB * (qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))))); */

/*

GQ1 += ww[j] * ((Bhka3Beka3 + (80 * exp(-2 * kmk12 * aB * aB))) /

(qo2 + kmk12 + (2 * sqrt(qo2 * kmk12)))) / sqrt((radp - rado) * (-radn + rado));*/

/* 3/21/08 removed (16 * Bcka3Bhka34 / ((1/(aB * aB)) + qo2))) with (225 * exp(-(kmk12 * aB * aB)) / qo2) */

/* changed 225 to 80 = (14 * 2 / pi)^2 */

}

GQ1 *= dif /(2 * kxk1);

dfacel1[i][ii][iii] = Allconst1 * Xp[ii] * GQ1 * del[ii] * (Eek[iii+1] - Eek[iii]) / (dEdki2 * dEdki3 * dEdk3);

}

else

dfacel1[i][ii][iii] = 0;

}

else

{

dfacel1[i][ii][iii] = 0;

128

if(i == 0) dfacel0[ii][iii] = 0;

}

if (dfacel0[ii][iii] != dfacel0[ii][iii] || dfacel0[ii][iii] > 1e60 || dfacel00[i][ii] != dfacel00[i][ii]

|| dfacel00[i][ii] > 1e60 || dfacel0[ii][iii] < -1e60 || dfacel00[i][ii] < -1e60 ||

dfacel1[i][ii][iii] < - 1e60 || dfacel1[i][ii][iii] > 1e60 || dfacel1[i][ii][iii] != dfacel1[i][ii][iii])

{

printf("error (2) in polelMatx.h\n");

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

printf("df1 = %e df0 = %e df00 = %e \n", dfacel1[i][ii][iii], dfacel0[ii][iii], dfacel00[i][ii]);

printf("GQ = %e, dEdk2 =%e, dEdk3 = %e, dEdk4 = %e, dif = %e\n", GQ1, dEdki2, dEdki3, dEdk3, dif);

printf("E400 = %e k400 = %e den00 = %e \n", E400[i][ii], k400[i][ii], den00);

printf("dEdk400 = %e, kxk1 = %e\n", dEdk400[i][ii], kxk1);

exit(1);

}

if(den00 < 0)

{

printf("den00 error in polelMatx.h, k = %e, k1 = %e,k400 = %e, den00 = %e\n", kpp[i], kpp[ii], k400[i][ii], den00);

printf("i = %d, ii = %d\n", i, ii);

exit(1);

}

/* printf("dfac = %e\n", dfacel1[i][ii][iii]); */

}

}

}

}

Ninpolel[p+3] = 0;

Noutpolel[p+3] = 0;

return(1);

}

B.19 POLPTA PIEZOMATX.H

int MTAPiezo2(double W[200][200][200], double kpp[1000], double defe, double defh, double index, double kcz,

double W0TA[1000], double Wden0TA[1000], double Wden00TA[1000])

{

double Bp, E, E1, Ipe, Iph, Ipe1, Iph1, phi, phibad, q, q2, qz, Wden1TA;

double Ipe10, Iph10, Ipe0, Iph0;

long double E2;

double defepart, defhpart, piezopart1, piezopart2e, piezopart2h, Allpartse, Allpartsh, Allpartseh;

double phiq, qtot;

Wden1TA = 16 * pi * pi * vTA * vTA * vTA * hb * hb * Sd / eC;

for (j = 0; j <= p; j++)

{

Xj = Xp[j];

for (jj = 0; jj <= p; jj++)

{

Xjj = Xp[jj];

NinkTA[j][jj] = 0;

E = f[j][0]; /*polE(kpp[j], index);*/

E1 = f[jj][0]; /*polE(kpp[jj], index);*/

E2 = fabs(E - E1); /* E - E1 */

qtot = E2 / (hb * vTA);

phibad = ((kpp[j] * kpp[j]) + (kpp[jj] * kpp[jj]) - (E2 * E2 / (hb * hb * vTA * vTA))) / (2 * kpp[j] * kpp[jj]);

if (fabs(phibad) < 1)

{

phibad = acos(phibad);

for (i = 1; i <= p; i++)

{

phi = (i - 0.5) * phibad / p; /*(i - 0.5) * pi / p;*/

phiq = atan((kpp[jj] * sin(phi)) / (-kpp[j] + (kpp[jj] * cos(phi))));

q2 = (kpp[j] * kpp[j]) + (kpp[jj] * kpp[jj]) - (2 * kpp[j] * kpp[jj] * cos(phi));

129

/*(kpp[j] * kpp[j]) + (kpp[jj] * kpp[jj]) - (2 * kpp[j] * kpp[jj] * cos(phi));*/

q = sqrt(q2);

Ipe1 = 1 + (Mh1 * q * aB / (2 * (Mh1 + Me))) * (Mh1 * q * aB / (2 * (Mh1 + Me)));

Iph1 = 1 + (Me * q * aB / (2 * (Mh1 + Me))) * (Me * q * aB / (2 * (Mh1 + Me)));

Ipe = 1 / (sqrt(Ipe1) * Ipe1);

Iph = 1 / (sqrt(Iph1) * Iph1);

if ((((E2 * E2) / (hb * hb * vTA * vTA)) - q2) > 0)

{

qz = sqrt(((E2 * E2) / (hb * hb * vTA * vTA)) - q2);

Bp = 8 * pi * pi * sin(Lz * qz / 2) / (qz * Lz * ((4 * pi * pi) - (Lz * Lz * qz * qz)));

defepart = defe * defe * qtot;

defhpart = defh * defh * qtot;

piezopart1 = piezo14 * piezo14 * q2 * ((qz * qz) + (q2 / 8)) /

(16 * pi * pi * eo * eo * einf * einf * qtot * qtot * qtot * qtot * qtot);

/*

piezopart1 = 2 * piezo14 * piezo14 * q2 * ((qz * qz) + (q2 * cos(phiq) * cos(phiq) * sin(phiq) * sin(phiq))) /

(16 * pi * pi * eo * eo * einf * einf * qtot * qtot * qtot * qtot * qtot);

*/

/* piezopart2e = defe * piezo14 * q * (qz * (cos(phiq) + sin(phiq)) + (q * cos(phiq) * sin(phiq))) /

(pi * einf * (E2 * E2 / (hb * hb * vTA * vTA)));

piezopart2h = defh * piezo14 * q * (qz * (cos(phiq) + sin(phiq)) + (q * cos(phiq) * sin(phiq))) /

(pi * einf * (E2 * E2 / (hb * hb * vTA * vTA))); */

piezopart2e = 0;

piezopart2h = 0;

Allpartse = (defepart + piezopart1 + piezopart2e) * Ipe * Ipe;

Allpartsh = (defhpart + piezopart1 + piezopart2h) * Iph * Iph;

Allpartseh = 2 * (-sqrt(defepart * defhpart) + piezopart1) * Ipe * Iph;

/**** W’s assume area of cavity is 1 cm^2 *****/

NinkTA[j][jj] += phibad * Bp * Bp * E2 * Xjj * Xj * (Allpartse + Allpartsh

+ Allpartseh) / (p * qz); /*Bp * Bp * hb * v * q * E2 * Xjj * Xj * (defe * Ipe - defh * Iph) * (defe * Ipe - defh * Iph) / qz; */

}

else

NinkTA[j][jj] += 0;

phi = phibad + ((i - 0.5) * (pi - phibad) / p); /*(i - 0.5) * pi / p;*/

phiq = atan((kpp[jj] * sin(phi)) / (-kpp[j] + (kpp[jj] * cos(phi))));

q2 = (kpp[j] * kpp[j]) + (kpp[jj] * kpp[jj]) - (2 * kpp[j] * kpp[jj] * cos(phi));

/*(kpp[j] * kpp[j]) + (kpp[jj] * kpp[jj]) - (2 * kpp[j] * kpp[jj] * cos(phi));*/

q = sqrt(q2);

Ipe1 = 1 + (Mh1 * q * aB / (2 * (Mh1 + Me))) * (Mh1 * q * aB / (2 * (Mh1 + Me)));

Iph1 = 1 + (Me * q * aB / (2 * (Mh1 + Me))) * (Me * q * aB / (2 * (Mh1 + Me)));

Ipe = 1 / (sqrt(Ipe1) * Ipe1);

Iph = 1 / (sqrt(Iph1) * Iph1);

if ((((E2 * E2) / (hb * hb * vTA * vTA)) - q2) > 0)

{

qz = sqrt(((E2 * E2) / (hb * hb * vTA * vTA)) - q2);

Bp = 8 * pi * pi * sin(Lz * qz / 2) / (qz * Lz * ((4 * pi * pi) - (Lz * Lz * qz * qz)));

defepart = defe * defe * qtot;

defhpart = defh * defh * qtot;

piezopart1 = piezo14 * piezo14 * q2 * ((qz * qz) + (q2 / 8))/

(16 * pi * pi * eo * eo * einf * einf * qtot * qtot * qtot * qtot * qtot);

/*

piezopart1 = 2 * piezo14 * piezo14 * q2 * ((qz * qz) + (q2 * cos(phiq) * cos(phiq) * sin(phiq) * sin(phiq))) /

130

(16 * pi * pi * eo * eo * einf * einf * qtot * qtot * qtot * qtot * qtot);

*/

/* piezopart2e = defe * piezo14 * q * (qz * (cos(phiq) + sin(phiq)) + (q * cos(phiq) * sin(phiq))) /

(pi * einf * (E2 * E2 / (hb * hb * vTA * vTA)));

piezopart2h = defh * piezo14 * q * (qz * (cos(phiq) + sin(phiq)) + (q * cos(phiq) * sin(phiq))) /

(pi * einf * (E2 * E2 / (hb * hb * vTA * vTA))); */

piezopart2e = 0;

piezopart2h = 0;

Allpartse = (defepart + piezopart1 + piezopart2e) * Ipe * Ipe;

Allpartsh = (defhpart + piezopart1 + piezopart2h) * Iph * Iph;

Allpartseh = 2 * (-sqrt(defepart * defhpart) + piezopart1) * Ipe * Iph;

/**** W’s assume area of cavity is 1 cm^2 *****/

NinkTA[j][jj] += (pi - phibad) * Bp * Bp * E2 * Xjj * Xj * (Allpartse + Allpartsh + Allpartseh) / (p * qz);

}

else

NinkTA[j][jj] += 0;

}

}

else

{

for (i = 1; i <= p; i++)

{

phi = ((i - 0.5) * pi / p); /*(i - 0.5) * pi / p;*/

phiq = atan((kpp[jj] * sin(phi)) / (-kpp[j] + (kpp[jj] * cos(phi))));

q2 = (kpp[j] * kpp[j]) + (kpp[jj] * kpp[jj]) + (2 * kpp[j] * kpp[jj] * cos(phi));

/*(kpp[j] * kpp[j]) + (kpp[jj] * kpp[jj]) - (2 * kpp[j] * kpp[jj] * cos(phi));*/

q = sqrt(q2);

Ipe1 = 1 + (Mh1 * q * aB / (2 * (Mh1 + Me))) * (Mh1 * q * aB / (2 * (Mh1 + Me)));

Iph1 = 1 + (Me * q * aB / (2 * (Mh1 + Me))) * (Me * q * aB / (2 * (Mh1 + Me)));

Ipe = 1 / (sqrt(Ipe1) * Ipe1);

Iph = 1 / (sqrt(Iph1) * Iph1);

if ((((E2 * E2) / (hb * hb * vTA * vTA)) - q2) > 0)

{

qz = sqrt(((E2 * E2) / (hb * hb * vTA * vTA)) - q2);

Bp = 8 * pi * pi * sin(Lz * qz / 2) / (qz * Lz * ((4 * pi * pi) - (Lz * Lz * qz * qz)));

defepart = defe * defe * qtot;

defhpart = defh * defh * qtot;

piezopart1 = piezo14 * piezo14 * q2 * ((qz * qz) + (q2 / 8))/

(16 * pi * pi * eo * eo * einf * einf * qtot * qtot * qtot * qtot * qtot);

