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Selective delivery of drugs to localized regions of tissue within the body is a complex problem, 

representing one path through which the efficacy of many pharmaceutical compounds can be 

enhanced. Many pharmaceutical compounds show excellent activity in vitro, but their uses are 

severely limited in vivo. Unstable active conformations, limited membrane diffusion, rapid 

metabolism and/or clearance, decreased solubility, and dose-limiting systemic toxicity are just a 

few areas in which potential problems exist, halting drug development. Compounds exist 

possessing ideal pharmacologic activity for treating specific disease states, but they are simply 

unable to be delivered in adequate quantities or in the proper active conformation to the target 

site in the body. The following dissertation details the synthesis, characterization, and 

performance of a series of polyurethane drug delivery systems based on amino acids and the 

simple carbohydrates. The materials were synthesized from lysine diisocyanate (LDI) and 

glycerol with the aid of various tertiary amine and organometallic urethane catalysts. Candidate 

drugs were incorporated into the materials by way of labile urethane and urea linkages; 

subsequent drug release relied on the passive hydrolysis of the tethering bonds. Drug release 

from the materials correlated to material morphology, urethane catalyst, and chemical 

functionality of the incorporated drug. A single-phase polyurethane material was designed, 

synthesized, and shown capable of simultaneously releasing multiple pharmacologic agents at 

different rates. Finally, naturally occurring ionic ligands were incorporated into the LDI-glycerol 

polyurethanes to alter their swelling characteristics and release kinetics. This endeavor has 

resulted in the formulation of a series of polyurethane materials, capable of long-term controlled 

release of pharmacologic agents within the body. The structure-function relationships elucidated 

provide key design criteria, which can ultimately be used to develop such advanced degradable 

polyurethane materials. 
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1.0  INTRODUCTION 

Many pharmaceutical compounds show excellent activity in vitro, but their uses are severely 

limited in vivo. Unstable active conformations, limited membrane diffusion, rapid metabolism 

and/or clearance, decreased solubility, and dose-limiting systemic toxicity are just a few areas in 

which potential problems exist that can halt drug development [1]. Indeed compounds exist that 

possess ideal pharmacologic activity for treating specific disease states, but they are simply 

unable to be delivered in adequate quantities or in the proper active conformation to the target 

site in the body. The camptothecins are one such family of compounds and one member in 

particular, 7-tert-butyldimethylsilyl-10-hydroxycamptothecin (DB-67), displays potent anti-

tumor activity but is plagued with delivery obstacles such as poor solubility and poor active-state 

stability[2]. 

Chemotherapy has played a central role in the management and sometimes the 

elimination of hematological malignancies and solid tumors. Despite reduced clinical morbidity 

and mortality, virtually all chemotherapeutics cause unacceptable damage to normal tissues when 

used in doses required to eradicate cancer cells [3]. Improved selectivity in the delivery of anti-

cancer drugs to tumor tissues offers one possible solution. Therapeutic efficacy could be 

markedly enhanced and dose-limiting toxicity could be greatly diminished if high concentrations 

of anti-cancer agents could be selectively administered to only malignant cells.  

The majority of current cancer chemotherapeutic agents are low molecular weight (MW) 

chemicals, possessing a high pharmacokinetic volume of distribution, which leads to the 

presence of cytotoxic compounds throughout the entire patient. The exposure of normal tissues 

to the drug is manifested in the many well-known side effects to rapidly dividing cells, e.g., bone 

marrow suppression, alopecia, sterility, and the sloughing of gut epithelial cells [4]. Low MW 

anticancer compounds are also rapidly removed by renal excretion and can be subject to 

deactivation by chemical processes or enzymatic degradation. Chemotherapeutic drugs 
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invariably have a very narrow therapeutic index that separates the toxic dose from the clinically 

effective dose. Furthermore, the development of multi-drug resistance (MDR) pumps in tumor 

cells exacerbates the problem of achieving selective toxicity [5].  

Camptothecins are a special class of anticancer agents that act as topoisomerase I (topo I) 

inhibitors and appear to be quite active in human cancers previously reported resistant to 

chemotherapy [6]. These agents are analogs of the plant alkaloid 20(S)-camptothecin and interact 

with topo I and DNA to form cleavage complexes – preventing the resealing of the topo I-

mediated DNA single strand breaks [7]. This interaction eventually leads to double-strand DNA 

breaks and apoptosis. 

The pharmaceutical development and clinical utility of the camptothecins are limited by 

the distinctive dynamics of these agents in the blood stream. All of the camptothecins now in 

clinical development contain a -hydroxy- -lactone moiety, and they exist in two distinct forms 

at the physiological pH of 7.0 and above. The biologically active “lactone-closed” form reacts 

with water to form a biologically inactive “lactone-opened” (carboxylate) form [8, 9] as shown 

in Figure 1. 

 

N

N O

O

O

OH

Si

OH
N

N O

O

O
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Si

OH
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Figure 1 - Structure of DB-67 - lactone and hydroxy acid 

 

This simple chemical hydrolysis dynamically inactivates the parent drug. Furthering the 

problem, the predominant human blood serum protein, albumin (HSA), preferentially binds the 

carboxylate form – shifting the equilibrium towards the inactive moiety [10-12]. Because 

camptothecins are S-phase specific drugs, optimal topo I inhibitory activity is only obtained 

when the tumors of a patient are continuously exposed to the drug. Accordingly, establishing 

conditions where a therapeutically relevant concentration of the lactone-closed form of a 
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camptothecin is present over a suitable period of time for tumor cells to cycle through the S-

phase is a major challenge. 

Surgically implantable polymer matrices loaded with chemotherapeutic agents provide a 

successful approach to localized drug delivery. The matrix is loaded with the desired agent and 

then implanted within the tumor site, following as complete a surgical resection as clinically 

possible. The matrix releases its drug load over a period determined by the characteristics of the 

encapsulating polymer, delivering drug to the neoplastic cells existing in the peritumoral region 

that otherwise would give rise to recurring tumor. The advantage of polymer-based delivery over 

current catheter technology is that the polymers are not subject to clogging and blockage of 

tissue debris; in addition, drugs can be more accurately delivered to a specific site within the 

body and there are no concerns with respect to patient compliance [13]. Our goal is to develop a 

biodegradable polyurethane matrix capable of delivering DB-67 intratumorally or to remaining 

tumor cells within the resection margins following surgical removal.  

Numerous modalities for selective delivery of anti-tumor compounds to cancer cells have 

been described, with the most successful of these systems largely based on degradable synthetic 

polymers. These systems have shown limited efficacy in combating the growth and spread of 

metastatic tumors, yet a systematic approach to their design and synthesis has not yet been 

undertaken. Beginning with a degradable polyurethane drug delivery system based on lysine 

diisocyanate (LDI) and glycerol, we propose to begin a thorough analysis of the system’s drug 

delivery capabilities. This study should result in the design, synthesis and implementation of 

highly effective drug delivery systems for the DB-67 compound that can later be applied to other 

suitable therapeutics. The specific aims of the series of studies detailed in this manuscript are 

summarized below. 

 

Specific Aim 1: Develop and characterize an LDI-glycerol polyurethane film for delivery of 

a pharmacological agent. Polyurethane films incorporating DB-67 through labile urethane 

linkages were synthesized with use of an organometallic catalyst. Drug content and release from 

the films was assessed. The cytotoxicity profile of these films against a panel of malignant 

glioma cell lines was compared to polyurethane alone. 

Hypothesis 1.1 LDI-glycerol polyurethanes can be fashioned into degradable films suitable for 

drug delivery applications. 
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Hypothesis 1.2 The pharmacologic agent DB-67 can be incorporated into polyurethane films. 

Hypothesis 1.3 Polyurethane films containing a pharmacologic agent will exhibit cytotoxicity in 

vitro.  

 

Specific Aim 2: Develop and characterize an LDI-glycerol polyurethane foam for delivery 

of a pharmacological agent. Polyurethane foams incorporating DB-67 through labile urethane 

linkages were synthesized with use of two tertiary amine catalysts. Drug content and release 

from the foams was assessed. The cytotoxicity profile of these foams against a panel of 

malignant glioma cell lines was compared to polyurethane alone. 

Hypothesis 2.1 LDI-glycerol polyurethanes can be fashioned into degradable foams suitable for 

drug delivery. 

Hypothesis 2.2 A pharmacologic agent DB-67 can be incorporated into LDI-glycerol 

polyurethane foams. 

Hypothesis 2.3 LDI-glycerol polyurethane foams containing a pharmacologic agent will exhibit 

cytotoxicity in vitro. 

 

Specific Aim 3: Analyze how the functional groups present on a drug affect its release from 

LDI-glycerol polyurethane foams. A series of LDI- glycerol polyurethane foams incorporating 

naphthalene and some of its functionalized derivatives was prepared. The naphthalene analogs 

were incorporated into the polyurethane network via labile urethane linkages with use of a 

tertiary amine catalyst. Content and release from the foams was assessed. 

Hypothesis 3.1 Naphthalene and its various analogs can be incorporated into LDI-glycerol 

polyurethane foams. 

Hypothesis 3.2 Release of the analogs from the foams will occur at differing rates. 

Hypothesis 3.3 The release rates will correlate to the functional groups present on the various 

naphthalene analogs. 

 

Specific Aim 4: Develop LDI-glycerol polyurethane foams capable of the controlled release 

of multiple anti-cancer compounds at different rates. Polyurethane foams incorporating DB-

67, doxorubicin and paclitaxol – alone and in combination – were prepared. The drugs were 
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incorporated into the polyurethane foam via labile urethane linkages via a tertiary amine catalyst. 

Content and release of the drugs from the foams was assessed.  

Hypothesis 4.1 DB-67, doxorubicin, and paclitaxol can be incorporated alone and in 

combination into LDI-glycerol polyurethane foams. 

Hypothesis 4.2 Release of the drugs from the foams will occur at different rates. 

Hypothesis 4.3The release rates can be correlated to the pendant functional groups present on 

each drug. 

 

Specific Aim 5: Incorporate cationic and anionic ligands into LDI-glycerol polyurethane 

films and foams to alter their rates of drug release. A series of polyurethane foams and films 

incorporating choline chloride (CC) and isethionic acid (DMB), was prepared. The non-ionic 

species 3,3-dimethylbutanol was used as a control. DB-67 was incorporated into the 

polyurethane films and foams via labile urethane linkages via a tertiary amine catalyst. Content 

and release of DB-67 from the films and foams was assessed.  

Hypothesis 4.1 Ionic ligands can be incorporated into LDI-glycerol polyurethane foams. 

Hypothesis 4.2 Release of the drugs from the films and foams will occur at different rates. 

Hypothesis 4.3 The release rates can be correlated to the ionic ligands present in each 

polyurethane material. 

 

1.1 POLYURETHANES 

Polyurethanes are used often in medical device applications, and their use continues to grow. 

Compared with other polymers, polyurethanes often require sophisticated manufacturing 

processes and are more expensive on a price-per-pound basis. For example, the average flexible 

PVC compound sells for 85 cents per pound, while the typical polyurethane sells for 10–20 times 

that amount [14]. So, what is it that motivates medical device developers to use them? The 

answer is quite simple: polyurethanes can be used in applications where other materials fail. 

Polyurethanes are among the most versatile construction materials that can be formulated for 

medical devices. By controlling the components in the formulation, one can produce 
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polyurethanes in the form of flexible foams, rigid foams, and elastomers. They are tough, 

biocompatible, and hemocompatible, and they can be processed using extrusion, injection 

molding, film blowing, solution dipping, and two-part liquid molding. 

Polyurethanes’ unique chemistry gives them this versatility. The vast majority of 

polyurethanes are segmented polymers, meaning they have a soft segment that provides 

flexibility and a hard segment that provides strength. These polyurethanes are made from three 

basic building blocks: the backbone, the diisocyanate, and the chain extender. The backbone, 

usually a long chain molecule, provides flexibility to the polymer. The diisocyanate and the 

chain extender combine to form the hard segment, which acts as a cross-link. It provides the 

polymer with high tensile strength and high elongation threshold. Generally, the diisocyanate is 

to blame the majority of the toxicity associated with the production of polyurethane materials 

[15, 16]. 

Polyurethanes are made from either aromatic or aliphatic diisocyanates. Aromatic 

diisocyanates contain benzene rings, which create polyurethanes that are generally tougher, 

stronger, and less costly than the aliphatics. The aromatics generally have tougher hard segments, 

which are more chemically resistant and give rise to higher tensile strength and elongation than 

aliphatics. Aliphatic diisocyanates contain hydrocarbon backbones without any benzene rings. 

Aliphatic polyurethanes make strong polymers but lack the chemical resistance of aromatics. 

They are more expensive than aromatics and are used primarily in applications that require good 

light stability. There are thousands of possible combinations of the basic building blocks used to 

create aromatic and aliphatic polyurethanes, thereby providing device engineers with a myriad of 

options for their products. 

1.1.1 Polyurethane synthesis 

The term polyurethane is broadly used to describe materials that contain urethane, urea or 

isocyanurate linkages as part of the polymer backbone. Urethane, urea and isocyanurate bonds 

are formed via the reaction of isocyanate with hydroxyl, amine or other isocyanates, respectively. 

Isocyanates are essentially carbonyl compounds with multiple double bonds, and the reaction 

mechanisms closely corresponds to the reaction mechanisms observed for common carbonyl 

compounds [17]. The first reaction step of carbonyl compounds is the addition between the 
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electrophilic carbonyl carbon of the carbonyl compound and the nucleophilic center of the 

nucleophilic compound. Similarly, the urethane formation starts with the reaction between the 

carbonyl carbon of the isocyantate and the alcohol oxygen (Figure 2). 

 

R N C O H O R '

R N

C

O

O
+

H

R '

R N C

O

O R '

H

+

 

 

 

Figure 2 - Urethane formation 

 

The nucleophile, in this case the alcohol, attacks the electrophile ,the carbonyl carbon of the 

isocyanate, generating an intermediate species. Proton transfer from the alcohol carbon to the 

isocyanate nitrogen accompanies electron transfer from the isocyanate’s carbonyl carbon to its 

nitrogen, producing a urethane bond. The greater the electrophilicity or nucleophilicity of the 

reacting centers is, the higher is the rate of carbonyl reaction. Accordingly, the rate of urethane 

formation increases with these reactivity factors.  

 Similar to urethane formation, an isocyanate can also react with an amine to generate a 

urea bond (Figure 3). 
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Figure 3 - Urea formation 

 

In this case, the primary amine functions as the nucleophile and the carbonyl carbon of the 

isocyanate still functions as the electrophile. Proton and electron transfer occur in an analogous 

manner, generating a urea bond. Other important reactions occur during the formation of 

polyurethanes, and they are shown in Figure 4. For simplicity, the reactants are depicted as 

monofunctional, although polyurethanes will be generated from di- or multi-functional reactants. 
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Figure 4 - Some reactions that occur during the formation of polyurethanes 

 

All of the aforementioned isocyanate reactions can be broken into three categories: 

gelling, cross-linking and blowing. The gelling reactions refer to those that do not produce a 

volatile product, such as urethane or urea formation, and yield linear polymers (assuming di-

functional reactants). The cross-linking reactions function via the active hydrogen in the urethane 

and urea groups, and these species crosslink the polyurethane by reaction with another 

isocyanate to form allophonate and biuret, respectively. The isocyanurte linkage, also formed via 

a cross-linking reaction, provides rigidity and thermal stability. Isocyanates can also form 

dimers, called uretidiones, that also result in cross-linked polymer, but this is far less common 

that the trimerization reaction. 

 The blowing reaction, or the reaction between isocyanate and water, is of fundamental 

importance to urethane chemistry. The reaction produces carbamic acid as an intermediate. As 

the carbamic acid readily decomposes into an amine and carbon dioxode gas, the polyurethane 

expands into foam. The amine generated in this process is then free to react with another 

isocyanate to form a urea linkage, curing the foam as it expands. Physical blowing agents such as 

chlorofluorocarbons and methylene chloride can also be used to produce foams, but these foams 
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are generated by the vaporization of these liquids and not by a chemical reaction. The blowing 

reaction is used to manufacture foam cushioning for a variety of commercial applications in the 

auto and home industries.  

 It is the precise control and sequencing of the blowing, gelling, and cross-linking 

reactions that determine the final properties of the polyurethane [18]. For example, if the blowing 

reaction occurs too quickly in a water-blown foam, the foam will expand rapidly and will not 

have sufficient mechanical strength to prevent a collapse. Conversely, if the gelling reactions 

occur to rapidly, the gas resulting from the blowing reaction will not be able to expand the 

polyurethane matrix. Thus, the precise balance of these reactions determines the resulting 

physical properties; this balance is primarily controlled by the amount and type of catalyst 

present. 

1.1.2 Polyurethane catalysis 

For polyurethanes, the catalyst is most responsible for controlling the reaction time and for 

defining polymer architecture that influences the ultimate mechanical properties. Specifically, it 

is the catalyst’s activity and selectivity towards each of the many reactions occurring in the 

formation of polyurethanes that determine the structure of the resulting material. It is possible to 

accelerate the reactions of carbonyl compounds via Lewis acids and bases, and many urethane 

catalysts function in this manner [19]. The myriad of catalyst choices available to the 

polyurethane chemist presents a significant challenge, and often a blend of catalysts is used to 

obtain the desired results. 

