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THREE ESSAYS ON MODEL SELECTION, MODULATION ESTIMATORS
AND HERD BEHAVIOR UNDER ASYMMETRIC BELIEFS

Ahmad R. Shahidi, PhD

University of Pittsburgh, 2009

This thesis is organized in three chapters. In the first twaptdrs, an econometric
model selection procedure and a method to improve somerexestimators are pro-
posed. In the third chapter, a theoretical microeconomadyais of herd behavior is

performed under a fairly new set of assumptions.

In chapter one, a model selection procedure based on thdiZzeehBmpirical Like-
lihood (PEL) technique is developed, and guidelines areigea for the extension
of the procedure to the setting of Generalized Empiricaklifood (GEL). The pro-
cedure was initially applied to linear models and was cdllezhst Absolute Shrink-
age and Selection Operator” (LASSO). It was subsequentgnebed to Generalized
Method of Moments models in, and we now extend it to Empirid&élihood (EL)
models. Its main advantage over classical methods is indh&imation of model
selection and model estimation into a single step, whileraving the post-selection
properties of the resulting estimators. This procedureasydo implement, and it
remains computationally feasible even in models with adargmber of parameters.
A simulation study is performed to compare the newly prodgs®cedure to some

classical methods such as AIC, BIC, and DT. The simulatiaulte show a better



performance of the new procedure.
In chapter two, we define the modulation technique for the &inmeator modulation
technique pertains to the class of methods generally kn@vstainkage methods”.
Shrinkage methods are frequently used to improve the pliepem particular small-
sample properties, of existing estimators. In this papgeraeral theoretical analysis
of modulation estimators is developed for EL models, aloitt & discussion of how
they can be implemented in special cases.

In chapter three, a theoretical model of imitation and heldavior is considered.
It is assumed in that some participating agents have spedifiities to affect other
peoples behavior. Results are provided on how “stars” @tx@y players can impact
herd formation. In the particular setting of a financial nenkith a single traded asset,
results are provided on the consequences of this celelffégt ®n bubble formation

in the financial market.
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1.0 MODEL SELECTION FOR MOMENT CONDITION MODELS USING
THE PENALIZED EMPIRICAL LIKELIHOOD PROCEDURE

1.1 INTRODUCTION

Moment conditions are the basis for constructing estinsaémid making inferences
in a large number of interesting economic problems. The igéimed method of mo-
ments (GMM), along with new methods based on empiricaliliceld theory (Owen
1988) are the major tools to construct estimators and mdkeeinces in the frame-
work of moment condition models. In this paper we addressthblem of model
selection when the available information is in the form ofmsmt conditions This
problem of model selection is a problem which practitiorface very often. We pro-
pose a method based on the penalized empirical likelihoodegiure. This method,
unlike other existing methods, selects and estimates gine model at the same time.
As we will see in details, the proposed method is continuouke sense that instead
of including (1) or dropping (0) a particular coefficientsitrinks the coefficients so
that some of them will drop out. One problem with AIC, BIC, oora recent DT
methods is that they are all discrete. They either includararpeter or drop it, this
makes the procedure undesirably unstable. A small chartge imhata, which can be in
the form of adding new information, will result in a compligtdifferent model to be

selected. Another problem with the existing methods istiey are computationally



very expensive, specially when the number of parametersrislarge. The proposed
method addresses both of these two problems. Additioreslwe will see in the sim-
ulation results, compared to the existing methods, our ate#tiso has post-selection
superiority, and it selects the right model more often, ieasier to implement, and
computationally feasible in a model with a large number afapzeters. It also has
better variance results so that the final estimators olaisag this method are better
compared to their counterparts in the RMSE (root mean squarer) sense. As a fur-
ther contribution, we will show that the penalized empirideelihood defined in this
paper can be used to define other possibly useful procedimésometimes, enhance
good properties of a given estimator. For example, we wiihgean estimator which
is similar to EL estimator, but its implied probability meas has a larger Kullback-
Leibler (KL)-entropy than the implied probability measuweEL. Furthermore, with
our definition of penalized empirical likelihood, we are @b use the existing and
advanced framework of the penalized maximum likelihoochteestigate the asymp-
totic and convergence properties of the penalized emplirkedihood procedure in a
general setting when a general penalty function is used.

In the remaining part of this introduction, | will elaborata the heuristic origins

of the topics which will be further analyzed in this paper.

1.1.1 GMM and GEL

The generalized method of moments estimator (GMM) has beerwbrkhorse of
econometric analysis since its introduction by Hansen §dan1982). Besides pro-
viding a unified framework to study different types of estiora, GMM extends the
method of moments framework to include situations in whighnumber of moment

conditions exceed the dimension of the parameter we wanstimate. Although



GMM is a very useful estimator and it is first-order asymmally efficient, its small
sample properties are relatively poor (Altonji and Seg8P@; Tauchen, 1986). In

addition, the two-step nature of GMM introduces a lot of tieriness to the estimator.

More recently, Owen’s empirical likelihood method has pded other estima-
tors, some of which overcome some of the shortfalls of GMNhe&atior. This family
includes the EL estimator (Owen, 1988; Qin and Lawless, 1B88ens, 1997), Con-
tinuous Updating Estimator (CUE) (Hansen, Heaton, and¥gt896), and the Expo-
nentially Tilting Estimator (Kitamura and Stutzer, 199ifkdens and Johnson, 1998).
These estimators all belong to the class of Generalized wapLikelihood (GEL)
estimators (Smith, 1997; Newey and Smith, 2034Jhese estimators circumvent the
need of estimating a weighting matrix in the two-step GMM Ingctly minimizing an
information-theory-based concept of closeness betweeadtimated distribution and
the empirical distributio. While in theory these estimators, like GMM, all have the
same first-order asymptotic efficiency, simulation studé®l Monte Carlo evidence
have shown that, compared to GMM, some members of the GEl tlage better
finite-sample properties (see Hansen, Heaton, and Yar@§; B®amalho, 2006 and
references therein). Also, Newey and Smith (2004) haveytinally shown, using a
stochastic expansion argument, that while GMM and GEL stieesame first-order
asymptotic properties, their higher-order propertiesdafferent. Specifically, while
the asymptotic bias of GMM often grows with the number of mabrestrictions, the

relatively smaller bias of EL does not. Moreover, a biag<ected EL is higher-order

There are other varieties, too. For example the Exponéniidied Empirical Likelihood estimator
(ETEL) (SCHENNACH, 2007) which in essence is a combinatibtine two estimators, EL and ET, in
hope to obtain an estimator that like EL has a smaller firatede bias, and at the same time inherits
the better behavior of ET in the presence of mis-specifinatio

2The estimators mentioned so far are, like GMM, based on wutitonal moment restrictions, using
the empirical likelihood methods, we can construct estimsabased on conditional moment restrictions
see (ZHANG and GIJBELS, 2003), and Kitamura et al (2004)



efficient relative to any other regular method of momentestor. In terms of infer-
ence, the empirical likelihood ratio test has some desrédatures too. For example,
The ELR test admits Bartlet correction (DiCiccio, Hall andrano, 1991), which
gives it the same accuracy rate as the parametric case. @af®001) has used the
so calledGeneralized Neyman-Pearsapproach to show that, for testing moment re-
strictions, the ELR test is uniformly most powerful in an aptotic large deviation

sense.

1.1.2 Model Selection

Let {Mg,& € =} be a set of candidate models for a given observation. Baseleon
observed data we need to select a model f{dfg, & € =} using an appropriate model
selection criteria, or a justified procedure which seldutsdesired model. Model se-
lection problems are encountered almost in every applinatiFor instance, in linear
regression analysis, it is often of interest to select thktmumber of nonzero param-
eters which have the most explanatory power. With a smallehondterpretation is
easier and statistical inferences can be carried out mficesetly. Also, in time series
analysis, it is essential to know the true order of an ARMA .aisther example, sup-
pose we have two competing non-nested models with two diftgparameter vectors,
and two sets of moment conditions. The two parameter vectorbe stacked together
to yield a single parameté& Now we can select each model by setting the appropriate
parts of6 to zero. A model selection method tells us what part of theupatero
should be set to zero.

Different techniques and criteria have been developedabvidéh model selection,

each having its own advantage in a particular setting.the parametric likelihood-

3For a good survey of model selection literature see Rao, add2801).



based model selection we have, alongside others, the faki@jsand BIC criteria.
When the information about the underlying density functibthe data generating pro-
cess is limited to moment conditions, Andrews (1999), andraws, and Lu (2001)
provide downward testing (DT) and BIC-like criteria in tharmework of GMM es-
timation. Also related to our work are the paper by Kolacz$895), in which the
author considers an analogue of AIC model selection ooitein the empirical like-
lihood context. Also, the paper by Houng, Preston, and SI2083), which extends
the results of Andrews, and Lu (2001) to the setting of GEL.

As mentioned earlier, the classical methods of model selectsually involve a
computationally heavy combinatorial search. Simple maad¢ction via AIC and
BIC, which can be applied to OLS, often select the wrong m¢Betiman, 1996),
and furthermore, these procedures are unstable, meanaigcdranges in the data can
cause entirely different selectiofis.

To overcome these shortfalls Tibshirani (1996) introdutteshst absolute shrink-
age and selection operatol’ASSQ.> The lasso, which is based on the penalization
technique, combines the selection and estimation stepthanefore reduces the vari-
ance of the final estimator while using less computationueses. Model selection in
linear models is now being mostly carried out using lassegudare. It is a compu-
tationally feasible alternative to the classical modeésgbn methods. Furthermore,
recent studies (Zhao, and Yu 2006) have shown that undermidyconditions, the
lasso technique almost always selects the true model.dip#per we define the penal-
ized empirical likelihood, and then use it to extend thedassthod of model selection
to the framework of empirical likelihood. Although in thigper | restrict our attention

to the EL estimation, | think that the extension of the pregazbsechnique to the more

4For further information about model selection via AIC andCBand their shortfalls see (FAN and
LI, 2001; FAN and LI, 2002) and the references therein.
5This method has also been extended to GMM setting, see C20@8)



general setting of GEL is possible.

Since, lasso is just one example of the numerous applicatibthe penalization
method, it is important to perform a systematic study of tegdization method in the
context of EL estimator. In this paper we use the parameaise ©f penalized maxi-
mum likelihood to study the nonparametric situation of pzied empirical likelihood
procedure. We present asymptotic, and convergence ratksrés the penalized EL
with a fairly general penalty function.

The main contribution of this paper is to introduce a powlenfiethod of model
selection which can be used as an alternative to the exigtoaedures. As the simu-
lation results will show, this method not only selects tlghtimodel more often, but it
also has a better post-selection performances. In thigpapelso propose a general
framework for defining and studying the penalized El and G&ineators. We present
results for this general case, and as an example we intratuestimator similar to
EL whose implied probabilities have a better entropy proper

The rest of this paper proceeds as follows. In section 2 we giormal definition
of penalized empirical likelihood estimator. In section 8 study the problem of
model selection via PEL. Section 4 presents asymptotic andecgence results for
PEL with a general penalty function, in this section as anmgla of a general penalty
function we introduce another potentially important estion. Section 5 concludes the

paper. All the proofs are collected in the appendix.

1.2 DEFINITION OF PEL

Let 8 be the parameter we are interested to estimate. In gendnahlwis a func-

tional which measures how wdllpredicts the observed data S¥1,. .., X,, andJ(0)



is a penalty functional which assesses the physical plaiirgibf 6, the method of

penalization choosestawhich optimizes
/i (0) =1 (B|data) —AJ(B), A >0 (1.2.1)

A is called the regularization, or sometimes penalizaticampeter. Larger values af
produces more regular estimators.

The maximum empirical likelihood procedure, much like nmaxm likelihood
method, is based on maximizing a criterion functional ovpaeameter space. There-
fore the method of penalization, should has a natural agpdic in empirical likeli-
hood estimation. Very often, specially when the paramgiacs is large or not well
behaved, the optimization becomes difficult and the resyiktistimators may have un-
desirable properties such as non-smoothness, inconsyséegr so on. In some of
these situations the maximization can be carried out basegtiepenalized version
of the criterion function. In this subsection we formallyromduce this idea and later
in this paper, we present some of its most important apjpdicat and investigate the

properties of these procedures.

Definition 1:
(@) Let X, ..., X, be independently distributed random variables, with a comiaiis-
tribution (i.i.d). Let I(6,X;) be the criterion function evaluated at,Xf J(0) is the

penalty function we define thpenalized criterion function to be
£(8,%) = 1(8,X) — AnJ(6). (1.2.2)

(b) Let Ln(8) = Ln(8,X) =n~13M , £(8,X), and h(8) = 1n(8,X) =n~15M  1(8,X).
Maximizing L(6) will produce an estimator fof. We define ampproximate maxi-

mizer of Ly(8) to be ab, such that

Ln(Bn) > supLn(8) —&n, (1.2.3)
6O



whereg, — 0as n— oo,

Now we can easily adapt definition 1 to obtain a definition feepgenalized em-
pirical likelihood estimator Let

In(8) = —\r/rggx Z log(1+Yg(X,0)) (1.2.4)

be the profile empirical likelihood function fd&. We define thepenalized empirical

likelihood as follows.

Definition 2:

The penalized empirical likelihood estimator fbis

Bpel = argmaxIn(8) — AnJ(8)}. (1.2.5)
FIS0)

Notice that, ify* denotes the maximizer in (2.4), then 8, X;) in definition 1(a)
is1(8,%) = —log(1+Y"g(X,8)).

As an example, suppose that we know from external knowlettigé the true pa-
rameter is somewhere close to a linear subspace of the p@raspace®. In this case
it is appropriate to try to shrink the estimator toward timge&r subspace. For instance,

if L is the following linear subspace
L:{e:elzezz...,er}:{e:%Je:e}, (1.2.6)

wherelJ is a matrix of ones) = 171/, then to shrink the estimator towakdve can use
the penalty functiod(6) = y{_ (91— N)>2.

In the following section we use the penalized EL defined is #@ction to con-
struct the lasso-EL, and study its properties. A generarthér convergence, and

asymptotic distribution of PEL will be developed in sectin



1.3 MODEL SELECTION USING PEL

As a major example of penalization method, we introducéltkast Absolute Shrink-
age and Selection Operato(LASSO) for the empirical likelihood setting. The easiest
way to understand the purpose and usefulness of these tygstimiators, is to take a
look at the linear case. Consider the usual regressiontisituave have datgx',y;),
i=1,2,...,N, wherex = (Xi1,-..,Xp) andy;, are regressors and response forithe
observation. The ordinary least squares (OLS) estimagestaained by minimizing
the residual squared error. There are two drawbacks to tt&@bacedure. The OLS
estimates often have low bias but large variance, resuitirgpoor prediction accu-
racy. As we mentioned earlier in the introduction to this graprediction accuracy
often can be improved by shrinking, or setting some of thdfiooents to zero. By
doing so we scarify a little bias to reduce the variance, tvimay improve the overall
prediction accuracy. On the other, with a large number digters, we often prefer to
use a smaller subset that exhibits the strongest effecétaiiistical literature, this pro-
cedure is calledelection.The traditional tools to deal with these problems, are ridge
regression and model selection. Model selection proviatespretable models but can
be extremely variable because it is a discrete procesgg®sgys are either retained or
dropped from the model. Small changes in the data can resudry different mod-
els being selected, which is obviously very undesirablee fitige regression, in the
other hand, is a continuous process, and therefore morie séadal it does shrink the
coefficients. However, it does not set any coefficient to zs1d hence does not give
an easily interpretable model.

Tibshirani (1996) proposes a new technique, which he calssso. It shrinks
some coefficients and sets others to zero, therefore ne¢aihé good features of both

model selection and ridge regression. This method can lmeigimag, particularly when



the econometrician needs to construct a model with a largeéeuof parameters and

then use model selection methods like BIC and AIC to select#sired model.

1.3.1 Definition and Assumptions

Let B be a p-dimensional vector, afdrepresent the true value, which is in the interior
of the compact se® € RP. As before, let the moment conditions provided by theory

to be

Elg(X;,6)] =0. (1.3.1)

After using the empirical likelihood set up let

/n(0) = —\r/rggx Z log(1+Yg(xi,6)) (1.3.2)

be the profile empirical likelihood fd. The lasso-type-EL estimator f6p is ab that

maximizes

p
~M Y 16)lY, (1.3.3)
j=1

where 0< y < 1 andA is a regularization parameter. Other penalty functionsatze
possible. Indeed some are proven to be more capable to aaeeain properties, see

for instance Fan and Li (2001).

1.3.1.1 Properties of Lasso-EL Estimator: In this subsection, we analyze the
consistency and large sample theory for the lasso-typedimators. First we state

the assumptions required for the results which will follow.

Assumptions:

Al: (i) ag Xe is continuous in a neighborhood of the true paramégrand the rank

of E[agxeo ]is p.

10



(i) In a neighborhood 0By, ||22%®)|| and||g(x, 8)||2 are bounded by some inte-

grable function Gx).

(iii) The matrix E[g(x,80)d'(x,60)] is positive definite.

A2: (i) gi(0) is m-dependent for all i.
(i) 16i(B1) — gi(B2)| < Bi|6i — 82|, with limp_. S ; E[BY] < oo, for some o> 2.
(iii) sup.oE[|gi(8)|9] < oo, for some d> 2.

A3: Define En~131 ; 6i(0)] = mn ()
(i) M1n(8) — My (B) uniformly over®, my, is continuously differentiable i and
m(60) = 0, my(B) # O for 8 # Bp. Also m(8) is continuous ir.

(i) Let Ry(8) = amgg,(e) we assume thatR0) A R(8), uniformly in a neighbor-

hood offg, R(6p) is of full rank, and RO) is continuous ir®.

A4: Define W(8) = [} z{;lgi(e)gi’(e)]‘l. We assume that: M®) = W(8) uni-
formly in 8, where W) is a symmetric non-random positive definite matrix which

is continuous foralb € ©

AssumptionsAl andA2 are the usual assumptions in the empirical likelihood lit-
erature. They guarantee that there is unique maxinfizer the empirical likelihood
ratio. Since we will use the empirical processes theory toggsome of the up coming
results, we will be in need of assumption 3. For a good revieanpirical processes
and their econometrics’ application consult Andrew (1986pme of these assump-

tions are used by Caner (2008) to drive similar results ferGiM estimator.

The following proposition shows the consistency of the fiead estimator, under

assumptions A1-A4, and some further conditions\gn

11



Proposition 1:
If assumptions A1-A4, hold then:

1) If 20— X9 >0, then

EILN argminZ(0), (1.3.4)
SISC)
where
p
Z(0) = my(8)’'W(0)my(8) +)\0.Z\\6i\y. (1.3.5)

The convergence happens uniformlyin
1) If Ap = o(n) then,
R (1.3.6)

We notice thatZ(0) is the limiting process o¥,(8). And Z,(0) is obtained by
manipulating/»(0) in definition 2.

Using (I) from proposition 1, it is clear that why we need tovda, = o(n), in
order to obtain the consistency of this estimator. But this still is too high to get any
interesting result concerning the limiting distributiohg. To get the,/n-consistency
it is required to have slower growth rate fog. However, ifA, grows too slowly then
we won't get anything substantially different from the uldbl estimator. Our goal is,
to get a limiting distribution for nonzero part of the parasers which is coincide with
usual, non-penalized, EL estimator. And for the zero pgpamédmeters the distribution
should goes zero. To achieve this goal, we nead @hich grows with a right rate.

The following proposition specifies the right conditions.