/*

piezopart1 = 2 * piezo14 * piezo14 * q2 * ((qz * qz) + (q2 * cos(phiq)* cos(phiq) * sin(phiq) * sin(phiq))) /

(16 * pi * pi * eo * eo * einf * einf * qtot * qtot * qtot * qtot * qtot);

*/

/* piezopart2e = defe * piezo14 * q * (qz * (cos(phiq) + sin(phiq)) + (q * cos(phiq) * sin(phiq))) /

(pi * einf * (E2 * E2 / (hb * hb * vTA * vTA)));

piezopart2h = defh * piezo14 * q * (qz * (cos(phiq) + sin(phiq)) + (q * cos(phiq) * sin(phiq))) /

(pi * einf * (E2 * E2 / (hb * hb * vTA * vTA))); */

piezopart2e = 0;

piezopart2h = 0;

Allpartse = (defepart + piezopart1 + piezopart2e) * Ipe * Ipe;

Allpartsh = (defhpart + piezopart1 + piezopart2h) * Iph * Iph;

Allpartseh = 2 * (-sqrt(defepart * defhpart) + piezopart1) * Ipe * Iph;

/**** W’s assume area of cavity is 1 cm^2 *****/

NinkTA[j][jj] += pi * Bp * Bp * E2 * Xjj * Xj * (Allpartse + Allpartsh + Allpartseh) / (p * qz);

}

else

131

NinkTA[j][jj] += 0;

}

}

/*if(jj > 0)

{*/

if(j == 0)

{

Ipe10 = 1 + (Mh1 * kpp[jj] * aB / (2 * (Mh1 + Me))) * (Mh1 * kpp[jj] * aB / (2 * (Mh1 + Me)));

Iph10 = 1 + (Me * kpp[jj] * aB / (2 * (Mh1 + Me))) * (Me * kpp[jj] * aB / (2 * (Mh1 + Me)));

Ipe0 = 1 / (sqrt(Ipe10) * Ipe10);

Iph0 = 1 / (sqrt(Iph10) * Iph10);

if((((f[0][0] - E1) * (f[0][0] - E1) / (hb * hb * v * v)) - (kpp[jj]*kpp[jj])) > 0)

{

qz = sqrt(((f[0][0] - E1) * (f[0][0] - E1) / (hb * hb * vTA * vTA)) - (kpp[jj]*kpp[jj]));

Bp = 8 * pi * pi * sin(Lz * qz / 2) / (qz * Lz * ((4 * pi * pi) - (Lz * Lz * qz * qz)));

Wden0TA[jj] = Wden1TA * qz / (2 * pi); /* when k == 0 */

W0TA[jj] = Bp * Bp * (E1 - f[0][0]) * (E1 - f[0][0]) * 0.5 * Xjj *

(defe * Ipe0 - defh * Iph0) * (defe * Ipe0 - defh * Iph0);

/*Bp * Bp * hb * v * kpp[jj] * (E1 - f[0][0]) * 0.5 * Xjj * (defe * Ipe0 - defh * Iph0) * (defe * Ipe0 - defh * Iph0);*/

Wden00TA[jj] = Wden1TA * qz * D2A / (8 * pi * pi); /* when k != 0 */

}

else

{

W0TA[jj] = 0;

Wden0TA[jj] = 1;

Wden00TA[jj] = 1;

}

}

/*}

else

{

W0[0] = 0;

Wden0[0] = 1;

Wden00[0] = 1;

}*/

/* printf("W = %e \n", W[j][jj][i]); */

}

}

for (j = 0; j <= p; j += (p-2)/2)

{

for (i = 1; i <= p; i++)

WtTA[j] += WTA[j][i][0] * delk[i] * kpp[i] * 2 * pi;

}

for (i = 0; i <= p; i++)

{

for(ii = 0; ii <= p; ii++)

NinkTA[i][ii] *= 4 / Wden1TA;

}

/* ---- Used to check symmetry of the Nink ---- */

for(i = 0; i <= p; i++)

{

for(ii = 0; ii <= p; ii++)

{

if(fabs(NinkTA[i][ii] - NinkTA[ii][i]) / fabs(NinkTA[i][ii]) > 1e-14)

printf("Matrix element assymmetry for TA phonons, %e %e %e\n", NinkTA[i][ii], NinkTA[ii][i],fabs(NinkTA[i][ii] - NinkTA[ii][i]) /

fabs(NinkTA[i][ii]));

}

}

NinkTA[p][p+1] = 0;

NinkTA[p+1][p] = 0;

/* scattering matrix element vs |q|

sprintf(outfile4, "Mvsq.d", xx);

fq = fopen(outfile4, "w");

fprintf(fq, "x ");

for(i = 0 ; i <= p; i++)

fprintf(fq, "%e ", kpp[i]);

132

fprintf(fq, "\n");

for (i = 0; i <= p; i++)

{

fprintf(fq, "%e ", kpp[i]);

for(ii = 0; ii <= p; ii++)

fprintf(fq, "%e ", Nink[i][ii]);

fprintf(fq, "\n");

}

fclose(fq);

exit(1);*/

return(1);

}

B.20 2DPOLSCAT.H

int D2polscat(double f[1000][6], double Ninpol[1000], double Noutpol[1000], int m,

double del[1000], int zzz, int Geo, double kpp[1000], double delk[1000], double index, int disp, int y)

{

double Fin0, Fout0, Fin00, Fout00, dEdk3, den00, rado, dEdki2, dEdki3, kxk;

nnn=0;

/* include a loop for each integration variable in this list */

/* E, E1, E2 */

Allconst = 1.2 * 36 * EB * EB * aB * aB * aB * aB / (hb * 32 * pi * pi * pi);

den00 = 0;

if (y == 1 || disp == 3)

{

for(i = 0; i <= p; i++)

{

if(i == 0)

kxk = 1;

else

kxk = kpp[i] * kpp[i];

for(ii = 0; ii <= p; ii++)

{

Vp[i][ii] = 0;

if(i == 0 && ii != 0)

kxk1 = kpp[ii];

else if(i != 0 && ii == 0)

kxk1 = kpp[i];

else if(i == 0 && ii == 0)

kxk1 = 1;

else

kxk1 = kpp[i] * kpp[ii];

dEdki2 = dEdki[ii]; /* 9/19/07 change */ /* getdEdk(f[ii][0], kpp[ii], disp, index, 0, y); */

for(iii = 0; iii <= p; iii++)

{

E3 = f[iii][0] + f[ii][0] - f[i][0];

dEdki3 = dEdki[iii]; /* 9/19/07 change */ /*getdEdk(f[iii][0], kpp[iii], disp, index, 0, y); */

if (E3 > f[0][0] && E3 < f[p+1][0])

{

k3 = Determinek3(E3, f, 0);

I[i][ii][iii] = polD[0];

k2k3 = kpp[iii] * k3;

dEdk3 = getdEdk(E3, k3, disp, index, 0, y);

fnew[i][ii][iii] = (k3 - kpp[I[i][ii][iii]]) / delk[I[i][ii][iii]];

/*f[I[i][ii][iii]][1] + ((f[1 + I[i][ii][iii]][1] - f[I[i][ii][iii]][1]) * ((k3 - kpp[I[i][ii][iii]]) / delk[I[i][ii][iii]])); */

/*

if(I[i][ii][iii] > 0)

fnew[i][ii][iii] = findf(I[i][ii][iii], f, delk, (k3 - kpp[I[i][ii][iii]]) / delk[I[i][ii][iii]]);

else

fnew[i][ii][iiii] = f[0][1] + ((f[1][1] - f[0][1]) * (k3 / delk[0]));

*/

if (i == 0)

{

E40[ii][iii] = f[iii][0] + f[ii][0] - f[0][0];

k40[ii][iii] = Determinek3(E40[ii][iii], f, zzz);

if((k40[ii][iii] < (kpp[ii] + kpp[iii])) && ((k40[ii][iii]*k40[ii][iii]) > (kpp[ii]-kpp[iii])*(kpp[ii]-kpp[iii])))

{

133

dEdk40[ii][iii] = getdEdk(E40[ii][iii], k40[ii][iii], disp, index, zzz, y);

dfac0[ii][iii] = (0.5 * Xp[ii] * Xp[iii] * Xp[I[i][ii][iii]]) * deldel[ii][iii] * 2 * pi /

(dEdki2 * dEdki3 * dEdk40[ii][iii] * (sqrt((2 * kpp[iii] * kpp[iii] * kpp[ii] * kpp[ii]) - (k40[ii][iii]*k40[ii][iii]*k40[ii][iii]*k40[ii][iii]) +

(2*k40[ii][iii]*k40[ii][iii]*(kpp[ii]*kpp[ii] + kpp[iii]*kpp[iii])) - (kpp[ii]*kpp[ii]*kpp[ii]*kpp[ii]) -

(kpp[iii]*kpp[iii]*kpp[iii]*kpp[iii]))));

}

else dfac0[ii][iii] = 0;

}

if (iii == 0)

{

E400[i][ii] = f[i][0] + f[ii][0] - f[0][0];

k400[i][ii] = Determinek3(E400[i][ii], f, zzz);

if((k400[i][ii] < (kpp[i] + kpp[ii])) && ((k400[i][ii]*k400[i][ii]) > (kpp[i]-kpp[ii])*(kpp[i]-kpp[ii])))

{

dEdk400[i][ii] = getdEdk(E400[i][ii], k400[i][ii], disp, index, zzz, y);

den00 = (2 * kpp[i] * kpp[i] * kpp[ii] * kpp[ii]) - (k400[i][ii] * k400[i][ii]

* k400[i][ii] * k400[i][ii]) + (2 * k400[i][ii] * k400[i][ii] * (kpp[ii]*kpp[ii] + kpp[i]*kpp[i])) -

(kpp[ii]*kpp[ii]*kpp[ii]*kpp[ii]) - (kpp[i]*kpp[i]*kpp[i]*kpp[i]);

dfac00[i][ii] = 2 * (Xp[ii] * 0.5 * Xp[I[i][ii][iii]]) * del[ii] * 8 * pi * pi / (D2A * dEdki2 * dEdk400[i][ii] * sqrt(den00));

}

else dfac00[i][ii] = 0;

}

radp = (kxk - kpp[iii] * kpp[iii] - k2k3) / kxk1;

radn = (kxk - kpp[iii] * kpp[iii] + k2k3) / kxk1;

if(radp < -1)

thetamax = pi;

else if(radp > 1)

thetamax = 0;

else

thetamax = acos(radp);

if (radn > 1)

thetamin = 0;

else if (radn < -1)

thetamin = pi;

else

thetamin = acos(radn);

if (thetamax - thetamin > 1e-3) /* 1e-13 */

{

dif = thetamax - thetamin;

ttheta = thetamax + thetamin;

GQ1 = 0;

for(j = 1; j <= GQp; j++)

{

rado = cos(((dif * yy[j]) + ttheta) / 2);

GQ1 += ww[j] / sqrt((radp - rado) * (-radn + rado));

}

GQ1 *= dif / (2 * kxk1);

dfac1[i][ii][iii] = (Xp[ii] * Xp[iii] * Xp[I[i][ii][iii]]) * GQ1 * deldel[ii][iii] / (dEdki2 * dEdki3 * dEdk3);

}

else

dfac1[i][ii][iii] = 0;

}

else

{

dfac1[i][ii][iii] = 0;

if(i == 0) dfac0[ii][iii] = 0;

}

if (dfac0[ii][iii] != dfac0[ii][iii] || dfac0[ii][iii] > 1e50 || dfac00[i][ii] != dfac00[i][ii] ||

dfac00[i][ii] > 1e50 || dfac0[ii][iii] < -1e50 || dfac00[i][ii] < -1e50 ||

134

dfac1[i][ii][iii] < - 1e50 || dfac1[i][ii][iii] > 1e50 || dfac1[i][ii][iii] != dfac1[i][ii][iii])

{

printf("error in 2Dpolscat.h\n");

