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THE CARTAN-WEYL CONFORMAL GEOMETRY OF A PAIR OF

SECOND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS

Kiplin Perkins, PhD

University of Pittsburgh, 2006

Abstract: We explore the conformal geometric structures of a pair of second-order

partial-differential equations. In particular, we investigate the conditions under

which this geometry is conformal to the vacuum Einstein equations of general rela-

tivity. Furthermore, we introduce a new version of the conformal Einstein equations,

which are used in the analysis of the conformal geometry of the PDE’s.
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1.0 INTRODUCTION

In late 1915, Einstein introduced his theory of general relativity (GR), which de-

scribed gravitation in terms of the curved geometry of space-time. Only a few months

after its publication, Schwarzschild discovered the first exact solution to Einstein’s

field equations, the Schwarzschild solution, which paved the way for the theory of

black holes. In the intervening 90 years, GR has had considerable success in multiple

branches of physics and mathematics. Some of the many topics explored using the

theory are the solutions of the field equations, gravitational waves, the formation of

galaxies, the formation of stars and black holes, quantum theories of gravity, and the

origin of the universe.

Another branch of research in GR has been the study the geometric structure of

the field equations. Because these equations are a set of 10 complicated, non-linear

partial differential equations, they are, in general, rather difficult to analyse. Thus,

many different techniques and concepts have been developed to aid in their analysis.

One idea in particular, conformal transformations, is used through-out this work.

Conformal transformations are transformations that preserve angles. They have

many applications in physics and mathematics, e.g., the study of solutions to La-

place’s equation in 2 dimensions. Another common application is cartography: on

a city’s map, the lengths of the streets have been rescaled, but the relative angles
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between the streets have been preserved.

In GR, conformal transformations are obtained by multiplying the metric tensor

by a positive scalar function (the conformal factor) to obtain a new, conformally-

related metric. Since metrics are used to measure distance, the effect of a conformal

transformation is a rescaling of space-time. The rescaling can either be an expansion

or a contraction.

One of the major successes of conformal transformations in GR has been the

study of conformal infinity [21], [3]. In this case, one is interested in the “fall-off”

behaviour of physical quantities (e.g., solutions to the field equations) as they are

extended to infinity. In general, the limit procedures are very complicated. One

can simplify the issue, however, by using a conformal transformation to rescale the

infinite boundary of space-time to a finite, conformal boundary. Then any asymptotic

properties of interest are more easily found at this finite boundary.

Conformal transformations of the metric raise a natural question: what are the

properties of the Einstein field equations under a conformal transformation. This

issue, first raised in the context of null infinity, has found many related applications,

such as the numerical evolution of space-time for simulations [3]. In particular, we

will be concerned with the conformal transformations of the vacuum (i.e., source-

free) Einstein equations, which are a set of differential equations for the metric.

If the metric is conformally transformed, however, the conformal vacuum Einstein

equations are (in the standard form) differential equations for the metric and the

conformal factor. These conformal field equations, containing the conformal factor,

have been extensively studied [3], [4].

In general, an arbitrary metric will not satisfy the Einstein equations, i.e., it

will not be an Einstein metric. One can ask, however, if there exists a conformal

factor that transforms this metric into a new metric that does satisfy the Einstein
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equations. If such a conformal factor exists, then it and the original metric must

satisfy the conformal Einstein equations. In other words, this metric is conformally

Einstein.

In this work, one of our objectives will be the introduction of a new version of the

conformal Einstein equations which does not explicitly contain the conformal factor.

Thus, this version is a set of differential equations solely for the conformal metric; the

conformal factor is contained in a set of auxiliary differential equations. Therefore,

one can use these field equations to determine whether a given metric is conformally

Einstein without having to consider the conformal factor. The field equations only

determine whether this factor exists. If information about it is needed, one then uses

the auxiliary equations that contain the factor.

As an application of this new version of the conformal field equations, we explore

the Cartan-Weyl geometry of differential equations. Geometric methods have been

used to study differential equations and their solutions since the 1930’s [1], [2]. For

most of the time since then, this analysis has essentially been mathematical in na-

ture. Beginning in the early 1980’s [16] - [17], however, and considerably expanded

upon in the 1990’s, Frittelli, Kozameh, Newman, et al. [6] - [10] demonstrated that

when a certain condition, known as the Wünschmann condition [23], is satisfied,

the 4-dimensional solution space of a pair of second-order partial-differential equa-

tions (PDE’s) naturally contains a conformal Lorentzian metric. In other words, the

solution space of these PDE’s can be interpreted as a conformal space-time.

In this picture, the conformal metric is constructed as a functional of the inhomo-

geneous functions of the PDE’s. Thus, all other geometric quantities (the connection

and the curvatures) are also functionals of these functions. This raises two issues,

which will be explored in detail in this work. First, what are the explicit forms of

these quantities in terms of the inhomogeneous functions. And second, what further
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conditions on the inhomogeneous functions are needed in order to make the metric

constructed from them conformally Einstein.

These issues have been partially addressed using the standard form of the con-

formal Einstein equations [8] - [9], which explicitly contains the conformal factor,

and by considering the simpler case of 3-dimensional space-times [11] - [12]. Our

objective here is to 1.) fill in the details of the construction the geometric quantities

in 4 dimensions, namely the Weyl connection and the Cartan curvatures; and 2.) use

our new version of the conformal Einstein equations to analyse this geometry.

This work is organised in the following way. In chapter 2, we briefly present the

vacuum Einstein equations and some of their geometric structures. We also present

an alternate, non-standard form of the vacuum Einstein equations. Next, in chapter

3, we begin by reviewing conformal transformations of the metric and the associated

curvatures. We then construct three versions of the conformal Einstein equations,

the last being our new version, which does not contain the conformal factor. Then, in

chapter 4, we give an over-view of the null-surface formulation (NSF) of a conformal

Lorentzian metric. This introduces the notion of constructing a metric in terms of the

inhomogeneous functions of a pair of PDE’s. Also in that chapter, we first encounter

the Wünschmann condition, which is the condition for the existence of a conformal

metric on the space-time (i.e., the solution space of the PDE’s). After reviewing

some of the details of the NSF, we change the context of our discussion in chapter 5

to the pair of PDE’s and their conformal geometry. In that chapter, we examine the

geometry (the metric, the connections, and the curvatures) in a fairly general and

technical manner. The purpose of this, as we have said, is to fill in many gaps in the

development of this geometry. Accordingly, much of the work in that chapter is new.

Furthermore, we will derive the Wünschmann condition from a very different point

of view compared to its derivation in the NSF. Lastly, in chapter 6, we apply our
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new version of the conformal Einstein equations to the Cartan-Weyl geometry of the

PDE’s. In particular, we present an outline for how one finds the conditions on the

inhomogeneous functions of the PDE’s that make the metric conformally Einstein.

The work discussed in chapter 6 is new, as is most of the work in chapter 5 and

section 3.3.
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2.0 THE VACUUM EINSTEIN EQUATIONS

In this preliminary chapter, we briefly discuss the vacuum Einstein equations and

some of their features. Beginning in section 2.1, we define the necessary curvature

tensors and their identities on a standard space-time manifold. Then, in section 2.2,

we discuss the standard version of the vacuum Einstein equations and introduce an

alternate form.

2.1 DEFINITIONS OF THE CURVATURES

We begin with a standard four-dimensional space-time M which has a metric gab and

a metric connection ∇c , which has the property

∇c gab = 0 . (2.1)

Using this connection, the Riemann curvature tensor Ra
bcd is given by

(∇c∇d −∇d∇c)V
a = Ra

bcdV
b , (2.2)

6



for an arbitrary vector V a . From the definitions of the Riemann tensor and the

metric connection, it follows that the Riemann tensor has the symmetries

Rabcd = R[ab][cd] , (2.3)

Rabcd = Rcdab , (2.4)

Ra[bcd] = 0 (Bianchi symmetry) , (2.5)

where Ra[bcd] = 1
3
(Rabcd + Racdb + Radbc). Rabcd also satisfies the Bianchi identity,

0 = ∇[aRbc]de =
1

3
(∇aRbcde +∇bRcade +∇cRabde) (Bianchi identity) . (2.6)

From the Riemann tensor and the metric, the Ricci tensor Rbd , the Ricci scalar

R, the Schouten tensor Pab , and the Schouten scalar P are defined as

Rbd = gacRabcd , (2.7)

R = gabRab , (2.8)

Pab =
1

2
Rab − 1

12
Rgab , (2.9)

P = gabPab =
1

6
R . (2.10)

Using Eqs (2.4) and (2.7), it is clear that the Ricci tensor, and, thence, the Schouten

tensor are symmetric:

Rab = R(ab) , Pab = P(ab) . (2.11)

Remark 2.1.1. From its definition, one sees that the Schouten tensor contains the

same information as the Ricci tensor. We will find this fact useful in simplifying

many of our subsequent expressions (as we see in the definition of the Weyl tensor,

below) and in connecting the tensor language of the Einstein equations with the

p-form language of the Cartan construction found in chapters 5 and beyond.
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The Weyl curvature tensor Cabcd is defined as

Cabcd = Rabcd − 2Pa[cgd]b + 2Pb[cgd]a . (2.12)

From its definition, the Weyl tensor inherits the symmetries of the Riemann tensor:

Cabcd = C[ab][cd] , (2.13)

Cabcd = Ccdab , (2.14)

Ca[bcd] = 0 . (2.15)

In addition, it is completely traceless,

gacCabcd = 0 . (2.16)

At this point, it will be useful for us to restrict our attention to so called generic

metrics, which are defined by the properties:

V aCabcd = 0 ⇒ V a = 0 ,

H [ab]Cabcd = 0 ⇒ H [ab] = 0 , (2.17)

T (ac),TFCabcd = 0 ⇒ T (ac),TF = 0 ,

where V a, H [ab], and T (ac),TF are arbitrary, and the trace-free tensor T (ac),TF is defined

by

T (ac),TF = T ac − 1

4
Tgac . (2.18)

Since this restriction only excludes a few members of a small class of metrics (the

algebraically special metrics), we have not lost much generality. The above properties

of generic metrics will be used in the proofs of several important theorems in the this

chapter and the next.
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2.1.1 The Contracted Bianchi Identities

Taking two consecutive traces on the Bianchi identity yields the contracted Bianchi

identities. They are, respectively,

∇eRebcd = ∇cRdb −∇dRcb , (2.19)

∇eRed =
1

2
∇dR . (2.20)

Using Eqs (2.12), (2.9), and (2.10), the contracted Bianchi identities can be re-written

in terms of the Weyl and Schouten tensors:

∇eCebcd = ∇cPdb −∇dPcb , (2.21)

∇ePed = ∇dP . (2.22)

Clearly Eqs (2.19) and (2.21) have the same form, as do Eqs (2.20) and (2.22). Under

a conformal transformation, however, the left-hand side of Eq (2.21) is much simpler

than that of Eq (2.19). (See section 3.1, Eq (3.18).) Therefore, we will often use the

second set of the contracted Bianchi identities, i.e. those that contain Cabcd and Pab.

2.2 THE EINSTEIN EQUATION

The (vacuum) Einstein equations are

Rab − 1

2
gabR + Λgab = 0 , (2.23)

where Λ is the cosmological constant. A metric that satisfies these equations is said

to be an Einstein metric.
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From the trace of Eq (2.23),

Λ =
1

4
R , (2.24)

and, thus, the Einstein equations can be re-written as

RTF
ab ≡ Rab − 1

4
gabR = 0 , (2.25)

where RTF
ab is the trace-free part of Rab . Thus, for an Einstein metric, the Ricci

tensor is given as

Rab =
1

4
Rgab . (2.26)

Remark 2.2.1. If one takes the cosmological constant to be zero,

Λ = 0 , (2.27)

then the Ricci tensor vanishes, R = 0 , and the Einstein equations are simply

Rab = 0 . (2.28)
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2.2.1 The Yang Equation and C-Space

According to Eq (2.24), R = 4Λ = constant for Einstein metrics. Thus, the covariant

derivative of Eq (2.26) yields

∇cRab =
1

4
∇c(gabR) = 0 ; (2.29)

or, terms of the Schouten tensor,

∇cPab = 0 . (2.30)

Therefore, for Einstein metrics the contracted Bianchi identity, Eq (2.21), is

Ybcd ≡ ∇eCebcd = 0 . (2.31)

The tensor Ybcd has 16 components and is known as the Yang tensor. The 16

equations Ybcd = 0 are the Yang equations, and from their definitions, they are

clearly necessary conditions for the metric gab to be Einstein. They are not sufficient,

however, since the substitution of ∇eCebcd = 0 into Eq (2.21) only implies

∇cPdb = ∇dPcb . (2.32)

This equation is not sufficient to have Rab = 1
4
Rgab.

A metric that satisfies the Yang equations defines a C-space [18]. Since the Yang

equations are necessary but not sufficient for a metric to be Einstein, it follows that

Einstein spaces are subsets of C-spaces [18].
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2.2.2 An Alternate Form of the Einstein Equations

As we have seen, the Yang equations, Yabc = ∇eCeabc = 0, are not sufficient for

a metric to be Einstein. To gain sufficiency, metrics need to also satisfy another

condition, namely the vanishing of the Bach tensor Bab ,

Bab = ∇c∇aCabcd +
1

2
RcaCabcd . (2.33)

Its vanishing, Bab = 0, is called the Bach equations.

Theorem 2.2.1 (Kozameh, et al. [18]). The Yang- and Bach equations are nec-

essary and sufficient conditions for a generic metric to be Einstein (i.e., generically

Einstein):

gab is generically Einstein ⇔





Yabc = 0 ,

Bbd = 0 ,

⇒ Rab =
1

4
Rgab . (2.34)

Proof. The proof follows the work of [18]. We begin by showing that the pair (Yabc =

0 , Bab = 0) is necessary for all Einstein metrics. We have already shown that if a

metric is Einstein, then the Yang tensor must vanish. Since the first term of the

Bach tensor is just a derivative of the Yang tensor, it too must vanish. Moreover,

using Eq (2.26), the second term of the Bach tensor is

RcaCabcd =
1

4
RgcaCabcd = 0 , (2.35)

where we have used the trace-free property of the Weyl tensor, Eq (2.16). Therefore,

the vanishing of the Bach tensor is necessary for a metric to be Einstein.

