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THREE ESSAYS ON MODEL SELECTION, MODULATION ESTIMATORS

AND HERD BEHAVIOR UNDER ASYMMETRIC BELIEFS

Ahmad R. Shahidi, PhD

University of Pittsburgh, 2009

This thesis is organized in three chapters. In the first two chapters, an econometric

model selection procedure and a method to improve some existing estimators are pro-

posed. In the third chapter, a theoretical microeconomic analysis of herd behavior is

performed under a fairly new set of assumptions.

In chapter one, a model selection procedure based on the Penalized Empirical Like-

lihood (PEL) technique is developed, and guidelines are provided for the extension

of the procedure to the setting of Generalized Empirical Likelihood (GEL). The pro-

cedure was initially applied to linear models and was called“Least Absolute Shrink-

age and Selection Operator” (LASSO). It was subsequently extended to Generalized

Method of Moments models in, and we now extend it to EmpiricalLikelihood (EL)

models. Its main advantage over classical methods is in the combination of model

selection and model estimation into a single step, while improving the post-selection

properties of the resulting estimators. This procedure is easy to implement, and it

remains computationally feasible even in models with a large number of parameters.

A simulation study is performed to compare the newly proposed procedure to some

classical methods such as AIC, BIC, and DT. The simulation results show a better
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performance of the new procedure.

In chapter two, we define the modulation technique for the EL estimator modulation

technique pertains to the class of methods generally known as “shrinkage methods”.

Shrinkage methods are frequently used to improve the properties, in particular small-

sample properties, of existing estimators. In this paper, ageneral theoretical analysis

of modulation estimators is developed for EL models, along with a discussion of how

they can be implemented in special cases.

In chapter three, a theoretical model of imitation and herd behavior is considered.

It is assumed in that some participating agents have specificabilities to affect other

peoples behavior. Results are provided on how “stars” or celebrity players can impact

herd formation. In the particular setting of a financial market with a single traded asset,

results are provided on the consequences of this celebrity effect on bubble formation

in the financial market.
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1.0 MODEL SELECTION FOR MOMENT CONDITION MODELS USING

THE PENALIZED EMPIRICAL LIKELIHOOD PROCEDURE

1.1 INTRODUCTION

Moment conditions are the basis for constructing estimators and making inferences

in a large number of interesting economic problems. The generalized method of mo-

ments (GMM), along with new methods based on empirical likelihood theory (Owen

1988) are the major tools to construct estimators and make inferences in the frame-

work of moment condition models. In this paper we address theproblem of model

selection when the available information is in the form of moment conditions This

problem of model selection is a problem which practitionersface very often. We pro-

pose a method based on the penalized empirical likelihood procedure. This method,

unlike other existing methods, selects and estimates the right model at the same time.

As we will see in details, the proposed method is continuous in the sense that instead

of including (1) or dropping (0) a particular coefficient, itshrinks the coefficients so

that some of them will drop out. One problem with AIC, BIC, or more recent DT

methods is that they are all discrete. They either include a parameter or drop it, this

makes the procedure undesirably unstable. A small change inthe data, which can be in

the form of adding new information, will result in a completely different model to be

selected. Another problem with the existing methods is thatthey are computationally
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very expensive, specially when the number of parameters is very large. The proposed

method addresses both of these two problems. Additionally,as we will see in the sim-

ulation results, compared to the existing methods, our method also has post-selection

superiority, and it selects the right model more often, it iseasier to implement, and

computationally feasible in a model with a large number of parameters. It also has

better variance results so that the final estimators obtained using this method are better

compared to their counterparts in the RMSE (root mean squared error) sense. As a fur-

ther contribution, we will show that the penalized empirical likelihood defined in this

paper can be used to define other possibly useful procedures,and sometimes, enhance

good properties of a given estimator. For example, we will define an estimator which

is similar to EL estimator, but its implied probability measure has a larger Kullback-

Leibler (KL)-entropy than the implied probability measureof EL. Furthermore, with

our definition of penalized empirical likelihood, we are able to use the existing and

advanced framework of the penalized maximum likelihood to investigate the asymp-

totic and convergence properties of the penalized empirical likelihood procedure in a

general setting when a general penalty function is used.

In the remaining part of this introduction, I will elaborateon the heuristic origins

of the topics which will be further analyzed in this paper.

1.1.1 GMM and GEL

The generalized method of moments estimator (GMM) has been the workhorse of

econometric analysis since its introduction by Hansen (Hansen, 1982). Besides pro-

viding a unified framework to study different types of estimators, GMM extends the

method of moments framework to include situations in which the number of moment

conditions exceed the dimension of the parameter we want to estimate. Although
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GMM is a very useful estimator and it is first-order asymptotically efficient, its small

sample properties are relatively poor (Altonji and Segal, 1996; Tauchen, 1986). In

addition, the two-step nature of GMM introduces a lot of arbitrariness to the estimator.

More recently, Owen’s empirical likelihood method has provided other estima-

tors, some of which overcome some of the shortfalls of GMM estimator. This family

includes the EL estimator (Owen, 1988; Qin and Lawless, 1994; Imbens, 1997), Con-

tinuous Updating Estimator (CUE) (Hansen, Heaton, and Yaron, 1996), and the Expo-

nentially Tilting Estimator (Kitamura and Stutzer, 1997; Imbens and Johnson, 1998).

These estimators all belong to the class of Generalized Empirical Likelihood (GEL)

estimators (Smith, 1997; Newey and Smith, 2004).1 These estimators circumvent the

need of estimating a weighting matrix in the two-step GMM by directly minimizing an

information-theory-based concept of closeness between the estimated distribution and

the empirical distribution.2 While in theory these estimators, like GMM, all have the

same first-order asymptotic efficiency, simulation studies, and Monte Carlo evidence

have shown that, compared to GMM, some members of the GEL class have better

finite-sample properties (see Hansen, Heaton, and Yaron, 1996; Ramalho, 2006 and

references therein). Also, Newey and Smith (2004) have analytically shown, using a

stochastic expansion argument, that while GMM and GEL sharethe same first-order

asymptotic properties, their higher-order properties aredifferent. Specifically, while

the asymptotic bias of GMM often grows with the number of moment restrictions, the

relatively smaller bias of EL does not. Moreover, a bias-corrected EL is higher-order

1There are other varieties, too. For example the Exponentially Tilted Empirical Likelihood estimator
(ETEL) (SCHENNACH, 2007) which in essence is a combination of the two estimators, EL and ET, in
hope to obtain an estimator that like EL has a smaller finite-sample bias, and at the same time inherits
the better behavior of ET in the presence of mis-specification.

2The estimators mentioned so far are, like GMM, based on unconditional moment restrictions, using
the empirical likelihood methods, we can construct estimators based on conditional moment restrictions
see (ZHANG and GIJBELS, 2003), and Kitamura et al (2004)
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efficient relative to any other regular method of moment estimator. In terms of infer-

ence, the empirical likelihood ratio test has some desirable features too. For example,

The ELR test admits Bartlet correction (DiCiccio, Hall and Romano, 1991), which

gives it the same accuracy rate as the parametric case. Kitamura (2001) has used the

so calledGeneralized Neyman-Pearsonapproach to show that, for testing moment re-

strictions, the ELR test is uniformly most powerful in an asymptotic large deviation

sense.

1.1.2 Model Selection

Let {Mξ,ξ ∈ Ξ} be a set of candidate models for a given observation. Based onthe

observed data we need to select a model from{Mξ,ξ ∈ Ξ} using an appropriate model

selection criteria, or a justified procedure which selects the desired model. Model se-

lection problems are encountered almost in every application . For instance, in linear

regression analysis, it is often of interest to select the right number of nonzero param-

eters which have the most explanatory power. With a small model, interpretation is

easier and statistical inferences can be carried out more efficiently. Also, in time series

analysis, it is essential to know the true order of an ARMA. Asanother example, sup-

pose we have two competing non-nested models with two different parameter vectors,

and two sets of moment conditions. The two parameter vectorscan be stacked together

to yield a single parameterθ. Now we can select each model by setting the appropriate

parts ofθ to zero. A model selection method tells us what part of the parameterθ

should be set to zero.

Different techniques and criteria have been developed to deal with model selection,

each having its own advantage in a particular setting.3 In the parametric likelihood-

3For a good survey of model selection literature see Rao, and WU (2001).
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based model selection we have, alongside others, the famousAIC, and BIC criteria.

When the information about the underlying density functionof the data generating pro-

cess is limited to moment conditions, Andrews (1999), and Andrews, and Lu (2001)

provide downward testing (DT) and BIC-like criteria in the framework of GMM es-

timation. Also related to our work are the paper by Kolaczyk (1995), in which the

author considers an analogue of AIC model selection criterion in the empirical like-

lihood context. Also, the paper by Houng, Preston, and Shum (2003), which extends

the results of Andrews, and Lu (2001) to the setting of GEL.

As mentioned earlier, the classical methods of model selection usually involve a

computationally heavy combinatorial search. Simple modelselection via AIC and

BIC, which can be applied to OLS, often select the wrong model(Breiman, 1996),

and furthermore, these procedures are unstable, meaning small changes in the data can

cause entirely different selections.4

To overcome these shortfalls Tibshirani (1996) introduced“Least absolute shrink-

age and selection operator” (LASSO).5 The lasso, which is based on the penalization

technique, combines the selection and estimation steps andtherefore reduces the vari-

ance of the final estimator while using less computation resources. Model selection in

linear models is now being mostly carried out using lasso procedure. It is a compu-

tationally feasible alternative to the classical model selection methods. Furthermore,

recent studies (Zhao, and Yu 2006) have shown that under verymild conditions, the

lasso technique almost always selects the true model. In this paper we define the penal-

ized empirical likelihood, and then use it to extend the lasso method of model selection

to the framework of empirical likelihood. Although in this paper I restrict our attention

to the EL estimation, I think that the extension of the proposed technique to the more

4For further information about model selection via AIC and BIC, and their shortfalls see (FAN and
LI, 2001; FAN and LI, 2002) and the references therein.

5This method has also been extended to GMM setting, see Caner (2008).
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general setting of GEL is possible.

Since, lasso is just one example of the numerous applications of the penalization

method, it is important to perform a systematic study of the penalization method in the

context of EL estimator. In this paper we use the parametric case of penalized maxi-

mum likelihood to study the nonparametric situation of penalized empirical likelihood

procedure. We present asymptotic, and convergence rate results for the penalized EL

with a fairly general penalty function.

The main contribution of this paper is to introduce a powerful method of model

selection which can be used as an alternative to the existingprocedures. As the simu-

lation results will show, this method not only selects the right model more often, but it

also has a better post-selection performances. In this paper, we also propose a general

framework for defining and studying the penalized El and GEL estimators. We present

results for this general case, and as an example we introducean estimator similar to

EL whose implied probabilities have a better entropy property.

The rest of this paper proceeds as follows. In section 2 we give a formal definition

of penalized empirical likelihood estimator. In section 3 we study the problem of

model selection via PEL. Section 4 presents asymptotic and convergence results for

PEL with a general penalty function, in this section as an example of a general penalty

function we introduce another potentially important estimator. Section 5 concludes the

paper. All the proofs are collected in the appendix.

1.2 DEFINITION OF PEL

Let θ be the parameter we are interested to estimate. In general, when ln is a func-

tional which measures how wellθ predicts the observed data set,X1, . . . ,Xn, andJ(θ)
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is a penalty functional which assesses the physical plausibility of θ, the method of

penalization chooses aθ which optimizes

ℓnλ(θ) = ln(θ|data)−λJ(θ), λ > 0 (1.2.1)

λ is called the regularization, or sometimes penalization parameter. Larger values ofλ

produces more regular estimators.

The maximum empirical likelihood procedure, much like maximum likelihood

method, is based on maximizing a criterion functional over aparameter space. There-

fore the method of penalization, should has a natural application in empirical likeli-

hood estimation. Very often, specially when the parameter space is large or not well

behaved, the optimization becomes difficult and the resulting estimators may have un-

desirable properties such as non-smoothness, inconsistency and so on. In some of

these situations the maximization can be carried out based on the penalized version

of the criterion function. In this subsection we formally introduce this idea and later

in this paper, we present some of its most important applications, and investigate the

properties of these procedures.

Definition 1:

(a) Let X1, . . . ,Xn be independently distributed random variables, with a common dis-

tribution (i.i.d). Let l(θ,Xi) be the criterion function evaluated at Xi , if J(θ) is the

penalty function we define thepenalized criterion function to be

ℓ(θ,Xi) = l(θ,Xi)−λnJ(θ). (1.2.2)

(b) Let Ln(θ) = Ln(θ,X) = n−1 ∑n
i=1ℓ(θ,Xi), and ln(θ) = ln(θ,X) = n−1 ∑n

i=1 l(θ,Xi).

Maximizing Ln(θ) will produce an estimator forθ. We define anapproximate maxi-

mizer of Ln(θ) to be aθ̂n such that

Ln(θ̂n) ≥ sup
θ∈Θ

Ln(θ)− εn, (1.2.3)
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whereεn → 0 as n→ ∞.

Now we can easily adapt definition 1 to obtain a definition for thepenalized em-

pirical likelihood estimator. Let

ln(θ) = −max
γ∈Rm

1
n

n

∑
i=1

log(1+ γ′g(Xi,θ)) (1.2.4)

be the profile empirical likelihood function forθ. We define thepenalized empirical

likelihoodas follows.

Definition 2:

The penalized empirical likelihood estimator forθ is

θ̂pel = argmax
θ∈Θ

{ln(θ)−λnJ(θ)}. (1.2.5)

Notice that, ifγ∗ denotes the maximizer in (2.4), then thel(θ,Xi) in definition 1(a)

is l(θ,Xi) = −log(1+ γ′∗g(Xi,θ)).

As an example, suppose that we know from external knowledge,that the true pa-

rameter is somewhere close to a linear subspace of the parameter space,Θ. In this case

it is appropriate to try to shrink the estimator toward this linear subspace. For instance,

if L is the following linear subspace

L = {θ : θ1 = θ2 = . . . ,θr} =
{

θ :
1
r

Jθ = θ
}

, (1.2.6)

whereJ is a matrix of ones,J = 11′, then to shrink the estimator towardL we can use

the penalty functionJ(θ) = ∑r
i=1(θ̂1−θi)

2.

In the following section we use the penalized EL defined in this section to con-

struct the lasso-EL, and study its properties. A general theory for convergence, and

asymptotic distribution of PEL will be developed in section4.
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1.3 MODEL SELECTION USING PEL

As a major example of penalization method, we introduce the“Least Absolute Shrink-

age and Selection Operator”(LASSO) for the empirical likelihood setting. The easiest

way to understand the purpose and usefulness of these type ofestimators, is to take a

look at the linear case. Consider the usual regression situation: we have data(xi ,yi),

i = 1,2, . . . ,N, wherexi = (xi1, . . . ,xip)
′ andyi , are regressors and response for theith

observation. The ordinary least squares (OLS) estimates are obtained by minimizing

the residual squared error. There are two drawbacks to the OLS procedure. The OLS

estimates often have low bias but large variance, resultingin a poor prediction accu-

racy. As we mentioned earlier in the introduction to this paper, prediction accuracy

often can be improved by shrinking, or setting some of the coefficients to zero. By

doing so we scarify a little bias to reduce the variance, which may improve the overall

prediction accuracy. On the other, with a large number of predictors, we often prefer to

use a smaller subset that exhibits the strongest effects, instatistical literature, this pro-

cedure is calledselection.The traditional tools to deal with these problems, are ridge

regression and model selection. Model selection provides interpretable models but can

be extremely variable because it is a discrete process, regressors are either retained or

dropped from the model. Small changes in the data can result in very different mod-

els being selected, which is obviously very undesirable. The ridge regression, in the

other hand, is a continuous process, and therefore more stable, and it does shrink the

coefficients. However, it does not set any coefficient to zeroand hence does not give

an easily interpretable model.

Tibshirani (1996) proposes a new technique, which he calls it lasso. It shrinks

some coefficients and sets others to zero, therefore retaining the good features of both

model selection and ridge regression. This method can be promising, particularly when
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the econometrician needs to construct a model with a large number of parameters and

then use model selection methods like BIC and AIC to select the desired model.

1.3.1 Definition and Assumptions

Let θ be a p-dimensional vector, andθ0 represent the true value, which is in the interior

of the compact setΘ ∈ R
p. As before, let the moment conditions provided by theory

to be

E[g(Xi,θ)] = 0. (1.3.1)

After using the empirical likelihood set up let

ℓn(θ) = −max
γ∈Rm

1
n

n

∑
i=1

log(1+ γ′g(xi ,θ)) (1.3.2)

be the profile empirical likelihood forθ. The lasso-type-EL estimator forθ0 is aθ̂ that

maximizes

ℓn(θ)−λn

p

∑
j=1

|θ j |γ, (1.3.3)

where 0< γ < 1 andλ is a regularization parameter. Other penalty functions arealso

possible. Indeed some are proven to be more capable to achieve certain properties, see

for instance Fan and Li (2001).

1.3.1.1 Properties of Lasso-EL Estimator: In this subsection, we analyze the

consistency and large sample theory for the lasso-type-EL estimators. First we state

the assumptions required for the results which will follow.

Assumptions:

A1: (i) ∂g(x,θ)
∂θ is continuous in a neighborhood of the true parameterθ0, and the rank

of E[
∂g(x,θ0)

∂θ ] is p.
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(ii) In a neighborhood ofθ0, ||∂g(x,θ)
∂θ || and||g(x,θ)||3 are bounded by some inte-

grable function G(x).

(iii) The matrix E[g(x,θ0)g′(x,θ0)] is positive definite.

A2: (i) gi(θ) is m-dependent for all i.

(ii) |gi(θ1)−gi(θ2)| ≤ Bi |θi −θ2|, with limn→∞ ∑n
i=1E[Bd

i ] < ∞, for some d> 2.

(iii) supθ∈Θ E[|gi(θ)|d] < ∞, for some d> 2.

A3: Define E[n−1∑n
i=1gi(θ)] = m1n(θ)

(i) m1n(θ)→ m1(θ) uniformly overΘ, m1n is continuously differentiable inθ and

m1(θ0) = 0, m1(θ) 6= 0 for θ 6= θ0. Also m1(θ) is continuous inθ.

(ii) Let Rn(θ) = ∂m1n(θ)
∂θ′ we assume that Rn(θ)

p−→ R(θ), uniformly in a neighbor-

hood ofθ0, R(θ0) is of full rank, and R(θ) is continuous inθ.

A4: Define Wn(θ) =
[

1
n ∑n

i=1gi(θ)g′i(θ)
]−1

. We assume that: Wn(θ)
p−→ W(θ) uni-

formly in θ, where W(θ) is a symmetric non-random positive definite matrix which

is continuous for allθ ∈ Θ

AssumptionsA1 andA2 are the usual assumptions in the empirical likelihood lit-

erature. They guarantee that there is unique maximizer,θ̂, of the empirical likelihood

ratio. Since we will use the empirical processes theory to prove some of the up coming

results, we will be in need of assumption 3. For a good review of empirical processes

and their econometrics’ application consult Andrew (1986). Some of these assump-

tions are used by Caner (2008) to drive similar results for the GMM estimator.

The following proposition shows the consistency of the penalized estimator, under

assumptions A1-A4, and some further conditions onλn.
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Proposition 1:

If assumptions A1-A4, hold then:

I) If λn
n → λ0 ≥ 0, then

θ̂n
p−→ argmin

θ∈Θ
Z(θ), (1.3.4)

where

Z(θ) = m1(θ)′W(θ)m1(θ)+λ0

p

∑
i=1

|θi|γ. (1.3.5)

The convergence happens uniformly inθ.

II) If λn = o(n) then,

θ̂ p−→ θ0. (1.3.6)

We notice thatZ(θ) is the limiting process ofZn(θ). And Zn(θ) is obtained by

manipulatingℓn(θ) in definition 2.

Using (I) from proposition 1, it is clear that why we need to have λn = o(n), in

order to obtain the consistency of this estimator. But this rate still is too high to get any

interesting result concerning the limiting distribution of θ̂n. To get the
√

n-consistency

it is required to have slower growth rate forλn. However, ifλn grows too slowly then

we won’t get anything substantially different from the usual EL estimator. Our goal is,

to get a limiting distribution for nonzero part of the parameters which is coincide with

usual, non-penalized, EL estimator. And for the zero part ofparameters the distribution

should goes zero. To achieve this goal, we need aλn which grows with a right rate.

The following proposition specifies the right conditions.