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

printf("df1 = %e df0 = %e df00 = %e \n", dfac1[i][ii][iii], dfac0[ii][iii], dfac00[i][ii]);

printf("GQ = %e, dEdk2 =%e, dEdk3 = %e, dEdk4 = %e, dif = %e\n", GQ1, dEdki2, dEdki3, dEdk3, dif);

printf("E400 = %e k400 = %e den00 = %e \n", E400[i][ii], k400[i][ii], den00);

printf("dEdk400 = %e, kxk1 = %e\n", dEdk400[i][ii], kxk1);

exit(1);

}

if(den00 < 0)

{

printf("den00 error in 2Dpolscat.h, k = %e, k1 = %e,k400 = %e, den00 = %e\n", kpp[i], kpp[ii], k400[i][ii], den00);

printf("i = %d, ii = %d\n", i, ii);

exit(1);

}

}

}

}

}

Ninpol[p+3] = 0;

Noutpol[p+3] = 0;

/* LOOP E */

for (i = 0; i <= p; i++)

{

Ninpol[i] = 0;

Noutpol[i] = 0;

/* LOOP E1 */

for (ii = 0; ii <= p; ii++)

{

/* LOOP E2 */

for (iii = 0; iii <= p; iii++)

{

f5 = f[I[i][ii][iii]][1] + ((f[I[i][ii][iii]+1][1] - f[I[i][ii][iii]][1]) * fnew[i][ii][iii]);

Fin = f[ii][1] * f[iii][1] * (1 + f5) * (1 + f[i][1]);

Fout = f[i][1] * f5 * (1 + f[ii][1]) * (1 + f[iii][1]);

/* uncomment the following two lines to delete Bose effects

Fin = f[ii][1] * f[iii][1];

Fout = f5 * f[i][1];*/

/* printf("Fin = %e Fout = %e\n", Fin, Fout); */

if(i == 0)

{

Fin0 = f[ii][1] * f[iii][1] * (1 + f5) * (1 + f[p+3][1]);

Fout0 = f[p+3][1] * f5 * (1 + f[ii][1]) * (1 + f[iii][1]);

}

if(iii == 0)

{

Fin00 = f[ii][1] * f[p+3][1] * (1 + f5) * (1 + f[i][1]);

Fout00 = f[i][1] * f5 * (1 + f[ii][1]) * (1 + f[p+3][1]);

}

dNin = dfac1[i][ii][iii] * Fin;

if (dNin != dNin || dNin > 1e100 || dNin < -1e100)

{

printf("df1 = %e, Fin = %e\n", dfac1[i][ii][iii], Fin);

printf("f1 = %e, f2 = %e, f3 = %e, f4 = %e\n", f[i][1], f[ii][1], f[iii][1], fnew[i][ii][iii]);

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

exit(1);

}

dNout = dfac1[i][ii][iii] * Fout;

Ninpol[i] += dNin;

Noutpol[i] += dNout;

if(i == 0)

{

Ninpol[p+3] += dfac0[ii][iii] * Fin0;

Noutpol[p+3] += dfac0[ii][iii] * Fout0;

}

if(iii == 0)

{

Ninpol[i] += Fin00 * dfac00[i][ii];

Noutpol[i] += Fout00 * dfac00[i][ii];

}

} /* loop E2 */

} /* loop E1 */

Ninpol[i] *= Allconst * Xp[i] * f[i][2];

Noutpol[i] *= Allconst * Xp[i] * f[i][2];

135

if(i == 0)

{

Ninpol[p+3] *= DOS[p+3];

Noutpol[p+3] *= DOS[p+3];

}

} /* loop E */

return(1);

}

B.21 2DPOLELSCAT.H

int D2polelscat(double f[1000][6], double Ninpolel[1000], double Noutpolel[1000], int m,

double del[1000], int zzz, int Geo, double kpp[1000], double delk[1000], double index, int disp, int y)

{

double Fin0, Fout0, Fin00, Fout00, dEdk3, den00, rado, dEdki2, dEdki3, kxk;

nnn=0;

/* include a loop for each integration variable in this list */

/* E, E1, E2 */

if (y == 1 || disp == 3) polelMatx(f, Ninpolel, Noutpolel, m, del, zzz, Geo, kpp, delk, index, disp, y);

/* LOOP E */

for (i = 0; i <= p; i++)

{

Ninpolel[i] = 0;

Noutpolel[i] = 0;

/* LOOP E1 */

for (ii = 0; ii <= p; ii++)

{

/* LOOP E2 */

for (iii = 0; iii <= p; iii++)

{

f5 = fe[I[i][ii][iii]] + ((fe[I[i][ii][iii]+1] - fe[I[i][ii][iii]]) * fnew[i][ii][iii]);

Fin = f[ii][1] * fe[iii] * (1 + f[i][1]) * (1 - f5); /* took out 1 - f5, 02/13/08*/

Fout = f[i][1] * f5 * (1 + f[ii][1]) * (1 - fe[iii]); /* took out 1 - fe[iii], 02/13/08 */

if(i == 0)

{

Fin0 = f[ii][1] * fe[iii] * (1 - f5) * (1 + f[p+3][1]);

Fout0 = f[p+3][1] * f5 * (1 + f[ii][1]) * (1 - fe[iii]);

}

if(iii == 0)

{

Fin00 = f[ii][1] * fe[p+3] * (1 - f5) * (1 + f[i][1]);

Fout00 = f[i][1] * f5 * (1 + f[ii][1]) * fe[p+3];

}

dNin = dfacel1[i][ii][iii] * Fin;

if (dNin != dNin || dNin > 1e100 || dNin < -1e100)

{

printf("Error in 2Dpolelscat.h, #1.\n");

printf("df1 = %e, Fin = %e\n", dfacel1[i][ii][iii], Fin);

printf("f1 = %e, f2 = %e, f3 = %e, f4 = %e\n", f[i][1], f[ii][1], f[iii][1], fnew[i][ii][iii]);

printf("i = %d, ii = %d, iii = %d, I = %d\n", i, ii, iii, I[i][ii][iii]);

exit(1);

}

dNout = dfacel1[i][ii][iii] * Fout;

Ninpolel[i] += dNin;

Noutpolel[i] += dNout;

if (Ninpolel[i] < 0 || Noutpolel[i] < 0)

{

printf("error in 2Dpolelscat.h, #2\n");

printf("dfac %d = %e\n", i, dfacel1[i][ii][iii]);

printf("Fin = %e, Fout = %e\n", Fin, Fout);

exit(1);

}

if(i == 0)

{

Ninpolel[p+3] += dfacel0[ii][iii] * Fin0;

Noutpolel[p+3] += dfacel0[ii][iii] * Fout0;

}

136

if(iii == 0)

{

Ninpolel[i] += Fin00 * dfacel00[i][ii];

Noutpolel[i] += Fout00 * dfacel00[i][ii];

}

} /* loop E2 */

} /* loop E1 */

Ninpolel[i] *= Xp[i] * f[i][2];

Noutpolel[i] *= Xp[i] * f[i][2];

if(i == 0)

{

Ninpolel[p+3] *= DOS[p+3];

Noutpolel[p+3] *= DOS[p+3];

}

} /* loop E */

return(1);

}

B.22 2DPOLPLASCAT.H

void D2polpscat(double f[1000][6], double Ninph[1000], double Noutph[1000], int m, double del[1000],

int zzz, int Geo, double kpp[1000], double delk[1000], int y, double index, double kcz, int disp)

{

double GQ1in, GQ1out;

double Fq0, Fq00, GQ1in0, GQ1in00, GQ1out0, GQ1out00, Ninph0, Noutph0, r, r1;

double f0;

if (y == 1 || disp == 3)

M2(W, kpp, defpote, defpoth, index, kcz, W0, Wden0, Wden00); /* initialize the scattering rate array */

/* Dp = 4 * pi / (hb * hb * hb * v * v * v); */

Ninph[p+3] = 0;

Noutph[p+3] = 0;

/* LOOP E */

for(i = 0; i <= p; i++)

{

r = 0;

k = kpp[i];

E = f[i][0];

Ninph[i] = 0;

Noutph[i] = 0;

Ninph0 = 0;

Noutph0 = 0;

f0 = f[i][1];

/* dEdk0 = getdEdk(E, k); */ /* use if integrating over energy */

/* LOOP E1 */

for(ii = 0; ii <= p; ii++)

{

r1 = 0; /* made random again 02/12/08 */

k1 = kpp[ii];

E1 = f[ii][0];

dEdk1 = dEdki[ii]; /* getdEdk(E1, k1, disp, index, 0, y); */

/* if(del[i] > (0.01 * kb * T)) 9/19/07 change */

/*f0 = f[i][1]; */ /* findf(i, f, delk, r);*/ /*f[i][1] + ((f[i+1][1] - f[i][1]) * r);*/

/*Determinef4(E, k, f, m, i, zzz, Geo, kpp, delk, del);*/

/* else */

/*f0 = f[i][1] + ((f[i+1][1] - f[i][1]) * r); */

/* if(del[ii] > (0.01 * kb * T)) 9/19/07 change */

f1 = f[ii][1]; /*findf(ii, f, delk, r1);*/ /* Determinef4(E1, k1, f, m, ii, zzz, Geo, kpp, delk, del); */

/*else */

/*f1 = f[ii][1] + ((f[ii+1][1] - f[ii][1]) * r1); */ /* 9/19/07 change */

/* if(f0 < 0) f0 = (f[i-1][1] + f[i][1] + f[i+1][1] + f[i+2][1]) / 4;

if(f1 < 0) f1 = (f[ii-1][1] + f[ii][1] + f[ii+1][1] + f[ii+2][1]) / 4; 9/19/07 change */

if (E != E1)

137

{

Fq = 1 / (exp(fabs(E - E1) / (kb * T)) - 1);

if (E > E1)

{

GQ1in = (1 + f0) * f1 * Fq; /* replace this 6/3/07 */

GQ1out = f0 * (1 + f1) * (1 + Fq); /* and this */

}

else

{

GQ1in = (1 + f0) * f1 * (1 + Fq); /* and this */

GQ1out = f0 * (1 + f1) * Fq; /* and this 6/3/07 */

}

dfac = (Nink[i][ii] + ((Nink[i+1][ii+1] - Nink[i][ii]) * sqrt(r * r + r1 * r1) / sqrt(2))) * kpp[ii] * delk[ii] * 2;

Ninph[i] += dfac * GQ1in;

Noutph[i] += dfac * GQ1out;

/* printf("dfac = %e, GQ1in = %e GQ1out = %e\n", dfac, GQ1in, GQ1out); */

}

/* scattering rate in vs |q|*/ /* uncomment fclose and exit below */

/* if(i == 0 && ii == 0)

{

sprintf(outfile4, "Rvsq.d");

fu = fopen(outfile4, "w");

fprintf(fu, "x ");

for(j = 0 ;j <= p; j++)

fprintf(fu, "%e ", kpp[j]);

fprintf(fu, "\n");

}

if(ii == 0)

fprintf(fu, "%e ", kpp[i]);

if(E == E1 || dfac != dfac || GQ1out != GQ1out)

fprintf(fu,"0 ");

else

fprintf(fu, "%e ", dfac * GQ1out * f[i][2]);

if(ii == p)

fprintf(fu, "\n");*/

if(i == 0 && ii != 0)

Fq0 = 1 / (exp((E1 - f[0][0]) / (kb * T)) - 1);

else

Fq0 = 2 * kb * T / del[0];

if(ii == 0 && i != 0)

Fq00 = 1 / (exp((E - f[0][0]) / (kb * T)) - 1);

else

Fq00 = 2 * kb * T / del[0];

if(i == 0)

{

GQ1out0 = f[p+3][1] * (1 + f1) * Fq0; /* and this */

GQ1in0 = (1 + f[p+3][1]) * f1 * (1 + Fq0); /* and this 6/3/07 */

Ninph[p+3] += W0[ii] * del[ii] * GQ1in0 / (dEdk1 * Wden0[ii]);

Noutph[p+3] += W0[ii] * del[ii] * GQ1out0 / (dEdk1 * Wden0[ii]);

}

if(ii == 0)

{

GQ1in00 = f[p+3][1] * (1 + f0) * Fq00; /* and this 6/3/07 */

GQ1out00 = (1 + f[p+3][1]) * f0 * (1 + Fq00); /* and this */

Ninph0 = W0[i] * GQ1in00 / Wden00[i];