Proposition 2:

Suppose thaﬁ% — Ao > 0, and assumptions Al-A4 satisfy then:

A

v/N(6n —Bp) = Gy = argminV (u), (1.3.7)

uekK

12



where
p
V(u) = 2u'R(6)'W(80)¥(80) + U'R(80)'W (80)R(Bo)u+Ao 3 [uj|V1ey 0y, (1.3.8)
=1
and K is a compact subset &P, and W(6p) = N(0,Q(6p)), whereQ(8p) is the

variance-covariance matrix and

Nn—oo

Q(80) = lim E[(n‘”?_igi<eo>><n-1/2__§igi<eo>>’}. (13.9)

An interesting conclusion of proposition 2 is that, we catinegte nonzero param-
eters at the usual rate without introducing further asymiptoas, while shrinking the
estimates of zero parameters to 0 with positive probabliityact when all parameters
are non zerof; #0i=1,...,n, we have

V (u) = argmin{2u'R(6)'W(8)W¥(8p) + UR(8p)' W (80)R(Bp)u}. (1.3.10)
ueK

The solution to this minimization problem is
6= —[R(Bo)/W (80)R(80)] ~*R(B0)'W(80)¥(80). (1.3.11)

This is the same as the limit distribution of the non-peraliEL estimator.
Now suppose that some of the parameters are indeed zerménagesherR(6p)'W (6p)'R(6o)
is singularV (u) won't have a unique minimizer. I € argminV (u) andv lies in the
null pace ofR(8p)'W(80)'R(80), then for some, V (u) =V (u+tv). However, suppose
that6; ;1 = --- = 8p = 0, and the null space d(69)'W(60)'R(8o) is spanned by the
standard basis vectoes, 1, .. .,€p; then we have
p
V(U) =Vo(Us,...,ur) +Ao 5 JujlY, (1.3.12)
j=r+1

which has a unique minimizer. In the other words, a largeci§ipation of the model

won't prevent us to estimate the non-zero part of the modelthe redundant part

13



will be set to zero. Therefore we can, at the same time, estiarad select the correct
model. If A, grows faster than specified by preposition 2, but not tog fassuch
way that we have\,/\/n — Ag > 0, and)\n/n\//2 — 00, We can prove an even more
interesting result, at least asymptotically, which is Ulyuzalled oracle property To
see this assum?eh/n"‘/2 — Ao > 0withy< a < 1. Suppose thdl;, . .., 0, are nonzero
while 6;,1,...,8p are zero, and defining,(u) as in the proof of proposition 4, it
follows thatV,(u) LN V (u) where

v 2U'R(B8)'W(89)W(6p) + U'R(80)'W(B0)R(Bp)u, if Ur11="---=uUp=0,
u) =

00, otherwise.
(1.3.13)

Applying the arguments given in the proof of propositiont4ollows that
V() (6, —8) L argminV), (1.3.14)

where the lastp—r) elements of argmifv) are exactly @ We can summarize the ar-
gument delivered above as an corollary, which usually isrretl to a®racle property

of the lasso estimator.

Corollary 1:

Supposg < a < 1. If \y/n%/2 — Ao > 0, and assumptions A1-A4 hold, we have

~d [0
G, & (Opr)’ (1.3.15)
where
Gy ~ N (o, (R(Gro)’W(Go)R(GrO))_l), (1.3.16)

with 8 = (GrU,O’p_,)’. Note thatdy is separated into nonzero and zero components.

6SinceV can be infinite, we can no longer define convergendé,db V via uniform convergence
on a compact set, but instead we can define it via epiconveegehnich allows for extended real-valued
functions. See sections 3 and 4 of Geyer (1994) for moreldetai
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There are a host of other penalty functions available, somehiach might be
more appropriate for special circumstances, Fan and LilR@6éview some of these

functions.

1.3.1.2 Monte Carlo Simulations The Monte Carlo simulations in this section,
are aimed at providing an answer to two important questioasa practitioner faces.

when doing applied work. First, in average which model sa@acnethod does the

best job in selecting the right model. Second, what is the gelection performance

of these methods. In this section, we compare our proposesiSIGAEL estimator

with BIC, “Downward Testing”(DT) of Andrews and Lu (2001), and LASSO-GMM
of Caner (2008). The simulation design is exactly the oneanet (2008). | therefore

refer the interested reader to that paper for a detailediigéisn of the design. Here

we review those aspects of the designs, which are essemtialréader to understand
the simulation process, and the proceeding results.

We have the following data generating process.

y=Y0+e¢, (1.3.17)

Y =2ZM+V, (1.3.18)

whereZisN x 6, M:6x 5,V :Nx5,Y:N x5 represent the endogenous regressors,
andf:5x 1. We setN = 100. The instrumentg; : 6 x 1 are i.i.d and we generate

them according ttN(0, lg). Ui = (&, V;) is independent frornZ;, with €; a scalar an¥,
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is 5x 1 vector. We choose ~ N(0,%) where

0.99
0.90
0.80
0.70
0.60

and

andu;,sare generated i.i.d.

2

0
0
0
0

o O o o o

N O O O B O

0

2
0
0
0

o o o » O o

w o© L O O o

0

0
2
0
0

o B O O O O

0

0
0
2
0

2 099 090 080 Q70 06

0
0
0
0
2

(1.3.19)

(1.3.20)

In this experiment, we take the instruments as given andtwilto select and

estimate the right structural equation. Hence, all we sgeél select and estimate the

trueBp. There are two setups, in the first o= (0.8 0 0.7 0 0.9)’. The second one

has the same effects as the first one with different magnitige (2 0 1 0 05)'.

We compare the ability of each method to select the true madelthe small sample

properties of the post-selection estimators.

For LASSO-EL, and LASSO-GMM we sgt=1/2,a = 2/3, and\y = N¥/3,/2Togp.

This choice ofAn has been suggested by Donoho, and Johnstone (1994) andemas be

further discussed in Fan, and Li (2001). For an in-depthsudision of how BIC, and

DT methods work see Andrews and Lu (2001). Also, as mentitwedale we use the
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same design as Caner (2008), and therefore for a full dismus$ how we calculate

different properties of the estimators, used in this simoestudy, consult that paper.

Here we report the results and drive some conclusions bastse results.

Table 1: Bias, Standard Error (SE), and RMSE of Design 1

LASSO-EL LASSO-GMM BIC DT
0; SE Bias RMSE SE Bias RMSE SE Bias RMSE SE Bias RMSE
6, | 0.1290 -0.0322 0.13291 0.1286 -0.0638 0.1433 0.2059 0.0026 0.2059 0.2144 0.0036 0.2144
6, | 0.0874  0.0009 0.0870| 0.0860 -0.0017 0.0860 0.0029 -0.0003 0.0029 0.0035 -0.0002 0.0035
6s | 0.1378 -0.0291 0.1379| 0.1343 -0.0538 0.1446 0.1434 -0.1067 0.1787 0.1701 0.1113 0.2033
6, | 0.0758 0.0003 0.0758| 0.0758 0.0008 0.0758 0.0019 -0.0001 0.0019 0.0024 0.0003 0.0024
65 | 0.1533 -0.0376 0.1578| 0.1520 -0.0718 0.1676 0.1701 -0.0716 0.200Q 0.0631 0.2613 0.2688

Table 2: Bias, Standard Error (SE), and RMSE of Design 2

LASSO-EL LASSO-GMM BIC DT
0; SE Bias RMSE SE Bias RMSE SE Bias RMSE SE Bias RMSE
6, | 0.1752 -0.0791 0.1922 0.1731 -0.1622 0.23727 0.2073 0.0009 0.2073 0.2141 0.0011 0.2141
6, | 0.0991 -0.0001 0.0991 0.0986 -0.0002 0.0986 0.0032 0.0001 0.0032 0.0037  0.0007 0.0037
6; | 0.1580 -0.0385 0.1626 0.1573 -0.0813 0.1770 0.1804 -0.0597 0.1900 0.1711 -0.1016 0.1989
6,4 | 0.0991 -0.0003 0.0991 0.0984 -0.0006 0.0984 0.0021 0.0001 0.0021 0.0024 -0.0009 0.0025
65 | 0.1383 -0.0273 0.1409 0.1368 -0.0552 0.1475 0.0923 -0.1722 0.1953 0.0641 -0.2595 0.2673

We summarize the findings as follows: LASSO-EL picks thetriglhdel as often

as LASSO-GMM, which is very superior in choosing the rightdabcompared to

BIC, and DT methods. While in terms of choosing the right medeASSO-EL,

and LASSO-GMM have almost the same power, LASSO-EL almaogays yields a
smaller RMES.

Remark: In this experiment our goal was to compare the lasso-El veitisd-GMM

of Caner (2008). Because GMM perform the best when the em@distributed

according to the normal distribution, this setting is fade to GMM. | expect that
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lasso-EL will perform even better, compared to lasso-GMMye consider a bad
behaved distribution. It is well known that GMM has very pdas, and variance
when the underlying distribution istzad behavedlistribution. For instance when a
thicker-tailed or long-tailed skewed distributiaig &nd log-normal are two examples)

are used, EL does a much better job in comparison to GMM (sewRa@ 2005).

Table 3: Percentage of Correct Model

Estimators Design1 Design 2

LASSO-EL 85.24 75.15
LASSO-GMM  84.39 74.83
BIC 67.33 45.88

DT 29.08 28.70

1.4 PELWITH A GENERAL PENALTY FUNCTION

In this section, | investigate the large sample theory ofpgeealized empirical like-
lihood estimator with a fairly general penalty function. Wal use the framework
developed by Cox and O’Sullivan (1990), and Shen and Wangn3894; 1997; and
Wang and Shen, 1995) to derive the asymptotic distributfahe@PEL estimator, and
establish some exponential bounds on the convergencefré,l;ewhen it is converg-
ing toward8y. We see that, there are two forces in play. The size of locamater

space, and the degree of penalization. To get a reasonamlergence rate, which
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also guarantee the asymptotic normality, we need to inertesdegree of penaliza-
tion, Ap, when the size of the local parameter space grows large.rHor@epth study

of penalization method in statistics consult the refersrai@ve.

1.4.1 Asymptotic Normality

Like most cases of asymptotic analysis, we try to obtain ealiized version of the

penalized criterion functior,,. Informally let

_0Ln(6)
~ 09

Si(6) (1.4.1)

we want to expané&, around the true paramet@g and then study its behavior when

n — co. Off course we hope the limiting score functi@ip) exists and we have

S(6) = ala(ee ) _Aag(ee) (1.4.2)

wherel () is the limiting version of,(0). To formally develop an asymptotic theory
for PEL, we accept the framework of Shen 1997, and use thersalgrocess theory
to find the limiting distribution of our estimator. Before ke able to do all of that,
we need to introduce some notations, and regularity canditi

Suppose, for alb € © and allx, there existdy (6 — 8o,x) such that the remainder

in the linear approximation can be written as
(0 —80.X) =1(8,X) —1(80,%) — I, (6 —60,X). (1.4.3)

wherelg (6 —6o,) is defined as

im 1(8(60,t),x) — (B0, X)

lim t : (1.4.4)

andb(0p,t) € ©is a path irt connectindo andd such thad (8o, 0) = 8o andB(8p, 1) =
6. A good choice foB(8o,t) is 8o +t(8 — o), which is linear in t. In this casdy (6 —
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Bo,X) becomes the directional derivative IgD) at 8p. Here we consider the general
case because, in some cases we don’t have any other choitacimgt a nonlinear
form of 8(6p,t). Let |||, be a norm different fronj-||, (it is often chosen to be the
Sobolev norm when it is appropriate to do so) such fhat a||-||,, and assume that
the convergence rate of the PEL estimator urjfigrand ||-||,, be op(8n) andop(57)
respectively.

Supposd is a functional with the following smoothness property: &6 € {6

©:[|6— 80| < 33},
[1(6) — f(Bo) — fa,(6—B0)| < O(]|8 —80) ") as||6— 8ol — O, (1.4.5)

wherew > 0 is the degree of smoothnessfoét 6y, and

f(0(Bo,t),x) — f (B0, X)

A
fa, (8 —60) tll_r% . (1.4.6)
in this way fg (6 — 6o) is linear in(8 — 6o) and|| fg || < o, where
fo (6—06
Ifell=  sup 5, (0~ 50)| (1.4.7)

(6co:[0-6p>0; 10— 60l

LetV be the space spanned ®y- 6y, and suppose th#t|| induces an inner prod-

uct, (-,», on the completion o¥, which we show it b&/. By the Rise representation
theorem, there exists € V such that, for ang € ©, 5 (6—6o) = (8 —6,v*). Fur-

thermore, lek, = o(n~1/?) and for alld € {8 € ©: |8 — 8o < 55}
0%(0,en) = (1—€n)0+&n(Uu”+60) € ©, withu" =+v* (1.4.8)

Let K(60,8) =n~t3  E[I(80,X%) —1(8,X)], which is the Kullback-Leibler in-
formation measure based on n observation wi8énX) is a likelihood function, and

let
n

vn(g) =n~Y2 Z (9(X) —Eg(X)) (1.4.9)
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be the empirical process induced d¢py
Now we are in a position to formulate some regularity coodisi, under which we

can derive the asymptotic distribution b(6,,).

Assumptions:
A5: (Stochastic equicontinuity). For the reminder functioq, 1), defined above we

have:

(i)

sup n—l/zvn(r(e—eo,X)—r(e*(e,e>—eo,X)):op(eﬁ>. (1.4.10)
{00108 s <35}
(i)

sup N Y20 (r(8—80,X)) = Op(&n). (1.4.11)
{60:(/0—80]ls <55}

AG:

1
sup K (80,0°(8,en)) —K(60,6)| — - [116°(6,£) B[~ [0—60||?| = O(e?).
{6<0:([6—60||s <33}
(1.4.12)

AT: For some constante Oand anyd; € {8 € ©:||6— 06|, < &3}, i = 1,2, we have
J(81+62) <c(J(61) +I(62)). (1.4.13)

In addition,Ap = O(gn) and Jv*) < oo,
A8: We have:

sup =n"Y2v;(1,(6—60)) = Op(e). (1.4.14)
{6€0:(|6—60]|s<3R}

The following result proves the asymptotic normality of PlEL estimator.
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Proposition 3:
Suppose assumptions A5-A8 are satisfied and f is a functimhwatisfies (4.5) with
8 = O(n~/2) and Vap(lg,(v*, X)) < 0. Then, for the approximate plug-in penalized

estimator {6) we have
nY/2(£(8) — f(8g)) 2 N(O,Varo(l'eo(w,X))). (1.4.15)

The following corollary is a direct consequence of progositl.

Corollary 2:

If assumptions A1-A4 hold, then for the approximate peedlia?stimatoré, we have
nY2(8 00,5 > N(O,Varo(l’eo(s,X)), (1.4.16)

where sc © — 0.

Typically, Var(lg (8, —60)) = || f§ ||

1.4.2 Rate of Convergence

In this subsection of the paper, we use the results of Sh&l8§16 obtain some prob-
ability bounds for the convergence of penalized EL estimato

We first introduce some notation and list the regularity agstions, which we will
need to obtain the results of this section. L#£6|data) be the criterion function that
we discussed earlier, which measures how well a model withrpeter® predicts the
observed data. We defiti(8,80) = |E [In(8) — In(80)]|. Now we definepn (8, 80) =
K%/Z(G,Go), Pn(B,00) will be used to measure the distance between two parameter
points. In this context, which,(8) represents the log empirical likelihood function,

K(6,60) becomes the Kullback-Leiber information criteria. MgB,8o) = Var(l(6) —
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1(80)), wherel(8) is the limit of I,(8) when the sample size grows large. Also we

define for anyk; > 0,
Ak, k2) = {6 € ©: ki < p(60,0) < 2kg, J(B) <k}, (1.4.17)

and

B(kl, kz) = {| (9) — (90) :0¢e A(kl, kz)}. (1.4.18)

Let P be the probability measure on a measurable spadeduced by the density
pi(60,X). DefineP = n—lzi“:lP.. ExpectatiorE andE; are evaluated undét andP,

respectively. Now we are in a position to state the requissdiaptions.

Assumptions:

A9: ForsomeD<B < landg >0,

sup V(80,8) < c1kf(1+ (kf,ko)P). (1.4.19)
Ak ko)

A10: There exists a random variable {& ), such that
[1(8,Yi) —1(80,Yo)| < |8(Xi) — Bo(Xi)[W(Z), (1.4.20)

where{X;} and{Z} are independent. Alssup E; [exp(toW(Z))] <« and E[(8(X) —
B0(X))?] < 2V (80,8), with t > 0 and & > 0. Furthermore,
sup ||6—6o]| < ca(kZ+ko)Y. (1.4.21)
Aky ko)
For0<y< 1, and g > 0, the norm is the supermom norm @n

All: We have

sup  W(kg, ko) < cant/?, (1.4.22)
{k1217k221}

whereW(ky, ko) = fi” HY/2(u, B(ky, k2))du/L with U = csg (k3 + ko) 1TmaXBY)/2 and
L = ceAn(KZ +kz), and @, ¢ > 0.

"H(u,B) is called the Hellinger metric entropy. For a defmitisee the appendix. For more informa-
tion consult Kolomogorov and Tihomirov (1959)
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The following results establish some exponential prolitgtbounds on the rate of

convergence for the penalized EL estimator.

Proposition 4:
If assumptions A5-A7 are satisfied. Then there exists a@ongf > 0 such that for
anye stisfying assumption A7, and n{d«8o), 1)\, < cz7e2. We have

n

P*( sup  nt Z (£(8,Y) — (80, Y))) > —32/2) (1.4.23)
{pha(6p,0)>¢,6c0} i=

< Texp(—cgn min(A2/e2 \p)),
where the P is the outer measure (see for example Pollard (1984)).
The following corollary gives the bounds for the estimaor

Corollary 3:
Suppose assumptions A9-All are satisfied. Then for theipeta@stimator defined

in definition (1b) with @ = o(g2), we have

P(p(80,8) > 7) < 7exp(—cgnt?), (1.4.24)

wherel, = maxep, %/2) with €, the smallest satisfying assumption A11. The best

possible rate can be obtained by setthg~ €2.

Proposition 4 essentially says that, the rate of convegendetermined by equa-
tion (4.22) of assumptioAll, which relates the size of the parameter space, the local
behavior of the profile empirical likelihood function, arfietdegree of penalization
(An). We clearly see that whegy, is large, which is an indicator of a large parameter
space in a neighborhood 6§, we need to increask,, the degree of penalization, in
order to get an acceptable convergence rate.

Remarks 1: Method of sieveis another important statistical method, which is very
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close to the method of penalization. In sieve approximatlike the penalization
method, we often have a very large parameter space, andipgtiom on the whole
space does not produces any meaningful estimator. In gatiah technique, we re-
strict the optimization to a manageable subspace and thhenaat the optimization.
In sieve method, we carry out the optimization within a stlvggch is dense in the
original parameter space. More formally@f, is a sequence of spaces dens®jrior
every € O there exist®, € ©, such that6, — 6] — 0. A sieve estimaté,,, is an
optimizer of the criterion ove®y,.

Remark 2: Another very important method which has close connectidah pgnaliza-
tion method, is the Bayesian method. We can interpret thalpefunction as formu-
lating prior knowledge about the unknown parameters. Mpeeiically, constructing
a prior such that the posterior distribution is supportecharesirable set with large
probability. This suggests that one way to construct a Bapesmpirical likelihood

estimator, is to try to do it via penalization methdd.

1.4.3 Example: Penalized Minimum Distance

Since using the empirical likelihood methods, we estimategets of parameters, the
unknown parametey, and the probability distributiop = (ps,..., pn), We can use
the penalization method to construct better distributidnghis subsection we try do
that.

Penalty functions an be design to take care of unnecessal ppin implied
probability distribution, or just to take account of extakrmmformation that the econo-
metrician might have. In this section we study the penalegbirical likelihood, in

which the penalty function is designed to regulate the iegpprobability measure in

8There has been attempt to construct Bayesian EL estimg®r§chennach 2005, and N. Lazar
2004), although the authors have taken other roots.
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order to get a measure as close as possible to the maximuopgmteasure. As it is
mentioned earlier in this paper, people have used a coniamaitempirical likelihood
and exponential tilting by embedding the implied probaieii of exponential tilting
procedure in the criterion function of empirical likelindestimator, see for instance
Jing and Wood (1996), Corcoran (1998), Schennach (200d)Samth (2005). The
penalized method, introduced here, attempt to combine EHLEAhmethods too. Here
we use the implied probability measures of the EL procedureuse the exponential
tilting criterion to penalize thosp;(B) which are not in agreement with ET criterion.
More studies need to investigate the properties of this regimnator, but it seems to
me that this procedure is more in line with statistical tlyedrhere is a big literature
studying the penalized methods, but simply plug in the isblprobabilities of one
procedure to the criterion function of another procedurghiseem a little ad hoc.
For a data seX, = {xq,...,Xn}, let B, be the empirical distribution which assigns
equal weights to eack. For a given distributior® let d(P,P,) be a distance defined

on the space of probability measures. Furthermore, asshahe t

(n(8) = - ma _ilog(lﬂgm,e» (1.4.25)

be the profile empirical likelihood, obtained after accanmtfor the moment condi-
tionsE|[g(X,0)] in the following definition, we define the penalized minimuistdnce

estimator.