Proposition 2:

Suppose thatλn
nγ/2 → λ0 ≥ 0, and assumptions A1-A4 satisfy then:

√
n(θ̂n−θ0) = ûn ⇒ argmin

u∈K
V(u), (1.3.7)
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where

V(u) = 2u′R(θ)′W(θ0)Ψ(θ0)+u′R(θ0)
′W(θ0)R(θ0)u+λ0

p

∑
j=1

|u j |γ1{θ0 j=0}, (1.3.8)

and K is a compact subset ofR
p, and Ψ(θ0) ≡ N(0,Ω(θ0)), whereΩ(θ0) is the

variance-covariance matrix and

Ω(θ0) = lim
n→∞

E
[

(n−1/2
n

∑
i=1

gi(θ0))(n
−1/2

n

∑
i=1

gi(θ0))
′]. (1.3.9)

An interesting conclusion of proposition 2 is that, we can estimate nonzero param-

eters at the usual rate without introducing further asymptotic bias, while shrinking the

estimates of zero parameters to 0 with positive probability. In fact when all parameters

are non zero,θi 6= 0 i = 1, . . . ,n, we have

V(u) = argmin
u∈K

{2u′R(θ)′W(θ0)Ψ(θ0)+u′R(θ0)
′W(θ0)R(θ0)u}. (1.3.10)

The solution to this minimization problem is

û = −[R(θ0)
′W(θ0)R(θ0)]

−1R(θ0)
′W(θ0)Ψ(θ0). (1.3.11)

This is the same as the limit distribution of the non-penalized EL estimator.

Now suppose that some of the parameters are indeed zero. In general whenR(θ0)
′W(θ0)

′R(θ0)

is singular,V(u) won’t have a unique minimizer. Ifu∈ argminV(u) andv lies in the

null pace ofR(θ0)
′W(θ0)

′R(θ0), then for somet, V(u) = V(u+ tv). However, suppose

thatθr+1 = · · · = θp = 0, and the null space ofR(θ0)
′W(θ0)

′R(θ0) is spanned by the

standard basis vectorser+1, . . . ,ep; then we have

V(u) = V0(u1, . . . ,ur)+λ0

p

∑
j=r+1

|u j |γ, (1.3.12)

which has a unique minimizer. In the other words, a larger specification of the model

won’t prevent us to estimate the non-zero part of the model and the redundant part
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will be set to zero. Therefore we can, at the same time, estimate and select the correct

model. If λn grows faster than specified by preposition 2, but not too fast, in such

way that we haveλn/
√

n → λ0 ≥ 0, andλn/nγ/2 → ∞, we can prove an even more

interesting result, at least asymptotically, which is usually called oracle property. To

see this assumeλn/nα/2 → λ0 ≥ 0 with γ < α < 1. Suppose thatθ1, . . . ,θr are nonzero

while θr+1, . . . ,θp are zero, and definingVn(u) as in the proof of proposition 4, it

follows thatVn(u)
d−→V(u) where

V(u) =











2u′R(θ)′W(θ0)Ψ(θ0)+u′R(θ0)
′W(θ0)R(θ0)u, if ur+1 = · · · = up = 0,

∞, otherwise.

(1.3.13)

Applying the arguments given in the proof of proposition 4, it follows that

√

(n)(θ̂n−θ)
d−→ argmin(V), (1.3.14)

where the last(p− r) elements of argmin(V) are exactly 0.6 We can summarize the ar-

gument delivered above as an corollary, which usually is referred to asoracle property

of the lasso estimator.

Corollary 1:

Supposeγ < α < 1. If λn/nα/2 → λ0 ≥ 0, and assumptions A1-A4 hold, we have

ûn
d−→

(

û1

0p−r

)

, (1.3.15)

where

û1 ∼ N
(

0,
(

R(θr0)′W(θ0)R(θr0)
)−1

)

, (1.3.16)

with θ0 = (θr0′,0′p−r)
′. Note thatθ0 is separated into nonzero and zero components.

6SinceV can be infinite, we can no longer define convergence ofVn to V via uniform convergence
on a compact set, but instead we can define it via epiconvergence which allows for extended real-valued
functions. See sections 3 and 4 of Geyer (1994) for more details
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There are a host of other penalty functions available, some of which might be

more appropriate for special circumstances, Fan and Li (2001), review some of these

functions.

1.3.1.2 Monte Carlo Simulations The Monte Carlo simulations in this section,

are aimed at providing an answer to two important questions that a practitioner faces.

when doing applied work. First, in average which model selection method does the

best job in selecting the right model. Second, what is the post selection performance

of these methods. In this section, we compare our proposed LASSO-EL estimator

with BIC, “Downward Testing”(DT) of Andrews and Lu (2001), and LASSO-GMM

of Caner (2008). The simulation design is exactly the one in Caner (2008). I therefore

refer the interested reader to that paper for a detailed description of the design. Here

we review those aspects of the designs, which are essential for a reader to understand

the simulation process, and the proceeding results.

We have the following data generating process.

y = Ỹθ+ ε, (1.3.17)

Ỹ = ZΠ+V, (1.3.18)

whereZ is N×6, Π : 6×5, V : N×5, Ỹ : N×5 represent the endogenous regressors,

andθ : 5×1. We setN = 100. The instrumentsZi : 6×1 are i.i.d and we generate

them according toN(0, I6). ui = (εi,Vi) is independent fromZi , with εi a scalar andVi
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is 5×1 vector. We chooseui ∼ N(0,Σ) where

Σ =































2 0.99 0.90 0.80 0.70 0.6

0.99 2 0 0 0 0

0.90 0 2 0 0 0

0.80 0 0 2 0 0

0.70 0 0 0 2 0

0.60 0 0 0 0 2































(1.3.19)

and

Π =































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 2 0 3 0































(1.3.20)

andui ,sare generated i.i.d.

In this experiment, we take the instruments as given and willtry to select and

estimate the right structural equation. Hence, all we seek is to select and estimate the

trueθ0. There are two setups, in the first oneθ0 = (0.8 0 0.7 0 0.9)′. The second one

has the same effects as the first one with different magnitude, θ0 = (2 0 1 0 0.5)′.

We compare the ability of each method to select the true model, and the small sample

properties of the post-selection estimators.

For LASSO-EL, and LASSO-GMM we setγ = 1/2,α = 2/3, andλN = N1/3√2logp.

This choice ofλN has been suggested by Donoho, and Johnstone (1994) and has been

further discussed in Fan, and Li (2001). For an in-depths discussion of how BIC, and

DT methods work see Andrews and Lu (2001). Also, as mentionedbefore we use the
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same design as Caner (2008), and therefore for a full discussion of how we calculate

different properties of the estimators, used in this simulation study, consult that paper.

Here we report the results and drive some conclusions based on these results.

Table 1: Bias, Standard Error (SE), and RMSE of Design 1

LASSO-EL LASSO-GMM BIC DT
θi SE Bias RMSE SE Bias RMSE SE Bias RMSE SE Bias RMSE

θ1 0.1290 -0.0322 0.13291 0.1286 -0.0638 0.1435 0.2059 0.0026 0.2059 0.2144 0.0036 0.2144

θ2 0.0874 0.0009 0.0870 0.0860 -0.0017 0.0860 0.0029 -0.0003 0.0029 0.0035 -0.0002 0.0035

θ3 0.1378 -0.0291 0.1379 0.1343 -0.0538 0.1446 0.1434 -0.1067 0.1787 0.1701 0.1113 0.2033

θ4 0.0758 0.0003 0.0758 0.0758 0.0008 0.0758 0.0019 -0.0001 0.0019 0.0024 0.0003 0.0024

θ5 0.1533 -0.0376 0.1578 0.1520 -0.0718 0.1676 0.1701 -0.0716 0.2000 0.0631 0.2613 0.2688

Table 2: Bias, Standard Error (SE), and RMSE of Design 2

LASSO-EL LASSO-GMM BIC DT
θi SE Bias RMSE SE Bias RMSE SE Bias RMSE SE Bias RMSE

θ1 0.1752 -0.0791 0.1922 0.1731 -0.1622 0.2372 0.2073 0.0009 0.2073 0.2141 0.0011 0.2141

θ2 0.0991 -0.0001 0.0991 0.0986 -0.0002 0.0986 0.0032 0.0001 0.0032 0.0037 0.0007 0.0037

θ3 0.1580 -0.0385 0.1626 0.1573 -0.0813 0.1770 0.1804 -0.0597 0.1900 0.1711 -0.1016 0.1989

θ4 0.0991 -0.0003 0.0991 0.0984 -0.0006 0.0984 0.0021 0.0001 0.0021 0.0024 -0.0009 0.0025

θ5 0.1383 -0.0273 0.1409 0.1368 -0.0552 0.1475 0.0923 -0.1722 0.1953 0.0641 -0.2595 0.2673

We summarize the findings as follows: LASSO-EL picks the right model as often

as LASSO-GMM, which is very superior in choosing the right model compared to

BIC, and DT methods. While in terms of choosing the right models, LASSO-EL,

and LASSO-GMM have almost the same power, LASSO-EL almost always yields a

smaller RMES.

Remark: In this experiment our goal was to compare the lasso-El with lasso-GMM

of Caner (2008). Because GMM perform the best when the errorsare distributed

according to the normal distribution, this setting is favorable to GMM. I expect that
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lasso-EL will perform even better, compared to lasso-GMM, if we consider a bad

behaved distribution. It is well known that GMM has very poorbias, and variance

when the underlying distribution is abad behaveddistribution. For instance when a

thicker-tailed or long-tailed skewed distribution (t5 and log-normal are two examples)

are used, EL does a much better job in comparison to GMM (see Ramalho 2005).

Table 3: Percentage of Correct Model

Estimators Design 1 Design 2

LASSO-EL 85.24 75.15

LASSO-GMM 84.39 74.83

BIC 67.33 45.88

DT 29.08 28.70

1.4 PEL WITH A GENERAL PENALTY FUNCTION

In this section, I investigate the large sample theory of thepenalized empirical like-

lihood estimator with a fairly general penalty function. Wewill use the framework

developed by Cox and O’Sullivan (1990), and Shen and Wang (Shen 1994; 1997; and

Wang and Shen, 1995) to derive the asymptotic distribution of the PEL estimator, and

establish some exponential bounds on the convergence rate of θ̂n, when it is converg-

ing towardθ0. We see that, there are two forces in play. The size of local parameter

space, and the degree of penalization. To get a reasonable convergence rate, which
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also guarantee the asymptotic normality, we need to increase the degree of penaliza-

tion, λn, when the size of the local parameter space grows large. For an in-depth study

of penalization method in statistics consult the references above.

1.4.1 Asymptotic Normality

Like most cases of asymptotic analysis, we try to obtain a linearized version of the

penalized criterion function,Ln. Informally let

Sn(θ) =
∂Ln(θ)

∂θ
(1.4.1)

we want to expandSn around the true parameterθ0 and then study its behavior when

n→ ∞. Off course we hope the limiting score function,S(θ) exists and we have

S(θ) =
∂l(θ)

∂θ
−λ

∂J(θ)

∂θ
(1.4.2)

wherel(θ) is the limiting version ofln(θ). To formally develop an asymptotic theory

for PEL, we accept the framework of Shen 1997, and use the empirical process theory

to find the limiting distribution of our estimator. Before webe able to do all of that,

we need to introduce some notations, and regularity conditions.

Suppose, for allθ ∈ Θ and allx, there existsl ′θ0
(θ−θ0,x) such that the remainder

in the linear approximation can be written as

r(θ−θ0,x) = l(θ,x)− l(θ0,x)− l ′θ0
(θ−θ0,x), (1.4.3)

wherel ′θ0
(θ−θ0,x) is defined as

lim
t→0

l(θ(θ0, t),x)− l(θ0,x)
t

, (1.4.4)

andθ(θ0, t)∈Θ is a path int connectingθ0 andθ such thatθ(θ0,0) = θ0 andθ(θ0,1) =

θ. A good choice forθ(θ0, t) is θ0+ t(θ−θ0), which is linear in t. In this case,l ′θ0
(θ−
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θ0,x) becomes the directional derivative ofl(θ) at θ0. Here we consider the general

case because, in some cases we don’t have any other choice butfacing a nonlinear

form of θ(θ0, t). Let ‖·‖s be a norm different from‖·‖, (it is often chosen to be the

Sobolev norm when it is appropriate to do so) such that‖·‖ ≤ α‖·‖s, and assume that

the convergence rate of the PEL estimator under‖·‖ and‖·‖s, beop(δn) andop(δs
n)

respectively.

Supposef is a functional with the following smoothness property: forall θ ∈ {θ ∈

Θ : ‖θ−θ0‖ ≤ δs
n},

| f (θ)− f (θ0)− f ′θ0
(θ−θ0)| ≤ O(‖θ−θ0)‖w) as‖θ−θ0‖→ 0, (1.4.5)

wherew > 0 is the degree of smoothness off at θ0, and

f ′θ0
(θ−θ0) = lim

t→0

f (θ(θ0, t),x)− f (θ0,x)
t

(1.4.6)

in this way f ′θ0
(θ−θ0) is linear in(θ−θ0) and‖ f ′θ0

‖ < ∞, where

‖ f ′θ0
‖ = sup

{θ∈Θ:‖θ−θ0‖>0}

| f ′θ0
(θ−θ0)|

‖θ−θ0‖
. (1.4.7)

LetV be the space spanned byΘ−θ0, and suppose that‖·‖ induces an inner prod-

uct, 〈·,·〉, on the completion ofV, which we show it bēV. By the Rise representation

theorem, there existsv∗ ∈ V̄ such that, for anyθ ∈ Θ, f ′θ0
(θ−θ0) = 〈θ−θ0,v∗〉. Fur-

thermore, letεn = o(n−1/2) and for allθ ∈ {θ ∈ Θ : ‖θ−θ0‖ ≤ δs
n}

θ∗(θ,εn) = (1− εn)θ+ εn(u
∗+θ0) ∈ Θ, with u∗ = ±v∗ (1.4.8)

Let K(θ0,θ) = n−1∑n
i=1E

[

l(θ0,Xi)− l(θ,Xi)
]

, which is the Kullback-Leibler in-

formation measure based on n observation whenl(θ,X) is a likelihood function, and

let

νn(g) = n−1/2
n

∑
i=1

(

g(Xi)−Eg(Xi)
)

(1.4.9)
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be the empirical process induced byg.

Now we are in a position to formulate some regularity conditions, under which we

can derive the asymptotic distribution off (θ̂n).

Assumptions:

A5: (Stochastic equicontinuity). For the reminder function, r(., .), defined above we

have:

(i)

sup
{θ∈Θ:‖θ−θ0‖s≤δs

n}
n−1/2νn

(

r(θ−θ0,X)− r(θ∗(θ,ε)−θ0,X)
)

= Op(ε2
n). (1.4.10)

(ii)

sup
{θ∈Θ:‖θ−θ0‖s≤δs

n}
n−1/2νn

(

r(θ−θ0,X)
)

= Op(εn). (1.4.11)

A6:

sup
{θ∈Θ:‖θ−θ0‖s≤δs

n}

[

K(θ0,θ∗(θ,εn))−K(θ0,θ)
]

− 1
2

[

‖θ∗(θ,ε)−θ0‖2−‖θ−θ0‖2
]

= O(ε2).

(1.4.12)

A7: For some constant c> 0 and anyθi ∈ {θ ∈ Θ : ‖θ−θ0‖s ≤ δs
n}, i = 1,2, we have

J(θ1+θ2) ≤ c
(

J(θ1)+J(θ2)
)

. (1.4.13)

In addition,λn = O(εn) and J(v∗) < ∞.

A8: We have:

sup
{θ∈Θ:‖θ−θ0‖s≤δs

n}
= n−1/2νn

(

l ′θ0
(θ−θ0)

)

= Op(ε). (1.4.14)

The following result proves the asymptotic normality of thePEL estimator.
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Proposition 3:

Suppose assumptions A5-A8 are satisfied and f is a function which satisfies (4.5) with

δs
n = O(n−1/2) and Var0(l ′θ0

(v∗,X)) < ∞. Then, for the approximate plug-in penalized

estimator f(θ̂) we have

n1/2( f (θ̂)− f (θ0)
) p−→ N

(

0,Var0(l
′
θ0

(v∗,X))
)

. (1.4.15)

The following corollary is a direct consequence of proposition 1.

Corollary 2:

If assumptions A1-A4 hold, then for the approximate penalized estimator,̂θ, we have

n1/2〈θ̂−θ0,s〉
p−→ N

(

0,Var0(l
′
θ0

(s,X)
)

, (1.4.16)

where s∈ Θ−θ0.

Typically,Var(l ′θ0
(θ̂n−θ0)) = ‖ f ′θ0

‖2.

1.4.2 Rate of Convergence

In this subsection of the paper, we use the results of Shen (1998) to obtain some prob-

ability bounds for the convergence of penalized EL estimator.

We first introduce some notation and list the regularity assumptions, which we will

need to obtain the results of this section. Letln(θ|data) be the criterion function that

we discussed earlier, which measures how well a model with parameterθ predicts the

observed data. We defineKn(θ,θ0) = |E
[

ln(θ)− ln(θ0)
]

|. Now we defineρn(θ,θ0) =

K1/2
n (θ,θ0), ρn(θ,θ0) will be used to measure the distance between two parameter

points. In this context, whichln(θ) represents the log empirical likelihood function,

K(θ,θ0) becomes the Kullback-Leiber information criteria. LetV(θ,θ0) =Var
(

l(θ)−
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l(θ0)
)

, wherel(θ) is the limit of ln(θ) when the sample size grows large. Also we

define for anyki > 0,

A(k1,k2) = {θ ∈ Θ : k1 ≤ ρ(θ0,θ) ≤ 2k1, J(θ) ≤ k2}, (1.4.17)

and

B(k1,k2) = {l(θ)− (θ0) : θ ∈ A(k1,k2)}. (1.4.18)

Let Pi be the probability measure on a measurable spaceXi induced by the density

pi(θ0,x). DefineP = n−1∑n
i=1Pi . ExpectationE andEi are evaluated underP andPi

respectively. Now we are in a position to state the required assumptions.

Assumptions:

A9: For some0≤ β < 1 and c1 > 0,

sup
A(k1,k2)

V(θ0,θ) ≤ c1k2
1

(

1+(k2
1,k2)

β). (1.4.19)

A10: There exists a random variable W(Zi), such that

|l(θ,Yi)− l(θ0,Y0)| ≤ |θ(Xi)−θ0(Xi)|W(Zi), (1.4.20)

where{Xi} and{Zi} are independent. Also,supi Ei
[

exp(t0W(Zi))
]

< ∞ and E
[

(θ(X)−

θ0(X))2
]

≤ c2V(θ0,θ), with t0 > 0 and c2 > 0. Furthermore,

sup
A(k1,k2)

‖θ−θ0‖ ≤ c3(k
2
1 +k2)

γ. (1.4.21)

For 0≤ γ < 1, and c3 > 0, the norm is the supermom norm onΘ.

A11: We have

sup
{k1≥1,k2≥1}

Ψ(k1,k2) ≤ c4n1/2, (1.4.22)

whereΨ(k1,k2) =
R U

L H1/2(u,B(k1,k2))du/L with U = c5ε(k2
1 +k2)

(1+max(β,γ))/2, and

L = c6λn(k2
1 +k2), and c5,c6 > 0.7

7H(u,B) is called the Hellinger metric entropy. For a definition see the appendix. For more informa-
tion consult Kolomogorov and Tihomirov (1959)

23



The following results establish some exponential probability bounds on the rate of

convergence for the penalized EL estimator.

Proposition 4:

If assumptions A5-A7 are satisfied. Then there exists a constant c8 > 0 such that for

anyε stisfying assumption A7, and max(J(θ0),1)λn ≤ c7ε2. We have

P∗
(

sup
{pho(θ0,θ)≥ε,θ∈Θ}

n−1
n

∑
i=1

(

ℓ(θ,Yi)− ℓ(θ0,Yi)
)

≥−ε2/2
)

(1.4.23)

≤ 7exp(−c8n min(λ2
n/ε2,λn)),

where the P∗ is the outer measure (see for example Pollard (1984)).

The following corollary gives the bounds for the estimatorθ̂.

Corollary 3:

Suppose assumptions A9-A11 are satisfied. Then for the penalized estimator defined

in definition (1b) with an = o(ε2
n), we have

P
(

ρ(θ0, θ̂) ≥ ζ) ≤ 7exp(−c8nζ2
n), (1.4.24)

whereζn = max(εn,λ
1/2
n ) with εn the smallestε satisfying assumption A11. The best

possible rate can be obtained by settingλn ∼ ε2
n.

Proposition 4 essentially says that, the rate of convergence is determined by equa-

tion (4.22) of assumptionA11, which relates the size of the parameter space, the local

behavior of the profile empirical likelihood function, and the degree of penalization

(λn). We clearly see that whenεn is large, which is an indicator of a large parameter

space in a neighborhood ofθ0, we need to increaseλn, the degree of penalization, in

order to get an acceptable convergence rate.

