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ABSTRACT

A RULE-BASED CONTROLLER BASED ON SUCTION DETECTION FOR

ROTARY BLOOD PUMPS

Antonio Luiz S. Ferreira, PhD

University of Pittsburgh, 2007

A new rule-based control system for rotary ventricular assist devices (rVADs) is proposed.

The control system is comprised of two modules: a suction detector and a rule-based con-

troller. The suction detector can classify pump flow patterns, based on a discriminant anal-

ysis (DA) model that combines several indices derived from the pump flow signal, to make a

decision about the pump status. The indices considered in this approach are frequency, time,

and time-frequency-domain indices. These indices are combined in a DA decision system to

generate a suction alarm.

The suction detector performance was assessed using experimental data and in simula-

tions. Experimental results comprise predictive discriminant analysis (classification accu-

racy: 100% specificity, 93% sensitivity on training set and 97% specificity, 86% sensitivity

on test set) of the detector and descriptive discriminant analysis (explained variance) of

the DA model. To perform the simulation studies, the suction detector was coupled to a

cardiovascular-pump model that included a suction model. Simulations were carried out to

access the detector performance, under different physiological conditions, i.e., by varying

preload and the contractility state of the left ventricle. To verify its robustness to noise,

simulations were carried out to verify how the accuracy of the detector is affected when

increasing levels of noise are added to the pump flow signal.

The rule-based controller uses fuzzy logic to combine the discriminant scores from the

DA model to automatically adjust the pump speed. The effects on controller performance
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of symmetric or asymmetric membership output sets and the dimension of the rule base

were evaluated in simulations. The same parameter changes, i.e., preload and contractility,

were used to assess the control system performance under different physiologic scenarios in

simulations. The proposed control system is capable of automatically adjusting pump speed,

providing pump flow according to the patient’s level of activity, while sustaining adequate

perfusion pressures and avoiding suction. In addition, the control system performance was

not adversely affected by noise until SNR was less than 20dB, which is a higher noise level

than is commonly encountered in flow sensors used clinically for this type of application.

iv



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 CARDIOVASCULAR PHYSIOLOGY . . . . . . . . . . . . . . . . . . . . 5

2.1 Heart and Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Cardiac Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The pressure-volume relationship . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Properties of vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 MODELS OF THE CARDIOVASCULAR SYSTEM . . . . . . . . . . . . . 12

2.5.1 Ventricular models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Afterload Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.0 FUZZY LOGIC CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Properties of fuzzy sets . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Operations on Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Fuzzy Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Fuzzy If-Then statements . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Linguistic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Fuzzy Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Design of a Fuzzy Logic Controller . . . . . . . . . . . . . . . . . . . . 22

4.0 THE CARDIOVASCULAR MODEL . . . . . . . . . . . . . . . . . . . . . 25

4.1 The cardiovascular model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



4.1.1 Modeling the ventricle . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Modeling the valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.3 State Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Input Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Fitting Human Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 The coupled cardiovascular-pump model . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Suction element model . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 State equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Open Loop response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1 Step response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.2 Ramp response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.3 Comparison with experimental data . . . . . . . . . . . . . . . . . . . 42

5.0 SUCTION DETECTION PROBLEM IN ROTARY BLOOD PUMPS 45

5.1 Feature Extraction of Pump Flow . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 The window length issue . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.2 Frequency based suction indices . . . . . . . . . . . . . . . . . . . . . 51

5.1.3 Time based indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.4 Time-frequency based index . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 The Decision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 The Discriminant Analysis Method . . . . . . . . . . . . . . . . . . . 61

5.2.2 Classification rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.3 Misclassification Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Minimum number of samples . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.3 The two-group classification problem . . . . . . . . . . . . . . . . . . 79

5.3.3.1 Descriptive Discriminant Analysis . . . . . . . . . . . . . . . . 79

5.3.3.2 Predictive Discriminant Analysis . . . . . . . . . . . . . . . . 79

vi



5.3.4 Classifying the test set for the two-group problem . . . . . . . . . . . 82

5.3.5 The three-group classification problem . . . . . . . . . . . . . . . . . . 82

5.3.5.1 Descriptive Discriminant Analysis . . . . . . . . . . . . . . . . 83

5.3.5.2 Predictive Discriminant Analysis . . . . . . . . . . . . . . . . 85

5.3.6 Classifying the test set for the three-group problem . . . . . . . . . . 86

5.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Physiologic parameter change . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 Robustness to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 How Do the Discriminant scores behave over time? . . . . . . . . . . . . . . 99

6.0 A RULE-BASED CONTROLLER FOR ROTARY BLOOD PUMPS . 103

6.1 Why a Rule-based controller ? . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Rule-based controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Rule base design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Effects of Asymmetry in output sets . . . . . . . . . . . . . . . . . . . 111

6.2.3 Final design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.3.1 Membership sets . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.3.2 Rule base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Initial pump speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.2 Physiologic parameter change . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.2.1 Tuning the controller to very sick patients . . . . . . . . . . . 127

6.3.3 Hemodynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.4 Robustness to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.0 DISCUSSION AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . 136

7.1 Cardiovascular-pump model . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Suction detection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.1 Meaning of the prior probabilities . . . . . . . . . . . . . . . . . . . . 138

7.2.2 Comparison with current technology . . . . . . . . . . . . . . . . . . . 139

7.3 Rule-based controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3.1 Tuning of Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

vii



7.3.2 Emergency mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Contributions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

APPENDIX A. STATE EQUATIONS FOR THE CARDIOVASCULAR

MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

APPENDIX B. STATE EQUATIONS FOR THE CARDIOVASCULAR-

PUMP MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

APPENDIX C. CONFUSION MATRICES - SVR TESTS . . . . . . . . . . 152

APPENDIX D. FAM BANKS OF CONTROL SURFACES . . . . . . . . . . 154

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

viii



LIST OF TABLES

1 State Variables of the cardiovascular model . . . . . . . . . . . . . . . . . . . 27

2 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Phases of the cardiac cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 State Variables of the cardiovascular-pump model . . . . . . . . . . . . . . . 37

5 Example of a Confusion Matrix for a two-group classifier . . . . . . . . . . . . 69

6 Expected number classified by chance . . . . . . . . . . . . . . . . . . . . . . 70

7 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 MANOVA Results for groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9 DDA result for the two-group classification problem . . . . . . . . . . . . . . 80

10 Confusion Matrix for the classifier a . . . . . . . . . . . . . . . . . . . . . . . 81

11 Confusion Matrix for test set a . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12 DDA result for the three-group classification problem . . . . . . . . . . . . . 84

13 Confusion Matrix for training set . . . . . . . . . . . . . . . . . . . . . . . . . 86

14 Confusion Matrix for test set a . . . . . . . . . . . . . . . . . . . . . . . . . . 87

15 Parameter changes to evaluate the suction detector . . . . . . . . . . . . . . 90

16 Controller Rule-base with five output sets . . . . . . . . . . . . . . . . . . . . 115

17 Parameter changes to evaluate the suction detector . . . . . . . . . . . . . . 121

18 Pump states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

19 Comparison between the three suction detectors . . . . . . . . . . . . . . . . 141

20 Controller Rule-base for three output sets . . . . . . . . . . . . . . . . . . . . 155

21 Controller Rule-base for five output sets . . . . . . . . . . . . . . . . . . . . . 156

22 Controller Rule-base for seven output sets . . . . . . . . . . . . . . . . . . . . 157

ix



LIST OF FIGURES

1 Anatomy of the human heart modified from A. Guyton and J. Hall [15] . . . 6

2 Block diagram representation of the human circulation . . . . . . . . . . . . . 7

3 Cardiac cycle indicating systolic and diastolic phases modified from A. Guyton

and J. Hall [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Elastance function for a 75 bpm heart rate . . . . . . . . . . . . . . . . . . . 9

5 Pictorial representation of a PV-loop . . . . . . . . . . . . . . . . . . . . . . . 9

6 Resistance effects in vessels and their electrical equivalent . . . . . . . . . . . 11

7 Compliance effect in vessels and its electrical equivalent . . . . . . . . . . . . 11

8 Inertance property of a vessel and its electrical equivalent . . . . . . . . . . . 12

9 Ventricular models proposed by (a) McInnis and (b) Avanzolini . . . . . . . . 13

10 Windkessel models of the afterload system . . . . . . . . . . . . . . . . . . . . 14

11 Rule based controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12 An illustration of the height defuzzification method . . . . . . . . . . . . . . . 24

13 Cardiovascular Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

14 Normalized Elastance (left panel), Elastance E(t) (right panel) . . . . . . . . 29

15 All integrator block diagram for the cardiovascular model . . . . . . . . . . . 32

16 Simulated hemodynamic waveforms for a normal subject . . . . . . . . . . . . 33

17 PV-loops used for model validation . . . . . . . . . . . . . . . . . . . . . . . . 34

18 Input impedance of the afterload system . . . . . . . . . . . . . . . . . . . . . 34

19 Input impedance spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

20 Curve fitting using human clinical data . . . . . . . . . . . . . . . . . . . . . 35

21 Cardiovascular-pump Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

x



22 All integrator block diagram for the cardiovascular-pump model . . . . . . . . 39

23 Cardiac Output for step speed test . . . . . . . . . . . . . . . . . . . . . . . . 41

24 Pump flow for step speed test; dotted line: Emax = 1.0; solid line: Emax = 0.5 41

25 Pressures for step speed test; dotted line: Emax = 1.0; solid line: Emax = 0.5 42

26 Ramp speed profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

27 Hemodynamic variables for ramp test . . . . . . . . . . . . . . . . . . . . . . 43

28 Simulation Results of the Cardiovascular-model. (a) Pump Speed, (b) Pump

Flow from in-vivo test, (c) Pump Inlet Pressure from in-vivo test, (d) Pump

Flow from model, and (e) Pump Inlet Pressure from model. . . . . . . . . . . 44

29 Pictorial representation of the suction phenomena: (a) normal, (b) suction . . 45

30 Schematic of the suction detection system . . . . . . . . . . . . . . . . . . . . 46

31 Illustration and definition of RIN . . . . . . . . . . . . . . . . . . . . . . . . . 47

32 Experimental Nimbus data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

33 Hemodynamic variables for the three pumping states . . . . . . . . . . . . . . 49

34 Inflow resistance RIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

35 Mean diastolic inflow resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 50

36 Spectrum of pump flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

37 Example of how PSD energy changes as suction occurs; (a) Pump Inlet Pres-

sure, (b) Pump Flow. The bottom panels are expanded segments of Pump

Flow with respective spectrums. . . . . . . . . . . . . . . . . . . . . . . . . . 54

38 Simulation result of SI1 and SI2 to in-vivo data; (a) Pump Flow, (b) SI1 and

SI2 as functions of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

39 Example of Maximum and minimum envelopes of (a) qP (t), (b) dQP /dt . . . 56

40 Simulation results of time indices to in-vivo data; (a) Pump Flow, (b) SI3, (c)

SI4 and SI5, (d) SI6 and SI7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

41 Spectogram results and Instantaneous frequency of Pump Flow for 3 time

windows. A) No Suction, B) Moderate Suction, and C) Severe Suction. In each

case, panels from the top are PF, Spectrogram of PF, and the Instantaneous

mean frequency of PF, 〈ω〉spt respectively. . . . . . . . . . . . . . . . . . . . . 60

xi



42 Fisher’s idea for discriminant analysis. In (a), X1 is used to discriminate

between groups 1 and 2; in (b), a linear combination of X1 and X2 does a

better result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

43 Within- and between-group variance estimates . . . . . . . . . . . . . . . . . 64

44 Fisher’s idea for three-group discriminant analysis . . . . . . . . . . . . . . . 66

45 Detector design steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

46 Box plots of the features per group . . . . . . . . . . . . . . . . . . . . . . . . 76

47 Hit-rate versus number of samples per group . . . . . . . . . . . . . . . . . . 78

48 Histograms of discriminant scores for training set . . . . . . . . . . . . . . . . 81

49 Histograms of discriminant scores for test set . . . . . . . . . . . . . . . . . . 83

50 Plot of training data in discriminant function space . . . . . . . . . . . . . . . 85

51 Plot of test data in discriminant function space . . . . . . . . . . . . . . . . . 87

52 Block diagram of cardiovascular-pump model and suction detection . . . . . . 88

53 Test result of parameter changes for the healthy heart (Emax = 2.0mmHg/ml).

Panels from the top are PS (Pump Speed), PF (Pump Flow), Discriminant

Scores and DA model and Expert classification. . . . . . . . . . . . . . . . . . 91

54 Test result of parameter changes for the healthy heart (Emax = 2.0mmHg/ml).

Panels from the top are PS (Pump Speed), PF (Pump Flow), Discriminant

Scores and DA model and Expert classification. . . . . . . . . . . . . . . . . . 92

55 Test result of parameter changes for the sick heart (Emax = 1.0mmHg/ml).

Panels from the top are PS (Pump Speed), PF (Pump Flow), Discriminant

Scores and DA model and Expert classification. . . . . . . . . . . . . . . . . . 93

56 Test result of parameter changes for the sick heart (Emax = 1.0mmHg/ml).

Panels from the top are PS (Pump Speed), PF (Pump Flow), Discriminant

Scores and DA model and Expert classification. . . . . . . . . . . . . . . . . . 94

57 Test result of parameter changes for the very sick heart (Emax = 0.6mmHg/ml).

Panels from the top are PS (Pump Speed), PF (Pump Flow), Discriminant

Scores and DA model and Expert classification. . . . . . . . . . . . . . . . . . 95

xii



58 Test result of parameter changes for the very sick heart (Emax = 0.6mmHg/ml).

Panels from the top are PS (Pump Speed), PF (Pump Flow), Discriminant

Scores and DA model and Expert classification. . . . . . . . . . . . . . . . . . 96

59 Detector hit-rate as a function of contractility state . . . . . . . . . . . . . . 97

60 Comparison between raw and noisy simulated pump flow . . . . . . . . . . . 98

61 Detector hit-rate as a function of SNR . . . . . . . . . . . . . . . . . . . . . . 99

62 DA results for data File # 20. (a) Pump Speed, (b) Pump Flow, (c) Detector

output and Expert decision, and (d) Discriminant Scores. Capital letters in-

dicate pump state transitions: A, NS → MS; B, D, F, H and J: MS → SS; C,

E, G, I: SS → MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

63 Pump status point in the discriminant score plan. The dark crosses repre-

sent the group means. The small numbers at the side of the points represent

the time information. Dashed lines connect consecutive time windows. Solid

lines represent transitions in pump state, and capital letters indicate crossing

boundaries according to changes shown in Figure 62. . . . . . . . . . . . . . . 102

64 Pump speed update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

65 Input-output sets examined to derive the rule base. Top panels are input sets

definitions and bottom panels are output sets. . . . . . . . . . . . . . . . . . 108

66 Control surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

67 Simulation results of pump speed for control surfaces. Top panel shows low

initial pump speed and bottom panels shows high pump speed. . . . . . . . . 110

68 Operating point on control surfaces. Only the last five points are shown with

time information. The last five points are coincidents in (b). . . . . . . . . . . 110

69 Output Membership sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

70 Control surfaces for assymetric sets (a) controller A, (b) controller B . . . . . 112

71 Pump speeds results for asymmetric sets: (a) ω0 = 8krpm, (b) ω0 = 9krpm,

(c) ω0 = 13krpm and (d) ω0 = 14krpm. . . . . . . . . . . . . . . . . . . . . . 113

72 Controller Membership Sets. (a) Input variables; (b) Output Variables. (NB:

Negative Big, NS: Negative Small, ZE: Zero, PS: Positive Small, PB: Positive Big) 114

73 Controller transfer characteristic . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiii



74 Controller Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

75 Aortic and Left Ventricular Pressures . . . . . . . . . . . . . . . . . . . . . . 120

76 Block diagram of feedback control . . . . . . . . . . . . . . . . . . . . . . . . 122

77 Controller results of Preload changes for the healthy heart (Emax = 2.0) . . . 124

78 Controller result of Preload changes for the sick heart (Emax = 1.0) . . . . . . 125

79 Controller result of Preload changes for the very sick heart (Emax = 0.6). Note

that controller fails for these test conditions. . . . . . . . . . . . . . . . . . . 126

80 Controller result of Preload changes for the very sick heart (Emax = 0.6) with

modified membership output sets. . . . . . . . . . . . . . . . . . . . . . . . . 128

81 Delay on pump speed with modified membership output sets . . . . . . . . . 129

82 Hemodynamic variable results for the first scenario (baseline → strenuous ex-

ercise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

83 Hemodynamic variable results for the second scenario (baseline → hypertension)132

84 RMSE as a function of SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

85 Example of deteriorated performance at SNR=10dB. Signals from the top are

pump flow, pump speed, discriminant scores and the model classification result.

Note that the suction event at t = 250s was missed by the suction detector,

causing the controller to erroneously increase pump speed. . . . . . . . . . . . 135

xiv



PREFACE

This dissertation is the outcome of four years of research work I have performed as a member

of the Physiologic Control team at the University of Pittsburgh. As such, it is not really a sole

author work, but has contributions from those who have collaborated for my development

as a researcher. In special, professors Robert Boston and James Antaki. Their guidance and

encouragement have provided me with knowledge and expertise that will last a lifetime. A

very special thanks to Professor M. Simaan for his helpful discussion and comments that

contribute to improve some parts of this work.

I also want to thank the others students in our team: Shaohui Chen, Douglas McConahy,

Bronwyn Uber and Dorian Arnold for their support. My special gratitude to the Coldebella

family, Brenno Coelho and Ismet Sahin whose words of encouragement helped me in many

decisive moments.

I would like to express my gratitude to the Alcoa Foundation, the Department of Elec-

trical and Computer Engineering of the University of Pittsburgh, the Universidade Federal

do Maranhao (UFMA/Brazil), and the Fundacao de Amparo a Pesquisa e ao Desenvolvi-

mento Cientifico e Tecnologico do Maranhao (FAPEMA/Brazil) for sponsoring my graduate

studies.

I would like to dedicate this work to my family: my beloved wife Rosa, my daughter

Amanda and my son Joao; to my parents and family in Brazil, whose dedication and love

have brought me at this point. Finally, but not least, to God.

“The Lord is my shepherd, I shall not be in want.”

Psaml 23

Antonio Ferreira,

Pittsburgh, June 6th 2007.

xv



1.0 INTRODUCTION

Cardiovascular Disease is a major health problem in the United States [1]. Standard care

entails drug administration to ensure blood perfusion. When the pharmacological treatment

fails, heart transplantation has become an accepted method to treat severe cases of the

disease. However, the demand exceeds the supply of organ donors, and many patients die

while waiting for a transplant.

As the patient’s heart condition deteriorates, mechanical support may be the only option

to assist the impaired heart. Ventricular assist devices (VADs) have traditionally been used

as a “bridge for transplantation”, and now are being implanted as “bridge to recovery”.

In the latter option, the VAD reduces the workload imposed on the heart, which then can

recover its contractility power. In all situations it is desirable to provide the patient with a

life style as “normal” as possible [2, 3].

VADs can be classified as either positive-displacement (pulsatile) or dynamic pumps,

depending on how they generate blood flow. Pulsatile VADs mimic the natural heart flow,

operating in a beat-like fashion. Dynamic VADs usually deliver continuous flow and do not

necessarily create pulsatile pressures and output flows. Rotary VADs are smaller, have high

efficiency and do not need valves like their pulsatile counterparts. On the other hand, rotary

VADs pose a more demanding control problem [4].

Two constraints should be taken into account regarding the operating settings for the

pump speed of rotary devices: first, the rotational speed cannot be too low to avoid re-

gurgitation, i.e, the return of blood from the aorta to the left ventricle through the pump

(backflow); second, the rotational speed cannot be too high to avoid suction, i.e, an event

that occurs when the rotary pump tries to draw more blood than is available. Suction may

cause ventricular collapse to occur, which can cause chest pain and cardiac tissue damage.
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In recent years, several approaches have been proposed to solve the suction detection

problem. These approaches are based on empirical observation of certain variables. For

example, the spectral energy content of signals, such as pump flow and pump current, change

when suction occurs. When the VAD runs at speeds below the region of suction, the pump

flow is periodic at the patient’s heart rate. Most of the energy power spectrum is concentrated

around the fundamental frequency of the signal. When suction occurs, energy shifts to higher

harmonics in the signal. A Normalized Second Harmonic index (NSH), defined as the ratio

of second harmonic to the first harmonic, reaches a minimum at the onset of ventricular

collapse [5]. Similarly, a waveform deformation index (WDI) based on power spectral density

(PSD) analysis of the pump current to detect the occurrence of regurgitation and suction was

proposed in [6]. The WDI is defined as the ratio of the fundamental component of the PSD to

the higher PSD components. However, this ratio is not a unimodal function of pump speed

(PS) and additional information is needed to decide between regurgitation and suction.

Pulsatility in the pump flow signal can be used to define a pulsatility index [7]. Even

though the pump is a continuous flow device, the impaired ventricle still has pulsatile behav-

ior. As a consequence, hemodynamic signals such as aortic pressure, left ventricular pressure

and pump flow exhibit varying degrees of pulsatility during LVAD1 support. As pump speed

increases and ventricular unloading occurs, the pulsatility of all these signal decreases and

reaches a minimum as suction is approached. Based on this concept, a proportional-integral

type fuzzy-logic controller was proposed by Choi el al [7].

Another heuristic approach to detect suction was introduced by Antaki et al [8, 9]. The

“Diminishing Returns Index” (DRI) is defined as the derivative of the mean pump flow

with respect to pump speed (dQ
dω

). The DRI is based on the fact that mean pump flow rate

decreases as pump speed increases. When venous return is matched by the pump, the rate

of change is approximately zero. Thus, an appropriate operating point for the pump lies in

the region for which dQ
dω

is slightly positive.

Suction patterns vary considerably. Therefore, one index may respond more effectively

to a certain pattern than others, and the combined response to multiple indices may identify

a broader range of patterns than a detector based on only one index. Baloa [3, 10] proposed

1VADs are usually referred as LVADs because their common application is to support the left ventricle
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a data-fusion method to combine these indices. He presents a measure of uncertainty for

each index as well as for the combined result.

Volkron et al. [11] present several indices to detect suction. These indices are based

on a time-domain analysis of pump flow patterns from VAD-implanted patients. Using a

window length of 5 seconds, patterns extracted from the pump flow wave form were compared

against snapshots of pump flow previously stored and classified in a data base by human

experts, in order to decide whether suction is present. The authors acknowledge the fact

that the proposed method can easily increase exponentially the possible combinations in its

optimization procedure, if applied to a multiple-beat analysis. This might be an issue for

real time applications of the proposed method.

Recently, we described a suction detector based on frequency indices combined with a

time-frequency index [12]. The frequency based indices can detect changes in the harmonic

and subharmonic energy content of the pump flow signal that occur during a suction event.

The time-frequency index can track variations in the standard deviation of the instantaneous

frequency of that signal. These two pieces of information are then combined in a weighted

decision system to generate a suction alarm.

This work was expanded by supplementing the frequency indices and the time-frequency

index with time indices that can detect changes in pump flow pulsatility based on a beat-to-

beat analysis of the pump flow and first derivative of pump flow [13]. These indices are then

combined using Discriminant Analysis (DA) in order to classify the pump status in one of

the following three categories: No Suction (NS), Moderate Suction (MS) or Severe Suction

(SS).

Using the discriminant scores as inputs, a rule-based controller was designed [14]. This

controller can automatically adjust pump speed, providing cardiac output and pressure per-

fusion according to the patient’s level of activity. This dissertation describes the design and

simulation studies performed for both modules of the control system: the suction detection

system and the rule-based controller.

This dissertation is organized as follows. Chapter 2 presents some concepts on cardiovas-

cular physiology and analog models of the cardiovascular system. Chapter 3 reviews some

definitions regarding fuzzy logic that are used in designing the rule-based controller. The
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cardiovascular-pump model used for simulation studies is developed in Chapter 4, and some

simulation results are presented. Chapter 5 describes the discriminant-analysis-based suction

detection system, and preliminary results of that system using in-vivo data are presented.