Definition 3:

The penalized minimum distance empirical likelihood estimfor 6 is 6, such that

6n = argmax/n(8) — And(P,Pn)} (1.4.26)
ISC)
where P= (ps,...,pn) and
1
= — 1.4.27
= 1 vg(x.0) ( )
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In definition 3,J(8) = d(P,P,). For instance, KL is a distance measure which
if used in the above definition, will penaliggs in such way that the final estimator
will have implied probabilities with higher entropy. Theaee various distances, like
Hollinger distance, Kolmogorov-Smimov distance and so@epending on what we
expect the estimator to achieve, different measures carsdx uhe most commonly
used distance measure is the KL which was introduced earlier

Schennach (2007) has investigated the first and second prdperties of the
ELET estimator. In a nutshell this estimator is a comprontieeveen EL and ET
estimators, and therefore one should expect to see that,. Bak a better behavior
under miss-specification compared to EL, and at the samdasbetter second order
bias properties compared to ET. In fact ELET has the sameshmylder bias and vari-
ance properties as EL. | expect the penalized estimatoodute here has the same
higher order properties too. The source of these betteopednce is the EL criterion
function which our estimator is based on it, too. | intend toadmore in-depth study

of the first and higher order properties of this estimator.

1.5 CONCLUSIONS

This paper extends the “least absolute shrinkage and seleerator” to the frame-
work of empirical likelihood estimation. It also providegaideline to implement it for
the more general setting of GEL. We show how this proceduablis to consistently
select the best possible model. The simulation results shewetter performance of
LASSO-EL compared to the classical AIC, BIC, and DT criteridso, we see from
the presented simulation results that better bias propéEy. estimator (compared to

GMM) is carried out to the LASSO-EL too, in a way that the LASE&Q has better
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post-selection preference than LASSO-GMM has.

As by a product, we investigate the large sample properfiéiseopenalized em-
pirical likelihood in setting with a fairly general penalfynction. One interesting
conclusion is that, the rate of convergence depends on thpleaity of the parameter
space, as measured by the Hellinger metric entropy (HMBurat9p, and the degree
of penalizatiom\,. We saw that, the higher the HME, the bigger the degree oflpena
ization has to be in order to get a faster rate of convergehtether words, while
the consistency of the penalized estimator is determingtdoglobal behaviour of the
criterion, the rate of that convergence and therefore tgenptotic normality of the
estimator is determined by the local behavior of the coteriFinally, We presented
other forms of penalty functions which they might be ablerodoce estimators with
possibly important properties. Studying the propertiethete estimators is a subject

of future studies.
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2.0 MODULATION METHOD FOR EMPIRICAL LIKELIHOOD
ESTIMATOR

2.1 INTRODUCTION

Empirical likelihood (El) (Owen 1988) is regarded as the 4panametric version of
parametric likelihood procedure. Its robustness agaisstiloutional assumptions on
one hand, and its good properties analogous, to the paiariaiihood, on the other
hand, make it a very powerful tool when it is applied to the reatrcondition models

in econometric applications. GMM (Hansen 1982) and othezmdy developed tech-
niques based on Empirical Likelihood (Owen, 1988; Qin andleas, 1994; Imbens,
1997) use a set of given moment conditions to construct asbirs for the unknown
parameters. In this paper, and a companion paper (ShaHi@) 2@e study the use
of shrinkagetechniques in improving the empirical likelihood procegluWhile this
paper introduces th@odulationmethod, the other paper deals with penalization tech-
nique. Modulation, angenalizationmethods belong to the wider class of shrinkage
procedures. Shrinkage methods enable us to use extra @tiormand incorporate
prior beliefs into the estimation. For instance, in the pieation method one can con-
struct the penalty function based on the external inforomaghe wants to take into
account. Shrinkage methods are also useful in correctimg smdesirable features of

some class of estimators. In this paper we develop a gemanaéfvork, in which, one
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can study different estimators using the modulation tegpines. Using this framework,
we introduce several examples of new estimators, and exsatin@ir properties.
The remaining part of this introduction, is devoted to theristic origins of the

topics which will be further analyzed in the following sextis.

2.1.1 GMM and GEL

Generalized method of moments estimator (GMM) has been thkharse of econo-
metric analysis since its introduction by Hansen (1982)si@es providing a unified
framework to study different types of estimators, GMM extethe method of mo-
ments framework to include situations in which the numbenoment conditions ex-
ceed the dimension of the parameter we want to estimateoédththe GMM estima-
tor has desirable properties, such as being first-order ptogiwally efficient, its small
sample properties are relatively poor (Altonji and Seg@B@; Tauchen 1986). More
recently, Owen’s empirical likelihood method has providtlder estimators, some of
which overcome some of the shortfalls of the GMM. From thimifg we have the EL
estimator (Owen, 1988; Qin and Lawless, 1994; Imbens, 1¥8ah)tinuous Updating
Estimator (CUE) (Hansen and Yaron, 1996), and the Expoalgnlilting Estima-
tor (Kitamura and Stutzer, 1997; Imbens and Johnson, 198&hnall belong to the
class of Generalized Empirical Likelihood (GEL) estimat(Bmith, 1997; Newey and
Smith, 2004).1 These estimators circumvent the need of estimating a weighta-
trix in the two-step GMM by directly minimizing an informatn-theory-based concept

of closeness between the estimated distribution and théieaiglistribution? While

There are other varieties, too. For example the Expongniidled Empirical Likelihood estimator
(ETEL) (SCHENNACH, 2007) which in essence is a combinatibtine two estimators, EL and ET, in
hope to obtain an estimator that like EL has a smaller firatede bias, and at the same time inherits
the better behavior of ET in the presence of mis-specifinatio

2The estimators mentioned so far are, like GMM, based on utitonal moment restrictions, using
the empirical likelihood methods, we can construct estimsabased on conditional moment restrictions,
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in theory these estimators, like GMM, all have the same @irder asymptotic effi-
ciency, simulation works and Monte Carlo evidences havevehibat, compared to
GMM, some members of the GEL class have better finite-santplegpties (Hansen
and Yaron, 1996; Ramalho, 2006) and references thereino, Alswey and Smith
(2004) have analytically shown, using a stochastic expanargument, that while
GMM and GEL share the same first-order asymptotic propertiesr higher-order
properties are different. Specifically, while the asymigtbtas of GMM often grows
with the number of moment restrictions, the relatively derabias of EL does not.
Moreover, a bias-corrected EL is higher-order efficienatieé to any other regular
method of moment estimator. In term of inferences, the englilikelihood ratio test
has some desirable features too. For example ELR test aBanitiet correction, Di-
Ciccio, Hall, Romano (1991), which gives the same accuraty as the parametric
case. Kitamura (2001) used the so caligeneralized Neyman-Pearsapproach to
show that for testing moment restriction the ELR test isammifly most powerful in an

asymptotic large deviation sense.

2.1.2 Shrinkage and Modulation

Shrinkage is a general method in statistics for improvingstmator and regularizing
ill-posed inference problems. Commonly used procedutes Biayesian inference,
and penalized likelihood inference, implicitly use theiskage technique.

In this part of the introduction, | will use the simple ordigdeast square (OLS)
to demonstrate how the shrinkage method works, and also pe togustify its use-
fulness. The Gauss-Markov theorem states that among ediflionbiased estimators,

the OLS has the smallest variance, but this property whiamesiones is called BLUE

too. See (ZHANG and GIJBELS, 2003), and Kitamura et al (2004)
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“Best linear Unbiased Estimator” does not yield the bestresbr in the sense of MSE
“Mean Squared Errors”. In the other words, if we drop the asbd restriction we can
do better in MSE sense. To demonstrate it, assﬁini&the OLS estimator d;, and
define[~3i = ﬁf&. We notice that ifA = 0; we get the OLS estimator back, and when
A is too Iarge,f&i shrinks to zero. FurthermorE,[~3i = H%Efii = ﬁﬁi, therefore[gi is

a biased estimator .

The MSE off3; can be written as

Koz(l%\)% (%)223?. (2.1.1)
The first part is the variance component, which is the largdsn A is zero. The
second part is the squared bias and it grows witln principal with the right choice
of A, we can get an estimator which does better than the OLS in M8&es This new
estimator is not unbiased, but what we pay for in bias, we no@gier in variance. The
first order condition gives the optimal choice #oas
Ko?
— Z—B.z

Although this choice o is not feasible, it is possibler to find good estimations for

(2.1.2)

it. For example we can replaeewith an unbiased estimation of variance, and also
replacingf3 with some appropriate estimation Bf Two of the most mentioned fea-
sible estimators ok are James-Stein estimator (James and Stein, 1961), aneeSclo
estimator (Sclove, 1968).

We can summarize the construction of this new estimatormsvie: First, we used
the scalar paramet@rto obtain an equation in which a new parameﬁeldepends on
the OLS estimator through the paramekerthis step is called modulation. Second,
we have a criterion which we are looking to optimize; here vemitto minimize the

MSE risk of the estimator. Third, this minimization yields an optimal choice for
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the newly introduced parametar which in turn results in a new estimator which
has a better MSE compared to the OLS estimator. In Beran, d@mabBen (1998)
terminology, the paramete, is called a modulator. They extended this argument
roughly in the following manner. Leﬁ = (f&l,...,fin), then the modulated parameter
is f3 = (Alfsl, . ..,}\nfi), and therefore the modulator is the n-dimensional vexter
(A1,..-,An)

In this paper, we will use a method similar to “modulationrasttor” (Beran and
Dumbgen, 1998) to obtain a new modulation of the old esemd8then we use an ap-
propriate criterion to pick the best “modulator” which gh#he best estimator, judged
by the chosen criterion . The procedure that we are tryingnfgement can be sum-

marized as follow:

1. Modulation: Use modulators to modulate the estimatorfanaly of estimators,
depending on the modulator.

2. Selecting a criterion: Use a criterion to choose the bestutator. The criterion
is usually a risk function, evaluating the risk associateth\a given estimator.
Because in El estimation method we estimating two entitirespynknown param-
eter, and the multinominal distributiop = (ps, ..., Pn), We can use a criterion
which measures the goodness of a distribution pkeBoth of these methods are

discussed in the section two of this paper.

3. Adaptation: Find a modulator that optimizes the givetecion.

2.1.3 Other Interpretations for A

So far we have considered the modulato; (A1,...,An), to be a purely mathematical
tool which helps to change, construct and choose form, tieady known estimators.

Another possible interpretation of the vecdoe (A1,...,Apn) is to considei as a vec-
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tor of weights. Weighting is commonly used in econometritg statistics to account
for specific structure of a data set. Interpretim@s weights will result in aveighted
empirical likelihood which we hope to take account of heteroskedasticity in #ta.d
If the data under consideration possesses an unknownwseyudbr instance, we are
aware of a heteroskedasticity in the data, but the exaattanelof it is unknown. In
this case, we use an unknown vector of weights: (wy,...,Wy), and then by us-
ing some criteria, we try to choose the best weights accgrtirthat criteria. The
weighting vectomw can be considered as kernel weights. Instead of maximinag t
empirical distribution we might want to maximize a smootkedsion of the empirical
distribution, which requires weighting by a smoothing ledrn

This paper contributes to the EL literature in two ways. t-ivge introduce the
modulation method in the empirical likelihood frameworkid method enables us to
study several different estimators using the same theatdtamework. For example,
when the modulators are interpreted as weighting vectesam define and study the
weighted empirical likelihood procedure. Second, we ugentiodulation method in
some well known econometrics and statistical models, likdIGnodel. We study
them analytically, and conduct Monte Carlo simulationsjolshows the improved
estimators indeed work better then the original ones, afigevhen the sample size is
very small. Although, we focus our attention on EL procedarthis paper, extending
the results to the more general setting of GEL is not very flar o

The rest of this paper proceeds as follows. In section 2, wednce the modula-
tion technique and use it to construct new EL estimatorsettien 3 we study GLM
as an example, we use this technique to obtain an estimattirdgeneralized linear
model, GLM(Kolaczyk, 1994; Chen and Cui, 2003). We will show that thssreator
has a lower variance than the traditional quasi-likelihestimator of the GLM mod-

els. Section 4 reports the outcome of some Monte Carlo sitonks and section 5
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concludes the paper, while all proofs are collected in thpeagdix.

2.2 MODULATION METHOD

In this section, we try to implement the three steps which iseussed in the previous
section. We first present an example, which shows how theadetiorks in a linear

setting. This example is a slightly modified version of Bef2D00). We construct an
estimation for a density functiofh, which we hope to show how modulation method

works.

2.2.1 How Modulation Works

As we explained above, this subsection serves as an illisstraf the modulation
method. We hope a reader who might be unfamiliar with thisheeétan gain enough

insight from this example to follow the rest of this paper.

Definition 4:

A modulator is a vector w= (w1,...,Wn), where we [0, 1] fori=1,...,n.
Now we define a modulation estimator.

Definition 5:

A modulation estimator is a component-wise linear estimatohe form

A A A

B(w) = (w161, ..., Wn0p), (2.2.1)

where w is a modulator.
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Suppose that
Y, = f(x) + o€ (2.2.2)
, whereg; ~ N(0,1) andx; = 1/n.

Assumef € L[0,1] therefore we can expand it as

X) :igei(ﬂ(x) and 6 — /(f(x)(ndx (2.2.3)
where{@ }% is an orthonormal basis far,[0, 1. Defined; = 1 57, Yigj(x) therefore
E(6) =1 5, ECO01(00) = 1 3 100000 2.24)
z/f(x)(g(x)dx:m (2.2.5)

and
Var(® ZVar n2 Z(pz ;’—i/cp,?(x)dx: ;’—j (2.2.6)

Considering the dimensionality of the data $gty) = 5" , 8@ (y) is a good estimator
for f(y). The estimatoB = (8s,...,8,) often results in a,(y) which has very poor
risk. Using modulators we can improve the riskfgfy). Let&(w) = (w181,...,Wq8p).

By Parsevel equality, the loss function is

L(Fa ) = [ (o))~ fa9)? @2.7)

_ 3 (WiB; — 6;)? (2.2.8)

therefore the risk function is
R(fn, fn) = E[L(fp, fn)] (2.2.9)
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:é (Wi%2+(1_wi)29i2) (2.2.10)

An unbiased estimator for the risk function can be obtaibgdgeplacingd; by 6; and

02 by an unbiased estimator 6f.

n_ G2 5 g2 n
R(W) = Z(ei—ﬁ)(l—wi) +szﬁ (2.2.11)

now the minimum risk estimator fak(y) is obtained by usin§(w*), wherew* is the
minimizer of R(w).

Therefore to obtain the modulation estimator, first we dcetign estimator for the
density functionf. Then in the second stage, we modulated this estimator gathel
a family of estimatorsﬂ" for f. And finally in the third stage, we used a criteria to
compare the members of this family and choose the best oranwia show it byfAr‘,N*
We now perform this three-steps procedure for the empilikeelihood estimator. The
main difference, from the setting discussed above, is beatrtodulations we consider

here are no longer necessarily linear.

2.2.2 Modulated EL

Definition 3 defines both what a modulator is, and what we meaa modulation

estimator in a nonlinear setting.

Definition 6:

We define:

1. A*modulator” is a vector w= (wy,...,Wy) wherew € R, for j=1,2,...,n
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2. A "modulation estimator” is a component-wise estimatbthe form
B(w) = (B1(W),...,Bn(W)) (2.2.12)

where w is a modulator.

The idea is, to derive a class of estimators in a manner that tlem satisfy the
desired sample moment conditions, and furthermore, eagldepends on the modu-
latorw. To achieve this, we change the objecting function used ipical likelihood
estimation in such a way that the new objective function ddpen the modulatow.
Obviously there are more than one way to do this, but we shioeildble to provide
reasonable interpretations for any selected procedutewB@e propose one of these
ways, which we think has a very natural interpretatiomasghted empirical likeli-
hood In lemma 2, we show that this procedure in equivalent tolerobne which
is easy to interpret too, and therefore we can use them hdageably. Later in this

paper we discuss the weighting interpretation in details.

Definition 7:

For a modulator w= (w1, W, ..., W) define

_argmlnzl w; log pi (2.2.13)
7pn i

subject to:
n n
pigi(6) =0 and pi=1 (2.2.14)
2P 2P
notice that here g0) = g(x;, 0).

The following lemma shows that every solution to the miniati@n in definition 2,
can be manipulated to get a solution for another minimipgpimblem, which some-

times is easier to implement.
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Lemma 1:
Let p(w) be the solution obtained from definition 2, then there ex#slationg(w) to

the following minimization problem

n

[ —1 - 2.2.15
qmqgni; 0g¢ ( )
subject to:
n n
gigi(6)w =0 and g =1, (2.2.16)
i; |91 | i; |

wherew = (W, ...,W,) IS a new modulator.
Proof. See the appendix O

Since adding extra constraints does not increase the ear@frihe EL estimators,
Qin and Lawless (1994), Newey and Smith (2004) we might be tbachieve better
estimators by adding some extra constrains which help uséomore information
or more efficiently the same information, to estimate theapaaters. Using the idea
of modulators, introduced by definition 2 and lemma 1 we careld@ an extended
version of EL estimator, by adding extra moment conditiomghte set of original
moment conditions. The following definition introduce thi®dification and later in
this paper we show, through an example using GLM (generilinear models), how

to use this modification, along with a modulator, to condtheatter estimators.

Definition 8:

Let gX.0) = g = (g-....a1), Wt = (g....g"), = (g, ....g"). {In,....|;} U
{t,...,tj} ={1,... .k} and h = (ht,h?). Let w= (wy,...,ws) be a modulator as
in definition 1, the extended EL estimator foris the estimator obtained from EL
procedure by replacing the constrajif._; pigi = 0 with the new constrai"_; pi(ht +

wih?) =0
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Remark: This definition can be considered as a generalization of itiefin2.
By settingh! = 0 andh? = g; we get definition 2. Also, it should be noticed that, if
j +j’ >k, then the number of original moment conditions, k, has beg¢eneled, and
some new moment conditions have been added to the original'bes proves to be
useful specially in cases that, the number of moment carditare the same as the
number of parameters.

All the procedures introduced so far, have the importarttfesof linking the esti-
mator off to the vectow = (wy, ..., Wy). In the other words all the maximization pro-
cedures, introduced above, yield us an estimator for therezalprobability measure
p=(p1,-..,Pn), P(W), and as a by product, we obtain an estimator for the unknown

parameteB, which we show it by@(w). To see this, we set up the Lagrangian

L=- _ilog(pi) +N i Pigi(O)w; + Ll(i1 pi—1) (2.2.17)

wherep € R andA € RP are the Lagrange multipliers. It takes some simple algeabra t

show that the first order conditions are solved by

n
fl=n, A(6)=argmin— leog(l—l-)\’gi(e)wi) (2.2.18)
AERP S
and
. 1
p(8) = ~— (2.2.19)
n(1+A(6)'gi(6)w)
therefore the likelihood profile will be
n
2(8) = min — § log(1+Agi(8)w;) —nl 2.2.20
(6) = min i; 0g(1+Agi(8)wi) —nlogn ( )
finally the empirical likelihood estimator fd is
R n
8 = argmax/(6) = argmaxmin — Zlog(l—i—)\’gi(e)wi) (2.2.21)
SIS 0O AERP i=
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As we notice, both estimators, the estimator@pf(w), and the estimator for the
empirical distribution PP = (p1(8(w)), ..., fn(6(w))), depend on the modulatev.
In this manner we have a class of estimators for the empmegsure, and a class of

estimators for the unknown parameéer

P={pw)|weW} and ©={B(w)|weW} (2.2.22)

whereW is the set of all allowable modulators.

Definition 2, resembles the definition of empirical likeldtbestimator, with the
exception of coefficients;. Thesew;’s can be interpreted as weights or just a math-
ematical device to modulate and construct new estimatous.g@al is, to show that
this device is indeed a useful one which helps us to find estirsavith better desired
properties. Later in this paper we discuss weighting anératiterpretations of the
W;'s.