 There are three major classes of polyurethane catalysts: tertiary amines, organometallics, 

aprotic salts; only tertiary amine and organometallic catalysts will be discussed. Amine catalysts, 

especially tertiary amines, form the largest class of catalysts used in the manufacture of 

polyurethanes. Tertiary amines catalyze both the gelling and blowing reactions to different 

extents, but they are generally not very active isocyanurate catalysts. Increased catalyst basicity 

generally increases activity, and steric hindrance plays a significant role too. Triethylene-diamine 

or 1,4-diazobicyclo[2.2.2]-octane (DABCO) is the most widely employed tertiary amine catalyst 

used in the production of polyurethanes. Its unusually high activity in spite of decreased basicity 

is due to a lack of steric hindrance. While DABCO is generally regarded as a powerful gelling 



 10 

catalyst, it is also a powerful catalyst of the blowing reaction [20]. In contrast, the catalyst 4,4’-

(oxydi-2,1-ethane-diyl)bismorpholine or dimorpholino-diethylether (DMDEE) is another tertiary 

amine catalyst that is highly specific for the blowing reaction [21]. The structures of some of the 

more commonly used tertiary amine catalysts are shown in Figure 5. 
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Figure 5 - Structures of some commonly used urethane amine catalysts 

 

 Several mechanisms have been invoked to explain the observed rate data in amine-

catalyzed isocyanate and isocyanate trimerization reactions. Most of the mechanisms are 

variations of two mechanisms proposed by Baker and for the tertiary amine catalyzed formation 

of urethane [22-24]. The first mechanism consists of the formation of an isocyanate-amine 

complex followed by reaction with an alcohol. The second consists of the formation of an 

activated amine-alcohol complex followed by reaction with the isocyanate. The former 

mechanism suggests that the nucleophilicity of the amine is the dominant factor; the latter 

implies that the amine basicity is dominant. Experimental evidence, as well as shortcomings, for 

both methods exists, although a mechanism based on an isocyanate-amine complex is generally 

more accepted.  

Organometallic compounds are another large class of catalysts used in the synthesis of 

polyurethanes. The most common of these catalysts are organotin compounds, which are salts of 
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organic acids, especially the dialkyltin dicarboxylates. Among the more common organometallic 

catalysts are dibutyltin dilaurate ([CH3(CH2)3]2Sn[OCO(CH2)10CH3]2), stannous octoate 

(Sn(OCOC7H15)2), dibutyltin diacetate ([CH3(CH2)3]2Sn[OCOCH3]2), and dibutyltin 

dimercaptide ([CH3(CH2)3]2Sn(SC12H25)2). The organometallic catalysts tend to be more 

selective for the gelling reactions than the tertiary amines. A few of the limitations of organotin 

compounds are there high toxicity and their tendency to lose activity in the presence of water. 

Since polyurethanes are generally synthesized under anhydrous conditions, only the latter 

generally poses a problem. A synergy in catalytic activity has been observed when tertiary 

amines are used in combination with organotin compounds [25]. 

 Other varieties of metal-based catalysts are also available. These include mercury-, lead-, 

iron-, bismuth-, and cobalt-based compounds that are routinely used for coating and elastomers 

applications. These catalysts generally exhibit a higher degree of selectivity for the gelling 

reactions relative to the amine and organotin catalysts [18]. However, many of these heavy metal 

catalysts face uncertain futures due to toxicological and environmental concerns. However, 

bismuth salts are an exception and possess decreased toxicological concerns, as they are 

routinely employed in the medical field as diagnostic imaging dyes and as anti-diarrhea 

medications [26, 27].  

  Several mechanisms have been proposed for the organometallic catalysis of isocyanate-

hydroxyl reactions [28-30]. The most prevalent mechanism is that of a ternary complex of 

isocyanate, hydroxyl, and the organometallic catalyst. It has been proposed that the 

organometallic catalyst can first complex with either the isocyanate or alcohol followed by 

complexation with the other reactant. Others favor the formation of a Lewis acid-isocyanate 

complex followed by complexation with the alcohol.  Still others claim that the organometallic 

catalyst increases the electrophilic character of the isocyanate group and brings the alcohol and 

isocyanate in close proximity. Indeed there is still an ongoing debate regarding the exact 

mechanisms governing the organometallic catalysts, but lack of a true and definite mechanism of 

action has not impeded their use in the commercial production of polyurethanes.  

 Catalysts play a vital role in reducing reaction times and in controlling the polymer 

properties in the synthesis of polyurethane materials. Each catalyst has a unique activity and 

selectivity for the reactions that occur during the formation of polyurethane. Of the many types 

of polyurethane catalysts, the most important and most widely used are the tertiary amines and 
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the organotin compounds. The combinations of catalysts are often required to provide the proper 

balance between ease of processing and physical property requirements. A variety of approaches 

have also been made to meet the changing environmental and manufacture concerns, such as 

toxicity, odor and delayed activity [20]. 

1.2 DRUG DELIVERY 

Over the past three decades, significant advances have been made in drug delivery technology. 

This realization has come about and been accelerated in recent years due to the substantial 

decline in the development of new pharmaceutical compounds [31]. Drug delivery has now truly 

become a multidisciplinary endeavor. Emerging technologies now rely on new discoveries in all 

fields of science. Drug delivery, which takes into consideration the carrier, the route, and the 

target, has evolved into a strategy of processes or device designs to enhance the efficacy of 

therapeutic agents through controlled release. This may involve enhanced bioavailability, 

improved therapeutic index, or improved patient compliance. Drug delivery, or controlled 

release, has been defined by Flynn as “the use of whatever means possible, be it chemical, 

physiochemical, or mechanical, to regulate a drug’s access rate to the body’s central 

compartment, or in some cases, directly to the involved tissues” [32]. 

Countless attempts have been made over the years in attempts to formulate a truly 

selective delivery strategy as envisioned by Flynn. In the beginning of the 20
th

 century, P. Erlich 

first described this idea in his concept of “magic bullets” [33], consisting of haptophore (binding 

component to target) and toxophore (cytotoxic part). As a haptophore, he proposed the use of an 

antibody. Nevertheless, it took another 70 years for drug delivery and drug targeting to become 

areas of active research, arousing the interest of many people.  

When looking back on the history of drug delivery and targeting, several keystone 

discoveries are noticeable in the period of the 1960s and 1970s. Erlich’s concept of using an 

antibody as a haptophore was experimentally proven in the treatment of several tumors 

inoculated into experimental animals. Toxophores used in these experiments were 

radiotherapeutic agents (radioactive iodine) [34, 35], cytotoxic drugs (e.g., chlorambucil) [36], 

and diptheria toxin [37]. The concept of biodegradable polymers for sustained drug release was 
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first introduced in the early 1970’s, following the introduction of bio-resorbable sutures [38]. 

The first drug to be delivered from a biodegradable drug-delivery system was cyclazocine, an 

opioid antagonist that has been used as an analgesic and in the treatment of narcotic dependence; 

it was reported in 1971 and delivered drug via a poly(DL-lactide) implant [39]. Since then, 

biodegradable polymers have become increasingly popular, and numerous new polymers have 

been synthesized and employed for drug delivery applications. 

On the other hand, it was also discovered that conjugating a drug to an appropriate 

polymeric carrier could modulate drug uptake by cells, and Ringsdorf presented the first clear 

concept of targetable polymeric drugs [40]. Because polymers follow different cellular uptake 

mechanisms than their low-molecular weight analogs, they are introduced into the cell neither by 

permeation through the plasma membrane nor by means of transport proteins. Polymers are 

internalized into the cellular compartment through a process called endocytosis [41]. Endocytosis 

begins with the enclosure of the polymer by a part of the plasma membrane to form an 

intracellular vesicle. The intracellular vesicles with ingested polymers are transferred to 

organelles called endosomes, which are eventually carried to lysosomes. Ringsdorf envisioned 

that drug delivery could further be improved by tailoring polymers that could not only 

incorporate drugs, but also molecules that could guide the drugs to cells.  

 These early discoveries paved the way for the development of many technologies aimed 

at limiting the systemic exposure of therapeutics, while increasing their availability to select 

tissues. Site-selective drug delivery has been proven successful in the laboratory with strategies 

such as liposomes, hydrogels, synthetic peptides, synthetic polymers, and nanoparticles just to 

name a few. Among the diverse applications of macromolecular drug formulations, the treatment 

of solid tumors is one in which intensive research has been devoted. However, there has been 

limited clinical impact because of these advances. With continued technological advances and 

re-tailoring of currently available systems, the drug delivery field will continue to move toward 

its goal of improving therapeutic efficacy through site-specific release strategies. 

Drug delivery strategies can be divided into two categories based upon their method of 

administration – systemic and local delivery strategies. Although there exists some crossover 

between the two divisions, most modern drug delivery systems can be categorized in this 

manner. Systemic drug delivery formulations are generally introduced into the body’s vascular 

space, relying on selective mechanisms to reach and affect the diseased tissues. Local 
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administration strategies place the drug in a particular body compartment and passive release 

mechanisms dictate the rate and time course of administration of the therapeutic compound to the 

diseased tissue. Many advances have been made over the years in both of these types of systems, 

and a review of their progress is certainly warranted here. 

1.2.1 Systemic delivery 

Although the technologies underlying systemic drug delivery formulations vary to a considerable 

degree, they all rely on three basic tenants. First, a protective carrier mechanism limits the drug’s 

exposure in extraneous tissues, protects it from inactivation, and inhibits premature release. 

Second, a targeting moiety is associated with the carrier mechanism and it is able to recognize 

and remain at the targeted tissues. Third, a site-specific or time-delayed release strategy is 

employed to deliver the drug only once it has reached and invaded the targeted tissue.  

 Water-soluble polymers were first applied in the biomedical field as plasma expanders. 

Compounds such as poly(glutamic acid), dextran, poly(vinyl alcohol), poly[N-(2-

hydroxypropyl)methacrylamide] (HPMA), and poly(ethylene glycol) (PEG) had been shown to 

exhibit increased circulation times relative to their low-molecular weight counterparts. This is 

because renal clearance is significant for molecules with relatively small molecular weights. 

Proteins with MW lower than 40,000 show a very short plasma half-life because of rapid renal 

clearance [42].  However, it was demonstrated that the urinary excretion of soybean trypsin 

inhibitor (MW ~20,000) could be significantly reduced through conjugation to water-soluble 

polymers including PEG and dextran [43]. In a rational manner water-soluble plasma expanders 

became used as starting components to design polymer-drug conjugates. 

 Another important aspect of drug targeting is the modulation of distribution and 

disposition of drugs by binding with appropriate carrier systems. After administration of 

macromolecular drug formulations via the intravenous route, their transport in the body 

compartment is principally governed by diffusion and convection. Even if effective homing 

moieties are installed in the conjugate, they are of no use unless the conjugates reach the vicinity 

of the target cell to ensure close contact. So how is it that macromolecular drug conjugates are 

able to reach specific targets when administered systemically to the vasculature compartment? 
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 Solid tumor masses exist outside of the vascular space and are one indication in which 

site-specific delivery of macromolecular therapeutics has found some success. This is due to the 

unique biology of tumor masses and that changes in vasculature architecture that this biological 

profile promotes. It is now well accepted that because of activation of kinin-generateing cascade 

and the secretion of vascular permeability factor, blood capillaries in tumor tissues develop 

considerably high density with enhanced permeability due to loose interendothelial junctions. 

This process leads to enhanced passive transport of macromolecular substances, such as proteins 

and polymeric drugs, across the blood vessel into the interstitial spaces of the tumor tissues. 

 On the other hand, the development of a lymphatic drainage system is insufficient in 

tumorous tissues, resulting in poor tissue drainage of macromolecular substances. Consequently, 

macromolecular substances may exhibit a considerable accumulation in the tumor due to the 

synergistic effect of the increased vascular permeability and the decreased tissue drainage. This 

effect has been systematically studied by the Maeda group at Kumamoto University, Japan, and 

is termed “enhanced permeability and retention” (EPR) effect [42, 44]. EPR has become one of 

the major guiding principles in drug targeting using macromolecular carriers. However, it should 

be noted that this effect also takes place in sites of increased inflammatory reaction as a result of 

several causes, including microbial infections. 

 Obviously, the EPR is a great advantage of using macromolecular drugs for targeting. 

Low-molecular weight analogs readily suffer from glomerular excretion from the bloodstream, 

whereas macomolecular drugs are expected to achieve a prolonged half-life in the bloodstream 

because of decreased glomerular filtration and renal excretion. Obviously, extended circulation is 

a requisite for sufficient EPR effect. However, prolonged circulation is not always achieved for 

macromolecular carrier systems. An increase in hydrophobic character or induction of cationic 

charges in the carrier significantly alters the distribution, resulting in significant accumulation in 

the liver, resulting in rapid clearance from the blood stream. In terms of prolonged circulation 

and a resulting increase in plasma half-life, conjugation of drugs to macromolecular carriers with 

neutral or slightly anionic character generally gives good results. 

 Tumor invasion, metastasis, and resistance to chemotherapeutic drugs remain as major 

obstacles to the successful treatment of cancer, even in light of these findings. To further 

overcome some of these limitations, therapeutics that further increase the specificity and 

efficacy, while at the same time reduce the toxicity of the therapeutics are being explored. 
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Features unique to malignant human tumor cells can be exploited in the development of targeting 

therapeutic agents. For example, cancer cells often over-express specific tumor-associated 

antigens, carbohydrate structures, or growth factor receptors on their cell surface. Incorporation 

of a recognizable moiety into the macromolecular carrier structure allows for actively targeted 

drug delivery systems. Potential targeting moieties include monoclonal, polyclonal antibodies 

and their fragments, carbohydrates (galactose, mannose), peptides/proteins (melanocyte 

stimulating hormone, transferring, growth factors), glycolipids, vitamins, and other ligands. 

Active macromolecular conjugates can first utilize EPR effect to arrive within the sect tumorous 

tissues, and then use active targeting moieties to be selectively transported into tumor tissues at 

much higher rates. 

 Macromolecules without a specific affinity to plasma membrane components are taken 

up through a non-selective process called “fluid-phase endocytosis” in which polymers are 

engulfed into endosomes along with liquid components. This process is a result of normal 

immune surveillance and antigen presentation common to the immune system. On the other 

hand, when macromolecules show and affinity for a plasma membrane and adsorb onto it, they 

are internalized into the cell by “adsorptive endocytosis”, which can have uptake rates 10-fold 

higher compared to fluid-phase endocytosis. 

 Studies on endocytic uptake of HPMA copolymers bearing tyrosineamide (Tyr-NH2) 

residues have shown there is an intense increase in uptake rate into rat visceral yolk sacs when 

10 mol% of the copolymer side groups were terminated with Tyr-NH2 [45]. This result was 

considered to be due to an increase in the contribution of nonspecific adsorptive endocytosis with 

an increase in the hydrophobic character of the copolymer chain owing to the increased number 

of the hydrophobic aromatic residue, tyrosine. Nonspecific adsorptive endocytosis is also 

significant for the cellular uptake of cationic polymers because of the negatively charged features 

of cellular plasma membranes. Results showing the increased hepatic uptake of charged dextran 

in a rat in vivo model have been obtained and also demonstrate the feasibility of the strategy [46]. 

 In the case of endocytosis through receptors expressed on the surface of the target cell 

plasma membrane (receptor mediated endocytosis), the uptake rate reach even 1,000 fold higher 

values than those observed with fluid-phase endocytosis. Receptor mediated endocytosis is quite 

common for many kinds of cell species. For example, low-density lipoprotein (LDL), a natural 

vehicle for cholesterol, known to be taken up by liver parenchymal cells through LDL receptors 
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expressed on these cellular surfaces. Receptor mediated endocytosis is not only extremely 

efficient, but also highly specific. Cellular-specific targeting has been made possible through 

these discoveries and can be used as a route to deliver a drug into a particular cell population in a 

particular site in the body. Incorporation of site-specific ligands onto the surface of 

macromolecular carrier systems should enable highly specific carrier systems for therapeutics 

capable of treating selected tissues in the body.  

1.2.2 Localized delivery 

Many technologies exist for localized delivery of drugs to select regions of the body. The driving 

force for the deliver can function via a variety of mechanisms such as diffusion, dissolution, 

osmotic pressure, biodegradation, and even micro-magnetic, mechanical, and electrical systems. 

With these types of systems, a body compartment can be selected and considered an isolated 

system. Various release strategies can then be employed to deliver drug to only the local tissues 

within a desired region. Subsections of the body compartment can even be selected for treatment 

via this strategy. Since the target organ system remains isolated from the remainder of the body, 

many dose-limiting systemic toxicities can be avoided entirely. Localized delivery systems also 

give the physician much tighter control on the extent and duration of therapeutic exposure.  

Catheter technology has found many uses in both systemic and local drug delivery 

systems. Implantable drug delivery devices can be designed to transmit drugs and fluid directly 

into the bloodstream without the repeated insertion of needles. These systems are particularly 

well suited to the delivery of insulin, steroids, chemotherapeutics, antibiotics, analgesics, total 

parental nutrition and heparin. These types of devices are placed completely under the skin – 

usually in a convenient but inconspicuous location. The patient is aware of only a small bump 

under the skin. Because the device is subcutaneous, with no opening in the skin, there is little 

chance of infection or interference with daily activities. These devices can even be refilled by 

simple injection through the skin and a septum into the pump reservoir. 