Chapter 6 describes the rule-based controller design and presents simulation results of the

control system (suction detector and controller). Final thoughts and contributions of this

work are discussed in Chapter 7.
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2.0 CARDIOVASCULAR PHYSIOLOGY

Some basic concepts regarding cardiovascular physiology are presented in this chapter. These

concepts are important to understand the cardiovascular model used, as well as the control

objectives for the rotary LVAD. The chapter is organized as follows. The heart muscle and

the circulation are described. After that, the cardiac cycle and some properties of the vessels

are presented. Finally, lumped parameter models of the vascular bed system are described.

2.1 HEART AND CIRCULATION

The heart is a single organ that can be thought of as two separate pumps, one on each

side of the heart (left and right; see Figure 1). Each pump contains two chambers: atrium

and ventricle. The heart functions as a volume displacement pump. Its main purpose is to

propel blood from one section of the circulatory system to another. The left heart (atrium

and ventricle) pumps blood into the systemic circulation, while the right heart maintains the

pulmonary circulation. There are unidirectional valves connecting these chambers in each

side of the heart, and also with the circulation. The mitral valve connects the left atrium

(LA) to the left ventricle (LV). Likewise, the tricuspid valve connects the right atrium (RA)

to the right ventricle (RV). The aortic valve links the LV and the aorta, and the pulmonary

valve links the pulmonary artery to the RV.

Figure 2 illustrates the circulation process in the human body. Starting at the right

ventricle, blood is pumped into the pulmonary circulation via the pulmonary artery. The

pulmonary artery branches into the left and right halves of the lung. In the lungs, the blood

in the capillaries binds oxygen and releases carbon dioxide. The oxygenated blood leaves
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Figure 1: Anatomy of the human heart modified from A. Guyton and J. Hall [15]

the lungs and reaches the left atrium through the pulmonary vein. Blood in the left atrium

is pumped into the left ventricle, which pumps it into the aorta. The aorta branches into

large arteries, small arteries, and arterioles. These vessels then branch to form the systemic

capillaries and it is at this level that the exchange of substances occurs between blood cells

and organ cells.

Contiguous to the capillaries are the venules, which are the smallest vessels that transport

the low-oxygen blood back to the heart. Blood then travels from the venules to the systemic

veins, and eventually the vena cavae, which is connected to the right atrium of the heart,

closing the loop.
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Figure 2: Block diagram representation of the human circulation

2.2 THE CARDIAC CYCLE

The cardiac cycle is the period of time between two consecutive heart beats. It consists of

two phases: a period during which the heart is contracting - systole, and a period during

which the heart is relaxing - diastole. Under normal conditions, the diastolic interval is

longer than the systolic. However, when the heart rate increases, the diastolic period is

shorter, which implies that the heart fills less.

Figure 3 shows the cardiac cycle from the stand point of the left ventricle. Systole

starts at point 1 in Figure 3 with isovolumic contraction. In this phase, the ventricle is

a completely sealed chamber. The ventricle starts to contract and the pressure developed

closes the mitral valve. However, the left ventricular pressure (LVP) developed during this

phase is not sufficient to overcome aortic pressure (AoP). Consequently the aortic valve

remains closed and no blood leaves the ventricle. Because there is no change in the volume

of blood in the ventricle, this is called an isovolumic phase.

At point 2, left ventricular pressure exceeds aortic pressure and the aortic valve opens,

ejecting blood into the aorta. The diastolic interval starts at point 3, with isovolumic re-

laxation. LVP drops and the ventricular muscle relaxes with constant volume. When LVP

decreases below left atrial pressure (LAP), the mitral valve opens, allowing blood into the

ventricle, and a new cycle starts at point 4.
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Figure 3: Cardiac cycle indicating systolic and diastolic phases modified from A. Guyton

and J. Hall [15]

2.3 THE PRESSURE-VOLUME RELATIONSHIP

The time-varying elastance theory was introduced by Suga and Sagawa [16, 17]. Based

on experiments with canine hearts, they found that the normalized elastance has the same

shape for all loading conditions, contractile states, and heart rates. Moreover, the general

curve is characteristic for each species. These features make the time-varying elastance

theory suitable for use in models where different loading conditions will be simulated. The

elastance is associated with the contractility of the heart and is defined as the ratio of left

ventricular pressure LVP to left ventricular volume LVV, i.e.

E(t) =
LV P (t)

LV V (t)− V0

(2.1)

where V0 is the volume at zero pressure. Figure 4 shows the elastance function for a heart

rate of 75 beats per minute (bpm). The heart rate defines the duration of the cardiac cycle,

i.e. the period of the elastance function.
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Figure 4: Elastance function for a 75 bpm heart rate

Figure 5 shows a pressure-volume diagram (also known as PV loop). The dashed lines in

Figure 5 represent the end-diastolic and the end-systolic pressure volume relations (EDPVR

and ESPVR, respectively). The slope of a line connecting V0 to a given point in that diagram

determines the elastance value for that particular instant in time. . As time proceeds, the

points evolve in a counterclockwise orientation in the loop.
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Figure 5: Pictorial representation of a PV-loop

The numbers shown in the PV loop in Figure 5 correspond to time points shown in

Figure 1. Thus, number 1 represents the beginning of the isovolumic contraction phase, 2

coincides with ejection, 3 corresponds to isovolumic relaxation, and 4 to the filling phase.

Several important measurements can be derived from the PV loop, such as the maximum

and minimum volume values in the cardiac cycle, i.e. the end-diastolic and end-systolic vol-
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umes (EDV and ESV) respectively. Their difference (EDV - ESV) represents the amount of

blood ejected during the cardiac cycle, the stroke volume (SV). Another important measure-

ment is stroke work (SW), the amount of energy transferred from the heart to the blood. i.e,

the amount of energy required to eject the blood. SW is defined as the area within the PV

loop.

2.4 PROPERTIES OF VESSELS

Blood vessels are characterized by several properties due to their material constitution, cross

sectional area and length. Usually, the research goals dictate the complexity of a model. The

properties considered here are fluid resistance, compliance and inertance. Since lumped linear

parameters are used in this research, simple electrical analog elements are used to represent

those properties. In Chapter 4, the analog elements presented here will be used to construct

the cardiovascular-pump model. Therefore, our main interest is to describe such properties

in order to model the vessels’ behavior in a lumped-parameter model of the cardiovascular

system.

Resistance in vessels is a phenomenon due to the frictional forces that oppose motion in

a fluid. The resistance of a vessel varies with the viscosity of the blood, the length of the

vessel, and its diameter. Resistance is defined by the ratio of the pressure drop along the

longitudinal axis of the vessel to the flow [18], i.e,

R =
P (t)

Q(t)

where P (t) is the pressure drop along the vessel (measured in mmHg), Q(t) is the flow

through the vessel (measured in ml/s), and R is hydraulic resistance with units of mmHg×s
ml

.

An electrical equivalent model is the resistance element shown in Figure 6 where the voltage

drop represents the pressure drop of the vessel and current represents the flow.

Compliance is the property of the vessel to expand and contract in response to internal

pressure [3]. A distensible tube constructed of a compliant material that can expand and
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R

+
P

−

Q(t)

Figure 6: Resistance effects in vessels and their electrical equivalent

contract is shown in Figure 7. Let P be the pressure difference between p1 and p2 then the

relationship between volume, V , and the pressure difference, P , is

V = C P (2.2)

where C is the compliance of the tube and is dependent on the physical properties of the

tube. The unit for compliance is ml
mmHg

. Differentiating both sides of 2.2 and substituting

flow, Q, for the derivative of volume results in:

Q(t) = C
dP

dt

where Q(t) is flow , C is the compliance value, and dP
dt

is the rate of pressure change. An

equivalent electric element for this equation is the capacitor, where the voltage represents

pressure and the current represents flow. Figure 7 shows the compliance effect in a vessel

and its electrical model.

p2p1

C
+

P (t)
−

Figure 7: Compliance effect in vessels and its electrical equivalent

Fluid inertia models the effect of mass of fluids. Applying Newton’s first law to moving

fluids yields an equation in which the pressure drop along a vessel depends on dynamic

changes of the flow and the mass characteristic of the fluid known as the inertia. The

equation that governs such behavior is given by

P (t) = L
dQ

dt
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where P is the pressure drop across the vessel, L is the fluid inertia, and dQ
dt

is the dynamic

change in flow. The last expression shows that hydraulic inertance is analogous to electrical

inductance, with units of mmHg×s2

ml
. In Figure 8, the voltage drop across the element is shown

as P , L is the inductance of the element and Q(t) represents the current that flows through

the element.

Q(t)

P −+

L

+
P

−

Q(t)

Figure 8: Inertance property of a vessel and its electrical equivalent

2.5 MODELS OF THE CARDIOVASCULAR SYSTEM

Mathematical models of the cardiovascular system can be classified as distributed and

lumped parameter models. In this research, only lumped parameter models are consid-

ered. One advantage in representing the cardiovascular model as a lumped circuit is that

Kirchoff’s laws for node currents and loop voltages can be applied. In doing so, we can relate

current with flow and voltage with pressure. Moreover, components like resistors, capaci-

tors and inductors can be associated with hydraulic resistance, compliance and inertance,

respectively.

In this section, research on modeling of the cardiovascular system is reviewed. First,

some models of the left ventricle are described, and then afterload (windkessel) models are

presented.

2.5.1 Ventricular models

The elastance-based ventricle model due to Suga et al. is still one of the most widely accepted

for simulation and experimental purposes. Among those researches who used similar models

is McInnis et al. [19] who model the ventricle by using the elastance approach, resistance

and compliance properties. They approximated the ventricle as a linear system for the
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different phases of the cardiac cycle (systole and diastole), and developed control strategies

for pulsatile air-driven assist devices. Figure 9(a) shows McInnis’ model.

Uv

Lv Rv

Cv

(a)

U(t)

Ev(t)

R

lvp(t)

(b)

Figure 9: Ventricular models proposed by (a) McInnis and (b) Avanzolini

A similar modeling paradigm was used by Avanzolini et al. Figure 9(b) shows the electric

circuit model of the ventricular muscle. The ventricular dynamics are described by

lvp(t) =

{
U(t) + E(t)(V (t)− Vo) + RV̇ (t) (during systole)

E(t)(V (t)− Vo) (during diastole),

where lvp(t) is the ventricular pressure, V (t) is the ventricular volume, Vo is the intercept

of the ESPVR with the volume axis. U(t) = Uoa(t) is the isovolumic pressure, when a(t) =

(1−cos(2πt/ts))/2, during systole and a(t) = 0 during diastole. E(t) is the elastance function,

defined as E(t) = Ed+Esa(t), and R is myocardial resistance. This model produced pressure

and flow waveforms similar to physiological waveforms, and it has been used in modeling of

the complete circulatory system [20, 21].

2.5.2 Afterload Models

The afterload of the left ventricle can be defined as the load the heart has to pump against.

Frank [22] introduced the first afterload lumped model shown in Figure 10(a). Frank’s model

consists of a compliance in parallel with a resistor, known as “windkessel”.

A third element was added to the previous model by Westerhof [23], representing the

resistance at the proximal aorta, Rc - characteristic resistance. (see Figure 10(b)). Wester-

hof’s model, also known as the three element windkessel model, has been extensively used

because of the physiological meaning associated with its components.

13



C R

(a)

Rc

C Rp

(b)

Rc

L C Rp

(c)

Figure 10: Windkessel models of the afterload system

Figure 10(c) presents one possible configuration of a four element windkessel model [24].

It presents an inductor (L) either in series or parallel with the characteristic impedance (Rc).

This inductor represents the total inertance resulting from the fluid mass in the arterial

system. The inertance is suitable for pulsatile models, where an acceleration of the mass

fluid is usually required. In chapter 4, these modeling concepts will be used to construct a

complete cardiovascular model of the left heart. The next chapter presents a brief overview

of fuzzy logic necessary to design the rule-based controller in chapter 6.
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3.0 FUZZY LOGIC CONTROLLER

In this chapter, a brief overview of fuzzy logic is presented. This theoretical background

[25, 27] is necessary to the application of a FLC to the problem of controlling a rotary

assist device. Mamdani’s work extended the use of Fuzzy Logic to control theory. For the

control of non-linear, time-varying dynamic systems, conventional control theory might not

be the only indicated approach. A Fuzzy Logic Controller (FLC) can be used either as an

alternative to control such systems or in addition to conventional control techniques. This

chapter is organized as follows: Fuzzy sets are defined and some of their properties and

operations are presented. The concepts of fuzzy relation, composition and linguistic variable

are subsequently presented. Finally, the design procedure of a FLC is shown.

3.1 FUZZY SETS

In classical set theory, let A be a set defined on the universe U , then for any element x of

A, either x ∈ A or x /∈ A. There are two basic forms of defining a set: by enumerating

its elements, or describing them by a property, say P . A third way is by a characteristic

function, µA.

Definition 1. µA : U → {0, 1} is a characteristic function of the set A if and only if for all

x

µA(x) =

 1, when x ∈ A;

0, when x /∈ A.

In fuzzy set theory, the characteristic function is generalized to a membership function

that assigns to every element u ∈ U a value from the interval [0, 1].
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Definition 2. The membership function µF of a fuzzy set F is a function µF : U → [0, 1].

So, every element u from U has a membership degree µF (u) ∈ [0, 1].

Finally, a fuzzy set can be formally defined as follows

Definition 3. A fuzzy set F in a universe of discourse U is completely determined by the

set of tuples

F = {(u, µF (u)) |u ∈ U}

We will refer to classical sets here as crisp sets. A consequence of definition 3 is that

fuzzy sets are an extension of classical set theory since, for a certain universe, a membership

function may act as an indicator function, mapping all elements to either 1 or 0, as in the

classical notion.

An alternative notation for the tuple (u, µF (u)) is µF (u)/u, where / denotes tuple. Ad-

ditionally, the “+” sign denotes an enumeration. Based on this, a countable or discrete

universe U allows a notation

F =
∑
u∈U

µF (u)/u

whereas when U is uncountable or continuous, we have

F =

∫
U

µF (u)/u

Thus, the
∫

sign denotes an uncountable enumeration, not the usual integral definition.

3.1.1 Properties of fuzzy sets

The support of a fuzzy set A, denoted by S(A), is defined as

S(A) = {u ∈ U |µA(u) > 0}

i.e., is the crisp set that contains all elements of A with non-zero membership degree.

A fuzzy singleton is a fuzzy set whose support is a single point in U , that is

µA(x) =

 1, if x = x∗;

0, otherwise.
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The height of a fuzzy set A on U , denoted by hgt(A), is defined as

hgt(A) = sup
u∈U

µA(u)

A fuzzy set A is called normal if hgt(A) = 1.

A fuzzy set A is convex if and only if

∀x, y ∈ U, ∀λ ∈ [0, 1] : µA(λ.x + (1− λ).y) ≥ min(µA(x), µA(y))

This definition says that a fuzzy set is convex if and only if its α-cuts1 are convex in the

classical mathematical sense. In this research, only convex fuzzy sets are considered. There

are several forms of defining membership functions for fuzzy sets. Usual examples of such

functions for control applications are the Γ, L and ∆ functions defined as follows.

aa bb

11

The function Γ : U → [0, 1] is a function with parame-

ters a, b defined as

Γ(x, a, b) =


0 x < a,

(x− a)/(b− a) a ≤ x ≤ b,

1 x > b.

aa bb

11

The function L : U → [0, 1] is a function with parame-

ters a, b defined as

L(x, a, b) =


1 x < a,

(b− x)/(b− a) a ≤ x ≤ b,

0 x > b.

1An α-cut of a fuzzy set A is a crisp set defined as Aα = {x |µA(x) ≤ α}
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aa bb cc

11

The function Λ : U → [0, 1] is a function with parame-

ters a, b and c defined as

Λ(x, a, b, c) =


0 x < a or x > c

(x− a)/(b− a) a ≤ x ≤ b,

(b− x)/(c− b) b ≤ x ≤ c,

3.1.2 Operations on Fuzzy Sets

The classical set operations union, intersection and complement were extend to fuzzy sets

by Zadeh [26] as follows. Let A and B be two fuzzy sets in the universe U , then

a) Union: ∀x ∈ U : µA∪B = max(µA(x), µB(x))

b) Intersection: ∀x ∈ U : µA∩B = min(µA(x), µB(x))

c) Complement: ∀x ∈ U : µA′ = 1− µA(x)

More generally, triangular norms, s-norms and t-norms, can be used to define union and

intersection operations, respectively:

s[µA(x), µB(x)] = µA∪B(x)

t[µA(x), µB(x)] = µA∩B(x)

In the same fashion, the complement operation can be more generally defined as

c[µA(x)] = µĀ(x)

.
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3.2 FUZZY RELATION

In classical set theory, a relation is a set of ordered tuples, e.g., (x1, x2, · · · , xn) is a n-tuple.

In the same fashion, a fuzzy relation is a fuzzy set of tuples, i.e., each tuple has a membership

degree in the interval [0, 1].

Definition 4. Let U and V be uncountable (continuous) universes, and µR : U ×V → [0, 1],

then

R =

∫
U×V

µR(u, v)/(u, v)

is a binary relation on U × V . If U and V are countable (discrete) universes, then

R =
∑
U×V

µR(u, v)/(u, v)

3.2.1 Fuzzy If-Then statements

Let x and y be linguistic variables defined on the universes U and V , respectively. Let A ⊆ U

and B ⊆ V be fuzzy sets associated with x and y, respectively. A fuzzy conditional or a

fuzzy if-then production rule is expressed as

IF x is A THEN y is B

The meaning of this rule is represented as a fuzzy relation defined on U×V . The construction

of this fuzzy relation proceeds as follows:

a) the meaning of “x is A”, called the rule antecedent, is represented by a fuzzy set

A =
∫

U
µA(x)/x

b) the meaning of “y is B”, called the rule consequent, is represented by a fuzzy set

B =
∫

V
µB(y)/y

c) the meaning of the fuzzy conditional is then a fuzzy relation µR given as

∀x ∈ U, ∀y ∈ V : µR(x, y) = µA(x) ? µB(y)

where ? can be any fuzzy implication operator.
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In control applications, the most common implication methods used are Mamdani’s im-

plications methods. Using the minimum implication method of Mamdani, the fuzzy relation

R is defined as µR(x, y) = min(µA(x), µB(y)), and Mamdani product implication method is

defined as µR(x, y) = µA(x).µB(y).

3.2.2 Composition

Let A be a fuzzy set in U and R a fuzzy relation in U × V . The fuzzy set B in V can be

defined by the composition of A and R as

µB(y) = sup
x∈U

[µA(x) ? µR(x, y)] (3.1)

with x ∈ U and y ∈ V . The symbol ? is usually replaced with a t-norm (intersection)

operator, and equation 3.1 is also known as sup-star composition. If the intersection is

performed with the min operator and projection with maximum,

µB(y) = max
x

min (µA(x), µR(x, y)) (3.2)

then the max−min composition is obtained. If intersection is performed with the product

and projection with maximum,

µB(y) = max
x

(µA(x).µR(x, y)) (3.3)

which is called the max-dot or max-product composition.
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3.2.3 Linguistic Variables

According to Zadeh [28], a linguistic variable is a variable whose values are words or sentences

in a natural language. For example, pump speed is a linguistic variable if its values are

linguistic rather than numerical, i.e., high, low, very low. A framework usually associated

with the notion of a linguistic variable is

〈X ,LX , X〉

where X denotes the name of the linguistic variable, e.g., pump flow, pump speed, etc. LX

is the set of linguistic values that X can take. A linguistic value is a word that usually

describes a particular property of X. In the case of pump speed, we may have

LX = {very high, high, low, very low}

LX is also known as the reference-set or term-set of X . X is the actual physical domain

of over which the linguistic variable X takes its quantitative (crisp) values. In the case of

pump speed it can be the interval [9,000, 14,000]rpm.

3.3 FUZZY CONTROL SYSTEMS

Following Zadeh’s seminal work [28], the theory of fuzzy sets and fuzzy logic has been applied

to the control of complex ill-defined processes. Mamdani’s fuzzy controller was one of the

first proposed applications of fuzzy logic to process control [29]. Based on human knowledge

obtained from experts and/or plant operators, this approach encodes such expertise as fuzzy

rules of the form

Ri : IF (x1 is A1, x2 is A2, · · · , and xn is An) THEN u is B

where x = [x1, x2, . . . , xn] is the input vector, Ai (i = 1, · · · , n) are the membership sets of

x, u is the output and B is its output membership set.

Mamdani’s controller can be characterized as follows:
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a) the ranges of the input and output variables are either divided into a finite number of

real intervals, each one of those being the support of a fuzzy set, or the variables can

only take a finite number of real values;

b) there is a set of decision rules that specify a value of the controller output, for given

discrete values or intervals of the controller inputs;

c) the rule or set of rules that is fired at a given time determines the actual value of the

controller output at that time.

Takagi and Sugeno proposed a new type of fuzzy control system [27]. Their approach

is based on a multiple model representation of the plant to be controlled. Each one of

these models can be seen as a local model, being valid in a particular operating region.

The operating regions are given by the conditional part, similar to the fuzzy rules of Mam-

dani’s controller. However, the consequent part is an analytical expression describing the

correspondent local model, rather than another fuzzy set as in Mamdani’s approach. For

instance,

Ri : IF (x1 is A1, x2 is A2, · · · , and xn is An) THEN yi = f(xi, pi)

where x = [x1, x2, . . . , xn] is the input vector, , Ai (i = 1, · · · , n) are the membership sets of

x, and yi and pi are the real output variable and parameters of the ith local model. In this

research, only Mamdani’s fuzzy control approach will be used.

3.3.1 Design of a Fuzzy Logic Controller

The design of a Fuzzy Logic Controller (FLC)) encompasses three main tasks: the design of

the membership sets of the input and output variables, the rule base and the defuzzification

method. Figure 11 illustrates the main components of a FLC. The FUZZIFICATION interface

converts crisp input values x to input membership sets. Two pieces of information are

provided by the fuzzification process: the linguistic values to which the input vector x

belongs and their certainty levels as measured by the membership functions.
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The RULE BASE, also known as Fuzzy Associative Memory - FAM, comprises rules

describing how the controller performs. These rules are usually written as IF-THEN rules

of the form

IF (x1 is A1, x2 is A2, · · · , and xn is An) THEN u is B (3.4)

where x = [x1, x2, . . . , xn] is the input vector, Ai (i = 1, · · · , n) are the membership sets of

x, u is the output and B is its output membership set.

The INFERENCE ENGINE uses fuzzy reasoning to combine the fired IF-THEN rules in

the rule base. It maps fuzzy input sets to fuzzy output sets. In this research, Mamdani’s min-

imum implication method will be used to obtain the fuzzy output from the fuzzy implication

rule. The fuzzy rule in equation (3.4) can be translated as

µRi
(x, y) = µRi

(x1, x2, . . . , xn, y)

where Ri is a fuzzy relation (implication), A = A1 ×A2 × . . . An ⊆ U , B ⊆ V . For a given

input set A′ in U , the output fuzzy set B′ in V is expressed as

µB′
i
(y) = sup

x∈U
[µA′(x) ? µRi

(x, y)]
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Figure 11: Rule based controller
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The DEFUZZIFICATION interface converts linguistic output sets to crisp values. In this

research, the height method [26] is used because it is computationally simple. Figure 12

shows a graphical representation of the height defuzzification method. This method uses the

individual center values, ck, of the fired membership functions and builds the weighted (with

respect to the height fk) sum of these center values. The height defuzzification method in a

system of m rules is given as

u =

∑m
k=1 ck.fk∑m

k=1 fk

.