Before showing that the pair (Yabc = 0 , Bab = 0) is sufficient, we demonstrate

the insufficiency of each member of the pair. We have already seen that Yabc = 0

alone is insufficient. In fact, the insufficiency of Bab = 0 follows a similar argument:
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the vanishing of Bab only determines that ∇c∇aCabcd = −1
2
RcaCabcd , which, in turn,

does not imply that Rab = 1
4
Rgab. Therefore, at least both the Yang tensor and Bach

tensor must vanish in order to have sufficiency.

To show sufficiency, begin with the pair

0 = Yabc = ∇aCabcd , (2.36)

0 = Bab = ∇c∇aCabcd +
1

2
RcaCabcd . (2.37)

Since the Yang tensor vanishes, the first term of the Bach tensor vanishes identically.

Thus, the vanishing of the Bach tensor becomes

0 = RcaCabcd = (Rca,TF +
1

4
Rgca)Cabcd = Rca,TFCabcd , (2.38)

where we have again used the trace-free property of the Weyl tensor and the definition

of RTF
ab given in Eq (2.25). Restricting our attention to generic metrics,

Rca,TFCabcd = 0 ⇒ Rca,TF = 0 ⇒ gab is generically Einstein . (2.39)

Therefore, presuming that we have generic metrics, as defined in Eq (2.17), the

set of conditions 



Yabc = 0 ,

Bbd = 0 ,

(2.40)

is an alternate, though non-standard, form of the Einstein equations. These condi-

tions are actually the integrability conditions of Eq (2.26),

Rab =
1

4
Rgab , (2.26)
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which ensure the existence of solutions, namely generic Einstein metrics. Although

these integrability conditions are useful in the study of differential equations, they are

not of much interest to physicists. One normally either begins with a specific metric

(or class of metrics) and then imposes the Einstein equations on that metric, or one

begins with the Einstein equations for a specific (class of) Ricci tensor and then

attempts to solve for the appropriate metric solutions. In either case, the conditions

(2.40) are not generally needed for these procedures.

The conformal transformations of Eq (2.26), however, are particularly interest-

ing, as they arise naturally from physical considerations. We will demonstrate this

physical perspective in a later chapter. First, we define and briefly explore conformal

transformations in the following chapter.
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3.0 CONFORMAL TRANSFORMATIONS

In this chapter, we introduce and discuss the idea associated with conformal trans-

formations. In section 3.1, we define conformal transformations applied to metrics

on the space-time and then apply it to the curvature tensors of the previous chapter.

Next, in section 3.2, we transform the Einstein equations and the pair of Yang-

and Bach equations, from which we obtain two versions of the conformal Einstein

equations. Finally, in section 3.3, we introduce a new version of the conformal

Einstein equations.

3.1 THE TRANSFORMATION OF THE METRIC AND THE

CURVATURES

Basically, the idea of a conformal transformation is a transformation that preserves

angles, i.e., a metric ĝab is the conformal transformation of gab if

ĝab = e2φgab (3.1)

for some arbitrary smooth scalar function φ, called the conformal parameter. Fur-

thermore, by requiring that

ĝaeĝeb = δa
b = gaegeb , (3.2)

15



one also has that

ĝab = e−2φgab . (3.3)

Remark 3.1.1. One can also give a conformal transformation as

ĝab = Ω2gab , (3.4)

where Ω is called the conformal factor. By comparing the above equation with Eq

(3.1), the conformal-parameter and factor are clearly related by φ = ln Ω. Through-

out this work, we will actually use both versions of conformal transformations. After

the following comment, however, we will only use the version given in Eq (3.1) for

the remainder of this chapter

Remark 3.1.2. In addition to depending on the the space-time coordinates xa , the

function Ω (or, equivalently, φ) can, in general, depend on other parameters. In

particular, in chapters 4 and 5, we will be investigating the conformal transformations

of the form

ĝab (xa) = [Ω (xa, s, s∗)]2 gab (xa, s, s∗) , (3.5)

where the parameters (s, s∗) are the complex stereographic coordinates on the 2-

sphere.

For an arbitrary vector V a , the two metric connections of Eq (3.1) are related

by

∇̂cV
a = ∇cV

a + χa
bcV

b , (3.6)
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where

χabc = gabφc − gbcφa + gcaφb (3.7)

and

φa ≡ φ,a = ∇aφ = ∇̂aφ = ∂aφ . (3.8)

In particular,

∇̂cĝab = 0 , ∇cgab = 0 , (3.9)

and

∇̂cgab = −2φc gab . (3.10)

From Eq (3.6) and the definition of the Riemann tensor, Eq (2.2), one can con-

formally transform Ra
bcd to obtain

R̂a
bcd = Ra

bcd

+ 2
(
δa
[cφd]φb − gb[cφd]φ

a +∇bφ[cδ
a
d] −∇aφ[cgd]b − φeφ

eδa
[cgd]b

)
.

(3.11)

Then, from Eqs (3.3), (2.7), (2.8), (2.9), and (2.10), the conformal transformations

of the Ricci tensor, etc. are

R̂ab = Rab + 2φaφb − 2∇aφb − gab (2φeφe +∇eφe) , (3.12)

R̂ = e−2φ{R− 6 (∇eφe + φeφe)} , (3.13)

P̂ab = Pab + φaφb −∇aφb − 1

2
gabφ

eφe , (3.14)

P̂ = e−2φ{P −∇eφe − φeφe} . (3.15)

Since the connections ∇̂a and ∇a are torsion-free,

∇afb = ∇bfa , (3.16)
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for some arbitrary smooth function f , the conformal Ricci- and Schouten tensors are

symmetric.

From Eq (3.11) and the definition of the Weyl tensor, Eq (2.12), it is straight-

forward to show that, given the appropriate index position, the Weyl tensor is con-

formally invariant,

Ĉa
bcd = Ca

bcd . (3.17)

Thus, using Eqs (3.6) and (3.7), it is easy to compute the conformal Yang tensor,

Ŷbcd = ∇̂aĈ
a

bcd = ∇aC
a

bcd + φaC
a

bcd = Ybcd + φaC
a

bcd . (3.18)

The vanishing of Ŷbcd is important for obtaining one version of the conformal

Einstein equations. In fact, as we will see in Section 3.3, it plays a central role in

the development of the third, new version.

3.2 PREVIOUSLY KNOWN VERSIONS OF THE CONFORMAL

EINSTEIN EQUATIONS

In this section, we encounter and briefly discuss two known versions of the conformal

Einstein equations. The first version is very well known, while the second is less

known. Each of the two versions is a set of equations containing the metric gab and

the conformal factor φ. We will expound upon this important point below. For

comparison, in Section 3.3 we will discuss a new version of the conformal Einstein

equations that does not explicitly contain φ.
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3.2.1 The First Version of the Conformal Einstein Equations

Suppose that a metric ĝab is Einstein:

R̂TF
ab = R̂ab − 1

4
R̂ĝab = 0 . (3.19)

Now, using Eqs (3.12) and (3.13), the inverse conformal transformation of R̂TF
ab is

R̂TF
ab = RTF

ab − 2∇aφb + 2φaφb +
1

2
gab (∇cφc − φcφc) ; (3.20)

thus, we have our first version of the conformal Einstein equations,

0 = RTF
ab − 2∇aφb + 2φaφb +

1

2
gab (∇cφc − φcφc) . (3.21)

The above equation is the first, and most well known, version of the conformal

Einstein equations. It has been extensively used to study null-infinity [20], [3] and

gravitational radiation [3], [4].

It is important to point out that this version of the conformal Einstein equations

is a set of equations for both the metric gab and the conformal factor φ. If one is

given an arbitrary metric gab a priori, then, in general, it will not be Einstein. One

may wonder, however, if there exists a conformal factor φ so that the conformal

transformation of gab is Einstein. In general, such a φ will not exist. If it does exist,

then the pair (gab , φ) must satisfy (3.21). In this case, the metric gab is conformally

Einstein, and, in general, the equations (3.21) can be solved for both φ and the gab.
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3.2.2 The Second Version of the Conformal Einstein Equations

To obtain the second version of the conformal Einstein [18], one simply conformally

transforms the set of conditions (Yabc = 0 , Bab = 0), which are equivalent to the

vacuum Einstein equations. We begin by transforming the Yang- and Bach tensors,

and, then, we impose the vanishing of these conformally transformed equations.

In terms of the “unhatted” ∇a and Ca
bcd, the conformal transformations of the

Yang tensor Yabc and the Bach tensor Bab are

Ŷbcd = Ybcd + φaC
a

bcd = ∇aC
a

bcd + φaC
a

bcd , (3.22)

B̂ab = e−2φ(Bab) = e−2φ(∇c∇aC
a

bcd +
1

2
Rc

aC
a

bcd) . (3.23)

From theorem (2.2.1), we have that if ĝab is generically Einstein, then





Ŷabc = 0

B̂bd = 0 .

(3.24)

Therefore, the second version of the conformal Einstein equations is obtained by

setting the right-hand sides of Eqs (3.22) and (3.23) equal to zero:





0 = ∇aC
a

bcd + φaC
a

bcd

0 = ∇c∇aC
a

bcd + 1
2
Rc

aC
a

bcd .

(3.25)

20



3.3 THE NEW VERSION OF THE CONFORMAL EINSTEIN

EQUATIONS

Recently, it was observed that one can construct the conformal Einstein equations

without explicit use of the conformal factor φ [14]. This is done by combining the

first version of the conformal Einstein equations with the conformal Yang equations

from the second version, namely

0 = RTF
ab − 2∇aφb + 2φaφb +

1

2
gab (∇cφc − φcφc) , (3.26)

0 = ∇aC
a

bcd + φaC
a

bcd . (3.27)

The idea is as follows. First, one somehow solves the conformal Yang equation

for the components of the φa gradient, which determines them as functions of the

Weyl tensor. Since the Weyl tensor is itself a function of the metric, the φa are then

functions of the metric, φa = Ka[gab]. The next step is to replace the φa of Eq (3.26)

with the Ka, thereby obtaining equations involving only gab and its derivatives.

The difficulty with this method lies in how one actually solves all the conformal

Yang equations for φa. To illustrate this point, we present two different methods

for doing so. The first method seems elegant at first, but it then becomes fairly

messy. Worse, it has been incorrectly used by a few authors [18], [14] to obtain a

set of φa that did not satisfy all of the conformal Yang equations and was not a

gradient. The second approach is simply straight-forward algebra and is manifestly

correct by construction. Both of the approaches will depend on certain properties of

the conformal Yang equations, which we now discuss.
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3.3.1 Some Properties of the Conformal Yang Equations

In this subsection, we show how one counts the components of the Yang tensor. We

then follow with two theorems about the uniqueness- and gradient properties of any

vector Va that satisfies the equation

∇aC
a

bcd + VaC
a

bcd = 0 . (3.28)

A. Components of the Yang Tensor

The Yang tensor Ybcd = ∇aC
a

bcd has 16 independent components, as the following

demonstrates:

First, from the skew-symmetries of the Weyl tensor, it follows that

Ybcd = Yb[cd] . (3.29)

Since we are in four dimensions, the skew-index pair [cd] has six components, and

the remaining index b has four. Thus, at most the Yang tensor has 6 × 4 = 24

components. Next, from the symmetry Ca[bcd] = 0, we have

Y[bcd] = 0 . (3.30)

This gives rise to four equations – from the non-trivial skew-index sets [012], [013],

[023], and [123] – which constrain four components of Ybcd to be linear combinations

of the other 20. Finally, the Yang tensor also inherits the trace-free property of the

Weyl tensor,

gbdYbcd = 0 , (3.31)

which, from the four choices of c, yields four additional constraint equations for four

components. Therefore, the Yang tensor has 16 independent components and eight

dependent components, which are linear combinations of the other 16.
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Using the Eqs (3.30) and (3.31) we can determine, in a non-canonical fashion,

the eight dependent components of the Yang tensor. The following table represents

one possible choice of these dependent components. In the table, we list the 24 val-

ues of the Yang tensor’s index set {bcd}. The index values that represent the eight

dependent components of Ybcd are crossed-out.

001 101 201 301

002 102 202 302

003 103 203 303

012 112 212 312

013 113 213 313

023 123 223 323

Table 3.1: Index values of Ybcd . Slashed entries represent dependent components.

B. Theorems on the Conformal Yang Equations

We now present two important theorems about vectors Va that satisfy the 16 equa-

tions

∇aC
a

bcd + VaC
a

bcd = 0 . (3.32)

These equations have the same form as the conformal Yang equations, but there is

an important difference: the conformal Yang equations are defined with a gradient

φa = ∇aφ, while the above equations are defined with an arbitrary vector Va. The

following theorems, however, prove that if there exists a vector Va that satisfies the

above equations, then, with the assumption that the metric is generic, the vector is

unique and is a gradient. Therefore, given a generic metric, the above equations are
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identical to the conformal Yang equations.

Theorem 3.3.1 (Kozameh, et al. [18]). Given a generic metric, a vector Va that

satisfies the 16 equations

∇aC
a

bcd + VaC
a

bcd = 0 (3.33)

is necessarily a gradient.

Proof. From the contracted Bianchi identities and the properties of the Riemann

tensor, it is straight-forward to show that

∇b∇aC
a

bcd = 0 , (3.34)

where ∇a is a torsion-free connection. Thus, taking ∇b of Eq (3.33) and rearranging

indices yields

∇[bV a]Cabcd = 0 , (3.35)

where we have used the fact that Cabcd = C[ab][cd] . Since we have assumed a generic

metric, we have, from Eq (2.17),

∇[bV a] = 0 . (3.36)

Therefore, because ∇a is torsion-free, we have that Va must be the gradient ∇af of

some smooth function f .
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Theorem 3.3.2 (Gover, et al. [14]). The vector Va that satisfies Eq (3.33) is

unique.