A catheter can also be attached to the exit port of an implantable pump to perfuse a 

discrete location distant from the site of implantation. In this manner, drug solutions may be 

delivered into solid tissues. The miniature pump is capable of changing local drug concentrations 

around the catheter tip without influencing the rest of the body. Flows of 0.5 – 1.0 μl/hr appear to 
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be low enough that hydraulic damage or edema is minimal in the micro-perfused region [31]. 

This strategy has proven successful in the treatment of many neurological malignancies, where 

the size of the pump prohibits spinal and cranial implantation [47-49]. However, catheters are 

often subject to blockage and clogging by tissue debris, which can seriously hinder the 

performance of the device. 

Implanted polymer matrices loaded with a therapeutic provide another approach to 

localized drug delivery. The typical polymers that are used in medicine can be divided into two 

groups: those that are introduced for a chronic period of time and polymers whose presence is 

transient. The former includes the use of polymeric materials in cardiovascular surgery, 

orthopedics, plastic surgery, and otolaryngology. Such applications impose high demands on the 

stability of the materials used. The latter includes the use of polymers for drug delivery 

applications, where the material is no longer needed after the drug supply has been exhausted. 

The matrix is loaded with the desired agent and then implanted at the treatment site. If 

degradable polymers are not used, one is often required to harvest the implant. The major 

disadvantage to implantable polymer systems is that they are not refillable, as is the pump 

system. If a further dose is required, another implant must be placed at the treatment site, often 

requiring repeated surgical intervention. 

Currently available polymers for site-specific controlled release can be classified into 

four major categories: diffusion controlled systems, solvent-activated systems, magnetically 

controlled systems, and chemically controlled systems. Diffusion controlled systems involve 

either a reservoir or a matrix. In reservoir type systems, a layer of non-biodegradable polymeric 

material, through which a drug slowly diffuses, surrounds a core reservoir. The properties of the 

drug and the encapsulating polymer govern the diffusion rate of the drug out of the system. One 

of the problems with such reservoir systems is that it must be removed from the body when the 

drug load has been depleted. Another potentially life-threatening problem may be encountered 

when the reservoir accidentally ruptures and a large amount of drug is suddenly released into the 

surrounding tissues (known as “drug dumping”) [50, 51]. In a matrix type diffusion-control 

system, the drug is uniformly distributed throughout the polymer matrix and is released at a 

predetermined rate as drug particles are displaced from the polymer network. In such a system, 

there is no inherent danger of drug dumping in the case of accidental rupture of and 

encapsulating membrane. 
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Solvent-activated systems can be classified as either osmotically controlled or swelling 

controlled. In osmotically controlled polymer systems, an external fluid containing low 

concentrations of drug moves across a semi-permeable membrane to a region inside the device, 

where is the drug is in high concentration. Osmotic pressure tends to decrease the concentration 

gradient between one side of the membrane and the other. The inward movement of fluid forces 

the dissolved drug out of the device through a small orifice. In swelling controlled systems, the 

polymer holds a large quantity of water without dissolving. Typically, hydrogels, consisting of 

cross-linked hydrophilic macromolecules, are used for these types of applications [52-55]. As the 

system swells, the gel’s permeability for low molecular weight solutes (i.e., drugs) changes and 

these agents are released at a controlled rate as the gel continues to swell. 

Magnetically controlled drug delivery systems have been developed from proteins such 

as albumin and magnetic microspheres and are used in site-specific chemotherapy applications. 

Because of the magnetic nature of the resulting particles, they are theoretically capable of 

enhanced area-specific accumulation when the body is subject to an external magnetic field. 

Although still experimental, this carrier system has been shown capable of accommodating a 

wide variety of drug loads. Two advantages of this type of approach are the high efficiency for in 

vivo targeting and controllable release of drug at the microvascular level. A few electrically 

controlled polymers are also currently being developed for the controlled release of drugs [56]. 

Chemically controlled systems also have two classes: the “pendenant chain” system and 

the biodegradable system. The pendent chain system is one in which the drug molecule is 

chemically linked to the backbone of a polymer. In the presence of enzymes or fluids, chemical 

or enzymatic hydrolysis occurs with concomitant release of the drug as a controlled rate. The 

drug may be linked directly to the polymer or can be linked via a “spacer” group. In the 

biodegradable system, polymers gradually decompose and bring about a controlled release of 

drug. The drug is dispersed uniformly throughout the polymer and is slowly released as the 

polymer disintegrates. The two major advantages to this type of system are that polymers do not 

have to be removed from the body after the drug supply is exhausted, and the drug does not need 

to be water-soluble. In fact, because of these factors future use of biodegradable polymers is 

likely to increase more that any other type of polymer in the future. The LDI-glycerol 

polyurethanes discussed within this dissertation are essentially a blend of the pendant chain and 
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biodegradable system technologies, incorporating compounds via labile chemical bonds into a 

degradable polyurethane matrix. 

1.2.3 Biodegradable systems 

Biodegradable polymers may be synthetic or natural in origin. Some of the widely used synthetic 

biodegradable polymers in drug delivery technology are summarized in Table 1.  

 

Table 1 - Structure of some common biodegradable polymers 
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Natural degradable polymers include human serum albumin, low-density lipoproteins (LDLs), 

bovine serum albumin, gelatin, collagen, hemoglobin, polysaccharides, etc. [57]. Use of the 

natural polymers is often limited by difficulties in purification and large-scale manufacture, in 

addition to the potential to cause immunogenic and adverse reactions. With advances in polymer 

science over the past 30 years in the synthesis, handling and degradation mechanisms, many 

synthetic and natural polymers are being successfully employed in drug delivery applications. 

Irrespective of their source, all biodegradable polymers share some common characteristics: (1) 

stability and compatibility with the drug molecule, (2) biocompatible and biodegradable, (3) ease 

of manufacture on a large scale, (4) amenability to sterilization, and (5) flexibility to yield 

multiple release profiles [38]. Among the polymers listed in Table 1, polyesters, polylactones, 

poly(amino acids), and polyphosphazenes, predominantly undergo bulk erosion; polyorthoesters 

and polyanhydrides predominantly undergo surface erosion. 

Temporal drug release, delivering drug over an extended period of time and/or at a 

specific time, is advantageous for types of drugs such as chemotherapeutics, anti-inflammatory 

agents, antibiotics, opoid antagonists just to name a few [3, 4, 53, 58-60]. In general, drug release 

from biodegradable polymeric devices is controlled by diffusion of drug and/or polymer erosion. 

In practice, both of these mechanisms play a role in controlling the release rate; one dominates 

the other depending on the drug, morphology of the carrier, and other physiochemical 

characteristics. Release of small drug molecules from polymeric systems is largely governed by 

diffusion; diffusion closely follows Fick’s diffusion equation. In contrast, release of 

macromolecules such as proteins and peptides from polymer systems is more complex because it 

depends largely on polymer degradation. 

 Biodegradable polymers generally undergo three types of degradation [61]. Type I 

degradation refers to the polymer where the degradation occurs along the main chain of the 

polymer. The cleavage of linkages between monomers results in a continuous decrease in 

molecular weight. Most of the linear biodegradable polymers follow this degradation pattern. 

Type II degradation occurs when water-soluble polymer is made insoluble by ubiquitous cross-

linking with a hydrolysable covalent bond. As the cross-links erode, polymer fragments become 

soluble and diffuse away from the bulk material mass. Type III degradation involves a 

degradation of a polymer side chain. This type of degradation has been observed with partially 

esterified maleic anhydride copolymers [62, 63]. The polymer becomes water-soluble as the side 
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chain carboxylate groups are ionized. Often times, polymer drug delivery systems will function 

via various combinations of the aforementioned degradation types. 

The desire to build into polymers precise zero-order surface erosion substrates, without 

alteration of the integrity of the inner structures, has been difficult to achieve. Although surface 

erosion can account for a significant portion of the release process, diffusion of the drug out of 

the device or solvent into the polymer ultimately contributes to the drug-release process and 

causes unpredictable changes in release rate that may not be desirable. However, a variety of 

factors has been identified that allow for the design of controlled release delivery systems. 

Changes in molecular weight and co-polymerization are two parameters that can be used 

to alter the degradation rates of controlled release systems. To date, the largest body of literature 

exists on polyesters such as poly(DL-lactide) or poly(DL-lactide-co-glycolide). These polyesters 

are commercially available with varied molecular weights and monomer ratios of lactide and 

glycolide. They are also available with acid end groups to impart higher hydrophilicity. Addition 

of low-molecular-weight poly(DL-lactide) (MW 2000 Da) increases drug release from a 

biodegradable poly(DL-lactide) (MW 120,000 Da) drug delivery system [64]. It was found that 

the duration of action could be varied over a range of several hours to months by changing the 

amount of low-molecular-weight poly(DL-lactide). 

The molecular weight of the drug species can also be varied to control the release profile. 

In the case of macromolecular drugs, major portions are released by polymer degradation and 

erosion, and a small portion is released by the diffusion mechanism. For instance, polypeptides 

usually have limited solubility in a polymer matrix of the aqueous channels present in the 

delivery system could be tortuous and narrow to facilitate diffusion. Reports from the literature 

indicate that the release of macromolecular drugs is tri-phasic, characterized by a high intial or 

“burst” release, a lag phase, and finally the release of drug at a higher rate until depletion. 

Physiologically, this may mean a brief period of therapeutic activity or even acute toxicity, a 

period of no activity corresponding to the lag phase, and finally sustained activity.  

 Many classes of polymers are hydrophobic and crystalline in nature and need certain 

modifications in order to have acceptable biodegradation and drug release. As an example, 

polycaprolactone is crystalline and hydrophobic, and it can take years for complete dissolution in 

the body. Similar to polylactides, the biodegradation rates of polycaprolactones can be hastened 

by blending with polymers such as PLA and PGA or alkylamines [65, 66]. Plasticizers can also 
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be added to polymeric systems to alter their degradation properties in addition to their 

mechanical properties. Addition of the plasticizer has been reported to reduce the glassy nature 

of the polymers, reduces the porosity, and may deform the surface owing to dehydration, all 

resulting in altered drug release [67, 68]. 

 The method of prepartion and processing used to manufacture the release system can 

have significant effects on the ultimate release rates observed. Degradtion of the polymer matrix 

and as well as the stability of the drug should be considered be for selecting a manufacturing 

process. Vapreotide, a somatostatin analogue, incorporated PLGA implants formulated by two 

different manufacturing techniques, extrusion and injection molding, and the influence of 

processing methods on the in vitro degradation of the polymer was studied [69]. Both methods 

decreased the molecular weight and polydispersity index of the polymer, but there was no 

change in the crystalline network. The extruded implants degraded more rapidly in vitro than the 

injection molded ones and showed higher early releases rates. The physiochemical properties of 

solvents used in the fashioning of biodegradable drug implants can affect the release profiles as 

well. The boiling point, volatility, and miscibility with other solvents need to be considered 

especially in the case of formulated micro- and nano-spheres. Solvent effects tend to alter the 

micro-sphere morphology, changing drug entrapment efficiency and release rates [70, 71]. 

 Numerous synthetic biodegradable polymers are available and still being developed for 

sustained release and targeted drug delivery applications. An enormous amount of literature is 

available on various means of altering the performance of these polymers and the delilvery 

systems they constitute. Development of such an optimized drug delivery system using 

biodegradable polymers can offer significant improvements in patient comfort and compliance. 

These systems in many cases reduce the required dose intake and limit unwanted toxicities, as 

well as providing better therapeutic efficacy owing to continuous availability of drug in the 

therapeutic ranges over an extended period. 
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2.0  LDI-GLYCEROL POLYURETHANE IMPLANTS EXHIBIT CONTROLLED 

RELEASE OF DB-67 AND ANTI-TUMOR ACTIVITY IN VITRO AGAINST 

MALIGNANT GLIOMAS 

2.1 ABSTRACT 

The purpose of the present study was to develop a biodegradable and biocompatible 

polyurethane drug delivery system based on lysine diisocyanate (LDI) and glycerol for the 

controlled release of 7-tert-butyldimethylsilyl-10-hydroxy-camptothecin (DB-67). DB-67 has yet 

to be implemented into any clinical due to an inability to be delivered in sufficient quantities to 

impact tumor growth and disease progression. To remedy this, DB-67 was covalently 

incorporated into our delivery system by way of an organometallic urethane catalyst, and was 

found dispersed uniformly throughout the LDI-glycerol polyurethane discs. Scanning electron 

micrographs indicate that the LDI-glycerol discs are uniform and possess a pore distribution 

typical of the non-solvent casting technique used to prepare them. The release rates of DB-67 

from the LDI-glycerol discs were found to follow zero-order kinetics, varying with both time and 

temperature, and were shown capable of delivering therapeutic concentrations of DB-67 in vitro. 

Cellular proliferation assays demonstrate that empty LDI-glycerol discs alone do not 

significantly alter the growth of malignant human glioma cell lines (U87, T98G, LN229, 

SG388). DB-67 loaded LDI-glycerol polyurethane discs were found to inhibit cellular 

proliferation by 50% on average in all the malignant glioma cell lines tested. These results 

clearly demonstrate the long-term slow release of DB-67 from LDI-glycerol polyurethane discs 

and their potential for postoperative intra-cranial chemotherapy of cancers. 

Keywords: drug delivery; polyurethane; camptothecin; glioma; lysine diisocyanate 
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2.2 INTRODUCTION 

Camptothecin (CPT) and its numerous synthetic analogs comprise a special class of anticancer 

agents active in lung, ovarian, breast, pancreas, and stomach cancers previously reported 

resistant to chemotherapy [2, 5, 6, 72]. CPT is a naturally occurring alkaloid first isolated from 

the Chinese tree Camptotheca acuminata (Nyssaceae) by Wall and co workers in 1966 [73]. 

Unsuccessful results in three early Phase I studies lessened the interest in the drug for a number 

of years [74-76]. It was later shown that CPT inhibited the enzyme topoisomerase I, a nuclear 

protein essential for DNA repair during replication, and interest in the drug and its analogs was 

reborn [77, 78]. Currently, two CPT analogs, topotecan and irinotecan, have been approved by 

the FDA, and at least 10 additional CPT derivatives are in various stages of clinical trials – 

including 9-amino-CPT in advanced clinical trials [2, 5].  

The pharmaceutical development and clinical utility of the camptothecins are limited by 

the distinctive dynamics of these agents in the blood stream. All of the camptothecins now in 

clinical development contain a -hydroxy- -lactone moiety, and they exist in two distinct forms 

at the physiological pH of 7.0 and above. The biologically active “lactone-closed” form reacts 

with water to form a biologically inactive “lactone-opened” (carboxylate) form [8, 9]. This 

simple chemical hydrolysis dynamically inactivates the parent drug. Furthering the problem, the 

predominant human blood serum protein, albumin (HSA), preferentially binds the carboxylate 

form – shifting the equilibrium towards the inactive moiety [10-12]. Because camptothecins are 

S-phase specific drugs, optimal topo I inhibitory activity is only obtained when the tumors of a 

patient are continuously exposed to the drug. Accordingly, establishing conditions where a 

therapeutically relevant concentration of the lactone-closed form of a camptothecin is present 

over a suitable period for tumor cells to cycle through the S-phase is a major challenge. 

The CPT analog, 7-tert-butyldimethylsilyl-10-hydroxy-camptothecin (DB-67), was 

synthesized in an attempt to further enhance the therapeutic performance of this class of drugs 

[79-81]. DB-67 displays superior stability in plasma relative to other camptothecin agents, likely 

due to its lipophilicity and reduced interactions with the carboxylate-binding site on serum 

albumin. The analog also possesses a high intrinsic potency against the topo I target enzyme with 

a unique DNA cleavage profile. Ultimately, the combination of its potency and stability profiles 

suggests that it may be more efficacious than the currently used FDA-approved CPT-based 
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therapies. However, the compound is largely water-insoluble, making it difficult to deliver into 

the body through the conventional routes such as oral, intravenous or intramuscular injection 

[12]. As such, DB-67 has yet to be implemented into any clinical therapies due to an inability to 

be delivered in adequate quantities to impact tumor growth and disease progression. 

Surgically implantable polymer matrices loaded with chemotherapeutic agents are a 

proven approach to localized drug delivery [48, 82, 83]. The matrix is loaded with the desired 

agent and then implanted within the tumor site, following as complete a surgical resection as 

clinically possible. The matrix releases its drug load over a period pre-determined by the 

characteristics of the encapsulating polymer, delivering drug to neoplastic cells existing in the 

peritumoral region that otherwise would give rise to recurring tumor. Typically, these types of 

drug delivery systems have been created by dissolving drug in a polymer and processing it into 

the desired morphology. The drug remains physically entrapped in the polymer, but it is not 

anchored through chemical bonds – and a burst release of drug subsequently follows. CPTs have 

previously been delivered in this manner [83-86]. Because the degree of survival improvement 

with previous polymer-based local delivery approaches, although statistically significant, has 

been modest at best, there is a rationale to build on this strategy in order to further enhance 

therapeutic efficacy. Our goal was therefore to develop a synthetic, biodegradable matrix 

incorporating DB-67 through labile chemical bonds, resulting in controlled long-term delivery of 

the agent to tumor cells. 