00

11

f1f1

f2f2

c1c1 c2c2

uu

domaindomain

Figure 12: An illustration of the height defuzzification method

In [26] the height method is compared with others defuzzification methods, such as the

center of area (also referred to as the center of gravity method) and the center of sums,

presenting similar results.
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4.0 THE CARDIOVASCULAR MODEL

The human cardiovascular system is a time-varying distributed parameter nonlinear sys-

tem. Nevertheless, simplified mathematical models of the cardiovascular system have been

developed for many years for a variety of purposes. These include estimation and study of

cardiovascular parameters difficult to measure in practical situations [21, 30, 31] and analysis

and development of new medical products [32].

Recently, mathematical models of the human circulation have been developed also for

studying its interaction with assist devices. Bai et al [33] presented a cardiovascular system

model that includes a simulation of a cardiac assist device by external counterpulsation.

It includes the left and right heart and the pulmonary circulation. De Lazzari et al [34]

studied the interaction between a pneumatic left ventricle assist device (LVAD) and the

cardiovascular system, by using energy variables, such as external work, oxygen consumption

and cardiac mechanical efficiency for both fixed and variable heart rates. Computer models

have been useful for simulating the interaction between the human cardiovascular system

and assist devices, prior to in vitro and in vivo experiments [35, 36]. However, control

strategies derived from such complex models have not been implemented yet due to many

state variables that are not observable in practice. For the same reason, on-line identification

of cardiovascular parameters remains a difficult task.

Breitenstein [18] proposed a univentricular model of the cardiovascular system, which was

developed using a minimal number of parameters to make system identification as simple as

possible. In this model, left ventricular compliance was modeled as a time-varying capacitor.

Preload and pulmonary circulation were represented by a compliance, and a four element

windkessel model was used as afterload. Yu [37] used that same model to develop an extended

Kalman filter estimator for the identification of systemic circulation model parameters during
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cardiac ejection and cardiac filling. Ferreira [38] has validated that model using human data.

In addition, hemodynamic variables were simulated for different afterload conditions, and for

the case of linearly increasing (ramp) pump speed, a test usually performed during in-vivo

studies [39].

This chapter describes an extended version of that model. The addition of a capacitor

representing aortic compliance made it possible to describe the dynamics in the model using

only one set of differential equations. The chapter is organized as follows: the cardiovascular

model is initially described and validated. Then, the cardiovascular-pump model is presented,

and its open-loop response is analyzed for the cases of step and ramp input speed.

4.1 THE CARDIOVASCULAR MODEL

The cardiovascular model used in this research is shown in Figure 13. Preload and pulmonary

circulation are represented by a single compliance, CR, and afterload by a five-element wind-

kessel model. Unlike the four element windkessel model shown in Chapter 2, the inductor

is placed in series with the characteristic impedance. This was done to enhance the fitting

capabilities of the model. Table 1 lists the state variables employed, and Table 2 provides

the system parameters and their associated values [37].

CR
−

x2

+

LAP
RM DM LVP

x1C(t)

RA DA AoP

+
x4

−

CA

RC
LS

x5

AP

+
x3

−

CS

RS

Figure 13: Cardiovascular Model
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Table 1: State Variables of the cardiovascular model

Variables Name Physiological Meaning (unit)

x1 LV P Left Ventricular Pressure (mmHg)

x2 LAP Left Atrial Pressure (mmHg)

x3 AP Arterial Pressure (mmHg)

x4 AoP Aortic Pressure (mmHg)

x5 QT Total flow (ml/sec)

4.1.1 Modeling the ventricle

In our lumped parameter circuit, the left ventricle is described as a time-varying capacitor.

One way to model its behavior is by means of the elastance function, which is the reciprocal

of the compliance. The elastance determines the change in pressure for a given change in

volume within a chamber and was defined following Suga and Sagawa as [16, 17]

E(t) =
LV P (t)

LV V (t)− V0

(4.1)

where E(t) is the time varying elastance (mmHg/ml), LV P (t) = x1(t) is the left ventricular

pressure (mmHg), LV V (t) is the left ventricular volume (ml) and V0 is a reference volume

(ml), the theoretical volume in the ventricle at zero pressure.

Several mathematical approximations have been used to implement the elastance func-

tion. In this work, we use the so called “double hill” function [40], En(tn) (see eq. 4.2),

because it has only one mathematical expression for both the systolic and the diastolic time

intervals in the cardiac cycle.

En(tn) = 1.55

[ (
tn
0.7

)1.9

1 +
(

tn
0.7

)1.9

] [
1

1 +
(

tn
1.17

)21.9

]
(4.2)

Additionally, the period of the double hill is directly related to the heart rate. The scaled

elastance function is defined as

E(t) = (Emax − Emin).En(tn) + Emin (4.3)
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Table 2: Model Parameters

Parameter Value Physiological Meaning

Resistances (mmHg.s/ml)

RS 1.00000 Systemic Vascular Resistance

RM 0.00500 Mitral valve resistance

RA 0.00100 Aortic valve resistance

RC 0.03980 Characteristic resistance

Compliances (ml/mmHg)

C(t) variable Left ventricular compliance

CR 4.40 Left Atrial compliance

CS 1.33 Systemic compliance

CA 0.08 Aortic compliance

Inertance (mmHg.s2/ml)

LS 0.0005 Inertance of blood in Aorta

Valves

DM Mitral valve

DA Aortic valve

In the above expression, En(tn) is the normalized elastance, tn = t
Tmax

, Tmax = 0.2 +

0.15TC and TC is the cardiac cycle interval, i.e, TC = 60/HR, where HR is the heart-rate.

Notice that E(t) is a re-scaled version of En(tn), as shown in Figure 14. The constants Emax

and Emin are related to ESPVR and EDPVR, respectively.

To derive the state equation for the time-varying capacitor, one can start by writing

V (t) = C(t). P (t)1, which relates volume V (t) and pressure P (t). C(t) represents the time-

varying capacitance. Differentiating that relationship with respect to time, yields equation

1 Hydraulic variables, volume, pressure, and flow were used instead of their electrical counterparts charge,
voltage, and current respectively.
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(4.4) as the flow in the time-varying capacitor. In the model, left ventricular compliance is

represented by a time-varying capacitance as shown in equation (4.5)

Q(t) = C(t)
dP (t)

dt
+

dC(t)

dt
P (t) (4.4)

C(t) =
1

E(t)
(4.5)
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Figure 14: Normalized Elastance (left panel), Elastance E(t) (right panel)

4.1.2 Modeling the valves

Since the circuit model of Figure 13 includes two diodes (switches representing the valves

in the left side of the heart) four phases will occur, over four different time intervals, as

illustrated in Table 3. Since the Isovolumic phase happens twice, this implies that we have

three sets of differential equations to describe the model. However, by appropriately modeling

the diodes as nonlinear elements, it is possible to write only one set of state equations that

describes the behavior of the system for the four phases. Using the standard model for an

ideal diode in series with a resistor, we can express the currents through the two diodes iM

and iA, using the expressions:
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iM =
1

RM

r(x2 − x1) =

 x2−x1

RM
, if (x2 − x1) ≥ 0;

0, otherwise;

iA =
1

RA

r(x1 − x4) =

 x1−x4

RA
, if (x1 − x4) ≥ 0;

0, otherwise;

where r(x) is the ramp function

r(x) =

 x, if x ≥ 0;

0, if x < 0;

Thus, the diodes are modeled as the cascade of two blocks: one is a ramp function, and

another is a gain, representing the conductance of the diode, that modifies the slope of the

ramp.

Table 3: Phases of the cardiac cycle

Modes Valves Phases

DM DA

1 closed closed Isovolumic contraction

2 closed open Ejection

1 closed closed Isovolumic relaxation

3 open closed Filling

- open open Not feasible
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4.1.3 State Equations

Using basic circuit theory (KVL, KCL, etc.), the state equations for the nonlinear, time-

varying cardiovascular circuit model (see Figure 13) were derived as follows:

ẋ = f(t, x) (4.6)

= Ac(t)x + Rc(t)r(x)

where Ac(t) and Rc(t) are (5× 5) and (5× 2) time-varying matrices respectively, and r(x)

is a (2× 1) vector that models the nonlinear behavior of the diodes. These matrices are

Ac(t) =



−Ċ(t)
C(t) 0 0 0 0

0 −1
RSCR

1
RSCR

0 0

0 1
RSCS

−1
RSCS

1
CS

0

0 0 0 0 −1
CA

0 0 −1
LS

1
LS

−RC

LS


, Rc(t) =



1
C(t)

−1
C(t)

−1
CR

0

0 0

0 1
CA

0 0


, r(x) =


r(x2−x1)

RM

r(x1−x4)
RA



Notice that the model described above is autonomous. It is driven mainly through the

time-varying elastance function. Figure 15 shows an all-integrator block diagram of system

(4.6). For comparison purposes and completeness, a set of equations for each phase was

derived as well, and they are shown in Appendix A.

4.2 MODEL VALIDATION

In order to assess the capability of the proposed model to simulate left ventricular hemody-

namics, tests were performed by implementing the model in MATLAB2. Simulations were

done for both nominal steady state conditions and in response to perturbations of preload

and afterload.

2The Math Works Inc., Natick, MA
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Figure 15: All integrator block diagram for the cardiovascular model

Figure 16 shows the simulation waveforms for an adult with heart rate of 75 beats per

minute. The values for the elastance function, Emax = 2.0, Emin = 0.05, HR = 75 bpm and

V0 = 10ml, were adapted from [41]. As a result, systolic and diastolic pressure were 117 and

77 mmHg, mean aortic pressure (MAP) was 99 mmHg, cardiac output (CO) was 5.21 l/min

and stroke volume (SV) was 69.5 ml/beat. These are consistent with hemodynamic data in

normal subjects, as described in [15].

Another validation of the model is by varying preload and afterload conditions, while

keeping left ventricle parameters (Emax, Emin, V0) constant. The model should produce an

approximately linear relationship between end-systolic pressure and left ventricle volume,

despite changes in preload and afterload. That linear relationship is known as the end

systolic pressure volume relationship - ESPVR [42].

A total of four preload and four afterload conditions were simulated. In these tests,

we set Emax = 2.0 mmHg/ml, Emin = 0.05 mmHg/ml and V0 = 10 ml, as before. The

resulting pressure and volume of the ventricle are depicted in the form of pv-loops. The

pv-loops in Figure 17(a), represent the result of changing afterload conditions by selecting

different values of systemic vascular resistance (RS), while keeping end diastolic volume

(EDV) constant. The pv-loops in Figure 17(b) depict the result of altering preload conditions
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Figure 16: Simulated hemodynamic waveforms for a normal subject

by changing the mitral valve resistance (RM). The slope of the ESPVR (Emax) for the loading

data in Figure 17(a) was 1.98mmHg/ml and V0 (volume at zero pressure) was 10.91ml. The

linear relationship between pressure and flow is evident for the ESPVR, since the correlation

coefficient between those two variables was 1.0. As for preload changes (Figure 17(b)), the

slope of ESPVR was 1.915 mmHg/ml, V0 was 8.84ml, and the correlation coefficient was 0.99.

These results show that the cardiovascular model can mimic the left ventricle behavior.

4.2.1 Input Impedance

The input impedance Zin is defined as the impedance seen by the left ventricle. It can be

written as the modulus of the ratio of aortic pressure to aortic flow,

|Zin(jω)| =
∣∣∣∣AoP (jω)

QA(jω)

∣∣∣∣
The input impedance spectrum dictates the adequacy of the afterload model in representing

the human vascular bed system. To verify this adequacy, the input impedance of the car-

diovascular model determined as Zin = Z1 + (Z2 ‖ Z3), where Z1 = RC + jLSω, Z2 = 1
jCSω

,
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Figure 17: PV-loops used for model validation

and Z3 = RS + 1
jCRω

(see Figure 18).

Zin = Z1 + (Z2 ‖ Z3)

= RC + jLSω +
1 + jCRRSω

j(CS + CR)ω − CSCRRSω2

=
−jLSCRCSRS ω3 − [LS(CS + CR) + CRCSRSRC ] ω2 + j[CRRS + RC(CS + CR)] ω + 1

j(CS + CR) ω − CSCRRS ω2

RC
LS

x5

CS

RS

CR

(a)

+

−

x4

Z1

Z2 Z3

(b)

Zin

Figure 18: Input impedance of the afterload system

Figure 19 shows the input impedance Zin obtained from the cardiovascular model. Notice

that spectrum is consistent with the spectrum obtained by Nichols et al [43] using human

experimental data.
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4.2.2 Fitting Human Data

Figure 20 shows a comparison of model simulation and human clinical data. Some model

parameters were changed in this case. For instance, the value of V0 was set at 12ml, and

Emax = 1.5 was calculated from the pv-loop plot of the data. The value of RS was set to 0.5

in order to match the patient’s hemodynamic waveform amplitudes. The other parameters

are the same as in Table 2. For the LVP fitting test, a mean error of 4.4% was found. For the

pv-loop test, the stroke work (area of the pv-loop, SW) of the patient, 10, 700 mmHg.ml was

compared with that generated by the model, 10, 500 mmHg.ml, which represents a difference

of 1.85%.
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Figure 20: Curve fitting using human clinical data
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4.3 THE COUPLED CARDIOVASCULAR-PUMP MODEL

A model of a left ventricular assist device3 [45] was connected to the circulatory model shown

in Figure 13, which assumes left ventricular cannulation. The addition of the LVAD circuit

to the network adds one state variable, flow through the pump, and four passive parameters

related to the cannulae. The resulting cardiovascular-pump model is shown in Figure 21.
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Figure 21: Cardiovascular-pump Model

Table 4 shows the state vector definition for the cardiovascular-pump model. The values

of inlet and outlet resistance of the cannulae are Ri = Ro = 0.0677 mmHg.s/ml, respectively.

The inlet and outlet inertance are Li = Lo = 0.0127 mmHg.s2/ml. The model equation

developed for the Nimbus LVAD [39] relates the pressure difference across the pump, H, as

a function of pump flow and pump speed

H = β0 QP + β1
dQP

dt
+ β2 ω2 (4.7)

where β0 = −0.1707, β1 = −0.02177 and β2 = 0.0000903 are the pump model parameters.

The resulting model is a forced system, where the primary control variable is the pump

speed.

3Nimbus Inc, Rancho Cordova, CA
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Table 4: State Variables of the cardiovascular-pump model

Variables Name Physiological Meaning (unit)

x1 LV P Left Ventricular Pressure (mmHg)

x2 LAP Left Atrial Pressure (mmHg)

x3 AP Arterial Pressure (mmHg)

x4 AoP Aortic Pressure (mmHg)

x5 QT Total flow (ml/sec)

x6 QP Pump flow (ml/sec)

4.3.1 Suction element model

Schima et al. [46] developed the first suction element model. It is an empirical model that

can simulate suction patterns observed in pressure and flow hemodynamic waveforms of

in-vivo animal studies. Originally developed for atrial cannulation, that model represents

a pressure dependent-resistance, which is zero for left atrial pressures higher than a given

threshold level (typically −5 to 0 mmHg) and increases linearly for pressures below this level

at a rate of −3.5 mmHg × s/ml × 1/mmHg.

Choi [39] used a modified version of Schima’s model in his research. In this case, the

resistor element varies with left ventricular pressure (x1), instead of left atrial pressure. The

threshold, which prevents LVP from going negative, was Pth = 1mmHg. Choi’s suction model

was adopted in this research. In Figure 21 resistor Rk is used to simulate suction, and its

mathematical description is given as

Rk =

 0 if x1 > Pth;

−3.5x1 + 3.5Pth otherwise
(4.8)
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4.4 STATE EQUATIONS

The state equations for the combined cardiovascular-pump sixth order model can be written

as

ẋ = f(t, x, u) (4.9)

= A(t)x + R(t)r(x) + b u(t)

where A(t) and R(t) are (6×6) and (6×2) time-varying matrices and b is a (6×1) constant

matrix, respectively, given by the expressions:

A(t) =



−Ċ(t)
C(t) 0 0 0 0 −1

C(t)

0 −1
RSCR

1
RSCR

0 0 0

0 1
RSCS

−1
RSCS

1
CS

0 0

0 0 0 0 −1
CA

1
CA

0 0 −1
LS

1
LS

−RC

LS
0

1
L∗ 0 0 −1

L∗ 0 −R∗

L∗



, R(t) =



1
C(t)

−1
C(t)

−1
CR

0

0 0

0 1
CA

0 0

0 0


, b =



0

0

0

0

0
−β2
L∗



In the above expressions, L∗ and R∗ are defined as

L∗ = Li + Lo + β1

R∗ = Ri + Ro + Rk + β0

and r(x) is a (2× 1) vector, given in 4.6, which models the nonlinear behavior of the diodes.

The control variable in equation(4.9) is u(t) = ω2(t) , where ω(t) is the rotational speed of

the pump. Figure 22 shows the all integrator block diagram for the cardiovascular-pump

model.
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Figure 22: All integrator block diagram for the cardiovascular-pump model
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4.5 OPEN LOOP RESPONSE

The open loop response of the cardiovascular-pump model shown in Figure 22 was analyzed

for two speed profiles: step and ramp. These profiles are commonly used during in-vivo

experiments with LVADs. Since the pump is intended for sick patients, reduced Emax values

were used in the simulation.

Because the pump provides continuous flow, cardiac output no longer can be calculated

as CO = SV ∗HR. Rather, it is necessary to integrate both total flow (x5) and pump flow

(x6) during one cardiac cycle (tc) to correctly determine the combined output of the pump

and the heart. Hereafter, the term cardiac output will refer to the total flow that enters the

systemic circulation, i.e.,

CO = flow through the LVAD + flow pumped by the heart

= COp + COh∫ t+tc

t

x5(ξ) dξ =

∫ t+tc

t

x6(ξ) dξ + COh

To compute the cardiac contribution, one needs only to subtract COp from CO, i.e,

COh = CO − COp. COh can be zero. Indeed, depending on the contractility (“strength”)

of the sick heart and on the pump speed, all cardiac output may be provided by the LVAD.

4.5.1 Step response

Two step speeds were used in this test: 9krpm and 12krpm. Moreover, two different values

of Emax were used to simulate a moderately sick heart (Emax = 1.0) and a severely sick heart

(Emax = 0.5). Figure 23 shows the resulting cardiac output of the test. As pump speed

increases, pump flow becomes less and less pulsatile, as shown in Figure 24. Since Emax was

reduced, the LVAD provides 100% of the cardiac output, which implies that the aortic valve

remains closed for all two step speeds.

The effect of pump speed on LAP, LVP, and AoP is shown in Figure 25. As pump speed

increases, the ventricle is unloaded and so LVP decreases for both contractility conditions.

LAP is about the same when the speeds were 9krpm and 12krpm. AoP increases with pump

speed, with decreasing pulsatility.
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Figure 24: Pump flow for step speed test; dotted line: Emax = 1.0; solid line: Emax = 0.5

4.5.2 Ramp response

Figure 26 shows the pump speed profile used in this test. As the pump speed is increased,

the amplitude of pump flow oscillation gradually decreases, while net flow increases. Beyond

the point of maximum flow, the waveform exhibits sudden negative spikes, indicative of

severe suction. Notice that suction occurs around t = 60s for both contractility conditions.

However, for the sick heart (Emax = 1.0) there is actually aortic flow for 0 ≤ t ≤ 10s, because

QT ≥ QP during this time interval, as shown in Figure 27(a), bottom panel.

During ejection, there are two paths for flow out of the ventricle, either through the aortic

valve or through the pump. However, the aortic valve does not open if the left ventricular

pressure is lower than the aortic pressure. This is usually the case, since the pump decreases

the internal pressure in the ventricle. Whether the aortic valve will open or not depends

on the pump speed and on how “strong” (the contractility state) the heart is [39]. In both
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cases, the mitral valve works as expected (opening and closing), allowing the ventricle to fill.
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Figure 26: Ramp speed profile

4.5.3 Comparison with experimental data

The output of the model presented in Section 4.3 was compared with in-vivo data. These

data were recorded in experiments performed on calves at the University of Pittsburgh. The

simulation test was done using the same pump speed profile used in the actual in-vivo test.

Model parameters were then manually adjusted to match pump flow. We set Emax = 1.0,

Emin = 0.05, RS = 1.0, and the threshold of the suction element was Pth = 2.3. Figure 28
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Figure 27: Hemodynamic variables for ramp test

shows the simulation results. Panels (b) and (c) are pump flow (PF) and pump inlet pressure

(PIP) from the in-vivo experiment, and panels (d) and (e) are the respective variables for

the model.

The analysis of results for this kind of test simulation is usually done in a “qualitative”

fashion [46]. We expect to see large negative spikes in pump inlet pressure when severe

suction occurs, and reduced pump flow pulsatility as this condition is approached.

Pump inlet pressure presents large negative spikes when severe suction is occurring (125 <

t < 155). The model was able to reproduce these phenomena as expected (compare panels

(c) and (e) in Figure 28). Pump flow model pulsatility is much less than that observed

in the in-vivo data, as severe suction is approached (90 < t < 125), possibly due to the

threshold used for the suction resistor. However, from a qualitative stand point, the model

can approximate suction patterns well enough to justify its use in this research study.

43



0 50 100 150 200
0

5

10

15

P
S

 (
kr

pm
)

(a)

0 50 100 150 200
-5

0

5

10

P
F

 (
l/m

in
)

(b)
0 50 100 150 200

-200

-100

0

100

P
IP

 (
m

m
H

g)

(c)

0 50 100 150 200
-5

0

5

10

P
F

 (
l/m

in
)

time (s)
0 50 100 150 200

-200

-100

0

100

P
IP

 (
m

m
H

g)

time (s)

(d) (e) 

Figure 28: Simulation Results of the Cardiovascular-model. (a) Pump Speed, (b) Pump

Flow from in-vivo test, (c) Pump Inlet Pressure from in-vivo test, (d) Pump Flow from

model, and (e) Pump Inlet Pressure from model.
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5.0 SUCTION DETECTION PROBLEM IN ROTARY BLOOD PUMPS

Suction can be defined as the anatomic collapse of the ventricle. It can be due to over-

pumping or to contact between the cannula1 tip and the left ventricular wall (endocardium)

[47]. As described earlier, suction detection is a very important problem in the control of

LVADs.

LV walls

cannula

LVP

PIP

LV walls

cannula

LVP

PIP

LV walls

cannula

LVP

PIP

LV walls

cannula

LVP

PIP

LV walls

cannula

LVP

PIP

(a) (b)

Figure 29: Pictorial representation of the suction phenomena: (a) normal, (b) suction

A new suction detection system for rotary blood pumps used in Left Ventricular Assist

Devices is presented in this chapter. This system can correctly classify pump flow patterns,

based on a discriminant analysis (DA) model that combines several indices derived from the

pump flow signal to make a decision about the pump status. The indices considered in this

approach are frequency, time, and time-frequency-domain indices [12, 13].

Figure 30 shows the proposed suction detection system. It is composed of three modules:

a pre-processing module, a module that extracts features from the pump flow signal, and a

decision system. The main task performed by the pre-processing module is to filter the pump

flow signal, eliminating high frequency noise. This module also estimates the fundamental

1The cannula is a plastic rigid tube that connects the ventricle to the inlet of the rotary pump.
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frequency of pump flow. The extract-features module calculates the indices that will be used

by the decision system. Finally, the decision system identifies the pump status.
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Figure 30: Schematic of the suction detection system

The chapter is organized as follows: Section 5.1 describes the indices; Section 5.2 explains

the discriminant analysis method. Experimental results are presented in Section 5.3 for both

two- and three-group classification problems. Section 5.4 presents simulation studies of the

suction detector coupled to the cardiovascular-pump model shown in the previous chapter.

Since the canonical scores may be used as control signals to set up the pump speed of the

LVAD, Section 5.5 discusses how the discriminant scores behave as functions of time.