Proof. The proof is by contradiction. Recall that for a generic metric,

VaC
a

bcd = 0 ⇒ Va = 0 . (3.37)

Now, suppose that we have two different vectors Va and V̂a that satisfy Eq (3.33):

0 = ∇aC
a

bcd + VaC
a

bcd , (3.38)

0 = ∇aC
a

bcd + V̂aC
a

bcd . (3.39)

Subtracting the bottom equation from the top yields

(Va − V̂a)C
a

bcd . (3.40)

Since the metric is generic,

Va − V̂a = 0 , (3.41)

and, therefore, the vectors Va and V̂a are identical.

Therefore, given a generic metric, the equations

∇aC
a

bcd + VaC
a

bcd = 0 (3.42)

are identical to the conformal Yang equations,

Ŷbcd = ∇aC
a

bcd + φaC
a

bcd = 0 , (3.43)

where the vector Va = ∇aφ is unique.

Equipped with these properties, we are now in a position to solve the conformal

Yang equations for the gradient φa using our two approaches.
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3.3.2 The First Approach for Obtaining the Gradient φa

The first method of obtaining φa from the conformal Yang equations,

∇aC
a

bcd + φaC
a

bcd = 0 , (3.44)

uses the following identities [18]:

Ca
bcdCe

bcd =
1

4
δa
eC

2 , (3.45)

Ca
bcdC

∗
e

bcd =
1

4
δa
eC

∗C , (3.46)

Ca
bcdC

cd
ijCe

bij =
1

4
δa
eC

3 , (3.47)

−Ca
bcdC

cd
ijC

∗
e

bij =
1

4
δa
eC

∗ 3 , (3.48)

where the scalars

C2 = Ca
bcdCa

bcd , (3.49)

C∗C = C∗ a
bcdCa

bcd , (3.50)

C3 = Ca
bcdC

cd
ijCa

bij , (3.51)

C∗ 3 = C∗ a
bcdC

∗ cd
ijC

∗
e

bij , (3.52)

are the real invariants of the Weyl tensor [19] and C∗
abcd is the dual to the Weyl

tensor,

C∗
abcd =

1

2
εab

ijCijcd . (3.53)

To solve for φa, one can manipulate Eq (3.44) so that φa is not contracted. As

an example, one can multiply by Ce
bcd and use Eq (3.45) to obtain

0 = Ce
bcd∇aC

a
bcd +

1

4
φeC

2 . (3.54)
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Assuming C2 6= 0 one can now solve for φe:

φe = Ke = − 4

C2
Ce

bcd∇aC
a

bcd . (3.55)

Similarly, one can use the other three identities to obtain

Ke = − 4

C2
C∗

e
bcd∇aC

a
bcd , (3.56)

Ke = − 4

C2
Ccd

ijCe
bij∇aC

a
bcd , (3.57)

Ke =
4

C2
Ccd

ijC
∗
e

bij∇aC
a

bcd . (3.58)

At this point, we have four versions of solutions for Ka. So the first complication

we encounter is the lack of uniqueness. Furthermore, none of these versions actually

solve all 16 of the conformal Yang equations! Instead, each Ka is a solution to linear

combinations of equations. One can overcome these complications by demanding

that the four sets of Ka were all the same, which puts conditions the Weyl tensor

and its divergence. In principle, this is a valid approach for finding a unique Ka, but

in practice it is unnecessarily tedious. The explicit expressions of the scalars C2, etc.

are very long to calculate, and then many of the terms associated with these scalars

cancel anyway. The end result can be obtained in a more direct manner, as we see

below.

Before we move to the next approach for obtaining Ka, however, we note that

previous authors ([18], [14]), missed the fact that each of the above versions of Ka

by itself does not satisfy all 16 of the conformal Yang equations unless one further

imposes that each of the versions are equal to one another. This observation is new

and was recently made by us.
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3.3.3 The Second Approach for Obtaining the Gradient φa

The following work is new.

In the second method of obtaining the gradients φa, we do not use the scalar

invariants C2, etc. Instead, we isolate four of the 16 equations∇aC
a

bcd+KaC
a

bcd = 0

and solve them for the four components of Ka. Then, we impose the 12 conditions

that these components of Ka satisfy the remaining 12 equations. In this way, the

vector Ka = φa is uniquely determined.

Note that there is some arbitrariness in how one chooses the four starting equa-

tions. The final result, however, is independent of this choice. An example of a

particular choice is given now.

Using table 3.1, which lists the independent components of Ŷbcd = 0, we choose

the four equations

0 = ∇aC
a

001 + KaC
a

001 , (3.59)

0 = ∇aC
a

101 + KaC
a

101 , (3.60)

0 = ∇aC
a

201 + KaC
a

201 , (3.61)

0 = ∇aC
a

301 + KaC
a

301 , (3.62)

which correspond to the top row of the table. From these equations, the four com-

ponents of Ka are determined as

HK0 = +C0102∇aC
a

301 − C0103∇aC
a

201 + C0123∇aC
a

001 ,

HK1 = −C0112∇aC
a

301 + C0113∇aC
a

201 − C0123∇aC
a

101 ,

HK2 = −C0101∇aC
a

201 + C0102∇aC
a

101 − C0112∇aC
a

001 , (3.63)

HK3 = +C0101∇aC
a

301 − C0103∇aC
a

101 + C0113∇aC
a

001 ,
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where the common scalar H is defined as

H ≡ C0101C0123 − C0102C0113 + C0103C0112 . (3.64)

From their construction, there is no indication that these components of Ka

necessarily satisfy the other 12 conformal Yang equations. In fact, these components

are not necessarily even gradients! Thus, we must impose the conditions that these

components satisfy the other 12 equations. We refer to these 12 conditions as Jσ = 0,

where the label σ runs from 1 to 12. We choose the Jσ by simply reading along the

columns of table 3.3.1 while ignoring the dependent entries and the top row, which

was used to choose our starting equations (3.59) - (3.62):

J1 ≡ ∇aC
a

002 + KaC
a

002 ,

J2 ≡ ∇aC
a

003 + KaC
a

003 ,

J3 ≡ ∇aC
a

023 + KaC
a

023 ,

J4 ≡ ∇aC
a

112 + KaC
a

112 , (3.65)

.

.

.

With the requirement that the 12 Jσ vanish, the components of Ka given above

satisfy all 16 of the conformal Yang equations. Thus, by the previous theorems, the

vector Ka is a unique gradient vector for some smooth function φ, which we take to

be our conformal factor. We can now state the last version of the conformal Einstein

equations.
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The third – and new – version of the conformal Einstein equations is





0 = RTF
ab − 2∇aKb + 2KaKb + 1

2
gab (∇cKc −KcKc)

0 = Jσ ,

(3.66)

where the gradient vector Ka is defined as

HK0 = +C0102∇aC
a

301 − C0103∇aC
a

201 + C0123∇aC
a

001 ,

HK1 = −C0112∇aC
a

301 + C0113∇aC
a

201 − C0123∇aC
a

101 ,

HK2 = −C0101∇aC
a

201 + C0102∇aC
a

101 − C0112∇aC
a

001 , (3.67)

HK3 = +C0101∇aC
a

301 − C0103∇aC
a

101 + C0113∇aC
a

001 ,

H = C0101C0123 − C0102C0113 + C0103C0112 .

3.3.4 The Next Step

We will now change topics to discuss the conformal geometry of a pair of PDE’s.

For the purpose of clarity, we will begin with a review of the null-surface formulation

of GR, in which the relevant PDE’s were first discovered. After fully analysing the

geometry of the PDE’s in chapter 5, we will return to the new version of the conformal

Einstein equations in chapter 6 in order to apply them to the PDE-geometry.
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4.0 THE NULL-SURFACE FORMULATION

The purpose of this chapter is to briefly review the null-surface formulation of general

relativity (NSF). In particular, we review the construction of a conformal metric

in terms of null surfaces. Since this construction has been extensively discussed

elsewhere [16] - [17], [6] - [10], we will not give the full details of the procedure.

Instead, we are interested in highlighting the properties of this construction. One

important property is the existence of a special class of differential equations, the

Wünschmann class [23], which plays a fundamental role in the following chapters.

Another purpose of the chapter is to introduce notation that will be used throughout

the rest of this work.

In the standard formulation of general relativity, one treats the components of

the metric as the basic variables of the theory. In the NSF, however, the metric is

a derived concept, and the basic variables are families of null surfaces and a scalar

function:

u = constant = Z (xa , s , s∗) , Ω (xa , s , s∗) . (4.1)

The properties of these variables are as follows:

i.) The scalar function Ω is a conformal factor such that

gab = Ω2ĝab , (4.2)
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for a pair of Lorentzian metrics gab and ĝab on the space-time M .

ii.) For each fixed value of the pair (s , s∗), the level surfaces of the function Z

in M ,

u = constant = Z (xa , s , s∗) , (4.3)

form, for different values of u, a 1-parameter family of surfaces which foliates a local

region of M . The geometric meaning of the pair (s , s∗) is, in general, arbitrary.

Here, we take it to be the complex-conjugate pair of stereographic coordinates on

the 2-sphere. Thus, by letting (s , s∗) vary for a given Z, we have a collection of a

sphere’s worth of families of surfaces through every point in the space-time M .

The requirement that the collection of surfaces Z (xa , s , s∗) = constant are null

for some conformal metric gab(xa) is that they satisfy the eikonal equation

gab (xc) [∇aZ][∇bZ] = 0 (4.4)

for all values of (s , s∗). In the standard treatment of general relativity, one assumes

the metric is known and then attempts to find the null surfaces from the eikonal

equation. As an example, consider null plane waves in Minkowski space-time. For

fixed values of (s , s∗), the parameter u describes all plane waves in a particular

direction. Varying (s , s∗) yields all plane waves in all directions.

The NSF poses the converse problem: given a function Z (xa , s , s∗) that de-

scribes null surfaces for some unknown conformal metric, what conditions does the

eikonal equation impose on Z, and how does one use the eikonal equation and these

conditions to determine the unknown conformal metric. The procedure for solving

this problem essentially relies on taking successive derivatives of the eikonal equation

with respect to s and s∗. One important result of this procedure is that the functions

Z must satisfy a pair of second-order partial-differential equations (PDE’s), where
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the equations belong to a what is known as the Wünschmann class. These equations

and their solutions give rise to a rich geometry, which we will partially explore in the

next chapter.

This chapter will have the following organisation: In section 4.1, we explain our

notation and define several important functions. Some of these functions are taken

as a new set of coordinates on the space-time. Another set of functions will define the

pair of PDE’s that belong to the Wünschmann class. Section 4.2 will have two parts:

In the first, we review the important properties that are obtained from constructing

a conformal metric from the eikonal equation. In the second, we outline the actual

procedure for constructing this metric.

4.1 A NEW COORDINATE SYSTEM

Before defining our new coordinate system, it is necessary to first describe our nota-

tion. We begin with a 6-dimensional fibre-bundle M×S2 with coordinates (xa , s , s∗).

The xa are the coordinates of the base space M (space-time), and the parameters

(s , s∗) are coordinates on the fibres. For an arbitrary function f (xa , s , s∗), we denote

the xa-derivatives by

∂f

∂xa
≡ ∂af ≡ f,a = fa (4.5)

and the s-derivative by

∂f

∂s
≡ Df ≡ f,s = fs . (4.6)

The s∗-derivative is similarly defined. When an object is clearly a derivative, we will

omit the comma before the derivative label.
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Next, from the function Z (xa , s , s∗), we define three new scalar functions,

W (xa , s , s∗) ≡ DZ , (4.7)

W ∗ (xa , s , s∗) ≡ D∗Z , (4.8)

R (xa , s , s∗) ≡ DD∗Z = DW ∗ = D∗W . (4.9)

With the assumption that the Z is sufficiently generic, these four functions are used

to define an (s , s∗)-dependent coordinate transformation on the space-time:

Z = Z (xa , s , s∗) , R = R (xa , s , s∗) ,

W = W (xa , s , s∗) , W ∗ = W ∗ (xa , s , s∗) . (4.10)

By solving these equations, the xa are determined as

xa = Xa(Z , R , W , W ∗ , s , s∗) . (4.11)

From the gradients of the {Z , R , W , W ∗} coordinates, we construct the gradient

basis βi
a:

{β0
a , β1

a , β2
a , β3

a} ≡ {Za , Ra ,Wa ,W ∗
a} . (4.12)

(Note that the indices (0 , 1) refer to real objects, but the (2 , 3) refer to a complex-

conjugate pair.) The dual basis βi
a is defined by

βj
aβi

a = δi
j , βi

aβi
b = δa

b . (4.13)

In the next section, we will use the eikonal equation to construct a metric in terms

of this gradient-basis.
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From parametric derivatives of the variables in Eq (4.10), we obtain an important

set of complex functions, (S , S∗). To find them, begin with

D W (xa , s , s∗) = D2 Z (xa , s , s∗) ≡ Σ (xa , s , s∗) ,

D∗W ∗ (xa , s , s∗) = D∗2Z (xa , s , s∗) ≡ Σ∗ (xa , s , s∗) . (4.14)

Next, using the coordinate transformation xa = Xa(Z , R , W , W ∗ , s , s∗) to eliminate

the xa-dependence of the Σ’s yields

D2 Z = S (Z ,Zs , Zs∗ , Zss∗ , s , s∗) ,

D∗2Z = S∗ (Z ,Zs , Zs∗ , Zss∗ , s , s∗) . (4.15)

We interpret these expressions as defining a pair of PDE’s for the function Z (s , s∗).