Our laboratory has developed a new generation of biocompatible polyurethanes 

composed of lysine diisocyanate (LDI) and glycerol that degrade into the non-toxic components 

– lysine, glycerol, and CO2 [87, 88]. Only a handful of studies have reported the successful use 

of polyurethanes in drug delivery applications, and their favorable results support further 

examination of this approach [89-94]. Our peptide-based urethane possesses the versatility of 

commercial polyurethane systems, but lacks the toxicity associated with commercial urethane 

degradation products. The goal of this study was to develop a biodegradable polyurethane disc 

incorporating DB-67 through reactive isocyanate groups capable of controlled, long-term drug 

delivery to tumor cells through hydrolysis of urethane linkages. We hypothesized that it is 

possible to incorporate DB-67 into the backbone of such a polymer and impact cellular growth in 

vitro – the ultimate goal being long-term delivery of active compound over a period of months in 

vivo. 
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2.3 MATERIAL AND METHODS 

2.3.1 Materials 

Lysine diisocyanate methyl ester (LDI) was purchased from Chemical Division, Kyowa Hakko 

Kogyo Co. Ltd. (Tokyo, Japan).  7-tert-butyldimethylsilyl-10-hydroxycamptothecin (DB-67) 

was obtained from Dr. Dennis Curran at the University of Pittsburgh, Chemistry Dept.  

(Pittsburgh, PA). The human malignant glioma cell lines U87 and T98G were obtained from the 

American Type Tissue Culture Collection. LN229 was kindly provided by Dr. Nicolas de 

Tribolet (Lausanne, Switzerland). The SG388 cell line was established at Children’s Hospital of 

Pittsburgh from a tumor specimen identified by a neuropathologist. MTS reagents were obtained 

from Promega. Chemicals were obtained from Sigma–Aldrich Chemical Co. and were of reagent 

grade unless otherwise specified (Milwaukee, WI). 

2.3.2 Reaction of DB-67 with LDI 

Lysine methyl-ester diisocyanate (MW 212, 4.43 mg, 0.021 mmol) was added to DB-67 (MW 

479, 10.0 mg, 0.021 mmol) in a 1:1 molar ratio and dissolved in 1 ml of THF in a dry flask. Two 

samples were prepared and 10 μL of tin(II) 2-ethylhexanoate (MW 405, d 1.251, 0.031 mmol) 

was added to one sample. Samples were sealed and stirred in the dark at room temperature for 48 

hours. THF was then removed at 50 °C in a vaccum oven, and the resulting solid was 

incorporated into a potassium bromide (KBr) window. FT-IR spectroscopy was then used to 

confirm the presence or absence of isocyanate signal at 2265 cm
-1

 in the samples. 

2.3.3 Synthesis of the LDI-glycerol Polyurethane containing DB-67 

DB-67 (MW 479, 10 mg, 0.021 mmol), LDI (MW 212, 3.93 g, 18.52 mmol) and tin(II)-2-

ethylhexanoate (MW 405, 5μl, 0.016 mmol) were added to a small, dry reaction vessel. The flask 

was then flushed with nitrogen, sealed, and the mixture was allowed to stir in the dark at room 

temperature for a period of 24 hours. Glycerol (MW 92, 1.13g, 12.28 mmol) and dry, HPLC 
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grade acetone (2.5 ml) were then added to the flask. The flask was again flushed with nitrogen, 

sealed, and allowed to stir vigorously in the dark at room temperature for approximately 72 

hours. During this time the mixture changed from opaque to translucent and its viscosity 

increased.  

Following a 72-hour reaction period, a non-solvent casting technique was used to cast the 

material into a film. The viscous pre-polymer was transferred to a 65mm PTFE dish submerged 

in an ethyl-acetate (EtAc) bath. The pre-polymer was allowed to cure for 5 days in the dark at 

room temperature and then placed into a vacuum oven at 45 °C for 24 hours to remove residual 

EtAc and acetone. At this time the resulting film was removed from the PTFE dish and cut into 

discs using a 4mm tissue biopsy punch (Sklar Instruments). The discs were placed into an 

ethanol bath in order to remove residual acetone from the polymerization reaction; the discs were 

left to soak in the dark for 7 days and the ethanol was changed daily. Following the ethanol 

wash, the samples were rinsed several times with deionized H2O, and allowed to soak in the dark 

for 72 hours to remove any remaining ethanol. The deionized H2O was changed twice daily. The 

discs were then dried overnight in a vacuum oven at 45 °C and placed into storage in the dark at 

4 °C for further analysis. Control discs not containing DB-67 were prepared by adding LDI, 

glycerol, and tin catalyst in the same amounts as above simultaneously to a reaction vessel. The 

contents were then reacted and processed as previously described. 

2.3.4 Distribution of DB-67 

Twenty LDI-glycerol discs containing DB-67 were placed into individual sample vials. One 

milliliter of 1N NaOH was added to each vial, and the vials were sonicated at 45 °C for 1 hour to 

completely hydrolyze the polymer. In basic solution, DB-67 will exist in it ionized hydroxy-acid 

form, but its fluorescent properties are identical to the closed lactone form [81]. Samples were 

stored in the dark at 4 °C overnight and analyzed the following day. 

The DB-67 content of each LDI-glycerol disc was assessed with fluorescence 

spectroscopy utilizing 430 nm and 550 nm for the excitation and emission wavelengths, 

respectively. Samples were diluted 100-fold with de-ionized water prior to being read. Each 

sample was read 10 times in rapid succession, and an average of the signal was used to calculate 
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DB-67 content from a standard curve (R
2
=0.9995). Standards were prepared by serial dilution 

from a 50 μg/ml stock solution in 1N NaOH.  

Lysine content of the polymer discs was assessed using the ninhydrin colorimetric assay. 

Ninhydrin reagent was prepared by dissolving ninhydrin (MW 178, 2.0 g, 11.23 mmol) in 50 ml 

DMSO and stannous chloride (MW 190, 80 mg, 0.42 mmol) in 50 ml of 0.2 M citrate buffer (pH 

5). These two solutions were mixed; the resulting solution was used the same day. Polymer 

samples dissolved in NaOH were diluted 20-fold with PBS (pH 7.4). 20 μL of the diluted sample 

was added to 1 ml of ninhydrin reagent and immersed in boiling water for 20 minutes. 200 μL 

from each sample was then transferred to a 96-well plate and the absorbance at 570 nm was read 

and used to calculate the lysine content from a standard curve (R
2
=1.0000). Standards were 

prepared by serial dilution from a 10 mg/ml stock solution of lysine methyl-ester in PBS (pH 

7.4) Each sample was assayed in triplicate and the average was used to determine the final lysine 

content. 

2.3.5 Stability of DB-67 in Aqueous Solution 

Previous studies have reported the fluorescence quenching of CPT in aqueous solution [95]. In 

order to assess the stability of DB-67’s fluorescence signal in aqueous solution, 200 nM DB-67 

solutions were prepared in PBS (pH 7.4) from a 10 mM stock solution prepared in DMSO. 

Samples were placed on rocking plates and incubated in a temperature-controlled room at 4, 22, 

and 37° C for 60 days. Every 7 days, 3ml of PBS was retrieved and DB-67 content was assessed 

using fluorescence spectroscopy. 

2.3.6 In vitro Release of DB-67 

LDI-glycerol polyurethane samples containing DB-67 were incubated at 10 mg/ml in PBS (pH 

7.4) on rocking plates in temperature-controlled rooms at 4, 22, and 37° C for 60 days. Sample 

chambers were protected from light during this time. Every few days, 3 ml of PBS was retrieved 

from each sample. The amount of DB-67 released from the polymer was detected using 

fluorescence spectroscopy and a standard curve (R
2
=0.9973), with 430 and 550 nm as the 
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excitation and emission wavelengths, respectively. Lysine and glycerol release from the polymer 

were not assessed at this time due to the extremely low concentration of these species present in 

the degradation media. 

2.3.7 Effect of Polyurethane Tablets on Cellular Proliferation 

A panel of human malignant glioma cell lines consisting of U87, T98G, SG388, and LN229 was 

used for the anti-proliferative analysis of our drug releasing polymer discs. For these studies, 1 x 

10
2
 cells were plated and grown for 24 hr in 100 μl of growth medium in 96-well plates. Polymer 

discs were then added to the cells and they were incubated for 5 days. Positive and negative 

controls received a stock solution of DB-67 (100 nM final concentration) or media alone, 

respectively. In all cases, final concentrations of DMSO were 0.1%, well below the 

concentrations that interfere with the proliferation in the above cell lines. After the incubation 

period, the number of viable glioma cells were determined by measuring the bio-reduction of the 

tetrazolinium compound MTS by intracellular hydrolases in the presence of the electron coupling 

reagent PMS as previously described [96]. All samples were tested in twelve separate wells and 

averaged. 

Prior to beginning the anti-proliferative analysis described, varying numbers of cells from 

each of the four malignant gliomal cell lines were plated, and the MTS signal was measured at 

24-hour intervals over a 5 day period (data not shown). From these preliminary studies, it was 

found that plating 1 x 10
2
 cells/well retained a linear MTS signal over the proposed 5-day 

incubation period.  

2.4 RESULTS AND DISCUSSION 

2.4.1 Reaction of DB-67 and LDI 

Our laboratory has previously shown that polyurethanes synthesized from LDI and glycerol 

degrade hydrolytically into the non-toxic components lysine, glycerol, and CO2 [87]. DB-67 was 
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incorporated into the LDI-glycerol polymer by way of hydrolysable urethane linkages in an 

attempt to retain its anti-proliferatve activity. Figure 6 illustrates the chemical structure of these 

components and that of the proposed polymer structure. 

 

 

 

 

Figure 6 – Molecular structure of DB-67, LDI, glycerol and the LDI-glycerol polyurethane 

 

FT-IR data demonstrate isocyanate signal at 2265 cm
-1

 that persists in a 1:1 molar reaction 

between DB-67 and LDI after 48 hours (Figure 7). When tin(II) 2-ethylhexanoate, an 

organometallic urethane catalyst, is present there is an absence of any isocyanate band after 48 

hours. Complete disappearance of the isocyanate signal in a 1:1 molar reaction of LDI and DB-

67 (1:1 NCO/OH) suggests that both of the hydroxyl groups present in DB-67 have reacted. 

Identification of the individual carbonyl bands representative of the newly formed urethane is not 

possible here, as DB-67 also contains several carbonyl structures that overlap in that particular 

region of the spectra. Furthermore, the FT-IR spectra of DB-67 and LDI alone demonstrates 

hydroxyl stretching at 3430 cm
-1

, and a shift of that band to 3380 cm
-1

 occurred when catalyst 

was added – suggesting the formation of a secondary amine, and hence urethane linkages. 
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Figure 7 - IR Data depicting 1:1 molar reactions between DB-67 and LDI after 48 hours: (A) without tin(II) 

2-ethylhexanoate, (B) with 10 μl tin(II) 2-ethylhexanoate 

 

2.4.2 Characterization of LDI-Glycerol Tablets 

Our lab has previously synthesized LDI-based foams that support cellular growth and attachment 

[87, 88]. The polyurethane tablets fashioned in this study differ in morphology from those 

materials previously studied.  Scanning electron micrograph images reveal polymer samples with 

a unique pore distribution through out the volume of the tablet (Figure 8). This morphology is 

artifact and is typical of non-solvent casting techniques used to form the film that was later cut 
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into 4mm discs. However, all surfaces of the material appeared identical under higher 

magnification. 

A B

C D

 

 

 

Figure 8 – Scanning electron microscope images of an LDI-glycerol drug delivery system: (A) Top surface of 

tablet which was exposed to non-solvent during the curing process, (B) View of bottom surface in contact with 

Teflon surface during curing, (C) Cross-sectional image of tablet demonstrates pore distribution, (D) 

Examination at 8000x magnification (only bottom surface is shown) 

 

An FT-IR spectrum of the LDI-glycerol polyurethane disc with DB-67 was obtained 

through freezing a small sample in liquid nitrogen, crushing it, and then incorporating it into a 

KBr window (Figure 9). The spectrum does not display the characteristic isocyanate signal at 

2265 cm
-1

, while it does indicate urethane and secondary amine formation at 1720 cm
-1 

and 3400 

cm
-1

, respectively. The spectrum also displays the requisite CH2 (2945 cm
-1

), CH (2865 cm
-1

), 

and C=O (1260 cm
-1

) stretching frequencies, as well as the NH bending frequency (1540 cm
-1

). 

All of these signals are consistent with the polymer structure shown in Figure 1. Individual 
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frequencies of the DB-67 moiety were not able to be resolved due to the low concentration of the 

species in the sample. 

 

 

 

 

Figure 9 - FT-IR spectrum of an LDI-glycerol polyurethane disc containing DB-67 

 

It is essential that drug delivery systems be able to be reliably reproduced in the amounts 

and under the conditions required for clinical use [4]. Therefore, it was important to ensure that 

the polymer processing techniques used in this study resulted in reproducible samples with 

uniform distribution of drug throughout the samples. LDI-glycerol polymer discs containing DB-

67 (n=20) were produced using the aforementioned methods, and analyzed for average DB-67, 

lysine, and glycerol content (Table 2). The relative percentages listed are calculated from the 

total weight of the synthetic constituents, not the degradation products resulting from polymer 

hydrolysis. 
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Table 2 - DB-67, lysine and glycerol content of LDI-glycerol polymer discs 

 

 

DB-67 Lysine Glycerol
a
 

Polymer 

disc (mg) g wt % mg wt % mg wt % 

g DB-67 

mg polymer  

18.3 14.7 ± 0.1 0.08 12.5 ± 0.4 68.2 1.8 10.1 0.8 

22.7 17.7 ± 0.1 0.08 13.9 ± 0.4 61.3 4.3 19.2 0.8 

20.8 16.3 ± 0.1 0.08 12.9 ± 0.4 62.2 3.8 18.0 0.8 

20.9 16.3 ± 0.1 0.08 13.4 ± 0.5 64.2 3.2 15.4 0.8 

19.9 15.4 ± 0.1 0.08 11.9 ± 0.4 60.0 4.2 20.9 0.8 

16.5 12.6 ± 0.1 0.08 11.2 ± 0.5 68.1 1.7 10.3 0.8 

17.4 13.4 ± 0.1 0.08 11.2 ± 0.4 64.2 2.7 15.4 0.8 

17.3 13.4 ± 0.1 0.08 11.7 ± 0.6 67.8 1.8 10.6 0.8 

19.7 15.8 ± 0.1 0.08 13.0 ± 0.5 65.9 2.6 13.2 0.8 

22.1 17.1 ± 0.1 0.08 13.5 ± 0.6 60.9 4.4 19.7 0.8 

17.2 13.2 ± 0.1 0.08 11.4 ± 0.5 66.3 2.2 12.7 0.8 

17.8 13.5 ± 0.1 0.08 11.8 ± 0.3 66.4 2.2 12.6 0.8 

16.2 12.5 ± 0.1 0.08 10.5 ± 0.7 64.5 2.4 15.0 0.8 

17.3 13.6 ± 0.25 0.08 11.4 ± 0.5 65.7 2.3 13.4 0.8 

18.3 13.1 ± 0.1 0.07 11.0 ± 0.4 56.0 3.8 21.0 0.7 

15.5 12.0 ± 0.1 0.08 10.1 ± 0.6 65.2 2.2 14.1 0.8 

21.0 16.0 ± 0.1 0.08 13.4 ± 0.5 63.9 3.3 15.8 0.8 

17.4 13.7 ± 0.1 0.08 10.9 ± 0.3 62.7 3.0 17.4 0.8 

15.9 12.1 ± 0.1 0.08 10.1 ± 0.6 63.6 2.6 16.2 0.8 

18.2 13.8 ± 0.1 0.08 11.2 ± 0.5 61.3 3.5 19.2 0.8 

18.5 ± 2.1 14.32 ± 0.1 0.08 11.9 ± 0.5 64.12 2.9 ± 0.9 15.5 0.8 

 
a
glycerol content = (total mass) – (mass of  LDI and DB-67)  

 

Samples were found to have a consistent drug load of 14.3 μg DB-67 per disc, or 0.08% (w/w). 

The relative percentages of lysine and glycerol were found to be 64.1% (w/w) and 15.5% (w/w), 

respectively. These values agree reasonably well with the nominal percentages predicted from 

the reaction stoichiometry of 58.7% and 22.2% lysine and glycerol, respectively. Although the 

weights of the discs were found to vary, the drug is evenly distributed throughout the polymer 

film (0.772 μg drug/mg polymer). It is clear upon inspection of these results that the processing 

techniques used in this study are reproducible and result in uniform distribution of DB-67 

throughout the material. 

Given 10 mg of DB-67 was used in our synthetic reaction and the weight of LDI and 

glycerol used was approximately 5 grams, we would anticipate the LDI-glycerol polyurethane 

discs to contain 0.2% (w/w) drug. However, the discs were found to contain 0.08 % (w/w) DB-
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67, indicating that only 38.5% of the DB-67 used was successfully loaded into the polymer. We 

believe the decreased loading of drug results from a few key factors. First, the DB-67 

fluorescence signal was found to be light sensitive and to decay significantly at 37 °C when left 

exposed to light in aqueous media (Figure 10).  