5.1 FEATURE EXTRACTION OF PUMP FLOW

Suction could be easily identified if reliable pressure transducers could be placed inside the

left ventricle to measure left ventricular pressure (LVP) and at the head of the pump to

measure pump inlet pressure (PIP). However, such an approach cannot be implemented in

real time for long-term use with current technology because of problems with reliability of

current pressure sensors. Due to that lack of information, most suction detection approaches
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are heuristic and depend on extraction of features from other signals that are available, such

as pump flow, pump current and pump speed. Indeed, that is the main purpose of the

module labeled EXTRACT FEATURES in Figure 30: to obtain features from the pump flow

that can determine the pump status. To define the pump status, one can reason in terms of

the resistance of the inflow track, RIN , defined as shown in Figure 31

RIN

LVP

PIP

cannula

LV walls

RIN

LVP

PIP

cannula

LV walls

RIN =
∆P

QP

Figure 31: Illustration and definition of RIN

where ∆P = LV P − PIP and QP is the pump flow. Thus, RIN is a time-varying, non-

linear resistor that depends not only on the pressure difference ∆P and pump flow QP , but

also on the position of the cannula inside the patient’s heart, on pump speed, and on the

contractility state of the heart. Hence, RIN is not constant over time, as is shown in Figure

32, bottom.

In this research, the pump status can be one of the following: no suction (NS), moderate

suction (MS), and severe suction (SS). To characterize these states, consider the experimental

data shown in Figure 32. These data come from an in-vivo experiment performed on a calf,

implanted with the Nimbus2 pump. Briefly, Figure 32 shows plots of four variables: pump

speed (PS), left ventricular pressure and pump inlet pressure (LVP, PIP), pump flow (PF)

and inflow resistance (RIN). Time windows A, B, C are used to illustrate how these variables

change according to the three pump status. Figure 33 presents a zoomed version of time

windows A, B and C, showing the ECG signal (top) and LVP and PIP (bottom). Values of

diastolic ∆P were included for completeness. To define the three pump states, consider the

three time windows labeled A, B, C.

2actual HeartMate II LVAD
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A) No Suction (NS): This state is shown in time window A. Pump Inlet Pressure (PIP) -

the pressure at the pump head - is positive and its difference from LVP is small (see

Figure 33, A). Also, Pump Flow is relatively sinusoidal. In this particular example, RIN

becomes negative because of the recoil of the ventricle immediately after the ejection

phase. This fact may indicate an underpumping condition, in the sense that pump flow

can be increased by increasing pump speed without inducing suction.

B) Moderate Suction (MS): Time window B shows this case. Some degree of suction is

observed, possibly due to intermitent contact between the cannula tip and the left ven-

tricular wall. ∆P (see Figure 33, B) and mean pump flow increase as pump speed

increases. The overall net effect is a decrease in RIN . As a consequence, the flow drawn

by the pump tends to match the flow coming back to the heart (venous return);

C) Severe Suction (SS): In this case PIP presents negative spikes and PF no longer has a

sinusoidal form synchronized with the patient’s heart rate, as shown in time window C.

The ventricle is completely unloaded and cannot support the negative pressures (∆P ≥

15mmHg, see Figure 33 C) imposed by the pump. In this case, LVP is nearly zero and

PIP ≤ 15. Since cardiac tissue damage may occur, this condition should be avoided. RIN

increases because pump flow is reduced due to the obstruction of the inflow track. Yet,

pump flow does not go zero. There are two reasons to explain this phenomena. First, it

is difficult to completely obstruct the cannula tip, due to its geometric construction and

diameter. Second, even if this could happen, the cannula has small orifices in its side

walls, which ensure that some flow is still provided by the pump.

Considering the same time windows previously defined, let us examine the behavior of

RIN as a function of pump flow. Figure 34 shows the ECG signal (top panels) and inflow

resistance (bottom) for each time window. From these plots, we notice that RIN defines a

family of curves, due to the cardiac cycle repetition. The dark circle points are values of

RIN during the diastolic portion of the cycle. During that phase, the heart is less active

and these points are approximately clustered. Figure 35 shows the values of inflow resistance

averaged over the diastolic periods for each time window. This result shows that mean inflow

resistance increases as pump state changes from NS to SS. Using the inflow resistance as

a parameter, the general relationship shown in equation 5.1 can be derived, which means
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that, physiologically, pump states NS and MS present some similarities, but they are quite

different from pump state SS.

(RIN)|MS ≤ (RIN)|NS << (RIN)|SS (5.1)
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Figure 32: Experimental Nimbus data
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Figure 33: Hemodynamic variables for the three pumping states

49



7 8 9 10 11 12
-0.5

0

0.5

1

1.5

time (s)

E
C

G

A

0 50 100 150
-0.5

0

0.5

PF (ml)

R
IN

 (m
m

H
g.

s/
m

l)

44 45 46 47 48 49
-0.5

0

0.5

1

1.5

time (s)

B

0 50 100 150
-0.05

0

0.05

0.1

0.15

PF (ml)

60 62 64 66
-0.5

0

0.5

1

1.5

time (s)

C

0 50 100 150
-0.5

0

0.5

1

1.5

2

PF (ml)

diastolic
values diastolic

values diastolic
values 

Figure 34: Inflow resistance RIN

20 30 40 50 60 70 80 90 100 110
0

0.04

0.08

0.12

0.16

0.2

<PFdiast>

<R
IN

>

NS 

MS 

SS 

Figure 35: Mean diastolic inflow resistance

5.1.1 The window length issue

Most suction detection systems reported in the literature extract features from a given

number of samples of pump flow or other available signal. For instance, Vollkron et al.

[11] use a 5 seconds long window. Karantonis et al. [66] use a 6 seconds long window and

Morello [49] uses a 2 seconds long window. Due to the necessity of buffering the signal prior

to extracting the features, a certain delay will be inherent to such systems. No “ideal” length

or technique to select a window length has been reported in the literature.

The shorter the window, the faster information about the pump status will be available.

However, very short windows may not provide meaningful features. For instance, frequency

based features usually are defined based on the signal’s frequency spectrum. A short window

may give poor resolution in frequency, compromising the quality of such indices. Conversely,
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a very long window would be prohibitive if real time operation of the system is intended. In

this research, the window duration is based on a certain number of heart beats, rather than

a fixed number of seconds.

Considering the frequency range of the human heart, a 2 seconds long window may not be

suitable for a heart rate of 50bpm, since less than 2 beats are available for feature extraction.

A five heart beats long window is used in this research. This length was selected to assure

that enough samples are available to calculate the indices, and also to minimize the delay

present in this system. The advantage of using a window based on a certain number of beats

is that the features will be calculated based on the same number of beats. Since this window

duration depends on the heart rate, it is possible to have different time durations, as oppose

to the case of constant time duration in seconds.

In the following sections, the frequency, time and time-frequency indices (features) de-

rived from pump flow are described. The frequency domain indices SI1 and SI2 are related

to the variation in energy of the harmonic and subharmonic frequency bands of the pump

flow spectrum respectively. Time features encompass five indices. SI3 is an asymmetry in-

dex; SI4 and SI5 measure the amplitude variation in the maximum and minimum envelopes

of the pump flow signal, respectively. SI6 and SI7 are the maximum and minimum ampli-

tude of the maximum and minimum envelopes of the first derivative of pump flow. Thus,

indices SI4-SI6 capture pulsatility in the pump flow signal. All time indices are normalized

with respect to the peak-to-peak amplitude of pump flow in order to minimize the effect of

amplitude variation of the pump flow signal on the time indices. The time-frequency index,

SI8 detects variations in the standard deviation of instantaneous mean frequency of pump

flow.

5.1.2 Frequency based suction indices

Let QP (ω) be the Fourier transform of the pump flow signal, qP (t), which is assumed to

be approximately periodic, and ω0 be its fundamental frequency. Consider the frequencies

ω1 = ω0 − ωc and ω2 = ω0 + ωc, where 2ωc defines an interval centered at ω0. Figure 36

illustrates the fundamental energy component in the magnitude spectrum of pump flow, for
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ω0 = 1.0Hz and ωc = 0.5Hz. The Harmonic index SI1 is defined as the ratio of the total

energy in the fundamental component frequency band to the total energy in the harmonic

components frequency band i.e,

SI1 =

∫ ω2

ω1
|QP (ω)| dω∫∞

ω2
|QP (ω)| dω

(5.2)

The Subharmonic index SI2 is defined as the ratio of the signal’s subharmonic energy to

the fundamental energy, i.e,

SI2 =

∫ ω1

0
|QP (ω)| dω∫ ω2

ω1
|QP (ω)| dω

(5.3)

As will be shown later, when suction occurs, energy shifts from the fundamental frequency

band to the harmonic and subharmonic bands in the pump flow spectrum. Since SI1 is

directly proportional to the amount of energy in the fundamental frequency band, and SI2

varies inversely with that quantity, we expect SI1 to decrease and SI2 to increase as suction

occurs.
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Figure 36: Spectrum of pump flow

The fundamental frequency ω0 is estimated from the pump flow frequency spectrum.

Before the harmonic and subharmonic indices are calculated, we remove the mean and then

low pass filter the pump flow signal qP (t) to eliminate high frequency noise. This operation

makes the signal band limited to a frequency range from 0 to 10Hz.

Figure 37 shows an example of the pump flow wave form of an in-vivo test performed in

a calf. The Levacor3 LVAD was used in this in-vivo study. (This data record will be used

3WorldHeart, Inc., formerly MedQuest, Inc., Salt Lake City, UT
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to illustrate the behavior of all indices.) Under desired conditions, i.e, not in a speed range

that would cause suction, pump inlet pressure is positive (see Figure 37, (a)). In addition,

pump flow (see Figure 37, (b)) is periodic, as depicted in the time window A. This implies

that we should expect most of the energy in the PSD of the signal to be concentrated around

the fundamental frequency band, [ω1, ω2]. Therefore, in that scenario, we have SI1 > SI2.

As we approach suction (see Figure 37, time window B), the energy of the fundamental

decreases and the energy of both the harmonic and subharmonic bands increase. This

implies SI1 starts to decrease and SI2 starts to increase. When a suction event actually

occurs, the energy in the fundamental component reaches its smallest value and again the

energy of both the subharmonic and harmonic bands increase. The increased energy in the

subharmonic band may be due to disturbances in the respiratory system caused by suction.

As a consequence, SI1 < SI2 (see Figure 37, time window C) when suction is occurring.

Figure 38 shows results of applying the harmonic and subharmonic indices to the in-vivo

data as in Figure 37. In this case, the indices have identified correctly the occurrence of severe

suction in pump flow for 127 < t < 152 (see Figure 38, (a)). Using pump inlet pressure (PIP)

as a reference, this time interval coincides with that for which there are negative spikes in

PIP (see Figure 37, (a)).
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Figure 37: Example of how PSD energy changes as suction occurs; (a) Pump Inlet Pressure,

(b) Pump Flow. The bottom panels are expanded segments of Pump Flow with respective

spectrums.
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Figure 38: Simulation result of SI1 and SI2 to in-vivo data; (a) Pump Flow, (b) SI1 and

SI2 as functions of time
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5.1.3 Time based indices

The time index SI3 measures how “symmetric” the pump flow wave form is. It is defined

based on maximum and minimum envelopes of pump flow, and mean pump flow. These

quantities are defined as follows. Let Mi be the supremum of pump flow, qP (t), in the ith

heart beat and mi be the infimum. Now, consider the sequences {Mi}N1
i=1 and {mi}N2

i=1 of all

supremums and infimums of qP (t) in a given time window (∆t = 5 heart-beats duration),

respectively. Now, assume that for i = i′ sequence {Mi}N1
i=1 has a maximum, and that for

i = i′′ sequence {mi}N2
i=1 has a minimum. We define Qmax and Qmin as:

Qmax = max{Mi}N1

i=1,i6=i′ , Qmin = {mi}N2

i=1,i6=i′′ (5.4)

The exclusion of the maximum from sequence {Mi} and the minimum from {mi} is to

eliminate outliers when computing the time based indices. Defining ∆Qmax and ∆Qmin as

the amplitudes of both sequences respectively, we have:

∆Qmax = Qmax −min{Mi}, ∆Qmin = max{mi} −Qmin (5.5)

and ∆Q = Qmax − Qmin is the peak-to-peak amplitude of pump flow. Figure 39(a) shows

an example of a time window with its maximum and minimum envelopes of pump flow.
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Figure 39: Example of Maximum and minimum envelopes of (a) qP (t), (b) dQP /dt

The time index SI3 is defined as

SI3 =
Q̄−Qmin

∆Q
(5.6)
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where Q̄ is the mean of pump flow. SI3 measures how “symmetric” the time series of pump

flow is. If suction is not occurring, the pump flow signal is approximately symmetric, and

so SI3 ≈ 0.5. When severe suction occurs, pump flow presents negative spikes, i.e. Qmin

decreases and, as a consequence, SI3 increases. Figure 40(b) shows that SI3 ≈ 0.4 for

t < 125s. When severe suction occurs at 125 < t < 152, SI3 increases.

Time indices SI4 and SI5 measure the amplitude variation in the maximum and minimum

envelopes of the pump flow signal. These indices are defined as

SI4 =
∆Qmax

∆Q
, SI5 =

∆Qmin

∆Q
(5.7)

When suction is absent, the amplitude of both indices SI4 and SI5 is small because pump

flow is approximately periodic. This can be seen in Figure 40(c) for t < 125s. When severe

suction occurs at 125 < t < 152, both indices increase due to the spikes in the pump flow

signal.
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Figure 40: Simulation results of time indices to in-vivo data; (a) Pump Flow, (b) SI3, (c)

SI4 and SI5, (d) SI6 and SI7
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To calculate SI6 and SI7, we first differentiate pump flow with respect to time. As was

done with the pump flow signal, the maximum of {Mi} and the minimum of {mi} for the

derivative signal are discarded (see Figure 39(b)), to avoid outliers caused by spurious noise.

Finally, SI6 and SI7 are calculated as

SI6 =

(
dQ
dt

)∣∣
max

∆Q
, SI7 =

(
dQ
dt

)∣∣
min

∆Q
(5.8)

where
(

dQ
dt

)∣∣
max

= max{Mi} and
(

dQ
dt

)∣∣
min

= min{mi}. Figure 40(d) shows that SI6 in-

creases slightly during suction, whereas SI7 decreases at the beginning of suction. All time

indices were normalized with respect to ∆Q to minimize their dependence on pump flow am-

plitude. Mathematically this means that these indices are not affected by scale factors used

when acquiring the pump flow signal. Physiologically, normalization attempts to minimize

effects due to changes in overall flow values.

5.1.4 Time-frequency based index

The time-frequency algorithm to detect suction events is based on the standard deviation of

instantaneous mean frequency of pump flow, defined as

SI8 =
√

var(〈ω〉spt ) (5.9)

In this formulation, the instantaneous mean frequency is defined as the average frequency

at a given time [50], i.e,

〈ω〉spt =

∫
ωPsp(ω, t) dω∫
Psp(ω, t) dω

(5.10)

where Psp(ω, t) is the spectrogram, the squared magnitude of the Short-time Fourier Trans-

form (STFT) defined as

Psp(ω, t) =

∣∣∣∣∫ qP (τ)h∗(τ − t)e−jωτ dτ

∣∣∣∣2 (5.11)

In equation (5.11), h(t) can be interpreted as a window that selects a local section of

the signal qP (t) for Fourier analysis. Two extreme cases can occur, depending on the choice

of the window. If h(t) is a very long window, a high resolution spectrogram is obtained,
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but time resolution is reduced; conversely, if h(t) is a very short window, Psp gives a low

resolution spectrogram.

As for the previous frequency indices, we assume that under desired circumstances pump

flow is approximately periodic, and its fundamental frequency ω0 is the patient’s cardiac

frequency. If the window h(t) is selected such that the spectrogram of pump flow presents

“good” resolution in frequency, we expect to see a line parallel to the time axis in the time

× frequency plane. In other words, the spectrogram of pump flow is similar to that of a pure

tone signal. This implies that the average frequency at a given time 〈ω〉spt ≈ ω0.

Figure 41 shows the pump flow signal (PF) (top) and three time windows, A, B and C,

representing the pump status as defined in Section 5.1. For each of these windows, PF, the

spectrogram of PF and the instantaneous mean frequency of PF are shown. The standard

deviation of instantaneous mean frequency of pump flow is “small” when the patient is not

experiencing suction (SI8 = 0.0170 in time window A) and increases as suction occurs, e.g.

SI8 = 0.0245 for time window B and SI8 = 0.3298 in time window C.
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Figure 41: Spectogram results and Instantaneous frequency of Pump Flow for 3 time win-

dows. A) No Suction, B) Moderate Suction, and C) Severe Suction. In each case, panels

from the top are PF, Spectrogram of PF, and the Instantaneous mean frequency of PF, 〈ω〉spt
respectively.
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5.2 THE DECISION SYSTEM

The purpose of the DECISION SYSTEM module in Figure 30 is to combine the several features

described in the previous section (SI1 - SI8), in order to classify a new sample4. To do so, a

learning system needs to be derived. Several methods in statistical pattern recognition have

been proposed to design learning systems, such as discriminant analysis, neural networks

and, more recently, support vector machines. Among these, discriminant analysis is the most

widely used method, for its well known mathematical foundation, robustness and relatively

simple implementation. These reasons motivated us to use Discriminant Analysis (DA) to

design a linear classifier.

Discriminant analysis is a dependent method like analysis of variance (ANOVA). How-

ever, in this case, the dependent variables are categorical in nature. The major objective of

discriminant analysis is to achieve the clearest possible separation or discrimination between

or among groups [51, 52]. In this respect, the two-group discriminant problem is a special

case of multiple regression: the independent variables are used to account for as much of the

variation as possible in the dependent variable. When there are more than two groups, mul-

tiple discriminant analysis (MDA), a special case of canonical correlation, is used to explain

the differences between groups.

5.2.1 The Discriminant Analysis Method

Consider a given matrix of n observations of a p-variate pattern, Xn×p. Also, consider that

these observations are classified in g groups. Each row vector x of the matrix X denotes an

observation.

The discriminant analysis method based on Fisher’s approach consists of finding a linear

combination of the independent variables (predictors) xT a that would produce “maximally

different” discriminant scores5 across groups. Figure 42 illustrates this idea for the two-group

classification problem.

4A sample is a vector whose components are the indices, i.e., x = [SI1, SI2, · · · , SI8], calculated for each
time window.

5These are the projections of the predictors in the space spanned by the discriminant functions.
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Figure 42: Fisher’s idea for discriminant analysis. In (a), X1 is used to discriminate between

groups 1 and 2; in (b), a linear combination of X1 and X2 does a better result.

Formally, the general classification problem in DA can be stated as an optimization

problem as

max J(α) =
αT Bα

αT Wα
(5.12)

subject to αT Wα = I

where B and W are the between-group and within-group scatter matrices respectively.

Indeed, the problem defined in (5.12) is an eigenvalue problem, and the optimal α consists

of the generalized eigenvectors that correspond to the largest eigenvalues in

(W−1B − λI)α = 0

Note that the columns of the rectangular matrix α define the coefficients of the linear

combination of the predictors (features), for which the criteria J(α) has a maximum.

Fisher’s objective was to choose a to maximize the ratio of the between-group variance to

the within-group variance. These terms come from ANOVA and are defined as follows. Let

y = (yij) be a variable whose values are observations of a certain experiment from different

treatment groups, i.e., yij represents the ith observation in treatment group j. Let mj denote

the mean of y in group j, m = (mj). Now, let Gn×g be the incidence matrix (i.e, gij = 1 if
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and only if observation i belongs to group j). Note that GT G = diag(nj), where nj is the

number of observations for group j. Then the within-group variance is defined as

Wy =
1

g

∑
j

∑
i(yij −mj)

2

nj − 1
(5.13)

=
‖ y −Gm ‖

n− g

and the between-group variance is

By =

∑
j(mj − ȳ)2

g − 1
(5.14)

=
‖ Gm− ȳ1 ‖

g − 1

Equations 5.13 and 5.14 represent two different ways to estimate the variance in the

observations. The basic idea in ANOVA is to make an inference about differences in group

means by comparing these two different estimates of the variance. When there are no

differences among group means, the two equations produce essentially the same result. The

within-group variance is the average of the within-group sample variances. It captures the

variability of the observation yij around the sample mean (mj) for each group j. It is also

possible to estimate the variance by looking across groups, i.e., by looking at the variance of

the group means (mj) around the overall mean ȳ. Figure 43 illustrates these definitions for

the variance estimates.

The “total sum of squares”, ST , is the sum squared deviations of the observations around

the overall mean. ST can be defined as a “partitioning” of variance: the between-group sum

of squares plus the within-group sum of squares, i.e.,

ST =
(g − 1)By + (n− g)Wy

n− 1

These definitions can be extended for the multivariate case by defining Mg×p as the

matrix of group means and

W =
(X −GM)T (X −GM)

n− g
(5.15)

B =
(GM − 1x̄)T (GM − 1x̄)

g − 1
(5.16)
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Figure 43: Within- and between-group variance estimates

Therefore, the linear combination xT a has variances aT Wa and aT Ba, and total variance

aT ST a = aT (g − 1)B + (n− g)W

n− 1
a (5.17)

The classical approach to find a is to seek a rescaling of the variables xT S such that their

within-group covariance matrix is the identity matrix I and then perform an eigendecompo-

sition of B expressed on these variables. To accomplish this, one can first rescale all variables

to unit variance and then use singular value decomposition (SVD) X = UΛV T . Consider

now that we are working with the rescaled variables. As stated before, the matrix GT G is

diagonal, containing the numbers nj of observations on each group. Let T =diag (
√

n/ni)

so that

TGT GT = nI

The group means are given by the g × p matrix M = (GT G)−1GT X. Since X has

been centered, the column sums of M (weighted by group size) are zero, hence M has rank
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r ≤ min(p, g − 1).

Consider the SVD of T−1M = UΛV T . Assume that neither p nor g is large. We will

assume U is g × r, Λ is r × r and V is p× r. From the SVD, we have

(g − 1)B = (GM)T (GM)

= (GTUΛV T )T .(GTUΛV T )

= V ΛT UT .(TGT GT )UΛV T

= V ΛT UT .(nI)UΛV T

= nV Λ2V T (5.18)

(n− g)W = (X −GM)T (X −GM)

= (XT −MT GT )(X −GM)

= XT X −XT GM −MT GT X + MT GT GM

= XT X −MT GT GM −MT GT GM + MT GT GM

= XT X − (GM)T GM

= XT X − (g − 1)B

= nI − nV Λ2V T

= nV [I − Λ2]V T (5.19)

where we have used the identity M = (GT G)−1GT X ⇒ GT GM = GT X ⇒ XT G =

MT GT G in the fourth line in the derivation of W .

The original problem reduces to finding a linear combination xT a of the rescaled variables

which maximizes the ratio

aT V Λ2V T a

aT V [I − Λ2]V T a

Let b = V T a. The above ratio is
∑

λ2
i b

2
i /

∑
(1 − λ2

i )b
2
i , which is maximized by making

only b1 non-zero. Thus on the original variables, a is proportional to the first column of SV .
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The linear combination found by this process is called the first linear discriminant or the

first canonical variate. Subsequent columns of SV give further linear discriminants which

are orthogonal to the previous ones and maximally separate the group means. Figure 44

illustrates this idea for two independent variables and three groups.

The group means differ only in the first r variables. The quantity (n−g)λ2
i /(g−1)(1−λ2

i )

measures the ratios of between- to within-group variances on the ith canonical variate.
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Figure 44: Fisher’s idea for three-group discriminant analysis

5.2.2 Classification rule

The classification rule used here is based on the maximum likelihood principle that states:

Assign sample u to group g if the likelihood of the observation vector Xu is greater for group

g than for any other group [53]. There are several ways of applying the maximum likelihood

principle. The approach taken here is to consider the posterior probability, P (g|Xu), which

is the most commonly used approach. It is called “posterior” in the sense that this is the

probability of group membership conditioned on knowing Xu, that is after p values of X are

obtained. Thus, according to the maximum likelihood principle, it is reasonable to assign

sample u to the group for which P (g′|Xu), g′ = 1, . . . , g, is maximum. Using Bayes rule, and

assuming there are g groups, the posterior probability is given by

P (g′|Xu) =
πg.P (Xu|g′)∑g

g′=1 πg.P (Xu|g′)
(5.20)

66



where πg′ denotes the probability that a randomly selected sample belongs to group g′.