The solutions are given by Z = Z (xa , s , s∗), where the constants of integration xa

become the local space-time coordinates. Furthermore, these PDE’s are members

of a broad but important class of equations known as the Wünschmann class. The

condition for belonging to this class, the Wünschmann condition, is derived from the

construction of the metric and will be given explicitly in section 4.2.2.

Other useful functions are the complex-conjugate pair (T , T ∗) and the real func-

tion U , which are obtained by

T ≡ D∗S = DR , T ∗ ≡ DS∗ = D∗R , (4.16)

U ≡ D∗T = DT ∗ . (4.17)

Another useful set of derivatives are the directional derivatives

∂i = βi
a∂a , (4.18)
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which are the {Z , R ,W , W ∗}-coordinate derivatives,

{∂i} = {∂0 , ∂1 , ∂2 , ∂3} ≡
{

∂

∂Z
,

∂

∂R
,

∂

∂W
,

∂

∂W ∗

}
. (4.19)

The derivatives ∂a and ∂i satisfy

∂af = βi
a∂if , ∂if = βi

a∂a . (4.20)

In particular, for derivatives of the function S defined in Eq (4.15),

Sa = βi
aSi , Si = βi

aSa . (4.21)

Since the coordinates {Z , R ,W , W ∗} have (s , s∗)-dependence, the ∂i will not,

in general, commute with D and D∗. For any scalar function f , the commutator of

these derivatives is given by

D(f,j) = (Df),j − (S,jf,2 + T,jf,1 + δj2f,0 + δj1f,3) , (4.22)

where the commutator for D∗(f,j) is similarly defined.

4.2 THE CONSTRUCTION OF A CONFORMAL METRIC

For the construction of the conformal metric, we note that it is easier to work with the

contravariant components in the gradient basis (i.e., gij) rather than the coordinate

basis (i.e., gab). The components of the metric are then initially found in terms of

Z and its derivatives.
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4.2.1 Properties of the Construction

In the construction, we use successive (s , s∗)-derivatives of the eikonal equation to

determine the components of the metric in the gradient basis. Given a metric gab(xc)

in a space-time coordinate-basis, it is written in the gradient basis as

gij(Z , R ,W , W ∗ , s , s∗) = gab(xc)βi
aβ

j
b , (4.23)

where the βi
a are defined in (4.12). Letting the indices (i , j) take all possible values

yields the components of gij as

g00 = gabZaZb , g11 = gabRaRb ,

g22 = gabWaWb , g33 = gabW ∗
a W ∗

b ,

g01 = gabZaRb , g02 = gabZaWb , g03 = gabZaW
∗
b , (4.24)

g12 = gabRaWb , g13 = gabRaW
∗
b ,

g23 = gabWaW
∗
b .

In the next section, we show how the gij can be constructed in the gradient basis

(up to a conformal scale) from the eikonal equation. Assuming for the moment that

the gij are known, the gab(xc) can be determined by the inverse transformation

gab(xc) = gijβi
aβj

b . (4.25)

It is important to note that both gij and βi
a depend on the parameters (s , s∗), but

the gab depends only on xa.

From the construction of the gij, one can only determine the ten components up

to an overall scale. One can take the component g01 as undetermined, and the other

components are scaled by it. Letting g01 ≡ Ω2(xa , s , s∗), we have that

gij = Ω2(xa , s , s∗)ĝij , (4.26)
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where ĝij is uniquely determined by setting g01 = 1. The construction also places

differential conditions on the Ω2(xa , s , s∗) which determine its (s , s∗)-dependence

with an arbitrary multiplicative factor depending only on xa, i.e,

Ω2(xa , s , s∗) = ω2(xa)F [S , S∗] , (4.27)

where ω(xa) depends only on xa, and the functional F [S , S∗] is the determined

(s , s∗)-dependent part of Ω2. Therefore, using Eqs (4.25) - (4.27), we see that we

have a pair of conformally-related metrics,

gab(xc) = ω2(xa)ĝab(xc) , (4.28)

where

ĝab(xc) ≡ F [S , S∗] ĝijβi
aβj

b . (4.29)

Since the F [S , S∗] and the components of ĝij are determined by the construction,

all of the components of the ĝab(xa) can be determined by the above equation. The

ω(xa) remains undetermined.

As was mentioned earlier, the functions S and S∗ of Eq (4.15) are forced by

the construction to satisfy the Wünschmann condition. We thus have the following

important result: For every choice of the function Z = Z(xa , s , s∗) that satisfies a

pair of PDE’s in the Wünschmann class,

D2Z = S , D∗2Z = S∗ , (4.30)

we can construct, via the eikonal equation and Eq (4.29), a conformal metric ĝab(xc)

that is solely a function of the xa. Once the ĝab(xc) is determined, we have a conformal

class of metrics gab = ω2ĝab that is characterised by the arbitrary scalar function

ω(xa). Thus, we can calculate a conformally-related pair of Ricci tensors, namely
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R̂ab and Rab (see chapter 3). In general, R̂ab will not satisfy the (vacuum) Einstein

equations. Therefore, we are interested in finding a conformal transformation ĝab →
gab such that the Ricci tensor Rab does satisfy the Einstein equations. Said another

way, we want to find a metric ĝab that is conformally Einstein. Since this metric

is constructed from Z = Z(xa , s , s∗), which is determined by Eq (4.30), it follows

that the conditions for ĝab to be conformally Einstein can be interpreted as further

conditions on S and S∗. We will discuss the problem of determining these conditions

in chapter 6. We conclude with a brief review of the procedure for constructing gij

from the eikonal equation.

4.2.2 The Procedure of Constructing gij

From the eikonal equation, the first component in Eq (4.24) becomes

g00 = gabZaZb = 0 . (4.31)

Thus, we have already determined one component of gij to be zero. To determine

the other eight components of gij, we take successive D and D∗ derivatives of the

eikonal equation, where we assume that gab (xc) is independent of the parameters

(s , s∗):

D[gab(xc)] = 0 . (4.32)

Below, we explicitly construct the components {g02 , g03 , g22 , g33 , g23}, which suf-

ficiently clarifies how the procedure works. The remaining components, namely

{g12 , g13 , g11}, are then stated without the supporting details. All of the compo-

nents will be proportional to g01, which we take to be a conformal factor:

g01 = Ω2 . (4.33)
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Taking D and D∗ of Eq (4.31) and using Eq (4.24) determines g02 and g03 to

both be zero:

D g00 = 2gabZaWb = 2g02 = 0 ⇒ g02 = 0 , (4.34)

D∗g00 = 2gabZaW
∗
b = 2g03 = 0 ⇒ g03 = 0 . (4.35)

From D of g02 = 0, we obtain g22:

0 = Dg02 = gab(WaWb + ZaSb) = g22 + S1g
01 (4.36)

⇒ g22 = −S1g
01 , (4.37)

where we have used Eqs (4.21) and (4.24) along with g00 = g02 = g03 = 0. Similarly,

D∗g03 = 0 yields

g33 = −S∗1g
01 . (4.38)

In an analogous fashion, we obtain g23 from D∗g02 = 0:

0 = D∗g02 = gab(WaW
∗
b + ZaRb) = g23 + g01 (4.39)

⇒ g23 = −g01 . (4.40)

Taking Dg03 = 0 yields the same result.

Another order of parametric derivatives, along with the commutators of Eq

(4.22), yields the expressions for g12 and g13 as

g12 [4− S1S
∗
1 ] = g01[S1T

∗
1 − 2T1] , (4.41)

g13 [4− S1S
∗
1 ] = g01[S∗1T1 − 2T ∗

1 ] . (4.42)

From further derivatives and an application of 4.22, the g11 is found to satisfy

0 = 2g11[2+S1S
∗
1 ]+4(T ∗

1 g12 +T1g
13)+g01[2U1− (S1T

∗
2 +S∗1T3 +T2 +T ∗

3 )] , (4.43)
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where the g12 and g13 are given in Eqs (4.41) and (4.42).

In determining the g12 and g13, one finds two sets of complex conditions associated

with the functions S and S∗. One of them is a set of differential conditions on the

conformal factor g01,

(4− S1S
∗
1)[D g01 ] = g01[2T1 + S1(T

∗
1 − S∗1T1 )] , (4.44)

(4− S1S
∗
1)[D

∗g01 ] = g01[2T ∗
1 + S∗1(T1 − S1T

∗
1 )] . (4.45)

By integrating this pair, one can determine the (s , s∗)-dependence of the g01. Thus,

referring to Eq (4.27), we have

g01 = Ω2(xa , s , s∗) = ω2(xa)F [S , S∗] , (4.46)

where, using the definition

H ≡ 2T1 + S1(T
∗
1 − S∗1T1)

4− S1S∗1
, (4.47)

the functional F is given as

F [S , S∗] = exp

[∫
Hds + H∗ds∗

]
. (4.48)

(The integrability conditions of Eq (4.46) are rather complicated and are discussed

in [7].)

The other set of conditions is the Wünschmann condition,

D∗(S1) = T1 − S1T
∗
1 , (4.49)

D (S∗1) = T ∗
1 − S∗1T1 , (4.50)

which restricts the functions S and S∗ to the Wünschmann class. Thus, we see that

in order to construct a conformal metric from the eikonal equation, the function Z

must satisfy a pair of PDE’s, Eq (4.15), which, in turn, must satisfy the Wünschmann

condition.
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5.0 THE GEOMETRY OF A PAIR OF 2ND-ORDER PDE’S

In the previous chapter, we saw how one can use families of surfaces,

u = Z (xa , s , s∗) , (5.1)

to construct a conformal metric from the (s , s∗)-derivatives of the eikonal equation

(which makes the surfaces null). One of the main features of that construction was

that the function Z had to satisfy a pair of PDE’s,

D 2Z = S (Z , Zs , Zs∗ , Zss∗ , s , s∗) ,

D∗2Z = S∗(Z , Zs , Zs∗ , Zss∗ , s , s∗) , (5.2)

where the functions S and S∗, in turn, satisfied the Wünschmann condition.

The purpose of the present chapter is to explore the conformal geometry asso-

ciated with these PDE’s. In particular, we construct a conformal connection and

its associated curvatures as functionals of S and S∗. The overall goal of this ap-

proach, as we will discuss further in the next chapter, is to attempt to construct

the conformal Einstein equations directly from the PDE’s. In other words, we are

seeking conditions on the S and S∗, in addition to the Wünschmann condition, that

guarantee the existence of a conformally Einstein metric on the solution space of the

PDE’s.
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In section 5.1, we begin with a pair of PDE’s of the form of (5.2) and with-

out the initial assumption of a space-time. The solutions, in general, depend on

four constants of integration (the solution space) which is interpreted as space-time.

Also, from the solution of these PDE’s, we construct a tetrad, which will be taken

as null. We then introduce an unknown but to-be-determined connection that is a

functional of the S’s. By requiring that this connection is torsion-free, we partially

determine the connection and simultaneously derive the Wünschmann condition.

Thus, the vanishing of the torsion guarantees the existence of a conformal metric on

the solution space of the PDE’s.

Next, in section 5.2, we use the formalism of Cartan [1], [2], [11], [12] to construct

several curvatures that depend on S and S∗. By construction, the connection and its

curvatures represent a Cartan-Weyl conformal geometry that follows directly from

the PDE’s (5.2). Our goal in the next chapter will be to then analyse the conditions

for these curvatures to satisfy the conformal Einstein equation.

Since many of the details of the calculations in sections 5.1 and 5.2 are lengthy,

we will put them at the end of the chapter in section 5.3.

Many of the results presented below were recently found by us and have been

published [13]. We note, however, that some of the results of section 5.1 were orig-

inally found earlier using the NSF [16] - [17], [6] - [10], but were re-obtained here

using different techniques (namely the Cartan construction) and in a totally new

context. The results of section 5.2 are new.
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5.1 THE NULL BASIS AND ITS CONNECTION

On a 2-dimensional space with coordinates (s , s∗), we consider the following pair of

PDE’s

Z s s = S (Z ,Zs , Zs∗ , Zss∗ , s , s∗) , (5.3)

Zs∗s∗ = S∗(Z ,Zs , Zs∗ , Zss∗ , s , s∗) , (5.3∗)

where the subscripts denote partial derivatives, and Z = Z(s, s∗) is a real function.

We assume that these PDE’s obey the necessary integrability conditions. Though

it is possible to treat (s , s∗) as a pair of real variables, it is more useful to consider

them as a complex-conjugate pair, namely the complex stereographic coordinates.

In this case, the second PDE is simply the complex-conjugate of the first equation.

Remark 5.1.1. In the following, (∗) will denote the complex-conjugate. When discus-

sing a conjugate-pair of equations, we will label each equation with the same number,

but the number of the second equation will contain a (∗). Occasionally, we will ex-

plicitly write only one equation of a conjugate-pair and imply the other.

To simplify notation, we define the functions W , W ∗, and R as

W ≡ Zs , W ∗ ≡ Zs∗ , R ≡ Zss∗ . (5.4)

For an arbitrary function H = H(Z , W ,W ∗ , R , s , s∗), the total derivatives in s and

s∗ are

dH

ds
≡ D H ≡ Hs + W HZ + SHW + R HW ∗ + T HR , (5.5)

dH

ds∗
≡ D∗H ≡ Hs∗ + W ∗HZ + RHW + S∗HW ∗ + T ∗HR , (5.5∗)
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where

T = D∗ S , (5.6)

T ∗ = D S∗ . (5.6∗)

The T and T ∗ can be expressed as explicit functionals of the S and S∗. Letting

H = S∗ in Eq (5.5) and H = S in Eq (5.5∗), we get two equations that each contain

T and T ∗. From them, we find algebraically independent expressions for T and T ∗:

T =
Ss∗ + W ∗SZ + RSW + S∗SW ∗ + SR(S∗s + WS∗Z + SS∗W + RS∗W ∗)

1− SRS∗R
. (5.7)

With the above definitions of D and D∗, the integrability condition of (5.3) is

D2S∗ = D∗2S . (5.8)

Note that D and D∗ commute with each other but not with the Z-, W -, W ∗-, and

R-derivatives. Instead, for H = H(Z , W ,W ∗ , R , s , s∗) and y ∈ {Z , W ,W ∗ , R},

D (Hy) = (D H),y − (SyHW + Ty HR + δW,y HZ + δR,yHW ∗) , (5.9)

D∗(Hy) = (D∗H),y − (S∗yHW ∗ + T ∗
y HR + δW ∗,yHZ + δR,yHW ) , (5.9∗)

where δy′ ,y is the Kronecker symbol.