Noutph0 = W0[i] * GQ1out00 / Wden00[i];

}

if (Ninph[i] > 1E100 || Noutph[i] > 1E100 || Ninph[i] != Ninph[i])

{

printf("error in 2Dpolpscat.h\n");

printf("GQ1in = %e, GQ1out = %e, f0 = %e, f1 = %e\n", GQ1in, GQ1out, f0, f1);

printf("Fq = %e, E - E1 = %e\n", Fq, E - E1);

exit(1);

}

/* first E1 if statement */

/* if((i == 0 || i == 1) && ii == 0)

printf("Ninph %e Noutph %e Ninph0 %e Noutph0 %e\n", Ninph[i], Noutph[i], Ninph0, Noutph0);*/

if (Noutph[i] < 0)

{

printf("GQ1 out %e k %e dEdk1 %e dfac %e\n", GQ1out, k, dEdk1, dfac);

printf("i %d ii %d\n", i, ii);

printf("Ninks: %e %e %e \n", Nink[i][ii], Nink[i+1][ii+1], sqrt(r * r + r1 * r1));

printf("f0 = %e f1 = %e\n", f0, f1);

printf("f(i) = %e f(i+1) = %e f(i+2) = %e\n", f[i][1], f[i+1][1], f[i+2][1]);

printf("GQ1in = %e f0 = %e f1 = %e Fq = %e\n", GQ1in, f0, f1, Fq);

138

printf("f(i) = %e f(i+1) = %e f(i+2) = %e r = %e\n", f[30][1], f[31][1], f[32][1], r);

printf("E = %e f(E)= %e\n", E, 1 /(exp((E - mu - f[0][0])/(kb * T)) - 1));

printf("E1 = %e f(E1) = %e\n", E1, 1/(exp((E1 - mu - f[0][0])/(kb * T)) - 1));

printf("E(i) = %e E(i+1) = %e\n", f[30][0], f[31][0]);

exit(1);

}

} /* LOOP E1 */

/* if(i == 1) exit(1);*/

/*

printf("E = %f Eq1 = %f Eq2 = %f\n", E/kb/T, Eq1/kb/T, Eq2/kb/T);

printf("N41 = %1.12f N42 = %1.12f N5 = %1.12f N61 = %1.12f N62 = %1.12f\n", N41, N42, N5, N61, N62);

printf("qGQ1 = %f\n", qGQ1);

printf("qmax1 = %f qmin1 = %f\n", qmax1, qmin1);

printf("GQ1in = %f\n", GQ1in);

printf("qdif1 = %f qdif2 = %f phcoef = %f\n", qdif1, qdif2, phcoef);

printf("Gqtotalin1 = %f GQtotalin2 = %f\n", GQtotalin1, GQtotalin2);

printf("i = %d in = %f out = %f\n\n", i, Ninph[i], Noutph[i]);

*/

/*printf("Nin0 = %e Nout0 = %e Nin = %e Nout = %e\n", Ninph0, Noutph0, Ninph[i], Noutph[i]);*/

Ninph[i] += Ninph0;

Noutph[i] += Noutph0;

Ninph[i] *= f[i][2];

Noutph[i] *= f[i][2];

/*

if(initial == 2 && ((fabs(Ninph[i] - Noutph[i])/ Ninph[i]) > 4e-15))

{

printf("%d LA phonon difference = %e\n", i, fabs(Ninph[i] - Noutph[i])/Ninph[i]);

exit(1);

}

*/

/*printf("%d %e %e\n", i, Ninph[i], Noutph[i]);*/

} /* LOOP E */

/*exit(1);*/

Ninph[p+3] *= DOS[p+3];

Noutph[p+3] *= DOS[p+3];

/*fclose(fu);

exit(1);*/

}

B.23 2DPOLPTASCAT.H

void D2polpTAscat(double f[1000][6], double NinphTA[1000], double NoutphTA[1000], int m, double del[1000],

int zzz, int Geo, double kpp[1000], double delk[1000], int y, double index, double kcz, int disp)

{

double GQ1in, GQ1out;

double Fq0, Fq00, GQ1in0, GQ1in00, GQ1out0, GQ1out00, Ninph0, Noutph0, r, r1;

double f0;

if (y == 1 || disp == 3)

{

if(dopiezo == 1)

MTA2(W, kpp, defpoteT, defpothT, index, kcz, W0TA, Wden0TA, Wden00TA);/* Calculate the scattering matriz elements */

else

MTAPiezo2(W, kpp, defpoteT, defpothT, index, kcz, W0TA, Wden0TA, Wden00TA);

}

/* Dp = 4 * pi / (hb * hb * hb * v * v * v); */

NinphTA[p+3] = 0;

NoutphTA[p+3] = 0;

/* LOOP E */

for(i = 0; i <= p; i++)

{

r = 0;

k = kpp[i];

E = f[i][0];

NinphTA[i] = 0;

NoutphTA[i] = 0;

139

Ninph0 = 0;

Noutph0 = 0;

/* dEdk0 = getdEdk(E, k); */ /* use if integrating over energy */

/* LOOP E1 */

for(ii = 0; ii <= p; ii++)

{

r1 = 0;

k1 = kpp[ii];

E1 = f[ii][0];

dEdk1 = dEdki[ii]; /* getdEdk(E1, k1, disp, index, 0, y); */

/* if(del[i] > (0.01 * kb * T)) 9/19/07 change */

f0 = f[i][1]; /* findf(i, f, delk, r);*/ /*f[i][1] + ((f[i+1][1] - f[i][1]) * r);

*/ /*Determinef4(E, k, f, m, i, zzz, Geo, kpp, delk, del);*/

/* else */

/*f0 = f[i][1] + ((f[i+1][1] - f[i][1]) * r); */

/* if(del[ii] > (0.01 * kb * T)) 9/19/07 change */

f1 = f[ii][1]; /*findf(ii, f, delk, r1);*/ /* Determinef4(E1, k1, f, m, ii, zzz, Geo, kpp, delk, del); */

/*else */

/*f1 = f[ii][1] + ((f[ii+1][1] - f[ii][1]) * r1); */ /* 9/19/07 change */

/* if(f0 < 0) f0 = (f[i-1][1] + f[i][1] + f[i+1][1] + f[i+2][1]) / 4;

if(f1 < 0) f1 = (f[ii-1][1] + f[ii][1] + f[ii+1][1] + f[ii+2][1]) / 4; 9/19/07 change */

if (E != E1)

{

Fq = 1 / (exp(fabs(E - E1) / (kb * T)) - 1);

if (E > E1)

{

GQ1in = (1 + f0) * f1 * Fq;

GQ1out = f0 * (1 + f1) * (1 + Fq);

}

else

{

GQ1in = (1 + f0) * f1 * (1 + Fq);

GQ1out = f0 * (1 + f1) * Fq;

}

dfac = (NinkTA[i][ii] + ((NinkTA[i+1][ii+1] - NinkTA[i][ii]) * sqrt(r * r + r1 * r1) / sqrt(2))) * kpp[ii] * delk[ii] * 2;

NinphTA[i] += dfac * GQ1in;

NoutphTA[i] += dfac * GQ1out;

/* printf("dfac = %e, GQ1in = %e GQ1out = %e\n", dfac, GQ1in, GQ1out); */

}

/* scattering rate in vs |q|*/ /* uncomment fclose and exit below */

/* if(i == 0 && ii == 0)

{

sprintf(outfile4, "Rvsq.d");

fu = fopen(outfile4, "w");

fprintf(fu, "x ");

for(j = 0 ;j <= p; j++)

fprintf(fu, "%e ", kpp[j]);

fprintf(fu, "\n");

}

if(ii == 0)

fprintf(fu, "%e ", kpp[i]);

if(E == E1 || dfac != dfac || GQ1out != GQ1out)

fprintf(fu,"0 ");

else

fprintf(fu, "%e ", dfac * GQ1out * f[i][2]);

if(ii == p)

fprintf(fu, "\n");*/

if(i == 0 && ii != 0)

Fq0 = 1 / (exp((E1 - f[0][0]) / (kb * T)) - 1);

else

Fq0 = 2 * kb * T / del[0];

if(ii == 0 && i != 0)

Fq00 = 1 / (exp((E - f[0][0]) / (kb * T)) - 1);

else

Fq00 = 2 * kb * T / del[0];

if(i == 0)

{

GQ1out0 = f[p+3][1] * (1 + f1) * Fq0; /* and this */

GQ1in0 = (1 + f[p+3][1]) * f1 * (1 + Fq0); /* and this 6/3/07 */

NinphTA[p+3] += W0TA[ii] * del[ii] * GQ1in0 / (dEdk1 * Wden0TA[ii]);

NoutphTA[p+3] += W0TA[ii] * del[ii] * GQ1out0 / (dEdk1 * Wden0TA[ii]);

140

}

if(ii == 0)

{

GQ1in00 = f[p+3][1] * (1 + f0) * Fq00; /* and this 6/3/07 */

GQ1out00 = (1 + f[p+3][1]) * f0 * (1 + Fq00); /* and this */

Ninph0 = W0TA[i] * GQ1in00 / Wden00TA[i];

Noutph0 = W0TA[i] * GQ1out00 / Wden00TA[i];

}

if (NinphTA[i] > 1E100 || NoutphTA[i] > 1E100 || NinphTA[i] != NinphTA[i])

{

printf("error in 2Dpolpscat.h\n");

printf("GQ1in = %e, GQ1out = %e, f0 = %e, f1 = %e\n", GQ1in, GQ1out, f0, f1);

printf("Fq = %e, E - E1 = %e\n", Fq, E - E1);

exit(1);

}

/* first E1 if statement */

/* if((i == 0 || i == 1) && ii == 0)

printf("Ninph %e Noutph %e Ninph0 %e Noutph0 %e\n", Ninph[i], Noutph[i], Ninph0, Noutph0);*/

if (NoutphTA[i] < 0)

{

printf("GQ1 out %e k %e dEdk1 %e dfac %e\n", GQ1out, k, dEdk1, dfac);

printf("i %d ii %d\n", i, ii);

printf("Ninks: %e %e %e \n", NinkTA[i][ii], NinkTA[i+1][ii+1], sqrt(r * r + r1 * r1));

printf("f0 = %e f1 = %e\n", f0, f1);

printf("f(i) = %e f(i+1) = %e f(i+2) = %e\n", f[i][1], f[i+1][1], f[i+2][1]);

printf("GQ1in = %e f0 = %e f1 = %e Fq = %e\n", GQ1in, f0, f1, Fq);

printf("f(i) = %e f(i+1) = %e f(i+2) = %e r = %e\n", f[30][1], f[31][1], f[32][1], r);

printf("E = %e f(E)= %e\n", E, 1 /(exp((E - mu - f[0][0])/(kb * T)) - 1));

printf("E1 = %e f(E1) = %e\n", E1, 1/(exp((E1 - mu - f[0][0])/(kb * T)) - 1));

printf("E(i) = %e E(i+1) = %e\n", f[30][0], f[31][0]);

exit(1);

}

} /* LOOP E1 */

/* if(i == 1) exit(1);*/

/*

printf("E = %f Eq1 = %f Eq2 = %f\n", E/kb/T, Eq1/kb/T, Eq2/kb/T);

printf("N41 = %1.12f N42 = %1.12f N5 = %1.12f N61 = %1.12f N62 = %1.12f\n", N41, N42, N5, N61, N62);

printf("qGQ1 = %f\n", qGQ1);

printf("qmax1 = %f qmin1 = %f\n", qmax1, qmin1);

printf("GQ1in = %f\n", GQ1in);

printf("qdif1 = %f qdif2 = %f phcoef = %f\n", qdif1, qdif2, phcoef);

printf("Gqtotalin1 = %f GQtotalin2 = %f\n", GQtotalin1, GQtotalin2);

printf("i = %d in = %f out = %f\n\n", i, Ninph[i], Noutph[i]);

*/

/*printf("Nin0 = %e Nout0 = %e Nin = %e Nout = %e\n", Ninph0, Noutph0, Ninph[i], Noutph[i]);*/