That is, πg′ is the prior probability of membership in group g′, “prior” in the sense that this

is a probability of group membership before Xu is known.

Assume that the groups are multivariate normal distributed,

f̂(g|Xu) =
1√

(2π)p|Σg|
exp

[
−1

2
(X − X̄g)

T Σ−1
g (X − X̄g)

]
(5.21)

where X̄g is the p × 1 vector of means for group g, and Σg is its p × p covariance matrix.

The quadratic form in (5.21), ∆2
ug = (Xu − X̄g)

T Σ−1
g (Xu − X̄g) is the Mahalanobis distance

between sample u and the centroid for group g.

Working with estimators, qg, of the true prior probabilities, πg, and assuming that the k

group covariance matrices are equal, that is

Σ1 = Σ2 = · · · = Σk = Σ (5.22)

and using Mahalanobis distance, (5.20) can be written as follows in the multivariate normal

case

P (g|Xu) =
qg. exp(−1

2
∆2

ug)∑g
g′=1 qg′ . exp(−1

2
∆2

ug′)
(5.23)

Maximizing P (g|Xu) in (5.23) is equivalent to maximizing qg. exp(−1
2

∆2
ug). This, in turn,

is equivalent to maximizing the natural logarithm of the product:

ln qg −
1

2
∆2

ug = ln qg −
1

2
(Xu − X̄g)

T Σ−1
g (Xu − X̄g) (5.24)

For classification purposes, the term −1
2
XT

u Σ−1Xu can be ignored because, for a given sample

u, this term is common for all g. Thus, maximizing (5.24) is equivalent to maximizing

Lug = [X̄T
g Σ−1]Xu −

1

2
X̄T

g Σ−1X̄g + ln qg (5.25)

The maximum likelihood rule for the p-variate normal, equal covariance matrices case

may be expressed as: assign unit u to group g if Lug > Lug′ for g 6= g′, where Lug is as

defined in (5.25).

The expression of Lug is linear in Xu and hence is called a linear classification function

(LCF). In this research, a new sample will be classified in one of the three groups NS, MS

or SS, according to a linear classification rule.
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5.2.3 Misclassification Cost

When a classifier is used to make a prediction about class membership of a new sample,

some types of error can be more costly than others. For instance, false negative detection

of severe suction may carry heavier consequences for patients, than false positive detection

of severe suction. One way of penalizing such wrong decisions is by incorporating a cost

matrix. Following [54], the expected cost of misclassification (ECM) is

ECM =

g∑
i=1

qi

∑
k=1
k 6=i

P (k|i)C(k|i)

 (5.26)

where qi is the prior probability of class i, i = 1, . . . , g; P (k|i), for k 6= i, is the probability

of classifying a sample to class k when it actually belongs to class i and C(k|i) is the cost of

such misclassification with C(k|i) = 0 when k = i.

The prediction rule that minimizes the ECM is to assign a sample vector Xu to class i

where ∑
i=1
i6=k

qiP (Xu|i).C(k|i) (5.27)

is a minimum.

For instance, for i = 3, assign u to population 1 if

[q2 P (Xu|2).C(1|2) + q3 P (Xu|3).C(1|3)]

is smaller than

[q1 P (Xu|1).C(2|1) + q3 P (Xu|3).C(2|3)]

and

[q1 P (Xu|1).C(3|1) + q2 P (Xu|2).C(3|2)]
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5.2.4 Methods

According to [53], discriminant analysis can be used in two different aspects: predictive

discriminant analysis and descriptive discriminant analysis.

In Predictive Discriminant Analysis (PDA), there are a group of predictors or ex-

planatory variables along with one criterion variable, which usually is categorical and indi-

cates group membership. The goal of PDA is to predict membership of an object (i.e. a

sample) in one of the criteria groups. With this regard, the predictors are viewed as inputs

and the categorical variable as the outcome. The main question addressed in PDA is how

accurately group membership can be predicted. Techniques in PDA are closely related with

multiple linear regression, in which a linear combination of predictors is used. However, in

PDA there are as many linear combinations as the number of groups.

Because PDA is concerned with classification accuracy (hit-rate), it is also important

to know whether its hit-rate is better than that obtained by chance. Usually, a confusion

matrix is used to present a PDA result. Each column of the confusion matrix represents the

instances in an estimated group, while each row represents the instances in an actual group.

A confusion matrix easily permits to see if the classifier has mislabeled some instances. Table

5 shows an example of a confusion matrix for a two-group classifier.

Table 5: Example of a Confusion Matrix for a two-group classifier

PREDICTED

Negative Positive

ACTUAL
Negative a b

Positive c d

From the confusion matrix, several important quantities can be defined. For instance:

a) The accuaracy (hit-rate) (AC) is the proportion of the

total number of predictions that were correctly classified
AC =

a + d

a + b + c + d

b) The true positive rate (TP ) or Sensitivity is the pro-

portion of positive cases that were correctly identified

TP =
d

c + d
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c) The false positive rate (FP ) is the proportion of nega-

tives cases that were incorrectly classified as positive

FP =
b

a + b

d) The true negative rate (TN) or Specificity is the pro-

portion of correctly classified negatives cases

TN =
a

a + b

e) The false negative rate (FN) is the proportion of posi-

tives cases that were incorrectly classified as negative

FN =
c

c + d

To verify how much improvement in classification accuracy is due to the discriminant

model, we compare its performance with the proportional chance criteria. This decision rule

classifies observations based on the relative frequency with which each group appears in the

confusion matrix [53]. Table 6 illustrates the expected result by chance in the two-group

problem case. Let p denote the proportion of the entire sample consisting of group 1 obser-

vations. Then the proportional chance decision rule is as follows:

Assign observation to group 1 with probability = p

Assign observation to group 2 with probability = (1− p)

Table 6: Expected number classified by chance

PREDICTED

Group 1 Group 2 Total

ACTUAL

Group 1 np2 np(1− p) np

Group 2 np(1− p) n(1− p)2 n(1− p)

Total np n(1− p) n

The expected number of hits in the proportional chance criteria is h = np2 + n(1− p)2.

In addition, the standard deviation of the proportional chance criteria is σcpro =
√

nh(1− h)

[53]. Using σcpro, it is possible to perform a t-test to compare the classification performances

of the discriminant model versus the proportional chance criteria.
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In Descriptive Discriminant Analysis (DDA) the categorical variable plays the role

of explanatory variable and the predictors are the outcome variables. In other words, in

DDA the model is reversed as compared with the PDA approach and one is concerned with

group separability rather than prediction accuracy when performing DDA. Techniques in

DDA are closely related to MANOVA. Indeed, linear combinations of outcome variables are

commonly used in DDA to interpret, in some cases, the resulting variable combinations that

are associated with group differences.

Another difference between PDA and DDA is that in the former there are as many linear

classification functions (LCFs) as there are groups. In DDA, the number of linear discriminant

functions (LDFs) coincides with the rank of the matrix W−1B, r = min(p, g−1). To interpret

the results from DDA, information from these LDFs are commonly used, specifically, the

standardized discriminant function coefficients and discriminant loadings. Some authors [52]

believe that the standardized discriminant function coefficients may carry information about

group separability. However, most researchers look at the discriminant loadings that underlie

group differences [53]. The discriminant loadings are correlations between the predictors and

the discriminant scores.

As stated earlier, r = min(p, g − 1) LDFs may be extracted. The question is then how

many of them should be considered to interpret group differences. One way to answer this

question is by means of a proportion-of-variance approach. The jth eigenvalue, λj, of W−1B

represents the ratio of the between-group to within-group variability with respect to scores

in the jth LDF. That is, λj reflects a proportion of variance in a p-variable system accounted

for by the jth LDF. In addition, multiple discriminant analysis (MDA) can be seen as a

special case of canonical correlation. In fact, the eigenvalues from MDA are related to the

eigenvalues from canonical correlation (CC) as [52]

λMDA
j =

λCC
j

1− λCC
j

Thus, it is possible to test the significance of the model using the following version of Wilks’

Λ statistic:

Λ =
∑

j

1

1 + λMDA
j
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The Wilks’ Λ is used to test the significance of a discriminant function. A significant Λ

means that the null hypothesis that the groups have the same mean on the discriminant

function scores can be rejected. The smaller the lambda, Λ, the greater the group means

differences. A Bartlett’s chi-square test statistic for Λ is

V =

[
(n− 1)− p + g

2

]∑
j

ln(1 + λMDA
j ) (5.28)

with p(g − 1) degrees of freedom, where p is the number predictors, and g is the number of

groups.

To present the DDA results a table is usually used, containing the following information:

the eigenvalues of the W−1B matrix, the explained variance attributed to each eigenvalue,

the standardized discriminant function coefficients, the discriminant loadings and the group

means on the discriminant functions.

Finally, a plot of the samples in the LDF space (usually only the first two dimensions

are considered) can be used to determine the number of LDFs to retain for interpretation of

group separation.

5.3 EXPERIMENTAL RESULTS

This section describes how experimental data were used to design and test the suction

detection system. These data were analyzed off-line. The pump flow signal and other

hemodynamic variables were recorded in an in-vivo study performed on a calf. This study

was conducted in association with LaunchPoint, LLC (Goleta, CA) and WorldHeart, Inc.

The WorldHeart LVAD was used in this experiment and data were sampled at a rate of

500Hz. The detection system and the discriminant analysis of the data were implemented

using MATLAB6. The in-vivo study had two main goals: to test several control approaches,

and to assess suction indices performance. Suction was induced either by overpumping or by

clamping the vena cava. The first test method consists of an increase in pump speed, using

a ramp profile. Following the test protocol, the speed ramp was applied before any drug

6The MathWorks Inc., Natick, MA
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administration to the animal, and data recorded in this condition were used as base-line.

The second test method, vena cava occlusion, causes less blood to return to the animal’s

heart. Consequently, less blood is available for the pump to draw, and suction occurs. In

this particular in-vivo experiment, administration of Norepinephrine (a vaso constrictor) was

used to change systemic vascular resistance (SVR). The researchers wanted to know how

SVR changes would affect pump flow. In addition, at the end of the experiment, Esmolol

(a cardioselective drug that affects heart contractility) was administrated to the animal to

verify how changes in the contractility of the heart impacts pump flow and the occurrence

of suction.

5.3.1 Data description

A total of 35 data files were recorded. The data were classified by a human expert into three

groups, according to the pump status previously defined in Section 5.1: No Suction (NS),

Moderate Suction (MS), and Severe Suction (SS). This classification procedure was based on

the analysis of pump flow (PF), pump speed (PS), left ventricular pressure (LVP) and pump

inlet pressure (PIP), using a window 5 heart beats long. Each one of these windows was

classified by the expert, resulting in a data base with 1,197 samples of the pump flow signal.

Figure 45 illustrates the steps taken in our approach. Table 7 shows the data statistics,

means and standard deviations of each feature variable for each type of suction. Most of the

samples 647 (54%) belongs to group NS, whereas groups MS and SS present 429 (36%) and

121 (10%), respectively, of the data.

Looking at the group means for each feature, we noticed that these means are not equal

across groups. This fact is even more evident by looking at the box-plots for each feature,

shown in Figure 46. These plots also reveal that some indices have skewed distributions.

Having normal distributed features is desirable, but not essential for applying the DA method

[53].

The best way to test the hypothesis of equal group means is by performing a multivariate

analysis of variance, MANOVA. A one way MANOVA was performed using the SAS7 package.

7SAS Institute Inc., Cary, NC, USA
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Table 8 presents these results. They show that the difference between groups is significant

at p < 0.0001, based on a Wilks’s Λ = 0.157. The MANOVA result also shows the partial

correlation matrix associated with the Within group covariance matrix. In our data base,

none of the indices are very strongly correlated; the strongest correlation (r = 0.57) is

between SI3 and SI6.

The Mahalanobis distance between group centroids shows that NS samples are more

“similar” to MS, since the Mahalanobis distance between their means is only 3.17, whereas

the distances from these two group means to the SS group centroid are 13.61 and 10.47,

respectively. This result is in agreement with our previous analysis of inflow resistance,

presented in section 5.1. We had concluded that pump states NS and MS present similar

physiological characteristics.

Since we have p = 8 predictors and g = 3 groups, we should expect for the group means

to lie in a two dimensional space (not necessarily aligned), min(p, g−1) = 2. This is actually

the case, and the MANOVA result (Table 8, IV) confirms this hypothesis.

Data File # 35

Data File # 2

Data File # 1

0 20 40 60 80 100 120 140 160 180 200
-200

0

200
PIP
LVP

0 20 40 60 80 100 120 140 160 180 200
-5

0

5

10

P
F

0 20 40 60 80 100 120 140 160 180 200
1000

2000

3000

4000

P
S

Obtain 5s long
snapshots of
Pump flow

Data base

Expert
classification

Training
Data

Test
Data

1.

2.
Randomly
selected

3.

Apply MDA
to derive

Discriminant
Functions

4.

Data File # 35

Data File # 2

Data File # 1

0 20 40 60 80 100 120 140 160 180 200
-200

0

200
PIP
LVP

0 20 40 60 80 100 120 140 160 180 200
-5

0

5

10

P
F

0 20 40 60 80 100 120 140 160 180 200
1000

2000

3000

4000

P
S

Data File # 35Data File # 35

Data File # 2Data File # 2

Data File # 1

0 20 40 60 80 100 120 140 160 180 200
-200

0

200
PIP
LVP

0 20 40 60 80 100 120 140 160 180 200
-5

0

5

10

P
F

0 20 40 60 80 100 120 140 160 180 200
1000

2000

3000

4000

P
S

Obtain 5s long
snapshots of
Pump flow

Data baseData base

Expert
classification

Training
Data

Training
Data

Test
Data
Test
Data

1.

2.
Randomly
selected

3.

Apply MDA
to derive

Discriminant
Functions

4.
Apply MDA

to derive
Discriminant

Functions

4.

Figure 45: Detector design steps
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Table 7: Data Statistics

NS MS SS Overall

n1 = 647 (n2 = 429) (n3 = 121) (N = 1197)

(54%) (36%) (10%) (100%)

Feature Mean S.D. Mean S.D. Mean S.D. Mean S.D.

SI1 1.747 0.453 1.239 0.265 0.655 0.299 1.455 0.522

SI2 0.074 0.053 0.145 0.108 0.658 0.561 0.158 0.258

SI3 0.413 0.047 0.361 0.040 0.610 0.145 0.414 0.094

SI4 0.050 0.035 0.130 0.078 0.193 0.095 0.093 0.079

SI5 0.052 0.035 0.069 0.049 0.375 0.224 0.091 0.126

SI6 7.133 2.029 5.057 0.640 6.152 2.226 6.290 1.949

SI7 -7.774 0.795 -7.966 0.787 -9.835 2.473 -8.051 1.242

SI8 0.018 0.016 0.037 0.033 0.178 0.112 0.041 0.063
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Figure 46: Box plots of the features per group
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Table 8: MANOVA Results for groups

I. Multivariate Statistics:

Statistic Value F Num df Den df Pr > F

Wilks’s Λ 0.157 225.70 16 2374 < 0.0001

Pillai’s Trace 1.129 192.58 16 2376 < 0.0001

Hotelling-Lawley Trace 3.535 262.05 16 1938.8 < 0.0001

Roy’s Greatest Root 2.908 431.89 8 1188 < 0.0001

II. Correlation Coefficients from the Within group covariance matrix

SI1 SI2 SI3 SI4 SI5 SI6 SI7 SI8

SI1 1.00

SI2 -0.16 1.00

SI3 0.26 0.28 1.00

SI4 -0.24 0.22 -0.21 1.00

SI5 -0.19 0.30 0.50 0.16 1.00

SI6 0.56 0.16 0.57 -0.11 0.01 1.00

SI7 0.14 -0.25 -0.35 0.22 -0.14 -0.21 1.00

SI8 -0.24 0.32 0.36 0.21 0.46 0.07 -0.26 1.00

III. Pairwise Mahalanobis distance between group means

NS MS SS

NS 0

MS 3.17 0

SS 13.61 10.47 0

IV. Dimensionality test of group means

Space dimension P value

2 < 0.0001
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5.3.2 Minimum number of samples

A “rule of thumb” for the minimum sample size in discriminant analysis is that the smallest

group be comprised of at least 3 ∗ p samples, where p is the number of predictors [53]. In

our case, the number of samples in each group was equal, so that, in the training phase,

all groups were equally likely. This compensates for the reduced number of severe suction

samples in the data base. Since we have 8 predictors (indices), a minimum of 24 samples for

each one of the groups would be needed, given a total of N = 72 samples in the training set.

A quick simulation study was performed to determine the number of samples per group, n,

to use in the test set. Starting with only n = 10 samples per group (thus, a total training

set of 30 samples), we derived the discriminant model and evaluated its hit-rate using the

leave-one-out method. The number of samples was then increased by 10 until 50 samples

from each group were present in the training set. Figure 47 shows this simulation result.
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(a) Two-group classification problem (b) Three-group classification problem

Figure 47: Hit-rate versus number of samples per group

As the number of samples is increased, so does the hit-rate. However, there is no sig-

nificant improvement in accuracy, for n ≥ 30, which is a value close to the “rule of thumb”

number, 24, given in [53].

In the next section, the methods described in Section 5.2.4 are applied to experimen-

tal data. Two classification problems are considered: two and three-group classification.

Although our expert had identified three possible pumping states, the use of two states
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(Suction/ No Suction) is a common approach adopted in the literature [65, 66]. The two-

group classification will be studied for completeness purposes. PDA and DDA methods will

be used for the training set in both problems (two and three group classification), whereas

only PDA will be used in the test set.

5.3.3 The two-group classification problem

When only two groups are considered, the classifier has to label a given sample either as No

Suction, N or Suction, S. Due to their similarities from a physiologic stand point, group N

contains both groups NS and MS, whereas group S is the same as group SS.

To design the linear classifier, 30 samples were randomly drawn from each one of the

groups N and S. This was done to ensure that sufficient information on suction groups was

obtained. In this case, our main goal is to classify the remaining 1,127 samples either as No

Suction (N) or Suction (S).

5.3.3.1 Descriptive Discriminant Analysis Table 9 presents the DDA results. Since

this is a dichotomous problem, only one linear discriminant function is needed. The eigen-

value, λ = 5.376, of the LDF accounts for 100% of the differences in the group means. Indices

SI1, SI3 and SI5 present the highest correlation values, −0.88, 0.82 and 0.78 respectively,

showing that these predictors play a major role in distinguishing between suction and no-

suction patterns. This suggests that pump flow samples in the S set present augmented

harmonic energy (related to the fundamental) and their time wave form is asymmetric.

5.3.3.2 Predictive Discriminant Analysis Table 10 shows the confusion matrix for

the training data. The results are good. Fifty eight samples were correctly classified (i.e,

30 of 30 N samples were correctly identified as N and 28 of 30 suction cases were correctly

identified as S), giving an overall hit-rate of 96%.

Because the group sizes were equal, the expected number of hits given by the proportional

chance criteria is n/2 and the hit-rate is 50%. Since the discriminant approach gave a

hit-rate of 96%, it performed better than the proportional chance criteria. The standard
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Table 9: DDA result for the two-group classification problem

Eigenvalues of W−1B

Eigenvalue Difference Proportion Cumulative

5.376 1.00 1.00

Feature Standardized Discriminant
Discriminant loadings
Coefficients (correlations)

SI1 -1.64 -0.88

SI2 0.86 0.64

SI3 16.84 0.82

SI4 4.68 0.72

SI5 -2.16 0.78

SI6 -0.46 -0.06

SI7 0.33 -0.41

SI8 -2.32 0.70

Group means on LDF space

Group α1

N −2.27

S 2.27

deviation of the proportional chance criteria is σcpro = 3.87; and a t-statistic to compare the

classification performances of the discriminant model versus the proportional chance criteria

is t = 58−30
3.87

= 7.22 with df = 59. Clearly, the result is significant, showing that information

about pump flow features improves our ability to discriminate the pump status. Figure 48

shows that the distribution of discriminant scores for N samples is left-shifted, which implies

that most of the discriminant scores are negative, while S samples are more likely to have

positive discriminant scores (right-shifted distribution). This fact is in agreement with the

80



Table 10: Confusion Matrix for the classifier a

PREDICTED

N S Total

N 30 0 30

(100%) (0%) (100%)

ATUAL

S 2 28 30

(7%) (93%) (100%)

a N = No Suction, S = Suction

location of the projected group means in the discriminant space: −2.27 for group N and 2.27

for group S.
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Figure 48: Histograms of discriminant scores for training set
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5.3.4 Classifying the test set for the two-group problem

The discriminant model obtained from the training data set was used to classify the remaining

1, 137 samples in the data base. Table 11 shows the confusion matrix in this case. The

model was able to identify correctly 1, 089 samples, giving a hit-rate of 95%. To verify

how the discriminant model compares with the proportional chance criteria, notice that now

p = 1046/1137 = 0.92. Therefore, the expected number of correct classifications by chance

is 1137[0.922 + (1 − 0.92)2] = 969, which gives a hit-rate of 969/1137 = 85%. The variance

of the proportional chance criteria is σcpro = 11.96, and t = 1089−969
11.96

= 10.02 (df = 1,136),

which is significant. Both the false positive (3%) and false negative (14%) rates increased

compared to those in the training set (see Table 10). This was expected, since hit-rates

from training sets tend to be positively biased. Figure 49 shows the distributions of the

discriminant scores for both groups N and S.

Table 11: Confusion Matrix for test set a

PREDICTED

N S Total

N 1011 35 1046

(97%) (3%) (100%)

ATUAL

S 13 78 91

(14%) (86%) (100%)

a N = No Suction, S = Suction

5.3.5 The three-group classification problem

When more than two groups are considered, the discriminant problem becomes a Multiple

Discriminant Analysis (MDA) problem. Indeed, at least (g − 1) discriminant functions are

needed in order to distinguish between g groups, since g is less than the number of predictors.

A classifier was designed using a total of 90 samples, 30 from each group. The goal in this
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Figure 49: Histograms of discriminant scores for test set

case is to classify the remaining 1,107 samples as No Suction (NS), Moderate Suction (MS)

or Severe Suction (SS).

5.3.5.1 Descriptive Discriminant Analysis Table 12 presents these results. The first

discriminant function, α1, explains most of the differences between the groups in the data,

since its proportion was 0.8719. The second discriminant function, α2, accounts for only

0.1281 of the difference. The columns labeled C1, C2 show the discriminant loadings. Indices

SI3 = 0.85, SI8 = 0.84, SI1 = −0.80 and SI5 = −0.80 in column C1 correlated most strongly

with the first discriminant function. As for the second discriminant function, correlations

are small as compared with α1. Indeed, SI6 has correlation r = −0.71 with the second

discriminant function, α2.

Looking at means in the first discriminant, the mean for SS is 2.62; for NS and MS, the

means are −1.63 and −0.99, respectively. In addition, we know that the first discriminant

function is mainly correlated with SI3, SI1 and SI8. This suggests that SS is different from

MS and NS because pump flow samples in SS are asymmetric, present augmented harmonic

energy (related to the fundamental frequency band) and higher spread of energy in the time-

frequency plane. Hence, the first discriminant function separates SS from the other two

groups.
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Table 12: DDA result for the three-group classification problem

Eigenvalues of W−1B

Eigenvalue Difference Proportion Cumulative

3.6333 3.0994 0.8719 0.8719

0.5339 0.1281 1.0000

Feature Standardized Discriminant
Discriminant loadings
Coefficients (correlations)
α1 α2 C1 C2

SI1 -0.96 1.59 -0.80 0.45

SI2 0.79 0.07 0.69 0.06

SI3 12.91 10.53 0.85 0.44

SI4 3.69 -4.07 0.67 -0.43

SI5 -1.98 -1.35 0.83 0.12

SI6 -0.27 0.11 -0.04 -0.71

SI7 0.22 0.18 -0.54 -0.12

SI8 4.10 1.03 0.84 0.07

Group means on LDF space

Group α1 α2

NS −1.63 0.80

MS −0.99 −0.94

SS 2.62 0.14

The second discriminant score separates group MS from the other two. MS samples have

projected mean −0.94 in the second dimension, whereas NS and SS have means 0.80 and

0.14 respectively. Even though that difference in group means in the second discriminant

score is not as pronounced as it is in the first one, the second discriminant function plays

an important role in separating MS samples from the others. Figure 50 shows a plot of the
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training data in the discriminant space. Using Wilks’ Λ statistic to test the null hypothesis

that there is no difference across NS, MS and SS, we have n = 90, p = 8, g = 3, λMDA
1 = 3.633,

and λMDA
2 = 0.533. Substituting these values into equation (5.28) gives

V = [90− 11/2][ln(4.633) + ln(1.533)] = 163.75

With 16 degrees of freedom, this result is significant at p < 0.01.
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Figure 50: Plot of training data in discriminant function space

5.3.5.2 Predictive Discriminant Analysis Table 13 presents the confusion matrix on

the training set.