The following lemma shows that every membeéoalong with the corresponding

p(w) € P satisfies the moment conditions.

Lemma 2:
Let modulator w= (W, ..., wy) be given, then the estimat®fw), and its correspond-
ing implied probabilitiesp(w), given by definition 2, exist and satisfy the sample mo-

ment conditions.
Proof. See the appendix O

Now that we have a set of estimato@, and the sample moment conditions are
satisfied using whatever member of this set, we need soneeiarib choose from this
set of estimators. This leads us to the second step of theguwoe introduced earlier
in the introductiorfyisk estimation”. Since, we are estimating two unknowns, the em-

pirical distribution and the models’ paramewe have several options for using an
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appropriate criteria. First, we will explain how to chooke best empirical measure
from the seP. As we will see, this is much simpler than trying to estiméie tisk of

a given estimator. Because choosing the appropriate erabutistribution is achieved
by choosing a suitable modulate® = (wWl, ..., wd), and because given the modulator
wP we can pick the estimatcﬁl(vvo), the procedure of choosing an appropriate empiri-
cal measure yields us an estimator Gowith the best implied probabilities judged by

the given criteria.

2.2.3 The Minimum distance Criteria

There are a host of metrics available to quantify the digtd®tween two given mea-
sures. Although some are not metrics in the mathematicaksefthe word, but pos-
sess a notion of “distance” which have been proven to be Lis&fuong many such
distance measures we restrict ourselves to the forwardo&cht-Leibler divergence,
also known as “relative entropy”. Kullback-Leibler (KL)w#irgence is one of the fun-
damental concepts in statistics and information theorynFmany interpretations, are
measuring goodness of fit, and measuring lose of power ireliHkod ratio test. Just
as likelihood measures how well a model explains the datagamethink of KL as
measuring the lack of fit between model and data relative terfegt fit. Also we can
think of KL divergence fronPa to Q as measuring how much power we lose with the
likelihood ratio test if we mis-specify the alternative logpesisPa asQ.

For two measureB andQ the forward Kullback-Leibler (KL) divergence between
P andQ is defined to be

d

K(P.Q) = /Iogd—gdP (2.2.23)

when the state space, is discreet we can write it as

_ P(w)
K(P,Q) = m;z P(w)log Q) (2.2.24)
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The empirical likelihood minimizes the forward KL divergenbetween the empirical

measurgl, and the measure obtained by enforcing the moment condliet’s

P(6) = {Pe M)/g(x, 6)dP =0} (2.2.25)

whereM is the set of all probability measures BR and define

P=J 20 (2.2.26)
CISC)
then
inf _inf K(pn, P) = inf K(pn, P 2.2.27
9'2@%'[,1(9) (n,P) pep (o, P) ( )

If p(w) = (P(W), ..., Pn(W)) € P then

K (1, P(W)) = ;—%Iognn(w) (2.2.28)

now we are in a position to present an example of how the mtaduoleethod works.
In the following example, we construct an estimator@@nd then definition 6, defines

it as an special case of the general method we introduceérearl
Example 1:
Let the data set X= {x,...,%n} satisfy the moment condition

Elg(x,8] =0 (2.2.29)

setting up the EL estimation fd, using the modulatoh = (A1,...,A,), yield the

following empirical measur® = (py, .. ., pn) such that

1

G TRV (2:2:30
and
¥(8) = argmin— Zlog(1+Vg(xi,6)Ai) (2.2.31)
yeRP i=
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LetA* be the solution to the following maximization problem
n
A*(8) = argmaxy [i(8,A)log(fpi(6,7)) (2.2.32)
AERN =

the desired estimator fd¥ is

A~

n
0, = argmax- leog Bi(6,A%(0)) (2.2.33)
6@ i=

Using the framework developed in definition 2, we pick theteea™ in order to

maximizeK(p(A), Hn).

Definition 9:
Let

n
w" =argmaxy pi(w)logpi(w) (2.2.34)

Wi,...,Wn =
we call the correspondin@(vv*) the KL-adapted empirical likelihood estimation of the

parameterfo.

This estimator has the special property that its impliedphality distribution is
the maximum entropy distributioand at the same time it maximizes the empirical
likelihood too® The following proposition shows that the implied probaigk for
KL-adapted-EL are indeed better than those of EL estimagdigng as the KL criteria

concerns.

Proposition 5:
If p= (P1,...,Pn) be the implied empirical probability measure of EL apg =

(Paw, - - -, Prw ) be the implied empirical probability measure of KL-adaptedthen

K (n, Bw) < K(Wn, P) (2.2.35)

3According to thenaximum entropy principaihe least biased distribution that encodes certain given
information, is the one which maximizes the informatiorrepy
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Proof. Py minimizesK (i, p) for all p € P(w), if w° = (1,1,...,1) theng,o = p, the

implied probabilities obtained from empirical likelihoedtimation, therefore we have

Min K (n, Bu) < K (HnByo) (2.2.36)

wew

The left hand side i& ([, Pw+), and the right hand side §(u,, p), therefore

K (Hn, Bw) < K(pn, P) (2.2.37)
O

An interesting exercise is, to compaig, andBgtel. Betel IS designed to take ad-
vantage of both empirical likelihood, maximized empiritk¢lihood ratio, and expo-
nentially tilted empirical likelihood, maximized entrapis we will see, while it does
it to some extend, (Schennach 2007), it does not produce pitieahmeasure that has
the two impotent property to see this let deftg, as it is done in Schennach paper.

Usingminimum empirical discrepangc¢MED) (Corcoran, 1998; Cressie and Read,

1984) we have

Betel = arg rrg)inlz h(fi(8)) (2.2.38)
wherep;(0) is the solution to
min 'y h(p;) (2.2.39)
{pi}in:]_ |
subject to
z pig(%,0) =0 and Z pi=1 (2.2.40)
| |
so that
h(pi) = —log(pi) and Hpi) = pilog(p) (2.2.41)

to ease comparison, we can re-define the estimator of exdngse

A

B(w) = arg minZWih(f)i(e,w)) (2.2.42)
0cO |
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wherep;(8,w) is the solution to

min Y wih(p
A in:1|z ih(pi)

subject to

> pig(x.8)=0 and 3 pi=0

in this way we obtain

and

éaeI(Wp) = éetel

this implies thaﬁete| € P and therefore

K(n, Pael) < K(pn, Petel)

at least in theory we get an improvement uian,.
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2.2.4 Minimum Risk Criteria

In the previous subsection, we tried to pick the best engdineeasurep,’in the set
P. Here in this subsection, we try to define a criteria whictphals pick the best
estimator for the unknown parameﬁarThe very large literature in statistical theory
which deals with this problem is commonly know as “statistidecision theory*
Here, we give a very short overview in hope to further faaitthe understanding
of this paper. Le# be the set of allowable decisions, usually is calledsti®on space
and O is the parameter space characterizing the set of models godsideration.
A loss functionL(8,a), a € A and 8 € ©, gives the loss or dis-utility suffered from
taking actiona when the parameter & In the context of point estimation the sét
represents the set of all relevant estimators, and theréf@; a) measures the loss
incurred when the true parametersanda(xy,...,Xs) is chosen as an estimator of
6, when the observation of the random varialflés X = (xg,...,Xn). The risk, or

expected loss, of a decision rideinderd is defined as
R(6,a) = Eg[L(0,a(X))]. (2.2.49)

An example of a loss function is ttsgjuared error lossL(8,a) = (a— 8)?, the risk
associated with this loss function is the famdisan Squared ErrgfMSE), criterion.
Since the value of the true parametgris not known we might like to use an estimator
that has a small riskR(6, a), for all possible values d. Therefore we expect between
two estimatorsy anday, if R(0,a;1) <R(0,ay) for all 8 € © and inequality is strict for

somel then estimatoa; is preferred to the estimatag.

4For a introductory treatment of decision theory see “Thedjoint Estimation” by E.L. Lehmann
and G. Casella 1998. A more advanced treatment can be fou&datistical Decision Theory” by S.
French and D.R. Insua. For a survey of applications of deciieory in econometrics see “Decision
Theory in Econometrics” K. Hirano 2006. Also, “Econometrand Decision Theory” by Chamberlian
2000
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While it seems promising, but except in some very special, mostly linear,
cases it is almost impossible to estimate the risk functMfhile more studies need
to be done to distinguish the appropriate risk functions\aags to estimate them, we
still can find other criteria to choose the best estimator.e&ample is the empirical
Bayes implementatiop.

Suppose, we have a prior belief tigt~ N(8,,6?l). For any givera > 0 the prob-
ability thatBy € (6 —a,0+ a) is the greatest, wheth= 6,.. Therefore, intuitively, we
want our estimator be as close as possible.toLet’s call this property, the “interval

property”. The following estimator achieves this goal.

Definition 10:
Let

A* = argmin||8(\) — 6, | (2.2.50)
AEN

whichA is the set of allowable modulators. Estimagh*), is the estimator with best

interval property.

2.3 GENERALIZED LINEAR MODEL (GML) AS AN EXAMPLE

In this subsection we try to apply the previous results andveléhe optimal weights
for ageneralized linear modelThis class of models include the famous frameworks
like log-linear models, logit models, probit models, andnyanore. For an in depth
review of GLM and its applications see McCullagh and Nedl®&90) and James Lind-
sey (1997). This example is derived from Chen and Cui (2008re we, briefly,

SFor more information about empirical Bayes inference asdjiplications, including economics
applications like “revenue sharing”, “insurance rate ais#f evaluation” and other applications, see
Morris 1983 and references therein.
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introduce the general framework of GLMs.
Suppose datéy1, X1), ..., (Yn, Xn) are observed, wheh € R independent random
variables and; € RP, random variablé is the response of the random vec¥ra

GLM specification is the model with following representatio
E[Y|X]=G(X'B) and VafY|X]=0c?V[G(X'B)] (2.3.1)

wheref € RP is a vector of parameter§ is a known smooth link function and is a
known variance function. The standard estimation tool is fitamework, is the quasi-
likelihood (Wedderburn 1974). Let(3) = G(X'B), the log quasi-likelihood ratio d3

is defined as
_ B H(B) y—u
Q{y:H(B)} = /y Vi) du (2.3.2)

Now suppose thatxi,y1),..., (%), yn) be ani.i.d data set angl;(B) = G(X/B). The

joint quasi-likelihood ratio of the data is

QLY) = 3 QY. (B) 233)

differentiating with respect tf and doing some algebra, the quasi-score function can

be written as
0 Yi— 1 oWy
SEQUY) = g b (2.3.4)

 V[((B)] 0B
sinceE[55Q(1 Y)] = 0, we have

- (Yi—W(B)G'(XB)X

i; V[(1(B))] =0 (2.3.5)
the same but more demanding argument will show’that

¢ (M-G(XB)? 1y _

i; <W_?) =0 (2.3.6)

8For a complete derivation see Eric D. Kolaczyk 1994.
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To use empirical likelihood we need moment conditions whiwbse two equations

can provide it for us. For=1,...,n, define

(Y — W(B))G'(B)%
VI1(B))

g (B) = (2.3.7)

—

and

2 2y (M V)

0i (B70 ) ( 04V[(Xi/B)] 02

remembering definition 3, legi(B,0?) = (gt,g?), ht = (gt,¢?), h? = g? andh; =

(ht,h?), now we can define the adapted empirical likelihood for the (@ c?), given
the modulatow = (wi,...,Wn)

L(B,0%) = max leog pi (2.3.9)

I|1|

subject to
ipi(hil—i—hizwi) =0 and ipi =1 (2.3.10)
i= i=
The common method to estimdiés to use quasi-likelihood (QL) estimators, MacCul-
lagh and Nedler (1990). Itis easy to set up the EL procedurti® problem, because
the number constrain is equal to the number of equationisrcase we ggby = 1/n
and the estimator is the same as QL estimator. If we use tloeeguoe introduced in
definition 3 we can obtain an estimator which has better magahan QL estimator.
Let ﬁq| be the estimator obtained by using QL method, é(wl) is the estimator
obtained by the method introduced in this paper for a giweh As we discussed
earlier in this paper, we need a criteria in order to choosé#st modulatow. Here

we compare the variance 6(W) to the variance o[f%m. We try to find aw* such that

Yw P

Bql — 23

B(w)

"Here we keep the two original constrains and add a weightesioreof the constrain related to the
variance. As we will see this help us to use the data more efiligi, and results in an estimator with
reduced variance.

<3

Bql — 2

B (2.3.11)
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In the other words, we chooseso thatZ@ql - ZG(W) IS maximized.
Remark: For two positive semi definite matrices, A and B, we say Bif A—Bis a
positive semi-definite matrix (see “Mathematics for Ecoetnmes” by P. Dhrymes for
further discussion).

The following result establishes the desired modulatokyeights depending on

the interpretation we might have.

Assumptions:
The following assumptions, which are standard in GLM estiomaare required in the
proof of proposition 2

Al: G(.) is twice continuously differentiable, and V is continuously differentiable.
A2: E[Z1(B,0%)Z,(B,0?)] is non-singular.

A3: For somed > 0, E[|g|]> + ||X|[]>® < o, E[|G/(X'B)| + V1 +w?® < o and
E[|G"(X'B)[ +[V/[]**° < co.

A4: The matrix(E[aZlg%cz)],E[azla(gfz)]) has full rank.

Proposition 6:
If E[€3|X] = 0, E[e*|X] = ka*V2 for somex > 1 and Coy¥.E¥) > 0, then the optimal

weights so that maximii%ql — Zfs(w) is

w0 g = LISHBIC G 2312

Notice that,V’ and G’ are the first order derivatives f andG, and X/ is the

matrix transpose oX;.

Proof. See the appendix. O
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2.4 IMPLEMENTATION AND MONTE CARLO SIMULATIONS

In this section, to evaluate the methods developed in theéqure parts, we design
and preform sets of Monte Carlo simulations. At the momewinffive simulation
problems, which | am working on, | will only report two of thenThis is both for
keeping this paper in an acceptable size range, and somadakHifficulties with
some of the other simulations. Therefore, | consider thisgsan incomplete section,
and | am working to complete it by designing viable algorithnThe main compu-
tational problem is optimization with respect to the motios. The lack of closed
from solution in most cases, makes this optimization a verggutationally intensive
procedure. Although this is a very big draw back, but one egnethat the modula-
tion, or weighting, has better efficiency than the unweidtge only when the sample
size is small. Therefore there is not much gain from applyirgmethod of weight-
ing when the sample size is large, because both methodsyangtdically equivalent.
Therefore, the hope is that, when the sample size is smadiitimization with respect
to the modulation would work. In this section, | present tegult obtained from two

simulations.

2.4.1 GLM Estimation

Here we report some simulation results, using the GLM model
Y = G(X/B) + oV (G(X'iB))«i (2.4.1)

whereg; ~ N(0,1), V(t) =t, andG(t) = log(X/B). The parameters used in this model
arepy = 0.5,B, = 1, ando® = 0.25. X; = (X1, Xi2) are generated from uniform distri-

bution on[0 2] x [0 2. | have used the quasi-likelihood procedure of R, which és th
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main tool of estimating GLM models in R, to obt&i, 0q ). To derive the weighted
EL estimation we use the usual empirical likelihood procedaugmented with the
optimal weights obtained from proposition 2. Table 1 sumpegrthe quasi-likelihood
estimation results, and table 2 summarizes the resulténeokfrom weighted EL. As
these results suggest there is a sensible improvemenghtssnall, in the variance of
WEL estimator compared with QL estimator, and very impdstéms improvement

comes at no cost in bias.

Table 4: Standard Error(SD) and Bias of the QL Estimator

A

B1 B2

o
Sample Size SD Bias SD Bias SD Bias
40 0.41 0.053 0.49 0.057 0.10 0.0041
60 0.38 0.032 0.45 0.039 0.086 0.0035

100 0.32 0.025 0.35 0.028 0.051 0.0020

200 0.24 0.013 0.24 0.010 0.035 0.0010

2.4.2 Heteroskedastic Data

The data setyY;, X;), for this experiment is generated from
Yi = BaXi + BaX? + [ X[V 2. (2.4.2)

whereg; ~ N(0,1), drawni.i.d. To generateX, we drawX; from theN(1, 1) distribu-

tion. The moment condition i&[g(B1, B2, Xi)] = 0 where

3% 2
Q(Bl,Bz,Xi):Y' B&')_(";/;BZX'.

(2.4.3)
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Table 5: Standard Error(SD) and Bias of the WQL Estimator

A

B B2 G
Sample Size SD Bias SD Bias SD Bias
40 0.38 0.046 0.44 0.054 0.095 0.0045
60 0.35 0.030 0.41 0.037 0.085 0.0036

100 0.30 0.025 0.34 0.028 0.051 0.0021

200 0.23 0.013 0.23 0.010 0.035 0.0010

We obtain the empirical likelihood estimate of two paramefie and3,. We compare
these estimates with an estimator in which the weightingorec= (ws, ..., W) with

w; = 1/|X|, is used alongside the empirical likelihood estimate, agi describe in
section 2. These weights are driven from the same argumeogitasum weight are
obtained inGLE, the information coming from densities with higher variasashould
weighted less compare to information coming from densivéh lower variances.
This was we avoid optimizing the objective function with pest to the weighting
vector. The results indicate that, when the sample size &l stine weighting helps to
improve both the quality of the estimator in one hand andébtstbiased on weighted
EL ratio are more reliable than tests based on the usual kisratable one compares
the bias property of the two estimator and in table two we camaphe tests based on
EL ratio and weighted EL ratio. As we expect the importanceveighting drops as

the sample size grows.
Table 2 summarizes the probability of rejecting the nullétyyesiHy : 1 =1 and
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Table 6: Bias comparison of the EL and EL using Weights

Estimated bias foﬁAl in % Estimated bias fo{ﬁg in %

Sample Size EL Method W-EL Method EL Method W-EL Method

10 56.0 51.8 48.2 41.9
20 41.7 35.4 39.0 37.4
50 26.4 25.6 21.2 20.8
100 18.6 18.2 14.0 14.0

Ho : B2 = 1 at the normal 95% confidence level. It is interesting to bae when in
computing empirical likelihood ratio, heteroskedasyitstaccounted for, test statistics

are more reliable.

2.5 CONCLUSIONS

This, and a companion paper (Shahidi 2008), investigateisieeof shrinkage meth-
ods in empirical likelihood framework. We introduce two betmost widely used of
these methods, adaptation and penalization, and thendettierempirical likelihood
procedure to encompass these methods. Shrinkage methoaisiywbelp to improve
the EL estimator, but also can be used to regularize sorpedleéd inference problems.
We define modulation and use it to construct adapted empiikesihood procedure.

This estimator can be regarded as a weighting method whiayhivihe data points ac-
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Table 7: Bias comparison of the EL and EL using Weights

Probability of rejectind3; =1 Probability of rejecting, = 1
Sample Size EL Method W-EL Method EL Method W-EL Method

10 0.13 0.06 0.12 0.06
20 0.08 0.06 0.06 0.06
50 0.06 0.05 0.06 0.05
100 0.05 0.05 0.05 0.05

cording to their importance. We see that this is a very ugehllwhen we are dealing
with a small sample heteroskedastic data set. simulatswiteeconfirm the superior-
ity of our proposed estimator to the plain empirical likeldd estimator. Also, in the
presence of heteroskedasticity, specially in small saspphe test statistics based on
adapted empirical likelihood ratios are more reliable ttiegir EL ratio counterparts.
While modulation method in theory improves the empirickélihood estimator,
the computation difficulties limit its usefulness to verespl cases. We have studied
the modulation method in a generalized linear model franmkewn which the Monte
Carlo simulations suggest promising results. For futundist, | plan to develop and
design more efficient algorithms to implement the estingitairoduced in this paper.
Another area which needs more study, is the risk functioimasion. Choosing and
estimating an appropriate risk function is the subject afistical decision theory, and
is usually a hard problem. Choosing and estimating an apiateprisk function is the

key to practical use of some of the results presented in Hpgip
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3.0 CELEBRITY EFFECTS: HOW FAMOUS TRADERS IMPACT THE
FINANCIAL MARKET

3.1 INTRODUCTION

The actions and opinions of celebrities in particular, antlie opinion leaders in
general, have a special effect on their fans and on the gatiey live in. Indeed,
attempts have been made to benefit from the popularity oktbekebrities. These
days we see more and more celebrities becoming candidatesliical offices, while
many politicians try to get endorsement from athletes ahéroktinds of celebrities.
For example, It is now acceptable for a serious candidata fogh electoral office to
submit to interviews by celebrities such as David Letterpdag Leno, and Jon Stewart
on their daily late night talk shows.