Remark 5.1.2. The D and D∗ are actually the basis vectors es and es∗ , respectively,

of the 6-dimensional space (Z , W ,W ∗ , R , s , s∗):

es ≡ D =
d

ds
=

∂

∂s
+ W

∂

∂Z
+ S

∂

∂W
+ R

∂

∂W ∗ + T
∂

∂R
, (5.10)

es∗ ≡ D∗ =
d

ds∗
=

∂

∂s∗
+ W ∗ ∂

∂Z
+ R

∂

∂W
+ S∗

∂

∂W ∗ + T ∗ ∂

∂R
. (5.10∗)
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In addition to the integrability condition, Eq (5.8), we assume that the functions

S and S∗ satisfy the inequality

1− SRS∗R > 0 . (5.11)

From this inequality and the Frobenius theorem, it can be shown [5] that the solution

space of the PDE’s M is 4-dimensional. Thus, we can write

Z = Z (xa , s , s∗) , W = W (xa , s , s∗) ,

R = R (xa , s , s∗) , W ∗= W ∗(xa , s , s∗) , (5.12)

where the constants of integration xa (the solution space) are taken as space-time

coordinates. As in chapter 4, we interpret the above as defining an (s , s∗)-dependent

coordinate transformation on M .

The exterior derivatives of (5.12),

dZ = Za dxa + Wds + W ∗ds∗ ,

dR = Ra dxa + T ds + T ∗ ds∗ ,

dW = Wa dxa + S ds + R ds∗ ,

dW ∗ = W ∗
a dxa + R ds + S∗ ds∗ , (5.13)

can be re-written as the Pfaffian system of 1-forms

β0 ≡ dZ −Wds−W ∗ds∗ = Za dxa ,

β1 ≡ dR − T ds− T ∗ ds∗ = Ra dxa ,

β2 ≡ dW − S ds−R ds∗ = Wa dxa ,

β3 ≡ dW ∗ −R ds− S∗ ds∗ = W ∗
a dxa . (5.14)
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The vanishing of the four βi is equivalent to the PDE’s of Eqs (5.3), which moti-

vates their definitions. (Note that β0 and β1 are real, but β2 and β3 are complex

conjugates.)

The components of the Pfaffian system, βi
a, are identical to the gradient basis

of the previous chapter. Here, it will be useful to use another basis, θi, defined by

θ0 = β0 , θ1 = β1 + aβ2 + a∗β3 + cβ0 ,

θ2 = α(β2 + bβ3) , θ3 = α(β3 + b∗β2) , (5.15)

along with its dual basis ei ,

e0 = (∂Z − c∂R) , e1 = ∂R ,

e2 =
∂W − b∗∂W ∗ − (a− a∗b∗)∂R

α(1− bb∗)
, e3 = (e2)

∗ . (5.16)

The set of parameters {α , b , b∗ , a , a∗ , c} are referred to as tetrad parameters. For

now, these parameters are undetermined functionals of S and S∗. Later, after we

have introduced the torsion-free connection, we will uniquely determine the tetrad

parameters explicitly in terms of the S and S∗.

From the θi, we define a degenerate metric

g(Z ,W , W ∗ , R , s , s∗) = θ0 ⊗ θ1 + θ1 ⊗ θ0 − θ2 ⊗ θ3 − θ3 ⊗ θ2

= ηijθ
i ⊗ θj ,

(5.17)

which defines the ηij as

[ηij] =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




. (5.18)
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We will use the ηij to raise and lower indices.

Remark 5.1.3. At this point, we are simply defining a metric on the 6-dimensional

space {Z ,R , W ,W ∗ , s , s∗} that makes the θi basis a null tetrad. In the next chap-

ter, we will see how once can use this metric, along with a particular conformal

transformation, to define a conformal space-time metric on M .

Remark 5.1.4. It is possible to generalise the θi to include more parameters corre-

sponding to Lorentz transformations [11], [13]. In the Cartan’s equivalence problem

for differential equations, these extra parameters are needed. For our purposes, how-

ever, the transformation (5.15) is sufficiently general.

By adding to the θi the pair of 1-forms

θs ≡ ds , θs∗ ≡ ds∗ , (5.19)

which are dual to the es and es∗ of Eq (5.5), we have a basis of 1-forms on the

6-dimensional space {Z , R ,W , W ∗ , s , s∗}. We will refer to θs and θs∗ as the fibre 1-

forms and the four θi as the space-time 1-forms. The space-time indices are denoted

by lower-case i, j, etc., and the general indices are denoted by upper-case I, J, etc.:

θi ∈ {θ0 , θ1 , θ2 , θ3} , (5.20)

θI ∈ {θ0 , θ1 , θ2 , θ3 , θs , θs∗} . (5.21)

Note that, in general, a p-form with tetrad indices will have components in all six

directions. For example, the 1-form Πi
j and the 2-form Υi will have the respective

expansions

Πi
j = Πi

jKθK = Πi
jkθ

k + Πi
jsθ

s + Πi
js∗θ

s∗ , (5.22)
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and

Υi =
1

2
Υi

JKθJ ∧ θK

=
1

2
Υi

jkθ
j ∧ θk + Υi

jsθ
j ∧ θs + Υi

js∗θ
j ∧ θs∗ + Υi

ss∗θ
s ∧ θs∗ .

(5.23)

In particular, the exterior derivatives of the θi yield 2-forms with components 4i
JK :

dθi ≡ 1

2
4i

JKθJ ∧ θK . (5.24)

The 4i
JK can be found by direct calculation and are functionals of the functions S

and S∗. Their explicit expressions are given in section 5.3.

Using the 4i
JK defined above, we define two symmetric tensors Gij and G∗

ij by

the fibre derivatives of the metric (5.17),

Dg ≡ Gijθ
i ⊗ θj , (5.25)

where

Gij = −24(ij)s , (5.26)

and

4iJK = ηim4m
JK . (5.27)
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5.1.1 The First Structure Equation

Following the formalism of Cartan, we will now use the 6-dimensional basis of θI

to construct a connection and its associated curvatures. Since the θI depend on

the functions S and S∗, the connection and its curvatures will also depend on these

functions.

We begin with the construction of the connection, which will be found from

Cartan’s torsion-free first structure equation,

dθi + ωi
j ∧ θj = 0 . (5.28)

Our goal now is to solve this equation for the connection 1-forms, ωi
j. To do so, we

write

dθi =
1

2
4i

JKθJ ∧ θK , (5.29)

ωij = ωijKθK , (5.30)

ωi
k = ηijωjk , (5.31)

which defines the ωijK . The structure equation then becomes

1

2
4i

JKθJ ∧ θK + ηijωjmLθL ∧ θm = 0 . (5.32)

Since we are interested the conformal geometry contained in the structure equa-

tion, we require that the connection 1-forms be generalised Weyl connections (“gen-

eralised” because of the extra degrees of freedom in the fibre directions, s and s∗):

ωij = ω[ij] + ηijA , (5.33)

where the 1-form

A = AIθ
I = Aiθ

i + Asθ
s + As∗θ

s∗ , (5.34)
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is the (generalised) Weyl 1-form.

In Eqs (5.15), we expressed our space-time tetrad, θi, in terms of S, S∗, and the

unspecified tetrad parameters, {α , b , b∗ , a , a∗ , c}. Thus, we can explicitly compute

the 4i
JK in terms of these functions and their derivatives. (The explicit expressions

for the 4i
JK , are given in section 5.3.) Therefore, we will use Eq (5.32) to solve for

the connection coefficients, ωijK , in terms of the 4i
JK and the undetermined AI . In

doing so, we will find several things: i) the four space-time components of the Weyl

1-form, Ai, remain arbitrary; ii) the skew-symmetric part of the connection, ω[ij], and

the fibre parts of the Weyl 1-form, As and As∗ , are uniquely determined functionals

of S, S∗, and Ai ; iii) the tetrad parameters are uniquely determined functionals of

S and S∗; and iv) the functions S and S∗ must satisfy the Wünschmann condition,

which, as we have seen, is a set of complex-conjugate differential equations in all six

variables of our 6-dimensional space, {Z , R ,W , W ∗ , s , s∗}.
We begin by splitting the structure equation it into its fibre-fibre-, tetrad-fibre-,

and tetrad-tetrad components.

A. The fibre-fibre component contains no information. By direct calculation,

4i
ss∗ = 0 . (5.35)

Our connection 1-form is compatible to this since it does not have fibre-fibre parts,

ωij = ωijKθK . (5.36)
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B. The tetrad-fibre parts of the structure equation are

ωijs = 4ijs . (5.37)

Symmetrising on (i , j) in Eq (5.37) and using Eq (5.33) yields

ηijAs = 4(ij)s , (5.38)

while the skew-symmetric parts gives

ω[ij]s = 4[ij]s . (5.39)

Eqs (5.38) uniquely determine As and As∗ in terms of S and S∗,

As =
1

4
4k

ks . (5.40)

In addition, the trace-free part of Eqs (5.38),

4(ij)s − 1

4
ηij4k

ks = 0 , (5.41)

uniquely determines the Wünschmann condition and the tetrad parameters.

Alternatively, from Eq (5.26), i.e., Gij = −24(ij)s , and Eq (5.41) we have

GTF
ij = 0 , (5.42)

where TF denotes the trace-free part. It is from these equations that we actually find

the explicit expressions of the tetrad parameters (see theorem 5.1.1). The details for

analysing Eqs (5.42), however, are quite involved and will be given in section 5.3.
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Remark 5.1.5. With the determined tetrad parameters and the Wünschmann condi-

tion (see theorem 5.1.1 in the following subsection, 5.1.2), we have, using Eqs (5.38)

and (5.26), the result

Dg = £
es

g = −2Asg , (5.43)

where £
es

is the Lie derivative along the parameter s. This result will be discussed

further in subsection 5.1.3 below.

C. Returning to the tetrad-tetrad parts of the structure equations, we have that

4i
mn + ηij(ωjnm − ωjmn) = 0 , (5.44)

or

ωi[jk] =
1

2
4ijk . (5.45)

From the tensor identity

ωijk = ω(ij)k − ω(jk)i + ω(ki)j + ωi[jk] − ωk[ij] + ωj[ki] , (5.46)

and Eqs (5.33) and (5.45), we obtain the tetrad-tetrad coefficients of the connection,

ωijk = ηijAk − ηjkAi + ηkiAj +
1

2
(ηmi4m

jk − ηmk4m
ij + ηmj4m

ki) . (5.47)

This decomposes naturally into a Levi-Civita part γijk = γ[ij]k (which is independent

of Ai) plus a “Weyl” part, ω̃ijk , i.e.,

ωijk = γijk + ω̃ijk , (5.48)

γijk =
1

2
(ηmi4m

jk − ηmk4m
ij + ηmj4m

ki) , (5.49)

ω̃ijk = ηijAk + 2ηk[iAj] . (5.50)
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Since the 4ijk depend only on S and S∗ (once the tetrad parameters have been

determined), the Levi-Civita part of the connection γijk also only depends on these

functions.

Remark 5.1.6. The Levi-Civita part of the connection, γijk , is actually the metric

connection of g of Eq (5.17). For an arbitrary vector V i, we denote this connection

by ∇:

∇kV
i = ek

(
V i

)
+ γi

jkV
j , (5.51)

and

∇g = 0 . (5.52)

In summary, we have shown that Eqs (5.37) and (5.47) completely determine

the ωijK in terms of the 4i
JK and the undetermined space-time parts of the Weyl

1-form, Ai. In general, the undetermined Ai are functions of (xa , s , s∗).

5.1.2 A Theorem

To conclude this section we return to the vanishing of the trace-free part of 4(ij)s.

They are nine complex equations for the determination of the tetrad parameters,

{α , a , a∗ , b , b∗ , c}. Thus, there must be several identities and/or conditions to be

imposed on the S and S∗. By explicitly solving these equations (see section 5.3) the

results can be summarised in the following theorem:

Theorem 5.1.1 (Gallo, et al. [13]). The torsion free condition on the connection:

1. Uniquely determines the connection ωij, via Eqs (5.47 ) and (5.37).
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2. Uniquely determines the tetrad parameters in terms of S and S∗ (see below).

3. Imposes a (complex) condition, the vanishing of the Wünschmann invariant,

M [S , S∗] ≡ Db + bD∗b + SW ∗ − bSW + b2S∗W ∗ − b3S∗W
1− bb∗

= 0 , (5.53)

where the tetrad parameters are given by:

b =
−1 +

√
1− SRS∗R
S∗R

, (5.54)

α2 =
1 + bb∗

(1− bb∗)2
, (5.55)

a = b−1b∗−1(1− bb∗)−2(1 + bb∗)

× {
b∗2(−Db + bSW − SW ∗) + b(−D∗b∗ + b∗S∗W ∗ − S∗W )

}
,

(5.56)

and

c = −Da + D∗a∗ + TW + T ∗
W ∗

4
− aa∗(1 + 6bb∗ + b2b∗2)

2(1 + bb∗)2

+
(1 + bb∗)(bS∗Z + b∗SZ)

2(1− bb∗)2
+

a(2ab− b∗SW ∗) + a∗(2a∗b∗ − bS∗W )

2(1 + bb∗)
.