 

 

 

 

Figure 10 - Fluorescence decay profiles of 200 nM DB-67 solutions in PBS (pH 7.4) left unprotected from light 

at 4, 22 and 37 °C. Error bars represent one standard deviation from the mean 

 

It is likely that the decaying fluorescence signal results in an underestimation of the total drug 

content in our samples as well as what was being released in vitro. Second, our synthetic reaction 

relies on the use of acetone as a polymerization solvent, and it must be removed from the discs 

prior to tissue culture with a series of ethanol and deionized water washes. The half-life of other 

CPT analogs in aqueous solution has been reported to be on the order of 20 minutes [97]. Our 

discs were subject to an aqueous environment for 72 hours, and this may have contributed to 

some of the loss DB-67 signal. Third, small oligomers if present in the viscous pre-polymer are 

likely to be sparingly soluble in EtAc. As a result they are then lost during the curing process.  

This was confirmed by FTIR of the polymer residue found on the bottom of our curing chambers 

after the EtAc was allowed to evaporate (data not shown). These factors when combined can 
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reasonably account for the “missing” DB-67 in our polyurethane films, and refinement of the 

processing techniques can certainly limit this loss in the future. 

2.4.3 In vitro Drug Release 

DB-67 possesses a characteristic, intense excitation-emission spectra that makes it easily 

detectable in aqueous solution at extremely low concentrations although the drug is sparingly 

soluble [54, 97]. The fluorescence excitation/emission spectrum of a 10 μg/ml DB-67 solution 

prepared in 1N NaOH is shown in Figure 11.  

 

 

 

 

Figure 11 - Excitation-emission fluorescence spectra of a 1.0 mg/ml DB-67 solution in 1N NaOH 

 

There was no appreciable signal present in the DB-67 emission range from the solution used to 

dissolve the samples and to prepare standards. The standard curve used to assess the degradation 

samples was linear over the concentration ranges used for detection (R
2
=0.9998). Since the DB-

67 fluorescence signal was found to be light sensitive and was shown to significantly decay over 
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time when left exposed to ambient light in the temperature controlled rooms, degradation 

samples were kept in the dark in an attempt to limit signal decay. However, it is still possible that 

we are underestimating the true concentration of DB-67 in solution using this method. 

 The small amount of DB-67 incorporated into the discs was assumed to not alter 

the degradative kinetics of the LDI-glycerol material. Figure 12 shows the release profiles of 

LDI-glycerol discs containing 0.08 % (w/w) DB-67 content. 

 

 

 

 

Figure 12 - In vitro release characteristics of DB-67 from LDI-Glycerol tablets incubated at 10 mg/ml in PBS 

at 4, 22, and 37 °C (pH 7.4). Error bars represent one standard deviation from the mean 

 

Drug release was shown to vary in a temperature dependent fashion, with the highest drug loads 

being released at 37 °C. The release at 22 °C was observed to follow zero-order kinetics. These 

results agree well with the degradation profile previously observed for LDI-based polyurethanes 

[87]. By day 65 of the study, DB-67 concentrations of 1.4, 3.1, and 9.2 ng/ml were obtained in 

aqueous solution at 4, 22, and 37 °C, respectively. These values represent 0.02, 0.04, and 0.1 % 

of the total drug load contained in the samples. These results indicate that only a small fraction of 

the total drug load found its way into solution, and that slow release of drug from a polymer by 

way of urethane hydrolysis is indeed a successful long-term release strategy. It was not possible 

to assess whether the DB-67 being released was in its active lactone or inactive hydroxy-acid 
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form, but in vitro cytotoxicity assays should provide insight. It is well-known that in vivo 

degradation rates of polymers are increased relative to those seen in vitro [98, 99], and this effect 

has also been noted to occur in polyurethane materials as well [100]. Therefore, we anticipate 

achieving higher concentrations of DB-67 in vivo than were obtained in vitro. 

2.4.4 Cytotoxicity Assays 

Previous studies indicate that CPT and its many analogs are quite effective at halting the growth 

of malignant tumors [80, 101-104], and one study in particular has examined the in vitro effects 

of DB-67 on malignant gliomal cell lines [96]. In that study, DB-67 was found to inhibit the 

growth of malignant gliomal cell lines at extremely low concentrations. Specifically, the U87, 

SG388 and T98G cell lines were found to have decreased proliferation in the presence of DB-67 

at concentrations of 2, 3, and 6 ng/ml, respectively. Our degradation assays of the LDI-glycerol 

discs containing 0.08 % (w/w) DB-67 have shown that by day 6 a concentration of 3.2 ng/ml was 

attained in PBS at 37 °C.  Therefore, we anticipated that the amounts of drug being released from 

LDI-glycerol discs are great enough to inhibit growth in our panel of malignant glioma cell lines.  

The cytotoxicities of the LDI-glycerol discs containing 0.08 % (w/w) DB-67 in each of 

the malignant gliomal cell line are shown in Figure 13.  

 

 

 

 

Figure 13 - In vitro cytotoxicity results of (A) 3-day and (B) 5-day treatments on malignant gliomal 

cell lines. Error bars represent one standard deviation from the mean 
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Empty polymer discs were found to not significantly differ from cells grown in media alone at 

the =0.0001 level of significance. In all malignant gliomal cell lines, a statistically significant 

difference was seen between neat polymer and “drug-loaded” polymer in both 3-day and 5-day 

treatment groups (p<0.0001). In the T98G, SG388, and LN229 malignant gliomal cell lines there 

was no significant difference between the 100 nM DB-67 treated cells and the 0.08% (w/w) DB-

67 discs (p<0.0001). The cytotoxicity data has been summarized in Table 3.  

 

Table 3 - In vitro cytotoxicity of DB-67 loaded LDI-glycerol polyurethanes 

 

 

 3 Day Treatment 

Media alone  100 nM DB-67 Empty disc DB-67 disc 
Cell line 

MTS
a
 MTS % control MTS % control MTS % control 

LN229 0.992 ± 0.045 0.247 ± 0.012 24.9 ± 1.2 1.080 ±0.195 108.9 ± 19.6 0.554 ± 0.179 55.9 ± 18.1 

T98G 1.155 ± 0.103 0.342 ± 0.022 29.6 ± 1.9 0.986 ± 0.179 85.4 ± 15.5 0.452 ± 0.269 39.1 ± 23.3 

SG388 0.938 ± 0.084 0.416 ± 0.024 44.4 ± 2.6 0.755 ± 0.098 80.6 ± 10.5 0.426 ± 0.124 45.4 ± 13.3 

U87 0.625 ± 0.069 0.222 ± 0.013 35.5 ± 2.1 0.568 ± 0.074 90.9 ± 11.9 0.434 ± 0.047 69.4 ± 7.6 

 

 

 5 Day Treatment 

Media alone  100 nM DB-67 Empty disc DB-67 disc 
Cell line 

MTS MTS % control MTS % control MTS % control 

LN229 1.071 ± 0.059 0.247 ± 0.009 23.0 ± 0.8 0.844 ± 0.110 78.8 ± 10.2 0.447 ± 0.226 41.7 ± 21.1 

T98G 2.486 ± 0.202 0.285 ± 0.029 11.5 ± 1.2 2.282 ± 0.278 91.8 ± 11.2 0.482 ± 0.341 19.4 ± 13.7 

SG388 1.720 ± 0.163 0.410 ± 0.010 23.8 ± 0.6 1.545 ± 0.189 89.8 ± 11.0 0.328 ± 0.124 19.1 ± 7.2 

U87 1.202 ± 0.144 0.205 ± 0.011 17.1 ± 0.9 1.201 ± 0.159 99.9 ± 13.3 0.804 ± 0.105 66.9 ± 8.7 

a
MTS = absorbance at 490 nm  

 

These results suggest that DB-67 is being released in its active lactone-closed structure from the 

LDI-glycerol discs and it is present in concentrations high enough to impact malignant glioma 

proliferation in vitro. 
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2.5 CONCLUSIONS 

In this study, we present a novel approach to the controlled delivery of the CPT analog DB-67 

employing biocompatible, biodegradable polyurethanes constructed from LDI and glycerol. Our 

delivery system differs from other conventional approaches in that the drug has been covalently 

bound into the polymer framework. We have shown that DB-67 incorporates by reacting with 

LDI in the presence of an organometallic urethane catalyst. The drug is then released through 

slow, passive hydrolysis of urethane bonds. We were able to demonstrate the ability of an LDI-

glycerol polyurethane disc to steadily deliver drug over a prolonged period. Therapeutic 

concentrations of the potent anticancer compound on the order of nanograms/ml were attained 

through steady, zero-order release from the polyurethane discs over a 65-day period with the 

potential to continue for much longer periods of time. It has also previously been demonstrated 

that the lactone moiety must remain intact in order to observe any cytotoxic effect[80]. Cellular 

proliferation assays conclude that only LDI-glycerol discs loaded with DB-67 exhibited any 

cytotoxic effect. It is unclear at this time how the polymer is able to stabilize the active lactone 

structure during the degradative process. These results from this study clearly demonstrate the 

potential for long-term drug release from a surgically implantable LDI-glycerol polyurethane 

device. 
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3.0  LDI-GLYCEROL POLYURETHANE FOAMS DEMONSTRATE CATALYST-

DEPENDENT CONTROLLED RELEASE PROFILES AND EXHIBIT ANTI-TUMOR 

ACTIVITY AGAINST MALIGNANT GLIOMA CELLS 

3.1 ABSTRACT 

The purpose of the present study was to develop a biodegradable and biocompatible 

polyurethane drug delivery system based on lysine diisocyanate (LDI) and glycerol for the 

controlled release of 7-tert-butyldimethylsilyl-10-hydroxy-camptothecin (DB-67). The impact of 

urethane catalysts on cellular proliferation was assessed in an attempt to enhance the 

biocompatibility of our polyurethane materials. DB-67, a potent camptothecin analogue, was 

then incorporated into LDI-glycerol polyurethane foams with two different amine urethane 

catalysts: 1,4-diazobicyclo[2.2.2]-octane (DABCO) and 4,4’-(oxydi-2,1-ethane-

diyl)bismorpholine (DMDEE). The material morphologies of the polyurethane foams were 

analyzed via SEM. DB-67 distribution throughout the foams was assessed through fluorescence 

microscopy. Release rates of DB-67 from the DABCO and DMDEE foams were found to be 

catalyst dependent and vary with temperature. The foams were capable of delivering therapeutic 

concentrations of DB-67 in vitro over an 11-week period. Cellular proliferation assays 

demonstrate that empty LDI-glycerol foams do not significantly alter the growth of malignant 

human glioma cell lines (p < 0.05). DB-67 loaded LDI-glycerol polyurethane foams were found 

to inhibit cellular proliferation by at least 75% in all the malignant glioma cell lines tested (p < 

1.0 x 10
-8

). These results clearly demonstrate the long-term, catalyst-dependent release of DB-67 

from LDI-glycerol polyurethane foams and their potential for use as implantable drug-delivery 

devices.  

Keywords: lysine diisocyanate, polyurethane, drug delivery, camptothecin; glioma 
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3.2 INTRODUCTION 

Camptothecin (CPT) and its numerous synthetic analogs comprise a special class of anticancer 

agents that appear to be quite active in human lung, ovarian, breast, pancreas, and gastric cancers 

previously reported resistant to chemotherapy [2, 5, 6, 72]. CPT is a naturally occurring alkaloid 

that was first isolated from the Chinese tree Camptotheca acuminata (Nyssaceae) by Wall and co 

workers in 1966 [73]. It inhibits the enzyme topoisomerase I, a nuclear protein essential for DNA 

repair during replication [77, 78]. Currently, two CPT analogs, topotecan and irinotecan have 

been approved by the FDA, and at least 10 additional CPT derivatives are in various stages of 

clinical trials – including 9-amino-CPT in advanced clinical trials [2, 5]. The CPT analog 7-tert-

butyldimethylsilyl-10-hydroxy-camptothecin (DB-67) was synthesized in an attempt to enhance 

the stability and performance of CPTs [79-81]. DB-67 displays superior human blood stability 

relative to other camptothecin agents and possess a very high intrinsic potency against the topo I 

target enzyme. However, the compound is largely water-insoluble which has made clinical use 

quite difficult [12]. DB-67 has yet to be implemented into any clinical therapies due to an 

inability to be delivered in adequate quantities to impact tumor growth and disease progression.  

Polyurethanes are a special class of synthetic materials that are widely used in many 

modern industrial applications as insulations, sealants, coatings, and foams [105]. Many have 

gained FDA approval and currently find a place in numerous medical technologies due to their 

unique chemical and physical properties [106-110]. Polyurethanes are easily synthesized from 

diisocyanate and polyalcohol precursors via a condensation reaction that can be controlled by 

various urethane formation catalysts. The catalytic mechanisms and their effects on the resultant 

polymer architecture are well understood and can be tailored to specific material applications. 

Polyurethane catalysts for the most part are classified into two simple, distinct categories: 

organometallic and amine [18, 20]. The reactions they catalyze can be broken down into three 

categories: blowing, gelling, and cross-linking. The blowing reaction involves the reaction of 

isocyanate and water and generates a carbamic acid intermediate. As carbamic acid readily 

decomposes into an amine and CO2, the polyurethane expands into foam.  The gelling reactions 

simply refer to urethane or urea formation. The crosslinking reactions are generally quite limited 
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and refer to the reaction of isocyanate with itself, urethanes or ureas. Organometallic catalysts 

are often tin-based and tend to be more selective for gelling reactions, catalyzing urethane and 

urea formation. Amine catalysts are chiefly tertiary amines and they catalyze both gelling and 

blowing reactions. In this study, we focus primarily on the tertiary amine catalysts 1,4-

diazobicyclo[2.2.2]-octane (DABCO) and 4,4’-(oxydi-2,1-ethane-diyl)bismorpholine, also 

known as dimorpholino-diethyl ether (DMDEE). DABCO is rather non-selective in nature and 

known to catalyze both gelling and blowing reactions, while DMDEE is specific for the blowing 

reaction. 

The stability and degradative characteristics of polyurethane materials are ideal for the 

construction of controlled-release systems. However, the use of polyurethanes in the arena of 

drug delivery remains largely unexplored, although studies do exist that support their use [111-

114]. Our laboratory has developed a new generation of biocompatible, biodegradable 

polyurethane constructed from lysine diisocyanate (LDI) and glycerol that degrade predictably 

via a hydrolytic mechanism into non-toxic components – lysine, glycerol and CO2 [87, 88]. 

These materials possess the same versatility as widely used commercial polyurethanes, easily 

being processed into forms with unique physical properties. We have previously synthesized 

LDI-glycerol films and demonstrated their use as long-term drug delivery reservoirs. However, 

we can also fashion these materials into foams possessing different drug-delivery characteristics. 

We can also attempt to use the catalytic mechanisms to regulate the incorporation of drug and 

impact the release characteristics of our drug delivery systems. The purpose of this study is to 

formulate and characterize a drug delivery systems based on hydrolysable polyurethane foams 

prepared from LDI and glycerol. 

3.3 MATERIAL AND METHODS 

3.3.1 Materials 

Lysine diisocyanate methyl ester (LDI) was purchased from Chemical Division, Kyowa Hakko 

Kogyo Co. Ltd. (Tokyo, Japan).  7-tert-butyldimethylsilyl-10-hydroxycamptothecin (DB-67) was 

obtained from Dr. Dennis Curran at the University of Pittsburgh, Chemistry Dept.  (Pittsburgh, 
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PA). The human malignant glioma cell lines U87 and T98G were obtained from the American 

Type Tissue Culture Collection. LN229 was kindly provided by Dr. Nicolas de Tribolet 

(Lausanne, Switzerland). The SG388 cell line was established at Children’s Hospital of 

Pittsburgh from a tumor specimen identified by a neuropathologist. MTS reagents were obtained 

from Promega. Bismuth 2-ethylhexanoate was obtained from Alfa Aesar (Ward Hill, MA). All 

other chemicals were obtained from Sigma–Aldrich (Milwaukee, WI) and were of reagent grade 

unless otherwise specified. 

3.3.2 Urethane Catalyst Toxicity 

T98G cells were plated in MEM media at a density of 100 cells/well in 96-well plates. The plates 

were incubated for 24 hours to allow for cell adhesion, and the media was changed prior to any 

treatment. Solutions of bismuth 2-ethylhexanoate (MW 639), tin(II) 2-ethylhexanoate (MW 

405), dibutyltin dilaurate (MW 632), DABCO (MW 112) and DMDEE (MW 244) were prepared 

in DMSO; the final concentration of each solution was 10 mM. The catalyst solutions were 

mixed thoroughly, and 1.0 ml of each was diluted with 4.0 ml of growth media to arrive at 2 mM 

solutions. Serial dilutions of the catalyst/media solutions were performed across two 96-well 

plates, halving the concentration with each dilution. After a 5 day incubation period, the number 

of viable T98G cells were determined by measuring the bio-reduction of the tetrazolinium 

compound MTS by intracellular hydrolases in the presence of the electron coupling reagent PMS 

as previously described [96]. 

The study was then repeated with DABCO (MW 112, 1.122g, 10 mmol) and DMDEE 

(MW 244, 2.443g, 10 mmol), adding each to 5.0 ml of MEM media. The resulting 2.0 M 

catalyst/media solutions were mixed until all of the catalyst had dissolved. The solutions were 

then diluted as before across three 96-well plates, and T98G proliferation was quantified after 5 

days via MTS. LD50 values were taken as the lowest catalyst concentration at which the MTS 

signal registered < 50% of the control value.  