NinphTA[i] += Ninph0;

NoutphTA[i] += Noutph0;

NinphTA[i] *= f[i][2];

NoutphTA[i] *= f[i][2];

/*

if(initial == 2 && ((fabs(NinphTA[i] - NoutphTA[i]) / NinphTA[i]) > 4e-15))

{

printf(" %d TA phonon difference = %e \n", fabs(NinphTA[i] - NoutphTA[i]) / NinphTA[i]);

exit(1);

}

*/

/*printf("%d %e %e\n", i, Ninph[i], Noutph[i]);*/

} /* LOOP E */

/*exit(1);*/

NinphTA[p+3] *= DOS[p+3];

NoutphTA[p+3] *= DOS[p+3];

/*fclose(fu);

exit(1);*/

}

B.24 FVSESAVE.H

int fvsEsave(double del[1000], int xx, double N[1000], double f[1000][6], double Nin[1000],

141

double Nout[1000], double tau, double taut, char dataname[25], double Etotal,

int Norf, const char fname[12], int y, int o, double Ntotal, int Geo, double kpp[1000], double Ninpol[1000],

double Ninpolel[1000], double Ninph[1000], double Avetau[1])

/*, double data[200], double delk[1000]) */

{

Tmid = Ntotal * pi * hb * hb * eC / (dg * (Me + Mh) * em * kb);

if(y == 1 || y == 2 || y == o)

{

sprintf(outfile1, "fvsEdata.%d.d", xx);

fq = fopen(outfile1, "w");

if (scattype == 13 || scattype == 15)

fprintf(fq, "Energy DOS Number Occ# Nin-Nout Nin Nout Ninpolel Ninph\n");

else if (scattype == 14)

fprintf(fq, "Energy DOS Number Occ# Nin-Nout Nin Nout Ninpol Ninph Ninpolel\n");

else

fprintf(fq, "Energy DOS Number Occ# Nin-Nout Nin Nout Ninpol Ninph\n");

if (scattype == 13 || scattype == 15)

fprintf(fq, "%e %e %e %e %e %e %e %e %e\n",

f[0][0]/(kb*T), DOS[p+3], N[p+3], f[p+3][1], Nin[p+3] - Nout[p+3], Nin[p+3], Nout[p+3], Ninpolel[p+3], Ninph[p+3]);

else if (scattype == 14)

fprintf(fq, "%e %e %e %e %e %e %e %e %e %e\n",

f[0][0]/(kb*T), DOS[p+3], N[p+3], f[p+3][1], Nin[p+3] - Nout[p+3], Nin[p+3], Nout[p+3], Ninpol[p+3], Ninph[p+3], Ninpolel[p+3]);

else

fprintf(fq, "%e %e %e %e %e %e %e %e %e\n",

f[0][0]/(kb * T), DOS[p+3], N[p+3], f[p+3][1], Nin[p+3] - Nout[p+3], Nin[p+3], Nout[p+3], Ninpol[p+3], Ninph[p+3]);

for (mmm = 0; mmm <= p; mmm++)

{

if (scattype == 13 || scattype == 15)

fprintf(fq, "%e %e %e %e %e %e %e %e %e\n",

f[mmm][0] / (kb * T), DOS[mmm], N[mmm]/del[mmm], f[mmm][1], Nin[mmm] - Nout[mmm], Nin[mmm], Nout[mmm], Ninpolel[mmm], Ninph[mmm]);

else if (scattype == 14)

fprintf(fq, "%e %e %e %e %e %e %e %e %e %e\n",

f[mmm][0] / (kb * T), DOS[mmm], N[mmm]/del[mmm], f[mmm][1], Nin[mmm] - Nout[mmm],

Nin[mmm], Nout[mmm], Ninpol[mmm], Ninph[mmm], Ninpolel[mmm]);

else

fprintf(fq, "%e %e %e %e %e %e %e %e %e\n",

f[mmm][0] / (kb * T), DOS[mmm], N[mmm]/del[mmm], f[mmm][1], Nin[mmm] - Nout[mmm],

Nin[mmm], Nout[mmm], Ninpol[mmm], Ninph[mmm]);

}

fclose(fq);

}

if (xx == 0)

{

sprintf(outfile2, fname);

fr = fopen(outfile2, "w");

fprintf(fr, fname);

fprintf(fr, "\nNtotal = %e\n", Ntotal);

fprintf(fr, "\nave E = %f", Etotal / kb / T / Ntotal);

fprintf(fr, "\np = %d\n", p);

fprintf(fr, "uprate = %f\n", uprate[0]);

fprintf(fr, "GQp = %d\n", GQp);

fprintf(fr, "Geo = %d\n", Geo);

fprintf(fr, "initial = %d\n", initial);

fprintf(fr, "qo = %e Ne = %e\n", qo[0], Ne[0]);

fprintf(fr, "count = %d\n", count);

fprintf(fr, "delc = %d\n", delc);

142

fprintf(fr, "disp = %d\n", disp);

fprintf(fr, "iterations = %d\n", o);

fprintf(fr, "Norf = %d\n", Norf);

fprintf(fr, "GQp = %d\n", GQp);

fprintf(fr, "Geo = %d\n", Geo);

fprintf(fr, "scattype = %d\n", scattype);

fprintf(fr, "statype = %d\n", statype);

fprintf(fr, "T = %f, TTT = %f\n", T, TTT[0]);

fprintf(fr, "%d ", 0);

for (mmm = 0; mmm <= p; mmm++)

fprintf(fr, "%e ", del[mmm]);

fprintf(fr, "\n");

fprintf(fr, "0 "); /* energy points on mesh */

for (mmm = 0; mmm <= p; mmm++)

fprintf(fr, "%e ", (f[mmm][0] - f[0][0])*1000); /* displays Energy in meV */

fprintf(fr, "tau ");

fprintf(fr, "Etotal/kb/T ");

fprintf(fr, "Stime[0] ");

fprintf(fr, "Stime[(p-2)/2] ");

fprintf(fr, "Stime[p-2] ");

fprintf(fr, "Stime[p+3] ");

fprintf(fr, "taut ");

fprintf(fr, "Tmid/log(1+f[0][1]) "); /* temperature for an equilibrium distribution, numerator related to n and nQ, 0.00045401*/

fprintf(fr, "Nscat[1] Nscat[p/2] Nout[1] Nout[p/2] ");

fprintf(fr, "Nin[0]/N[0] ");

fprintf(fr, "Ntau ");

fprintf(fr, "Ntotal ");

fprintf(fr, "Uprate ");

fprintf(fr, "Avetau ");

if (disp == 3)

fprintf(fr, "Every_other_line_is_Renormalized_energies");

fprintf(fr, "\n");

if (Geo == 5)

fprintf(fr,"%e ", kpp[0]);

else

fprintf(fr,"%e ", (f[0][0]/(kb * T)));

for (mmm = 0; mmm <= p; mmm++)

{

if (Geo == 5)

fprintf(fr,"%e ", kpp[mmm]);

else

fprintf(fr,"%e ", (f[mmm][0]/(kb * T)));

}

fprintf(fr,"\n");

}

if (Norf == 1)

{

fprintf(fr, "%e ", N[p+3]);

for (mmm = 0; mmm <= p+3; mmm++)

/* fprintf(fr, "%e ", f[mmm][3]); */

fprintf(fr, "%e ", N[mmm]/del[mmm]); /* N/E */

}

else

{

fprintf(fr, "%e ", (f[p+3][1]));

for (mmm = 0; mmm <= p; mmm++)

fprintf(fr, "%e ", (f[mmm][1]));

}

fprintf(fr, "%1.6f ", tau);

fprintf(fr, "%1.6f ", Etotal / kb / T);

fprintf(fr, "%e ", Stime[0]);

fprintf(fr, "%e ", Stime[(p-2)/2]);

fprintf(fr, "%e ", Stime[p-2]);

fprintf(fr, "%e ", Stime[p+3]);

fprintf(fr, "%e ", taut);

fprintf(fr, "%e ", Tmid / log (1 + f[0][1])); /* temperature for an equilibrium distribution, numerator related to n and nQ, 0.00045401*/

fprintf(fr, "%e %e %e %e ", Nscat[1], Nscat[p/2], Nout[1], Nout[p/2]);

fprintf(fr, "%e ", Nin[0] / N[0]);

fprintf(fr, "%e ", Ntau);

fprintf(fr, "%e ", Ntotal);

fprintf(fr, "%e ", uprate[0]);

fprintf(fr, "%e ", Avetau[0]);

if (disp == 3)

{

fprintf(fr, "\n");

fprintf(fr, "0 ");

for (mmm = 0; mmm <= p; mmm++)

fprintf(fr, "%e ", (f[mmm][0] - f[0][0]) * 1000); /* displays energy in meV */

143

}

fprintf(fr, "\n");

/*

if (xx == o)

{

fprintf(fr, "program time (in hours) = %f\n", (float)(clock())/3600000000); */

if (y == o)

{

fprintf(fr, "%e ", (double)(f[p+3][1]));

for (mmm = 0; mmm <= p; mmm++)

fprintf(fr, "%e ", (double)(f[mmm][1]));

fprintf(fr, "final uprate = %e ", uprate[0]);

fclose(fr);

}

return(1);

}

B.25 GAULEG.H

#include <math.h>

#define EPS 3.0e-11

void gauleg(float x1, float x2, double yy[], double ww[], int n)

{

int m,j,i;

double z1,z,xm,xl,pp,p3,p2,p1;

m=(n+1)/2;

xm=0.5*(x2+x1);

xl=0.5*(x2-x1);

for (i = 1; i <= m; i++)

{

z=cos(3.141592654*(i-0.25)/(n+0.5));

do

{

p1=1.0;

p2=0.0;

for (j=1;j<=n;j++)

{

p3=p2;

p2=p1;

p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;

}

pp=n*(z*p1-p2)/(z*z-1.0);

z1=z;

z=z1-p1/pp;

}

while (fabs(z-z1) > EPS);

yy[i]=xm-xl*z;

yy[n+1-i]=xm+xl*z;

ww[i]=2.0*xl/((1.0-z*z)*pp*pp);

ww[n+1-i]=ww[i];

}

}

#undef EPS

B.26 INITIATE.H

int initiate(int initial, double del[1000], int p, double DOS[1000], int m, double f[1000][6], double Nin[1000],

double Nout[1000], double N[1000], double mu, double hw, double expp, double Tm, int statype, double Ec, double indexr)

{

switch(initial)

144

{

case 0:

fromfile(f, del, expp, indexr, 1);

break;

case 1:

uniformfvsE(del, p, DOS, m, f, N, expp, Tm, indexr, 1);

break;

case 2:

boltzmannfvsE(del, p, DOS, f, N, expp, statype, indexr, 1);

break;

case 3:

phononfvsE(p, b);

gaussianfvsE(del, p, f, No, expp, Ec, indexr, 1);

break;

case 4:

gaussianfvsE(del, p, f, No, expp, Ec, indexr, 1);

break;

case 5:

exit(1);

case 6:

neareq(del, p, DOS, f, N, expp, indexr, 1);

break;

case 7:

pulsefvsE(del, p, DOS, f, N, expp, statype, indexr, 1);

break;

case 8:

pulsegaussianfvsE(del, p, f, No, expp, Ec, indexr, 1);

break;

case 9:

pulseflatf(del, p, DOS, f, N, expp, indexr, 1);

break;

}

return(1);

}

B.27 SCAT.H

int scatter(int scattype, double f[1000][6], double Nin[1000], double Nout[1000],

int m, int zzz, double del[1000], int Geo, double kpp[1000], double delk[1000], int y, double indexr, double kcz, int disp)

{

switch(scattype)

{

case 1:

D3bosescat(f, Nin, Nout, m, Geo, kpp, delk); /* boson-boson scattering */

break;

case 2:

D2bosescat(f, Ninbos, Noutbos, m, del, zzz, Geo, kpp, delk);

for(i = 0; i <= p; i++)

{

Nin[i] = Ninbos[i];

Nout[i] = Noutbos[i];

}

Nin[p+3] = Ninbos[p+3];