(5.57)
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5.1.3 A Space-Time Metric

Here we point out that one can use the result of remark 5.1.5 to construct a con-

formal metric that is independent of the fibre coordinates (s , s∗). For the purpose

of generality, however, we will return to considering the metric (5.17), which is a

function of everything, for the rest of this work, i.e., the (s , s∗)-independent metric

discussed below will only appear in this subsection.

Recall that the metric (5.17),

g (Z ,R , W ,W ∗ , s , s∗) = ηijθ
i ⊗ θj , (5.58)

depends on the fibres (s , s∗). Using Eq (5.43),

Dg = £
es

g = −2Asg , (5.59)

and its complex conjugate, one can construct a conformal factor such that the metric

ĝ is independent of (s , s∗) and is, therefore, a conformal metric on the space-time

M . This is done by taking the conformal transformation

ĝ = Φ2g , (5.60)

and requiring, via Eq (5.59), that the conformal factor Φ satisfy

DΦ = ΦAs , D∗Φ = ΦAs∗ , (5.61)

where As is an explicit functional of the functions S and S∗, i.e., Eqs (5.40) and

(5.109). Clearly then, the conformal metric ĝ satisfies

Dĝ = D∗ĝ = 0 . (5.62)

56



Furthermore, the solution of Eq (5.61) contains the conformal freedom a multiplica-

tive function $(xa) such that D$ = D∗$ = 0, i.e. $(xa) is an arbitrary function on

the space-time manifold M . Thus, the solution is of the form Φ = $(xa)Φ0 [S , S∗],

where

Φ0 [S , S∗] = exp

(∫
Asds + As∗ds∗

)
. (5.63)

(The integrability conditions of Eq (5.61) are rather complicated and are discussed

in [7].) The function $(xa) represents the standard conformal freedom discussed

in chapter 3. In other words, by taking $(xa) → f(xa)$(xa), the metric ĝ(xa) is

conformally transformed as ĝ → f 2ĝ.

5.2 THE CARTAN CURVATURES

In the previous section, we used the first structure equation, Eq (5.28), to alge-

braically solve for the components of a torsion-free connection,

ωij = ω[ij] + ηijA , (5.64)

uniquely in terms of S and S∗ and the undetermined Ai.

Our next goal is to compute the curvature 2-forms, Θij, defined by the second

structure equation,

dωi
j + ωi

k ∧ ωk
j = Θi

j =
1

2
Θi

jLMθL ∧ θM . (5.65)

By taking the exterior derivative of the first structure equation, Eq (5.28), and

using the second structure equation, Eq (5.65), we obtain the first Bianchi identity,

Θij ∧ θj = 0 , (5.66)
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or, in terms of the tetrad-tetrad-, tetrad-fibre-, and fibre-fibre components,

0 = Θijkm + Θikmj + Θimjk , (5.67)

0 = Θi[jk]s , (5.68)

0 = Θijss∗ . (5.69)

We now calculate the Θij as explicit functions of S and S∗ and the undetermined

Ai. First, note that from Eqs (5.64) and (5.65), it is straightforward to see that the

Θij inherits the symmetry of the ωij, and thus can be written as

Θij = Θ[ij] + ηijdA , (5.70)

with

dA =
1

2
(dA)LMθL ∧ θM , (5.71)

which defines the components (dA)LM . Next, we split the components ΘijLM into the

tetrad-tetrad parts, Θijkm, and the tetrad-fibre parts, Θijks. (The fibre-fibre parts

are identically zero from the first Bianchi identity).

We begin by simply stating the tetrad-fibre part of Θij ,

Θijks = ηij(dA)ks + ηik(dA)js − ηjk(dA)is . (5.72)

One can find this by a direct calculation that is similar to the determination of

the tetrad-tetrad terms below. Instead, we will justify the above result in the next

subsection, in which Θijks is determined very easily.

In order to calculate the tetrad-tetrad parts, Θijkm , we first note that it can be

split into terms arising from the Levi-Civita part of the connection and terms arising
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from the Weyl part of the connection. These are denoted respectively by R[ij][km]

and Θ̃ij[km], i.e.,

Θij[km] = R[ij][km] + Θ̃ij[km]

= R[ij][km] + Θ̃[ij][km] + ηij(dA)[km] .
(5.73)

The R[ij][km] are the components of the standard Riemann tensor of the Levi-Civita

connection, γijk , of Eq (5.49).

The Θ̃[ij][km] depends on A and its derivatives. Using the Levi-Civita connection,

∇, we have

∇iAj = ei(Aj)− γkjiA
k , (5.74)

and

(dA)ij = 2∇[iAj] . (5.75)

Thus, Θ̃[ij][km] can be written as

1

2
Θ̃[ij][km] = ηj[k∇m]Ai − ηi[k∇m]Aj + A2ηj[kηm] i + Ajηi[kAm] − Aiηj[kAm] , (5.76)

where A2 = AmAm .

Now, by defining

Rjm ≡ ηikΘijkm , (5.77)

and using Eqs (5.73) and (5.76), we obtain

Rjm = R(jm) − ηjm∇pA
p − 2

{∇(mAj) + ηjmA2 − AjAm

}
+ 4∇[jAm] , (5.78)

where the R(jm) are the components of the Ricci tensor of the connection γijk . If we

also let

R ≡ ηjmRjm , (5.79)
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then from Eq (5.78), we obtain

R = R− 6
{∇pA

p + A2
}

, (5.80)

where R is the standard Ricci scalar.

Remark 5.2.1. If the undetermined Ai are taken to be gradients of an arbitrary

function f ,

Ai = ∇if , (5.81)

then the vanishing of RTF
ij ,

0 = RTF
ij = Rij − 1

4
ηijR , (5.82)

with Rij given in terms of Rij above, yields the conformal Einstein equations for Rij

(see Eqs (3.19) - (3.21)). This will be discussed further in the next chapter.

5.2.1 The First Cartan Curvature

The Cartan first curvature 2-form is given by [15]

Ωij = Θij −Ψi ∧ θkηkj + Ψj ∧ θkηki + ηijΨk ∧ θk , (5.83)

where the (Ricci) 1-forms Ψi are appropriately chosen so that

Ωij =
1

2
ΩijLMθL ∧ θM , (5.84)
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satisfies the following conditions

Ωijkm = Ω[ij]km , (5.85)

0 = ηikΩijkm , (5.86)

0 = Ωijks . (5.87)

Note, from its definition, that Ωij also satisfies the first Bianchi identity, Eq (5.66),

i.e.,

Ωij ∧ θj = 0 . (5.88)

With some algebra, one can show that the conditions (5.85),(5.86) and (5.87) are

satisfied uniquely by the 1-form

Ψi = ΨiKθK = Ψijθ
j + Ψisθ

s + Ψis∗θ
s∗ , (5.89)

with

Ψij =
1

4
R[ij] +

1

2

(
R(ij) − 1

6
Rηij

)
. (5.90)

and

Ψis = (dA)is . (5.91)

Note that from Eqs (5.91), (5.83), and (5.87), we find Eq (5.72), i.e.,

Θijks = ηij(dA)ks + ηik(dA)js − ηjk(dA)is . (5.92)

Using Eqs (5.78) and (5.80), we obtain

Ψij = =ij +∇[iAj] −∇(iAj) + AiAj − 1

2
ηijA

2 , (5.93)
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where =ij is the Schouten tensor associated with γijk ,

=ij =
1

2

(
R(ij) − 1

6
Rηij

)
. (5.94)

By using Eq (5.93), we can insert the above expression into Eq (5.83), yielding

Ωijkm = R[ij][km] −=ikηjm + =imηjk + =jkηim −=jmηik , (5.95)

which is manifestly independent of the Ai. Thus, we see that the Ωijkm is actually

the Weyl tensor (see Eq (2.12)),

Ωijkm = Cijkm , (5.96)

i.e., the Ωijkm is the totally trace-free part of R[ij][km].

5.2.2 Second Cartan Curvature

Finally, we define the second Cartan curvature (with the covariant exterior derivative

D) of the 1-form Ψi as

Ωi = DΨi = dΨi + Ψk ∧ ωk
i =

1

2
ΩiJKθJ ∧ θK . (5.97)

Using Eq (5.89) in the above, we obtain, after a lengthy calculation, the simple

results

Ωijk = ∇mCm
ijk + AmCm

ijk , (5.98)

and

Ωijs = 0 , (5.99)

where ∇m again is the Levi-Civita covariant derivative. Clearly, the components of

the second Cartan curvature resemble the conformal Yang tensor (see Eq (3.22)).

In fact, if the Ωijk = 0, then, via the theorems of subsection 3.3.1, the Ai would

be gradients and the Ωijk would be identical to the conformal Yang tensor. We will

analyse this case in the next chapter.

62



5.2.3 Synopsis

Since so many different quantities and their symbols have been introduced, we have

added a few essentially pedagogical remarks concerning the placement of different

variables.

a.) The 4ijK depends on the functions S and S∗, which are defined by the starting

PDE’s.

b.) Since ωijs = 4ijs, the fibre components of the connection depend only on the S’s.

c.) All the quantities {S , S∗ , Ai} appear in the tetrad components of the connection

1-forms, ωijk. These components can be split into

ωijk = γijk + ω̃ijk , (5.100)

where the Levi-Civita part, γijk , depends only on S and S∗, while ω̃ijk depends only

on the Ai .

d.) The curvature Θij[km] splits into two parts

Θij[km] = R[ij][km] + Θ̃ij[km] , (5.101)

where the (standard) Riemann curvature R[ij][km] depends on the S’s and Θ̃ij[km]

depends on everything.

e.) The first Cartan curvature 2-form, Ωij , is the Weyl tensor, Cijmn , and depends

only on the S’s.
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f.) The second Cartan curvature 2-form,

Ωi =
1

2
{∇mCm

ijk + AmCm
ijk} θj ∧ θk, (5.102)

depends on everything, though the Ai appears explicitly just in the second term.

g.) Though the Ricci 1-forms,

Ψi = Ψijθ
j + Ψisθ

s + Ψis∗θ
s∗ , (5.103)

depend on everything, their separate parts do not. Ψis depends only on the Ai .

From

Ψij = =ij −∇[iAj] − 2

{
∇(iAj) +

1

2
ηijA

2 − AiAi

}
, (5.104)

we have that =ij depends only on the S’s while the remaining terms depend on

everything.
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5.3 EXPLICIT RELATIONS

For completeness, we give relevant explicit expressions and derivations. We begin

by stating the components of 4, G, and ω. Next, we explicitly derive the tetrad

parameters and the Wünschmann condition. Then, using the expressions for ω and

the basis vectors eI , we give (without proof) the commutators of the basis vectors.

Finally, as an example of what the curvature terms look like, we state (without the

derivation) the component Ψ11. All other curvature terms are, in general, much

longer and more complicated.

5.3.1 The 4, G, and ω

We begin by defining some quantities to simplify our expressions:

γ ≡ 1− bb∗ , (5.105)

σ ≡ a− b∗a∗ , (5.106)

ζ ≡ aR − b∗a∗R . (5.107)

and

h2 = e2 + b∗e3 . (5.108)

Also, when any two quantities are members of a complex-conjugate pair, we will

often display only one of the objects and imply the other.

65



I. The 4i
JK :

40
01 = 40

02 = 40
0s = 40

12 = 40
1s = 40

23 = 40
ss∗ = 0 ,

41
ss∗ = 42

01 = 42
ss∗ = 0 , 40

2s =
−1

αγ
, 40

2s∗ =
b∗

αγ
,

41
01 = −e1(c) , 41

02 = −e2(c) +
e0(a)− b∗e0(a

∗)
αγ

,

41
0s = −Dc + a∗c− e0(T )− ae0(S) , 41

12 =
ζ

αγ
,

41
1s = −[e1(T ) + a∗ + ae1(S)] , 41

23 =
h2(a

∗)− h3(a)

αγ
,

41
2s = − [e2(T ) + ae2(S)] +

b∗Da∗ −Da− c + a∗σ
αγ

,

41
2s∗ = − [e2(T

∗) + a∗e2(S
∗)] +

b∗(D∗a∗ + c)−D∗a + aσ

αγ
,

42
02 = e0(ln α)− b∗e0(b)

γ
, 42

03 =
e0(b)

γ
,

42
0s = α [bc− e0(S)] , 42

0s∗ = α [c− be0(S
∗)] , (5.109)

42
12 = e1(ln α)− b∗e1(b)

γ
, 42

13 =
e1(b)

γ

42
1s = −α [b + e1(S)] , 42

1s∗ = −α [1 + be1(S
∗)] ,

42
23 =

h2(b)

γ
− e3(ln α) ,

42
2s = −D(ln α) +

b∗Db− αγe2(S) + bσ

γ
,

42
2s∗ = −D∗(ln α) +

b∗D∗b− αγbe2(S
∗) + σ

γ
,

42
3s =

−Db− αγe3(S) + bσ∗

γ
,

42
3s∗ =

−D∗b− αγbe3(S
∗) + σ∗

γ
,
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II. The Gij:

G00 = 2 [Dc− ca∗ + ae0(S) + e0(T )] ,

G11 = 0 , G01 = a∗ + ae1(S) + e1(T ) ,

G02 = α [c− b∗e0(S)] + ae2(S) + e2(T ) +
Da− b∗Da∗ + c− a∗σ

αγ
,

G03 = α [bc− e0(S)] + ae3(S) + e3(T ) +
Da∗ − bDa− bc− a∗σ∗

αγ
, (5.110)

G12 =
1

αγ
− α [1 + b∗e1(S)] , G13 = − b

αγ
− α [b + e1(S)] ,

G22 =
2

γ
[σ −Db∗]− 2γb∗e2(S) , G33 =

2

γ
[bσ∗ −Db]− 2γe3(S) ,

G23 = a∗ − α [e2(S) + b∗e3(S)] +
D(bb∗)− 2D(ln α)

γ
,

III. The ωij:

ω01 = e1(c)θ
0 +

{
A2 +

ζ

2αγ

}
θ2 +

{
A3 +

ζ∗

2αγ

}
θ3 + 2A1θ

1

+ 2Asθ
s + 2As∗θ

s∗ ,

ω10 = −ω01 + 2A ,

ω02 =

{
e2(c) +

b∗e0(a
∗)− e0(a)

αγ

}
θ0 +

{
A2 − ζ

2αγ

}
θ1 +

e0(b
∗)

γ
θ2

+

{
A0 +

2e0(bb
∗) + αγ2 [h2(a

∗)− h3(a)]

2γ(1 + bb∗)

}
θ̂3

+
γc− b∗SZ(1 + bb∗)

αγ2
θs − b∗γc + S∗Z(1 + bb∗)

αγ2
θs∗ ,

ω03 = (ω02)
∗ ,
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ω12 =

{
A2 − ζ

2αγ

}
θ0 +

e1(b
∗)

γ
θ2 +

{
A1 +

e1(bb
∗)

γ(1 + bb∗)

}
θ3

− αγ

1 + bb∗
θs +

αγb∗

1 + bb∗
θs∗ ,

ω13 = (ω12)
∗ , (5.111)

ω23 =

{
−A0 +

b∗e0(b)− be0(b
∗)

2γ
+

αγ [h3(a)− h2(a
∗)]

2(1 + bb∗)

}
θ0

−
{

A1 +
bb∗R − b∗bR

2γ

}
θ1 +

{
−h3(b

∗)
γ

+
(3 + bb∗)e2(bb

∗)
2γ(1 + bb∗)

}
θ2

−
{
−h2(b)

γ
+

(3 + bb∗)e3(bb
∗)

2γ(1 + bb∗)
+ 2A3

}
θ3

−
{

γ(SW + 2As) + a∗(3 + bb∗)
4

− ab(1 + 3bb∗)
2(1 + bb∗)

}
θs

+

{
γS∗W ∗ + (a− 2As∗)(3 + bb∗)

4
− a∗b∗(1 + 3bb∗)

2(1 + bb∗)

}
θs∗ ,

ω32 = −ω23 − 2A .