At the same time celebrities are becoming more aware of thepthey have and
try to use it more often. Actors and musicians, in increasingbers, are endorsing
and campaigning for candidates and making political stateswith the obvious goal
of influencing the opinions and the behavior of their fans.nl@ntion but a few, we
can name the U.N. celebrity diplomacy, and Bono’s involvenire raising aid money
for poverty reduction and health care initiatives in Afrigad so on. In a nutshell,
all of these increased activities by celebrities and traisfin political and public life

suggest that celebrity endorsements have the ability teermakain statements more
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palatable while increasing the level of agreement for alyggopular opinions.

Aside from the realm of politics and public opinion, celépendorsement is a big
business in the marketing industry. Advertisement camsaiigave been paying great
sums of money to celebrities to endorse, or even just to hseé&, groducts. The best
sign that these kinds of endorsements are beneficial is tbaemof money that com-
panies spend on celebrity endorsement, a practice thatssigign of slowing down.
For instance, in Forbes magazine’s (2004) lists of the tdpcHdebrities Golfer Tiger
Woods, ranks number 3 and has a $105 million dollar contréitt Mike. “Several
studies have examined consumers response to celebritysemdents in advertising,
findings show that celebrities make advertising believalplagdish & Wagner 1995)
and “advertising uses celebrities as pioneers in orderdiatdi trends”. Also, studies
have shown positive relationships between the stock pndetlae usage of celebrity

endorsement in the advertising strategies of a company.

One of the questions which | try to answer in this paper is tfextof imitation
in financial markets. In other words, is the price mechanisistock and other finan-
cial markets able to convey information efficiently in suctvay that diminishes the
celebrity status of famous traders? Numerous cases canrtenmed as evidence that
prices lack such ability. For example on Wednesday Septedthel 992, a day that
is remembered aBlack Wednesdayseorge Soros almost single-handedly forced the
British government of the day to abandon the European Exggh&ate Mechanism.

Besides yielding him almost one billion US dollars, thisident hugely enhanced his

LAnother example of the effect that celebrities’ actions habaviors can have on the society they
live, even when there is no intention of having that effexthie former first lady Nancy Reagan’s mas-
tectomy, instead of breast-conserving surgery in OctoB8# IStudies show that compared to women
undergoing surgery for breast cancer in the third quart@®8f7-just prior to the Mrs. Reagan’s surgery-
wo men were 25 percent less likely to undergo BCS in the foguidrter of 1987 and first quarter of
1988. In subsequent quarters the rate returns to the bas¢JAMA 1998)

2For example see “Srivastava et al” Journal of Marketing 1898the references therein.
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reputation too, so that in April 1993, when he bought arounailBon ounces of gold
at $ 345 per ounce and invested $ 400 million in Newmont Mirangold mining
company, as soon as the traders learned of Soros’ purctadapge $ 5 after a long
period of decline, a trend that continued to 1996 and liftedprice of gold to $ 405.
His investment in British real estate, which subsequerkyyacketed the price of real
estate, and the Malaysian prime minister’s accusationGloage Soros has ruined the
East Asian economies-in reference to the 1997 crisis in Esist - are other exam-
ples of how much influence a single trader can have on othéersabehavior and
subsequently the market as a whole.

More recently, after the market crash of 2000, the UnitedeSt&ongress held
hearings entitled “Analyzing the Analyst” aimed at addmegstock analysts and their
recommendations, suggesting that words and recommendatan have a huge im-
pact on the behavior of other participants. Also in 2002 théSE and NASDAQ
issued new regulations, which were primarily aimed at thpetém investment banks,
usually called big tens, to curb the conflicting interestshananalysis and recommen-
dations issued by the big banks and famous analysts. Somesaggested that there
has been a conspiracy to push the market up by frequentlingsery positive rec-
ommendations. Titles like “Wall Street treachery: leading lambs to the slaughter”
or “The betrayed investors: American bought to the ideastatks would only make
them richer” (both from Business Week) suggest a more irdeakt misleading.

The question we intend to ask and try to answer in this papewisat mecha-
nism causes the agents acting in an economical environrmdaliow the “popular
figures™? The argument made by Banerjee (1992) and Bikhchandan{I1@2), from
now on BHW, shows that herding is not necessarily an irratiphenomenon. These
papers argue that, if people act in sequence and observetibasaof their prede-

cessors without accessing the actual information recdethem, the information
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contained in the history of actions eventually will overwhehe private information
of every agent forcing them to abandon their own privaterimfation and follow the
actions of their predecessors. BHW also argue that theirehzzh be a base for un-
derstanding the uniformity of social behaviors and thetoweaf norms and fashions.
Avery and Zemsky (1998) have shown that while it might be #geovhen the cost of
choosing different actions is fixed, the argument breaksdowhe presence of an ad-
justable price. Therefore the price mechanism in financealkets will adjust in such
a way that every participant will be better off following fog/n private signal. They
show that in order for herding to happen we need what theyrngaltidimensional

uncertainty.

While Avery & Zemsky (1998) suggest that informational hegdis a very rare
phenomenon, other sources of herd behavior might stilt. ekitere is a large literature
in reputation-based herding. Scharfstein and Stein (19B@)men (1994), Zweibel
(1995), Graham (1999) and others provide another theorgmfihg in financial mar-
ket based on the reputational concerns of fund managersabysts?

In this study, | will try to expand the BHW model based on thetca idea that not
all agents in an economic or social environment carry theesagight when it comes
to influencing other peoples’ actions. Although some agkat® the ability to reach
out to a larger portion of the population, and their actioreskaghly influential, there
are other agents-the majority of agents-where their astgmlargely unnoticed and

they don’t have any influence on other’s opinion and actions.
The contribution of this paper is two fold. First, | extendetBWH model to
include agents with “celebrity status”, providing a potahtramework to study and

design different advertising policies. Using this framekyave can better understand

3For a survey of herding in financial market see “Herd Behavidiinancial Markets” by Bikhchan-
dani and Sharma.
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the disproportional effects of celebrities statementd,tha ability of famous traders in
financial and other markets to influence market activitidélieve there is a large host
of social, political, and economical phenomena which fihis framework. Therefore,
our model in this paper, can be a good starting point to stodgd phenomena. The
second contribution is providing a framework to help untierd how some bubbles
form and burst, and what role major traders have in creatiagt

The remainder of this paper proceeds as follows: In sectisreZonstruct a model
to incorporate the notion of celebrity or what we will cdlhe Star” agent. There, we
study the model and its implications. In section 3, as an gtamve study a model
of the stock market in which there is a star trader. This medklbe similar to the
model used by Avery-Zemsky (1998). The main difference &, ttve use the model
of herding developed in this paper instead of BHW. Also, ictiee 3, we will show
that the star trader has a limited ability to pull the markeher/his direction. Section

4 concludes the paper. All proofs are collected in the append

3.2 THE MODEL

In this paper, we assume that an individual can only see tti@enaoof his or her pre-

decessors. The crucial point here is that the agents cabeetwe the actual signals of
their predecessors. If they were able to do so, then the p@daformation available

to individuals would effectively aggregate and talking abtine effect of somebody’s
action on somebody else’s behavior wouldn’'t make much séesgause agents can't
observe their predecessor’s signals, it is possible tlegthielieve some of their prede-
cessors had access to better information. This helps tewhedrise of some of those

predecessors to the “star” status.
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3.2.1 A Simple Model

1. There is a sequence of exogenously ordered individuatd) deciding to adopt
or reject some action based on the information they havejrandder to maxi-
mize their value. If the information they have cannot digtiish between the two
alternatives, they chose to adopt with probabilif21

2. Each individual observes the decisions of all those abéaam.

3. All individuals have the same cost of adopting, c. For diaity, we assume =
1/2. The gain of adopting, V, is also the same for everyone. Wdar simplicity,
we assume V is 0 or 1 with equal probability.

4. Each individual privately observes a conditionally ipdedent signal about the
true value, V. Each individual i's signal is either H or L. Habserved with prob-
ability p; > 1/2 if the true value is 1 and, likewise, L is observed with ptaibgy

pi > 1/2 if the true value is zero. Again, for simplicity we assumatth

P = P, Vi. (3.2.1)

5. There is a special individual, whom we call “star”, suchtttvhen he acts a por-
tion of other agents, who are distributed randomly betwéenathole population
of agents, will view his decision as more informative thae tlecisions of other
agents, including their own signal. This randomly disttdzlipart of the popula-
tion who consider the actions of the star to be more inforweair in fact more

influentially, are calledfans” .

4We notice that there is no assumption indicating that thar*stas indeed access to better infor-
mation nor that his signal is more accurate than others.o@ifgh it might be the case in the real world
that famous people have such information, fans, anywaguéstly put too much weight on the star’s
actions. This model can be considered an attempt to capiaheaver reactions by the fans.
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6. To clearly define the difference between fans and nonvi@tsave to consider two
different probability measures according to which theyagge different proba-
bilities to the same event. Suppose that the “star” appearsat; if a fan acts at
timet+ 1 he assigns

Pr(V=1) =T, (3.2.2)

as the probability while if a non-fan acts at the titre1 he assigns
Pii(V=1)=Tm (3.2.3)

such thatt* > 1t

If H; is the history of actions up until time t, a is the piece of information at
time t capturing the star’s action, we can interpgeindtg asPs (V = 1|Hi_1,hy)
andP,¢(V = 1|H;).> For further simplicity, we assume that the “star” enters at

t = 0 and therefore we sét= 0 to obtain
Pr(V=1 =1 and Ri(V=1)=m, (3.2.4)

such thatt* > T, right after the star’s entr§).

7. We assume that the population of agents is a continuum\aerg agent has a la-
bel in [0,1]. A portion of this population accounts for th@$sand the set of labels
corresponding to fans is of measyreTo choose an agent at time t, a random
number, r, will be chosen from a uniform distribution @1]. If r <, then a fan
is chosen, otherwise a non-fan. The law of large numbersagtees that in each

date, t, the probability that a fan is chosenis

5 Note that for the non-fan we haue, = {Hi—1,h}. However, this doesn'’t hold for the fans’
information sets.

with this assumptiontis the signal accuracy, and we can calculates (V = 1|H;*) andPn¢(V =
1|H;) for every subsequenhiusing Bayes’ rule.
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Note: We assume that the agents don't take into account the preséiite other

fans. If they were to do so, it will make the inferences intahde.

3.2.2 Some Observations:

In this subsection | mention some of the results that can bigedtefrom the model
which was introduced above.

First, we define a naive fan:

Definition 11:

A naive fan is a fan who thinks every other fan is following/lhisrown signal. In
other words, a naive fan doesn't take to consideration thesgmlity that previous
agents might be herding. When we talk about fans we mean dhis kind of fans

except if we state it otherwise.

Second, using Bayes’ rule we define the belief update opefdiy

(1-p)x

f) = Tt pI= (3.2.5)

and define n to be

n=min{m|f™()<1/2} (3.2.6)

. As proposition 1 will show, this number will help us to tréersa fan’s belief in a star
to the number of signals opposing the star’s choice thateeded in order for this fan
to “abandon the star”. Note that9 1< 1 and f¥(x) is ak times composition of

with itself. In the following lemma we show thatindeed exists and is finite. We will

also explore some properties bthat will be used later in this paper.

Lemma 3:
For any0 < 1t< 1, n exists and is finite. Furthermore n increases with an iasesin

TL

64



Proof. see the appendix. O

When is a fan ready to abandon the star and instead, use hisnéevmation?
A fan who favors the star would like to follow her, but if he ksegetting signals
indicating that others are receiving information suggesthe star is wrong, the fan
will reach a point in which he finds the accumulated eviderarapelling enough to
abandon the star and choose a different action instead.ollbe/ing result, which can

be proven using lemma 1 formalizes this intuition.

Proposition 7:
Define ri to be
n* = min{m| f™(15) < 1/2}.

At least i consecutive opposing actions to the star’s action are ngéddea fan to

abandon the star.

Proof. Without loss of generality, suppose that the star acts=a0 and, therefore,

Pt (V = 1|Hp) = 1t". If the fan receives a negative signal then he will updatéébigfs

to

Pt (V = 1/h*,x=0) = = f(rr). (3.2.7)

In addition,

Pr(V =1/h"% =0,%=0,...% =0) = (3.2.8)
Pf((v = 1|h*,X1 - 07X2 = 07"'Xn—1 :O))Xn = O)
= f(f" ().

We also haveées [V |Hi| = Ps(V = 1]|H;). Thus, the fan follows the star as long as

Pt (V = 1|H;) > 1/2. This implies that a fan abandons the star if
Pr(V =1H) = f"(1t") < 1/2.
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When f"(1t*) = 1/2, the fan abandons the star with probabilif21 O

Using proposition 1 we can construct a simple optimal denisille. This decision
rule is the basis for proposition 2, which greatly enhanagsumderstanding of this
model and simplifies the calculations.

Let a be the number of predecessors who have adopted #relnumber of those
predecessors who have rejected anddseta—r. We have the following optimal
decision rule for a fan:

If nis the number obtained from proposition 1, the star has adopindd > —n
then a fan should adopt regardless of his private signdl=f-n, the fan should adopt
if the private signal is high and otherwise reject with proity 1/2. If d < —n, the
fan should reject regardless of his private signal. Sidyildor a non-fan we have the
following rule. If d > 1, the non-fan should adopt regardless of his private sighal
d = 1, the agent should adopt if the private signal is high anecteyith probability
1/2 if the private signal is low. Ifl < 1, should reject regardless of his private signal.

If we defines, to be the state in whic = n and letSto be the set of all sucs,

we have the following proposition:

Proposition 8:
The subsequent actions of the agents entering after “a starn a Markov chain
which has only two absorbing states(a) A cascade in the direction of the star’'s

choice.(b) A cascade in the opposite direction of the star’s choice.
Proof. See the appendix for a proof. O

Example 2:
Consider the simplest case in which there is no star in theahdthis is the original

model studied in BHW). In this model we have 5 different stafewo of them are
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absorbing sates and, therefore, (from Markov chain thetirg)process will eventually
absorb to one of these states as the number of agents goefnityinHere p= 1r,

which implies:
) = (1—p)m _
i) = (1-pm+pl-1r) 1z

Therefore,

n=min{m/f™(rt") <1/2} =1

and
S: {S]_: _27522 _175320734: 17%:2}

The following figure shows the Markov diagram of the resgltiarkov chain.

0O—-O—-0—-C

Example 3:

Now suppose that there is a star in the model who acts in tim@tand chooses to
adopt. Suppose the fans’ initial faith on the staris= 0.60, and the signal accuracy
is p=0.56. We have:

f(rr)=0541 and (1) = f(0.541) = .480< 1/2.

Hence,

n=min{m/f™(1t") < 1/2} =2,

and

S: {S].: _3782: _2783: _178420755: 1786:2}
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We, thus, have a Markov chain with 6 different states. Agdis, process has two
absorbing states, although the probability of being absorlio the cascade in the
direction of the star’s choice (statg s 2) is much greater than the probability of being
absorbed to the cascade in the opposite direction of théssthoice (state s= —3).

The following figure shows the Markov diagram associatet thils Markov chain:

3.2.3 Fragility:

In a model without stars any kind of cascade is very fragiidekd, when participants
in such an environment find themselves in a cascade, theyeedine that the cascade
is based on little information. For example, in an up cascatiere everybody adopts,
they know for sure that the first person had a high signal aecktis a probability of
1/2 that the second actor also have had a high signal. Now if gaatagets a low
signal plus another pieéef negative information, she will be in a position where her
own private signal is more informative than the informatiloat comes from observing
their predecessors’ actions.

This fragility is somehow counter intuitive, in the sensattit suggests that after
the appearance of the first signs of a problem with an existomg, tradition, or fash-
ion, the public will abandon it and the participants willrstep use their own private

information. This is, off course, somewhat different frorhat/ we observe in reality,

’For instance suppose this particular agent gets two sigsalsthers who just get one.
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where it is usually hard to break an established norm or bt@dition. Some even
suggest that the biggest obstacle in some developing sEscae certain existing and
traditions and convincing the members of those societiebémdon them. Although
many people in those societies understand the devastatirgpgquences of their tra-
ditions and social norms, it is still difficult to convinceetipopulation to change their
“old ways”. This study suggests that we should at least inyate for the role of stars,
opinion leaders, and so forth, in order to understand thditygand of some of these
norms.

In the presence of a star, any cascade which favors her cisaice so fragile and
will resist defections, although a cascade that is not indmerction will be equally
fragile as in the model without the star. Let’s first cleargfide what we mean when

we say that a cascade is broken.

Definition 12:

i) A cascade has been broken at time t if and only if the actdina t+ 1 ignores the
cascade and follows her own information.

i) A defection from a cascade at time t is successful if iekeethe cascade at time

t+k.

If we assume that after time t, which is after the emergenescakcade in the star’s
direction, every participant receivers a signal opposhng gtar; then the following

proposition applies with regards to the fragility of thiscade.

Proposition 9:

Suppose that after a defection at time t, every other agesuilisequent times receives
a negative signal (a signal pointing to the opposite dirctof the ongoing cascade).
The probability that the defection at time t will be succebisf(1— p)("™1 where n is

the same as in proposition 1.
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Proof. See the appendix. O

So far, we have assumed that all fans‘ar&@ve” . If we drop this assumption and
assume that fans take to account the possibility of herdynipéir predecessors. We
formally call this kind of agentSsophisticated” agents. The sophisticated agents
will end up following the “star” regardless of their own sajn(given they have a
strong enough belief in the “star”). This is somehow courréuitive, since more
sophisticated agents are aware of the possibility that¢hieres of their predecessors
might be the result of herding behavior. Still, they end upoigng all the previous

information. Formally, we have the following:

Proposition 10:

Assume that the fans are “sophisticated” and let

n=min{m|f™(15) <1/2}

and n> 2. Then, these fans always follow the “star” regardless ofitlosvn signal.

Proof. See the appendix. O

3.2.4 Possible Extensions

In this subsection | discuss possible extensions of the hwelgust introduced. The
main intuition in the previous model was the fact that notradlividuals are equally
important, but rather special individuals exist, who hawepower to influence others.
We can extend this intuition by asking “Is it possible that #ttions of all individuals
are equally visible by all other participants.” | believetanswer to this question is
no. In most real world cases, not only are the individuals ddife in their ability to

influence other people’s decisions and actions, but algceteedifferent in their ability
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to reach out to other people. For example, a decision, apini@ction by somebody
like myself will most likely go unnoticed by the majority ohé population, while
actions, opinions or decisions by, say Tom Hanks can catkyhs of the world. To
this end, we can define a network of connections, in the séasa t— b means that
“b will notice a”, but notvise versaA natural definition of a star in this framework is

as the agent who can be observed by every (or a large portiting other agents.

Other possibilities like a system with two or more stars @aregpposing stars can
be exploited as well. What is the dynamic of behaviors in appéd society in which
two opposing stars have their fans and “anti-fans” and wblatdo the independents
play in such a society? | will not study these issues here. é¥ew in the next sec-
tion | will use a very simple network to study the mis-priciofa stock in a simple
financial market. | will show that, under special circumsts mispricing and bub-
bles can occur. Furthermore, rational traders won't be tbfealize or correct such

phenomena.