Remarks 1: Method ofsieveis another important statistical method, which is very
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close to the method of penalization. In sieve approximation, like the penalization

method, we often have a very large parameter space, and optimization on the whole

space does not produces any meaningful estimator. In penalization technique, we re-

strict the optimization to a manageable subspace and then carry out the optimization.

In sieve method, we carry out the optimization within a subset which is dense in the

original parameter space. More formally, ifΘn is a sequence of spaces dense inΘ, for

everyθ ∈ Θ there existsθn ∈ Θn such that‖θn−θ‖ → 0. A sieve estimatêθn, is an

optimizer of the criterion overΘn.

Remark 2: Another very important method which has close connection with penaliza-

tion method, is the Bayesian method. We can interpret the penalty function as formu-

lating prior knowledge about the unknown parameters. More specifically, constructing

a prior such that the posterior distribution is supported ona desirable set with large

probability. This suggests that one way to construct a Bayesian empirical likelihood

estimator, is to try to do it via penalization method.8

1.4.3 Example: Penalized Minimum Distance

Since using the empirical likelihood methods, we estimate two sets of parameters, the

unknown parameterθ0, and the probability distributionp = (p1, . . . , pn), we can use

the penalization method to construct better distributions. In this subsection we try do

that.

Penalty functions an be design to take care of unnecessary small pi in implied

probability distribution, or just to take account of external information that the econo-

metrician might have. In this section we study the penalizedempirical likelihood, in

which the penalty function is designed to regulate the implied probability measure in

8There has been attempt to construct Bayesian EL estimators,(S. Schennach 2005, and N. Lazar
2004), although the authors have taken other roots.
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order to get a measure as close as possible to the maximum entropy measure. As it is

mentioned earlier in this paper, people have used a combination of empirical likelihood

and exponential tilting by embedding the implied probabilities of exponential tilting

procedure in the criterion function of empirical likelihood estimator, see for instance

Jing and Wood (1996), Corcoran (1998), Schennach (2007), and Smith (2005). The

penalized method, introduced here, attempt to combine EL and ET methods too. Here

we use the implied probability measures of the EL procedure,but use the exponential

tilting criterion to penalize those ˆpi(θ) which are not in agreement with ET criterion.

More studies need to investigate the properties of this new estimator, but it seems to

me that this procedure is more in line with statistical theory. There is a big literature

studying the penalized methods, but simply plug in the implied probabilities of one

procedure to the criterion function of another procedure might seem a little ad hoc.

For a data setXn = {x1, . . . ,xn}, let Pn be the empirical distribution which assigns

equal weights to eachxi . For a given distributionP let d(P,Pn) be a distance defined

on the space of probability measures. Furthermore, assume that

ℓn(θ) = −max
γ∈Rm

1
n

n

∑
i=1

log(1+ γ′g(xi ,θ)) (1.4.25)

be the profile empirical likelihood, obtained after accounting for the moment condi-

tionsE[g(Xi,θ)] in the following definition, we define the penalized minimum distance

estimator.

Definition 3:

The penalized minimum distance empirical likelihood estimator for θ is θ̂n such that

θ̂n = argmax
θ∈Θ

{ℓn(θ)−λnd(P,Pn)} (1.4.26)

where P= (p1, . . . , pn) and

pi =
1

1+ γ′g(xi,θ)
(1.4.27)
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In definition 3, J(θ) = d(P,Pn). For instance, KL is a distance measure which

if used in the above definition, will penalisep′is in such way that the final estimator

will have implied probabilities with higher entropy. Thereare various distances, like

Hollinger distance, Kolmogorov-Smimov distance and so on.Depending on what we

expect the estimator to achieve, different measures can be used. the most commonly

used distance measure is the KL which was introduced earlier.

Schennach (2007) has investigated the first and second orderproperties of the

ELET estimator. In a nutshell this estimator is a compromisebetween EL and ET

estimators, and therefore one should expect to see that, ETEL has a better behavior

under miss-specification compared to EL, and at the same timehas better second order

bias properties compared to ET. In fact ELET has the same higher order bias and vari-

ance properties as EL. I expect the penalized estimator, introduce here has the same

higher order properties too. The source of these better performance is the EL criterion

function which our estimator is based on it, too. I intend to do a more in-depth study

of the first and higher order properties of this estimator.

1.5 CONCLUSIONS

This paper extends the “least absolute shrinkage and selection operator” to the frame-

work of empirical likelihood estimation. It also provides aguideline to implement it for

the more general setting of GEL. We show how this procedure isable to consistently

select the best possible model. The simulation results showthe better performance of

LASSO-EL compared to the classical AIC, BIC, and DT criteria. Also, we see from

the presented simulation results that better bias propertyof EL estimator (compared to

GMM) is carried out to the LASSO-EL too, in a way that the LASSO-EL has better
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post-selection preference than LASSO-GMM has.

As by a product, we investigate the large sample properties of the penalized em-

pirical likelihood in setting with a fairly general penaltyfunction. One interesting

conclusion is that, the rate of convergence depends on the complexity of the parameter

space, as measured by the Hellinger metric entropy (HME), aroundθ0, and the degree

of penalizationλn. We saw that, the higher the HME, the bigger the degree of penal-

ization has to be in order to get a faster rate of convergence.In other words, while

the consistency of the penalized estimator is determined bythe global behaviour of the

criterion, the rate of that convergence and therefore the asymptotic normality of the

estimator is determined by the local behavior of the criterion. Finally, We presented

other forms of penalty functions which they might be able to produce estimators with

possibly important properties. Studying the properties ofthese estimators is a subject

of future studies.
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2.0 MODULATION METHOD FOR EMPIRICAL LIKELIHOOD

ESTIMATOR

2.1 INTRODUCTION

Empirical likelihood (El) (Owen 1988) is regarded as the non-parametric version of

parametric likelihood procedure. Its robustness against distributional assumptions on

one hand, and its good properties analogous, to the parametric likelihood, on the other

hand, make it a very powerful tool when it is applied to the moment condition models

in econometric applications. GMM (Hansen 1982) and other recently developed tech-

niques based on Empirical Likelihood (Owen, 1988; Qin and Lawless, 1994; Imbens,

1997) use a set of given moment conditions to construct estimators for the unknown

parameters. In this paper, and a companion paper (Shahidi 2008) we study the use

of shrinkagetechniques in improving the empirical likelihood procedure. While this

paper introduces themodulationmethod, the other paper deals with penalization tech-

nique. Modulation, andpenalizationmethods belong to the wider class of shrinkage

procedures. Shrinkage methods enable us to use extra information, and incorporate

prior beliefs into the estimation. For instance, in the penalization method one can con-

struct the penalty function based on the external information she wants to take into

account. Shrinkage methods are also useful in correcting some undesirable features of

some class of estimators. In this paper we develop a general framework, in which, one
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can study different estimators using the modulation techniques. Using this framework,

we introduce several examples of new estimators, and examine their properties.

The remaining part of this introduction, is devoted to the heuristic origins of the

topics which will be further analyzed in the following sections.

2.1.1 GMM and GEL

Generalized method of moments estimator (GMM) has been the workhorse of econo-

metric analysis since its introduction by Hansen (1982). Besides providing a unified

framework to study different types of estimators, GMM extends the method of mo-

ments framework to include situations in which the number ofmoment conditions ex-

ceed the dimension of the parameter we want to estimate. Although the GMM estima-

tor has desirable properties, such as being first-order asymptotically efficient, its small

sample properties are relatively poor (Altonji and Segal, 1996; Tauchen 1986). More

recently, Owen’s empirical likelihood method has providedother estimators, some of

which overcome some of the shortfalls of the GMM. From this family we have the EL

estimator (Owen, 1988; Qin and Lawless, 1994; Imbens, 1997), Continuous Updating

Estimator (CUE) (Hansen and Yaron, 1996), and the Exponentially Tilting Estima-

tor (Kitamura and Stutzer, 1997; Imbens and Johnson, 1998) which all belong to the

class of Generalized Empirical Likelihood (GEL) estimators (Smith, 1997; Newey and

Smith, 2004).1 These estimators circumvent the need of estimating a weighting ma-

trix in the two-step GMM by directly minimizing an information-theory-based concept

of closeness between the estimated distribution and the empirical distribution.2 While

1There are other varieties, too. For example the Exponentially Tilted Empirical Likelihood estimator
(ETEL) (SCHENNACH, 2007) which in essence is a combination of the two estimators, EL and ET, in
hope to obtain an estimator that like EL has a smaller finite-sample bias, and at the same time inherits
the better behavior of ET in the presence of mis-specification.

2The estimators mentioned so far are, like GMM, based on unconditional moment restrictions, using
the empirical likelihood methods, we can construct estimators based on conditional moment restrictions,
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in theory these estimators, like GMM, all have the same first-order asymptotic effi-

ciency, simulation works and Monte Carlo evidences have shown that, compared to

GMM, some members of the GEL class have better finite-sample properties (Hansen

and Yaron, 1996; Ramalho, 2006) and references therein. Also, Newey and Smith

(2004) have analytically shown, using a stochastic expansion argument, that while

GMM and GEL share the same first-order asymptotic properties, their higher-order

properties are different. Specifically, while the asymptotic bias of GMM often grows

with the number of moment restrictions, the relatively smaller bias of EL does not.

Moreover, a bias-corrected EL is higher-order efficient relative to any other regular

method of moment estimator. In term of inferences, the empirical likelihood ratio test

has some desirable features too. For example ELR test admitsBartlet correction, Di-

Ciccio, Hall, Romano (1991), which gives the same accuracy rate as the parametric

case. Kitamura (2001) used the so calledGeneralized Neyman-Pearsonapproach to

show that for testing moment restriction the ELR test is uniformly most powerful in an

asymptotic large deviation sense.

2.1.2 Shrinkage and Modulation

Shrinkage is a general method in statistics for improving anestimator and regularizing

ill-posed inference problems. Commonly used procedures like Bayesian inference,

and penalized likelihood inference, implicitly use the shrinkage technique.

In this part of the introduction, I will use the simple ordinary least square (OLS)

to demonstrate how the shrinkage method works, and also we hope to justify its use-

fulness. The Gauss-Markov theorem states that among all linear unbiased estimators,

the OLS has the smallest variance, but this property which sometimes is called BLUE

too. See (ZHANG and GIJBELS, 2003), and Kitamura et al (2004)
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“Best linear Unbiased Estimator” does not yield the best estimator in the sense of MSE

“Mean Squared Errors”. In the other words, if we drop the unbiased restriction we can

do better in MSE sense. To demonstrate it, assumeβ̂i is the OLS estimator ofβi, and

defineβ̃i = 1
1+λ β̂i . We notice that ifλ = 0; we get the OLS estimator back, and when

λ is too large,β̃i shrinks to zero. Furthermore,Eβ̃i = 1
1+λEβ̂i = 1

1+λ βi, thereforeβ̃i is

a biased estimator ofβi .

The MSE ofβ̃i can be written as

Kσ2(
1

1+λ
)2+(

λ
1+λ

)2
K

∑
i=1

β2
i . (2.1.1)

The first part is the variance component, which is the largestwhen λ is zero. The

second part is the squared bias and it grows withλ. In principal with the right choice

of λ, we can get an estimator which does better than the OLS in MSE sense. This new

estimator is not unbiased, but what we pay for in bias, we makeup for in variance. The

first order condition gives the optimal choice forλ as

λ =
Kσ2

∑β2
i

. (2.1.2)

Although this choice ofλ is not feasible, it is possibler to find good estimations for

it. For example we can replaceσ with an unbiased estimation of variance, and also

replacingβ with some appropriate estimation ofβ. Two of the most mentioned fea-

sible estimators ofλ are James-Stein estimator (James and Stein, 1961), and Sclove

estimator (Sclove, 1968).

We can summarize the construction of this new estimator as follows: First, we used

the scalar parameterλ to obtain an equation in which a new parameter,β̃, depends on

the OLS estimator through the parameterλ; this step is called modulation. Second,

we have a criterion which we are looking to optimize; here we want to minimize the

MSE risk of the estimator. Third, this minimization yields us an optimal choice for
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the newly introduced parameterλ, which in turn results in a new estimator which

has a better MSE compared to the OLS estimator. In Beran, and Dümbgen (1998)

terminology, the parameterλ, is called a modulator. They extended this argument

roughly in the following manner. Let̂β = (β̂1, . . . , β̂n), then the modulated parameter

is β̃ = (λ1β̂1, . . . ,λnβ̂), and therefore the modulator is the n-dimensional vectorλ =

(λ1, . . . ,λn)

In this paper, we will use a method similar to “modulation estimator” (Beran and

Dümbgen, 1998) to obtain a new modulation of the old estimator. Then we use an ap-

propriate criterion to pick the best “modulator” which gives the best estimator, judged

by the chosen criterion . The procedure that we are trying to implement can be sum-

marized as follow:

1. Modulation: Use modulators to modulate the estimator to afamily of estimators,

depending on the modulator.

2. Selecting a criterion: Use a criterion to choose the best modulator. The criterion

is usually a risk function, evaluating the risk associated with a given estimator.

Because in El estimation method we estimating two entities,the unknown param-

eterθ, and the multinominal distributionp = (p1, . . . , pn), we can use a criterion

which measures the goodness of a distribution likep. Both of these methods are

discussed in the section two of this paper.

3. Adaptation: Find a modulator that optimizes the given criterion.

2.1.3 Other Interpretations for λ

So far we have considered the modulator,λ = (λ1, . . . ,λn), to be a purely mathematical

tool which helps to change, construct and choose form, the already known estimators.

Another possible interpretation of the vectorλ = (λ1, . . . ,λn) is to considerλ as a vec-
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tor of weights. Weighting is commonly used in econometrics and statistics to account

for specific structure of a data set. Interpretingw as weights will result in aweighted

empirical likelihood, which we hope to take account of heteroskedasticity in the data.

If the data under consideration possesses an unknown structure, for instance, we are

aware of a heteroskedasticity in the data, but the exact structure of it is unknown. In

this case, we use an unknown vector of weightsw = (w1, . . . ,wn), and then by us-

ing some criteria, we try to choose the best weights according to that criteria. The

weighting vectorw can be considered as kernel weights. Instead of maximizing the

empirical distribution we might want to maximize a smoothedversion of the empirical

distribution, which requires weighting by a smoothing kernel.

This paper contributes to the EL literature in two ways. First, we introduce the

modulation method in the empirical likelihood framework. This method enables us to

study several different estimators using the same theoretical framework. For example,

when the modulators are interpreted as weighting vectors, we can define and study the

weighted empirical likelihood procedure. Second, we use the modulation method in

some well known econometrics and statistical models, like GLM model. We study

them analytically, and conduct Monte Carlo simulations, which shows the improved

estimators indeed work better then the original ones, specially when the sample size is

very small. Although, we focus our attention on EL procedurein this paper, extending

the results to the more general setting of GEL is not very far off.

The rest of this paper proceeds as follows. In section 2, we introduce the modula-

tion technique and use it to construct new EL estimators. In section 3 we study GLM

as an example, we use this technique to obtain an estimator for thegeneralized linear

model, GLM,(Kolaczyk, 1994; Chen and Cui, 2003). We will show that this estimator

has a lower variance than the traditional quasi-likelihoodestimator of the GLM mod-

els. Section 4 reports the outcome of some Monte Carlo simulations, and section 5
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concludes the paper, while all proofs are collected in the appendix.

2.2 MODULATION METHOD

In this section, we try to implement the three steps which we discussed in the previous

section. We first present an example, which shows how the method works in a linear

setting. This example is a slightly modified version of Beran(2000). We construct an

estimation for a density functionf , which we hope to show how modulation method

works.

2.2.1 How Modulation Works

As we explained above, this subsection serves as an illustration of the modulation

method. We hope a reader who might be unfamiliar with this method can gain enough

insight from this example to follow the rest of this paper.

Definition 4:

A modulator is a vector w= (w1, . . . ,wn), where wi ∈ [0, 1] for i = 1, . . . ,n.

Now we define a modulation estimator.

Definition 5:

A modulation estimator is a component-wise linear estimator of the form

θ̂(w) = (w1θ̂1, . . . ,wnθ̂n), (2.2.1)

where w is a modulator.
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Suppose that

Yi = f (xi)+σεi (2.2.2)

, whereεi ∼ N(0,1) andxi = 1/n.

Assumef ∈ L2[0,1] therefore we can expand it as

f (x) =
∞

∑
i=1

θiφi(x) and θi =
Z

( f (x)φidx (2.2.3)

where{φi}∞
1 is an orthonormal basis forL2[0,1]. Defineθ̂ j = 1

n ∑n
i=1Yiφ j(xi) therefore

E(θ̂ j) =
1
n

n

∑
i=1

E(Yi)φ j(xi) =
1
n

n

∑
i=1

f (xi)φ j(xi) (2.2.4)

≈
Z

f (x)φi(x)dx= θ j (2.2.5)

and

Var(θ̂ j) =
1
n2

n

∑
i=1

Var(Yi)φ2
j (xi) =

σ2

n2

n

∑
i=1

φ2
j (xi) ≈

σ2

n2

Z

φ2
j (x)dx=

σ2

n2 . (2.2.6)

Considering the dimensionality of the data set,f̂n(y) = ∑n
i=1 θ̂iφi(y) is a good estimator

for f (y). The estimator̂θ = (θ̂1, . . . , θ̂n) often results in af̂n(y) which has very poor

risk. Using modulators we can improve the risk off̂n(y). Let θ̂(w) = (w1θ̂1, . . . ,wnθ̂n).

By Parsevel equality, the loss function is

L( f̂n, fn) =

Z

( f̂n(y)− fn(y))
2 (2.2.7)

=
n

∑
i=1

(wiθi −θi)
2 (2.2.8)

therefore the risk function is

R( f̂n, fn) = E[L( f̂n, fn)] (2.2.9)
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=
n

∑
i=1

(

wi
σ2

n
+(1−wi)

2θ2
i

)

(2.2.10)

An unbiased estimator for the risk function can be obtained,by replacingθi by θ̂i and

σ2 by an unbiased estimator ofσ̂2.

R̂(w) =
n

∑
i=1

(

θ̂i −
σ̂2

n

)

(1−wi)
2+

σ̂2

n

n

∑
i=1

w2
i (2.2.11)

now the minimum risk estimator forf (y) is obtained by usinĝθ(w∗), wherew∗ is the

minimizer ofR̂(w).

Therefore to obtain the modulation estimator, first we derived an estimator for the

density functionf . Then in the second stage, we modulated this estimator and obtained

a family of estimatorsf̂ w
n for f . And finally in the third stage, we used a criteria to

compare the members of this family and choose the best one which we show it byf̂ w∗
n .

We now perform this three-steps procedure for the empiricallikelihood estimator. The

main difference, from the setting discussed above, is that the modulations we consider

here are no longer necessarily linear.

2.2.2 Modulated EL

Definition 3 defines both what a modulator is, and what we mean by a modulation

estimator in a nonlinear setting.

Definition 6:

We define:

1. A “modulator” is a vector w= (w1, . . . ,wn) where wj ∈ R, for j = 1,2, . . . ,n
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2. A “modulation estimator” is a component-wise estimator of the form

θ̂(w) = (θ̂1(w), . . . , θ̂n(w)) (2.2.12)

where w is a modulator.

The idea is, to derive a class of estimators in a manner that all of them satisfy the

desired sample moment conditions, and furthermore, each one depends on the modu-

latorw. To achieve this, we change the objecting function used in empirical likelihood

estimation in such a way that the new objective function depends on the modulatorw.

Obviously there are more than one way to do this, but we shouldbe able to provide

reasonable interpretations for any selected procedure. Below, we propose one of these

ways, which we think has a very natural interpretation asweighted empirical likeli-

hood. In lemma 2, we show that this procedure in equivalent to another one which

is easy to interpret too, and therefore we can use them interchangeably. Later in this

paper we discuss the weighting interpretation in details.

Definition 7:

For a modulator w= (w1,w2, . . . ,wn) define

p̂(w) = argmin
p1,...,pn

n

∑
i=1

−wi logpi (2.2.13)

subject to:
n

∑
i=1

pigi(θ) = 0 and
n

∑
i=1

pi = 1 (2.2.14)

notice that here gi(θ) = g(xi ,θ).

The following lemma shows that every solution to the minimization in definition 2,

can be manipulated to get a solution for another minimization problem, which some-

times is easier to implement.
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Lemma 1:

Let p̂(w) be the solution obtained from definition 2, then there exits asolutionq̂(ϖ) to

the following minimization problem

min
q1,...,qn

n

∑
i=1

− logqi (2.2.15)

subject to:
n

∑
i=1

qigi(θ)ϖi = 0 and
n

∑
i=1

qi = 1, (2.2.16)

whereϖ = (ϖ1, . . . ,ϖn) is a new modulator.