Nout[p+3] = Noutbos[p+3];

break;

case 3:

D3xpEexchange(f, b, Nin, Nout, del, zzz, Geo, kpp, delk);

break;

145

case 4:

/* D2xpEexchange(f, b, Nin, Nout, del, zzz, Geo, kpp, delk);

break;

*/

D2bospscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y);

for(i = 0; i <= p; i++)

{

Nin[i] = Ninph[i];

Nout[i] = Noutph[i];

}

Nin[p+3] = Ninph[p+3];

Nout[p+3] = Noutph[p+3];

break;

case 5:

GQtest(f, Nin, Nout, m, del, zzz, Geo, kpp, delk);

break;

case 6:

if (y == 1) polfrac();

D2polscat(f, Ninpol, Noutpol, m, del, zzz, Geo, kpp, delk, indexr, disp, y);

for (i = 0; i <= p; i++)

{

Nin[i] = Ninpol[i];

Nout[i] = Noutpol[i];

}

Nin[p+3] = Ninpol[p+3];

Nout[p+3] = Noutpol[p+3];

break;

case 7:

if (y == 1) polfrac();

D2polpEexchange(f, b, Nin, Nout, del, zzz, Geo, kpp, delk, indexr, disp, y);

break;

case 8:

if (y == 1) polfrac();

D2polpscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

D2polpTAscat(f, NinphTA, NoutphTA, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

for (i = 0; i <= p; i++)

{

Nin[i] = Ninph[i] + (2 * NinphTA[i]);

Nout[i] = Noutph[i] + (2 * NoutphTA[i]);

}

Nin[p+3] = Ninph[p+3] + NinphTA[p+3];

Nout[p+3] = Noutph[p+3] + NoutphTA[p+3];

break;

case 9:

if (y == 1) polfrac();

D2polscat(f, Ninpol, Noutpol, m, del, zzz, Geo, kpp, delk, indexr, disp, y);

D2polpscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

D2polpTAscat(f, NinphTA, NoutphTA, m, del, zzz, Geo, kpp, delk,y, indexr, kcz, disp);

for (i = 0; i <= p; i++)

{

Nin[i] = Ninph[i] + Ninpol[i] + (2 * NinphTA[i]);

Nout[i] = Noutph[i] + Noutpol[i] + (2 * NoutphTA[i]);

}

Nin[p+3] = Ninph[p+3] + Ninpol[p+3] + (2 * NinphTA[p+3]);

Nout[p+3] = Noutph[p+3] + Noutpol[p+3] + (2 * NoutphTA[p+3]);

break;

case 10:

D3fermiscat(f, Nin, Nout, m, Geo, kpp, delk); /* 3D fermi scattering */

break;

case 11:

if (y == 1) polfrac();

D2polscat(f, Ninpol, Noutpol, m, del, zzz, Geo, kpp, delk, indexr, disp, y);

D2polpscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

D2polFscat(f, NinphF, NoutphF, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

for(i = 0; i <= p; i++)

{

Nin[i] = Ninph[i] + Ninpol[i] + NinphF[i];

if(Nin[i] != Nin[i] || Nin[i] > 1e50 || Nin[i] < -1e50)

{

printf("i = %d, Ninph = %e, Ninpol = %e, NinphF = %e\n", i, Ninph[i], Ninpol[i], NinphF[i]);

exit(1);

}

Nout[i] = Noutph[i] + Noutpol[i] + NoutphF[i];

}

146

Nin[p+3] = Ninph[p+3] + Ninpol[p+3] + NinphF[p+3];

Nout[p+3] = Noutph[p+3] + Noutpol[p+3] + NoutphF[p+3];

break;

case 12:

D2bosescat(f, Ninbos, Noutbos, m, del, zzz, Geo, kpp, delk);

D2bospscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y);

for (i = 0; i <= p; i++)

{

Nin[i] = Ninph[i] + Ninbos[i];

Nout[i] = Noutph[i] + Noutbos[i];

}

Nin[p+3] = Ninph[p+3] + Ninbos[p+3];

Nout[p+3] = Noutph[p+3] + Noutbos[p+3];

break;

case 13:

if (y == 1) polfrac();

D2polelscat(f, Ninpolel, Noutpolel, m, del, zzz, Geo, kpp, delk, indexr, disp, y);

D2polpscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

D2polpTAscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

for(i = 0; i <= p; i++)

{

Nin[i] = Ninph[i] + Ninpolel[i] + (2 * NinphTA[i]);

Nout[i] = Noutph[i] + Noutpolel[i] + (2 * NoutphTA[i]);

}

Nin[p+3] = Ninph[p+3] + Ninpolel[p+3] + (2 * NinphTA[p+3]);

Nout[p+3] = Noutph[p+3] + Noutpolel[p+3] + (2 * NoutphTA[p+3]);

break;

case 14:

if (y == 1) polfrac();

D2polelscat(f, Ninpolel, Noutpolel, m, del, zzz, Geo, kpp, delk, indexr, disp, y);

D2polpscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

D2polpTAscat(f, Ninph, Noutph, m, del, zzz, Geo, kpp, delk, y, indexr, kcz, disp);

D2polscat(f, Ninpol, Noutpol, m, del, zzz, Geo, kpp, delk, indexr, disp, y);

for(i = 0; i <= p; i++)

{

Nin[i] = Ninpol[i] + Ninpolel[i] + Ninph[i] + (2 * NinphTA[i]);

Nout[i] = Noutpol[i] + Noutpolel[i] + Noutph[i] + (2 * NoutphTA[i]);

}

Nin[p+3] = Ninpol[p+3] + Ninpolel[p+3] + Ninph[p+3] + (2 * NinphTA[p+3]);

Nout[p+3] = Noutpol[p+3] + Noutpolel[p+3] + Noutph[p+3] + (2 * NoutphTA[p+3]);

break;

case 15:

if (y == 1) polfrac();

D2polelscat(f, Ninpolel, Noutpolel, m, del, zzz, Geo, kpp, delk,indexr, disp, y);

for(i = 0; i <= p; i++)

{

Nin[i] = Ninpolel[i];

Nout[i] = Noutpolel[i];

}

Nin[p+3] = Ninpolel[p+3];

Nout[p+3] = Noutpolel[p+3];

break;

}

return(1);

}

147

APPENDIX C

CODE USER MANUAL

C.1 INTRODUCTION

The function of this code is to take a nonequilibrium distribution of particles and simulate

how the particles interact with each other and a lattice. The goal is to see what the steady

state solution is for a particular density and how long that steady state takes to come

about in simulated time. The code has the following organization chart, Figure C.1. As

can be seen on the chart the main program uses three functions to start the calculation,

variables.h, constants.h, and parameters.h. In this Appendix, words in italics are functions

and boldface words are variables. Once the program has been initialized the code simply

runs through a loop that calculates the scattering based on the types of scattering the user

wants, scat.h, updating the occupation numbers or densities based on the scattering rates

and time step, updatef.h, and finally saving the values of the calculation at defined iteration

intervals, fvsEsave.h.

148

C.2 HEADER FUNCTIONS

C.2.1 Inputs

Variables.h is a collection of global variables. These are global quantites that the calculation

uses but do not need to be set to any particular value at the beginning. For example, the

gaussian quadrature weights, ww[], are calculated when the code runs. Since the

code allows one to set the number of points used in the gaussian quadrature it

would be impossible to set these values firmly at the beginning. Many of these

variables have their definition as a comment to their right. There should be no

reason to change these variables unless new code is added. The variables are

listed in alphabetical order.

Constants.h is a collection of physcial constants. These are definite constants

like vc, the speed of light, as well as material constants like einf, the dielectric

constant of a material (like GaAs). All of these quantities have their definition

to their right. The physcial constants should not need to be changed unless more

precision is desired. The material constants and environmental constants should

be set as is appropriate. The quantities are listed in alphabetical order.

Parameters.h holds constants specific to a particular run of the code. Many

are flags used by the code so that it can follow correct path. Examples of these

are o, the number of iterations to be done, and fname[], the name of the file to be

recorded. All of these quantites have their definition to their right. Since these

are the main user inputs a detailed explanation of these values will be given.

The variables are listed in alphabetical order.

counts-The number of iterations the code performs between saving the values

of the calculation. The program generates an enormous amount of numerical

data at each iteration. To save all of this information would quickly fill up all

the available space in a file.

delc-(flag)The way the mesh is distributed. The code can set up a variety of

meshes. Most of the meshes are set up so that there are more points near E=0

149

and fewer points at the highest energies. xxx Do the calculations of why specific

formulas are used need to be presented? xxx

disp - (flag)The kind of dispersion used in the calculation.

g - The rate at which particles are added when simulating states being uni-

formly pumped.

Geo - (flag)The geography for the simulation.

GQp - The number of points used in the gaussian quadrature procedure.

hw - The difference in energy levels for a harmonic potential.

inj - The rate at which particles are added when simulating state being

pumped with a gaussian profile.

initial - (flag)The type of pumping to be used during the simulation.

kbp - I don’t believe this is currently used, however, I am reluctant to remove

anything from the code.

kxy - The input wavevector if pumping polaritons at a specific k value.

maxkp - The maximum value for the wavevector. Used for polaritons. Used

by del.h.

maxkT - The maximum value for the energy in units of kT. Used for excitons.

Used by del.h.

maxtime - The maximum amount of simulated time that will be run. The

code changes the time step based on how close to equilibrium the system is.

The time steps get closer as equilibrium is approached. This value reduces the

amount run time the calculation requires if equilibrium is reached.

mu - The chemical potential in units of kT.

fname[] - The name of the main file to be created. Note, there are other files

created by the code called ‘fvsEsave’ files. These files are generally overwritten

each time the code is run and have been used to monitor how well the code is

working.

ynum[] - Used to monitor output of the code.

Norf - (flag)Specifies whether the code records the density of the particles or

the occupation number of the states.

150

o - The total number of iterations the code runs through.

p - The number of points on the mesh.

pulseT - The length of simulation time that a pump pulse lasts.

qo - The screening parameter.

Sa - The area of the two dimensional system being considered.

scattype -(flag)The type of scattering that is simulated by the code. See the

Scattering subsection below.

statype - (flag)The type of statistics used, Boson or Fermions.

uprate - The fraction of particles that get moved around by the scattering.

At most this value can be one.

TT - Used for simulating a system of particles that are not in equilibrium

with the lattice(T).

C.2.2 Initialization

The main program then takes the inputs and makes the calculations necessary

to start the simulation. Primarily it sets up the mesh and provides an initial

population based on the type of pumping being simulated.

initiate.h is the primary function called to perform this. It then calls the

necessary subfunctions.

del.h creates the mesh and defines del[] and f[][]. For polaritons it also calcu-

lates kpp[].

DOS.h calculates the density of states for the system.

pulseflat.h pumps each point on the mesh equally.

pulseflat.h pumps each point on the mesh equally up to a certain cutoff. The

cutoff is relative to the ground state and is set within the function itself.

pulsegauss.h pumps the system with a gaussian distribution along the mesh.

pulseadd.h pumps the system with an equilibrium distribution based on what

stattype is.

fromfile.h reads the initials occupation numbers or densities for the mesh

151

from a saved file. The number of points on the mesh must be equal to the

number of points in the file.

neareq.h pumps the system with a distribution that is nearly in equilbrium.

C.2.3 Scattering

After the simulation has been initialized and at the beginning of each iteration

it calculates the scattering rate based on the current occupation levels. scat.h

is the primary function that directs this part of the calculation.

2Dbosescat.h - Used for the scattering rate of two dimensional excitons with

two dimensional excitons.

2Dbospscat.h - Used for the scattering rate fo two dimensional excitons with

three dimensional acoustic phonons.

2Dharmscat.h - Used for the scattering of particles in a trap.

2DpolFscat.h - Used for scattering two dimensional polaritons with three

dimensional optical phonons.

2DpolpEexchange.h -

3Dbosescat - Used for scattering three dimensional excitons with three di-

mensional excitons.

3Dfermiscat - Used for scattering three dimensional fermions with three

dimensional fermions.