The discriminant model presents a good result compared to the proportional chance

criteria, which is given by n(p2
1 + p2

2 + p2
3). In this case, pi = 1/3, i = 1, 2, 3, yielding a

chance hit-rate of 33%. This is much less than the 83% obtained with the discriminant

model. In addition, no SS samples were mislabeled as NS. Even though 17% of SS samples

were mislabeled as MS, they still were recognized as suction. Moreover, no NS samples were

mislabeled as SS, and misclassification of NS as MS is not as critical as identifying NS as SS.
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Table 13: Confusion Matrix for training set

PREDICTED

NS MS SS Total

ACTUAL

NS 24 6 0 30

(80%) (20%) (0%) (100%)

MS 4 26 0 30

(13%) (87%) (0%) (100%)

SS 0 5 25 30

(0%) (17%) (83%) (100%)

5.3.6 Classifying the test set for the three-group problem

The designed DA model was applied to the test set. In this case, our goal was to classify

the remaining samples (1,107) into one of the three groups. Table 14 shows the confusion

matrix in this case. It reveals that 81% of the severe suction cases were correctly classified

by the model, and none of them was identified as NS. If we had to rely on chance alone, the

hit-rate would have been 45%, because p1 = 617/1107, p2 = 399/1107, and p3 = 91/1107 in

this case.

Even though the overall hit-rate (accuracy) of 81% is less than that observed in the

two-group problem (95%), the false positive rate in the severe suction group decreases con-

siderably. This implies that our ability to identify severe suction cases was improved in

the three-group classification problem. This is in agreement with the expert’s opinion, who

considers that moderate suction is not as deleterious for the patient’s health as is severe

suction. Therefore, the multidiscriminant analysis-based classifier will be adopted in this

research study. Figure 51 shows a plot of the test data in the discriminant space. Note that

SS cases are well separated from the others groups in the first discriminant score. This result

is consistent with that obtained for the training set (see Figure 50).
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Table 14: Confusion Matrix for test set a

PREDICTED

NS MS SS Total

ACTUAL

NS 516 101 0 617

(83.6%) (16.4%) (0%) (100%)

MS 79 310 10 399

(19.8%) (77.6%) (2.6%) (100%)

SS 0 17 74 91

(0%) (18.6%) (81.4%) (100%)
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Figure 51: Plot of test data in discriminant function space
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5.4 SIMULATION STUDIES

Simulation studies were carried out to evaluate the suction detection performance in response

to physiological parameter changes and robustness to noise. To this end, the cardiovascular-

pump model described in Section 4.3 was used to generate the input for the suction detector,

i.e., the pump flow signal. Figure 52 illustrates a block diagram interconnection between the

cardiovascular-pump model and the suction detector where ω is a pre-defined pump speed

ω

HEART

+
PUMP

RS , HR
Emax

PF

v(n)

+

+
SUCTION

DETECTOR

DS1

DS2

Figure 52: Block diagram of cardiovascular-pump model and suction detection

profile, RS represents the patient’s systemic vascular resistance (SVR) and was used to

change preload; Emax is an elastance parameter (see equation 4.3) used to change contrac-

tility. PF is pump flow and DS1 and DS2 are the two discriminant scores. Signal v(n) is

a white gaussian noise added to the pump flow signal. It represents noise measurements

from a flow sensor. The pump speed profiles used were ramp and stair step functions.

These are speed profiles commonly used in in-vivo experiments. Physiological parameter

changes encompass different contractility (Emax) and preload (RS) conditions. Simulations

with noisy pump flow were conducted to investigate under what levels of SNR in the pump

flow signal the suction detector classification is still accurate. Suction was evaluated based

on ∆P = LV P − PIP as described in Section 5.1.

5.4.1 Physiologic parameter change

The physiologic parameters considered in these tests were contractility and preload. Contrac-

tility is related to the “pumping strength” of the natural heart. In our model, the following

contractility states were evaluated by varying the value of Emax:
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• “normal” heart, Emax = 2.0mmHg/ml;

• “sick” heart (reduced strenght), Emax = 1.0mmHg/ml;

• “very sick” heart, Emax = 0.6mmHg/ml;

Preload changes were used to assess the suction model response to changes in the patient’s

level of activity. In our cardiovascular-pump model, these changes can be simulated by

increasing or decreasing the value of the resistor RS . As RS decreases, the flow of blood

returning to the left atrium (capacitance CR in our model) increases. Thus, left atrial

pressure (LAP) increases, and so does the preload of the heart. The following activity states

were considered (Table 15): “baseline” (RS = 1.0mmHg.s/ml, HR = 75bpm), “hypertension”

(RS = 1.2mmHg.s/ml, HR = 75bpm), “light exercising” (RS = 0.8mmHg.s/ml, HR =

90bpm), “strenuous exercising” (RS = 0.6mmHg.s/ml, HR = 135bpm). The heart rate

values were adopted from [60] and the 0.6mmHg.s/ml value for resistor RS is probably not

physiologically likely to occur. Moreover, in the real world, a very sick patient would never be

submitted to “strenuous exercising”. Being able to test this condition through simulations,

without jeopardizing the patient’s health, illustrates the benefits of the simulation approach.

In addition, the healthy heart with ventricular assistance was included as suggested in

[60]. This case actually happens during in-vivo animal studies prior to drug administration

(e.g. esmolol) that weakens the ventricle, and in patients when the left ventricle recovers.

The twelve conditions described in Table 15 were simulated using a ramp speed profile.

In the first 10 seconds of simulation, pump speed was constant at ω0 = 8.7krpm. Then, pump

speed was increased until 14.0krpm and subsequently decreased to the initial value, ω0. This

was done to assure that all case scenarios were tested for both increasing and decreasing

pump speeds to match experimental protocols. Figures 53 and 54 show the results for the

healthy heart. The first panel is pump speed, which was changed as previously described.

The second panel is pump flow. The last two panels show the discriminant scores and the

classification result from both the DA model and the expert.

Because preload decreases and heart rate increases with the level of exercise, the peak-

to-peak amplitude of pump flow decreases. For the cases of low heart rate (baseline and

hypertension), the aortic valve is still opening and closing for a certain period of time for

the healthy heart. However, as the heart rate increases, the aortic valve does not open, even
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Table 15: Parameter changes to evaluate the suction detector

CONTRACTILITY STATE PRELOAD CONDITIONS

(relates to the native (relate to the patient’s

heart pumping strength) level of activity)

hypertension RS = 1.2, HR = 75

“normal heart” baseline RS = 1.0, HR = 75

Emax = 2.0 light exercise RS = 0.8, HR = 90

strenuous exercise RS = 0.6, HR = 135

hypertension RS = 1.2, HR = 75

“sick heart” baseline RS = 1.0, HR = 75

Emax = 1.0 light exercise RS = 0.8, HR = 90

strenuous exercise RS = 0.6, HR = 135

hypertension RS = 1.2, HR = 75

“very sick heart” baseline RS = 1.0, HR = 75

Emax = 0.6 light exercise RS = 0.8, HR = 90

strenuous exercise RS = 0.6, HR = 135

at low speeds, because the systolic period decreases when heart rate increases.

Figures 55 through 58 show the simulation results for the sick and very sick hearts,

respectively. Major differences are only in the pump flow signal. Due to the reduced con-

tractility, peak-to-peak amplitude of pump flow decreases as Emax decreases. With regards to

the discriminant scores, they behave in a similar fashion for all three contractility conditions,

i.e., DS1 is negative and DS2 is positive when suction is absent, both scores are positive

when severe suction occurs, and a change in signal takes place when moderate suction is

happening, i.e., DS1 is positive and DS2 is negative. These are shown in Figures 53-58,

third panel.
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(a) baseline, RS = 1.0mmHg.s/ml, HR = 75bpm (b) light exercise, RS = 0.8mmHg.s/ml, HR = 90bpm

Figure 53: Test result of parameter changes for the healthy heart (Emax = 2.0mmHg/ml). Panels from the top are PS (Pump

Speed), PF (Pump Flow), Discriminant Scores and DA model and Expert classification.
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(a) heavy exercise, RS = 0.6mmHg.s/ml, HR = 135bpm (b) hypertension, RS = 1.2mmHg.s/ml, HR = 75bpm

Figure 54: Test result of parameter changes for the healthy heart (Emax = 2.0mmHg/ml). Panels from the top are PS (Pump

Speed), PF (Pump Flow), Discriminant Scores and DA model and Expert classification.
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(a) baseline, RS = 1.0mmHg.s/ml, HR = 75bpm (b) light exercise, RS = 0.8mmHg.s/ml, HR = 90bpm

Figure 55: Test result of parameter changes for the sick heart (Emax = 1.0mmHg/ml). Panels from the top are PS (Pump

Speed), PF (Pump Flow), Discriminant Scores and DA model and Expert classification.
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(a) heavy exercise, RS = 0.6mmHg.s/ml, HR = 135bpm (b) hypertension, RS = 1.2mmHg.s/ml, HR = 75bpm

Figure 56: Test result of parameter changes for the sick heart (Emax = 1.0mmHg/ml). Panels from the top are PS (Pump

Speed), PF (Pump Flow), Discriminant Scores and DA model and Expert classification.
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(a) baseline, RS = 1.0mmHg.s/ml, HR = 75bpm (b) light exercise, RS = 0.8mmHg.s/ml, HR = 90bpm

Figure 57: Test result of parameter changes for the very sick heart (Emax = 0.6mmHg/ml). Panels from the top are PS (Pump

Speed), PF (Pump Flow), Discriminant Scores and DA model and Expert classification.
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(a) heavy exercise, RS = 0.6mmHg.s/ml, HR = 135bpm (b) hypertension, RS = 1.2mmHg.s/ml, HR = 75bpm

Figure 58: Test result of parameter changes for the very sick heart (Emax = 0.6mmHg/ml). Panels from the top are PS (Pump

Speed), PF (Pump Flow), Discriminant Scores and DA model and Expert classification.
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To evaluate how these changes impact the suction detector performance, the hit-rate of

the detector was calculated for each test condition. Figure 59 shows that there are not major

differences within and across the contractility states considered. Indeed, for all contractility

conditions, the hit-rate of the detector lies in the interval [82%, 90%]. The confusion matrices

of each test condition are shown in Appendix C.
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Figure 59: Detector hit-rate as a function of contractility state

5.4.2 Robustness to Noise

In order to assess the detector performance when a noisy pump flow signal is presented to

its input, a simulation study with white gaussian noise (signal v(n) in Figure 52) added to

the pump flow signal was conducted. The strategy used to evaluate how noise impacts the

hit-rate of the detector was to increase the SNR level and measure the hit-rate to determine

under which noise conditions the detector’s hit-rate is not better than the proportional chance

criteria. As in the previous test, three contractility states were considered, i.e., healthy heart,

sick heart and very sick heart.

To provide a sense of how comparable with in-vivo experimental data these simulated

noisy pump flows are, Figure 60 shows three panels of pump flow. Panel (a) presents in-
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vivo data, and panels (b) and (c) show pump flow signals from simulations with 20dB and

10dB levels of SNR respectively. Comparing them, we can noticed that the in-vivo data is

reasonably “clean”, and that much less favorable conditions were considered in simulation.
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Figure 60: Comparison between raw and noisy simulated pump flow

Figure 61 summarizes the simulation results. The horizontal line at the 37% accuracy

level corresponds to the proportional chance criteria in this case. Noise was added to the

pump flow signal, according to the following SNR values: 100, 80, 60, 40, 20, 10, 5 and

2dB. The 100dB level, which corresponds to no noise added, was included for comparison

purposes. There are no pronounced differences in accuracy from SNR levels 80 to 20dB. At

SNR = 20dB, the detector performances of the sick (solid line with square marks, Emax =

1.0mmHg/ml) and very sick (solid line with triangle marks, Emax = 0.6mmHg) hearts were

about the same, presenting a hit-rate of 87%, as compared with the healthy heart (solid

line with circle marks, Emax = 2.0mmHg/ml), whose hit-rate was 85%. However, as more

noise is added to the pump flow signal, the hit-rates of the healthy and sick heart decrease

in a similar fashion and for the very sick heart the detector’s performance deteriorates more

rapidly when SNR ≤ 10dB. At the 2dB level, the detector can do no better than the chance

criteria for the sick and very sick hearts.
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Figure 61: Detector hit-rate as a function of SNR

5.5 HOW DO THE DISCRIMINANT SCORES BEHAVE OVER TIME?

In this section we examine how the discriminant scores behave in time. Our goal is to deter-

mine whether the discriminant scores can be used as control signals to drive a physiological

controller for the LVAD. In other words, can we use the discriminant scores to adjust the set

point of pump speed, so that suction is avoided? To accomplish this, the discriminant scores

should be “smooth” functions of time and “monotonic” functions of speed. By smooth, we

mean that these signals should be “relatively continuous”, without presenting abrupt changes

in amplitude over time. Monotonicity here means that the operating point of the pump in

the discriminant scores plane should only move from one region to another if pump speed

has been increased or decreased. Otherwise, the operating point should stay in one of the

three regions (NS, MS, or SS). That is, we do not want the point to “jump” randomly in the

discriminant scores plane, but to move systematically through it, as pump speed changes.

Recall that pump flow samples were randomly drawn from a data base to design the

classifier. Because of this, time information was not considered in the design process. Indeed,
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every sample in the data base is a 5 heart-beats long window of pump flow, and those windows

come from 35 data files recorded during animal experiments. The DA model does not know

from which particular file a sample comes or the location in time of a particular window

within its original file. We can investigate how the discriminant scores behave over time by

applying the designed DA model to the data files, instead of to the samples in the test set.

Consider the results of applying the DA model to the data File # 20. It is a 350-second

segment of recorded hemoynamic variables, with several episodes of severe suction caused

by overpumping (high pump speed).

As shown in Figure 62 (a), pump speed is increased from 1, 900 to 2950 rpm, in the first

85s of simulation. Pump speed started low, with no suction, but at 60s, the pump status

went from normal (NS) to moderate suction (MS) according to the expert (see Figure 62 (c),

dark line). The vertical lines labeled by capital letters at the top of the first panel indicate

transitions from one pump state to another, according to the expert classification. These

letters will be used to identify pump state transitions on Figure 63. There is one transition

from NS to MS indicated by A, at ω = 2, 500rpm. Transitions from MS to SS occurred at

B, D, F, H and J. In all these transitions, we had ω ≥ 2, 900rpm. Transitions from SS to

MS occurred at C, E, G, and I when pump speed was decreased to ω ≤ 2, 800rpm. Notice

that the suction detector identified correctly all severe suction episodes except the one at H

(t = 240s). (Compare the expert and DA model output in Figure 62 (c)).

Figure 62 (d) shows how the discriminant scores vary with time for this paricular test.

The first discriminant score (DS1) is negative when either NS or MS patterns are occurring.

If DS1 and DS2 are positive, severe suction is occurring. Figure 63 reveals better what

happens with pump status in the DS1 × DS2 plane, as time goes by. The discriminant

scores plane can be divided into three regions according to the aforementioned groups. Since

the group means in that space are “well” separated (indicated by the dark crosses), lines

can be determined to separate the three groups from one another. Note that unless pump

speed changes, the operating point tends to stay within a local region (this is indicated by

the dashed lines connecting consecutive time windows). Indeed, to consider the discriminant

scores as potential candidates for a control application, we do not want for them to change

drastically, making the operating point to “jump” from one region to another frequently.
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The behavior of the discriminant scores shown for the data File # 20 is typical, since the

discriminant scores from others data records behave in a similar fashion.
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Figure 62: DA results for data File # 20. (a) Pump Speed, (b) Pump Flow, (c) Detector

output and Expert decision, and (d) Discriminant Scores. Capital letters indicate pump

state transitions: A, NS → MS; B, D, F, H and J: MS → SS; C, E, G, I: SS → MS
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6.0 A RULE-BASED CONTROLLER FOR ROTARY BLOOD PUMPS

The control problem for rotary ventricular assist devices is to set pump speed such that car-

diac output (pump flow) and pressure perfusion are within acceptable physiological ranges.

Since blood flow demand varies according to the patient’s level of activity, an adaptive

controller is desirable to adjust pump speed.

When operated in a open-loop fashion, the desired operating point of the rotary VAD

may be identified by a clinician or technical personnel. This control strategy severely com-

promises the patient’s quality of life because adjustments in pump speed cannot be made

when technical personnel are absent, regardless of physiologic changes of the patient.

Due to the lack of reliable pressure and flow sensors for long term implants, observability

of state variables is an issue for controlling rotary VADs. This problem compelled researchers

to investigate alternative approaches to estimate these variables. For instance, estimation

of pump flow and pressure difference variables from pump motor current and speed was

suggested by Schima et al [46]. Yu et al [37] proposed a Kalman filter to estimate systemic

vascular bed parameters for real time control applications of artificial hearts.

A heart rate based controller for rotary VADs was introduced by Golding at al. [58].

They demonstrated that flow and demand are linearly dependent on heart rate. Thus, using

heart-rate as a control signal, they determined the appropriate pump speed that provides the

required blood flow. Even though this approach seems appealing, it needs a precise mapping

between heart-rate and flow, which may be difficult to obtain in clinical applications. If the

patient’s heart rate is not stable (e.g., arrhythmia), harmful control signals may be generated.

Moreover, this approach does not guarantee the absence of suction events.

Giridharan et al [59, 60] developed a pressure based controller. Their approach was to

adapt pump flow according to the physiological status of the patient (i.e, rest, exercising,
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walking) by maintaining a constant average pressure difference (∆P ) between the left ventri-

cle and the aorta. However, keeping ∆P constant does not assure adequate cardiac output

and suction detectors are needed for this approach as well.

Controllers that set pump speed to avoid suction are generally based on some index

or feature extracted from a signal (e.g., pump speed, pump current or pump flow) which

indicate whether or not suction is present. Choi et al [7] proposed a proportional-integral

type fuzzy logic controller to adjust pump speed based on a pulsatility index, derived from

the pump flow signal. However, suction may occur if the reference pulsatility value is not

properly set.

A possible control approach to avoid entering the suction region is to embed suction

detectors in a control supervisor structure, as suggested in [4]. That approach takes into

account all criteria of interest to clinicians, i.e, adapting cardiac output according to the

patient’s level of activity, sustainable pressure perfusion, and preload pressure below a maxi-

mum of 15mmHg to avoid pulmonary edema. However, such an approach requires extensive

information regarding the pump status as well as real time estimation of the hemodynamic

parameters of the patient.

In this chapter, a new control system for rotary VADs is presented. The approach taken

here is to use the discriminant scores signals from the suction detector as inputs to a rule-

based controller. The controller uses fuzzy logic to automatically adjust pump speed so as to

avoid suction, while keeping cardiac output and perfusion pressure within physiologic ranges.

This chapter is organized as follows. Section 6.1 justifies the application of fuzzy logic to this

particular control problem. Section 6.2 presents the controller design details, and Section

6.3 presents the simulation results to characterize the performance of the controller.

6.1 WHY A RULE-BASED CONTROLLER ?

Besides the observability problem previously mentioned, two others reasons motivated us to

pursue a rule-based controller. First, the control problem of rotary VADs is ill posed [39].

Indeed, generally speaking, control systems are designed to regulate the control variable to a
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given reference value or “set point”. In our case, the body’s demand for blood would be that

reference. However, such demand is not easily determined. It depends on preload, afterload,

contractility state of the native heart and level of activity of the patient. Even psychological

factors could influence blood flow requirements. Hence, it would be difficult to implement a

control strategy for rotary VADs based on traditional control approaches, such as dynamic

programming, optimal control, or the maximum principle. Fuzzy logic has been successfully

applied to complex systems that show this level of parameter uncertainty [26, 27].

Secondly, the expert’s classification of suction status is linguistic in nature. Indeed,

when talking about pump flow patterns, experts are certain about no suction and severe

suction (which are two extreme conditions) to a high degree. However, intermediate patterns

are usually described as “most probably suction”, or even “not decidable” [11]. For these

patterns, the expert’s certainty about classification is not as high as it is for severe suction

patterns or no suction. Since the discriminant scores from the suction detector are “well

behaved” signals in time and behave in a “monotonic” fashion with respect to speed, it

seems reasonable to use them to identify an operating point for pump speed. Fuzzy logic

provides a method to combine the two scores and to translate them to the linguistic concept

of suction and non-suction provided by the expert.

The idea of having a classifier “driving” a controller was proposed by Fu [61, 62]. He

advocated the use of a supervisor to estimate the states (or unknown information) of a plant

and feed that estimated information to a controller. He pointed out that similar control

situations may be grouped to form a class of control situations. Since these different classes

of control situations have to be identified, a pattern classifier is required when designing this

type of learning control system. The suction detector plays this role in our approach, since it

can identify the pump status based on a classification of the pump flow patterns. Moreover,

a reference signal is not provided for the reasons previously discussed. The detector provides

such a reference, based on the discriminant scores information.
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6.2 RULE-BASED CONTROLLER DESIGN

A rule-based controller for rotary VADs was designed, following Mamdani’s approach [29].

As stated in Section 3.3.1, the design task of such a controller encompasses three main tasks:

the design of a rule-base, the design of the membership sets of the input and output variables

and the choice of a defuzzification method. In this application, the discriminant scores from

the DA model are the input variables. These scores indicate the pump status as either NS,

MS or SS. The output variable, δω, is a percent change in pump speed on the interval [τ1, τ2],

where τ1 and τ2 are design parameters that determine the range of the output variable.

Pump speed is updated according to

wk+1 = wk(1 + δω) (6.1)

where δω is the output of the rule-based controller in the kth time window. In our application,

a time window is 5 heart-beats long. The initial pump speed, ω0, is a value given by the

clinician. This value is usually estimated by a cardiac exam, which estimates the flow of

blood returning to the patient’s heart (venous return).

HEART

+
PUMP

PF SUCTION

DETECTOR

DS1

DS2

RULE-BASED

CONTROLLER

δω

ωk+1 = (1 + δω).ωk

Figure 64: Pump speed update
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6.2.1 Rule base design

The number of input fuzzy sets defined on the input variables domain dictates the number

of rules in the rule-base. To simplify the design task, assume that the number of fuzzy sets

defined on both input variables is equal to N . This means that N2 rules are needed in the

rule-base. An immediate consequence of having many sets defined in the input variables

domain is that more rules are needed for the rule base, making the expert’s design task more

demanding.

The rules are usually organized in a bank of rules, the FAM bank. This bank associates

input variables, DS1 and DS2 with the output variable, δω. The rule base is a mapping

between input and output of the controller. It can also be seen as a nonlinear function

u = Φ(DS1, DS2) that defines its transfer characteristic. A plot of Φ is usually referred as a

“control surface” [26]. It is a mesh plot of the output δω as a function of the input variables,

the discriminant scores, DS1 and DS2. The output values were calculated based on the

defuzzification method presented in Section 3.3.1 and given as

δω =

∑m
k=1 ck.fk∑m

k=1 fk

where m is the number of fired rules, ck are the center of the membership functions corre-

sponding to these rules and fk are their heights. The decision about which rule based should

be adopted was made by examining the corresponding simulation results.