Proof. See the appendix

Since adding extra constraints does not increase the variance of the EL estimators,

Qin and Lawless (1994), Newey and Smith (2004) we might be able to achieve better

estimators by adding some extra constrains which help us to use more information

or more efficiently the same information, to estimate the parameters. Using the idea

of modulators, introduced by definition 2 and lemma 1 we can develop an extended

version of EL estimator, by adding extra moment conditions to the set of original

moment conditions. The following definition introduce thismodification and later in

this paper we show, through an example using GLM (generalized linear models), how

to use this modification, along with a modulator, to construct better estimators.

Definition 8:

Let g(Xi,θ) = gi = (g1
i , . . . ,g

k
i ), h1

i = (gl1
i , . . . ,g

l j
i ), h2

i = (gt1
i , . . . ,g

t j′
i ), {l1, . . . , l j} ∪

{t1, . . . , t ′j} = {1, . . . ,k} and hi = (h1
i ,h

2
i ). Let w= (w1, . . . ,wn) be a modulator as

in definition 1, the extended EL estimator forθ is the estimator obtained from EL

procedure by replacing the constrain∑n
i=1 pigi = 0 with the new constrain∑n

i=1 pi(h1
i +

wih2
i ) = 0
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Remark: This definition can be considered as a generalization of definition 2.

By settingh1
i = 0 andh2

i = gi we get definition 2. Also, it should be noticed that, if

j + j ′ > k, then the number of original moment conditions, k, has been extended, and

some new moment conditions have been added to the original set. This proves to be

useful specially in cases that, the number of moment conditions are the same as the

number of parameters.

All the procedures introduced so far, have the important feature of linking the esti-

mator ofθ to the vectorw= (w1, . . . ,wn). In the other words all the maximization pro-

cedures, introduced above, yield us an estimator for the empirical probability measure

p = (p1, . . . , pn), p̂(w), and as a by product, we obtain an estimator for the unknown

parameterθ, which we show it bŷθ(w). To see this, we set up the Lagrangian

L = −
n

∑
i=1

log(pi)+λ′
n

∑
i=1

pigi(θ)wi +µ
(

n

∑
i=1

pi −1
)

(2.2.17)

whereµ∈ R andλ ∈ R
p are the Lagrange multipliers. It takes some simple algebra to

show that the first order conditions are solved by

µ̂= n, λ(θ) = argmin
λ∈Rp

−
n

∑
i=1

log(1+λ′gi(θ)wi) (2.2.18)

and

p̂(θ) =
1

n(1+ λ̂(θ)′gi(θ)wi)
(2.2.19)

therefore the likelihood profile will be

ℓ(θ) = min
λ∈Rp

−
n

∑
i=1

log(1+λ′gi(θ)wi)−nlogn (2.2.20)

finally the empirical likelihood estimator forθ is

θ̂ = argmax
θ∈Θ

ℓ(θ) = argmax
θ∈Θ

min
λ∈Rp

−
n

∑
i=1

log(1+λ′gi(θ)wi) (2.2.21)
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As we notice, both estimators, the estimator forθ, θ̂(w), and the estimator for the

empirical distribution P,P̂ = (p̂1(θ̂(w)), . . . , p̂n(θ̂(w))), depend on the modulatorw.

In this manner we have a class of estimators for the empiricalmeasure, and a class of

estimators for the unknown parameterθ

P̂ = {p̂(w)|w∈W} and Θ̂ = {θ̂(w)|w∈W} (2.2.22)

whereW is the set of all allowable modulators.

Definition 2, resembles the definition of empirical likelihood estimator, with the

exception of coefficientswi . Thesewi ’s can be interpreted as weights or just a math-

ematical device to modulate and construct new estimators. Our goal is, to show that

this device is indeed a useful one which helps us to find estimators with better desired

properties. Later in this paper we discuss weighting and other interpretations of the

wi ’s.

The following lemma shows that every member ofΘ̂ along with the corresponding

p̂(w) ∈ P̂ satisfies the moment conditions.

Lemma 2:

Let modulator w= (w1, . . . ,wn) be given, then the estimatorθ̂(w), and its correspond-

ing implied probabilitiesp̂(w), given by definition 2, exist and satisfy the sample mo-

ment conditions.

Proof. See the appendix

Now that we have a set of estimators,Θ̂, and the sample moment conditions are

satisfied using whatever member of this set, we need some criteria to choose from this

set of estimators. This leads us to the second step of the procedure introduced earlier

in the introduction,“risk estimation”. Since, we are estimating two unknowns, the em-

pirical distribution and the models’ parameterθ, we have several options for using an
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appropriate criteria. First, we will explain how to choose the best empirical measure

from the setP̂. As we will see, this is much simpler than trying to estimate the risk of

a given estimator. Because choosing the appropriate empirical distribution is achieved

by choosing a suitable modulator,w0 = (w0
1, . . . ,w

0
n), and because given the modulator

w0 we can pick the estimatorθ̂(w0), the procedure of choosing an appropriate empiri-

cal measure yields us an estimator forθ with the best implied probabilities judged by

the given criteria.

2.2.3 The Minimum distance Criteria

There are a host of metrics available to quantify the distance between two given mea-

sures. Although some are not metrics in the mathematical sense of the word, but pos-

sess a notion of “distance” which have been proven to be useful. Among many such

distance measures we restrict ourselves to the forward Kullback-Leibler divergence,

also known as “relative entropy”. Kullback-Leibler (KL) divergence is one of the fun-

damental concepts in statistics and information theory. From many interpretations, are

measuring goodness of fit, and measuring lose of power in a likelihood ratio test. Just

as likelihood measures how well a model explains the data, wecan think of KL as

measuring the lack of fit between model and data relative to a perfect fit. Also we can

think of KL divergence fromPA to Q as measuring how much power we lose with the

likelihood ratio test if we mis-specify the alternative hypothesisPA asQ.

For two measuresP andQ the forward Kullback-Leibler (KL) divergence between

P andQ is defined to be

K(P,Q) =

Z

log
dP
dQ

dP (2.2.23)

when the state space,Ω, is discreet we can write it as

K(P,Q) = ∑
ω∈Ω

P(ω) log
P(ω)

Q(ω)
(2.2.24)
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The empirical likelihood minimizes the forward KL divergence between the empirical

measureµn and the measure obtained by enforcing the moment condition.Let’s

P (θ) =
{

P∈ M
∣

∣

∣

Z

g(x,θ)dP = 0
}

(2.2.25)

whereM is the set of all probability measures onR
P and define

P =
[

θ∈Θ
P (θ) (2.2.26)

then

inf
θ∈Θ

inf
P∈P (θ)

K(µn,P) = inf
P∈P

K(µn,P) (2.2.27)

If p̂(w) = (p̂1(w), . . . , p̂n(w)) ∈ P̂ then

K(µn, p(w)) =
n

∑
i=1

−1
n

lognpi(w) (2.2.28)

now we are in a position to present an example of how the modulation method works.

In the following example, we construct an estimator forθ and then definition 6, defines

it as an special case of the general method we introduced earlier.

Example 1:

Let the data set Xn = {x1, . . . ,xn} satisfy the moment condition

E[g(xi ,θ] = 0 (2.2.29)

setting up the EL estimation forθ, using the modulatorλ = (λ1, . . . ,λn), yield the

following empirical measurêP = (p̂1, . . . , p̂n) such that

p̂i(θ,λ) =
1

n(1+ γ̂(θ,λ)′g(xi ,θ)λi)
(2.2.30)

and

γ̂(θ) = argmin
γ∈Rp

−
n

∑
i=1

log(1+ γ′g(xi,θ)λi) (2.2.31)
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Let λ∗ be the solution to the following maximization problem

λ∗(θ) = argmax
λ∈Rn

n

∑
i=1

p̂i(θ,λ) log(p̂i(θ,λ)) (2.2.32)

the desired estimator forθ is

θ̂∗ = argmax
θ∈Θ

−
n

∑
i=1

log p̂i(θ,λ∗(θ)) (2.2.33)

Using the framework developed in definition 2, we pick the vector λ∗ in order to

maximizeK(p(λ),µn).

Definition 9:

Let

w∗ = argmax
w1,...,wn

n

∑
i=1

pi(w) logpi(w) (2.2.34)

we call the correspondinĝθ(w∗) the KL-adapted empirical likelihood estimation of the

parameter,θ0.

This estimator has the special property that its implied probability distribution is

the maximum entropy distributionand at the same time it maximizes the empirical

likelihood too.3 The following proposition shows that the implied probabilities for

KL-adapted-EL are indeed better than those of EL estimator,as long as the KL criteria

concerns.

Proposition 5:

If p̂ = (p̂1, . . . , p̂n) be the implied empirical probability measure of EL andp̂w∗ =

(p̂1w∗, . . . , p̂nw∗) be the implied empirical probability measure of KL-adapted-EL then

K(µn, p̂w∗) ≤ K(µn, p̂) (2.2.35)

3According to themaximum entropy principal,the least biased distribution that encodes certain given
information, is the one which maximizes the information entropy
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Proof. p̂w∗ minimizesK(µn, p) for all p̂∈ P(w), if w0 = (1,1, . . . ,1) thenp̂w0 = p̂, the

implied probabilities obtained from empirical likelihoodestimation, therefore we have

min
w∈W

K(µn, p̂w) ≤ K(µnp̂w0) (2.2.36)

The left hand side isK(µn, p̂w∗), and the right hand side isK(µn, p̂), therefore

K(µn, p̂w∗) ≤ K(µn, p̂) (2.2.37)

An interesting exercise is, to compareθael andθetel. θetel is designed to take ad-

vantage of both empirical likelihood, maximized empiricallikelihood ratio, and expo-

nentially tilted empirical likelihood, maximized entropy. As we will see, while it does

it to some extend, (Schennach 2007), it does not produce an empirical measure that has

the two impotent property to see this let defineθetel as it is done in Schennach paper.

Usingminimum empirical discrepancy, (MED) (Corcoran, 1998; Cressie and Read,

1984) we have

θ̂etel = argmin
θ ∑

i
h̃(p̂i(θ)) (2.2.38)

wherep̂i(θ) is the solution to

min
{pi}n

i=1
∑
i

h(pi) (2.2.39)

subject to

∑
i

pig(xi,θ) = 0 and ∑
i

pi = 1 (2.2.40)

so that

h̃(pi) = − log(pi) and h(pi) = pi log(pi) (2.2.41)

to ease comparison, we can re-define the estimator of example1 as

θ̂(w) = argmin
θ∈Θ

∑
i

wih(p̂i(θ,w)) (2.2.42)
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wherep̂i(θ,w) is the solution to

min
{pi}n

i=1
∑
i

wih(pi) (2.2.43)

subject to

∑
i

pig(xi,θ) = 0 and ∑
i

pi = 0 (2.2.44)

in this way we obtain

Θ̂ = {θ̂(w)|w∈W} (2.2.45)

and

P̂ = {p̂(w) = p̂(θ̂(w),w)|w∈W} (2.2.46)

if we definewp = (−p1, . . . ,−pn) then

θ̂ael(w
p) = θ̂etel (2.2.47)

this implies that̂θetel ∈ P̂ and therefore

K(µn, p̂ael) ≤ K(µn, p̂etel) (2.2.48)

at least in theory we get an improvement uponθetel.
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2.2.4 Minimum Risk Criteria

In the previous subsection, we tried to pick the best empirical measure, ˆp, in the set

P̂. Here in this subsection, we try to define a criteria which helps us pick the best

estimator for the unknown parameterθ̂. The very large literature in statistical theory

which deals with this problem is commonly know as “statistical decision theory”.4

Here, we give a very short overview in hope to further facilitate the understanding

of this paper. LetA be the set of allowable decisions, usually is called theaction space,

and Θ is the parameter space characterizing the set of models under consideration.

A loss functionL(θ,a), a ∈ A andθ ∈ Θ, gives the loss or dis-utility suffered from

taking actiona when the parameter isθ. In the context of point estimation the setA

represents the set of all relevant estimators, and therefore L(θ,a) measures the loss

incurred when the true parameter isθ anda(x1, . . . ,xn) is chosen as an estimator of

θ, when the observation of the random variableX is X = (x1, . . . ,xn). The risk, or

expected loss, of a decision rulea underθ is defined as

R(θ,a) = Eθ[L(θ,a(X))]. (2.2.49)

An example of a loss function is thesquared error loss, L(θ,a) = (a− θ)2, the risk

associated with this loss function is the famousMean Squared Error, (MSE), criterion.

Since the value of the true parameter,θ, is not known we might like to use an estimator

that has a small risk,R(θ,a), for all possible values ofθ. Therefore we expect between

two estimatorsa1 anda2, if R(θ,a1)≤ R(θ,a2) for all θ ∈ Θ and inequality is strict for

someθ then estimatora1 is preferred to the estimatora2.

4For a introductory treatment of decision theory see “Theoryof Point Estimation” by E.L. Lehmann
and G. Casella 1998. A more advanced treatment can be found in“Statistical Decision Theory” by S.
French and D.R. Insua. For a survey of applications of decision theory in econometrics see “Decision
Theory in Econometrics” K. Hirano 2006. Also, “Econometrics and Decision Theory” by Chamberlian
2000
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While it seems promising, but except in some very special, and mostly linear,

cases it is almost impossible to estimate the risk function.While more studies need

to be done to distinguish the appropriate risk functions andways to estimate them, we

still can find other criteria to choose the best estimator. Anexample is the empirical

Bayes implementation.5

Suppose, we have a prior belief thatθ0 ∼N(θ∗,σ2I). For any givena> 0 the prob-

ability thatθ0 ∈ (θ−a,θ +a) is the greatest, whenθ = θ∗. Therefore, intuitively, we

want our estimator be as close as possible toθ∗. Let’s call this property, the “interval

property”. The following estimator achieves this goal.

Definition 10:

Let

λ∗ = argmin
λ∈Λ

||θ̂(λ)−θ∗|| (2.2.50)

whichΛ is the set of allowable modulators. Estimatorθ̂(λ∗), is the estimator with best

interval property.

2.3 GENERALIZED LINEAR MODEL (GML) AS AN EXAMPLE

In this subsection we try to apply the previous results and derive the optimal weights

for a generalized linear model. This class of models include the famous frameworks

like log-linear models, logit models, probit models, and many more. For an in depth

review of GLM and its applications see McCullagh and Nedler (1990) and James Lind-

sey (1997). This example is derived from Chen and Cui (2003).Here we, briefly,

5For more information about empirical Bayes inference and its applications, including economics
applications like “revenue sharing”, “insurance rate and risk evaluation” and other applications, see
Morris 1983 and references therein.
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introduce the general framework of GLMs.

Suppose data(Y1,X1), . . . ,(Yn,Xn) are observed, whereYi ∈R independent random

variables andXi ∈ R
p, random variableY is the response of the random vectorX, a

GLM specification is the model with following representation

E[Y|X] = G(X′β) and Var[Y|X] = σ2V[G(X′β)] (2.3.1)

whereβ ∈ R
p is a vector of parameters,G is a known smooth link function andV is a

known variance function. The standard estimation tool in this framework, is the quasi-

likelihood (Wedderburn 1974). Letµ(β) = G(X′β), the log quasi-likelihood ratio ofβ

is defined as

Q{y;µ(β)} =
Z µ(β)

y

y−u
V(u)

du (2.3.2)

Now suppose that(x1,y1), . . . ,(xn,yn) be ani.i.d data set andµi(β) = G(X′
i β). The

joint quasi-likelihood ratio of the data is

Q(µ,Y) =
n

∑
i=1

Q(Yi ,µi(β)) (2.3.3)

differentiating with respect toβ and doing some algebra, the quasi-score function can

be written as
∂

∂β
Q(µi,Yi) =

Yi −µi

V[(µi(β))]

∂µi

∂β
(2.3.4)

sinceE[ ∂
∂βQ(µ,Y)] = 0, we have

n

∑
i=1

(Yi −µi(β))G′(X′
i β)Xi

V[(µi(β))]
= 0 (2.3.5)

the same but more demanding argument will show that6

n

∑
i=1

((Yi −G(X′
i β))2

σ4V[(X′
i β)]

− 1
σ2

)

= 0 (2.3.6)

6For a complete derivation see Eric D. Kolaczyk 1994.
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To use empirical likelihood we need moment conditions whichthese two equations

can provide it for us. Fori = 1, . . . ,n, define

g1
i (β) =

(Yi −µi(β))G′(X′
i β)Xi

V[(µi(β))]
(2.3.7)

and

g2
i (β,σ2) =

((Yi −G(X′
i β))2

σ4V[(X′
i β)]

− 1
σ2

)

(2.3.8)

remembering definition 3, letgi(β,σ2) = (g1
i ,g

2
i ), h1

i = (g1
i ,g

2
i ), h2

i = g2
i and hi =

(h1
i ,h

2
i ), now we can define the adapted empirical likelihood for the pair (β,σ2), given

the modulatorw = (w1, . . . ,wn)

L(β,σ2) = max
{pi}n

i=1

n

∑
i=1

logpi (2.3.9)

subject to
n

∑
i=1

pi(h
1
i +h2

i wi) = 0 and
n

∑
i=1

pi = 1. (2.3.10)

The common method to estimateβ is to use quasi-likelihood (QL) estimators, MacCul-

lagh and Nedler (1990). It is easy to set up the EL procedure for this problem, because

the number constrain is equal to the number of equations. In this case we getpi = 1/n

and the estimator is the same as QL estimator. If we use the procedure introduced in

definition 3 we can obtain an estimator which has better variance than QL estimator.

Let β̂ql be the estimator obtained by using QL method, andβ̂(w) is the estimator

obtained by the method introduced in this paper for a givenw.7 As we discussed

earlier in this paper, we need a criteria in order to choose the best modulatorw. Here

we compare the variance ofβ̂(w) to the variance of̂βql. We try to find aw∗ such that

∀w Σβ̂ql
−Σβ̂(w) ≤ Σβ̂ql

−Σβ̂(w∗) (2.3.11)

7Here we keep the two original constrains and add a weighted version of the constrain related to the
variance. As we will see this help us to use the data more efficiently, and results in an estimator with
reduced variance.
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In the other words, we choosew so thatΣβ̂ql
−Σβ̂(w) is maximized.

Remark: For two positive semi definite matrices, A and B, we sayA > B if A−B is a

positive semi-definite matrix (see “Mathematics for Econometrics” by P. Dhrymes for

further discussion).

The following result establishes the desired modulator, orweights depending on

the interpretation we might have.

Assumptions:

The following assumptions, which are standard in GLM estimation, are required in the

proof of proposition 2

A1: G(.) is twice continuously differentiable, and V(.) is continuously differentiable.

A2: E[Z1(β,σ2)Z′
1(β,σ2)] is non-singular.

A3: For someδ > 0, E[|ε|2 + ||X||]2+δ < ∞, E[|G′(X′β)|+V−1 + w]2+δ < ∞ and

E[|G′′(X′β)|+ |V′|]1+δ < ∞.

A4: The matrix
(

E[
∂Z1(β,σ2)

∂β ],E[
∂Z1(β,σ2)

∂σ2 ]
)

has full rank.

Proposition 6:

If E[ε3|X] = 0, E[ε4|X] = κσ4V2 for someκ > 1 and Cov(V ′GX
V ) > 0, then the optimal

weights so that maximizeΣβ̂ql
−Σβ̂(w) is

w∗(X′β,X) = w∗
i =

V ′[G(X′
i β)]G′(X′

i β)Xi

V[G(X′
i β)]

(2.3.12)

Notice that,V ′ andG′ are the first order derivatives forV andG, andX′
i is the

matrix transpose ofXi.

Proof. See the appendix.
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2.4 IMPLEMENTATION AND MONTE CARLO SIMULATIONS

In this section, to evaluate the methods developed in the previous parts, we design

and preform sets of Monte Carlo simulations. At the moment, from five simulation

problems, which I am working on, I will only report two of them. This is both for

keeping this paper in an acceptable size range, and some technical difficulties with

some of the other simulations. Therefore, I consider this part as an incomplete section,

and I am working to complete it by designing viable algorithms. The main compu-

tational problem is optimization with respect to the modulators. The lack of closed

from solution in most cases, makes this optimization a very computationally intensive

procedure. Although this is a very big draw back, but one can argue that the modula-

tion, or weighting, has better efficiency than the unweighted EL only when the sample

size is small. Therefore there is not much gain from applyingthe method of weight-

ing when the sample size is large, because both methods are asymptotically equivalent.

Therefore, the hope is that, when the sample size is small theoptimization with respect

to the modulation would work. In this section, I present the result obtained from two

simulations.