 46 

3.3.3 Reaction of LDI with DB-67: DMDEE vs. DABCO 

DB-67 (MW 479, 32.0 mg, 0.07 mmol) was dissolved in 1.07 ml dry DMSO to yield a 30 mg/ml 

solution. Two small reaction flasks were each loaded with LDI (MW 212, 5.3 mg, 0.3 mmol) and 

400 uL of the DB-67 solution. DABCO (MW 112, 1.3 mg, 0.01 mmol) was added to one flask, 

and DMDEE (MW 244, 3.4 mg, 0.01 mmol) was added to the other. Both flasks were briefly 

mixed and IR spectra immediately taken. The flasks were flushed with nitrogen, sealed, and left 

to mix in the dark at room temperature; IR spectra were taken again in 4 hours. IR scans were 

taken at 0 and 4 hours to minimize the occurrence of urethane side-reactions. 

3.3.4 Synthesis of LDI-glycerol polyurethane foams 

Two small, dry reactions flasks were prepared, each containing glycerol (MW 92, 1.13 g, 12.3 

mmol), LDI (MW 212, 3.93 g, 18.52 mmol), DB-67 (MW 479, 10 mg) and dry acetone (2.5 ml). 

DMDEE (MW 244, 20 mg, 0.08 mmol) was added to one flask, and DABCO (112 MW, 5 mg, 

0.04 mmol) was added to the other. Each flask was then flushed with nitrogen, sealed and stirred 

in the dark at room temperature. During this time, the mixture changed from opaque to 

translucent and its viscosity increased. 

The viscous pre-polymer was transferred to an 80 mm PTFE dish when the viscosity of 

the mixture measured >3.0 x 10
4
 cP (TA Instruments AR2000). Then 200 μL of distilled, 

deionized H2O was added to the pre-polymer and vigorously mixed in – initiating the foaming 

reaction. The samples were thoroughly mixed 3 times at 2-minute intervals to ensure the H2O 

was fully incorporated. The samples were left open to the atmosphere yet covered to protect from 

light while the curing. The resulting polymer foams were then dried overnight in a vacuum oven 

at room temperature and placed into storage in the dark at 4 °C for further analysis. Control 

foams were prepared similarly, except DB-67 was not added to the initial reaction mixture. The 

foams were then assessed for sol content as previously described by Huang [115]. 
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3.3.5 Distribution of DB-67 within the polyurethane foams 

Foam samples were sliced to a thickness of roughly 500 m and mounted on a glass slide. 

Fluorescent and non-fluorescent images were taken at 100X filter in order to assess the 

distribution of DB-67 throughout the DABCO and DMDEE polyurethane foams (Zeiss AX10 

Imager.A1). A FITC filter was used to visualize the DB-67 compound within the sample 

(Chroma). 

3.3.6 Release of DB-67 from LDI-glycerol Foams 

LDI-glycerol polyurethane foam samples containing DB-67 were incubated at 10 mg/ml in PBS 

(pH 7.4) on rocking plates in temperature-controlled rooms at 4, 22, 37 and 70 °C for 7-weeks. 

Sample chambers were protected from light during this time. Every 7 days, 3.0 ml of PBS was 

retrieved from each sample; during the first week, PBS was also collected on day 3. The amount 

of DB-67 released from the polymer was detected using fluorescence spectroscopy with 430 nm 

and 550 nm for the excitation and emission wavelengths, respectively. The total amount of DB-

67 collected was calculated as follows: 
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where (m/V)i represents the concentration of each collected sample and VT the total volume 

(where each time point is designated “i” and  “j” represents the last). Lysine and glycerol 

released from the polymer were not assessed at this time. At the end of the 11-week release 

study, the samples were dialyzed, dried and the mass recorded. 

3.3.7 Effect of Polyurethane Foams on Cellular Proliferation 

A panel of human malignant glioma cell lines (U87, T98G, and SG388, LN229) was used for the 

cytotoxicity analysis of our drug releasing polymer foams. For these studies, 1.0 x 10
2
 cells were 
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plated and incubated for 24 hr in 100 μl growth media. Media was replaced and then LDI-

glycerol foam samples approximately 5 mg in size were then added to the cells, and they were 

incubated for treatment periods 3 or 5 days. Positive and negative controls received a stock 

solution of DB-67 (100 nM final concentration) or media alone, respectively. In all cases, final 

concentrations of DMSO were 0.1%, well below the concentrations that interfere with the 

proliferation in the above cell lines. After the incubation period, the number of viable cells was 

determined by measuring the bio-reduction by intracellular hydrolases of the tetrazolinium 

compound MTS in the presence of the electron coupling reagent PMS as previously described 

[96]. All samples were analyzed in twelve separate wells and an averaged. A two-tailed, two-

sample unequal variance Student’s t-test statistic was used to analyze the results. 

Prior to beginning the anti-proliferative analysis described, varying numbers of cells from 

each of the four malignant gliomal cell lines were plated and the MTS signal was measured at 

24-hour intervals over a 5 day period (data not shown). From these preliminary studies, it was 

found that plating 1.0 x 10
2
 cells/well gave a linear MTS signal over a 5-day incubation period.  

3.4 RESULTS 

3.4.1 Urethane Catalyst Toxicity 

Dose-response profiles were generated for a few common urethane catalysts (Figure 14A). In 

general, the tertiary amine catalysts were tolerated at much higher concentrations by the T98G 

cells than the organometallic catalysts. The concentration of DMSO present in the first few lanes 

of the 96-well plate was calculated to be high enough to interfere with the results for DABCO 

and DMDEE. As a result, the study was repeated with much higher concentrations of those 

catalysts in media alone (Figure 14B).  
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Figure 14 - Dose-response profiles for various organometallic and tertiary amine urethane catalysts: 

(A) baseline studies (B) extended profile for DABCO and DMDEE 

 

Table 4 summarizes the urethane catalysts used for this analysis and the corresponding cytotoxic 

concentrations reported as LD50 values. 
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Table 4 - Polyurethane catalyst structures and toxicities 

 

 

     

  

Catalyst 

 

Structure Class LD50 

Dibutyltin dilaurate Sn

O

O

O

O  

organometallic 0 M 

Tin(II) 2-

ethylhexanoate 
Sn

O

O

O

O

 

organometallic 62.5 M 

Bismuth 2-

ethylhexanoate 
Bi

O

O

O

O

 

organometallic 62.5 M 

Dimorpholino-

diethylether 
(DMDEE) 

O N

O

N

O

 

3° amine 31.3 mM 

1,4-

Diazobicyclo[2.2.2]-

octane (DABCO) 
N

N

 

3° amine 15.6 mM 

 

 

3.4.2 Reactivity of DB-67 and LDI with DMDEE or DABCO 

DB-67 and LDI were reacted together at a 1:1 molar ratio in the presence of either DABCO or 

DMDEE. Infrared (IR) spectroscopy was used to monitor the progress of the reaction through 

signals in the isocyanate (2400-2160 cm
-1

) and carbonyl (1850-1580 cm
-1

) regions of the spectra. 

Peak integrations in those regions of the spectra were also calculated at the start of the reactions 

and at 4 hours. The spectra from the reaction of DB-67/LDI with DMDEE indicate that the 

isocyanate signal persists at 2265 cm
-1

 over the 4-hour reaction period (Figure 15A). Concerning 

the signal integrations, the NCO/C=O ratio initially measured 0.66 and remained 0.64 after 4 
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hours. These findings indicate that DB-67 did not form any urethane bonds with LDI when 

DMDEE was used as a catalyst. On the other hand, the spectra from the reaction of DB-67/LDI 

with DABCO reveal a disappearance of the isocyanate signal after the 4-hour reaction period 

(Figure 15B). Once again using the signal integrations, the NCO/C=O ratio initially measures 

0.66 and decreases to 0.20 after 4 hours. These findings indicate that in the presence of DABCO, 

urethane bonds are formed between DB-67 and LDI. 

 

 

 

 

Figure 15 - FT-IR data assessing the reactivity of DB-67 with LDI in the presence of (A) DMDEE and 

(B) DABCO 
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3.4.3 Characterization of LDI-Glycerol Foams 

It is important that the polyurethane pre-polymer be sufficiently viscous prior to initiation of the 

blowing reaction so that the rising foam does not collapse on itself prior curing. The viscosity of 

the pre-polymer was measured when the reaction could no longer be mixed atop a magnetic 

stirrer, first measuring at a shear stress of 5.0 Pa then again at 50.0 Pa with a 5-minute interval 

between measurements (Figure 16). It was determined that a value of at least 3.0 x 10
3
 cP must 

be attained for proper foam formation.  

 

 

 

 

Figure 16 - Viscosity data for LDI-glycerol pre-polymer prior to initiation of the blowing reaction: 

(A) 1
st
 run at 5.0 Pa shear stress and (B) 2

nd
 run at 50.0 Pa shear stress 

 

 Scanning electron micrograph images were obtained of the LDI-glycerol polyurethane 

foams made with DABCO and DMDEE. Low-magnification images (25X) reveal the DABCO 

foam cavitations are elliptical in nature, of similar size, and appear to have a preferred 

orientation of their long axis as indicated by the arrow (Figure 17A). In contrast, the DMDEE 

foam cavitations appear randomly distributed in terms of size and shape and have no apparent 
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directionality (Figure 17B). High magnification images (10,000X) of the LDI-glycerol foams 

demonstrate “micro-channels” which are apparent on the surface of the materials. The DABCO 

foam appears to have numerous, fine channels that are similar in size and oriented as indicated 

by the white arrow (Figure 17C). The DMDEE material exhibits channels that vary in terms of 

size and orientation and are far less numerous (Figure 17D). 

 

 

 

 

Figure 17 - Scanning electron micrographs of the LDI-glycerol polyurethane foams: (A) DABCO foam @ 25X 

(B) DMDEE foam @ 25X (C) DABCO foam @ 10,000X (D) DMDEE foam @ 10,000X 

  

 Fluorescent and non-fluorescent images were taken in order to assess the distribution of 

DB-67 throughout the DABCO and DMDEE polyurethane foams (Figure 18). Bright field 

images show that the DMDEE material possesses a highly ordered foam structure, while that of 

the DABCO material appears more random in nature. Fluorescent images suggest that DB-67 is 

uniformly distributed throughout the DABCO sample. However, in the DABCO sample DB-67 
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appears to reside in much higher concentrations clustered around the cavitations in the foam. 

Overlaid bright field and FITC images were constructed, and they corroborate these findings. 

 

 

 

 

Figure 18 - Fluorescent and non-fluorescent images of the LDI-glycerol polyurethane foams 

 

3.4.4 DB-67 Release from Polyurethane Foams 

DB-67 release profiles were obtained for both DABCO and DMDEE polyurethane foams over a 

49-day period (Figure 19). Drug release was non-linear and varied in a temperature dependent 

fashion; the highest drug concentrations were achieved at 70 °C. Significant material degradation 

was evident in both DMDEE and DABCO samples at 70 ºC. At all temperatures except for 4 °C, 

both foams exhibit an initial burst release of DB-67. Shortly thereafter concentrations slowly 
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decline in a temperature dependent fashion and were shown to recover at higher temperatures. 

Maximum concentrations were observed early on for samples incubated at 22 and 37 ºC, while 

those incubated at 4 and 37 ºC occur at day-49. 

 

 

 

 

Figure 19 - Temperature dependent DB-67 release profiles for the LDI-glycerol foams 

 

 LDI-glycerol foams synthesized using either DABCO or DMDEE exhibit differences in 

their release profiles. A comparison at 37 °C reveals that greater amounts of DB-67 are released 

by the DMDEE foam over the 77-day test period (Figure 20). Concentrations in solution are 

observed to decrease over time for both the DMDEE and DABCO foams. The concentration of 

DB-67 released from the DMDEE foam remained consistently elevated over that of the DABCO 

foam. A comparison at 70 °C shows that although higher amounts of DB-67 are initially released 

from the DMDEE foam, eventually higher concentrations are obtained from the DABCO foam 

by day-77 (Figure 21). 
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Figure 20 - Comparison of DB-67 release by DABCO and DMDEE foams at 37 ºC 

 

 

 

 

Figure 21 - Comparison of DB-67 Release by DABCO and DMDEE foams at 70 ºC 
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At day-77, concentrations of DB-67 in solution are 21.6 μM and 12.7 μM for the DABCO and 

DMDEE foams, respectively. At that time, 63.4 and 41.4% of the total DB-67 had been released 

for from the DABCO and DMDEE foams, respectively.  At day-63, the release of DB-67 from 

the DMDEE foam is noted to decline, while the DABCO foam continues releasing drug into 

solution. Release characteristics of the DABCO and DMDEE foams have been summarized in 

Table 5.  

 

Table 5 - Release characteristics of the LDI-glycerol polyurethane foams 

 

 

 Maximum concentrations 
Catalyst 

sol content 

(%) 

Temperature 

(°C) 
DB-67 

(mol%)
a
 

Mass loss 

(%)
a
 ( M) day 

Initial 

concentrations 

( M)b 
Max/initial ratio 

4 2.2 7.8 0.7 70 0.1 7.0 

22 4.2 8.1 1.5 14 1.1 1.4 

37 7.5 9.7 2.6 3 2.6 1.0 
DABCO 7.0 

70 63.4 78.1 21.6 77 3.1 7.1 

4 2.9 6.6 0.9 77 0.1 9.0 

22 7.1 7.3 2.6 14 1.3 2.00 

37 10.8 8.8 4.8 3 4.8 1.00 
DMDEE 7.2 

70 41.4 62.8 12.7 77 5.7 2.2 

a = at day-77, b = at day-3  

 

3.4.5 Polyurethane Foam Cytotoxicity 

The cytotoxicity of DABCO and DMDEE LDI-glycerol polyurethane foams was assessed in a 

panel of human malignant glioma cell lines (SG388, T98G, U87, LN229) via the MTS bio-

reduction assay (Figure 22).  
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Figure 22 - In vitro cytotoxicity results of (A) 3-day and (B) 5-day treatments on malignant gliomal cell lines. 

Error bars represent one standard deviation from the mean 

 

In every malignant glioma cell line tested, a statistically significant difference in cellular 

proliferation was seen for both catalysts between empty and DB-67 loaded foams (p < 1.0 x 10
-

8
). There was also no significant difference in cytotoxicity detected between the drug-loaded 

DABCO and DMDEE foams (p < 0.001) except in the SG388 3-day treatment group (p > 0.25). 

The MTS signals from cells grown with empty DABCO and DMDEE polymer foams were 

found to not differ significantly from those of cells grown in media alone (p < 0.05) in 11 out of 

16 treatment groups. Finally, in every malignant glioma cell line tested, a significant difference 

existed between the 100nM DB-67 solution and either the DABCO or DMDEE drug-loaded 

foam (p < 1.0 x 10
-6

). Note that without exception the MTS signal was always greater for the 100 

nM DB-67 solution. The MTS data has been summarized for the reader in Table 6. 
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Table 6 - In vitro cytotoxicity of DB-67 loaded LDI-glycerol polyurethane foams 

 

 

3-Day Treatment MTS
a
 Signals  

+/- Controls Empty Foams DB-67 Foams 

Cell line 

Media (+) 100 nM DB-67 (-) DABCO DMDEE DABCO DMDEE 

T98G 2.355 ± 0.080 0.324 ± 0.024 2.460 ± 0.175 2.342 ± 0.158 0.145 ± 0.007 0.162 ± 0.007 

LN229 1.207 ± 0.088 0.257 ± 0.015 1.400 ± 0.158 1.325 ± 0.194 0.140 ± 0.016 0.173 ± 0.016 

SG388 0.933 ± 0.047 0.250 ± 0.007 0.920 ± 0.120 0.964 ± 0.120 0.194 ± 0.005 0.201 ± 0.005 

U87 0.602 ± 0.051 0.234 ± 0.011  0.673 ± 0.089 0.544 ± 0.087 0.144 ± 0.007 0.159 ± 0.007 

 

 

 

5-Day Treatment MTS
a
 Signals 

+/- Controls Empty Foams DB-67 Foams 

Cell line 

Media (+) 100 nM DB-67 (-) DABCO DMDEE DABCO DMDEE 

T98G 1.967 ± 0.092 0.197 ± 0.013 2.201 ± 0.371 2.179 ± 0.230 0.122 ± 0.008 0.144 ± 0.005 

LN229 1.985 ± 0.222  0.277 ± 0.016 1.861 ± 0.151 1.922 ± 0.213 0.135 ± 0.013 0.154 ± 0.011 

SG388 1.288 ± 0.171 0.240 ± 0.011 1.289 ± 0.139 1.284 ± 0.128 0.164 ± 0.012 0.189 ± 0.020 

U87 1.569 ± 0.193 0.214 ± 0.012 1.323 ± 0.191 1.512 ± 0.220 0.124 ± 0.006 0.149 ± 0.006 

a
 MTS = absorbance at 490 nm  

 

3.5 DISCUSSION 

Many commercial urethane catalysts are known to exhibit moderate to severe toxic side effects 

[116, 117]. Therefore, it is important to attempt to minimize any toxicity associated with our 

polyurethane materials via proper catalyst selection. To this end, dose-response profiles were 

generated for a series of commonly used organometallic and tertiary amine urethane catalysts. 