5.3.2 The Tetrad Parameters

Here we determine the tetrad parameters {α , b , b∗ , a , a∗ , c} and the Wünschmann

condition in term of the functions S and S∗. The determination of the tetrad param-

eters also uniquely determines the torsion-free connection above. To find the tetrad

parameters, we use the vanishing of the trace of 4ijs found in Eq (5.42). From these

conditions, we have

0 = G01 + G23 = G∗
01 + G∗

23 ,

0 = Gij = G∗
ij , for (i , j) 6∈ {(0 , 1) , (2 , 3)} .

(5.112)
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Using the explicit expressions of the Gij of Eq (5.110), along with the definitions of

the ei in Eq (5.16), we solve for i.) the tetrad parameters and ii.) the Wünschmann

condition.

As before, we will often list only one member of a complex-conjugate pair and

imply the other. We refer to the conjugate of a listed equation by writing the listed-

equation’s number with a superscript (∗).
We start with the equations G12 = 0, G13 = 0, G∗

12 = 0, and G∗
13 = 0, which

depend only on b, b∗, and α. They are four equations with three unknowns that

satisfy an identity. From G12 = 0 and G∗
13 = 0, we have

b∗SR = bS∗R . (5.113)

Next, using G∗
13 = 0 and G13 = 0 to eliminate α2, we obtain

b =
−1 +

√
1− SRS∗R
S∗R

. (5.114)

(We have chosen the positive root since we want b to vanish when S vanishes.) Using

Eq (5.113), one sees that b∗ is the complex conjugate of b. It useful to invert Eqs

(5.114) and (5.114∗), yielding

SR =
−2b

1 + bb∗
. (5.115)

From Eq (5.115) and G12 = 0, we find

α2 =
1 + bb∗

(1− bb∗)2
. (5.116)

All four equations G12 = 0, G13 = 0, G∗
12 = 0, and G∗

13 = 0 are satisfied by Eqs

(5.114), (5.114∗), and (5.116).
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Our next step is to determine a, a∗, and the Wünschmann condition from the

equations G01 + G23 = 0, G22 = 0, G33 = 0, and their conjugates. From this set of

six equations we will be able to solve for a and a∗, find the Wünschmann condition,

and obtain further identities on some functions.

We first state some useful relationships. Taking D of Eq (5.116), we have, after

some simplification,

Dα =
αD(bb∗)(3 + bb∗)

2(1 + bb∗)(1− bb∗)
. (5.117)

Next, we find TR = TR[Db,Db∗, b, S] and its conjugate. By first taking D∗ of Eq

(5.115) and D of equation (5.115∗),

D∗ (SR) = D∗
( −2b

1 + bb∗

)
, D∗ (S∗R) = D

( −2b∗

1 + bb∗

)
, (5.118)

then using, Eq (5.9) to commute the R-derivative and the fibre-derivative, we obtain

two equations containing TR and T ∗
R. After simplifying with Eqs (5.115), they become

TR =
4b(Db∗ − b∗2Db)

(1 + bb∗)(1− bb∗)2
+

2(b2D∗b∗ −D∗b + 2b2S∗W )

(1− bb∗)2

+
SW (1 + bb∗)2

(1− bb∗)2
− 2(1 + bb∗)(b∗SW ∗ + bS∗W ∗)

(1− bb∗)2
.

(5.119)

We are now in a position to find a, a∗, and the Wünschmann condition. First,

from G01 + G23 = 0 and G∗
01 + G∗

23 = 0, we solve for a and a∗. With the aid of Eqs

(5.117), (5.119) and their complex conjugates, we find

a =
(1 + bb∗) [b∗2Db + Db∗ + D∗ (bb∗) + (1− bb∗) (b∗SW + bS∗W )]

(1− bb∗)3 . (5.120)

When they are inserted into G33 = 0, we find that S must obey the differential

condition

M ≡ Db + bD∗b + SW ∗ − bSW + b2S∗W ∗ − b3S∗W
1− bb∗

= 0 , (5.121)
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where b is the known expression in terms of S and S∗. The expression M =

M [Db , D∗b , b] is the Wünschmann invariant. Its vanishing is the condition on the

S and S∗, i.e., on the original pair of PDE’s, for the existence of a torsion-free

connection.

This condition tells us that this invariant must vanish if we are to find a non-

trivial torsion free connection. By substituting Db∗ from the Wünschmann invariant

and its conjugate into Eqs (5.120) and (5.120∗), our expression for a becomes

a =
α2

bb∗
[
b∗2(M −Db + bSW − SW ∗) + b(M∗ −D∗b∗ + b∗S∗W ∗ − S∗W )

]
. (5.122)

or, with M = M∗ = 0, we have

a =
α2

bb∗
[
b∗2(−Db + bSW − SW ∗) + b(−D∗b∗ + b∗S∗W ∗ − S∗W )

]
. (5.123)

Summarising our results so far, we have obtained the five tetrad parameters,

{b , b∗ , α , a , a∗}, as well as the Wünschmann condition in terms of S and S∗. The

search for the last parameter c, is the most interesting and at the same time the

most difficult part of the construction.

There are four equations for c, namely G02 = 0, G03 = 0, G∗
02 = 0, and G∗

03 = 0.

As we will see below, three of those equations become identities once we algebraically

solve for c. It is, however, instructive to keep the Wünschmann invariant different

from zero when solving the equations. We then explicitly show how its vanishing

yields a unique solution for c, such that the remaining identities among the Gij are

also satisfied. Thus, for the subsequent calculations, M is left in the equations.

By manipulating the expressions for a and M and their conjugates, we have

Db = M + bSW − SW ∗ +
b(1− bb∗)(ab− a∗)

1 + bb∗
, (5.124)

Db∗ = b∗(b∗SW ∗ − SW )− bM∗ +
(1− bb∗)(a− a∗b∗)

1 + bb∗
. (5.125)
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Next, we insert the left-hand sides of Eqs (5.124), (5.125), and their conjugates into

Eqs (5.119) and (5.119∗) to find TR = TR[a , b ; M ] and T ∗
R = T ∗

R[a , b ; M ]. The result

is

TR = (τ + SW ) +
2(3ab− b∗SW ∗)

1 + bb∗
− 2a∗(1 + 4bb∗ + b2b∗2)

(1 + bb∗)2
, (5.126)

where τ = τ [M ] (which vanishes with M) is given below. Third, using the fact that

the vectors D and D∗ commute,

DD∗b = D∗Db , DD∗b∗ = D∗Db∗ . (5.127)

Thus by taking the appropriate fibre-derivatives of the four Eqs (5.124 ), (5.124∗),

(5.125), and (5.125∗), simplifying with Eqs (5.9), (5.124), (5.125), and their con-

jugates, and by using the Eqs (5.127), we obtain two equations containing Da,

D∗a, Da∗, and D∗a∗. They can be solved for Da∗ = Da∗[Da , D∗a∗] and D∗a =

D∗a[Da ,D∗a∗] to find

Da∗ = (Υ + a∗SW − a∗2 − TW ∗) +
SZ(1 + b2b∗2) + 2b2S∗Z

(1− bb∗)2

+
b(Da−D∗a∗ + TW − T ∗

W ∗ + 4aa∗)− 2a∗b∗SW ∗

(1 + bb∗)

− aSW ∗(1 + b2b∗2) + 2b2(2a2 + a∗S∗W )

(1 + bb∗)2
.

(5.128)

The term Υ = Υ[DM , D∗M , M ], which vanishes with M , is given below. Finally, in

addition to Eq (5.128) above, we can use the integrability condition to derive another

identity on the fibre-derivatives of a and a∗. We begin by taking D∗ of Eq (5.126):

D∗(TR) = D∗
[
(τ + SW ) +

2(3ab− b∗SW ∗)

1 + bb∗
− 2a∗(1 + 4bb∗ + b2b∗2)

(1 + bb∗)2

]
. (5.129)
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On the left-hand side, we use Eq (5.9∗) to commute the R-derivative and the fibre-

derivative so that we obtain the term UR = ∂R(D∗T ), where

U ≡ D∗T = D∗2S = D2S∗ = DT ∗ (5.130)

denotes the integrability condition. We can then solve this equation for UR. Refer

to the UR that we obtain in this manner as U
(1)
R . In a similar manner, we can obtain

U
(2)
R by taking D of Eq (5.126∗). Then equate U

(1)
R and U

(2)
R , from which we find

an identity on Da and D∗a∗. With the use of Eqs (5.9), (5.115), (5.124), (5.125),

(5.128), and their conjugates this identity becomes

0 = (Γ− Γ∗ + Da−D∗a∗ + TW − T ∗
W ∗) +

2(1 + bb∗)(bS∗Z − b∗SZ)

(1− bb∗)2

+
4(a∗2b∗ − a2b) + 2(ab∗SW ∗ − a∗bS∗W )

1 + bb∗
.

(5.131)

The term Γ = Γ[DM , D∗M ,M ] and its conjugate vanish with M and are given

below. We are now in a position to find c from the four equations G02 = 0, G03 = 0,

G∗
02 = 0, and G∗

03 = 0. We algebraically solve each of the four equations for c,

calling each solution c(i). Next, we replace SR , α2, TR, and Da∗ by Eqs (5.115),

(5.116), (5.126), and (5.128), and use Eq (5.131) to simplify. Finally, we separate

each c(i) into a piece that contains all terms with the Wünschmann condition and

its fibre-derivatives, namely ξ(i), and another piece that contains no Wünschmann

terms, namely C(i), so that c(i) has the form

c(i) = C(i) + ξ(i) , (5.132)
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for all i. It is straightforward to verify that the four C(i) are real and equal. Imposing

the Wünschmann condition, M = M∗ = 0, so that the ξ(i) = 0, then C(i) = c(i) = c,

and we have our final expression for c, namely

c = −Da + D∗a∗ + TW + T ∗
W ∗

4
− aa∗(1 + 6bb∗ + b2b∗2)

2(1 + bb∗)2

+
(1 + bb∗)(bS∗Z + b∗SZ)

2(1− bb∗)2
+

a(2ab− b∗SW ∗) + a∗(2a∗b∗ − bS∗W )

2(1 + bb∗)
.

(5.133)

Had the Wünschmann invariant been non-vanishing, the whole construction ob-

viously would have failed. Having determined all the tetrad parameters, we still

have to verify that G00 = 0 and G∗
00 = 0. By inspection, we see that these equations

contain fibre-derivatives of c. In fact, by explicitly taking these fibre derivatives on

c, we find that G00 = 0 and G∗
00 = 0 are identically satisfied. We see this in the

following fashion: From Eqs (5.128), (5.128∗), (5.131 ) and (5.133), we find

Da∗ = a∗SW − aSW ∗ − TW ∗ +
2a∗(2ab− b∗SW ∗)

1 + bb∗

+
SZ(1 + bb∗)2

(1− bb∗)2
− a∗2(1 + 6bb∗ + b2b∗2)

(1 + bb∗)2

(5.134)

and

Da = −(2c + TW ) +
2a(2ab− b∗SW ∗)

1 + bb∗

+
2b∗SZ(1 + bb∗)

(1− bb∗)2
− aa∗(1 + 6bb∗ + b2b∗2)

(1 + bb∗)2
.