2.4.1 GLM Estimation

Here we report some simulation results, using the GLM model

Yi = G(X′
i β)+σV

(

G(X′iβ)
)

εi (2.4.1)

whereεi ∼ N(0,1), V(t) = t, andG(t) = log(X′
i β). The parameters used in this model

areβ1 = 0.5, β2 = 1, andσ2 = 0.25. Xi = (Xi1,Xi2)
′ are generated from uniform distri-

bution on[0 2]× [0 2]. I have used the quasi-likelihood procedure of R, which is the
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main tool of estimating GLM models in R, to obtain(βql,σql). To derive the weighted

EL estimation we use the usual empirical likelihood procedure augmented with the

optimal weights obtained from proposition 2. Table 1 summarizes the quasi-likelihood

estimation results, and table 2 summarizes the results obtained from weighted EL. As

these results suggest there is a sensible improvement, though small, in the variance of

WEL estimator compared with QL estimator, and very important, this improvement

comes at no cost in bias.

Table 4: Standard Error(SD) and Bias of the QL Estimator

β̂1 β̂2 σ̂

Sample Size SD Bias SD Bias SD Bias

40 0.41 0.053 0.49 0.057 0.10 0.0041

60 0.38 0.032 0.45 0.039 0.086 0.0035

100 0.32 0.025 0.35 0.028 0.051 0.0020

200 0.24 0.013 0.24 0.010 0.035 0.0010

2.4.2 Heteroskedastic Data

The data set,(Yi ,Xi), for this experiment is generated from

Yi = β1Xi +β2X2
i + |Xi|1/2εi . (2.4.2)

whereεi ∼ N(0,1), drawni.i.d. To generateX, we drawXi from theN(1,1) distribu-

tion. The moment condition isE[g(β1,β2,Xi)] = 0 where

g(β1,β2,Xi) =
Yi −β1Xi +β2X2

i

|Xi|1/2
. (2.4.3)
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Table 5: Standard Error(SD) and Bias of the WQL Estimator

β̂1 β̂2 σ̂

Sample Size SD Bias SD Bias SD Bias

40 0.38 0.046 0.44 0.054 0.095 0.0045

60 0.35 0.030 0.41 0.037 0.085 0.0036

100 0.30 0.025 0.34 0.028 0.051 0.0021

200 0.23 0.013 0.23 0.010 0.035 0.0010

We obtain the empirical likelihood estimate of two parametersβ1 andβ2. We compare

these estimates with an estimator in which the weighting vector w = (w1, . . . ,wn) with

wi = 1/|Xi|, is used alongside the empirical likelihood estimate, as itwas describe in

section 2. These weights are driven from the same argument asoptimum weight are

obtained inGLE, the information coming from densities with higher variances should

weighted less compare to information coming from densitieswith lower variances.

This was we avoid optimizing the objective function with respect to the weighting

vector. The results indicate that, when the sample size is small, the weighting helps to

improve both the quality of the estimator in one hand and the tests biased on weighted

EL ratio are more reliable than tests based on the usual EL ratios. Table one compares

the bias property of the two estimator and in table two we compare the tests based on

EL ratio and weighted EL ratio. As we expect the importance ofweighting drops as

the sample size grows.

Table 2 summarizes the probability of rejecting the null hypothesisH0 : β1 = 1 and
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Table 6: Bias comparison of the EL and EL using Weights

Estimated bias for̂β1 in % Estimated bias for̂β2 in %

Sample Size EL Method W-EL Method EL Method W-EL Method

10 56.0 51.8 48.2 41.9

20 41.7 35.4 39.0 37.4

50 26.4 25.6 21.2 20.8

100 18.6 18.2 14.0 14.0

H0 : β2 = 1 at the normal 95% confidence level. It is interesting to see that, when in

computing empirical likelihood ratio, heteroskedasticity is accounted for, test statistics

are more reliable.

2.5 CONCLUSIONS

This, and a companion paper (Shahidi 2008), investigate theuse of shrinkage meth-

ods in empirical likelihood framework. We introduce two of the most widely used of

these methods, adaptation and penalization, and then extend the empirical likelihood

procedure to encompass these methods. Shrinkage methods not only help to improve

the EL estimator, but also can be used to regularize some ill-posed inference problems.

We define modulation and use it to construct adapted empirical likelihood procedure.

This estimator can be regarded as a weighting method which weight the data points ac-
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Table 7: Bias comparison of the EL and EL using Weights

Probability of rejectingβ1 = 1 Probability of rejectingβ2 = 1

Sample Size EL Method W-EL Method EL Method W-EL Method

10 0.13 0.06 0.12 0.06

20 0.08 0.06 0.06 0.06

50 0.06 0.05 0.06 0.05

100 0.05 0.05 0.05 0.05

cording to their importance. We see that this is a very usefultool when we are dealing

with a small sample heteroskedastic data set. simulation results confirm the superior-

ity of our proposed estimator to the plain empirical likelihood estimator. Also, in the

presence of heteroskedasticity, specially in small samples, the test statistics based on

adapted empirical likelihood ratios are more reliable thantheir EL ratio counterparts.

While modulation method in theory improves the empirical likelihood estimator,

the computation difficulties limit its usefulness to very special cases. We have studied

the modulation method in a generalized linear model framework, in which the Monte

Carlo simulations suggest promising results. For future studies, I plan to develop and

design more efficient algorithms to implement the estimators introduced in this paper.

Another area which needs more study, is the risk function estimation. Choosing and

estimating an appropriate risk function is the subject of statistical decision theory, and

is usually a hard problem. Choosing and estimating an appropriate risk function is the

key to practical use of some of the results presented in this paper.
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3.0 CELEBRITY EFFECTS: HOW FAMOUS TRADERS IMPACT THE

FINANCIAL MARKET

3.1 INTRODUCTION

The actions and opinions of celebrities in particular, and public opinion leaders in

general, have a special effect on their fans and on the society they live in. Indeed,

attempts have been made to benefit from the popularity of these celebrities. These

days we see more and more celebrities becoming candidates for political offices, while

many politicians try to get endorsement from athletes and other kinds of celebrities.

For example, It is now acceptable for a serious candidate fora high electoral office to

submit to interviews by celebrities such as David Letterman, Jay Leno, and Jon Stewart

on their daily late night talk shows.

At the same time celebrities are becoming more aware of the power they have and

try to use it more often. Actors and musicians, in increasingnumbers, are endorsing

and campaigning for candidates and making political statements with the obvious goal

of influencing the opinions and the behavior of their fans. Tomention but a few, we

can name the U.N. celebrity diplomacy, and Bono’s involvement in raising aid money

for poverty reduction and health care initiatives in Africaand so on. In a nutshell,

all of these increased activities by celebrities and their fans in political and public life

suggest that celebrity endorsements have the ability to make certain statements more
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palatable while increasing the level of agreement for already popular opinions.1

Aside from the realm of politics and public opinion, celebrity endorsement is a big

business in the marketing industry. Advertisement campaigns have been paying great

sums of money to celebrities to endorse, or even just to use, their products. The best

sign that these kinds of endorsements are beneficial is the amount of money that com-

panies spend on celebrity endorsement, a practice that shows no sign of slowing down.

For instance, in Forbes magazine’s (2004) lists of the top 100 celebrities Golfer Tiger

Woods, ranks number 3 and has a $105 million dollar contract with Nike. “Several

studies have examined consumers response to celebrity endorsements in advertising,

findings show that celebrities make advertising believable.” (Jagdish & Wagner 1995)

and “advertising uses celebrities as pioneers in order to dictate trends”. Also, studies

have shown positive relationships between the stock price and the usage of celebrity

endorsement in the advertising strategies of a company.2

One of the questions which I try to answer in this paper is the effect of imitation

in financial markets. In other words, is the price mechanism in stock and other finan-

cial markets able to convey information efficiently in such away that diminishes the

celebrity status of famous traders? Numerous cases can be mentioned as evidence that

prices lack such ability. For example on Wednesday September 16, 1992, a day that

is remembered asBlack Wednesday,George Soros almost single-handedly forced the

British government of the day to abandon the European Exchange Rate Mechanism.

Besides yielding him almost one billion US dollars, this incident hugely enhanced his

1Another example of the effect that celebrities’ actions andbehaviors can have on the society they
live, even when there is no intention of having that effect, is the former first lady Nancy Reagan’s mas-
tectomy, instead of breast-conserving surgery in October 1987.Studies show that compared to women
undergoing surgery for breast cancer in the third quarter of1987-just prior to the Mrs. Reagan’s surgery-
wo men were 25 percent less likely to undergo BCS in the fourthquarter of 1987 and first quarter of
1988. In subsequent quarters the rate returns to the base line. (JAMA 1998)

2For example see “Srivastava et al” Journal of Marketing 1998and the references therein.
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reputation too, so that in April 1993, when he bought around 3million ounces of gold

at $ 345 per ounce and invested $ 400 million in Newmont Mining-a gold mining

company, as soon as the traders learned of Soros’ purchase, gold rose $ 5 after a long

period of decline, a trend that continued to 1996 and lifted the price of gold to $ 405.

His investment in British real estate, which subsequently skyrocketed the price of real

estate, and the Malaysian prime minister’s accusation thatGorge Soros has ruined the

East Asian economies-in reference to the 1997 crisis in EastAsia - are other exam-

ples of how much influence a single trader can have on other traders’ behavior and

subsequently the market as a whole.

More recently, after the market crash of 2000, the United States Congress held

hearings entitled “Analyzing the Analyst” aimed at addressing stock analysts and their

recommendations, suggesting that words and recommendations can have a huge im-

pact on the behavior of other participants. Also in 2002 the NYSE and NASDAQ

issued new regulations, which were primarily aimed at the top ten investment banks,

usually called big tens, to curb the conflicting interests onthe analysis and recommen-

dations issued by the big banks and famous analysts. Some even suggested that there

has been a conspiracy to push the market up by frequently issuing very positive rec-

ommendations. Titles like “Wall Street treachery: leadingthe lambs to the slaughter”

or “The betrayed investors: American bought to the idea thatstocks would only make

them richer” (both from Business Week) suggest a more intentional misleading.

The question we intend to ask and try to answer in this paper is: what mecha-

nism causes the agents acting in an economical environment to follow the “popular

figures”? The argument made by Banerjee (1992) and Bikhchandani et al(1992), from

now on BHW, shows that herding is not necessarily an irrational phenomenon. These

papers argue that, if people act in sequence and observe the actions of their prede-

cessors without accessing the actual information receivedby them, the information
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contained in the history of actions eventually will overwhelm the private information

of every agent forcing them to abandon their own private information and follow the

actions of their predecessors. BHW also argue that their model can be a base for un-

derstanding the uniformity of social behaviors and the creation of norms and fashions.

Avery and Zemsky (1998) have shown that while it might be the case when the cost of

choosing different actions is fixed, the argument breaks down in the presence of an ad-

justable price. Therefore the price mechanism in financial markets will adjust in such

a way that every participant will be better off following hisown private signal. They

show that in order for herding to happen we need what they callmultidimensional

uncertainty.

While Avery & Zemsky (1998) suggest that informational herding is a very rare

phenomenon, other sources of herd behavior might still exist. There is a large literature

in reputation-based herding. Scharfstein and Stein (1990), Trumen (1994), Zweibel

(1995), Graham (1999) and others provide another theory of herding in financial mar-

ket based on the reputational concerns of fund managers or analysts.3

In this study, I will try to expand the BHW model based on the central idea that not

all agents in an economic or social environment carry the same weight when it comes

to influencing other peoples’ actions. Although some agentshave the ability to reach

out to a larger portion of the population, and their actions are highly influential, there

are other agents-the majority of agents-where their actions go largely unnoticed and

they don’t have any influence on other’s opinion and actions.

The contribution of this paper is two fold. First, I extend the BWH model to

include agents with “celebrity status”, providing a potential framework to study and

design different advertising policies. Using this framework, we can better understand

3For a survey of herding in financial market see “Herd Behaviorin Financial Markets” by Bikhchan-
dani and Sharma.
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the disproportional effects of celebrities statements, and the ability of famous traders in

financial and other markets to influence market activities. Ibelieve there is a large host

of social, political, and economical phenomena which fit in this framework. Therefore,

our model in this paper, can be a good starting point to study these phenomena. The

second contribution is providing a framework to help understand how some bubbles

form and burst, and what role major traders have in creating them.

The remainder of this paper proceeds as follows: In section 2, we construct a model

to incorporate the notion of celebrity or what we will call“The Star” agent. There, we

study the model and its implications. In section 3, as an example, we study a model

of the stock market in which there is a star trader. This modelwill be similar to the

model used by Avery-Zemsky (1998). The main difference is that, we use the model

of herding developed in this paper instead of BHW. Also, in section 3, we will show

that the star trader has a limited ability to pull the market in her/his direction. Section

4 concludes the paper. All proofs are collected in the appendix.

3.2 THE MODEL

In this paper, we assume that an individual can only see the actions of his or her pre-

decessors. The crucial point here is that the agents cannot observe the actual signals of

their predecessors. If they were able to do so, then the pieces of information available

to individuals would effectively aggregate and talking about the effect of somebody’s

action on somebody else’s behavior wouldn’t make much sense. Because agents can’t

observe their predecessor’s signals, it is possible that they believe some of their prede-

cessors had access to better information. This helps towards the rise of some of those

predecessors to the “star” status.

61



3.2.1 A Simple Model

1. There is a sequence of exogenously ordered individuals, each deciding to adopt

or reject some action based on the information they have, andin order to maxi-

mize their value. If the information they have cannot distinguish between the two

alternatives, they chose to adopt with probability 1/2.

2. Each individual observes the decisions of all those aheadof him.

3. All individuals have the same cost of adopting, c. For simplicity, we assumec =

1/2. The gain of adopting, V, is also the same for everyone. Again, for simplicity,

we assume V is 0 or 1 with equal probability.

4. Each individual privately observes a conditionally independent signal about the

true value, V. Each individual i’s signal is either H or L. H isobserved with prob-

ability pi > 1/2 if the true value is 1 and, likewise, L is observed with probability

pi > 1/2 if the true value is zero. Again, for simplicity we assume that

pi = p, ∀i. (3.2.1)

5. There is a special individual, whom we call “star”, such that when he acts a por-

tion of other agents, who are distributed randomly between the whole population

of agents, will view his decision as more informative than the decisions of other

agents, including their own signal. This randomly distributed part of the popula-

tion who consider the actions of the star to be more informative, or in fact more

influentially, are called“fans” .4

4We notice that there is no assumption indicating that the “star” has indeed access to better infor-
mation nor that his signal is more accurate than others. Although it might be the case in the real world
that famous people have such information, fans, anyway, frequently put too much weight on the star’s
actions. This model can be considered an attempt to capture such over reactions by the fans.
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6. To clearly define the difference between fans and non-fanswe have to consider two

different probability measures according to which they associate different proba-

bilities to the same event. Suppose that the “star” appears at time t; if a fan acts at

time t +1 he assigns

Pf (V = 1) = π∗, (3.2.2)

as the probability while if a non-fan acts at the timet +1 he assigns

Pn f (V = 1) = π (3.2.3)

such thatπ∗ > π.

If Ht is the history of actions up until time t, andh∗t is the piece of information at

time t capturing the star’s action, we can interpretπ∗
t andπt asPf (V = 1|Ht−1,h∗t )

andPn f(V = 1|Ht).5 For further simplicity, we assume that the “star” enters at

t = 0 and therefore we sett = 0 to obtain

Pf (V = 1) = π∗ and Pn f(V = 1) = π, (3.2.4)

such thatπ∗ > π, right after the star’s entry.6

7. We assume that the population of agents is a continuum and every agent has a la-

bel in [0,1]. A portion of this population accounts for the fans and the set of labels

corresponding to fans is of measureµ. To choose an agent at time t, a random

number, r, will be chosen from a uniform distribution on[0,1]. If r < µ, then a fan

is chosen, otherwise a non-fan. The law of large numbers guarantees that in each

date, t, the probability that a fan is chosen isµ.

5 Note that for the non-fan we haveHt = {Ht−1,h∗t }. However, this doesn’t hold for the fans’
information sets.

6With this assumptionπ is the signal accuracyp, and we can calculatePf (V = 1|H∗
t ) andPn f(V =

1|Ht) for every subsequentt using Bayes’ rule.
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Note: We assume that the agents don’t take into account the presence of the other

fans. If they were to do so, it will make the inferences intractable.

3.2.2 Some Observations:

In this subsection I mention some of the results that can be derived from the model

which was introduced above.

First, we define a naive fan:

Definition 11:

A naive fan is a fan who thinks every other fan is following her/his own signal. In

other words, a naive fan doesn’t take to consideration the possibility that previous

agents might be herding. When we talk about fans we mean this naive kind of fans

except if we state it otherwise.

Second, using Bayes’ rule we define the belief update operator f by

f (x) =
(1− p)x

(1− p)x+ p(1−x)
, (3.2.5)

and define n to be

n = min{m| f m(π)≤1/2} (3.2.6)

. As proposition 1 will show, this number will help us to transfer a fan’s belief in a star

to the number of signals opposing the star’s choice that are needed in order for this fan

to “abandon the star”. Note that 0< π < 1 and f k(x) is a k times composition off

with itself. In the following lemma we show thatn indeed exists and is finite. We will

also explore some properties off that will be used later in this paper.

Lemma 3:

For any0 < π < 1, n exists and is finite. Furthermore n increases with an increase in

π.
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Proof. see the appendix.

When is a fan ready to abandon the star and instead, use his owninformation?

A fan who favors the star would like to follow her, but if he keeps getting signals

indicating that others are receiving information suggesting the star is wrong, the fan

will reach a point in which he finds the accumulated evidence compelling enough to

abandon the star and choose a different action instead. The following result, which can

be proven using lemma 1 formalizes this intuition.

Proposition 7:

Define n∗ to be

n∗ = min{m| f m(π∗
0) ≤ 1/2}.

At least n∗ consecutive opposing actions to the star’s action are needed for a fan to

abandon the star.

Proof. Without loss of generality, suppose that the star acts att = 0 and, therefore,

Pf (V = 1|H0) = π∗. If the fan receives a negative signal then he will update hisbeliefs

to

Pf (V = 1|h∗,x = 0) =
(1− p)π∗

(1− p)π∗ + p(1−π∗)
= f (π∗). (3.2.7)

In addition,

Pf (V = 1|h∗,x1 = 0,x2 = 0, . . .xn = 0) = (3.2.8)

Pf ((V = 1|h∗,x1 = 0,x2 = 0, . . .xn−1 = 0),xn = 0)

= f ( f n−1(π∗)).

We also haveEf [V|Ht] = Pf (V = 1|Ht). Thus, the fan follows the star as long as

Pf (V = 1|Ht) > 1/2. This implies that a fan abandons the star if

Pf (V = 1|Ht) = f n(π∗) < 1/2.
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When f n(π∗) = 1/2, the fan abandons the star with probability 1/2.

Using proposition 1 we can construct a simple optimal decision rule. This decision

rule is the basis for proposition 2, which greatly enhances our understanding of this

model and simplifies the calculations.

Let a be the number of predecessors who have adopted andr the number of those

predecessors who have rejected and setd = a− r. We have the following optimal

decision rule for a fan:

If n is the number obtained from proposition 1, the star has adopted, andd > −n

then a fan should adopt regardless of his private signal. Ifd =−n, the fan should adopt

if the private signal is high and otherwise reject with probability 1/2. If d < −n, the

fan should reject regardless of his private signal. Similarly, for a non-fan we have the

following rule. If d > 1, the non-fan should adopt regardless of his private signal. If

d = 1, the agent should adopt if the private signal is high and reject with probability

1/2 if the private signal is low. Ifd < 1, should reject regardless of his private signal.

If we definesn to be the state in whichd = n and letS to be the set of all suchsn

we have the following proposition:

Proposition 8:

The subsequent actions of the agents entering after “a star”form a Markov chain

which has only two absorbing states :(a) A cascade in the direction of the star’s

choice.(b) A cascade in the opposite direction of the star’s choice.

Proof. See the appendix for a proof.

Example 2:

Consider the simplest case in which there is no star in the model, (this is the original

model studied in BHW). In this model we have 5 different states. Two of them are
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absorbing sates and, therefore, (from Markov chain theory)the process will eventually

absorb to one of these states as the number of agents goes to infinity. Here p= π∗,

which implies:

f (π∗) =
(1− p)π∗

(1− p)π∗+ p(1−π∗)
= 1/2.

Therefore,

n = min{m| f m(π∗) ≤ 1/2} = 1

and

S= {s1 = −2,s2 = −1,s3 = 0,s4 = 1,s5 = 2}.

The following figure shows the Markov diagram of the resulting Markov chain.
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Example 3:

Now suppose that there is a star in the model who acts in time t= 0 and chooses to

adopt. Suppose the fans’ initial faith on the star isπ∗ = 0.60, and the signal accuracy

is p= 0.56. We have:

f (π∗) = 0.541 and f2(π∗) = f (0.541) = .480< 1/2.