3DxpEexchange.h -

polpMatx.h calculates the matrix element of polaritons scattering with acous-

tic phonons.

polFMatx.h calculates the matrix element of polaritons scattering with opti-

cal phonons.

The calculations of the matrix elements for excitons scattering with exci-

tons and polaritons scattering with polaritons is written into their respective

scattering functions.

152

C.2.4 Updating

Once the scattering has been determined one function, updatef.h, is called to

change the occupation levels at each point in the mesh. While making the

changes to the occupation numbers the time step is also determined. Using this

time step, pumping and lifetime effects are calculated.

C.2.5 Renormalization

Using the new occupation level polReNorm.h can be called. For polaritons it

can be used to calculate the shift in energies due to particle-particle interaction

and phase space filling.

The new energy dispersion can be degenerate. MinEn.h finds the mimimum

of the new dispersion relationship.

C.2.6 Saving

fvsEsave.h is used to record the calculation’s results. It has two functions. The

first is to store some of the initial values of the calculation in a fvsEsave.d file.

These files are used to monitor the quality of the calculation. The main file is the

one put in the variable fname[]. This file stores some of the starting parameter

values. After these values it stores the energy steps on the mesh, the energy

points on the mesh, the wavevector equivalents on the mesh in successive lines.

Then each line thereafter has the density or occupation number (depending on

what Norf is set to) for each point on the mesh. At the end of each line values

of the simulated time and total density are stored. Thus a grid is set up so that

the values in each column fall under the mesh point to which they correspond.

Each row repsresents the calculation at some iteration and the simulated time

can be found near the end of the row. If disp = 3 then every other row is the

new dispersion relationship.

153

C.2.7 Miscellaneous Functions

Errors.h contains all errors functions.

gauleg.h has the code for calculating the weights and points used for Gaussian

Quadrature. [24]

polfraction.h calculates the excitonic fraction of the polaritons along the

mesh.

polpara.h calculates the ~kz constant for the calculation.

154

 Integrate.c

* User Input * Parameters.h

 compile and execute

 * Create n(k) and mesh* Initiate.h fromfile.h del.h DOS.h getdEdk.h *or*

 pulseflat.h del.h DOS.h getdEdk.h

 * Save Results * fvsEsave.h

*determine dn(k)/dt * Scat.h polfraction.h 2Dpolscat.h getk3.h *or*

 2Dpolpscat.h polpMatx.h getk3.h

 * make new n(k) * Updatef.h

 fvsEsave.h

Figure C1: A flow chart of the main code

155

BIBLIOGRAPHY

[1] CHRISTOPOULOS, S., VON HOGERSTHAL, G. B. H., GRUNDY, A.,
LAGOUDAKIS, P., KAVOKIN, A., et al.,

Phys Rev Lett 98 (2007) 126405.

[2] ADACHI, S.,
J Appl Phys 58 (1985) R1.

[3] GEHRSITZ, S., REINHART, F., GOURGON, C., HERRES, N., VONLAN-
THEN, A., et al.,

J Appl Phys 87 (1987) 7825.

[4] BLAKEMORE, J.,
J Appl Phys 53 (1982) p. 10.

[5] JENKINS, D.,
J Appl Phys 68 (1990) 1848.

[6] SNOKE, D. W.,
Solid State Physics: Essential Concepts,
Addison-Wesley, 2008.

[7] ASPNES, D.,
Phys Rev B 14 (1976) p. 5331.

[8] ANDREANI, L. and PASQUARELLO, A.,
Phys Rev B 42 (1990) p. 8928.

[9] HOPFIELD, J.,
Phys Rev 112 (1958) 1555.

[10] KOSTERLITZ, J. and THOULESS, D.,
J Phys C 6 (1973) 1181.

[11] SAVONA, V. and SARCHI, D.,
Physica Status Solidi(b) 242 (2005) 2290.

156

[12] TASSONE, F., PIERMAROCCHI, C., SAVONA, V., QUATTROPANI, A.,
and SCHWENDIMANN, P.,

Phys Rev B 56 (1997) 7554.

[13] MULLER, M., BLEUSE, J., ANDREA, R., and ULMER-TUFFIGO, H.,
Physica B 272 (1999) 476.

[14] TARTAKOVSKII, A., EMAM-ISMAIL, M., STEVENSON, R., SKOLNIC,
M., ATRATOV, V., et al.,

Phys Rev B 62 (2000) R2283.

[15] DENG, H., WEIHS, G., SNOKE, D., BLOCH, J., and YAMAMOTO, Y.,
PNAS 100 (2003) 15318.

[16] WEIHS, G., DENG, H., SNOKE, D., and YAMAMOTO, Y.,
Phys Stat Sol 201 (2004) 625.

[17] NEGOITA, V., SNOKE, D., and EBERL, K.,
App Phys Lett 14 (1999) 2059.

[18] BALILI, R., SNOKE, D., PFEIFFER, L., and WEST, K.,
App Phys Lett 88 (2006) 031110.

[19] HOHENBERG, P.,
Phys Rev 158 (1967) 383.

[20] BAGNATO, V. and KLEPPNER, D.,
Phys Rev A 44 (1991) p. 7439.

[21] BERMAN, O., LOZOVIK, Y., and SNOKE, D.,
Phys Rev B 77 (2008) 155317.

[22] DALFOVO, F., GIORGINI, S., PITAEVSKII, L., and STRINGARI, S.,
Rev Mod Phys 71 (1999) 463.

[23] BANYAI, L.,
Private Communication (2004).

[24] PRESS, W., FLANNERY, B., TEUKOLSKY, S., and VETTERLING, W.,
Numerical Recipes in C:The Art of Scientific Computing,
Press Syndicate of the University of Cambridge, 2nd edition, 1992.

[25] CIUTI, C., SAVONA, V., PIERMAROCCHI, C., QUATTROPANI, A., and
SCHWENDIMANN, P.,

Phys Rev B 58 (1998) 7926.

[26] TASSONE, F. and YAMAMOTO, Y.,
Phys Rev B 59 (1999) 10830.

157

[27] PIERMAROCCHI, C., TASSONE, F., SAVONA, V., and QUATTROPANI,
A.,

Phys Rev B 53 (1996) 15834.

[28] BASTARD, G. and BRUM, J.,
IEEE Journal of Quantum Electronics QE-22 (1986) 1625.

[29] PAU, S., BJORK, G., JACOBSON, J., CAO, H., and YAMAMOTO, Y.,
Phys Rev B 51 (1995) 7090.

[30] SNOKE, D.,
Phys Rev B 44 (1991) 2991.

[31] PIKKUS, G. and BIR, G.,
Fiz Tverd Tela 1 (1959) 1642.

[32] ADACHI, S.,
GaAs and Related Materials: Bulk Semiconducting and Superlattice Prop-

erties,
World Scientific, 1994.

[33] ARLT, G. and QUADFLIEG, P.,
Phys. Status Solidi 25 (1968) p. 323.

[34] MALPUECH, G., KAVOKIN, A., CARLO, A. D., and BAUMBERG, J.,
Phys Rev B 65 (2002) 153310.

[35] SNOKE, D.,
Phys Rev B 50 (1994) 11583.

[36] SNOKE, D. and WOLFE, J.,
Phys Rev B 39 (1989) 4030.

[37] TASSONE, F., PIERMAROCCHI, C., SAVONA, V., QUATTROPANI, A.,
and SCHWENDIMANN, P.,

Phys Rev B 53 (1996) R7642.

[38] MALPUECH, G., RUBO, Y., LAUSSY, F., BIGENWALD, P., and KA-
VOKIN, A.,

Semicond Sci Techno 18 (2003) S395.

[39] RAPAPORT, R., HAREL, R., COHEN, E., RON, A., and LINDER, E.,
Phys Rev Lett 84 (2000) 1607.

[40] GALBRAITH, I. and KOCH, S.,
J Cryst. Growth 159 (1996) 667.

[41] DOAN, T. and THOAI, B. T.,

158

Sol Stat Comm 123 (2002) 427.

[42] CAO, H., DOAN, T., THOAI, D., and HAUG, H.,
Phys Rev B 69 (2004) 245325.

[43] DOAN, T., CAO, H. T., THOAI, D. T., and HAUG, H.,
Phys Rev B 72 (2005) 085301.

[44] DOAN, T., CAO, H. T., THOAI, D. T., and HAUG, H.,
Phys Rev B 74 (2006) 115316.

[45] PORRAS, D., CIUTI, C., BAUMBERG, J., and TEJEDOR, C.,
Phys Rev B 66 (2002) 085304.

[46] CHAVES, F. and RODRIQUES, F.,
Sol Stat Comm 136 (2005) 484.

[47] SARCHI, D. and SAVONA, V.,
arXiv:cond-mat/0411084v3 (2006).

[48] SARCHI, D. and SAVONA, V.,
Solid State Communications 144 (2007) 371.

[49] CASTIN, Y. and DUM, R.,
Phys Rev A 57 (1998) 3008.

[50] GARDINER, C. and ZOLLER, P.,
Phys Rev A 58 (1998) 536.

[51] SERMAGE, B., LONG, S., ABRAM, I., MARZIN, J., BLOCH, J., et al.,
Phys Rev B 53 (1996) 16516.

[52] SHAH, J.,
IEEE J of Q. Elec 24 (1988) 276.

[53] WANG, X., ZHANG, G., ZHAO, Y., FAN, F., LIU, H., et al.,
Optical Materials 97 (2007) 1658.

[54] AMBACHER, O., SMART, J., SHEALY, J., WEINMANN, N., CHU, K.,
et al.,

J Appl Phys 85 (1999) 3222.

[55] HUBNER, K.,
Phys Status Solidi B 57 (1973) 627.

[56] LANGBEIN, W. and HVAM, J.,
Phys Rev Lett 8 (2002) 047401.

[57] KAVOKIN, A., BAUMBERG, J., MALPUECH, G., and LAUSSY, F.,

159

Microcavities,
Oxford University Press, 2007.

[58] SZYMANSKA, M., KEELING, J., and LITTLEWOOD, P.,
Phys Rev Lett 96 (2006) 230602.

[59] SARCHI, D. and SAVONA, V.,
Phys Status Solidi B 243 (2006) 2317.

[60] DOAN, T., CAO, H. T., THOAI, D. T., and HAUG, H.,
Solid State Comm 144 (2007) 359.

[61] BERMAN, O., LOZOVIK, Y., SNOKE, D., and COALSON, R.,
Solid State Communications 134 (2005) 23.

[62] FISCHER, D. and HOHENBERG, P.,
Phys Rev B 37 (1988) 4936.

160

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1.1. Thicknesses and indicies of refraction for materials used in the rear distributed Bragg reflector.