3.3 AN EXAMPLE: FINANCIAL MARKETS

In this section we study a simple market with one asset. Wese# that when there
are enough traders, like individual investors who don'tessarily have much skills
or knowledge about the market, who are ready to trust theirstastors and follow
them, two different probability measures will emerge whilgter the ability of prices

to convey information efficiently to prevent bubbles.
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3.3.1 Stating the problem

Although rational approaches to asset pricing have beesiderably successful, it is
hard to believe that imitative behavior in such markets ataly erased. In fact, there
has been a resurgence of interest in the study of such behaviecent years, with
behavioral finance gaining popularity. In this section wstfitustrate the idea using
an example derived in part from Avery-Zemsky. First, | witlosv why in a BHW
framework, rationality prevents herd behavior. | will these the framework built in
section 2 of this paper to investigate a market in which ther star investor who
is noticed by everyone, and where the normal investors (items)sbelieve that the
information from the star investor is more accurate thair then. We will investigate
how herd behavior becomes a possibility under these congiti Furthermore, we
believe that these conditions are not plausible. For exeytpkere have been times
when big investment firms issued positive recommendatiarssarks, thereby causing
the mass of inexperienced or even experienced investorsytard push the price of
the stock very high. If we interpret the combination of thesestment banks as “the
star investor”, we believe the model introduce in the sec2of this paper can be used

to understand such issues.

3.3.2 A Simple Example

First, let’s review the original BHW model in light of this ample. Agents face a
choice of whether or not to adopt a new technology. The coatloption isc = 1/2.
The value of the new technology Vs which is either 1 or 0 with equal probability.
Each agent gets an independent, but not perfect, signaV/ablenoted by, xc{0, 1},
whereP(x=V) = p > 1/2. Agents act sequentially and obsehg the history of
actions up until time t. Lett; = P(V = 1|H;) . The choice made by an agent depends
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on whether the expected value for adopting is greater ottthessc.

The expected value of an agent with bad news at time tis:

Vi(x=0) = E[V|x=0,H] = P(V = 1|x = 0, H) (3.3.1)

(1- p)“tl
(1—p)m +p(1—Tt)

The expected value for an agent with good news at time t is:

Vix=1)=E[N|x=1,H] =PV =1|x=1,H) (3.3.2)

_ pTY
prt +(1-p)(1—-Th)

Thereforett, increases in the difference between the number of prior tageho

adopted and those who did not. When there are two more addpgar non-adopters

we will havett, > p, which implies

Vix=1) >V{(x=0)>1/2. (3.3.3)

In this situation every agent who acts at time t will adoptareliess of his signal, in
the words of BHW an informational cascade will arise.

In financial markets the price mechanism suppresses thiativa effect and pre-
vents the cascades from occurring. To see how, supposentliz above example,
agents are traders in a financial market and their choice etheh to buy or to sell
a unit of an asset whose value is given by V. Furthermore, aagghat the financial
market is informationally efficient, which implies that tpece reflects all publicly

available information (here we interpret the cost in pragi@xamples as being the
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price of the asset). Therefore, unlike the previous cage, kiee cost will adjust when

new information arrives. More precisely, we have :
E=E[V|H] =PV =1H) =18, (3.3.4)

which implies:

Vix=1)> &>V (x=0). (3.3.5)

Therefore, an agent with good news will buy while an agenhwiad news will not
adopt (in this case buy) and, thus, no herding occurs.
Now suppose a competitive group of market makers, or ecntigli a market

maker who makes zero profit, determine the prices, by seltitig and asks prices

as
B'=E[V|h = S H, (3.3.6a)
and
A'=EV|h =B, H. (3.3.6b)

Here, S stands for selling orders ariélstands for buying ones. We only analyze the
buying activities (selling is similar). Therefore, we f@caur attention on the prices
at which the agents are willing to buy the asset. (See Laver&losten and Milgrom
(1985)). Suppose that there is a star investor such thatdaisidns are observed by
all other investors. There are also regular investors @tars) who do not observe
each others decisions. These assumption have been madgtdysihe calculations
and the computer simulations we perform. We also assumelhatgular investors
consider the actions of the star investor to be more infas@ahan their own, and
that the star investor enters at the beginning. Every busegives a private signal

x€{0,1}, s.t. P(x=V) > 1/2. Suppose that the prior probability ¥f= {0,1} is
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P(V =1) =P(V =0). Given this information, we can find the probability of théua

being equal to one if the star investor buys.

P(V = 1/hs = B) (3.3.7)

B P(hs=B|V = 1)P(V = 1)
~ P(hs=B|V =1)P(V = 1) + P(hs= B[V = 0)P(V = 0)

B P(hs=BJV = 1)
" P(hs=B|V=0)+P(hs=B|V = 1)

=P(hs=BV =1) =T.

Here,m is the probability thaV = 1 if the star investor buys. We have assumed that
™ > p, which implies that other agents consider the star’s infdiom more accurate.
Now, suppose that at timte= 0 the star investor buys. The market marker will set

the price fort = 1 to be
V"= EpV|hg=B] = P(V = 1|hp =B) = p. (3.3.8)

At the same time, a fan buyer who gets a negative signal atttine will evaluate the
price as:
VA =EV|hs=B,x=0] =P(V = 1/hs= B,x=0) (3.3.9)

_ (1-pm o
l-pm+pl-m) °

Now, if T > p, the fan investor will buy despite receiving a negative algihe

important observation is that this situation can indeedpkap Figure 1 describes a

simulation withp = .52, Ty = .75, andmy = P(V = 1|hs = B). The probability that

75



the fan investor initially assigns to the event tilat 1 when he sees the action of the
star is assumed to lbe > p. As we see it takes a while (6 periods in this case) for the
agents with negative signals to stop buying.

To illustrate this point better we repeat the process onemperiod. Now suppose
that at timet = 2 the agent whose turn is to act again receives a negatival giga 0).
The market marker will set the price:

pvi"

Va"=EN|hp=B,h; =B] = .
2= EVIho =8, = 8] = (o 1 —pja—v)

(3.3.10)

While the agent’s value is:

(1-pm
(1-p)m+p(l-Tp)

Vit = (3.3.11)

Again, iszA > V", the agent will buy even thought he has a negative signals,Thu
herding can happen in this situation. However, it will berstiwed. The important
point to notice is that the market maker and agents use twerelift measures for

evaluating the relevant probabiliti€.

3.3.3 A General Model

Here,we consider a more general model in which the marker ig$t a single asset
with true valueV in such a way tha¥ €{0,1}. Like the example we studied above,
prices are set by a competitive market maker who interadfs avi infinite sequence
of individual traders who are chosen from a continuum pdjuta This assumption
guarantees that no trader appears in the sequence morenthdime. Thus, we need

not to worry about strategic considerations. Each tradeisisneutral and has the

8\We conjecture that the price that market marker sets isastilartingale with respect to the market
maker’s measure. This is intuitively obvious since if it wax a martingale, then his assessment;of
would be systematically mistaken in a manner which shoulgrbdictable to him.
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Figure 1: The stars show the prices as they are set by the famt.ag he circles
represent the prices set by the market maker. The horizax¢slshows the number of

periods.
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option to buy, sell, or hold onto one unit of stock. Tradesuwat dates =0,1,2,....
The publicly available information up until timteis denoted byH; and is referred to
as “the history of trades up until timé&

There are two classes of traders in our model. Informed tsagleo receive private
information and try to maximize their profit using their gate, and public informa-
tion, H;. This class divides into two subclasses. “Normal traderkdviollow strict
Bayesian reasoning without putting any special weight gnpanrticular traders, and
“fan traders” who also use Bayesian reasoning, but put meigiw on the action of
a particular trader who we shall cahe startrader. The second class of traders are
“noise traders” acting for liquidity consideratior?s.

We letu < 1 denotes the probability of an informed trader arriving @y given
timet. Therefore, I- L is the probability of a noise trader arriving. Furthermaed
for further convenience, we assume that noise traders lelly,0s do nothing, with
equal probabilityA = (1—p)/3.

Finally, there is a special trader whose action is consitlarere informative by
some other traders. We assume that she trades @tand that the portion of traders

who “believe in her” isy.

3.3.3.1 A Definition of Herd Behavior: We want to define herd behavior in such
a way that it rules out the situations in which everybody igibg because all have
positive signals, or everybody is selling because eacletrgdts a negative signal.
By “herd behavior”, we mean a situation in which everybodigisoring his signal in
favor of public information. For instance, a trader is in thging herd if, based on her

private information she should sell the asset, but afteesg the public information

%In the absence of noise traders, the no-trade theorem ofrdfilgStocky(1982) applies and the
market breaks down.
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H; she decides to buy. We have the following definition.

Definition 13:
A trader with private information, x, engages in herd beloaait time t if he buys when
Vi < Vim < Vg1, or sells when Y> Vi > Vi 1, ; and buying (selling) is strictly preferred

to other actions.

3.3.4 Some Observations:

Given the model in the last section, here we investigate kdreif mispricing and

bubbles can occur. To this ends we define

_ pX
f(x) = A= " (3.3.12)

and
_ (1-p)x
g(x) = A= pxt pA—x (3.3.13)
Let
n=min{m|g(tt") < f™(p)}. (3.3.14)

Then we have the following.

Proposition 11:
Let§: f"(p) andP = g"(p), where n is given as above. Then, the size of any bubble

is bounded from above by

Another question that arises is that of how long it takes Hier grice of the asset

reach to its highest level. The next proposition attempesswer this question.
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Proposition 12:
Let t" = Ps(V = 1|Ho), p = Ph(V = 1]|Hp), and n taken from proposition 3. Let T
denote the time it takes for the price of the asset to réadlle have the following.

(@) Ify<1/6-+1/3y, then ProlfT < «) =1, butE[T] = co.

(b) If y<1/6+1/3p, then

y—1/3u+1/3

. n
Prob(T < o) = <2/3—y-|— 1/311) <1 (3.3.15)
(c) Ify>1/6+1/3u. then
3n

The difference betweeifi(p) andg(p) in proposition 5 is not very large. This
implies that([g— B) won't grow too large. Therefore, whem" (the primary faith
of fans on the star) is not too high, the size of any bubble wgrow very large.
Furthermore, proposition 6 suggests that it would be ditficu the price to “grow out
of control”. Additionally, when there are enough tradersovdon’t follow the star, it
is almost impossible to obtain a bubble in which the assatbstantially mispriced.
The only time that we can expect these kind of bubbles to appe&ehen fan traders
are dominating the market, so that a substantial portion afket participants are
positively biased toward the star trader.

| have simulated the model discussed in this section. Figjsiews a sample path
of the real price as implied by the model. We can observe frgurdi 2 that there
won't be any substantial mispricing when we have enough abtraders td'time”
the market. However, as figure 3 shows, in times when the &atets dominate the
market, 60% in this case, there is a good chances that we bbkebyparticularly in bad
times when the actual price should be falling. Both in thiggraand in the simulations
| have assumed that there is no changes of opinion, and thédrhraders have a fixed

biased toward the star. A good exercise would be to alter théefso that in every
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Figure 2: A sample path of the real price as implied by the rhode

period a participant is assigned a type which indicates mérahe participant is a fan,
and if she is, how biased she is towards the star. In this @&sean study situations
in which the fan traders eventually will alert their trust e star if the market is not
going well in the direction that the star recommends. In ptdedo so, we need a
model for this alternation. In other words, we need a thebay tells us how people

alter their beliefs in critical time&2

3.3.5 A Possible Extension

In the previous section, we studied a case in which the sfa@ap once at the begin-
ning and, because some of the other agents consider hem sacbe more informative,

they are willing to pay more for the asset than what their ogna recommends. This

10f we just assume a random alternation of beliefs, | suspetiwe won’t get substantially different
results from the simulations presented in this section.
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causes the price to be higher and a bubble is created.

It is worth noting that so far we have not assumed that theistastor has in-
deed access to special information which gives her the bahility to make better
decisions. While it might be the case in the real world thgtibvestment firms have
both better information and better ability to process thisimation, this model can be
taken to suggest that inexperienced traders may exagdbcete abilities and subse-
guently put more weight on the stars’ actions, more weiggnh the star action actually
deserve.

An interesting question arises. What would happen if theisvastor in our model
can trade more than once? Is it possible that she startsltovfthhe herd which she
herself has helped to create, and if so, what will be the diagoossible bubble created
in this manner?

To answer these questions, we assume that, unlike othersrate star trader can
indeed enter the market frequently. Furthermore, we assbatehe trust of her fans
won't decrease nor increase after each ertry.

Now suppose that, for some exogenous reason, the starongtatts following
the herd. For instance, we can think of a situation in whiehdfar trader indeed does
not get any informative signal, but is just summing up theinfation which is being
revealed by the price and announces her choice to the pulimnjecture that large
bubbles can exists in this scenario. This would be an exaof@esituation in which
already publicly available information can have a largeaetp Simply because the
information is being announced by the star, her fans ovetrtedhat information. The

diagram below explains this idea.

n real world cases the trust or belief in the star will chafigen time to time. Imagine, for example,
an investor who follows a recommendation and makes good yndhis quiet possible that next time
around he will follow the star's recommendations with mooefidence.
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The Star acts > All other traders, including > the star sums up the info.
the star’s fans, see the star’ Implied by public behavior
action and act accordingly and announces her action

A

3.4 CONCLUSION

In the first part of this paper, we studied cases where thelptpn of agents or a
part of that population is positively biased toward a sdeagent whom we called
“the star agent”. We showed how in a BHW framework this pheaoom will affect
the other agents’ behavior, and how imitative behavior gadyce herd behavior and
informational cascades. In the second part of the paper weexh that while the
market mechanism can prevent herd behavior from happemiagery simple setting,
it will fail to do so when the herd behavior is the result of arm@omplex belief
system.

One of the implicit implications of our study is that it sugtgethat a rise or fall
in prices of stocks of big investment banks may have a broadgact on the entire
market. This is because, besides the real effects that eharlge price of a particular
stock might have on the market, a rise or fall in the price otks of the investment
banks will have the additional effect that the investors \Wwhwe been following these
firms (being fans in our terminology) will revise their bél@en the accuracy of the
information of these firms. For example, in the case of a dallethe fan investors
might put much less weight on the recommendations given by #tar or even re-
visit their previous investment decisions which were denadcordance to the actions

previously taken by the star, resulting in a further declihe give a measure of herd
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behavior or to determine when herding is happening, is diffi@ However, it is pos-
sible to measure and test the correlation of stock pricels thié movements in the
stock price of big financial firms, specially in times of buédl

This study also might be able to shed some light on the quesfiwvhy announce-
ments of already published information sometimes have atanbal effect on the
stock prices. Another implication of our study suggest thia¢n there are a lot of in-
experienced traders in the market, and the sources whaustedrby the public fail to
provide carefully crafted and implied analysis, and indtdeey themselves are being

driven by the public’s actions, the probability of crisis/ery high.

12See Bikhchandani and Sharma (2000) for references.
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A.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 1

Proof of proposition 1:

Proof. First we derive an expression f4(0) and then use that to prove the theorem.

using Lagrange multipliers, and setting up the optimizapomoblem we arrive at

L@Aw = 5 loa(p) ~u( 3 p—1) - T po®) (A0

doing the optimization we get

1
=— A.0.2
P g @) (402
applying the moment conditions and we have
B X (G g— ) (A0.3)
AP R IO o

because of condition€ p; < 1, itis necessary fox and® to satisfy 14+-A'gi(6) > 1/n
for each i. For fix0, let

De={A:1+Ngi(8) >1/n}, (A.0.4)

Dg is convex and closed, and it is bounded if 0 is inside the cohwd of theg;(0)’s.

Furthermore

gi(0)

1 n
= (A.0.5)
n Z\ 1+Ng. 9

a[ Zﬁg]_
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is negative definite for everyin Dg, provided thaty | ; gi(0)gi(0) is positive definite.
Therefore, by inverse function theorems= A(8) is a continuous differentiable func-
tion of 0.

Now for every € {8: |8 —8o|| = n~/3}, let® = 8o +un~1/3, where||u|| = 1. When

E[l|g(x.8)|[*] <~ and||8o—8|| < n~*/3 we have

-[;3e@d@] [F3a@]+on ) @9 @0

uniformly aroundd € {8: ||8 — 8,|| < n~¥/3}. Doing a Taylor series expansion, and

plug in the expression we derived fdwe get uniformly for u

N i)«(e)gi(e) - %.n [\'(8)gi(8))*+o(n*/®) (A.0.7)

plug inA(8), which we calculated before, to this equation we get

w0 = 3 jn)égme)}'[%égi(e). N 500 o) (s,
(A.0.8)

Using
~3[3300@50] (0.9

and for large enough n we can rewrite the objective functicth® Lasso estimator as

e)z[n—l/?igi(e)}' [-1/229 ]+>\n Bl a0.10)

Now we can use this expression to prove the proposition 3:
1) First notice that if® minimizesLn(8), the it will minimize =1 x £,(8) too, and
therefore we can choose this object function to work with.Wiledenote it byZ,(0).

First we realize that,
-t Zg. Z 6i(6) ~ E[6i(6)) +n_1iE[gi(9)] (A0.11)
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under assumptioA2 we can use a well known result in empirical process theesy, s
Andrews (1994) and obtain

ﬁ ; (6/(8) —E[gi(8)]) = Op(1) (A0.12)

furthermore, by assumptiokB — (i)

[ _1219' ] P (e (A.0.13)
Putting all of these together and using assumpfidnand the fact tha% — Ao >0,
we have
Y @] W@ty e+ s Y- (A014)
=n o] n o] .0.
So]wel 3075 @

[n‘li (6:(6)~Elg(0)]) +n-1iE[gi<e>@ Wi (6) [n‘li (6:(8)~El0i(9))) +n‘1iE[9i<9>]]
42 Z\e,\uml <6)m1(6)+ko§\91|yzz<9>~
=1

This finishes the proof of the first part of proposition 3.
II) When A, = o(n), and all the assumptions are satisfied, uniformi@iwe have
An

= — 0, when n goes to infinity. Therefore, we have uniformiin

Z1(8) 2 my(8)'W(8)my () (A.0.15)

Since by assumptioA3 — (i) there exist a unique minimizer for the last expression,
using Corollary 3.2.3 of Van der Vaart and Wellner (1996), veee the consistency
result:
B = argminz,(8) 2 argmin[my (6)'W (8)my(8)] = 6. (A.0.16)
8cO 8cO
For the sake of completeness, bellow is Corollary 3.2.3 famder Vaan and Wellner

(1996). [
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Proof of Proposition 2:

Proof. As we showed in the proof of proposition 3, whEf || g(x,8) |® | < infty,

and|| 6 — 6g || < n~ Y23, uniformly in® we have

0 =3[ 3,00 [ 3 6@d0)] [ 5 a@] ront) (@)

(A.0.17)
Since/y(0) is a continuous function aroun@l for every © belonging to the ball|
8 — 6 || < n~Y3, £,(8) has a minimum value in the interior of this ball, which we

denote it byé. Now let’s define

i u .11l & u .,
V() = 3| S a0t )] 53 6ot e (8o )| [ Zg' B0+ 1)
(A018)
1 1 & 1l N B T AL
—Q[W;gmeoﬂ [ﬁi;gmeo)gi(eoﬂ [mi;g.ww}
+}\ngl[|910+ 1/2|y 6; O‘V]JFO( n'’3).
We can do this because
{8:]16—80||<n 12} C{6:]|6—6|<n V3 (A.0.19)
which implies that
(B + 1/2)6{9:||9—90||§ n-Y3) (A.0.20)

Now, we can notice thaf,(u) is minimized am/2(6, — 8g) = hatu,. Therefore we
can write

Un = arg minvi,(u) (A.0.21)

uekK
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where K is a compact subset BP. In order to obtain the asymptotic distribution of

our estimator we first need to show the following convergeesaelts.
Vh(u) =V (u) (A.0.22)

and also

(= 0p(1). (A.0.23)

Using assumptioA2, we can use theorem one in Andrews (1994) to obtain

_1/ZZ[Q|(90+ —72) ~EG(B0+ —15)| = W(B0) =N(0.Q(8))  (A0.24)

1=
Also, expandingg; (6o + nl—u/z aroundu = 0 using Taylor series expansion, and using

assumptiorA3 — (ii ), and noticing thaEg;(6p) = 0, uniformly inu we have
nl/ZiZ (01 (Bo + 1/2)] — R(6p)u. (A.0.25)
Combining the last two equations we arrive at
n
_ u
n-%/2 i;gi(ew —75) = ¥(B0) +R(Bo)u. (A.0.26)

Since in the theorem, we assumed tPsna,tnY/2 — Ao > 0 we have, in other words,

An = O(nY/2) = o(n'/2). Therefore it follows that

An[|ejo+ 1/2|Y \e,-o|V] 0 (A.0.27)
wheneve®jo # 0 and
An|1Bj0-+ L Y= [8j0l"] — DoluslY (A.0.28)
which means
3 [0+ Bl do3 Mo 4029
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combining all these equation we get

Vi (U) = [W(8o) -+ R(Bo)u] W(8B0) [W(80) + R(Bo)u] — [W(80)] ' W(Bo) [W(80)]
(A.0.30)
p
+Ao _Zl Ui 16 50-0)
=

P
= /R(eo)/W(eo)R(eo)U—l—2U/R(90)/W(90) (90) + Ao Z |Uj |y1{9j0:0} EV(U).
=
This proves that,(u) = V(u). To complete the proof we notice that, on the space
of functions with a topology in which convergence on comsats implies uniform
convergence on these sets, To prove that arg\m)nd—> argminV), it suffices to show

that argmiriV,) = Op(1), see Kim and Pollard (1990). To prove this, &t- 0 be a

positive constant such thag/ nv/2 < (Ao+90), the we have for alli, if nis sufficiently

large
V”<U)Z%[\/tn) i_igi(eﬁnl—%)}/[%ég Bot 1/2)9,(60+n1/2] [ ( Zgl) B 1/2]
A.0.31
2l 2,90 [ 3 a60g0] [ 5 ae0] Ay

[\/:En 2,98 7 }/Eég‘(eﬁnl—ljz)g“eo nif2 I [ i +o)]
1 n , -1 1 n n
‘[W 3 a0)] [‘.Z 5(80)d(80)] [ 755 a(80)] - (o3 3 el

=Va(u)

now define the empirical process

Wn(Bo+ —75) = n—l/zz[g.(GO'i‘ —75) ~EG(B80+ —75) (A.0.32)
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also let
(L p -1
é[ﬁizz gi(eo)gi(eoﬂ W(6o + 1/2) (A.0.33)

then we can rewrit¥, (u) as

VW) = | ¥n(Bo-+ 1 WIEo+ 75 ¥alBo+ 7)) (A.0.34)

{ZU R(60)'W (80 + 1/2)L|Jn(90+ 1/2)}
{u R(60)'Wn(80+ 1/2) (GO)U}
| wn(eorn(@g) (60| +ol1)
p
—(Ao+9) Z ujlY.