The number of input and output membership sets commonly used when designing fuzzy

controller varies from 3 to 9 in most applications encountered in the literature [26, 27].

Parsimony should be used when defining these numbers because they determine the number

of rules needed in the rule base. The number of membership sets of a variable should also

reflect its granularity. The granularity of fuzzy sets reflects how “specific” they are [27].

For example, very narrow intervals are definitely more specific than broader ones. In the

limit, if a single fuzzy set covers the entire variable range, then its granularity level attains

a minimum.

In this approach, to design the rule base, three combinations of input-output sets were

examined, as shown in Figure 65: (a) five input sets and three output sets; (b) five sets
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for all variables (input and output) and (c) seven sets for all variables (input and output).

Combinations in which three membership sets were used for the input variables were not

considered because only three membership sets cannot encode the linguistic information in

the discriminant scores range. Using more than seven membership sets represents a higher

granularity level than is expected to be necessary for this particular application. In the

following test, δω was defined on the interval [−0.05, 0.05], i.e., τ1 = −0.05 and τ2 = 0.05.
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(a) three output sets (b) five output sets (c) seven output sets

Figure 65: Input-output sets examined to derive the rule base. Top panels are input sets

definitions and bottom panels are output sets.

The control surfaces corresponding to each input-output scenario are shown in Figure

66 and their corresponding FAM banks in Appendix D. The criterion used to evaluate the

control surfaces was based on the steady state response of the controller. Simulations were

performed with both low (ω0 = 8.5krpm) and high (ω0 = 13.0krpm) initial pump speed.

Figure 67 shows these results. Pump signals A, B and C were obtained using the control

surfaces shown in Figure 66(a, b and c), respectively. When the initial speed is low, steady

state at ωss = 11krpm is reached in about 90s for control surfaces (b) and (c). However,

when using control surface (a), the pump speed signal oscillates around ω = 11krpm value.

Likewise, when ω0 was set high, control surface (a) makes the pump speed signal oscillate,

whereas (b) and (c) reached steady state around t = 160s.

Because pump speed was oscillatory when the rule base corresponding to control surface

(a) was used, no further consideration was given to that rule base in the design process.
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Figure 66: Control surfaces

Control surface (c) updates pump speed in a very similar fashion of control surface (b).

Moreover, the rule base corresponding to control surface (b) is more “appealing” from the

rule base design standpoint, because it requires fewer rules, 52 = 25, whereas control surface

(c) needs a rule base with 72 = 49 rules to be defined. As pointed out earlier, experts usually

have difficulty in designing so many rules. Therefore, control surface (b) will be adopted in

the final controller design.

The pump speed signal obtained using control surface (a) presented oscillatory behavior

because the operating point of the system does not stay in a region where δω is zero. For

instance, consider Figure 68 (a). The last five operating points (black crosses) in the simula-

tion are shown on control surface (a) with the corresponding time information. Note that the

point jumps from one site to another in the control surface, without settling down at δω = 0.

In contrast, Figure 68(b) shows that when control surface (b) was used, the operating point

moved smoothly, settling in a region where δω = 0.

109



0 50 100 150 200 250

8

9

10

11

12

13

P
S

 (
kr

pm
)

0 50 100 150 200 250
9

10

11

12

13

P
S

 (
kr

pm
)

time (s)

A
B
C

A
B
C

Figure 67: Simulation results of pump speed for control surfaces. Top panel shows low initial
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6.2.2 Effects of Asymmetry in output sets

Another important design issue is related to the transient response of the controller. Indeed,

since severe suction is a deleterious condition for the patient, it is important to know how

fast the controller can decrease pump speed, so as to drive the pump out of severe suction

quickly. And, conversely, can the controller speed up the pump when a low flow condition is

detected? One way to speed up the controller’s response is by changing the design parameters

[τ1, τ2], which determine the range of the output variable, δω. In this section, two different

definitions for the output sets are considered: in the first case, we use τ1 = −0.05 and

τ2 = 0.1; in the second, τ1 = −0.1 and τ2 = 0.05. These two case scenarios will be compared

with the previous (symmetric) membership output set definitions shown in Figure 65(b),

for which τ1 = −0.05 and τ2 = 0.05. Both the support and the symmetry of the sets was

changed to keep the crosspoint of adjacent membership sets at µ = 0.5 membership value,

as shown in Figure 69. Controllers with the following goals will be compared:

Controller Output sets Goal

A Figure 69(a) Increases speed quickly when flow is low

B Figure 69(b) Decreases speed quickly when severe suction is detected

C Figure 69(c) Previous definition; “smooth” speed transitions
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Figure 69: Output Membership sets

From the transfer characteristic standpoint, these new definitions of the δω membership

sets change the shape of the control surface. Indeed, Figure 70 shows that for controller A,

a 10% increase in pump speed can occur, depending on the antecedents of the fired rules.

Controller B can produce a −10% decrease in pump speed.
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Figure 70: Control surfaces for assymetric sets (a) controller A, (b) controller B

To verify how the asymmetry in the δω sets affects the controller, four different initial

pump speed conditions were simulated: two low initial speeds, 8 and 9krpm, and two high

initial speeds, 13 and 14krpm. Since we are only interested in the pump speed signal,

physiologic variables were not considered in this analysis. Figure 71(a) shows simulation

results for ω0 = 8krpm. In this case, for controller A (solid line with circles), pump speed is

increased faster at the beginning of the simulation, reaching ω = 12krpm at t = 45s, but the

transient also lasts longer. Steady state was reached only at about t = 180s. Pump speed

for Controllers B (solid line with triangles) and C (solid black line) were similar, reaching

steady state sooner, without oscillations.

Figure 71(b) shows simulation results for ω0 = 9krpm. In this case, for controller A pump

speed presents oscillatory behavior, and for controllers B and C the speeds were equal. The

conclusion is that a faster response is obtained when the sets of δω are asymmetric, allowing

an increase of at most 10% in pump speed, but at the price of a more “ringing” in pump

speed signal.

The simulation results for higher speeds are shown in Figures 71(c, d). When ω0 =

13krpm (top panel), controller B (solid line, triangle marks) decreased pump speed faster

than the other two controllers, as expected. However, pump speed was as low as 8.5krpm, at

t = 25s. The asymmetric definition of the output sets in controller A (solid line with circle
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marks) was responsible for the oscillatory behavior in the pump speed signal. The pump

speed signal for controllers B and C (solid dark line) are quite similar when steady state is

reached at t = 170s as shown in Figures 71(c, d).

Comparing both test conditions, pump speed was less oscillatory when the initial speed

was set low. However, controller B decreased pump speed more than needed. The problem

with a much reduced speed is the possibility of causing sudden drops in pressure, which may

cause the patient to faint. Thus, while controller C, which has symmetric δω sets is more

sluggish in response than the other two, it seems more suitable to handle both low and high

initial pump speed conditions.
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Figure 71: Pump speeds results for asymmetric sets: (a) ω0 = 8krpm, (b) ω0 = 9krpm, (c)

ω0 = 13krpm and (d) ω0 = 14krpm.

6.2.3 Final design

In this section, the final design of the rule-based controller is presented. Based on the analysis

shown in the previous sections, five membership sets were used for all variables (input and

output) and the rule base included 25 rules.

6.2.3.1 Membership sets The input membership sets are defined on the range spanned

by the discriminant scores DS1 and DS2. Three triangular membership functions were used
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for both input variables in the range [−2, 2], with one cross-point between consecutive sets,

at the µ = 0.5 level. In addition, a L(DS,−2,−1) function was used to deal with score

values less than −2, and a Γ(DS, 1, 2) function was used for score values greater than 2

(See Section 3.1 for the definitions of the L and Γ functions). Figure 72(a) shows the input

membership sets and their respective linguistic values. The output membership sets, shown

in Figure 72 (b) were defined in a similar fashion.
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Figure 72: Controller Membership Sets. (a) Input variables; (b) Output Variables. (NB:

Negative Big, NS: Negative Small, ZE: Zero, PS: Positive Small, PB: Positive Big)

6.2.3.2 Rule base The number of input fuzzy sets used dictates the number of rules in

the rule-base. Since we have two input variables with 5 sets each, 52 = 25 rules are needed

in the rule-base. Table 16 shows the FAM bank of the controller. Considering, for instance,

the first cell in that table, the following IF-THEN rule determines the output in this case:

IF DS1 is NB and DS2 is NB THEN δω is PS

The concept behind Table 16 is to set the pump speed in such way that if severe suction

(SS) is approached, pump speed should be decreased. If the suction detector indicates
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moderate suction (MS), pump speed is kept as it is. If no suction (NS) is detected, pump

speed should be increased. In other words, the controller will try to keep the pump operating

point in the MS region of the discriminant scores space. The parameters τ1 and τ2 should be

chosen so as to avoid high amplitude variations in pump speed. A small δω allows “smooth”

transitions in pump speed. Unless for the simulations tests shown in Section 6.3.2.1, the

parameters τ1 and τ2 assume the values −0.05 and 0.05, respectively.

Table 16: Controller Rule-base with five output sets

DS2

NB NS ZE PS PB

NB PS PB PB PB PS

NS ZE PS ZE PS PS

DS1 ZE ZE ZE ZE ZE NS

PS ZE ZE ZE NS NB

PB ZE NB NB NB NB

Figure 73(a) shows the control surface of the controller. To better understand how the

discriminant scores determine δω, consider Figure 73(b). The memberships sets of DS1 are

drawn at the right of the rule base and those of DS2 at the top. Since the suction detector

admits three possible pump states, i.e., NS (No Suction), MS (Moderate Suction) and SS

(Severe Suction), the rules in the rule-base can also be divided into three groups. This is

the meaning of the color code used to represent these groups: light grey cells are related to

pump state NS, white cells represent MS and dark grey are related to state SS.

Because pump state NS indicates absence of suction, this means that pump speed can

be increased. That is the reason why the output membership sets of light grey cells are all

either PS (Positive Small) or PB (Positive Big). For instance, if DS1 < −1.5 (or if DS1 is

NB) and DS2 = 0 (or if DS2 is ZE), pump speed will be increased because δω = 0.05.

Likewise, when pump state SS is detected, pump speed should be decreased. Therefore,

output membership sets of dark grey cells are all either NS (Negative Small) or NB (Negative

Big). For example, if DS1 > 1.5 (or if DS1 is PB) and DS2 > 1.5 (or if DS2 is PB), pump

speed will be decreased because δω = −0.05.

115



The white cells represent the MS pump state. In this case, δω = 0 because output

membership sets are all ZE (Zero). This is the region to which the controller should drive

the operating point of the pump in order to provide as much flow as possible to the patient,

without inducing suction.
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6.3 SIMULATION STUDIES

Simulation studies were carried out to evaluate rule-based controller performance to initial

pump speed, ω0, physiologic parameter changes and robustness to noise. These studies are

important to obtain a quantitative characterization of the interaction between the cardiovas-

cular system, assist device and the suction detector. Since the availability for measurement

and varying parameters of these various elements are limited in animal experiments, and

even more so in patients, simulations are the main method of analysis and evaluation of such

parameter changes [55].

To test the control system (suction detector + rule-based controller), the lumped param-

eter cardiovascular pump model shown in Figure 21 was used. In all of the simulations, the

controller is not active during the first 10 seconds of simulation.

6.3.1 Initial pump speed

These tests had two goals: first, initial pump speed, ω0, was set low to verify if the controller

could appropriately increase pump speed. Second, ω0 was set high to see if the controller

could drive the pump out of the severe suction range. This second test can not be per-

formed in humans, because it is dangerous for the patient’s heart. In-vivo animal studies

are expensive, and this kind of test can usually be done prior to terminating the animal.

Figure 74 shows two simulation results of the controller. In case (a), the initial pump

speed was ω0 = 8.0krpm. As shown in the first panel of Figure 74(a), after the first 10

seconds, the controller takes action, gradually increasing pump speed. At t = 125s, pump

speed reaches steady state at ωss = 10.8krpm. The second panel shows the pump flow signal.

Notice that pump flow peak-to-peak amplitude decreases as pump speed increases. The last

two panels show the discriminant scores and the detector classification output, respectively.

The steady value of DS1 is zero, and DS2 is about −0.5. These values correspond to the

ZE membership set in the rule base.

In Figure 74(b), the initial pump speed was ω0 = 12.0krpm. In this case, the controller

decreased pump speed, driving the pump out of the severe suction region. However, it took
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more time to reach steady state because pump speed was decreased to ω = 10.6krpm, around

t = 25s and increased to ω = 11.5krpm at t = 42s. After that, the controller was able to

decrease pump speed again and steady state was reached at t = 175s and ωss = 10.8krpm.

This behavior of the controller is due to the fact that the initial speed was set so high that

moderate suction was only identified by the suction detector at t = 60s, as shown in the last

panel of Figure 74(b). Such a high initial pump speed would not usually be encountered in

human patients.
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Figure 74: Controller Simulation Results
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When steady state was reached in the two previous simulations, cardiac outputs were

6.7 l/min in case (a) and 6.8 l/min in case (b). These values are within the acceptable

physiologic range for a normal adult person. However, besides flow, pressure perfusion has

to be considered. Figure 75(a) shows that as pump speed increases, mean aortic pressure

(MAP) also increases from 80mmHg to 122mmHg. As for left ventricular pressure LVP,

the opposite occurs, i.e., LVP decreases since the ventricle has been unloaded. When the

initial speed was high, MAP was 150mmHg. The controller reduced pump speed, and MAP

reached its minimum at 105mmHg for 75 ≤ t ≤ 90, as shown in Figure 75(b). Finally, at

the steady state condition, MAP was 122mmHg. These results are reasonably good, even

though cardiac output and MAP may be a little high because the controller tries to provide

as much cardiac output as possible.
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Figure 75: Aortic and Left Ventricular Pressures

6.3.2 Physiologic parameter change

This section presents simulation results of the controller to physiologic parameter changes.

Protocols similar to those used to test the suction detector were employed. The difference is

that here the pump speed profile is not specified a priori as a ramp, but rather the rule-based

controller closes the feedback loop, automatically adjusting pump speed. Table 17 shows the

parameter changes studied. These parameter changes encompass preload (RS), heart-rate
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(HR) and contractility state (Emax). Resistor RS can have one of the following values,

according to the physiologic condition to be simulated: baseline, RS = 1.0 mmHg.s/ml;

light exercising, RS = 0.8 mmHg.s/ml; strenuous exercising, RS = 0.6 mmHg.s/ml; and

hypertension, RS = 1.2 mmHg.s/ml.

Two case scenarios will be studied in the following section. In one, RS goes from baseline

to light exercising and then to strenuous exercising. In the second scenario, RS starts at the

baseline level and changes to the hypertension level. In both scenarios, step transitions from

one level to another were used for RS and heart rate, according to Table 17. Figure 76 shows

a block diagram of the entire plant, cardiovascular-pump model and the control system.

Table 17: Parameter changes to evaluate the suction detector

CONTRACTILITY STATE PRELOAD CONDITIONS

(relates to the native (relate to the patient’s

heart pumping strength) level of activity)

hypertension RS = 1.2, HR = 75

“normal heart” baseline RS = 1.0, HR = 75

Emax = 2.0 light exercise RS = 0.8, HR = 90

strenuous exercise RS = 0.6, HR = 135

hypertension RS = 1.2, HR =75

“sick heart” baseline RS = 1.0, HR = 75

Emax = 1.0 light exercise RS = 0.8, HR = 90

strenuous exercise RS = 0.6, HR = 135

hypertension RS = 1.2, HR = 75

“very sick heart” baseline RS = 1.0, HR = 75

Emax = 0.6 light exercise RS = 0.8, HR = 90

strenuous exercise RS = 0.6, HR = 135

Figure 77(a) shows simulation results for the healthy heart as preload changes from

baseline to heavy exercise. The initial pump speed was set to 8.0krpm in the first 10s

of simulation. After that, the feedback loop was closed and the controller updated pump
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speed. When RS changed from baseline to exercise, as shown in Figure 77(a) top panel, the

controller increased pump speed (PS) as shown in the second panel. At t = 130s pump speed

reached steady state at 10.9krpm. After that, pump speed was constant regardless of the

preload changes at t = 200s (baseline → light exercise) and t = 400s (light exercise → heavy

exercise). The last two panels show pump flow and pressures (AoP and LVP), respectively.

Since this is a healthy heart, in the first 45s of simulation the aortic valve opened and closed

because pump speed was low. After that, the aortic valve remained closed, and the VAD

did all the work. When the healthy heart went from baseline to hypertension, as shown

in Figure 77(b), the controller reached steady state at t = 125s and ωss = 10.9krpm. At

t = 200s, preload conditions change from baseline to hypertension and pump speed stayed

at about the same value.

Simulation results for the sick heart when preload changes from baseline to heavy exer-

cise are shown in Figure 78(a). The second panel shows that pump speed increased until

10.8krpm, prior to the transition from baseline to exercise. Minor oscillations where observed

due to the preload changes. For instance, at t = 200s, pump speed decreased a little from

10.8krpm to 10.6krpm and at t = 400s pump speed increased from 10.6krpm to 11.1krpm.

In both transitions the controller was able to reach steady state fairly quickly.
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In contrast to the healthy heart, the aortic valve remained closed throughout the sim-

ulation. This can be seen in the fourth panel of Figures 78(a), which shows that AoP is

always greater than LVP. Moreover, the pulsatility in pump flow and pressures AoP and

LVP decreases as preload changes from baseline to heavy exercise. Figure 78(b) shows the

hypertension test of the sick heart. The controller increased pump speed from 10.8krpm to

11.0krpm when preload conditions change from baseline to hypertension. Because heart rate

was kept constant, pump flow maximum amplitude is less than in the case of baseline to

heavy exercise, and AoP amplitude is greater.

Figure 79 shows simulation results for the very-sick heart. In this case, oscillations in

PS are much more pronounced than in the two previous cases. The controller was more

sensitive to preload changes in both scenarios, exercising and hypertension. For instance,

Figure 79(a) shows that after t = 200s, there were six overshoots in pump speed. When

pump speed exceeded 12krpm, severe suction occurred at t = 263, 300, 360, 428, 490s. This

oscillatory behavior is due to the fact that the operating point kept oscillating between the

NS and SS states, making the controller increase and decrease pump speed, without reaching

a steady condition at the MS region in the input space. As a consequence, severe suction

occurred at t = 428, 490s. This same oscillatory behavior occurred when preload changed

from baseline to hypertension as shown in Figure 79(b). One suction event occurred at

t = 340s. Like the sick-heart, the aortic valve did not open.

Operating the pump at the moderate suction region seems reasonable for the healthy

and sick hearts. No suction episodes occurred in these cases and the controller provided a

steady pump speed signal. However, when the heart is very sick a more “conservative” pump

speed should be used, since suction is more likely to occur due to the reduced flow.
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Figure 77: Controller results of Preload changes for the healthy heart (Emax = 2.0)
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Figure 78: Controller result of Preload changes for the sick heart (Emax = 1.0)
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Figure 79: Controller result of Preload changes for the very sick heart (Emax = 0.6). Note that controller fails for these test

conditions.
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6.3.2.1 Tuning the controller to very sick patients As shown in Figure 79, the

pump speed was oscillatory when the heart was very sick. To tune the controller to very

sick patients, the designing parameters τ1 and τ2 can be modified, changing the range of the

output variable, δω. In the previous simulations, δω was defined in the interval [−0.05, 0.05].

Let τ1 = −0.02 and τ2 = 0.02, i.e., δω is defined on the interval [−0.02, 0.02]. That is,

pump speed can at most be increased or decreased by 2% of its current value. Figure 80

shows the simulation results in this case. When preload conditions change from baseline to

light exercise (t = 200s, in Figure 80(a)) the controller increases pump speed from 10.4krpm

to 10.7krpm. The transition from light exercise to heavy exercise presented some oscilla-

tions, but the controller reached steady state at t=565s. No oscillations occurred for the

hypertension test, as shown in Figure 80(b). These results demonstrate how the controller

can be tuned to very sick patients by changing the range of the membership output sets,

while keeping the sets symmetric.

A direct consequence of having pump speed being incremented or decremented by a

small percent amount is an increased delay time in the controller’s response. For instance,

consider an initial pump speed of ω0 = 8.0krpm, when the heart is sick (Emax = 1.0). Figure

81 shows that when δω is defined on the interval [−0.05, 0.05], the controller reaches steady

state at t = 150s. When the range of δω is reduced to [−0.02, 0.02], steady state is achieved

at t = 290, which means a delay of 140s.
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Figure 80: Controller result of Preload changes for the very sick heart (Emax = 0.6) with modified membership output sets.
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6.3.3 Hemodynamic Analysis

In this section, the results presented in the previous section will be analyzed from a physi-

ologic standpoint. To do so, cardiac output (CO) and mean arterial pressure (MAP) were

calculated for all test conditions. Values of these two variables with (pump on) and with-

out (pump off) ventricular assistance were calculated for comparison purposes. CO and

MAP values without ventricular assistance were calculated using the cardiovascular model

described in Section 4.1, under the same preload conditions shown in Table 17. The goal

is to verify whether the controller has improved these hemodynamic values for the sick

and very sick patients as compared with those from the healthy patient without ventricu-

lar assistance. Therefore, the hemodynamic values of the healthy heart without ventricular

assistance (pump off) will be used as reference values for comparison purposes. Results for

the healthy heart with ventricular assistance were included for completeness as suggested in

[60].

Figure 82(a) shows the results for CO for the first simulation scenario, when preload

changes from baseline to heavy exercise. The results were organized according to the activity
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states previously described. In the baseline condition (RS = 1.0 mmHg.s/ml, HR = 75bpm),

the reference value for CO is 4.8 l/min (healthy heart without VAD). The controller was able

to increase CO to 6.7 l/min for the sick heart, which represents a 39% increase. For the

very-sick heart, a CO of 6.2 l/min was provided which represents a 29% increase.

In the light exercise level (RS = 0.8 mmHg.s/ml, HR = 90bpm), the reference value for

CO is 5.9 l/min. In this case, CO values of the sick (7.8 l/min) and very sick (7.5 l/min)

hearts were increased by 32% and 27%, respectively. Finally, for heavy exercise (RS = 0.6

mmHg.s/ml, HR = 135bpm), the CO reference value is 8.0 l/min. The controller provided

11.0 l/min and 9.3 l/min for the sick and very sick hearts.

Figure 82(b) compares MAP values for preload tests when SVR varies from baseline

to heavy exercise. We assume again the values of the unassisted (pump off) healthy heart

as reference values in each of the three physiologic states. In the baseline condition, the

reference was 93mmHg. The controller generated 122mmHg and 113mmHg for the sick and

very-sick hearts, respectively. In both cases, these values were more than 20% higher than

the reference value. When the hypothetic patients were exercising, the healthy person had

a reference MAP of 93mmHg, while the two patients presented MAP of 118mmHg. Finally,

when the exercise level increased to heavy, the reference MAP of the healthy person was

95mmHg, while the sick and very-sick patients had MAP values of 127mmHg and 119mmHg,

respectively.

Consider now what happens when our hypothetic patients (healthy, sick, and very-sick)

are hypertensive. In this case, only RS (SVR) changed from baseline to hypertensive level.

The heart rate was constant at 75bpm. Figure 83(a) shows that the reference value of CO

was 4.8 l/min (unassisted healthy heart) in the baseline condition. The controller provided

flows of 6.7 l/min and 6.2 l/min for the sick and very-sick hearts, respectively. When SVR

was increased, the reference CO decreased to 4.2 l/min because heart rate was constant.