(5.135)

By taking D∗ of Eq (5.134) and D of Eq (5.135∗), subtracting them and using the

commutability of D and D∗, we have

Dc = cSW − TZ − aSZ +
2c(2ab− b∗SW ∗)

(1 + bb∗)
− ca∗(1 + 6bb∗ + b2b∗2)

(1 + bb∗)2
, (5.136)

which is equivalent to G00 = 0.
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Note that in the above analysis we have used the following expressions, all of

which vanish when M = M∗ = 0:

τ = 2(b∗ν − b2ν∗) ,

Υ = 2bρ + 2(1 + bb∗)−1{µ(1− bb∗) + ν[a∗b∗ + a(1− bb∗ − b2b∗2)] (5.137)

+ b2µ∗(1− bb∗) + b2ν∗[ab + a∗(1− bb∗ − b2b∗2)]} ,

Γ = −b∗[4µ + 2ν(2abb∗ + a∗b∗ + 3a)] ,

ξ1 = ξ∗4 = b{µ∗(1− bb∗) + b∗ρ +
1

2
ν∗[a∗(3− 2b2b∗2)− ab]}

+
1

2
b∗ν(a− a∗b∗) ,

ξ2 = ξ∗3 =
1

b
{µ(1− bb∗) + bρ +

1

2
ν[a(2 + bb∗ − 2b2b∗2)− a∗bb∗2]} (5.138)

+
1

2
bν∗(a∗ − ab) ,

where

µ ≡ 2−1(1− bb∗)−3(1 + bb∗){(b∗DM + D∗M)

+ M(b∗2SW ∗ − 2b∗SW − 2bS∗W + S∗W ∗)} ,

ρ ≡ −2−1(1− bb∗)−2(1 + bb∗)MM∗ , (5.139)

ν ≡ (1− bb∗)−1(1 + bb∗)−1M .
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5.3.3 The Commutators

From the definitions of the basis vectors ei in Eq (5.16), and using the relations

of the previous subsection, one can find the commutators [ei , ej] and [es , ei]. The

derivations of these commutators is complicated and not particularly instructive.

Thus, we simply state some of the results.

The commutators, [ei , ej], are found either by direct computation or by using

the fact that for a torsion-free connection,

[ej , ek] = −2ωi
[jk] . (5.140)

Thus, these commutators can be found from the ωijk listed above. The commutators

containing es or its conjugate are found by direct computation:

[es , e0] = α {[bc− e0(S)] e2 + [c− b∗e0(S)] e3} ,

[es , e1] =

[
a∗ − 2ab

1 + bb∗
− h2(S)

αγ

]
e1 − e3 − be2

αγ
,

[es , e2] = − e0

αγ
− α [b∗e0(S)− c] e1

−
{

γab

2(1 + bb∗)
− b∗ [e3(S)− be2(S)]

2αγ
+

e2(S)

αγ

}
e2 , (5.141)

[es , e3] =
be0

αγ
+ α [bc− e0(S)] e1

+

{
(a∗ − ab)− γab

2(1 + bb∗)
− b∗ [e3(S) + be2(S)]

2αγ

}
e3 .
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5.3.4 The Ψ11

As an example of the components of the curvatures, we give – without explicit

derivation – the component Ψ11:

Ψ11 = =11 − e1(A1) + A2
1 , (5.142)

where

=11 = − [b∗e 2
1 (b) + be 2

1 (b∗)]
γ(1 + bb∗)

− [e1(b)] [e1(b
∗)] (3 + 4bb∗ + 3b2b∗2)
γ2(1 + bb∗)2

− (1 + 2bb∗)
(
b∗2 [e1(b)]

2 + b2 [e1(b
∗)]2

)

γ2(1 + bb∗)2
.

(5.143)
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6.0 THE PDE’S AND THE EINSTEIN EQUATIONS

In section 5.2, we calculated several curvatures as functionals of the S and S∗ and

the undetermined Ai . We now discuss imposing the conformal Einstein equations

on these curvatures. In other words, we explore the conditions that make the metric

(5.17),

g (Z ,R , W ,W ∗ , s , s∗) = ηijθ
i ⊗ θj , (6.1)

conformally Einstein.

Since everything (the metric, the connection, and the curvatures) depends on

the functions S and S∗ which satisfy the Wünschmann condition, the conditions

for the conformal Einstein equations are actually further conditions – in addition

to the Wünschmann condition – on these functions. Our aim is to find these extra

conditions. To do this, we apply our new version of the conformal Einstein equations,

Eq (3.66). Thus, the following is the first known application of this version.

Unfortunately, this problem is very formidable. In principle, we can formulate

everything in terms of S and S∗. We will not, however, give any of the explicit

equations since they are millions of terms long, even after severe approximations are

taken. Accordingly, we will only present an outline of our methods.

Finally, we note that we did not investigate the other two versions of the confor-

mal Einstein equations using this language. The first version, Eq (3.21), has been
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studied elsewhere using the language of the PDE’s [8], and the second version, Eq

(3.25), seems to be even more complicated than the third since it contains an extra

level of derivatives by way of the Bach tensor. (The study of the second version in

the language of the PDE’s was unsuccessfully attempted by Tod [22].)

6.1 A REVIEW

For clarity, we briefly review in this section our new version of the conformal Einstein

equations of chapter 3. We begin with the conformal transformation,

ĝab = e2φgab , (6.2)

and the Einstein equations for ĝab,

R̂TF
ab = R̂ab − 1

4
R̂ĝab = 0 . (6.3)

The inverse conformal transformation of Eq (6.3) yields the first version of the con-

formal Einstein equations,

0 = RTF
ab − 2∇aφb + 2φaφb +

1

2
gab (∇cφ

c − φcφ
c) , (6.4)

where φa = ∇aφ. This form of the conformal Einstein equations is a set of conditions

on the metric gab and the conformal parameter φ. The metric gab that satisfies Eq

(6.4) is called conformally Einstein.

A necessary but insufficient condition for a metric gab to be conformally Einstein

is that it satisfy the conformal Yang equations,

∇aC
a

bcd + φaC
a

bcd = 0 . (6.5)
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It is from these 16 equations that we obtained our new version of the conformal

Einstein equations. The essential idea was to solve the conformal Yang equations for

the four φa, which determines them as functions of gab, via the Weyl tensor Ca
bcd

and its divergence ∇aC
a

bcd. Call these solutions φa[g]. The φa[g] are then inserted

into the first version of the conformal Einstein equations, Eq (6.4), producing a set

of equations that depend only on gab. Note that since Eq (6.5) is 16 equations, we

obtain 12 conditions (Jσ[g] = 0) on the metric gab when we solve for the four φa[g].

The new version of the conformal Einstein equations are therefore





0 = RTF
ab − 2∇aφb[g] + 2φa[g]φb[g] + 1

2
gab (∇cφ

c[g]− φc[g]φc[g])

0 = Jσ[g] ,

(6.6)

where the explicit expressions for φa[g] and Jσ[g] are given in Eqs (3.63) and (3.65),

respectively.

6.2 THE METHOD

We now return to the Cartan-Weyl geometry of chapter 5. In particular, recall that

the metric was defined as

g (Z ,R , W ,W ∗ , s , s∗) = ηijθ
i ⊗ θj . (6.7)

Our aim is to determine the conditions under which this metric is (generically) con-

formally Einstein. To find them, we follow the procedure reviewed in Eqs (6.5) and

(6.6). (See Eq 2.17 for the definition of a generic metric.)
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We begin with imposing the vanishing of the second Cartan curvature of Eq

(5.98),

Ωijk = ∇mCm
ijk + AmCm

ijk = 0 . (6.8)

By theorems 3.3.1 and 3.3.2, we thus have that the vector Ai is a gradient and is

unique for the choice of the metric in Eq 6.7. Thus, as before in section 6.1, we solve

Eq (6.8) for the Ai, which determines them as functions of g, i.e., Ai[g]. In doing so,

we also find the conditions Jσ[g] = 0.

Now recall Eq (5.78),

Rjm = R(jm) − ηjm∇pA
p − 2

{∇(mAj) + ηjmApAp − AjAm

}
+ 4∇[jAm] , (6.9)

which was derived from the second structure equation, Eq (5.65). To obtain the

conformal Einstein equations, we first require that the trace-free part of Rij vanish,

RTF
ij = 0 . (6.10)

Then, we insert the four Ai[g] into RTF
jm = 0. Since the vector Ai[g] is a gradient, the

term containing ∇[jAm] vanishes. Thus, we have the conformal Einstein equations

for our Cartan geometry,





0 = RTF
ij − 2∇iAj[g] + 2Ai[g]Aj[g] + 1

2
ηij

(∇kA
k[g]− Ak[g]Ak[g]

)

0 = Jσ[g] .

(6.11)

The above set of equations depend only on the functions S and S∗ and , therefore,

are the additional conditions on these functions.

Our goal, however, was to calculate the above set of equations explicitly in terms

of the functions S and S∗. When we attempted to do this exactly, the length of

the equations became overwhelming. The solutions for the Ai[g] and the conditions
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Jσ[g] = 0 contained several million terms per equation. After many months of effort,

with the aid of a supercomputing cluster and the mathematics programme Maple,

we were unable to successfully simplify these equations. Thus, we were forced to

try a severe approximation techniques, which we discuss below. Ultimately, this

approximation reduced the size of our equations by about an order of magnitude,

but we still had roughly a million terms per equation. Many more months of effort

to simplify the equations were unfruitful.

6.2.1 The Off-Minkowski Approximation

Recall that in Minkowski space-time, the metric ηab (in the standard coordinate

basis) is given by

[ηab] =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




. (6.12)

For null plane waves in Minkowski space-time, it can be shown [5], [8], [16] that the

function Z = Z (xa , s , s∗) describing the collection of null planes can be written

Z = lax
a , (6.13)

where the vector of coefficients la = la (s , s∗) is

[√
2 (1 + ss∗)

]
la = {(1 + ss∗) , (s + s∗) , i (s∗ − s) , (−1 + ss∗)} . (6.14)

Using ηab from above, one can show that this expression for Z satisfies the eikonal

equation, Eq (4.4), for each value of the parameters (s , s∗). Furthermore, this Z

satisfies the pair of PDE’s

D2 Z = D∗2 Z = 0 , (6.15)
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i.e., the functions S and S∗ vanish.

Alternatively, one can start with the pair of PDE’s in Eq (6.15) and then follow

the procedure of chapter 5. In that case, the null tetrad of Eq (5.15) becomes

θi = θi
adxa , (6.16)

where

θ0
a ≡ la , θ1

a ≡ na = (D∗Dla + la) ,

θ2
a ≡ ma = Dla , θ3

a ≡ m∗
a = D∗la .

(6.17)

Thus, nala = 1 and mam∗
a = −1, and all other scalar products are zero. The null

metric ηij (see Eq (6.7)) is then re-constructed by

g = ηijθ
i ⊗ θj , (6.18)

where the components θi
a are as above.

With null plane waves in mind – in particular, Eq (6.15) – a natural approxima-

tion to take in the analysis of the conformal Einstein equations is the “off-Minkowski”

approximation,

S → εS, (6.19)

where ε is small. Using this approximation, we then calculate our system of equations

(6.11) to second-order in ε.

To do so, we first use Eq (6.19) to approximate the set of tetrad parameters

{α , b , b∗ , a , a∗ , c} given in Eqs (5.54) - (5.57). For example,

b ≈ −ε
e1(S)

2
+ O

(
ε3

)
, (6.20)

and

α ≈ 1 +
3

2
bb∗ (6.21)
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The approximations of the other tetrad parameters are much more complicated and

will not be displayed.

The next step is to compute the connection and its curvatures in terms of these

approximated tetrad parameters. Then, we again apply Eqs (6.8) - (6.11).

As we have said, even after the off-Minkowski approximation, the conformal

Einstein equations of (6.11) were roughly a million terms each. Thus, although we

were successful in finding these equations explicitly in terms of the functions S and

S∗, the equations are much too large to be useful.
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7.0 CONCLUSION

In this work, we have accomplished many things. Of primary importance, we have

shown how to extend Cartan’s beautiful construction of differential geometric struc-

tures to the pair of PDE’s

D 2Z = S (Z , Zs , Zs∗ , Zss∗ , s , s∗) ,

D∗2Z = S∗(Z , Zs , Zs∗ , Zss∗ , s , s∗) . (7.1)

The resulting geometry, namely the Cartan-Weyl conformal geometry, forms a rich

set of quantities which includes, as a special case, all conformal Lorentzian metrics

and their space-times. Consequentially, this geometry also contains all solutions to

the vacuum Einstein equations.

Specifically, the restriction of the Cartan-Weyl geometry to conformal space-

times was achieved via the Wünschmann condition. This condition was obtained

geometrically through the torsion-free property of the generalised Levi-Civita-Weyl

connection of Eq (5.33). One of our accomplishments was to find the Wünschmann

condition explicitly, Eq (5.53), in terms of the inhomogeneous functions S and S∗

defined by Eq (7.1). We note that the Wünschmann condition had been previously

calculated in the context of the null-surface formulation of GR (e.g. [11]). In this

work, however, we have re-obtained it from an entirely new point of view, namely

via the torsion-free connection.
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In order to explore the restriction of the Cartan-Weyl geometry to a conformal

Einstein geometry, we used our new version of the conformal Einstein field equations,

Eq (3.66), which does not contain the conformal parameter. When written explicitly

in terms of the functions S and S∗, this version of the conformal field equations

becomes a set of further conditions on S and S∗. We had hoped that this set

would be relatively simple to express explicitly, but, unfortunately the equations

were enormous, even after making the approximation of small S. Thus we concluded

that Cartan-Weyl geometry was not a particularly useful application of this new

version.

Perhaps this is not surprising. On the one hand, the new version of the field equa-

tions has an appealing geometric aesthetic since it is only a set of conditions of the

conformal metric. On the other hand, this version is very unappealing algebraically,

as it is a set of 21 complicated equations. (Nine of these come from the vanishing of

the trace-free conformal Ricci tensor, i.e., the first equation of Eq (3.66); the other

twelve we review now.)

In order to eliminate the gradient of the conformal parameter from the confor-

mal field equations, we had to solve the 16 conformal Yang equations for the four

components of the gradient. This left us with the twelve equations that we called

Jσ[g] = 0. These equations are, in general, rather complicated, and the fact that one

has to satisfy twelve such equations simultaneously makes them even more cumber-

some. If one could reduce or simplify them in some way, then the new version of the

field equations would certainly be more powerful.

As of now, it is not clear how to do this precisely. We note, however, that

very recently we have received suggestions that may simplify this set of equations,

although the analysis seems very complicated. Much more work remains to be done.
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