Hence,

n = min{m| f m(π∗) ≤ 1/2} = 2,

and

S= {s1 = −3,s2 = −2,s3 = −1,s4 = 0,s5 = 1,s6 = 2}.
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We, thus, have a Markov chain with 6 different states. Again,this process has two

absorbing states, although the probability of being absorbed to the cascade in the

direction of the star’s choice (state s6 = 2) is much greater than the probability of being

absorbed to the cascade in the opposite direction of the star’s choice (state s1 = −3).

The following figure shows the Markov diagram associated with this Markov chain:
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3.2.3 Fragility:

In a model without stars any kind of cascade is very fragile. Indeed, when participants

in such an environment find themselves in a cascade, they can realize that the cascade

is based on little information. For example, in an up cascade, where everybody adopts,

they know for sure that the first person had a high signal and there is a probability of

1/2 that the second actor also have had a high signal. Now if one agent gets a low

signal plus another piece7of negative information, she will be in a position where her

own private signal is more informative than the informationthat comes from observing

their predecessors’ actions.

This fragility is somehow counter intuitive, in the sense that it suggests that after

the appearance of the first signs of a problem with an existingnorm, tradition, or fash-

ion, the public will abandon it and the participants will start to use their own private

information. This is, off course, somewhat different from what we observe in reality,

7For instance suppose this particular agent gets two signalsvs. others who just get one.
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where it is usually hard to break an established norm or social tradition. Some even

suggest that the biggest obstacle in some developing societies are certain existing and

traditions and convincing the members of those societies toabandon them. Although

many people in those societies understand the devastating consequences of their tra-

ditions and social norms, it is still difficult to convince the population to change their

“old ways”. This study suggests that we should at least investigate for the role of stars,

opinion leaders, and so forth, in order to understand the rigidity and of some of these

norms.

In the presence of a star, any cascade which favors her choiceis not so fragile and

will resist defections, although a cascade that is not in herdirection will be equally

fragile as in the model without the star. Let’s first clearly define what we mean when

we say that a cascade is broken.

Definition 12:

i) A cascade has been broken at time t if and only if the actor attime t+1 ignores the

cascade and follows her own information.

ii) A defection from a cascade at time t is successful if it breaks the cascade at time

t +k.

If we assume that after time t, which is after the emergence ofa cascade in the star’s

direction, every participant receivers a signal opposing the star; then the following

proposition applies with regards to the fragility of this cascade.

Proposition 9:

Suppose that after a defection at time t, every other agent insubsequent times receives

a negative signal (a signal pointing to the opposite direction of the ongoing cascade).

The probability that the defection at time t will be successful is (1−µ)(n−1) where n is

the same as in proposition 1.
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Proof. See the appendix.

So far, we have assumed that all fans are“naive” . If we drop this assumption and

assume that fans take to account the possibility of herding by their predecessors. We

formally call this kind of agents“sophisticated” agents. The sophisticated agents

will end up following the “star” regardless of their own signal (given they have a

strong enough belief in the “star”). This is somehow counterintuitive, since more

sophisticated agents are aware of the possibility that the actions of their predecessors

might be the result of herding behavior. Still, they end up ignoring all the previous

information. Formally, we have the following:

Proposition 10:

Assume that the fans are “sophisticated” and let

n = min{m| f m(π∗
0) ≤ 1/2}

and n> 2. Then, these fans always follow the “star” regardless of their own signal.

Proof. See the appendix.

3.2.4 Possible Extensions

In this subsection I discuss possible extensions of the model we just introduced. The

main intuition in the previous model was the fact that not allindividuals are equally

important, but rather special individuals exist, who have the power to influence others.

We can extend this intuition by asking “Is it possible that the actions of all individuals

are equally visible by all other participants.” I believe the answer to this question is

no. In most real world cases, not only are the individuals different in their ability to

influence other people’s decisions and actions, but also they are different in their ability
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to reach out to other people. For example, a decision, opinion or action by somebody

like myself will most likely go unnoticed by the majority of the population, while

actions, opinions or decisions by, say Tom Hanks can catch the eyes of the world. To

this end, we can define a network of connections, in the sense thata→ b means that

“b will notice a”, but notvise versa. A natural definition of a star in this framework is

as the agent who can be observed by every (or a large portion) of the other agents.

Other possibilities like a system with two or more stars or even opposing stars can

be exploited as well. What is the dynamic of behaviors in a polarized society in which

two opposing stars have their fans and “anti-fans” and what role do the independents

play in such a society? I will not study these issues here. However, in the next sec-

tion I will use a very simple network to study the mis-pricingof a stock in a simple

financial market. I will show that, under special circumstances, mispricing and bub-

bles can occur. Furthermore, rational traders won’t be ableto realize or correct such

phenomena.

3.3 AN EXAMPLE: FINANCIAL MARKETS

In this section we study a simple market with one asset. We will see that when there

are enough traders, like individual investors who don’t necessarily have much skills

or knowledge about the market, who are ready to trust the starinvestors and follow

them, two different probability measures will emerge whichdeter the ability of prices

to convey information efficiently to prevent bubbles.
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3.3.1 Stating the problem

Although rational approaches to asset pricing have been considerably successful, it is

hard to believe that imitative behavior in such markets are totally erased. In fact, there

has been a resurgence of interest in the study of such behavior in recent years, with

behavioral finance gaining popularity. In this section we first illustrate the idea using

an example derived in part from Avery-Zemsky. First, I will show why in a BHW

framework, rationality prevents herd behavior. I will thenuse the framework built in

section 2 of this paper to investigate a market in which thereis a star investor who

is noticed by everyone, and where the normal investors (non stars) believe that the

information from the star investor is more accurate than their own. We will investigate

how herd behavior becomes a possibility under these conditions. Furthermore, we

believe that these conditions are not plausible. For example, there have been times

when big investment firms issued positive recommendations on stocks, thereby causing

the mass of inexperienced or even experienced investors to buy and push the price of

the stock very high. If we interpret the combination of theseinvestment banks as “the

star investor”, we believe the model introduce in the section 2 of this paper can be used

to understand such issues.

3.3.2 A Simple Example

First, let’s review the original BHW model in light of this example. Agents face a

choice of whether or not to adopt a new technology. The cost ofadoption isc = 1/2.

The value of the new technology isV, which is either 1 or 0 with equal probability.

Each agent gets an independent, but not perfect, signal abutV, denoted byx, x∈{0,1},

whereP(x = V) = p > 1/2. Agents act sequentially and observeHt, the history of

actions up until time t. Letπt
1 = P(V = 1|Ht) . The choice made by an agent depends
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on whether the expected value for adopting is greater or lessthan c.

The expected value of an agent with bad news at time t is:

Vt(x = 0) = E[V|x = 0,Ht] = P(V = 1|x = 0,Ht) (3.3.1)

=
(1− p)πt

1

(1− p)πt
1+ p(1−πt

1)
.

The expected value for an agent with good news at time t is:

Vt(x = 1) = E[V|x = 1,Ht] = P(V = 1|x = 1,Ht) (3.3.2)

=
pπt

1

pπt
1 +(1− p)(1−πt

1)
.

Thereforeπt
1 increases in the difference between the number of prior agents who

adopted and those who did not. When there are two more adopters than non-adopters

we will haveπt
1 > p, which implies

Vt(x = 1) > Vt(x = 0) > 1/2. (3.3.3)

In this situation every agent who acts at time t will adopt regardless of his signal, in

the words of BHW an informational cascade will arise.

In financial markets the price mechanism suppresses this imitative effect and pre-

vents the cascades from occurring. To see how, suppose that in the above example,

agents are traders in a financial market and their choice is whether to buy or to sell

a unit of an asset whose value is given by V. Furthermore, suppose that the financial

market is informationally efficient, which implies that theprice reflects all publicly

available information (here we interpret the cost in previous examples as being the
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price of the asset). Therefore, unlike the previous case, here, the cost will adjust when

new information arrives. More precisely, we have :

ĉ = E[V|Ht ] = P(V = 1|Ht) = πt
1, (3.3.4)

which implies:

Vt(x = 1) > ĉ > Vt(x = 0). (3.3.5)

Therefore, an agent with good news will buy while an agent with bad news will not

adopt (in this case buy) and, thus, no herding occurs.

Now suppose a competitive group of market makers, or equivalently a market

maker who makes zero profit, determine the prices, by settingbids and asks prices

as

Bt = E[V|ht = S,Ht], (3.3.6a)

and

At = E[V|ht = B,Ht]. (3.3.6b)

Here,S stands for selling orders andB stands for buying ones. We only analyze the

buying activities (selling is similar). Therefore, we focus our attention on the prices

at which the agents are willing to buy the asset. (See Lawrence Glosten and Milgrom

(1985)). Suppose that there is a star investor such that his decisions are observed by

all other investors. There are also regular investors (non-stars) who do not observe

each others decisions. These assumption have been made to simplify the calculations

and the computer simulations we perform. We also assume thatall regular investors

consider the actions of the star investor to be more informative than their own, and

that the star investor enters at the beginning. Every buyer receives a private signal

x∈{0,1}, s.t. P(x = V) > 1/2. Suppose that the prior probability ofV = {0,1} is
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P(V = 1) = P(V = 0). Given this information, we can find the probability of the value

being equal to one if the star investor buys.

P(V = 1|hs = B) (3.3.7)

=
P(hs = B|V = 1)P(V = 1)

P(hs = B|V = 1)P(V = 1)+P(hs = B|V = 0)P(V = 0)

=
P(hs = B|V = 1)

P(hs = B|V = 0)+P(hs = B|V = 1)

= P(hs = B|V = 1) = π1.

Here,π1 is the probability thatV = 1 if the star investor buys. We have assumed that

π1 > p, which implies that other agents consider the star’s information more accurate.

Now, suppose that at timet = 0 the star investor buys. The market marker will set

the price fort = 1 to be

Vm
1 = Em[V|h0 = B] = P(V = 1|h0 = B) = p. (3.3.8)

At the same time, a fan buyer who gets a negative signal at timet = 1 will evaluate the

price as:

VA
1 = E[V|hs = B,x = 0] = P(V = 1|hs = B,x = 0) (3.3.9)

=
(1− p)π1

(1− p)π1+ p(1−π1)
= π2

Now, if π2 > p, the fan investor will buy despite receiving a negative signal. The

important observation is that this situation can indeed happen. Figure 1 describes a

simulation withp = .52, π1 = .75, andπ1 = P(V = 1|hs = B). The probability that
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the fan investor initially assigns to the event thatV = 1 when he sees the action of the

star is assumed to beπ1 > p. As we see it takes a while (6 periods in this case) for the

agents with negative signals to stop buying.

To illustrate this point better we repeat the process one more period. Now suppose

that at timet = 2 the agent whose turn is to act again receives a negative signal (x= 0).

The market marker will set the price:

Vm
2 = E[V|h0 = B,h1 = B] =

pVm
1

pVm
1 +(1− p)(1−Vm

1 )
. (3.3.10)

While the agent’s value is:

VA
2 =

(1− p)π2

(1− p)π2+ p(1−π2)
. (3.3.11)

Again, if VA
2 > Vm

2 , the agent will buy even thought he has a negative signal. Thus,

herding can happen in this situation. However, it will be short lived. The important

point to notice is that the market maker and agents use two different measures for

evaluating the relevant probabilities.8

3.3.3 A General Model

Here,we consider a more general model in which the market is for just a single asset

with true valueV in such a way thatV∈{0,1}. Like the example we studied above,

prices are set by a competitive market maker who interacts with an infinite sequence

of individual traders who are chosen from a continuum population. This assumption

guarantees that no trader appears in the sequence more than one time. Thus, we need

not to worry about strategic considerations. Each trader isrisk neutral and has the

8We conjecture that the price that market marker sets is stilla martingale with respect to the market
maker’s measure. This is intuitively obvious since if it wasnot a martingale, then his assessment ofVt

would be systematically mistaken in a manner which should bepredictable to him.
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Figure 1: The stars show the prices as they are set by the fan agent. The circles

represent the prices set by the market maker. The horizontalaxes shows the number of

periods.
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option to buy, sell, or hold onto one unit of stock. Trades occur at datest = 0,1,2, . . ..

The publicly available information up until timet is denoted byHt and is referred to

as “the history of trades up until timet”.

There are two classes of traders in our model. Informed traders who receive private

information and try to maximize their profit using their private, and public informa-

tion, Ht. This class divides into two subclasses. “Normal traders” who follow strict

Bayesian reasoning without putting any special weight on any particular traders, and

“fan traders” who also use Bayesian reasoning, but put more weight on the action of

a particular trader who we shall callthe startrader. The second class of traders are

“noise traders” acting for liquidity considerations.9

We let µ < 1 denotes the probability of an informed trader arriving at any given

time t. Therefore, 1−µ is the probability of a noise trader arriving. Furthermore,and

for further convenience, we assume that noise traders buy, sell, or do nothing, with

equal probability:λ = (1−µ)/3.

Finally, there is a special trader whose action is considered more informative by

some other traders. We assume that she trades att = 0 and that the portion of traders

who “believe in her” isγ.

3.3.3.1 A Definition of Herd Behavior: We want to define herd behavior in such

a way that it rules out the situations in which everybody is buying because all have

positive signals, or everybody is selling because each trader gets a negative signal.

By “herd behavior”, we mean a situation in which everybody isignoring his signal in

favor of public information. For instance, a trader is in thebuying herd if, based on her

private information she should sell the asset, but after observing the public information

9In the absence of noise traders, the no-trade theorem of Milgrom-Stocky(1982) applies and the
market breaks down.
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Ht she decides to buy. We have the following definition.

Definition 13:

A trader with private information, x, engages in herd behavior at time t if he buys when

Vx <Vm <Vx,Ht or sells when Vx >Vm >Vx,Ht ; and buying (selling) is strictly preferred

to other actions.

3.3.4 Some Observations:

Given the model in the last section, here we investigate whether if mispricing and

bubbles can occur. To this ends we define

f (x) =
px

px+(1− p)(1−x)
, (3.3.12)

and

g(x) =
(1− p)x

(1− p)x+ p(1−x)
. (3.3.13)

Let

n = min{m|g(π∗) ≤ f m(p)}. (3.3.14)

Then we have the following.

Proposition 11:

Let β̄ = f n(p) andβ = gn(p), where n is given as above. Then, the size of any bubble

is bounded from above by

δ =| β̄−β |

Another question that arises is that of how long it takes for the price of the asset

reach to its highest level. The next proposition attempts toanswer this question.
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Proposition 12:

Let π∗ = Pf (V = 1|H0), p = Pn f (V = 1|H0), and n taken from proposition 3. Let T

denote the time it takes for the price of the asset to reachδ. We have the following.

(a) If γ ≤ 1/6+1/3µ, then Prob(T < ∞) = 1, butE[T] = ∞.

(b) If γ < 1/6+1/3µ, then

Prob(T < ∞) = (
γ−1/3µ+1/3
2/3− γ+1/3µ

)n < 1. (3.3.15)

(c) If γ > 1/6+1/3µ. then

E[T] =
3n

6γ−2µ−1
. (3.3.16)

The difference betweenf (p) andg(p) in proposition 5 is not very large. This

implies that(β̄− β) won’t grow too large. Therefore, whenπ∗ (the primary faith

of fans on the star) is not too high, the size of any bubble won’t grow very large.

Furthermore, proposition 6 suggests that it would be difficult for the price to “grow out

of control”. Additionally, when there are enough traders who don’t follow the star, it

is almost impossible to obtain a bubble in which the asset is substantially mispriced.

The only time that we can expect these kind of bubbles to appear is when fan traders

are dominating the market, so that a substantial portion of market participants are

positively biased toward the star trader.

I have simulated the model discussed in this section. Figure1 shows a sample path

of the real price as implied by the model. We can observe from figure 2 that there

won’t be any substantial mispricing when we have enough normal traders to“time”

the market. However, as figure 3 shows, in times when the fan traders dominate the

market, 60% in this case, there is a good chances that we see bubbles particularly in bad

times when the actual price should be falling. Both in this paper and in the simulations

I have assumed that there is no changes of opinion, and that the fan traders have a fixed

biased toward the star. A good exercise would be to alter the model so that in every
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Figure 2: A sample path of the real price as implied by the model

period a participant is assigned a type which indicates whether the participant is a fan,

and if she is, how biased she is towards the star. In this case,we can study situations

in which the fan traders eventually will alert their trust onthe star if the market is not

going well in the direction that the star recommends. In order to do so, we need a

model for this alternation. In other words, we need a theory that tells us how people

alter their beliefs in critical times.10

3.3.5 A Possible Extension

In the previous section, we studied a case in which the star appears once at the begin-

ning and, because some of the other agents consider her action to be more informative,

they are willing to pay more for the asset than what their own signal recommends. This

10If we just assume a random alternation of beliefs, I suspect that we won’t get substantially different
results from the simulations presented in this section.
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Figure 3: When fans are 30%, noise tarders are 10%, and normaltraders are 60% of

the total market
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Figure 4: When fans are 60%, noise traders are 10%, and normaltraders are 30% of

the market
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causes the price to be higher and a bubble is created.

It is worth noting that so far we have not assumed that the starinvestor has in-

deed access to special information which gives her the actual ability to make better

decisions. While it might be the case in the real world that big investment firms have

both better information and better ability to process this information, this model can be

taken to suggest that inexperienced traders may exaggeratethose abilities and subse-

quently put more weight on the stars’ actions, more weight than the star action actually

deserve.

An interesting question arises. What would happen if the star investor in our model

can trade more than once? Is it possible that she starts to follow the herd which she

herself has helped to create, and if so, what will be the size of a possible bubble created

in this manner?

To answer these questions, we assume that, unlike other traders, the star trader can

indeed enter the market frequently. Furthermore, we assumethat the trust of her fans

won’t decrease nor increase after each entry.11

Now suppose that, for some exogenous reason, the star investor starts following

the herd. For instance, we can think of a situation in which the star trader indeed does

not get any informative signal, but is just summing up the information which is being

revealed by the price and announces her choice to the public.I conjecture that large

bubbles can exists in this scenario. This would be an exampleof a situation in which

already publicly available information can have a large impact. Simply because the

information is being announced by the star, her fans overreact to that information. The

diagram below explains this idea.

11In real world cases the trust or belief in the star will changefrom time to time. Imagine, for example,
an investor who follows a recommendation and makes good money. It is quiet possible that next time
around he will follow the star’s recommendations with more confidence.
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The Star acts All other traders, including
the star’s fans, see the star’s
action and act accordingly

the star sums up the info.
Implied by public behavior
and announces her action

- -

6

3.4 CONCLUSION

In the first part of this paper, we studied cases where the population of agents or a

part of that population is positively biased toward a special agent whom we called

“the star agent”. We showed how in a BHW framework this phenomenon will affect

the other agents’ behavior, and how imitative behavior can produce herd behavior and

informational cascades. In the second part of the paper we showed, that while the

market mechanism can prevent herd behavior from happening in a very simple setting,

it will fail to do so when the herd behavior is the result of a more complex belief

system.

One of the implicit implications of our study is that it suggests that a rise or fall

in prices of stocks of big investment banks may have a broaderimpact on the entire

market. This is because, besides the real effects that change in the price of a particular

stock might have on the market, a rise or fall in the price of stocks of the investment

banks will have the additional effect that the investors whohave been following these

firms (being fans in our terminology) will revise their belief on the accuracy of the

information of these firms. For example, in the case of a pricefall, the fan investors

might put much less weight on the recommendations given by their star or even re-

visit their previous investment decisions which were done in accordance to the actions

previously taken by the star, resulting in a further decline. To give a measure of herd
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behavior or to determine when herding is happening, is difficult.12 However, it is pos-

sible to measure and test the correlation of stock prices with the movements in the

stock price of big financial firms, specially in times of bubbles.

This study also might be able to shed some light on the question of why announce-

ments of already published information sometimes have a substantial effect on the

stock prices. Another implication of our study suggest thatwhen there are a lot of in-

experienced traders in the market, and the sources who are trusted by the public fail to

provide carefully crafted and implied analysis, and instead they themselves are being

driven by the public’s actions, the probability of crisis isvery high.

12See Bikhchandani and Sharma (2000) for references.
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A.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 1

Proof of proposition 1:

Proof. First we derive an expression forℓn(θ) and then use that to prove the theorem.

using Lagrange multipliers, and setting up the optimization problem we arrive at

L(θ,λ,µ) =
n

∑
i=1

log(pi)−µ
( n

∑
i=1

pi −1
)

−nλ′
n

∑
i=1

pigi(θ) (A.0.1)

doing the optimization we get

pi =
1

n(1+λ′gi(θ))
(A.0.2)

applying the moment conditions and we have

0 =
n

∑
i=1

pigi(θ) =
1
n

n

∑
i=1

1
1+λ′gi(θ)

gi(θ), (A.0.3)

because of condition 0≤ pi ≤ 1, it is necessary forλ andθ to satisfy 1+λ′gi(θ)≥ 1/n

for each i. For fixθ, let

Dθ = {λ : 1+λ′gi(θ) ≥ 1/n}, (A.0.4)

Dθ is convex and closed, and it is bounded if 0 is inside the convex hull of thegi(θ)′s.