From the data, it is clear that tertiary amine catalysts are better tolerated than the organometallic 

catalysts. Consequently, one would expect LDI-glycerol foams prepared with either DABCO or 

DMDEE to be less cytotoxic than our LDI-glycerol discs previously fashioned with tin(II) 2-

ethylhexanoate. 
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Central to our newly developed delivery technology is the ability of a therapeutic 

compound to incorporate into a polyurethane network. Drug incorporation provides the 

opportunity for long-term controlled release through passive hydrolysis of urethane bonds. We 

have previously shown that DB-67 will react with LDI in the presence of an organometallic 

catalyst, but it was uncertain if the same would be true of the tertiary amine catalysts. Via 

infrared spectroscopy, it has been concluded that DB-67 reactivity with LDI is indeed catalyst 

dependent. The non-selectivity of DABCO and the specificity of DMDEE can be utilized to 

manipulate the incorporation of DB-67 into LDI-glycerol polyurethane foams. These differences 

likely account for some of the differences observed in the drug release profiles of the foams. 

It is essential that drug delivery systems be able to be reliably reproduced in the amounts 

and under the conditions required for clinical use [4]. When fashioning polyurethane foams, the 

pre-polymer viscosity is quite important. This value must be sufficiently large to prevent foam 

collapse, but not so large as to inhibit the foam expansion [118, 119]. For our LDI-glycerol 

polyurethane foams, this value was found to be 3.0 x 10
3
 cP. An inspection of the viscous curves 

reveals that the viscosity of the pre-polymer slowly increased over each measurement period and 

jumps significantly from one measurement to the next. This is certainly due to initiation of the 

blowing reaction by atmospheric moisture content. 

Scanning electron images reveal differences in the structure of the polyurethane foams, 

while fluorescent images indicate important differences in the distribution of DB-67. SEM shows 

DABCO foams possessing a more ordered structure at both high and low magnification in terms 

of the cavitations (i.e. - size, shape, and orientation) and micro-channels (i.e. – number and 

orientation). Conversely, SEM shows the DMDEE foams appearing more random in terms of the 

cavitations and micro-channel distribution. Bright field images further confirm these structure-

catalyst correlations. Fluorescent images indicate DB-67 is present in higher concentrations 

around the cavitations in the DMDEE foam. In the DABCO foam, DB-67 appears to be much 

more uniformly distributed. Images lack focus in certain regions of the images due to sample 

thickness being greater than the focal plane of the microscope.  

When interpreting the DB-67 release profiles, one must realize that we are merely taking 

snapshots in time of the concentration profiles, and we may indeed be missing the true 

concentration peaks due to the sampling intervals chosen. This arises due to the lack of stability 

of DB-67 fluorescence signal in aqueous solution that has previously been described [97]. 
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However, “structure-catalyst” and “distribution-catalyst” correlations can be used to elucidate 

some of the differences observed in the DB-67 release profiles of the foams. First, the initial 

burst release is always seen to be greater in the DMDEE foams regardless of temperature. The 

concentration of DB-67 around the cavitations and the lack of DB-67 incorporation in the 

DMDEE foam can account for this observation. Secondly, the maximum DB-67 concentrations 

and mol% observed are always higher for the DMDEE foams except at 70 ºC. Significant 

material degradation at 70 ºC and subsequent release of entrapped DB-67 from the DABCO 

foam can explain the observed difference. It is likely at lower temperatures that diffusive rather 

than degradative processes are accounting for the majority of DB-67 release. As such, the 

DMDEE foam will generally have released more DB-67 on any given day. Finally, the max-to-

initial ratio listed in Table 5 is generally equal to one in every case except for the 70 ºC samples. 

Here the DABCO ratio is significantly greater than the DMDEE, again suggesting the fact that 

material degradation accounts for significant DB-67 release. 

DB-67 release from the foams was shown to be sufficient to inhibit the proliferation of 

malignant glioma cells. The empty DABCO and DMDEE LDI-glycerol polyurethane foams 

were found to be well tolerated by all of the malignant glioma cell lines assessed. The MTS 

signals from cells grown with empty DABCO and DMDEE polymer foams were found to not 

differ significantly from those of cells grown in media alone in 11 out of 16 treatment groups. 

Surprisingly when the difference was significant, the cells grown with the empty catalyst foam 

displayed the higher MTS signal more than half the time. In every malignant glioma cell line 

tested, a significant difference existed between the 100nM DB-67 solution and either the 

DABCO or DMDEE drug-loaded foam; without exception the MTS signal was always greater 

for the 100 nM DB-67 solution. 

3.6 CONCLUSIONS 

In this study, we present a novel approach to the controlled, long-term delivery of the CPT 

analog DB-67 employing biocompatible, biodegradable polyurethane foams constructed from 

LDI and glycerol. We have demonstrated the importance of proper catalyst selection in 

maintaining the biocompatibility of medical-grade polyurethanes. It was also shown that DB-67 
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reactivity and incorporation could be controlled through appropriate selection of a tertiary amine 

urethane catalyst. Structure-catalyst and distribution-catalyst correlations were seen to dictate 

drug release via diffusion and slow, passive hydrolysis of urethane bonds. Release of DB-67 

from LDI-glycerol polyurethane foams was shown to steadily occur over a prolonged periods 

suitable for medical implants. Therapeutic concentrations of a potent anticancer compound were 

attained over a 49-day test period with the potential to continue for much longer periods. Cellular 

proliferation assays conclude that only LDI-glycerol foams loaded with DB-67 exhibited a potent 

cytotoxic effect on human malignant glioma cell lines. Catalyst choice did not appear to affect 

the cytotoxicity of the delivery system. These results from clearly demonstrate that catalyst-

dependent controlled drug release can be achieved from degradation of LDI-glycerol 

polyurethane foams. 
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4.0  CHEMICAL STRUCTURE AND FUNCTIONALITY OF A DRUG DICTATES 

ITS CONTROLLED-RELEASE PROFILE FROM DEGRADABLE LDI-GLYCEROL 

POLYURETHANE FOAMS: A STUDY ON NAPHTHALENE AND RELATED 

COMPOUNDS 

4.1 ABSTRACT 

The purpose of the present study was to determine how the chemical structure of a drug could be 

used in the development of controlled release systems. To this end, a series of naphthalene 

analogs with differing hydroxyl and amine functionality were incorporated into degradable 

polyurethane foams based on lysine and glycerol. The excitation and emission spectra of the 

various naphthalene analogs in aqueous solution were examined to ensure they were capable of 

being quantitatively detected at low concentrations. Then the fluorescence stability of the 

compounds was assessed over a 2-week period at 70 °C, and the analogs were found to exhibit 

significant fluorescent signal decay. The polyurethane materials containing the various analogs 

were then examined via scanning electron microscopy, and the incorporation of small 

naphthalene ligands did not alter the gross morphology of the foams. The distribution of the 

analogs was then assessed with fluorescence microscopy using a DAP filter, and they appeared 

to be evenly distributed throughout the material. Polyurethane foam samples containing various 

analogs were then incubated at 10.0 mg/ml in PBS buffer solution (pH 7.4) at 4, 22, 37, and 70 

°C. Release rates of the naphthalene analogs and mass loss from the polyurethane foam were 

found to be temperature dependent.  The release rates were also found to be highly dependent 

upon the functional groups present on the naphthalene analog. These results clearly demonstrate 

that the chemical structure of a drug can be used to control its release form degradable drug 

delivery systems. 

Keywords: drug delivery, controlled release, naphthalene, polyurethane 



 64 

4.2 INTRODUCTION 

Naphthalene is a volatile, white, crystalline, polycyclic aromatic hydrocarbon that exhibits 

fluorescence near the ultraviolet region of the spectrum [120]. Naphthalene is a natural product, 

being produced in trace amounts by magnolias and specific types of deer [121-123]. It has also 

been found in the termite Coptotermes formosanus, possibly used as a repellant against ants, 

poisonous fungi and nematodes [124]. It is commonly used as both an antiseptic and insecticide, 

being best known as the primary ingredient in mothballs. Naphthalene is manufactured from coal 

tar, a by-product of the coking process, and is routinely converted to phthalic anhydride, a 

compound vital to the manufacture of many commercial solvents and plastics [125-128]. 

Naphthalene is easily modified via electrophilic aromatic substitution reactions; analogs that are 

substituted with combinations of strongly electron-donating functional groups, such as alcohols 

and amines, are intermediates in the preparation of many synthetic dyes [129].  

The term “polyurethane” refers to any polymer consisting of a chain of organic units 

joined by urethane bonds. However, the term is often used to broadly classify materials 

possessing both urethane and urea linkages. A urethane bond is produced via the exothermic 

condensation of an alcohol and an isocyanate, while an analogous reaction between an amine and 

an isocyanate generates a urea bond [19]. These reactions are generally referred to as “gelling” 

reactions, contributing to the overall molecular weight increases observed during polymerization. 

Polyurethane materials also undergo “blowing” reactions in which an isocyanate reacts with H2O 

to form a carbamate intermediate [18]. The carbamate readily decomposes into an amine and 

CO2, expanding the polyurethane into foam. The generated amine then reacts with any free 

isocyanate remaining in the reaction volume, curing the expanded foam. 

Hydrolysis is one of the dominant mechanisms for polyurethane degradation in aqueous 

environments [100]. Thermoplastic polyurethanes exhibit the highest degree of hydrolytic 

instability due to the presence of ester linkages found within their soft-segments [130]. The 

urethane and urea linkages found in the hard-segments tend to be less susceptible to hydrolysis 

[131]. Polyurethane films, thermosets, and highly cross-linked networks lacking a true soft-

segment are generally viewed as stable entities in aqueous environments; yet, they remain 

susceptible to hydrolysis. Urethane and/or urea degradation in these materials proceeds at an 

incredibly slow rate due to the hydrophobic shielding of the urethane bond. However, their 
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degradation rates can be altered by concomitant increases and decreases in the aliphatic and 

aromatic character of the polyols, polyamines and isocyanates used to fashion them [132]. 

Urethanes and ureas are also known to be sensitive to ion concentrations, redox environments, 

enzymes, and cellular degradation – exhibiting elevated decomposition in vivo [133, 134].  

Our laboratory has developed a new generation of biocompatible, biodegradable 

polyurethanes constructed from lysine diisocyanate (LDI) and glycerol that degrade 

hydrolytically into non-toxic components – lysine, glycerol and CO2 [87, 88]. These materials 

possess the same versatility as widely used commercial polyurethanes, easily being processed 

into forms with unique morphology and physical properties. We have previously synthesized 

LDI-glycerol films and foams, demonstrating long-term delivery of DB-67 via hydrolytic release 

and shown in vitro cytotoxicity against malignant glioma cell lines. We propose that urethane 

hydrolysis can be further utilized in the design of controlled-release drug delivery systems. In 

this study, naphthalene and some of its functionalized derivatives were chosen as model drug 

compounds, and they were used to elucidate the connection between urethane hydrolysis and the 

functionality of the incorporated drug. The various functional groups present on the model drugs 

will provide urethane and urea bonds with subtle differences in chemical character. The various 

functional groups present on the naphthalene compounds will in turn determine the nature of the 

resulting urethane bonds, which ultimately impacts their stability, rate of hydrolysis, and 

subsequent release of the compounds from the polyurethane foam. 

4.3 MATERIALS AND METHODS 

4.3.1 Materials 

Lysine diisocyanate methyl ester (LDI) was purchased from Chemical Division, Kyowa Hakko 

Kogyo Co. Ltd. (Tokyo, Japan). All other chemicals were obtained from Sigma–Aldrich 

Chemical Co. and were of reagent grade unless otherwise specified (Milwaukee, WI). 
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4.3.2 Excitation-emission spectra of naphthalene compounds 

A 1.0 mg/ml stock solution of each naphthalene compound was prepared in DMSO, and each 

sample was sonicated for 5 min at 25 ºC to ensure complete dissolution. Then 3.0 L of each 

solution was diluted into 3 ml of PBS (pH 7.4) to arrive at 1.0 g/ml standard solutions. Each 

10.0 g/ml solution was then iteratively scanned over ranges of excitation and emission 

wavelengths, finding the maximal fluorescent spectra for each naphthalene compound. 

4.3.3 Naphthalene fluorescence stability 

Stock solutions of naphthalene and all derivative compounds were prepared in DMSO at a 

concentration of 1.0 mg/ml. Samples were sonicated until all of the material had dissolved and 

mixed thoroughly. They were then diluted to a concentration of 1.0 g/ml by taking 50 uL of 

DMSO stock and adding it to 50 ml PBS (pH 7.4). The resulting solutions were mixed 

thoroughly, and a 3 ml sample was immediately collected and a baseline fluorescence signal was 

determined for each compound. All samples were then incubated at 70 ºC and protected from 

ambient light. Three-milliliter samples were withdrawn every 24 hours for 2-weeks, and the 

fluorescent signal was measured within 1-hour of the sample being collected. Fluorescent decay 

curves were then constructed from the data. 

4.3.4 Synthesis of Naphthalene Foams 

Glycerol (MW 92.01, 1.15 g, 12.5 mmol), DABCO (MW 112.18, 6.0 mg, 0.053 mmol), and dry 

DMSO (2.5 ml) were added to a small, dry 20 ml reaction flask. Eight such samples were 

prepared and 0.04 mmol of each naphthalene compound was added to a different flask. The 

flasks were sonicated until the all the reactants had dissolved in the DMSO. Then LDI (MW 

212.20, 4.00 g, 18.9 mmol) was added, and the flasks were flushed with nitrogen prior to being 

sealed. The reaction was allowed to stir atop a magnetic stir plate in the dark at room temperature 

until the viscosity had attained a value of at least 3.0 x 10
4
 cP. At that time the viscous pre-

polymer was transferred to a 100 mm PTFE dish and 100 uL distilled, deionized H2O was 
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added. The pre-polymers were thoroughly mixed 3 times at 2-minute intervals to ensure the H2O 

was fully incorporated. The rising foams were left open to the atmosphere yet covered to protect 

from light while the curing. The resulting polymer foams were then placed into a vacuum oven 

overnight at 25 ºC. The foams were then placed into storage in the dark at 4 °C for further 

analysis. Sol content was also obtained for each foam sample and was calculated as previously 

described by Huang [115]. 

4.3.5 Evaluation of foam architecture by SEM 

Polyurethane foams containing the various naphthalene compounds were cut into small 5 mm x 

5mm x 1mm sections, dried thoroughly, and mounted on sample holders. Samples were observed 

at 25X magnification to ensure there were no gross irregularities. Then 10 images were collected 

at 75X from various regions of each foam sample. Metamorph image analysis software 

(Molecular Devices) was then used to differentiate pores from polymer through a threshold 

algorithm. The threshold images were then used to estimate the % porosity of each polyurethane 

foam.  

4.3.6 Distribution of naphthalene compounds within polyurethane 

Foam samples were sliced to a thickness of roughly 500 m and mounted on a glass slide. 

Fluorescent and non-fluorescent images were taken at 100X filter in order to assess the 

distribution of DB-67 throughout the DABCO and DMDEE polyurethane foams (Zeiss AX10 

Imager.A1). A 4',6-diamidino-2-phenylindole (DAPI) filter was used to visualize the 

distributions of 1-naphthalene methylamine, 1-naphthol, 1,5-diaminonaphthalene, 5-amino-1-

naphthol within the sample (Chroma). Naphthalene and the remaining analogs were unable to be 

visualized due to the location of their emission bands. Empty polymer foam not containing any 

analog was used as a control. 
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4.3.7 Naphthalene Release 

LDI-glycerol polyurethane foam samples containing the naphthalene compounds were incubated 

at 10 mg/ml in PBS (pH 7.4) on rocking plates in temperature-controlled rooms at 4, 22, 37 and 

70 °C for 11-weeks. Sample chambers were protected from light during this time. Every 7 days, 

3.0 ml of PBS was retrieved from each sample; during the first week, PBS was also collected on 

day 3. The amount of naphthalene compound released from the polymer was detected via 

fluorescence spectroscopy using the excitation and emission wavelengths particular for each 

compound. Standard curves were constructed and used to determine the concentration of the 

various naphthalene species in solution. The total amount collected throughout the study was 

calculated as follows: 
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where (m/V)i represents the concentration of each collected sample and VT the total volume 

(where each time point is designated “i” and  “j” represents the last). Lysine and glycerol 

released from the polymer were not assessed at this time. 

4.4 RESULTS 

4.4.1 Excitation-emission spectra of naphthalene compounds 

Naphthalene exhibits a characteristic, intense fluorescent spectrum that has been used in the past 

under aqueous conditions to examine partitioning kinetics of micellar systems [135, 136]. An 

investigation of naphthalene and its analogs’ fluorescent behavior was undertaken to ensure each 

was capable of being sufficiently detected in an aqueous environment. The excitation and 

emission spectra of naphthalene, 1-naphthol, 1-naphthylamine, 1-naphthalene methanol, 1-
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naphthalene methylamine, 1,5-dihydroxynaphthalene, 1,5-diaminonaphthalene, and 5-amino-1-

naphthol in PBS (pH 7.4) were obtained in PBS buffer (pH 7.4) (Figure 23).  

 

 

 

 

Figure 23 - Fluorescence excitation and emission spectra for naphthalene compounds in aqueous media 

 

The fluorescence spectrophotometer was adjusted so that the excitation and emission signals 

registered in the maximum range of the detector. All the naphthalene compounds exhibited 

intense excitation bands in the range of 275-325 nm. The emission bands were equally intense 

yet scattered, ranging from 330-470 nm. The excitation and emission peaks were well delineated 

and free from background interference of the PBS buffer (data not shown). Standard 

concentration curves from 1.0 – 1000.0 ng/ml were constructed for each compound, and found to 

be linear (data not shown); 5-amino-1-naphthol exhibited the lowest R
2
 value (0.9791). The 
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excitation and emission wavelengths for each naphthalene compound are listed along with their 

chemical structure and functionality in (Table 7). 