The first term converges to the fourth term in the equatioVigu) also, whem is
large the second term is linear. Therefore, we have a quedeat and theu;|Y and,
because & y < 1, the quadratic term dominate all other terms, which ingptleat

argminV, (u) = Op(1), and from the inequality we get
argminvp(u) = Op(1). (A.0.35)

Because our assumptions guarantee the uniqueness of afg(minwe can apply the-

orem 3.2.2 of Van der Vaat and Wellner (1996) to get the result O

Proof of proposition 3:
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Proof. LetL,(0) be the same as definition 1. The key idea is that to find an agptep
linear approximation fok,(8) — Ly (8p) characterized by stochastic equicontinuity. To
give a road map of our proof we notice that from the Rise reprdion theorem,
there exists* € V such thatfy (8 —6o) = (8— 6o, v*), by screening the definition of
féo(é —8p) we see thaf (8) — f(8p) can be linearly approximated 4§ — 8o, v*). Itis
possible to derive a linear approximation fe, X;) — (6o, X;), linear in6 — By. Since
L(0) is just a summation df(0, X;) we have a bridge betwednandL. Now a linear
approximation of_(8) — L(8o) will gives a linear approximation of (8) — f(8p). The

last step is to use the central limit theorem on this line@raximation. Since
1(8,%) = r(8—80,X) +1(80,%) + g, (B — 60, %) (A.0.36)
a simple summation and some algebraic manipulation yields

In(8) = 1n(80) — K (B0,8) + N2, (r (880, X)) +n~2v, (15, (6 — 80, X)).
(A.0.37)
Now we notice that by definition 2-O(g2) < Ln(8n — Ln(80). Combining this with

assumptiorA5 — ii, A6 A7 gives
o 1 - o
—O(€2) < Ln(Bn — Ln(8g) < —518n— Bo/2+n Y2un(r(8—860,X))  (A.0.38)

+n 2, (1, (6 — 80, X))
~An(J(Bn) — I(B0)) + Op(en)
< —An(J(Bn) — (o)) + Op(en).
ThereforeAn (J(8) —J(80)) < Op(&n). Becausel(u*) < « and using assumptioh6
we have

An(J(8(Bn,€n)) —I(Bn)) < cAnd(en[—Bn + 60 +u7)) (A.0.39)

94



< CAnn(I(Bn— B0) + I(U")) = Op(e?)

for somec > 0. Now that we have controlled the penalty part and obtaingslad on

that we can turn our attention tg,(én). From equation (2) we get

A

Ln(Bn) = Ln(B0) — K(B0,8) +n~2un(r(8—60,X)) (A.0.40)

+n 2, (15,6 — 80, X)) +And(6).
Noticing that||8* (6, €n) — 8o|| = || (1 —€n) (8 — 80) + £nl*|| < &y the equation holds
if we replaceén with 6*(én,sn). If we do so and subtract the two equations we get
Ln(Bn) = Ln(8"(Bn,&n)) — [K(80,8) — K (80,6 (Bn,€n))] (A.0.41)
+n 290 (1, (B — 67 (8n, €n). X)) +n"Y 205 (1 (8, — 07 (B, £n), X)) + Op(€3)
= Lo(8" (Bn.0)) — 3 18— B0l 8" (B, e0) —
+n Y2, (1, (60 — 6% (Bn,€), X)) + Op(€3).

Using definition 1 and assumptioA§ andA7 we get

1 . .
—0p(e2) < —5(1— (1—€n)?)||6n — 802+ (1 —£) (B — 8o, £nu*) (A.0.42)

—n~Y2un (16, (En(U" — (Bn — 80)), X)) + Op(&7)
< —&n[|8n — B0[| >+ (1) (B — B0, Enli")
—n~2v; (1, (EnU*, X)) + Op(€2)
< (1—€)(Bn— B0, €nU") — N~ 2vp (I, (EnU", X)) + Op(€5)
Therefore
—(1—&n){Bn — B0, u") +n~Y2un(Ig (U*, X)) = Op(&n) + Op(€n) (A.0.43)

—op(n~1?).
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If we replaceu* with —u* in the last equation and then put them together we arrive at

the following equation
|(Bn — B0, u") — Y2, (I, (U™, X)) | = 0p(n~2). (A.0.44)

Therefore (8, — 60, v*) = n~2vy (I (V*, X)) + 0p(n~Y/2. From this equation and

(4.22) we have
£(8n) — f(Bo) = 4, (Bn — B0) + 0p(un||Bn — Bo[|™) (A.0.45)

= (Bn—80.v") +-0p(n"*/?)
- n_l leleo(\fkvxl) + Op(n_l/z)'

Thereforen®/2(f(6,) — f(60)) =n~Y2 3L 15 (v*, %)+ 0p(1) and the result follows

by applying the central limit theorem amr /2 > lp, (V5 %) O
Proof of corollary 2:

Proof. If we replacev® with sin proposition 3, the result is corollary 2. O
Proof of proposition 4:

Proof. The following lemma is needed in the proof of proposition Beproof can be
find in Shen and Wong (1994). Also here we define the Hellingetrimentropy with

bracketing, which we are using the assump#an
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Definition 14:
Let f: @ x X — K with E[f?(8,X)] < o« for all 6 € © and let|'||, be the usual £
norm. Let

F={f(6,.):8€0, |f|, <o} (A.0.46)
For any givere > 0, if there exists
S(e,n) = {fl fl ... f W c L, (A.0.47)

with maxi<j<n | fj' — f} ||, such that for every £ ¥ there exists a j such thal} K
f < f{'as, then S¢,n) is called a bracketing-covering of # with respect to,.
H(e, F) =logN(e, F) is called the Hellinger k metric entropy off with bracketing,

where
N(e, F) = min{n: S(g,n) is a bracketing — covering of ¥ }. (A.0.48)

The Hellinger metric entropy of with bracketing is the logarithm of the cardinality
of € — cover of ¥ of smallest size. when appropriately defined, it providesea-m
sure of the size of parameter space. For more discussiongtabetric entropy see

Kolmogorov and Tihomirov (1961).

Lemma 4.
Suppose assumptiorlAis satisfied, and letd> sug.,n"*s" ,V(60,8) and b>

SURyc 418 — Bo|. Also assume that
y
/ HY2(u, 2)du < (nY/2Ma¥?2) /210 (A.0.49)
L

where U=H~(¥(M,v), 2and L=aM/28 (0<a<1),and¥(M,v) = (1—a)nM?/[2(V* +
bM/3)]. Then
P*(supvn(|(e,x> —I(GO,X))> < Zexg(—W(M,V)). (A.0.50)
6ca
If U <L the above inequality continues to hold with 1 replacing 3.
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The idea of proof is to control and bound the mean and variahtiee criterion
differences when it is evaluated @& and8 € ©. Without loss of generality we can

assume thamnaxAn,€) < 1. For anyi, j > 1 we have
inf {K(8.80) +Aa(3(8) ~3(80)) } > (2 ') +Mn(2 1~ 1)3(80).  (A.051)
¥y

and

inf {K(8,60) +Aa(3(8) — 3(60)) } > (2"%)2 ~ Aad(80). (A.0.52)

SincemaxJ(6p),1) < c7e2, we have

n

=P (P 2 (HOX) (0 X)) 2 €/2)  (A0SY)
{p(60,0)>£6c0} =

P* ( supva(1(8,X) —1(80)) = M(i. }))

™M

=1 Al
+ i P*( supvn(l1(8,X) —1(80)) > M(i,0))
=1 AGD)
=11+,
where
M(i, ) = %An[(zi—l)%r(zi—l— 1)3(80)]. (A.0.54)

Now we separately bound andl,. To do this we use lemma 2. Because it is very
similar to establish the bounds frandl,, we just show the it for;. To boundl; we

verify that lemma 2 is indeed applicable. By assumpfénwhen
Mb/V? < 3, and W(M,v) > (1—a)nM?/4v2 (A.0.55)
we have

supV (8o,0) < VA(i, j) = c1(2€)2(1+ ((2)2+213(80))P). (A.0.56)
()
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Similarly, whenMb/v? < 3, andU < MY2(i, j)BY2(i, j) we haveH ~ (¥(M,v), 4) <
v(i, j). By assumptior\7 we have
max(v(i, ), M¥/2(i,})B.}))
/aM(i,j)

Therefore the requirement of the lemma 2 is satisfied and we lfasing the inequal-

HY2(u,B(2'¢,2)))du/M(i, j) < csn/2. (A.0.57)

ity (a+b)¢<a®+btfora,b>0,and0<c< 1)

I < 32 % exp( — cgn min(M2(i, j) VA, ), M(i, §) /B, j))) (A.0.58)
1=

00 00

< 3; jZlexp( —cgn min(()\ﬁ/ez)[(zi_l)z+21‘1]1‘B,)\n[(2i‘1)2+21‘1]1‘V)).
A similar reasoning bounds. Putting them together yields
| < 6exp( —cgn Min(AZ/€% An)) /[1— exp—cgn min(A3/€2, An))] (A.0.59)
< Texp(—cgn min(A2/e2 Ap)).

This finishes the proof. 0J
Proof of corollary 3:

Proof. By definition 1, for even, > 0, which satisfies (4.22), there exists- 0 such

that:

P(p(60,8 > €n) < P* sup  (Ln(0) —Ln(60)) < _an> (A.0.60)
{p(60,6)<en,0c0}

Pr( sup (Ln(8)—La(B0)) < —ced).
{p(60,8)<en,0c0}
By proposition 4,p(60,én) = Op(&n Whenever we havenax(J(6p),1)An < 2, and

/

€n is the smallest which satisfies (4.22). Therefore replacggwith )\El % whenever

maxJ(8o),1)An < C2€2 results inrho(8o,8) = Op( /2. Now the results directly

follows from proposition 4. 0J
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B.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 2

In this appendix we provide the proofs for the lemmas and @sitjpns which ap-
peared earlier in chapter 2.

Proof of lemma 1:

Proof. The proof is simple and somewhat mechanical. We find a tramsfibon that,
for everyw; andp; produce ao; and ag; in such a way thay ! ; qi = 1, this proves
lemma 1.

Let p= (p1,--.,pn) @andw = (wq,...,w,) are give; defind?y = ZiNzl p; and let

g = %. Now, the problem

n
omin i; —w; logpi (B.0.1)
subject to:
n n
pigi(6) =0 and pi=1 (B.0.2)
2 2
can be transformed to:
n
min —logq; B.0.3
q17-~l~7CIni; gql ( )
subject to:
n n
gigi(6)w =0 and g=1 (B.0.4)
i; iYi i i; i

. pwi p.lfl/wi
with g = By andw; = '—Pwi—.
N

Because this transformation is one to one, if the first proldias a solution the second
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problem will have one and vice versa. O

Proof of lemma 2:

Proof. The existence of a solutioA(w) and p{w), is a consequence of maximization
of a convex function on a compact sent. Virtually the samesaea that grantee the ex-
istence of a solution to the EL procedure, as long as we maitita same assumptions
like the compactness of ti@. Obviously any solution of this problem will depend on
thew = (w1,...,Wp).

let 6(w) and p{w) be a pair that minimize the objective function with the given
constrains. The constrains &€ ; pigi(8) = 0 andS !, pi = 1, because any solution

has to satisfy these constraiféw) and p{w) satisfy these constrains too. Therefore

n
Zi Pi(W)gi(B(w)) =0 (B.0.5)
i=
which is the sample moment conditions. 0J
Proof of proposition 2:
Proof. Let
¢(B,0%) = —2log(n"L(B,0?)) (B.0.6)

be the log empirical likelihood ratio. Using Lagrange mulitirs to optimize/(B, ¢?)

we get

LBt = 5 loalp) ~i(3 p-1) -3 pa(Be?)  (BO7)
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doing some algebra we see that

1
n(1+Ngi(B,0?))

pi = (B.0.8)

andA (B, 0?) minimizes/(B,c?) therefore the log empirical likelihood ratio, which we

seek to minimize is:

((B,0%) = 2i|og{1+x'gi(3,oz)} (B.0.9)

andA € RY satisfies

oB.o% < g(B,d?
A 2 1+Ng(B,0d)

= G1n(B,0%,A) =0 (B.0.10)

differentiating/(B3, 0®) with respect td3 ando?, we have:

%{302):7‘ n fii(ﬁ’—m Gan(B,0%,) (B.0.11)
ag(ali;zo Z igjrflg B/f,czy) = Gan(B.0%,\) (8.0.12)
let's denote
= E[91(B,0°)d1(B,0%)] (B.0.13)
and
5= (E[aglg% 02)]75[69155’202)}) (B.0.14)

Under assumption81 — A4, the solutior(ﬁ,ffz,f\) to this problem is triple such that,
see for example Qin and Lawless (1998)a(B, 52,A) = 0, Gon(B, 62,A) = 0, Gan(B, 62,A) =
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A A

0. In this case the empirical likelihood ratidtB, ¢?) attains its minimum atp, 02)

and\ = )\(fi,cfz). This results in a an asymptotic limit

(ﬂm(ﬁ—ﬁo)) 9 N5 (B.0.15)
v/ (n)(6% - 03)

where> = (B'A~1B)~L. Therefore we can drive the asymptotic variance of the empir
ical likelihood estimatorﬁ andsigjmaz. After some simple algebra we can convince
ourselves thaIf5 = (Ip,0)X(lp,0) andZz = (1,0)2(1,0)". The corresponding asymp-
totic variance of the usual EL estimator, without using thedration method is the

same as the asymptotic variance of quasi-likelihood estinvehich foqu| is:

25, =0 (E [G/(X'B)2XX/ V] ) - (B.0.16)
A standard estimator fas? is
8% =t 3 (%~ GO(Ba)) V(G(XB) (B.0.17)

which we denote its asymptotic variancei%l. Now we are in a position to compare

these variances and drive the optimum weights. We need Hog/fog definitions:

b = E[(s/(o\/(V)))3|x] (B.0.18)
W= E[(e/(o\/(v»)ﬂx] (B.0.19)
Pi=0'Tl o = O%E [G/(%Wxx’} (B.0.20)

1The derivation is a standard practice in the literaturegf@mple see Qin and Lawless (1994) for
detailed derivations and proofs of the asymptotic limitoiteens.
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p ( E[M7)  E[Mtw] )
E[Matw] E[Hstww]

Arz = (E [WG/(X/?)} E [“36/<XIB)XV\/])

a/(V ay/(V)
B1 :(E[%x] : E[\%XV\/})

and finally
1 _w
B = (o Ela)):

Doing some tidies algebra we obtain,

A A1 A
A, Ax
B 0'72A11 B1
0 Bo

Under the assumptionsl — A4 we can calculate to get

and

o 2A 0 -1 -1
BA-1B — 11 4B <A2_211_ AzleZ?ZAzz.l)Bxl
0 0 ' B2A2;1B5

whit

Al :i 1+EW)DE(w) —EW)D?!
k-1 pigw) D1

whereD = cow). Doing some algebra reveals that

2B 1 1 E(w)
27\ Ew) EWEW)

(B.0.21)

(B.0.22)

(B.0.23)

(B.0.24)

(B.0.25)

(B.0.26)

(B.0.27)

(B.0.28)

(B.0.29)



and

A—l B/ B A_l 4 1 O
<A2‘211— 221 %12 221) _ 0O . (B.0.30)
' B2A5, 1B k=110 o

Therefore,
Azzl.lB’szAzzl.l) a_ O
17k

BoA LB, — 1Bl(E(W), ~1)DYE(W),-1)B; =C(w)C'(w)/(k—1)

(B.0.31)

B1 <A§21.1 -

and doing some algebra we have

C(w) = (E [W} —E [\wx\,\/} E(V\/)) D Y2_E {w“\/_ E(w))D~1/?

\%
(B.0.32)
Using the above calculations we can show that,
. A1r C(w)Cl(w)y -1
1 11
zhatB(W) = (Ip,O)Z (|p,0)/ = (F + ﬁ) . (8033)

For any two any two positive definite and symmetrie n matricesA andB we have
A—B>0ifand only ifB~t—A~1 > 0, Therefore finding av to maximizeX; — 33,
is equivalent to findingnv to maximizeC(w)C'(w). Let definen = w and
& = (W —E(w)) form the equation foE(w) we obtained above we ha@w) = E[n¢].

Now we can writeC(w)C'(w) = E(n&’)[E(£&)]*E(&n) by the lemma which will

follow this proof we have

(V'G/(X'B))°XX’

C(w)C'(w) <E| vz ] (B.0.34)
and the equality holds if and only if
n = (EM&)[EE) e (B.0.35)

It can be directly check that the equality is hold whves: w and this finishes

the proof. 0J
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The following lemma was used in the last step of the proof oppsition 2.

Lemma 5:

If & and n are to n-dimensional and m-dimensional random variabled ar< m,
E[J[€][>+[[n]]?] <« and E[£'] > 0, then EN&')[E(&&)] 'E(&n’) < E(n’). Fur-
thermore, equality holds if and onlyrif = (E(nE’)[E(EE’)]*l)E.

Proof. Letc= <E(n£’)[E(EE’)]*1), becaus&]|€]|%+]||n||?] < +, we haveE[(cE —
n)(c& —n)’] > 0 implies thatcE(nn’)c’ — c&n’ —n&’c +nn’ > 0. Replacing ¢ with
(E(n&)[E(E)]) 1) we getE(ng)[E(&&)] *E(&n’) < E(nn’). Equality holds if and
only if E[(c€ —n)(c€ —n)’] =0, which impliesn = ct. O
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C.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 3

Proof of Lemma 1:

Proof. First, notice that

p(1—p)
(1= p)x+p(l—x))

f'(x) = >0 (C.0.1)

which implies that this function is increasing forOp < 1.

Second, we havé(x) < x. To see this, notice that
f(x) <xe (1—p)x< (1—p)¥°+p(l—x)x< x(1—x) > 0.

The last statement is always true becausexX0= 1t* < 1.
Third, if
{an = (1) }0=7, thenlim a, =0

This is so becausi(x) < xandf (x) is increasing together. These imply that'(1t") }
is a bounded and decreasing sequence of real numbers aredoteehas a limit. Let
lim,_~an,=ap > 0. Then,f(ay) < ag, which is a contradiction. Therefora, has to
converge to a fixed point dff(x), which is zero.