Furthermore

∂
∂λ

[

− 1
n

n

∑
i=1

1
1+λ′gi(θ)

gi(θ)
]

= −1
n

n

∑
i=1

gi(θ)g′i(θ)
(

1+λ′gi(θ)
)2 (A.0.5)
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is negative definite for everyλ in Dθ, provided that∑n
i=1gi(θ)g′i(θ) is positive definite.

Therefore, by inverse function theorem,λ = λ(θ) is a continuous differentiable func-

tion of θ.

Now for everyθ ∈ {θ : ||θ−θ0||= n−1/3}, let θ = θ0+un−1/3, where||u||= 1. When

E[||g(x,θ)||3] < ∞ and||θ0−θ|| ≤ n−1/3 we have

λ(θ) =
[1

n

n

∑
i=1

gi(θ)g′i(θ)
]−1[1

n

n

∑
i=1

gi(θ)
]

+o(n−1/3) (a.s) (A.0.6)

uniformly aroundθ ∈ {θ : ||θ−θo|| ≤ n−1/3}. Doing a Taylor series expansion, and

plug in the expression we derived forλ we get uniformly for u

ℓn(θ) =
n

∑
i=1

λ′(θ)gi(θ)− 1
2

n

∑
i=1

[λ′(θ)gi(θ)]2+o(n1/3) (A.0.7)

plug inλ(θ), which we calculated before, to this equation we get

ℓn(θ) =
1
2

[ 1
√

(n)

n

∑
i=1

gi(θ)
]′[1

n

n

∑
i=1

gi(θ)g′i(θ)
]−1[ 1

√

(n)

n

∑
i=1

gi(θ)
]

+o(n1/3) (a.s).

(A.0.8)

Using

Wn(θ) =
1
2

[1
n

n

∑
i=1

gi(θ)g′i(θ)
]−1

(A.0.9)

and for large enough n we can rewrite the objective function of the Lasso estimator as

Ln(θ) =
[

n−1/2
n

∑
i=1

gi(θ)
]′

Wn(θ)
[

n−1/2
n

∑
i=1

gi(θ)
]

+λn

n

∑
j=1

|θ j |γ (A.0.10)

Now we can use this expression to prove the proposition 3:

I) First notice that ifθ̂ minimizesLn(θ), the it will minimize n−1×Ln(θ) too, and

therefore we can choose this object function to work with. Wewill denote it byZn(θ).

First we realize that,

n−1
n

∑
i=1

gi(θ) = n−1
n

∑
i=1

(

gi(θ)−E[gi(θ)]
)

+n−1
n

∑
i=1

E[gi(θ)] (A.0.11)
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under assumptionA2 we can use a well known result in empirical process theory, see

Andrews (1994) and obtain

1
√

(n)

n

∑
i=1

(

gi(θ)−E[gi(θ)]
)

= Op(1) (A.0.12)

furthermore, by assumptionA3− (i)

E
[

n−1
n

∑
i=1

gi(θ)
]

p−→ m1(θ). (A.0.13)

Putting all of these together and using assumptionA4, and the fact thatλn
n → λ0 ≥ 0,

we have

Zn(θ) =
[

n−1
n

∑
i=1

gi(θ)
]′

Wn(θ)
[

n−1
n

∑
i=1

gi(θ)
]

+
λn

n

n

∑
j=1

|θ j |γ = (A.0.14)

[

n−1
n

∑
i=1

(

gi(θ)−E[gi(θ)]
)

+n−1
n

∑
i=1

E[gi(θ)]

]′
Wn(θ)

[

n−1
n

∑
i=1

(

gi(θ)−E[gi(θ)]
)

+n−1
n

∑
i=1

E[gi(θ)]

]

+
λn

n

n

∑
j=1

|θ j |γ
p−→ m1(θ)′W(θ)m1(θ)+λ0

p

∑
j=1

|θ j |γ = Z(θ).

This finishes the proof of the first part of proposition 3.

II) When λn = o(n), and all the assumptions are satisfied, uniformly inθ we have

λn
n → 0, when n goes to infinity. Therefore, we have uniformly inθ,

Zn(θ)
p−→ m1(θ)′W(θ)m1(θ) (A.0.15)

Since by assumptionA3− (ii) there exist a unique minimizer for the last expression,

using Corollary 3.2.3 of Van der Vaart and Wellner (1996), wehave the consistency

result:

θ̂n = argmin
θ∈Θ

Zn(θ)
p−→ argmin

θ∈Θ

[

m1(θ)′W(θ)m1(θ)
]

= θ0. (A.0.16)

For the sake of completeness, bellow is Corollary 3.2.3 fromVan der Vaan and Wellner

(1996).
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Proof of Proposition 2:

Proof. As we showed in the proof of proposition 3, whenE
[

‖ g(x,θ) ‖3
]

≤ in f ty,

and‖ θ−θ0 ‖≤ n−1/3, uniformly in θ we have

ℓn(θ) =
1
2

[ 1
√

(n)

n

∑
i=1

gi(θ)
]′[1

n

n

∑
i=1

gi(θ)g′i(θ)
]−1[ 1

√

(n)

n

∑
i=1

gi(θ)
]

+o(n1/3) (a.s).

(A.0.17)

Sinceℓn(θ) is a continuous function aroundθ for every θ belonging to the ball‖

θ− θ0 ‖≤ n−1/3, ℓn(θ) has a minimum value in the interior of this ball, which we

denote it byθ̂. Now let’s define

V(u) =
1
2

[ 1
√

(n)

n

∑
i=1

gi(θ0+
u

n1/2
)
]′[1

n

n

∑
i=1

gi(θ0+
u

n1/2
)g′i(θ0+

u

n1/2
)
]−1[ 1

√

(n)

n

∑
i=1

gi(θ0+
u

n1/2
)
]

(A.0.18)

−1
2

[ 1
√

(n)

n

∑
i=1

gi(θ0)
]′[1

n

n

∑
i=1

gi(θ0)g
′
i(θ0)

]−1[ 1
√

(n)

n

∑
i=1

gi(θ0)
]

+λn

n

∑
j=1

[

|θ j0+
u j

n1/2
|γ −|θ j0|γ

]

+o(n1/3).

We can do this because

{θ :‖ θ−θ0 ‖≤ n−1/2} ⊆ {θ :‖ θ−θ0 ‖≤ n−1/3} (A.0.19)

which implies that

(θ0+
u

n1/2
) ∈ {θ :‖ θ−θ0 ‖≤ n−1/3} (A.0.20)

Now, we can notice thatVn(u) is minimized atn1/2(θ̂n−θ0) = hatun. Therefore we

can write

ûn = argmin
u∈K

Vn(u) (A.0.21)
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where K is a compact subset ofR
p. In order to obtain the asymptotic distribution of

our estimator we first need to show the following convergenceresults.

Vn(u) =⇒V(u) (A.0.22)

and also

û = Op(1). (A.0.23)

Using assumptionA2, we can use theorem one in Andrews (1994) to obtain

n−1/2
n

∑
i=1

[

gi(θ0+
u

n1/2
)−Egi(θ0+

u

n1/2
)
]

⇒ Ψ(θ0) ≡ N(0,Ω(θ0)) (A.0.24)

Also, expandinggi(θ0 + u
n1/2 aroundu = 0 using Taylor series expansion, and using

assumptionA3− (ii), and noticing thatEgi(θ0) = 0, uniformly inu we have

n−1/2
n

∑
i=1

E
[

gi(θ0+
u

n1/2
)
]

=⇒ R(θ0)u. (A.0.25)

Combining the last two equations we arrive at

n−1/2
n

∑
i=1

gi(θ0+
u

n1/2
) =⇒ Ψ(θ0)+R(θ0)u. (A.0.26)

Since in the theorem, we assumed thatλn/nγ/2 → λ0 ≥ 0 we have, in other words,

λn = O(nγ/2) = o(n1/2). Therefore it follows that

λn

[

|θ j0+
u j

n1/2
|γ −|θ j0|γ

]

→ 0 (A.0.27)

wheneverθ j0 6= 0 and

λn

[

|θ j0+
u j

n1/2
|γ −|θ j0|γ

]

→ λ0|u j |γ (A.0.28)

which means

λn

p

∑
j=1

[

|θ j0+
u j

n1/2
|γ −|θ j0|γ

]

→ λ0

p

∑
j=1

|u j |γ1{θ j0=0} (A.0.29)
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combining all these equation we get

Vn(u) ⇒
[

Ψ(θ0)+R(θ0)u
]′

W(θ0)
[

Ψ(θ0)+R(θ0)u
]

−
[

Ψ(θ0)
]′

W(θ0)
[

Ψ(θ0)
]

(A.0.30)

+λ0

p

∑
j=1

|u j |γ1{θ j0=0}

= u′R(θ0)
′W(θ0)R(θ0)u+2u′R(θ0)

′W(θ0)Ψ(θ0)+λ0

p

∑
j=1

|u j |γ1{θ j0=0} ≡V(u).

This proves thatVn(u) =⇒ V(u). To complete the proof we notice that, on the space

of functions with a topology in which convergence on compactsets implies uniform

convergence on these sets, To prove that argmin(Vn)
d−→ argmin(V), it suffices to show

that argmin(Vn) = Op(1), see Kim and Pollard (1990). To prove this, letδ > 0 be a

positive constant such thatλn/nγ/2 ≤ (λ0+δ), the we have for allu, if n is sufficiently

large

Vn(u)≥ 1
2

[ 1
√

(n)

n

∑
i=1

gi(θ0+
u

n1/2
)
]′[1

n

n

∑
i=1

gi(θ0+
u

n1/2
)g′i(θ0+

u

n1/2
)
]−1[ 1

√

(n)

n

∑
i=1

gi(θ0+
u

n1/2
)
]

(A.0.31)

−1
2

[ 1
√

(n)

n

∑
i=1

gi(θ0)
]′[1

n

n

∑
i=1

gi(θ0)g
′
i(θ0)

]−1[ 1
√

(n)

n

∑
i=1

gi(θ0)
]

−λn

n

∑
j=1

| u j

n1/2
|γ

≥ 1
2

[ 1
√

(n)

n

∑
i=1

gi(θ0+
u

n1/2
)
]′[1

n

n

∑
i=1

gi(θ0+
u

n1/2
)g′i(θ0+

u

n1/2
)
]−1[ 1

√

(n)

n

∑
i=1

gi(θ0+
u

n1/2
)
]

−1
2

[ 1
√

(n)

n

∑
i=1

gi(θ0)
]′[1

n

n

∑
i=1

gi(θ0)g
′
i(θ0)

]−1[ 1
√

(n)

n

∑
i=1

gi(θ0)
]

− (λ0+δ)
n

∑
j=1

| u j

n1/2
|γ

= V l
n(u)

now define the empirical process

Ψn(θ0+
u

n1/2
) = n−1/2

n

∑
i=1

[

gi(θ0+
u

n1/2
)−Egi(θ0+

u

n1/2
)
]

(A.0.32)
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also let
1
2

[1
n

n

∑
i=1

gi(θ0)g
′
i(θ0)

]−1
= W(θ0+

u

n1/2
), (A.0.33)

then we can rewriteV l
n(u) as

V l
n(u) =

[

Ψn(θ0+
u

n1/2
)′W(θ0+

u

n1/2
)Ψn(θ0+

u

n1/2
)

]

(A.0.34)

+

[

2u′R(θ0)
′W(θ0+

u

n1/2
)Ψn(θ0+

u

n1/2
)

]

+

[

u′R(θ0)
′Ψn(θ0+

u

n1/2
)R(θ0)u

]

−
[

Ψn(θ0)
′Wn(θ0)Ψn(θ0)

]

+o(1)

−(λ0+δ)
p

∑
j=1

|u j |γ.

The first term converges to the fourth term in the equation forV l
n(u) also, whenn is

large the second term is linear. Therefore, we have a quadratic term and the|u j |γ and,

because 0< γ < 1, the quadratic term dominate all other terms, which implies that

argminV l
n(u) = Op(1), and from the inequality we get

argminVn(u) = Op(1). (A.0.35)

Because our assumptions guarantee the uniqueness of argminVn(u), we can apply the-

orem 3.2.2 of Van der Vaat and Wellner (1996) to get the results.

Proof of proposition 3:

93



Proof. Let Ln(θ) be the same as definition 1. The key idea is that to find an appropriate

linear approximation forLn(θ)−Ln(θ0) characterized by stochastic equicontinuity. To

give a road map of our proof we notice that from the Rise representation theorem,

there existsv∗ ∈ V̄ such thatf ′θ0
(θ̂−θ0) = 〈θ̂−θ0,v∗〉, by screening the definition of

f ′θ0
(θ̂−θ0) we see thatf (θ̂)− f (θ0) can be linearly approximated by〈θ̂−θ0,v∗〉. It is

possible to derive a linear approximation forl(θ̂,Xi)− l(θ0,Xi), linear inθ̂−θ0. Since

L(θ) is just a summation ofl(θ,Xi) we have a bridge betweenf andL. Now a linear

approximation ofL(θ̂)−L(θ0) will gives a linear approximation off (θ̂)− f (θ0). The

last step is to use the central limit theorem on this linear approximation. Since

l(θ̂,Xi) = r(θ̂−θ0,Xi)+ l(θ0,Xi)+ l ′θ0
(θ̂−θ0,Xi) (A.0.36)

a simple summation and some algebraic manipulation yields

ln(θ̂) = ln(θ0)−K(θ0,θ)+n−1/2νn
(

r(θ̂−θ0,X)
)

+n−1/2νn
(

l ′θ0
(θ̂−θ0,X)

)

.

(A.0.37)

Now we notice that by definition 1−O(ε2
n) ≤ Ln(θ̂n−Ln(θ0). Combining this with

assumptionA5− ii , A6 A7 gives

−O(ε2
n) ≤ Ln(θ̂n−Ln(θ0) ≤−1

2
‖θ̂n−θ0‖2+n−1/2νn

(

r(θ̂−θ0,X)
)

(A.0.38)

+n−1/2νn
(

l ′θ0
(θ̂−θ0,X)

)

−λn(J(θ̂n)−J(θ0))+Op(εn)

≤−λn(J(θ̂n)−J(θ0))+Op(εn).

Thereforeλn
(

J(θ̂n)−J(θ0)
)

≤ Op(εn). BecauseJ(u∗) < ∞ and using assumptionA6

we have

λn(J(θ∗(θ̂n,εn))−J(θ̂n)) ≤ cλnJ
(

εn[−θ̂n+θ0 +u∗]
)

(A.0.39)
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≤ cλnεn
(

J(θ̂n−θ0)+J(u∗)
)

= Op(ε2
n)

for somec> 0. Now that we have controlled the penalty part and obtained abound on

that we can turn our attention toLn(θ̂n). From equation (2) we get

Ln(θ̂n) = Ln(θ0)−K(θ0,θ)+n−1/2νn
(

r(θ̂−θ0,X)
)

(A.0.40)

+n−1/2νn
(

l ′θ0
(θ̂−θ0,X)

)

+λnJ(θ̂).

Noticing that‖θ∗(θ̂n,εn)−θ0‖ = ‖(1− εn)(θ̂n−θ0)+ εnu∗‖ ≤ δn the equation holds

if we replaceθ̂n with θ∗(θ̂n,εn). If we do so and subtract the two equations we get

Ln(θ̂n) = Ln(θ∗(θ̂n,εn))−
[

K(θ0, θ̂)−K(θ0,θ∗(θ̂n,εn))
]

(A.0.41)

+n−1/2νn
(

l ′θ0
(θ̂n−θ∗(θ̂n,εn),X)

)

+n−1/2νn
(

r(θ̂n−θ∗(θ̂n,εn),X)
)

+Op(ε2
n)

= Ln(θ∗(θ̂n,εn))−
1
2

[

‖θ̂n−θ0‖2−‖θ∗(θ̂n,εn)−θ0‖2]

+n−1/2νn
(

l ′θ0
(θ̂n−θ∗(θ̂n,ε),X)

)

+Op(ε2
n).

Using definition 1 and assumptionsA6 andA7 we get

−Op(ε2
n) ≤−1

2
(1− (1− εn)

2)‖θ̂n−θ0‖2+(1− ε)〈θ̂n−θ0,εnu∗〉 (A.0.42)

−n−1/2νn
(

l ′θ0
(εn(u

∗− (θ̂n−θ0)),X)
)

+Op(ε2
n)

≤−εn‖θ̂n−θ0‖2+(1− ε)〈θ̂n−θ0,εnu∗〉

−n−1/2νn
(

l ′θ0
(εnu∗,X)

)

+Op(ε2
n)

≤ (1− ε)〈θ̂n−θ0,εnu∗〉−n−1/2νn
(

l ′θ0
(εnu∗,X)

)

+Op(ε2
n)

Therefore

−(1− εn)〈θ̂n−θ0,u
∗〉+n−1/2νn

(

l ′θ0
(u∗,X)

)

= Op(εn)+Op(εn) (A.0.43)

= op(n
−1/2).
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If we replaceu∗ with −u∗ in the last equation and then put them together we arrive at

the following equation

|〈θ̂n−θ0,u
∗〉−n−1/2νn

(

l ′θ0
(u∗,X)

)

| = op(n
−1/2). (A.0.44)

Therefore〈θ̂n − θ0,v∗〉 = n−1/2νn
(

l ′θ0
(v∗,X)

)

+ op(n−1/2. From this equation and

(4.22) we have

f (θ̂n)− f (θ0) = f ′θ0
(θ̂n−θ0)+op(un‖θ̂n−θ0‖w) (A.0.45)

= 〈θ̂n−θ0,v
∗〉+op(n

−1/2)

= n−1
n

∑
i=1

l ′θ0
(v∗,Xi)+op(n

−1/2).

Thereforen1/2
(

f (θ̂n)− f (θ0)
)

= n−1/2 ∑n
i=1 l ′θ0

(v∗,Xi)+op(1) and the result follows

by applying the central limit theorem onn−1/2 ∑n
i=1 l ′θ0

(v∗,Xi).

Proof of corollary 2:

Proof. If we replacev∗ with s in proposition 3, the result is corollary 2.

Proof of proposition 4:

Proof. The following lemma is needed in the proof of proposition 2. The proof can be

find in Shen and Wong (1994). Also here we define the Hellinger metric entropy with

bracketing, which we are using the assumptionA?.
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Definition 14:

Let f : Θ×X → R with E[ f 2(θ,X)] < ∞ for all θ ∈ Θ and let‖.‖2 be the usual L2

norm. Let

F = { f (θ, .) : θ ∈ Θ, ‖ f‖2 < ∞}. (A.0.46)

For any givenε > 0, if there exists

S(ε,n) = { f l
1, f u

1 , . . . , f l
n, f u

n} ⊂ L2 (A.0.47)

with max1≤ j≤n‖ f u
j − f l

j‖2ε such that for every f∈ F there exists a j such that fl
j ≤

f ≤ f u
j a.s., then S(ε,n) is called a bracketingε-covering ofF with respect to‖‖2.

H(ε,F ) = logN(ε,F ) is called the Hellinger L2 metric entropy ofF with bracketing,

where

N(ε,F ) = min{n : S(ε,n) is a bracketingε−covering o fF }. (A.0.48)

The Hellinger metric entropy ofF with bracketing is the logarithm of the cardinality

of ε− cover ofF of smallest size. when appropriately defined, it provides a mea-

sure of the size of parameter space. For more discussions about metric entropy see

Kolmogorov and Tihomirov (1961).