The controller was able to generate 5.9 l/min and 5.1 l/min for the sick and very sick

patients, respectively. The reference value of MAP shown in Figure 83(b) was 97mmHg for

the hypertension state. MAP values of 126mmHg and 118mmHg were registered for the sick

and very-sick hearts, respectively.
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Figure 82: Hemodynamic variable results for the first scenario (baseline → strenuous exer-

cise)

The overall conclusion is that the controller is able to bring the hemodynamic parameters

CO and MAP of the sick and very-sick hearts significantly greater than those observed

in a healthy person without VAD assistance. These results also imply that the proposed

controller can automatically adjust flow and pressure according to the patient’s physiologic

state. However, the mean arterial pressure values observed on the patients were higher than

the reference values, as a result of the approach of providing as much cardiac output as

possible. Moreover, the control system uses only flow information as input to drive the

pump. No pressure information is taken into account in the control strategy proposed.
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Figure 83: Hemodynamic variable results for the second scenario (baseline → hypertension)

6.3.4 Robustness to Noise

In order to assess the controller performance when a noisy pump flow signal is presented

to the suction detector input, a simulation study similar to the one shown in Section 5.4.2

was conducted. However, in this case pump speed is not defined as a ramp, but rather

was adjusted by the controller. The goal here was to determine for what levels of SNR the

controller is still capable of driving pump speed to an acceptable range. Tests were performed

for the same three levels of contractility state as in Section 5.4.2: healthy heart (Emax = 2.0),

sick heart (Emax = 1.0) and very sick heart (Emax = 0.6). For each one of these contractility

states, noise was added to the pump flow signal, according to the following SNR values:
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80, 60, 40, 20, 10, 5, and 2dB. Pump speed obtained without noise added to pump flow

(v(n) = 0 in Figure 76) was considered as a reference for comparison purposes. Then, the

RMSE values between these reference speeds and those simulated with noise added to pump

flow were calculated.

Figure 84(a) shows these errors plotted as a function of SNR when preload conditions

change from baseline to strenuous exercise. For the very sick heart, the errors were calculated

only for the baseline condition, since pump speed oscillated when in the exercise, strenuous

exercise and hypertension preload conditions. The RMSE values for SNR higher than or

equal to 20dB were small, indicating that the controller’s performance is not affected by

these levels of SNR. At the 10bB level, these errors were 471.2, 784.3, 704.2 for the healthy,

sick and very sick heart respectively. As more noise is added to the pump flow signal the

RMSE keeps increasing, indicating a deterioration in the controller performance.

Figure 84(b) shows RMSE values when preload changes from baseline to hypertension.

As in the previous case, SNR values higher than 20dB do not compromise the performance

of the controller. In addition, the healthy heart seems to be less susceptible to noise when

SNR ≥ 10dB. However, for SNR values less than 10dB, the RMSE for the healthy heart

increased more than that observed for the sick heart. For instance, at 5dB the errors were

1,466.3 and 602.3 for the healthy and sick hearts respectively.

RMSE values increase as more noise is added to pump flow in all cases because the

suction detector misses severe suction events due to the high noise level. This, in turn,

impacts the controller’s output since the discriminant scores assume values either in the MS

or NS region on the control surface. Thus, pump speed will be increased, when, in reality, it

should be decreased. For instance, consider Figure 85, which presents one of the simulation

results for the sick heart SNR = 10dB. Panels from the top are pump flow, pump speed,

discriminant scores and the model classification result. Because pump flow was disrupted

by the noise, the controller kept increasing pump speed. When t = 250s, the discriminant

scores indicate NS, when, actually, pump flow is in the onset of severe suction. Thus, the

controller increased pump speed causing the suction episode shown at t = 255s. Therefore,

at high SNR levels severe suction events can occur.
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In conclusion, the controller can satisfactorily handle SNR levels higher than or equal to

20dB. This is a good result since SNR levels usually observed in flow sensors used in practice

are higher than this threshold level.
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7.0 DISCUSSION AND CONCLUSION

A control system for rotary VADs must be safe and adaptable. Safety means that severe

suction will be avoided, protecting the heart muscle. Adaptability means that the control

system will automatically adjust pump speed, according to the patient’s level of activity. In

this work, a rule-based control system for rotary VADS was developed. This system is a

combination of two main subsystems: a suction detector and a rule-based controller.

The suction detector can correctly classify pump flow patterns, based on a discriminant

analysis (DA) model that combines several indices derived from the pump flow signal, to

make a decision about the pump status. In this research, the pump status can be one of the

following: No Suction (NS), Moderate Suction (MS) and Severe Suction (SS). The rule-based

controller uses fuzzy logic to update pump speed, using information from the suction detector

- the discriminant scores, DS1 and DS2. The controller was designed following Mamdani’s

approach, which encompasses the design of the membership sets, the rule-base design and

the choice of the defuzzifiation method. The transfer characteristic u = Φ(DS1, DS2) of

the controller, also known as control surface, was used in the design phase to test several

alternatives. The controller’s goal is to adjust pump speed such that the operating point of

the pump lies in the MS region of the discriminant scores plan.

The performance of the control system was assessed in simulations. Tests included ef-

fects of physiologic parameter changes - preload and contractility - and robustness to noise.

This chapter discusses some issues regarding the cardiovascular model, the suction detection

system and rule-based controller. The contributions of this work to the field and future

improvements are presented in the last section.
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7.1 CARDIOVASCULAR-PUMP MODEL

The cardiovascular model used in this research is a uni-ventricular model. More specifically

it models the left heart. A recurrent question regarding the use of cardiovascular models in

this type of study is related to the order of the chosen model. Is it better to use a reduced

order model or a bi-ventricular model of the cardiovascular system?

Complete models of the circulatory system allow simulation studies regarding the in-

teraction of the low pressure circulation (right heart and lungs) and the implanted device.

However, the number of parameters of the model increases and their estimation would require

many invasive sensors (pressure and flow).

The cardiovascular model used in this work is of low order, when compared with com-

plete cardiovascular models [35, 36]. This feature along with its capabilities to reproduce

hemodynamic wave forms makes it suitable for developing new control strategies for rotary

blood pumps. However, the inclusion of a baroreflex in the model would better represent the

interactions between the cardiovascular model and the pump. For instance, experimental

data in [64] reveals a relatively constant mean aortic pressure with increasing pump speed.

This effect was partially obtained in the simulations by step changes performed on systemic

vascular resistance (resistor RS) and heart rate (HR) in the model during the simulations.

With a baroreflex control of arterial pressure added to the model, these changes would be

done automatically.

7.2 SUCTION DETECTION SYSTEM

With regards to the design process of the suction detection system, some issues are worth

more attention, including the meaning of the prior probabilities and how to obtain severe

suction patterns for training.
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7.2.1 Meaning of the prior probabilities

As stated in chapter 5, priors here have the meaning of relative frequency of a given group

in the set. However, saying that severe suction may have the same probability of occurrence

as no suction is not true. Indeed, during in-vivo trials suction is purposely caused so as to

perform some physiologic test, previously defined in the experiment protocol. This probabil-

ity would be even smaller with human patients, since clinicians tend to be very conservative

when adjusting pump speed to protect the patient’s heart.

The question then is what the priors should be, assuming that this detection system is

going to be used in a patient. The answer to this question depends on several factors, such as

contractility of the native heart, type of canulla, canulla position in the heart, etc. However,

it seems reasonable to use equal priors to classify new pump flow samples. If more emphasis

is to be given to events from a certain group, the misclassification costs can be changed to

reflect the clinician’s decision on that matter.

The issue of obtaining severe suction patterns is also very important. Of course, nobody

would increase pump speed up to the severe suction range in a human patient. Indeed,

as far as this author knows, no severe suction events in humans have been reported in the

literature. The development of suction detectors for rotary blood pumps depends primarily

on in-vitro (mock circulatory system) and in-vivo animal experiments. This situation persists

because of the difficulty in having human data available to design suction detectors. As

reported in [67], there is a difference in the behavior of the native heart when comparing

animal and human subjects. The animals usually have relatively healthy cardiac function

while human implanted patients are suffering from left ventricular failure. Therefore, animal

hemodynamic variables and pump signals (current, speed, etc) are expected to be different

from those observed in humans.

This fact does not invalidate the suction detector proposed in this research. If human

data were available, the detector could have been developed using the same approach. Based

on the experimental results presented in Section 5.3, the detector can be used with in vivo

animal experiments. To use the detector in human clinical trials it is necessary to derive

discriminant functions based on human data.
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7.2.2 Comparison with current technology

The accuracy of the suction detection system presented in this research was primarily com-

pared with the proportional chance criteria. This is the common test performed when dealing

with discriminant analysis. It is expected that a DA classifier should perform better than

chance.

It is also important to compare the proposed model with current suction detectors re-

cently described in the literature. In this regard, there are two particular suction detectors

of interest for comparison purposes: the suction detection proposed by the Vienna group

and the one developed at the University of New South Wales (NSW), Australia.

The Vienna group’s [11, 65] suction detector is based on several time-based indices ex-

tracted from the pump flow waveform. Using a window length of 5 seconds, patterns ex-

tracted from the pump flow waveform are compared against snapshots of pump flow previ-

ously stored and classified in a data base by human experts, in order to decide whether suction

is present. The authors acknowledge that the proposed method can easily increase exponen-

tially the possible combinations in its optimization procedure, if applied to a multiple-beat

analysis. This might be an issue for real time applications of the proposed method. This sys-

tem has been tested using 1000 records of approximately 100 patients. Each record contains

5s of pump flow, current and arterial pressure.

The NSW group [66, 67] proposed a non-invasive suction detection system that extracts

several indices from the pump speed signal, using a 6 seconds long time window. Using

a binary decision tree algorithm (CART), predictions of new membership cases are made,

presenting high accuracy rate, in the two-group classification problem, i.e., when one needs

to decide between suction and no suction. This system has been validated using ex vivo

porcine experiments.

Because the pump states are different among these approaches, as shown in Table 18,

a comparison between those approaches can only be made for the two-group classification

problem.

The meaning of the pump states proposed by the researchers from Vienna is self-explana-

tory. To reduce their original 5 groups to only two groups, they define flow patterns Types
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Table 18: Pump states

Vienna’s group NSW group Pitt/CMU group

Type 1: Certainly no suction PR: Regurgitant flow NS: No Suction

Type 2: Most probably no suction VE: Ventricular ejection MS: Moderate Suction

Type 3: Undecided ANO: Nonopening aortic valve SS: Severe Suction

Type 4: Most probably suction PVC-I: Partial collapse internitent

Type 5: Suction PVC-C: Partial collapse continuous

1 and 2 as No Suction (NS) and patterns Types 4 and 5 as Suction (S).

The researchers from NSW say that the PR (Regurgitant flow) state occurs when pump

speed is so low that negative (regurgitant) pump flow occurs during diastole. VE (ventricular

ejection) is typified by ventricular ejection in systole, i.e., the aortic valve still opens and

closes as expected. State ANO occurs when the aortic valve remains closed and maximum

LVP is less than AoP. At this state, ventricular contractions may cease if pump speed

is increased and pump hemodynamics is largely influenced by the respiratory system. In

State PVC-I the influence of the respiration on the cardiac behavior often causes partial

collapse of the ventricle to occur intermittently, that is, not every heart beat but over a

fraction of the respiratory cycle. State PVC-C is exhibited when a suction event occurs

every cardiac cycle. The NSW group combines pumping states VE and ANO to form the

No Suction (NS) state; states PVC-I and PVC-C are combined to form the Suction (S)

state. Table 19 shows a comparison between these suction detectors. The parameters used

to compare those strategies are input variable used, sensitivity, specificity, invasive sensor,

patient independence (a calibration task based on each patient’s condition should not be

required).

It is not clear whether the groups from NSW and Vienna have divided their data bases

into two sets (training and test) as was done in this research. Accuracy results that take

into account training samples tend to be positively biased. Therefore, such results should be

carefully analyzed to avoid optimistic conclusions about the detector classification precision.
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One advantage that the NSW group has over the others is the fact that their approach is

non-invasive. This means that they actually do not need implanted sensors to detect suction.

Both the Vienna and NSW groups intend to develop a physiologic controller in which their

suction detectors will be part of a feedback control loop, but such control systems have not

been reported yet.

Based on the comparison shown in Table 19, the Pitt/CMU approach has results com-

parable to the other two groups in the two group classification problem.

Table 19: Comparison between the three suction detectors

Input Sensitivity Specificity Invasive Patient

Variable (%) (%) sensor Independence

Vienna’s Pump 99 100 yes no

group flow

NSW Pump 99.5 100 no yes

group speed

Pitt/CMU Pump 93 100 yes yes

Training flow

Pitt/CMU Pump 86 97 yes yes

Test flow
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7.3 RULE-BASED CONTROLLER

Fuzzy controllers are usually practically constructed, instead of theoretically designed, using

some expert knowledge and computer simulations. They have been applied in many engi-

neering fields, presenting satisfactory results. However, expert knowledge is usually difficult

to translate in a mathematical analytic form, which makes the analysis and design of such

non-linear controllers a difficult task.

In this research, basic “guidelines” commonly used in the literature were followed. For

instance, the number of input variables was two, like in many applications of Mamdani’s

type fuzzy controllers. Five symmetric triangular membership sets were used both for input

and output variables. A rule base with 25 rules was designed and a computationally simple

defuzzification method was chosen.

The design of the rule base is perhaps the most important design task, since the rule base

dictates the output of the controller. Notice that in the control system shown in Chapter 6,

the inputs are not states of the plant (which is the cardiovascular-pump model) but rather,

the discriminant scores from the suction detector. This fact actually helped in the rule base

design, making it more systematic, because we could associate pump states (NS, MS, SS)

with output membership sets (PB or PS; ZE; NB or NS).

The designed controller provides one answer for the problem of updating pump speed in

a rotary VAD, but it may not be the definitive answer. There may be other designs that can

generate similar or even better results. However, the controller presented here demonstrates

the feasibility of this approach to drive the pump in the MS region as planned. Fuzzy logic

can provide a mechanism to combine the two discriminant scores so that they can be used

in the control scheme. Moreover, the controller can be tuned to a given patient, which is a

desirable characteristic.

7.3.1 Tuning of Controller

Suction patterns depend not only on pump speed and canulla position. They also depend on

the patient. Characteristics such as contractility state, size of the heart, level of activity and
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mood are likely to influence the occurrence of suction. Therefore, any control application

should allow tuning of the controller, making the controller patient specific. In our approach,

the controller can be tuned by changing the output membership definitions.

Changes in the output sets of the controller were analyzed in Section 6.2.2. As stated

there, it is possible to make the controller increase or decrease pump speed faster by changing

the output membership set definitions. Thus, in a future hardware implementation of that

system, an option in the interface system might be available to allow the clinician to perform

such adjustments on the controller settings.

Tuning was necessary because the very sick heart was more sensitive to pump speeds on

the MS range. However, the approach of driving the pump in this range in order to provide as

much cardiac output as possible has the undesirable effect of increasing mean aortic pressure.

Physiologically, a possible application of such an approach would be with patients that

need ventricular unloading to promote ventricular recovery. As reported in [68], ventricular

unloading and augmentation of aortic flow are a novel therapy to treat congestive heart

failure patients. Since the control approach proposed here promotes ventricular unloading,

consequently increasing flow through the aorta, patients may benefit from the proposed

control system developed in this research.

Regurgitant flow patterns were not considered in the control system designed in this

research because preventing suction was the main goal. Since regurgitation usually occurs

at low pump speeds, the physiologic consequences of a reduced speed are regurgitation

(backflow) and a drop in perfusion pressure. To avoid this problem, a lower speed bound,

say ωmin could be set to prevent backflow. Each new pump speed value, ωk+1, can be

compared with that minimum admissible threshold and not be allowed to drop below it.

7.3.2 Emergency mode

Like any other engineering design, this control system may fail. Under this circumstance,

the control system has to prevent harmful conditions to the patient, avoiding suction and

yet providing adequate blood flow into the circulatory system.
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We do not expect for this control system (detector and controller) alone to be responsible

for the entire operation of the pump. Indeed, as suggested in [4, 56], a supervisory system is

needed to assure that system faults are promptly detected, shifting the operating mode to a

safe default mode. System faults can include sensor failures, software failure, or uncertainty

concerning the reliability of the control actions or functioning of the assist device itself.

Thus, the default mode should provide a constant pump speed that is low enough to avoid

suction, while sustaining a nominal flow output.

7.4 CONTRIBUTIONS AND FUTURE WORK

The main contributions of this work to the field are:

a) A rule-based control system for rotary VADs was developed. This system can automati-

cally adjust pump speed while keeping cardiac output and mean arterial pressure within

acceptable physiologic ranges and avoiding suction;

b) The cardiovascular model used here was developed and validated. Its reduced order

makes it suitable for developing control strategies for VADs.

c) The time-frequency based index, which is the standard deviation of the instantaneous

mean frequency of pump flow, is the first application of a time-frequency technique to

the suction detection problem in rotary VADs;

d) This is the first time that a window whose duration depends on a certain number of

heart beats has been used in suction detection;

e) The Discriminant Analysis has been applied to the suction detection problem;

f) Membership functions of the rule-based controller output can be changed, allowing fine

tuning of the control system;

The proposed control system may be improved by using non-invasive information in the

suction detector to eliminate the need for implanted sensors that have reliability issues for

long term implants. This can be done by developing new discriminant functions using pump

motor control signals, such as pump current, pump speed or motor voltage. For certain types
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of VADs (e.g. WorldHeart LVAD) the use of the rotor position signal would be beneficial,

since this signal is highly correlated with pump inlet pressure. Moreover, estimation of pump

flow would be another alternative.

Rotary VADs have also been used as recovery therapy in certain cases. As the pump

performs most of the work load, being responsible for cardiac output and perfusion pressure

of the circulation, the heart may gradually recover from its illness, improving its contractility

state. A control strategy for rotary VADs should take this healing process into account. For

instance, if the heart recovers, pump speed should not be kept at high values, close to the

onset of severe suction because this represents extreme ventricular unloading. This, in turn,

will keep left ventricular pressure always below aortic pressure and, as a consequence, the

aortic valve will remain closed. Hence, stiffness of the valve may occur, which is a deleterious

condition. Therefore, it is important to have also a monitoring system that can recognize

improvements in the contractility state of the heart, so as to decrease pump speed gradually,

allowing the heart to eject blood through the aortic valve.

The next step towards the development of a viable control system to be used with

human patients is its validation in vivo. In vivo animal experiments are necessary to verify

to what extent the results obtained in simulations studies agree with experimental results.

Of particular interest are the control system performance when the heart is very weak, its

adaptability to different physiologic conditions and robustness to noise.

7.5 CONCLUSION

A control system for rotary blood pumps was presented. That system is a combination of

two main subsystems: a suction detector and a rule-based controller. The suction detector

can correctly classify pump flow patterns, using a discriminant analysis (DA) model that

combines several indices derived from the pump flow signal to make a decision about the

pump status. The pump status can be one of the following: No Suction (NS), Moderate

Suction (MS) and Severe Suction (SS).
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The discriminant scores, which are the output of the suction detector, were used as

inputs to a rule-based controller. Based on this information, the controller updates pump

speed, providing adequate flow and pressure perfusion to the patient. Both subsystems were

tested under different preload conditions (baseline, light exercise, strenuous exercise and

hypertension) and contractility states (healthy, sick and very sick) presenting satisfactory

results for the healthy and sick hearts. In these two cases, the control system was able

to automatically adjust pump speed, providing pump flow according to the patient’s level

of activity, while sustaining adequate perfusion pressures and avoiding suction. However,

mean arterial pressure was high, since the controller provided large cardiac output values.

Additionally, no pressure information is considered in the proposed control approach. The

very sick heart is more sensitive to speeds on the MS range, which may cause the occurrence

of suction. In this case, pump speed should be carefully updated. In Section 6.3.2.1, it

was shown that by changing the design parameters τ1 and τ2 in order to decrease the range

spanned by the membership output sets, it is possible to drive the operating point to a

steady state condition without introducing suction.

The control system performance was not adversely affected by noise until SNR was less

than 20dB, which is a higher noise level than is commonly encountered in flow sensors used

clinically for this type of application. For SNR levels less than this value, the controller

tends to increase pump speed because the noise disrupts the detector performance, causing

it to miss severe suction cases and to increase pump speed.
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APPENDIX A

STATE EQUATIONS FOR THE CARDIOVASCULAR MODEL
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Filling Phase: r(x) =
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APPENDIX B

STATE EQUATIONS FOR THE CARDIOVASCULAR-PUMP MODEL
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ẋ =


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Ejection Phase: r(x) =
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Filling Phase: r(x) =
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APPENDIX C

CONFUSION MATRICES - SVR TESTS

Healthy heart

RS = 1.0, HR = 75bpm

NS MS SS Total

NS 19 0 0 19

MS 4 2 0 6

SS 0 2 13 15

RS = 0.8, HR = 90bpm

NS MS SS Total

NS 26 2 0 28

MS 1 9 0 10

SS 0 3 18 21

RS = 0.6, HR = 135bpm

NS MS SS Total

NS 30 6 0 36

MS 1 15 0 16

SS 0 2 21 23

RS = 1.2, HR = 75bpm

NS MS SS Total

NS 25 0 0 25

MS 3 3 0 6

SS 0 4 15 19
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Sick heart

RS = 1.0, HR = 75bpm

NS MS SS Total

NS 19 0 0 19

MS 2 4 0 6

SS 0 2 13 15

RS = 0.8, HR = 90bpm

NS MS SS Total

NS 25 4 0 29

MS 0 8 0 8

SS 0 5 17 22

RS = 0.6, HR = 135bpm

NS MS SS Total

NS 30 0 0 30

MS 4 11 1 16

SS 0 2 25 27

RS = 1.2, HR = 75bpm

NS MS SS Total

NS 23 1 0 24

MS 2 5 0 7

SS 0 3 15 18

Very Sick heart

RS = 1.0, HR = 75bpm

NS MS SS Total

NS 19 0 0 19

MS 2 4 0 6

SS 0 3 12 15

RS = 0.8, HR = 90bpm

NS MS SS Total

NS 23 5 0 28

MS 0 8 1 9

SS 0 4 17 21

RS = 0.6, HR = 135bpm

NS MS SS Total

NS 29 1 0 30

MS 5 7 2 14

SS 0 0 27 27

RS = 1.2, HR = 75bpm

NS MS SS Total

NS 22 2 0 24

MS 2 5 0 7

SS 0 3 15 18
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APPENDIX D

FAM BANKS OF CONTROL SURFACES

a) Using three output sets
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(a)

(b)

Controller Membership Sets. (a) Input variables; (b) Output Variable. (NB: Negative Big, NS:

Negative Small, ZE: Zero, PS: Positive Small, PB: Positive Big, PO: Positive, NE: Negative)
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Table 20: Controller Rule-base for three output sets

DS2

NB NS ZE PS PB

NB PO PO PO PO PO

NS ZE PO ZE PO PO

DS1 ZE ZE ZE ZE ZE NE

PS ZE ZE ZE NE NE

PB ZE NE NE NE NE
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b) Using five output sets
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(a)

(b)

Controller Membership Sets. (a) Input variables; (b) Output Variables. (NB: Negative Big, NS:

Negative Small, ZE: Zero, PS: Positive Small, PB: Positive Big)

Table 21: Controller Rule-base for five output sets

DS2

NB NS ZE PS PB

NB PS PB PB PB PS

NS ZE PS ZE PS PS

DS1 ZE ZE ZE ZE ZE NS

PS ZE ZE ZE NS NB

PB ZE NB NB NB NB

156



c) Using seven output sets
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(b)

Controller Membership Sets. (a) Input variables; (b) Output Variables. (NB: Negative Big, NM:

Negative Medium, NS: Negative Small, ZE: Zero, PS: Positive Small, PM: Positive Medium, PB:

Positive Big)

Table 22: Controller Rule-base for seven output sets

DS2

NB NM NS ZE PS PM PB

NB PS PB PB PB PB PM PS

NM PS PS PM PS PM PS PS

NS ZE ZE PS ZE PS PS PS

DS1 ZE ZE ZE ZE ZE ZE NS NS

PS ZE ZE ZE ZE ZE NM NM

PM ZE ZE NM NM NM NM NB

PB ZE NB NB NB NB NB NB
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