The above argument shows that
Inst. (1) <1/2 (C.0.2)
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and, therefore,

{m] £"(1t) < 1/2} £ 0. (C.0.3)

Hence the minimum exists.

Now suppose that < 1. We have:

<1 = f(m) < f(pi') = vmf"(m) < () = (f™(() <1/2 — fM(m) < 1/2)

(C.0.49)
this implies that
{mF™(m) < 1/2} € {m/ (1Y) < 1/2}. (C.0.5)
Therefore,
min{m| fM(11) < 1/2} < min{m|f™(1{) <1/2}, (C.0.6)
which is to sayn < n'.
]

Proof of proposition 3:

Proof. Suppose that at tintean agent defects and chooses the opposite outcome of the
cascade. With probability X u the next actor is a fan who, by assumption, receives a
negative signal (here negative means a signal which parntstopposite direction of

the cascade). His updated belief is
f2(m) >1/2,  since we have> 2. (C.0.7)

Therefore

ENV = 1|Ha] = Pr(V = 1|Hey1) > 1/2, (C.0.8)

so is optimal for him to follow the cascade. If the next agsrd fan, he will perform
the same calculation and will defect onlyfif(1t*) < 1/2 and that is so ifi = 3. Contin-

uing this argument, a fan with angiven by lemma 1 will defect only if "(1t) < 1/2,
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which requires that the last— 1 agents are defectors and that is so if all of them are
non-fans which happens with probability— p)(". In this case, the cascade breaks

at time t+n. Therefore the defection is successful with plulity

(1—p=Y. (C.0.9)

Proof of the proposition 4:

Proof. Let’s suppose there are two acticmandb to be chosen and a fai, sophis-
ticated enough to take in to account the possibility of heedulting from the action
he is about to choose. Also, suppose the star has chosen actBecausen > 2 by
proposition 1 more than 2 opposite signals are needed ferfahito choos®é. Now
suppose that every of tHepredecessors has choderandk is arbitrary large. The
only information thatf can extract from this chain of actions is that the star reszkiv
a signal. The first two non-stars h&dsignals, and the rest of the population is in an
informational cascade. Sindeneeds more than R signals in order to choose action

b, she will follow the star and choose OJ
Proof of Porposition 5:

Proof. Because non-fan traders fallow their own signal, theirip@ation helps to
control any miss-pricing. Therefore, in order to find an uppeund for any possible
bubble, we can assume that all traders are fans.

Suppose everybody receives a negative signal but afteihieggin her/his initial
belief decides to buy. How long can this process continue8ods agy(1t) < f™M(p),

themi" trader stops buying. Therefore, the length of the buyinggss is
n=min{m|g(tt") < f™(p)}. (C.0.10)
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The next step is to investigate how much a bubble can gromduiiese n periods. If
the market maker could see the actual signals he would hateesprice according to
B=g"(p). Since, he cannot see the actual signals and he only obgke/dsuy” and
“sell” actions, he increases the price accordin@.td’herefore, the size of the bubble
is

B-B (C.0.11)

]
Proof of Proposition 6:

Proof. In the proof of proposition 3 we assumed that all tradersams,fwhich implies
that no correction takes place and the size of any possilbleléuapidly grows until it
reaches the established upper bound. Now, if we take intsideration the presence
of noise traders and non-fans, we are going to have an asymmagtdom walk oriR
which moves up and down with different probabilities depgagdn the combination
of fans, non-fans, and the noise traders. The following lensthe core part of the

proof.

Lemma 6:

Let X, X, ... bei.i.d with
PXi=1)=p and RX=-1)=1-p p>1/2
and let
S=X1+Xo+--+X, a=inf{n:§,>0} B=inf{n:S, <0}

Then,
(iI)P(a<w)=1 and RAPB <)<l
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(iNIf Y =infS, thenRY < —k)=P(B< o)k

(il ) Ea = z1.

Proof. Sketch of a proof:
(): We need the following result for the proof of this paristisan be found as theorem

in “Probability: Theory and Exampleby Richard Durrett.”

Theorem 1:

For a random walk orR there are only four possibilities, one of which has probiapil
one.

(1) S, =0, for all n.

(2) § — .

B) & — —o.

(4) —c0 =1liminf S, < limsup$ = c.

We also need the following statement in the proof.
Leta andf be the same as above. Then the four possibilities of theghecorrespond
to the following four combinations(B < «) < 1lor =1and A <) < lor = 1.

Part (i) of the lemma can easily be derived from the fact that

P(B <) <P(a < o). (C.0.12)

(ii): This part is obvious when we consider that t§es are independent, and <

S, Vi.

(i) A result in stopping time theory -sometimes referrecas Wald’s equation- states
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that:

If X1,Xo,... are i.i.d withE|X;| < e, and ifT is a stopping time witftT < oo, then:
ES = EXjEt. (C.0.13)

Apply Wald’s equation to the stopping tinoeA n and letn — oo to obtain:

1 1

0

The only thing that remains is to calculate the probabilftg tbuy” which moves
the price up. This probability is/B(1—p) +Yy. Now to prove part (a), notice that when
y=1/6+1/3uthe 1/3(1—p) +y=1/2, and we have a symmetric random walk in
which Prob(T < o) =1, andE[T| = .

For part (b), ify < 1/6+1/3y, then ¥/3(1—p) +y< 1/2 and, therefore, we have an
asymmetric random walk, thus, by p&rf of lemma 3,P(T < «) < 1. In additions,

by part(ii) of the lemma 3,
P(T <o) =P(B <) (C.0.15)

For part (c), notice that if > 1/6+ 1/3, we have an asymmetric random walk with
the probability going up greater than the probability ofrgpdown. By part(i) of

lemma 3,Prob(T < ) =1 and by partiii ) of lemma 3, we have

E[T] = an_ 1 (C.0.16)

where p is the probability of going up. O

112



D.0 BIBLIOGRAPHY

ALTONJI, J. and L.M. SEGAL , “Small Sample Bias in GMM Estimation of Covari-
ance StructuresJournal Business and Economic Statistit896,14, 353-366.
ANDERSON, D. W. K., “Consistent Moment Selection Procedures for Generalized

Method of Moments EstimationEEconometrical999,67, 543-564.

ANDREWS, D.W. and B. LU, “Consistent Model and Moment Selection Procedures
for GMM Estimation with Application to Dynamic Panel Data Mlels,” Journal
of Econometrics2001,101, 123-165.

ANDREWS, D.W.K., “Empirical Process Methods in Econometrics,” in R.F. Engl
and D. McFadden, edddandbook of Econometric ed., Vol. 4, Elsevier, 1986,
chapter 37, pp. 2247-2294.

AVERY, P. and P. ZEMSKY, “Multidimentional Uncertainty and Herd Behavior in
Financial Markets,American Economic Review998,88, 724—48.

BACK, K. and D. BROWN, “Implied Probabilities in GMM EstimatorsEconomet-
rica, 1993,61, 971-976.

BALA, V. and S. GOYAL, “Learning from Neighbours, The Review of Economic
Studies1998,65 (3), 595-621.

BANERJEE, A., “A Simple Model of Herd Behavior, Quarterly Journal of Eco-
nomics 1992,107, 797-818.

113



BERAN, R. and L. DUMBGEN, “Modulation of estimators and confidence sets,”
The Annals of Statistic4998,26, 1826—-1856.

BIKHCHANDANI, S. and S. SHARMA , “Herd Behavior in Financial Markets,”
IMF Staff Papers2000,47 (3), 279-310.

, D. HIRSHLEIFER, and I. WELCH , “A Theory of Fads, Fashion, Custom
and Cultural Change as Informational Cascadésiirnal of Political Economy

1992,100, 992-1026.

BREIMAN, L. , “Heuristics of Instability and Stabilization in Model ®etion,” An-
nals of Statistics1996,24, 2350—-2383.

CANER, M., “LASSO Type GMM Estimator,"Econometric Theory, Forthcoming
2008.

CHAMBERLIAN, G. , “Econometrics and Decision Theoryldurnal of Economet-
rics, 2000,95, 255—-283.

CHEN, X.S. and H. CUI, “An Extended Empirical Likelihood For Generalized Linear
Models,” Statistica Sinica2003,13, 69-81.

CORCORAN, S.A., “Bartlett Adjustment of Empirical Discrepancy Statistic
Biometrikg 1998,85, 967-972.

COX, D. D. and F. O'SULLIVAN , “Asymptotic Analysis of Penalized Likelihood
and Related EstimatorsThe Annals of Statistic4990,21, 903-924.

CRESSIE, N. and T. READ, “Read, Multinomial Goodness of Fit Testddurnal of
the Royal Statistical Society, Series1®84,46, 440-464.

DURRETT, A. R., Probability: Theory and Example$homson Brooks/Cole, 2005.

FAN, J. and R. LI, “Variable Selection via Nonconcave Penalized Likelihcodl
its Oracle Properties,Journal of the American Statistical Associatj@901,96,

1348-1360.

114



__and

, “Variable Selection For Cox’s Proportional Hazard Modadi g railty
Model,” Annals of Statistic2002,30, 74-99.

FRANK, L.LE. and J.H. FRIEDMAN , “A Statistical View of Some Chemometrics
Regression Tools,Technometrics1993,35, 109-148.

FRENCH, S. and D.R. INSUA, Statistical Decision TheoryA Hodder Arnold Pub-
lication, 2000.

GEYER, C.J., “On the Asymptotics of Constrained Estimation&tinals of Statistigs
1994,22, 1993-2010.

GLOSTEN, R. L. and P. R. MILGROM , “Bid, Ask and Transaction Prices in a
Specialist Market with Heterogeneously Informed Tradelsurnal of Financial

Economics1985,14, 71-100.

GRAHAM, J. R., “Herding among Investment Newsletters: Theory and Ewid¢n
Journal of Finance1999,54, 237-68.

HANSEN, L.P., “Large Sample Properties of Generalized Methods of MosEsti-
mators,”"Econometrical982,50, 1029-1054.

HEATON, J. HANSEN L.P. and A. YARON, “Finite-Sample Properties of Some Al-
ternative GMM Estimators Journal of Business and Economic Statistt896,
14, 262—-280.

HIRANO, K. , “Decision Theory in EconometricsDept. of Economics, University of
Arizona Working Paper2006.

IMBENS, G.W., “One-Step Estimators for Over-ldentified Generalized et of
Moments Models,Review of Economic Studie997,64, 369-408.

IMBENS, G.W. SPADY R.H. and P. JOHNSON, “Information Theoretic Ap-
proaches to Inference in Moment Condition ModeE¢onometrica 1998, 66,

333-357.

115



JAMES, W. and C. STEIN, “Estimation With Quadratic Loss,” in “Berkeley Sym-
posiume on Mathematical Statistics and Probability” UoiCalif. Press. 1961,
pp. 361-379.

JING, B.Y. and A.T.A. WOOD, “Exponential Empirical Likelihood is Not Bartlett
Correctable,’Annals of Statistics1996,24, 365—369.

KABAILA, P. , “The Effect of Model Selection on Confidence Regions andlieten
Regions,"Econometric Theoryl995,11, 537-549.

KIM, J. and D. POLLARD , “Cube root asymptotics,The Annals of Statistic990,
18, 191-219.

KITAMURA, Y. and M. STUTZER , “An Information Theoretic Alternative to Gen-
eralized Method of Moments Estimatiof;tonometrical997,65, 861-874.

KNIGHT, K. , “Epi-Convergence in Distribution and Stochastic Equim8mntinuity,”
University of Toronto, Department of Statistics, Workiragp€r, 2003.

_ and W. FU, “Asymptotics for Lasso-type Estimatorgyhnals of Statistic2000,
28, 1356-1378.

KOLACZY, E. D. , “An Information Criterion for Empirical Likelihood with @neral
Estimating Equations,” 1995. unpublished manuscriptddgpent of Statistics,
University of Chicago.

KOLACZYK, E.D. , “Empirical Likelihood For Generalized Linear Mode§tatistics
Sinica 1994,4, 199-218.

KOLMOGOROQV, A. N. and V. M. TIHOMIROV , “e-entropy and-capacity of Sets
in Function SpacesJspekhil Math. Nauk.1959,14, 3—86. English translation,
American Math. Soc. Transl. 277-364 (1961).

LAZAR, A.N., “Bayesian Empirical Likelihood,Biometrikg 2003,90, 319-326.

LEHMANN, E.L. and G. CASELLA , Theory of Point EstimatigrSpringer-Verlag,
1998.

116



LINDSEY, J., Applying Generalized Linear ModelSpringer-Verlag, 1997.

McCULLAGH, P. and J.A. NELDER , Generalized Linear Model¢.ondon: Chap-
man and Hall, 1990.

MILGROM, P. R. and N. STOKEY , “Information, Trade and Common Knowledge,”
Journal of Economic Theoyy982,26, 17-27.

MORRIS, C.N., “Parametric Empirical Bayes Inference: Theory and Amilans,”
Journal of the American Statistical Associatjd®83,78, 47-55.

NATTINGER, A. B. and OTHERS, “Effect of Nancy Reagan’s Mastectomy on
Choice of Surgery for Breast Cancer by US WomelAMA 1998,279, 762—
766.

NEWEY, W.K. and McFADDEN , “Large Sample Estimation and Hypothesis Test-
ing,” in R. F. Engle and D. McFadden, edslandbook of Econometricsol. 4,
Elsevier, 1986, chapter 36, pp. 2111-2245.

___ and R.J. SMITH, “Higher order properties of GMM and Generalized Empirical
Likelihood Estimators,Econometrica2004,72, 219-255.

OWEN, A.B., “Empirical Likelihood Ratio Confidence Intervals for a gia Func-
tional,” Biometrika 1988,75, 237—-249.

, Empirical Likelihood London: Chapman and Hall, 2001.

POLLARD, D., Convergence of Stochastic Procesg¢sw York: Springer-Verlag,
1984.

PRESTON, B. HOUNG H. and M. SHUM, “Generalized Empirical Likelihood-
Based Model Selection Criteria for Moment Condition ModelEconometric

Theory 2003,19, 923-943.

QIN, J. and J. LAWLESS, “Empirical Likelihood and Generalized Estimating Equa-
tions,” Ann. Statist.1994.

117



RAMALHO, J.S., “Small Sample Bias of Alternative Estimation Methdos fooM
ment Condition Models: Monte Carlo Evidence for CovariaBteictures,’Stud-
ies in Nonlinear Dynamics & Econometricd005,9 (1).

, “Bootstrap Bias-Adjusted GMM Estimatorg&tonomics letter2006,92, 149—
155.

RAO, C. R. and Y. WU, “On Model Selection,” IMS Lecture Notes - Monograph
Series (2001) Volume 38 2001.

SCHARFSTEIN, D. S. and J. C. STEIN “Herd Behavior and Investmen&merican
Economic Revieyi 990,80 (3).

SCHENNACH, S.M., “Bayesian Exponentiaally Tilted Empirical Likelihood,”

Boimetrikg 2005,92, 31-46.

, “Point Estimation with Exponentially Tilted Empirical kelihood,” Ann.

Statist, 2007,35, 634-672.

SCLOVE, S.L., “Improved Estimators for Coefficients in Linear Rergressi Jour-
nal of American Statist. Ass¢d. 968,63, 597-606.

SHEN, X., “On Method of Sieve and PenalizatioiThe Annals of Statisticd997,25,

2555-2592.

, “On the Method of Penalization3tatistica Sinical998,8, 337-357.

SIRVASTAVA, R. K. and OTHERS, “Market-Based Asset and Shareholder Value: A
Framework for Analysis,Journal of Marketing1998.

SLATER, I. R., SOROS: The Unauthorized Biography, the Life, Times andifigad
Secrets of the World's Greatest InvestbicGraw-Hill, 1997.

SMITH, R.J., “Alternative semi-parametric likelihood approaches tnegralized

method of moments estimatiorEtonomic Journall1997,107, 503-519.

, “Weak Instruments and Empirical LikelihoodWorking Paper, University of

Cambridge 2005.

118



TAUCHEN, G., “Statistical Properties of Generalized Method-of-MonseBstima-
tors of Structural Parameters Obtained from Financial Miabata,” Journal of
Business and Economic Statisti€886,4, 397-416.

TIBSHIRANI, R.J. , “Regression Shrinkage and Selection Via Las3ovirnal of The
Royal Statistical Society Series 996,58, 267—288.

TRUEMAN, B., “Analyst Forecasts and Herding Behaviayiew of Financial Stud-
les 1994,7, 97-124.

VAART, A.W. VAN DER and WELLNER , Weak Convergence and Empirical Pro-
cessesNew York: Springer Verlag, 1996.

WELCH, I., “Herding Among Security Analysts,Journal of Financial Economi¢s
2000,58 (3), 369-96.

WONG, W. H. and X. SHEN, “Probability Inequalities for Likelihood Ratios and
Convergence Rate of Sieve MLEJhe Annals of Statistic4995,18, 339-362.

ZHANG, J. and I. GIJBELS, “Sieve Empirical Likelihood and Extensions of the
Generalized Least SquareS¢andinavian Journal of Statisticz003,30, 1-24.

ZHAO, P. and B. YU, “On Model Selection Consistency of Lassalgurnal of Ma-
chine Learning ResearcR006,7, 2541-2563.

ZWIEBEL, J. , “Corporate Conservatism and Relative Compensatidoytnal of Po-
litical Economy 1995,103(1), 1-25.

119



	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Bias, Standard Error (SE), and RMSE of Design 1
	2. Bias, Standard Error (SE), and RMSE of Design 2
	3. Percentage of Correct Model
	4. Standard Error(SD) and Bias of the QL Estimator
	5. Standard Error(SD) and Bias of the WQL Estimator
	6. Bias comparison of the EL and EL using Weights
	7. Bias comparison of the EL and EL using Weights

	LIST OF FIGURES
	1. Price of the asset being inflated by the fan traders
	2. A sample path of the real price as implied by the model
	3. 30% fans, 10% noise and 60% normal traders
	4. 60% fans, 10% noise and 30% normal traders

	1.0 MODEL SELECTION FOR MOMENT CONDITION MODELS USING THE PENALIZED EMPIRICAL LIKELIHOOD PROCEDURE
	1.1 Introduction
	1.1.1 GMM and GEL
	1.1.2 Model Selection

	1.2 Definition of PEL
	1.3 Model Selection Using PEL
	1.3.1 Definition and Assumptions
	1.3.1.1 Properties of Lasso-EL Estimator:
	1.3.1.2 Monte Carlo Simulations


	1.4 PEL with a General Penalty function
	1.4.1 Asymptotic Normality
	1.4.2 Rate of Convergence
	1.4.3 Example: Penalized Minimum Distance

	1.5 Conclusions

	2.0 MODULATION METHOD FOR EMPIRICAL LIKELIHOOD ESTIMATOR
	2.1 Introduction
	2.1.1 GMM and GEL
	2.1.2 Shrinkage and Modulation
	2.1.3 Other Interpretations for 

	2.2 Modulation Method
	2.2.1 How Modulation Works
	2.2.2 Modulated EL
	2.2.3 The Minimum distance Criteria
	2.2.4 Minimum Risk Criteria

	2.3 Generalized Linear Model (GML) as an Example
	2.4 Implementation and Monte Carlo Simulations
	2.4.1 GLM Estimation
	2.4.2 Heteroskedastic Data

	2.5 Conclusions 

	3.0 CELEBRITY EFFECTS: HOW FAMOUS TRADERS IMPACT THE FINANCIAL MARKET
	3.1 Introduction
	3.2  The Model
	3.2.1  A Simple Model
	3.2.2  Some Observations:
	3.2.3 Fragility:
	3.2.4  Possible Extensions

	3.3  An Example: Financial Markets 
	3.3.1 Stating the problem 
	3.3.2  A Simple Example
	3.3.3 A General Model
	3.3.3.1 A Definition of Herd Behavior:

	3.3.4  Some Observations:
	3.3.5 A Possible Extension

	3.4 Conclusion

	A.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 1
	B.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 2
	C.0 PROOFS AND SUPPLEMENTAL MATERIALS FOR CHAPTER 3


	D.0 BIBLIOGRAPHY