Lemma 4:

Suppose assumption A11 is satisfied, and let v2 ≥ supθ∈A n−1 ∑n
i=1V(θ0,θ) and b≥

supθ∈A ‖θ−θ0‖. Also assume that
Z U

L
H1/2(u,A)du≤ (n1/2Ma3/2)/210 (A.0.49)

where U= H−(Ψ(M,v),A and L= aM/28 (0< a< 1), andΨ(M,v) = (1−a)nM2/[2(v2+

bM/3)]. Then

P∗
(

sup
θ∈A

νn
(

l(θ,X)− l(θ0,X)
)

)

≤ 3exp(−Ψ(M,v)). (A.0.50)

If U ≤ L the above inequality continues to hold with 1 replacing 3.
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The idea of proof is to control and bound the mean and varianceof the criterion

differences when it is evaluated atθ0 andθ ∈ Θ. Without loss of generality we can

assume thatmax(λn,ε) ≤ 1. For anyi, j ≥ 1 we have

inf
Ai, j

{

K(θ,θ0)+λn(J(θ)−J(θ0))
}

≥ (2i−1ε)2+λn(2
j−1−1)J(θ0), (A.0.51)

and

inf
Ai,0

{

K(θ,θ0)+λn(J(θ)−J(θ0))
}

≥ (2i−1ε)2−λnJ(θ0). (A.0.52)

Sincemax(J(θ0),1) ≤ c7ε2, we have

I = P∗
(

sup
{ρ(θ0,θ)≥ε,θ∈Θ}

n−1
n

∑
i=1

(

ℓ(θ,Xi)− ℓ(θ0,Xi)
)

≥−ε2/2
)

(A.0.53)

=
∞

∑
i, j=1

P∗( sup
A(i, j)

νn(l(θ,X)− l(θ0)) ≥ M(i, j)
)

+
∞

∑
i, j=1

P∗( sup
A(i,0)

νn(l(θ,X)− l(θ0)) ≥ M(i,0)
)

= I1+ I2,

where

M(i, j) =
1
2

λn
[

(2i−1)2+(2 j−1−1)J(θ0)
]

. (A.0.54)

Now we separately boundI1 and I2. To do this we use lemma 2. Because it is very

similar to establish the bounds forI1 andI2, we just show the it forI1. To boundI1 we

verify that lemma 2 is indeed applicable. By assumptionA6, when

Mb/v2 ≤ 3, and Ψ(M,v) ≥ (1−a)nM2/4v2 (A.0.55)

we have

sup
A(i, j)

V(θ0,θ) ≤ v2(i, j) = c1(2
iε)2(1+((2i)2+2 jJ(θ0))

β). (A.0.56)
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Similarly, whenMb/v2 ≤ 3, andU ≤ M1/2(i, j)B1/2(i, j) we haveH−(Ψ(M,v),A) ≤

v(i, j). By assumptionA7 we have

Z max
(

v(i, j),M1/2(i, j)B(i, j)
)

aM(i, j)
H1/2(u,B(2iε,2 j)

)

du/M(i, j)≤ c5n1/2. (A.0.57)

Therefore the requirement of the lemma 2 is satisfied and we have: (using the inequal-

ity (a+b)c ≤ ac +bc for a,b > 0, and 0< c < 1.)

I1 ≤ 3
∞

∑
i=1

∞

∑
j=1

exp
(

−c8n min
(

M2(i, j)/v2(i, j),M(i, j)/B(i, j)
)

)

(A.0.58)

≤ 3
∞

∑
i=1

∞

∑
j=1

exp
(

−c8n min
(

(λ2
n/ε2)[(2i−1)2+2 j−1]1−β,λn[(2

i−1)2+2 j−1]1−γ)
)

.

A similar reasoning boundsI2. Putting them together yields

I ≤ 6exp
(

−c8n min(λ2
n/ε2,λn)

)

/[1−exp(−c8n min(λ2
n/ε2,λn))] (A.0.59)

≤ 7exp(−c8n min(λ2
n/ε2,λn)).

This finishes the proof.

Proof of corollary 3:

Proof. By definition 1, for everyεn > 0, which satisfies (4.22), there existsc > 0 such

that:

P
(

ρ(θ0, θ̂ ≥ εn
)

≤ P∗
(

sup
{ρ(θ0,θ̂)≤εn,θ∈Θ}

(Ln(θ)−Ln(θ0)) ≤−an

)

(A.0.60)

P∗
(

sup
{ρ(θ0,θ̂)≤εn,θ∈Θ}

(Ln(θ)−Ln(θ0)) ≤−cε2
n

)

.

By proposition 4,ρ(θ0, θ̂n) = Op(εn whenever we havemax
(

J(θ0),1
)

λn ≤ c?ε2
n, and

εn is the smallestε which satisfies (4.22). Therefore replacingεn with λ−1/2
n whenever

max
(

J(θ0),1
)

λn ≤ c?ε2
n results inrho(θ0, θ̂) = Op(λ

1/2
n ). Now the results directly

follows from proposition 4.
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B.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 2

In this appendix we provide the proofs for the lemmas and propositions which ap-

peared earlier in chapter 2.

Proof of lemma 1:

Proof. The proof is simple and somewhat mechanical. We find a transformation that,

for everywi and pi produce aϖi and aqi in such a way that∑n
i=1qi = 1, this proves

lemma 1.

Let p = (p1, . . . , pn) andw = (w1, . . . ,wn) are give; definePN = ∑N
i=1 pi and let

qi =
p

wi
i

PN
. Now, the problem

min
p1,...,pn

n

∑
i=1

−wi logpi (B.0.1)

subject to:
n

∑
i=1

pigi(θ) = 0 and
n

∑
i=1

pi = 1 (B.0.2)

can be transformed to:

min
q1,...,qn

n

∑
i=1

− logqi (B.0.3)

subject to:
n

∑
i=1

qigi(θ)ϖi = 0 and
n

∑
i=1

qi = 1 (B.0.4)

with qi =
p

wi
i

PN
andϖi =

p
1−1/wi
i

P
wi
N

.

Because this transformation is one to one, if the first problem has a solution the second
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problem will have one and vice versa.

Proof of lemma 2:

Proof. The existence of a solution,θ̂(w) and p̂(w), is a consequence of maximization

of a convex function on a compact sent. Virtually the same reasons that grantee the ex-

istence of a solution to the EL procedure, as long as we maintain the same assumptions

like the compactness of theΘ. Obviously any solution of this problem will depend on

thew = (w1, . . . ,wn).

let θ̂(w) and p̂(w) be a pair that minimize the objective function with the given

constrains. The constrains are∑n
i=1 pigi(θ) = 0 and∑n

i=1 pi = 1, because any solution

has to satisfy these constrains,θ̂(w) and p̂(w) satisfy these constrains too. Therefore

n

∑
i=1

p̂i(w)gi(θ̂(w)) = 0 (B.0.5)

which is the sample moment conditions.

Proof of proposition 2:

Proof. Let

ℓ(β,σ2) = −2log
(

nnL(β,σ2)
)

(B.0.6)

be the log empirical likelihood ratio. Using Lagrange multipliers to optimizeℓ(β,σ2)

we get

L(β,σ2,λ,µ) =
n

∑
i=1

log(pi)−µ
( n

∑
i=1

pi −1
)

−nλ′
n

∑
i=1

pigi(β,σ2) (B.0.7)
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doing some algebra we see that

pi =
1

n(1+λ′gi(β,σ2))
(B.0.8)

andλ(β,σ2) minimizesℓ(β,σ2) therefore the log empirical likelihood ratio, which we

seek to minimize is:

ℓ(β,σ2) = 2
n

∑
i=1

log{1+λ′gi(β,σ2)} (B.0.9)

andλ ∈ R
q satisfies

∂ℓ(β,σ2)

∂λ
=

n

∑
i=1

gi(β,σ2)

1+λ′gi(β,σ2)
= G1n(β,σ2,λ) = 0 (B.0.10)

differentiatingℓ(β,σ2) with respect toβ andσ2, we have:

∂ℓ(β,σ2)

∂β
= λ′

n

∑
i=1

∂gi(β,σ2)/∂β
1+λ′gi(β,σ2)

= G2n(β,σ2,λ) (B.0.11)

∂ℓ(β,σ2)

∂σ2 = λ′
n

∑
i=1

∂gi(β,σ2)/∂σ2

1+λ′gi(β,σ2)
= G3n(β,σ2,λ) (B.0.12)

let’s denote

A = E
[

g1(β,σ2)g′1(β,σ2)
]

(B.0.13)

and

B =
(

E
[∂g1(β,σ2)

∂β
]

,E
[∂g1(β,σ2)

∂σ2

]

)

(B.0.14)

Under assumptionsA1−A4, the solution(β̂, σ̂2, λ̂) to this problem is triple such that,

see for example Qin and Lawless (1994),G1n(β̂, σ̂2, λ̂) = 0,G2n(β̂, σ̂2, λ̂) = 0,G3n(β̂, σ̂2, λ̂) =
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0. In this case the empirical likelihood rationℓ(β,σ2) attains its minimum at(β̂, σ̂2)

andλ̂ = λ(β̂, σ̂2). This results in a an asymptotic limit





√

(n)(β̂−β0)
√

(n)(σ̂2−σ2
0)





d−→ N(0,Σ)1 (B.0.15)

whereΣ = (B′A−1B)−1. Therefore we can drive the asymptotic variance of the empir-

ical likelihood estimatorŝβ and ˆsigma
2
. After some simple algebra we can convince

ourselves thatΣβ̂ = (Ip,0)Σ(Ip,0)′ andΣσ̂2 = (1,0)Σ(1,0)′. The corresponding asymp-

totic variance of the usual EL estimator, without using the modulation method is the

same as the asymptotic variance of quasi-likelihood estimator which forβ̆ql is:

Σβ̆ql
= σ2

(

E
[

G′(X′β)2XX′/V
]

)−1
(B.0.16)

A standard estimator forσ2 is

σ̆2 = n−1
n

∑
i=1

(

(Yi −G(X′
i β̆ql))/V(G(X′

i β̆q))
)

(B.0.17)

which we denote its asymptotic variance byΣβ̆ql
. Now we are in a position to compare

these variances and drive the optimum weights. We need the following definitions:

µ3 = E
[

(

ε/(σ
√

(V))
)3|X

]

(B.0.18)

µ4 = E
[

(

ε/(σ
√

(V))
)4|X

]

(B.0.19)

A11 = σ4Σ−1
breveβql

= σ2E
[G′(X′β)2

V
XX′

]

(B.0.20)

1The derivation is a standard practice in the literature, forexample see Qin and Lawless (1994) for
detailed derivations and proofs of the asymptotic limit theorems.
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A22 =





E
[µ4−1

σ4

]

E
[µ4−1

σ4 w′]

E
[µ4−1

σ4 w′] E
[µ4−1

σ4 ww′]



 (B.0.21)

A12 =

(

E
[µ3G′(X′β)

σ
√

(V)

]

,E
[µ3G′(X′β)

σ
√

(V)
Xw′]

)

(B.0.22)

B1 =

(

E
[V ′G′(X′β)

σ2V
X

]

,E
[V ′G′(X′β)

σ2V
Xw′]

)

(B.0.23)

and finally

B2 =
( 1

σ4 ,E
[ w′

σ4

]

)

. (B.0.24)

Doing some tidies algebra we obtain,

A =





A11 A12

A′
12 A22



 (B.0.25)

and

B′ = −





σ−2A11 B1

0 B2



 . (B.0.26)

Under the assumptionsA1−A4 we can calculate to get

B′A−1B =





σ−4A11 0

0 0



+B1

(

A−1
22.1−

A−1
22.1B′

2B2A−1
22.1

B2A−1
22.1B′

2

)

B′
1 (B.0.27)

whit

A−1
22.1 =

σ4

k−1





1+E(w′)D−1E(w) −E(w′)D−1

−D−1E(w) D−1



 (B.0.28)

whereD = cov(w). Doing some algebra reveals that

B′
2B2 =

1
σ8





1 E(w)

E(w′) E(w)E(w′)



 (B.0.29)
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and
(

A−1
22.1−

A−1
22.1B′

2B2A−1
22.1

B2A−1
22.1B′

2

)

=
σ4

k−1





1 0

0 0



 . (B.0.30)

Therefore,

B1

(

A−1
22.1−

A−1
22.1B′

2B2A−1
22.1

B2A−1
22.1B′

2

)

B′
1 =

σ4

k−1
B1

(

E(w′),−1
)

D−1(E(w′),−1
)

B′
1 =C(w)C′(w)/(k−1)

(B.0.31)

and doing some algebra we have

C(w) =

(

E
[V ′G′(X′β)Xw′

V

]

−E
[V ′G′(X′β)

V
Xw′]E(w′)

)

D−1/2 = E

[

V ′G′(X′β)X
V

(w′−E(w′))D−1/2
]

(B.0.32)

Using the above calculations we can show that,

Σhatβ(w) = (Ip,0)Σ−1(Ip,0)′ =
(A11

σ4 +
C(w)C′(w)

k−1

)−1
. (B.0.33)

For any two any two positive definite and symmetricn×n matricesA andB we have

A−B > 0 if and only ifB−1−A−1 > 0, Therefore finding aw to maximizeΣβ̆−Σβ̂(w)

is equivalent to findingw to maximizeC(w)C′(w). Let defineη =
V ′G′(X′β)X

V and

ξ =(w′−E(w′)) form the equation forC(w) we obtained above we haveC(w) = E[ηξ].

Now we can writeC(w)C′(w) = E(ηξ′)[E(ξξ′)]−1E(ξη) by the lemma which will

follow this proof we have

C(w)C′(w) ≤ E
[

(

V ′G′(X′β)
)2

XX′

V2

]

(B.0.34)

and the equality holds if and only if

η =
(

E(ηξ′)[E(ξξ′)]−1
)

ξ (B.0.35)

It can be directly check that the equality is hold whenw = V ′G′(X′β)X
V , and this finishes

the proof.
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The following lemma was used in the last step of the proof of proposition 2.

Lemma 5:

If ξ and η are to n-dimensional and m-dimensional random variables and n≤ m,

E[||ξ||2 + ||η||2] < ∞ and E[ξξ′] > 0, then E(ηξ′)[E(ξξ′)]−1E(ξη′) ≤ E(ηη′). Fur-

thermore, equality holds if and only ifη =
(

E(ηξ′)[E(ξξ′)]−1
)

ξ.

Proof. Let c=
(

E(ηξ′)[E(ξξ′)]−1
)

, becauseE[||ξ||2+ ||η||2] < +∞, we haveE[(cξ−

η)(cξ−η)′] ≥ 0 implies thatcE(ηη′)c′− cξη′−ηξ′c′ + ηη′ ≥ 0. Replacing c with
(

E(ηξ′)[E(ξξ′)]−1
)

we getE(ηξ′)[E(ξξ′)]−1E(ξη′) ≤ E(ηη′). Equality holds if and

only if E[(cξ−η)(cξ−η)′] = 0, which impliesη = cξ.
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C.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 3

Proof of Lemma 1:

Proof. First, notice that

f ′(x) =
p(1− p)

((1− p)x+ p(1−x))
> 0 (C.0.1)

which implies that this function is increasing for 0≤ p≤ 1.

Second, we havef (x) < x. To see this, notice that

f (x) < x⇔ (1− p)x < (1− p)x2+ p(1−x)x⇔ x(1−x) > 0.

The last statement is always true because 0< x = π∗ < 1.

Third, if

{an = f n(π∗)}n=∞
n=1 , then lim

n→∞
an = 0

This is so becausef (x) < xand f (x) is increasing together. These imply that{ f n(π∗)}∞
0

is a bounded and decreasing sequence of real numbers and, therefore, has a limit. Let

limn→∞ an = a0 > 0. Then,f (a0) < a0, which is a contradiction. Therefore,an has to

converge to a fixed point off (x), which is zero.

The above argument shows that

∃n s.t. f n(π∗) ≤ 1/2 (C.0.2)
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and, therefore,

{m| f n(π∗) ≤ 1/2} 6= /0. (C.0.3)

Hence the minimum exists.

Now suppose thatπ < π′. We have:

π < π′ ⇒ f (π) < f (pi′) ⇒∀m fm(π) < f m(π′) ⇒ ( f m(π′) ≤ 1/2→ f m(π) ≤ 1/2)

(C.0.4)

this implies that

{m| f m(π) ≤ 1/2} ⊆ {m| f m(π′) ≤ 1/2}. (C.0.5)

Therefore,

min{m| f m(π) ≤ 1/2} ≤ min{m| f m(π′) ≤ 1/2}, (C.0.6)

which is to say,n≤ n′.

Proof of proposition 3:

Proof. Suppose that at timet an agent defects and chooses the opposite outcome of the

cascade. With probability 1−µ the next actor is a fan who, by assumption, receives a

negative signal (here negative means a signal which points to the opposite direction of

the cascade). His updated belief is

f 2(π∗) > 1/2, since we haven > 2. (C.0.7)

Therefore

E[V = 1|Ht+1] = Pf (V = 1|Ht+1) > 1/2, (C.0.8)

so is optimal for him to follow the cascade. If the next agent is a fan, he will perform

the same calculation and will defect only iff 3(π∗)≤1/2 and that is so ifn= 3. Contin-

uing this argument, a fan with ann given by lemma 1 will defect only iff n(π∗)≤ 1/2,
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which requires that the lastn−1 agents are defectors and that is so if all of them are

non-fans which happens with probability(1−µ)(n−1). In this case, the cascade breaks

at time t+n. Therefore the defection is successful with probability

(1−µ)(n−1). (C.0.9)

Proof of the proposition 4:

Proof. Let’s suppose there are two actionsa andb to be chosen and a fan,f , sophis-

ticated enough to take in to account the possibility of herd,resulting from the action

he is about to choose. Also, suppose the star has chosen action a. Becausen > 2 by

proposition 1 more than 2 opposite signals are needed for this fan to chooseb. Now

suppose that every of thek predecessors has chosenb, andk is arbitrary large. The

only information thatf can extract from this chain of actions is that the star received

a signal. The first two non-stars hadb signals, and the rest of the population is in an

informational cascade. Sincef needs more than 2b signals in order to choose action

b, she will follow the star and choosea.

Proof of Porposition 5:

Proof. Because non-fan traders fallow their own signal, their participation helps to

control any miss-pricing. Therefore, in order to find an upper bound for any possible

bubble, we can assume that all traders are fans.

Suppose everybody receives a negative signal but after weighting in her/his initial

belief decides to buy. How long can this process continue? Assoon asg(π∗)≤ f m(p),

themth trader stops buying. Therefore, the length of the buying process is

n = min{m|g(π∗) ≤ f m(p)}. (C.0.10)
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The next step is to investigate how much a bubble can grow during these n periods. If

the market maker could see the actual signals he would have set the price according to

β = gn(p). Since, he cannot see the actual signals and he only observesthe “buy” and

“sell” actions, he increases the price according toβ̄. Therefore, the size of the bubble

is

β̄−β (C.0.11)

Proof of Proposition 6:

Proof. In the proof of proposition 3 we assumed that all traders are fans, which implies

that no correction takes place and the size of any possible bubble rapidly grows until it

reaches the established upper bound. Now, if we take into consideration the presence

of noise traders and non-fans, we are going to have an asymmetric random walk onR

which moves up and down with different probabilities depending on the combination

of fans, non-fans, and the noise traders. The following lemma is the core part of the

proof.

Lemma 6:

Let X1,X2, . . . be i.i.d with

P(Xi = 1) = p and P(Xi = −1) = 1− p p> 1/2

and let

Sn = X1+X2+ · · ·+Xn α = in f{n : Sn > 0} β = in f{n : Sn < 0}.

Then,

(i) P(α < ∞) = 1 and P(β < ∞) < 1.
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(ii) I f Y = inf Sn, thenP(Y ≤−k) = P(β < ∞)k.

(iii )Eα = 1
2p−1.

Proof. Sketch of a proof:

(i): We need the following result for the proof of this part this can be found as theorem

in “Probability: Theory and Examplesby Richard Durrett.”

Theorem 1:

For a random walk onR there are only four possibilities, one of which has probability

one.

(1) Sn = 0, for all n.

(2) Sn → ∞.

(3) Sn →−∞.

(4)−∞ = limin f Sn < limsupSn = ∞.

We also need the following statement in the proof.

Letα andβ be the same as above. Then the four possibilities of the theorem correspond

to the following four combinations P(α < ∞) < 1or = 1 and P(β < ∞) < 1or = 1.

Part (i) of the lemma can easily be derived from the fact that

P(β < ∞) < P(α < ∞). (C.0.12)

(ii): This part is obvious when we consider that theSi ,s are independent, andY ≤

Si , ∀i.

(iii) A result in stopping time theory -sometimes referred to as Wald’s equation- states
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that:

If X1,X2, . . . are i.i.d withE|Xi | < ∞, and ifτ is a stopping time withEτ < ∞, then:

ESτ = EX1Eτ. (C.0.13)

Apply Wald’s equation to the stopping timeα∧n and letn→ ∞ to obtain:

Eα =
1

EX1
=

1
2p−1

. (C.0.14)

The only thing that remains is to calculate the probability of a “buy” which moves

the price up. This probability is 1/3(1−µ)+γ. Now to prove part (a), notice that when

γ = 1/6+ 1/3µ the 1/3(1−µ)+ γ = 1/2, and we have a symmetric random walk in

whichProb(T < ∞) = 1, andE[T] = ∞.

For part (b), ifγ < 1/6+1/3µ, then 1/3(1−µ)+ γ < 1/2 and, therefore, we have an

asymmetric random walk, thus, by part(i) of lemma 3,P(T < ∞) < 1. In additions,

by part(ii) of the lemma 3,

P(T < ∞) = P(β < ∞)n. (C.0.15)

For part (c), notice that ifγ > 1/6+1/3µ, we have an asymmetric random walk with

the probability going up greater than the probability of going down. By part(i) of

lemma 3,Prob(T < ∞) = 1 and by part(iii ) of lemma 3, we have

E[T] =
n

2p−1
, (C.0.16)

where p is the probability of going up.
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