	LIST OF FIGURES
	1.1. The two shaded regions on each side represent the stacks of material making the distributed Bragg reflectors (DBR's). The thick dark lines in the central part represent groups of quantum wells. The optical intensity of a cavity mode is drawn between the DBR's. The quantum wells are placed at the antinodes.
	1.2. GaAs quantum well between Ga0.8Al0.2As. kBT<<Eg at 4 K implies that the chemical potential is near the middle of the band gap for both materials. The chemical potential is the dashed line halfway between the valence and conduction bands in this illustration. The type of structure shown is known as a Type I heterostructure.
	1.3. The dashed lines represent the cavity and exciton modes. When brought together there is level repulsion leading to the upper polariton and lower polariton modes, solid lines. For large k the modes decouple and become the constituent cavity and exciton modes.
	1.4. Light gets refracted upon traversing the sample-air interface. "017Ek is conserved. A microcavity has a which is only dependent on "017Ek since kz,air is a constant for a microcavity.
	1.5. The density of states as a function of k. Large values of k are the density of states for uncoupled excitons.
	1.6. Momentum and energy are conserved when two particles scatter from km. Particles efficiently populate k = 0 when km is pumped directly.
	1.7. Trapping polaritons with stress[18]. The gray line across the figure shows the k=0 mode as a function of position. The dip in this line is where the stress is applied and the trap is created. Polaritons created on the side of the trap(blue) can be seen to be migrating toward the bottom of the trap.
	1.8. A plot showing the critical temperature as a function of the power law of a trapping potential from [20].
	1.9. A composite reflectivity measurement showing the high energy edge of the stop band, the upper polariton, and the lower polariton.
	1.10. The layout for the angle resolved experiments.
	1.11. Light incident on an AO cell gets diffracted by the sound waves propagating through the cell.
	1.12. Stressor, sample, mount, and laser.
	2.1. The angle 1 that "017Ek1 makes to the direction of the difference between "017Ek0 and "017Ek2.
	3.1. From [12], the calculated formation coefficient, C, for the equation F(E) = C nc2(E) where F(E) is formation rate of upper and lower polaritons for a non-resonant pump and nc(E) is the carrier density. E = 0 is the bare exciton energy.
	3.2. Occupation number vs energy for polaritons. The polariton density for each simulation is given in the upper right hand corner of each graph. The existence of the bottleneck, the peak in the curve, remains when polariton-polariton scattering is considered along with polariton-phonon scattering from [26]. E = 0 is the bare exciton energy. The bottleneck is pushed to lower energies with higher density, but never goes to the lowest energy.
	3.3. Porras, et al. [45], showed that numerical simulation suggested the possibility that strongly pumping a material like CdTe, with higher saturation density than GaAs, would result in a large occupation of the lowest energy states. Their pumping density was less than, but on the same order of magnitude, as the saturation density for CdTe. Px is the pumping rate into the system in cm-2/100 ps. Px is shown for 1, 2, 5, 8, and 15. Notice that the distribution is sloped, not flat, for energies below the bottleneck.
	3.4. Numerical simulation of polaritons from [48]. GaAs parameters for the effective masses, deformation potential to acoustic phonons, and Coulombic and Pauli exclusion terms.
	4.1. Optical set up near the cryostat. At the time this picture was taken the cryostat had been replaced by a mirror. The cryostat sits in the background.
	4.2. A composite of the angular resolved data under CW pumping conditions. For each angle the image on the CCD is integrated over the spatial axis and the intensity is color plotted as a function of energy. This figure is for 1 mW of incident pump power.
	4.3. A composite of the angular resolved data under CW pumping conditions. For each angle the image on the CCD is integrated over the spatial axis and the intensity is color plotted as a function of energy. This figure is for 6 mW of incident pump power.
	4.4. A composite of the angular resolved data under CW pumping conditions. For each angle the image on the CCD is integrated over the spatial axis and the intensity is color plotted as a function of energy. This figure is for 24 mW of incident pump power.
	4.5. A composite of the angular resolved data under CW pumping conditions. For each angle the image on the CCD is integrated over the spatial axis and the intensity is color plotted as a function of energy. This figure is for 35 mW of incident pump power.
	4.6. A composite of the angular resolved data under CW pumping conditions. For each angle the image on the CCD is integrated over the spatial axis and the intensity is color plotted as a function of energy. This figure is for 80 mW of incident pump power.
	4.7. CW pumping the side of the stress well. The evolution of the luminescence over five seconds. Thermal effects cause a delay in the build up of the luminescence. The hotter particles also drift farther into the trap since they have a higher average kinetic energy. Each image is integrated over 200 ms. The intensity scale is the same for all images.
	4.8. A composite of the angular resolved data under quasi-CW pumping conditions. Each angle is spatially integrated and the intensity is color plotted as a function of energy. This figure is for 0.05 mW of incident pump power.
	4.9. A composite of the angular resolved data under quasi-CW pumping conditions. Each angle is spatially integrated and the intensity is color plotted as a function of energy. This figure is for 0.2 mW of incident pump power.
	4.10. A composite of the angular resolved data under quasi-CW pumping conditions. Each angle is spatially integrated and the intensity is color plotted as a function of energy. This figure is for 0.4 mW of incident pump power.
	4.11. A composite of the angular resolved data under quasi-CW pumping conditions. Each angle is spatially integrated and the intensity is color plotted as a function of energy. This figure is for 0.6 mW of incident pump power.
	4.12. A composite of the angular resolved data under quasi-CW pumping conditions. Each angle is spatially integrated and the intensity is color plotted as a function of energy. This figure is for 0.8 mW of incident pump power.
	4.13. Dispersion curve fit to the 1 mW CW laser data shown in Figure 4.2
	4.14. Occupation of the lower polariton states for different incident pump powers. These were deduced from the spatially integrated images in Figures 4.2-4.6 for CW pumping conditions.
	4.15. Occupation of the lower polariton states for different incident pump powers. These were deduced from the spatially integrated images in Figures 4.8-4.12 for the quasi-CW pumping condition of 2.4% pump duty cycle. The dotted line represents a T = 90 K Maxwell-Boltzmann distribution and the solid line is for a T = 90 K, = -0.15kT Bose-Einstein distribution .
	4.16. The effect of the stress well. From top to bottom the stress is increasing from no stress to resonant stress. Without stress the polaritons are held in high k states. With stress the polaritons are able to make it past the bottle neck. The intensity scales are different for all three plots.
	4.17. The k = 0 spectrum with quasi-CW pumping of 0.05 mW.
	4.18. A schematic of the time resolved set up. The beamsplitter splits the pump beam. Part of the pump beam is sent to a delay stage. The rest of the pump beam is incident on the microcavity sample. The solid red line from the microcavity represents luminescence.
	4.19. The luminescence from the microcavity lasts much longer than the gate pulse. Only a fixed portion of the luminescence mixes inside the BBO with the gate pulse for a given delay. That portion is denoted by the dashed lines. Changing the delay in the gate pulse will sample another point in the microcavity's luminescence.
	4.20. The integrated intensity from a resolved spectroscopy of the "017Ek = 0 lower polariton with 141 mW of incident pump power above the stop band.
	5.1. The energy step size as a function of bin number on the mesh. The dispersion curve for the polaritons is plotted on the secondary vertical axis.
	5.2. The distribution function of the polaritons as it evolved for one set of parameters. Simulated time and the number of iterations are given.
	5.3. A fit to the CW pumped data using polariton-polariton and polariton-phonon scattering. ``A'' stands for the coefficient used in front of the polariton-polariton scattering cross-section and ``P'' is the generation rate used. Simulated plots are shown next to their corresponding experimental pump power.
	5.4. A fit to the quasi-CW pumped data using polariton-polariton and polariton-phonon scattering. ``A'' stands for the coefficient used in front of the polariton-polariton scattering cross-section and ``P'' is the generation rate used. Simulated plots are shown next to their corresponding experimental pump power.
	5.5. Plot of the coefficient used for the polariton-polariton scattering matrix element as a function of simulated polariton density.
	5.6. Plot of the simulated generation rates to the corresponding experimental pump powers. The line is a guide for the eye.
	5.7. Plot of the simulated generation rates to the corresponding experimental pump powers. The line is a guide for the eye.
	5.8. Plot of the steady state simulated polariton density as a function of simulated generated rate.
	5.9. Plot of the total simulated free electron density as a function of simulated generated rate.
	5.10. The final fits to the CW experimental data. In the legend, ``T'' stands for the simulated lattice temperature, ``np'' is the simulated polariton density, ``ne'' is the simulated electron density. Simulated plots are shown next to their corresponding experimental pump power.
	5.11. The final fits to the quasi-CW experimental data. In the legend, ``T'' stands for the simulated lattice temperature, ``np'' is the simulated polariton density, ``ne'' is the simulated electron density. Simulated plots are shown next to their corresponding experimental pump power.
	5.12. The steady state results of using (1) polariton-phonon interactions, (2) polaritons interacting with polaritons, electrons and phonons, but no Bose statisitcs, and (3) polaritons interacting with polaritons, electrons, and phonons with Bose statistics included.
	6.1. The steady state simulated distribution function for the polaritons using the same parameters as the highest generation rate for the quasi-CW data without the free electron-polariton interaction included.
	A1. Low density energy distribution at scattering times 0, 1, 3, 5
	A2. The evolution of the fitting parameters, chemical potential and temperature, to the distributions for three different densities. Time is measured in scattering events. The chemical potential is in units of the equilibrium chemical potential and the temperature is in units of the lattice temperature.
	A3. Scattering rate per particle in the lowest energy bin as as a function of density below the quantum concentration
	A4. Scattering rate per particle in the lowest energy bin as as a function of density
	A5. Close up of figure 4.
	C1. A flow chart of the main code

	PREFACE
	1.0 INTRODUCTION
	1.1 CAVITY MODES
	1.2 QUANTUM WELL EXCITONS
	1.3 POLARITONS
	1.4 POLARITON TRAPPING
	1.5 EXPERIMENTAL SETUPS
	1.5.1 MIRA
	1.5.2 AO MODULATION
	1.5.3 CRYOSTAT AND STRESSOR INSERT
	1.5.4 IMAGING SPECTROMETER AND CCD CAMERA

	2.0 THE MODEL
	2.1 SCATTERING
	2.1.1 POLARITON-POLARITON INTERACTIONS
	2.1.2 POLARITON-LONGITUDINAL ACOUSTICAL PHONON INTERACTIONS
	2.1.3 POLARITON-TRANSVERSE ACOUSTICAL PHONON INTERACTIONS
	2.1.4 POLARITON-PHONON INTERACTION BY PIEZOELECTRICTY
	2.1.5 POLARITON-OPTICAL PHONON INTERACTIONS
	2.1.6 FREE ELECTRON-POLARITON INTERACTIONS

	2.2 ENERGY CORRECTIONS
	2.2.1 FIRST-ORDER ENERGY CORRECTION
	2.2.2 SECOND-ORDER ENERGY CORRECTION
	2.2.3 PHASE-SPACE FILLING

	3.0 REVIEW OF OTHER KINETIC MODELS FOR MICROCAVITY POLARITONS
	3.1 LOW-DENSITY STUDIES
	3.2 HIGH-DENSITY STUDIES

	4.0 EXPERIMENTS
	4.1 ANGLE-RESOLVED MEASUREMENTS
	4.1.1 THE EFFECT OF STRESS
	4.1.2 LINE BROADENING AND LINE NARROWING
	4.1.3 ERROR ESTIMATES

	4.2 TIME RESOLVED SPECTROSCOPY

	5.0 NUMERICAL RESULTS
	5.1 SIMULATION
	5.2 MODELING THE EXPERIMENTAL DATA
	5.2.1 INITIAL FIT WITH CHANGING THE EFFECTIVE SCATTERING CROSSECTION
	5.2.2 FITS USING POLARITON-ELECTRON SCATTERING AND PIEZOELECTRIC SCATTERING

	6.0 FUTURE DIRECTIONS AND CONCLUSION
	6.1 ACCOMPLISHMENTS
	6.2 WHAT'S NEXT

	APPENDIX A. KINETICS OF BOSON-BOSON SCATTERING IN A 2D FLAT POTENTIAL
	 A.0.1 Results
	 A.0.2 Conclusion

	APPENDIX B. FULL CODE
	 B.1 Integrate.c
	 B.2 Constants.h
	 B.3 Parameters.h
	 B.4 Polpara.h
	 B.5 Ecset.h
	 B.6 Getk3.h
	 B.7 dEdk.h
	 B.8 DOS.h
	 B.9 del.h
	 B.10 getf4.h
	 B.11 polcheck.h
	 B.12 polEnergy.h
	 B.13 polfraction.h
	 B.14 pulseflat.h
	 B.15 updatef.h
	 B.16 polpMatx.h
	 B.17 polelMatx.h
	 B.18 polpTAMatx.h
	 B.19 polpTA_PiezoMatx.h
	 B.20 2Dpolscat.h
	 B.21 2Dpolelscat.h
	 B.22 2DpolpLAscat.h
	 B.23 2DpolpTAscat.h
	 B.24 fvsEsave.h
	 B.25 gauleg.h
	 B.26 initiate.h
	 B.27 scat.h

	APPENDIX C. CODE USER MANUAL
	 C.1 Introduction
	 C.2 Header Functions
	 C.2.1 Inputs
	 C.2.2 Initialization
	 C.2.3 Scattering
	 C.2.4 Updating
	 C.2.5 Renormalization
	 C.2.6 Saving
	 C.2.7 Miscellaneous Functions

	BIBLIOGRAPHY