 

Table 7 - Naphthalene compounds – structure, functionality and fluorescent wavelengths 

 

 

Fluorescence (nm) 

Compound Structure Functionality 

Excitation Emission 

Naphthalene 

 

---- 275 330 

1-naphthol 

OH

 

Aromatic 

hydroxyl 
290 470 

1-naphthylamine 

NH2

 

Aromatic 

amine 
315 450 

1-naphthalene-

methanol 

OH

 

Primary 

hydroxyl 
280 335 

1-naphthalene-

methylamine 

NH2

 

Primary amine 280 330 

1,5-dihydroxy-

naphthalene 

OH

OH  

Dual aromatic 

hydroxyl 
300 345 

1,5-diamino-

naphthalene 

NH2

NH2  

Dual aromatic 

amine 
325 405 

5-amino-1-naphthol 

OH

NH2  

Aromatic 

hydroxyl, 

aromatic amine 

320 410 

  

 

4.4.2 Naphthalene fluorescence stability 

Napthalene has been found to be susceptible to photochemical degradation in aqueous and 

oxidative environments [137-140]. Although much harsher conditions than we propose were 

used in these studies, an assessment of the stability of the naphthalene compounds in PBS (pH 

7.4) buffer was needed. The naphthalene analogs were found to lose their fluorescence signal 

over a 2-week test period to varying degrees (Figure 24). 
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Figure 24 - Fluorescence decay profiles for the naphthalene analogs in PBS buffer (pH 7.4) solution 

 

Fluorescent signal decay of naphthalene, 1-naphthol, 1-naphthylamine, 1,5-

dihydroxynaphthalene, 5-amino-1-naphthol and to a much lesser extent 1-naphthalene 

methylamine and 1,5-diaminonaphthalen was observed. The fluorescent signal of 1-naphthalene 

methanol was the only one that remained near its baseline level throughout the 2-week test 

period.  

4.4.3 Polyurethane foams: SEM Analysis and Distribution 

Low-magnification scanning electron micrographs (25X) were taken in order to assess the 

morphology of the polyurethane foam samples (Figure 25).  
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Figure 25 - Low-magnification scanning electron micrographs (25X) of the LDI-glycerol polyurethane foams 

containing the various naphthalene analogs 

 

These images reveal the foams largely similar in terms of pore size, shape and distribution. Some 

variation in the foam morphology is to be expected, resulting from the processing methods used 

to fabricate each sample. Higher magnification images (75X) taken from regions of the foam 
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specimens, and the porosity was estimated using a threshold imaging technique. Metamorph 

imaging software was able to clearly delineate between the polymer and pore regions of the 

images (Figure 26). The average porosity of each foam sample can be found in Table 9, listed 

along with the degradation characteristics. 

 

A

B

 

 

 

Figure 26 - High-magnification SEM image of 1,5-diaminonaphthalene: (A) before and (B) after a threshold 

was applied to determine the porosity of the foam 

 

  DAPI is a fluorescent stain that binds strongly to DNA; it is used extensively in 

fluorescence microscopy. When bound to double-stranded DNA its absorption maximum lies in 

the near-UV at 358 nm and its emission maximum is at 461 nm. The emission band is broad and 

appears blue. The emission wavelength of DAPI closely approximates the fluorescent bands of 

some of the naphthalene analogs. Therefore, a DAPI filter was used to visualize polyurethane 
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foam samples containing either 1-naphthol, naphthalene methylamine, 1,5-diaminonaphthalene, 

or 5-amino-1-naphthol in order to determine the distribution of these analogs throughout the 

material (Figure 27).  

 

 

 

 

Figure 27 - Fluorescent images depicting the distribution of select naphthalene analogs in the LDI-glycerol 

polyurethane foam 

 

The naphthalene analogs were evenly dispersed throughout the polyurethane samples except in 

the case of 1-naphthol, which showed a slight preferential accumulation around the pore surface. 
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Variations in the intensity of the fluorescent signal can largely be attributed to differences in 

sample thickness. There was no appreciable signal arising from the control sample. 

4.4.4 Naphthalene release 

The release of naphthalene analogs from the LDI-glycerol polyurethane foams was assessed at 4, 

22, 37 and 70 ºC over a 77-day period (Figure 28).  

 

 

 

 

Figure 28 - Concentration profiles depicting the release of the naphthalene analogs from the LDI-glycerol 

polyurethane foams 
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The total amount of analog released and previously collected was also calculated as a percent of 

the total amount used in the synthetic reaction and reported as mol% (Figure 29).  

 

 

 

 

Figure 29 - Profiles depicting the mol% of the naphthalene analogs released from the LDI-glycerol 

polyurethane foams 

 

In general, the compounds were found to be eluted in a temperature dependent fashion, with the 

highest concentrations and mol% being found at 70 ºC. Significant material erosion was 

observed by day-49 in all of the 70 ºC samples. As a result, the samples tend to display 
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significant changes in release kinetics around this time. Mass loss for the samples was also seen 

to vary with temperature, with the highest percentages being lost at 70 °C for each sample. Sol 

content of each foam sample was determined and noted to be similar for each of the polyurethane 

samples. Day-3 to day-77 concentration ratios provide insight into the release mechanisms – less 

than one indicates bursting, while greater than one indicates delayed release. The release data for 

each of the compounds has been summarized in Table 8. 

 

Table 8 – Release characteristics naphthalene compounds from LDI-glycerol polyurethane foams 

 

 

Compound 
porosity 

(%) 

sol 

content 

(%) 

Temperature 

(°C) 
mol%

a
 

mass 

loss
b
 

(%) 

day-77 

concentration 

( M) 

day-3 

concentration 

( M) 

day-

77/day-

3 ratio 

4 24.0 34.3 4.6 80.4 0.06 

22 16.0 35.5 2.3 55.3 0.04 

37 15.3 36.3 0.5 50.3 0.01 
Naphthalene 

42.2 ± 

7.2 
32.2 

70 14.8 85.4 4.0 24.7 0.2 

4 6.6 35.1 3.5 1.8 1.9 

22 11.6 36.1 6.1 2.6 2.3 

37 25.7 37.7 14.0 5.8 2.4 
1-naphthol 

47.7 ± 

7.0 
27.1 

70 56.1 83.7 39.4 5.1 7.7 

4 0.3 34.5 0.1 0.4 0.3 

22 0.5 35.9 0.3 0.5 0.6 

37 1.4 36.6 0.7 0.8 0.9 

1-

naphthylamine 

32.9 ± 

9.3 
29.6 

70 18.6 82.7 12.8 1.0 12.8 

4 7.9 36.1 0.4 28.0 0.01 

22 6.2 37.5 0.5 28.7 0.02 

37 7.3 38.2 1.2 23.7 0.05 

1-

naphthalene- 

methanol 

46.3 ± 

9.4 
30.2 

70 18.5 95.2 8.7 15.9 0.5 

4 2.3 36.1 1.0 2.7 0.4 

22 4.4 37.5 2.3 1.5 1.5 

37 8.1 38.2 4.2 2.9 1.4 

1-

naphthalene- 

methylamine 

45.2 ± 

11.0 
30.7 

70 62.3 89.9 36.0 4.7 7.7 

4 0.8 32.3 0.05 0.03 1.7 

22 2.0 33.5 0.1 0.03 3.3 

37 6.4 34.3 3.6 0.1 36.0 

1,5-

dihydroxy- 

naphthalene 

33.0 ± 

9.4 
32.9 

70 0.3 68.3 0.2 0.1 2.0 

4 0.1 34.7 0.03 0.1 0.3 

22 0.2 36.8 0.1 0.1 1.0 

37 0.5 39.7 0.2 0.4 0.5 

1,5-diamino- 

naphthalene 

43.4 ± 

8.7 
31.3 

70 3.3 65.9 2.2 0.3 7.3 

4 0.1 34.9 0.05 0.1 0.5 

22 0.3 35.6 0.1 0.4 0.3 

37 1.0 36.6 0.5 0.5 1.0 

5-amino-1-

naphthol 

32.8 ± 

9.7 
27.5 

70 2.1 67.5 1.3 0.6 2.2 

a: at day-77, b: mass loss = (initial mass - final mass)/(initial mass) x 100%  
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Naphthalene was released from the polyurethane foam in a burst fashion. Its 

concentration profiles peaked for each of the temperatures at day 3, and slowly decayed 

thereafter. The aromatic analogs 1-naphthol and 1-naphtylamine were found to differ 

significantly from naphthalene in their release kinetics. Naphthol exhibited an early release 

profile with elevated concentrations detectable in solution by day 3. The concentrations in 

solution were sustained at 4 and 22 ºC and observed to rise at 37 ºC. Subtle burst release was 

seen early on in the 70 ºC profile followed by rapid decay, with release once again becoming 

apparent at day 49. Naphthylamine exhibited a delayed release profile, with the only apparent 

concentration change occurring at day 42 in the 70 ºC sample. Furthermore, the primary 

functional groups demonstrated extreme differences in their release profiles. Naphthalene 

methanol was found to exhibit early burst release followed by steady concentration decay. Only 

after day 28 in the 70 ºC sample was significant release once again observed. Naphthalene 

methylamine did not exhibit any early burst release regardless of temperature. Interestingly, at 70 

ºC linear release kinetics were observed for the mono-functional primary amine.  

The dual aromatic analogs demonstrated release behavior distinct from those already 

observed in the aromatic and primary functional groups. Small concentrations of 1,5-dihydroxy-

naphthalene, 1,5-diamino-naphthalene, and 5-amino-1-naphthol were detected in solution, 

suggesting that the materials are tightly bound within the polyurethane network. Elevation in the 

concentration of 1,5-dihydroxy-naphthalene was observed to occur at day 14 for the 37 º C 

sample. Elevated concentrations of 1,5-diaminonaphthalene were only observed after day 42 in 

the 70 ºC sample. Finally, 5-amino-1-naphthol displayed small changes in concentration, further 

demonstrating that compounds with two functional groups elute from the polymer at slow rates. 

The observed changes in concentration are small for the dual functional aromatics relative to the 

total amount of analog used, but still were well within the detectable range of our assay.  

4.5 DISCUSSION 

We have chosen to pursue a strategy for the long-term controlled release of drugs from 

polyurethane materials constructed from lysine and glycerol. The unique feature of our drug 

delivery technology relies on the drug’s incorporation into the polymer through pendent 
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functional groups. We have previously described this strategy for the controlled release of DB-

67, a potent anti-cancer compound, from polyurethane foams and films. Through those studies, 

we demonstrated that material morphology and even the urethane catalyst used play a significant 

role in release behavior. This study provides some insight into the relationship that exists 

between the release of compounds and the functional groups present on them. 

 Naphthalene was chosen as our model drug for its fluorescent properties, simple chemical 

structure, and availability of a wide variety of functionalized derivatives. The characteristic, 

intense fluorescent spectra of naphthalene and its analogs provide an easy method for 

quantitative detection in solution following release from our polyurethane materials. It was 

unfortunate that many of the naphthalene compounds were subject to significant photo bleaching 

when exposed to aqueous media at 70 °C. Over the 2-week period, all of the naphthalene analogs 

except for 1-naphthalene methanol were shown to lose their fluorescence signals to varying 

degrees. While this fact prohibited us from closing the mass balance of our systems, it did have 

some benefit. Once administered, drugs find themselves subject to a myriad of physiologic 

mechanisms that act to deplete their concentration and limit their performance. We can think of 

the fluorescence decay as clearance or inactivation rate. The results we obtained in light of the 

fluorescence decay suggest that the LDI-glycerol polyurethane is able to provide a protective, 

stabilizing environment for the analogs. This may prove useful in the future, as many promising 

drug candidates are unable to be used due to inactivation via oxidative, acid-base, or 

conformational changes. The signal decay allowed us to note the precise moment at which 

release rates became significant to overcome the decay process. Lastly, an examination of the 

release profiles suggests that the decay is highly temperature dependent allowing for detection of 

some species at temperatures below 70 °C. 

 The LDI-glycerol polyurethane foams were found to be quite similar to one another in 

terms of their morphology. The incorporation of small amounts of naphthalene analog did not 

appear to grossly affect the bulk material. All of the foams were supple and pliable, and could 

easily be cut to specification. While there was some variability in the porosity of the foams, it 

was not statistically significant. Variability in the foam porosity can be expected due to the 

processing methods we used to fabricate the foam systems, and it does not appear to impact the 

various release profiles. The foams were also remarkable similar in terms of their sol content. 

The distribution of the naphthalene analogs in the foam samples could not be assessed in full due 
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to the location of many of the fluorescent excitation and emission bands. However, a DAPI filter 

did provide an opportunity to visualize four of the eight analogs. The distribution was largely 

similar, and the number or type of functional group did not appear to impact the distribution. 

The degradation and release studies did define a number of structure-release relationships 

existing among the analogs. First, the results suggest the aromatic urea to be much more resistant 

to hydrolysis that the aromatic urethane. This is evident from a comparison of the release profiles 

of 1-naphthol and 1-naphthylamine. Steady release of naphthol was observed to occur at 4, 22, 

and 37 °C, while significant release of naphthylamine was observed to occur only at 70 °C 

following that of naphthol. The greater stability of the urea over the urethane is again confirmed 

by examining the bi-functional aromatic analogs, 1,5-dihydroxynaphthalene and 1,5-diamino-

naphthalene. The release of 5-amino-1-naphthol more closely resembles that of 1,5-diamino-

naphthalene than 1,5-dihydroxynaphthalene, suggesting that the aromatic urea dictates its 

release. 

A similar rationale can be used to suggest the primary urethane is more stable that the 

primary urea. An examination of the release profile of 1-naphthalene methanol shows an initial 

burst release, later followed by steady release. Incomplete reaction of the primary hydroxyl in 

naphthalene methanol, can account for the initial rise in concentration. This can be attributed to 

the differences in the relative reactivity of primary amines and hydroxyls with isocyanate [141-

145]. However, the release profile of 1-naphthalene methylamine demonstrates slow, steady 

release throughout the duration of the experiment. Since there is no initial burst release, this can 

be attributed to primary urea degradation. 

The aforementioned structure-release trends can be seen in plots of the mol% release and 

the release normalized to the maximum mol% of each species (Figure 30).  

 



 81 

 

 

 

Figure 30 - Functional group comparison of the mol% and normalized release of naphthalene analogs from 

the LDI-glycerol foams 

 

Examination of the mol% release amongst the amine species shows that primary amines are 

released first, then single aromatic amines, and then the bi-functional aromatic amines. 

Surprisingly, when the mol% is normalized, the aromatic amines display strikingly similar 

release profiles. The hydroxyl release is complicated by variations in the relative reactivity of the 

hydroxyl species. Primary hydroxyl groups are still seen to release from the polyurethane before 

the aromatics. However, the aromatic trend is reversed in the normalized plot. This is likely due 

to the extremely low concentration of 1,5-dihydroxynaphthalene detected in solution due to the 

rapid fluorescence decay of this species, and the trend is greatly influenced by signal noise. 
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4.6 CONCLUSIONS 

In this study, we have demonstrated that the pendant functional groups present in the chemical 

structure of a drug dictate how it is released from degradable polyurethane foam. We used a 

series of naphthalene analogs possessing different chemical functionality in terms of the type and 

number of amine or hydroxyl groups. The urethane and urea bond formed from the reaction of 

the functional groups with isocyanate exist in differing chemical environments and result in 

different hydrolytic rates. The hydrolytic rates then determine how and when the structure is 

eluted from the polyurethane foam into the surrounding media. The polyurethane also served to 

protect the naphthalene analogs from fluorescent signal decay until they were released. The 

results of this study clearly demonstrate that release from degradable LDI-glycerol polyurethane 

foams is highly dependent upon the chemical structure of a drug.  
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5.0  RELEASE OF DB-67, DOXORUBICIN AND PACLITAXOL OCCURS 

SIMULTANEOUSLY AT DIFFERING RATES FROM SINGLE-PHASE LDI-

GLYCEROL POLYURETHANE FOAMS 

5.1 ABSTRACT 

In the present study, we present a novel approach to the controlled release of multiple 

chemotherapeutic agents from single-phase polyurethane foams constructed from lysine 

diisocyanate (LDI) and glycerol. DB-67, doxorubicin, and taxol were incorporated into the 

polyurethane foam network via labile urethane and urea linkages. The reactions of DB-67 and 

doxorubicin with LDI were monitored over a 4-hour period via infrared spectroscopy; each 

compound was found to react to differing degrees with LDI. Doxorubicin, DB-67 and taxol were 

then incorporated alone and in combination into a series of polyurethane foams. The sol content, 

porosity, and drug distribution of each foam sample was measured and found to be similar 

amongst the samples. The fluorescent spectra of DB-67 and doxorubicin were then measured in 

PBS buffer solution (pH 7.4), and the stability of each compound’s fluorescent signal was 

assessed over a 2-week period at 70 ºC. Release rates of DB-67 and doxorubicin from the foams 

were assessed over a 10-week period at 4, 22, 37, and 70 ºC via fluorescence spectroscopy. The 

rates were found to vary with temperature and were dependent upon the chemical structure of the 

incorporated drug. This study demonstrates the controlled release of multiple agents from single-

phase LDI-glycerol polyurethane foams occurs at differing rates dependent upon the chemical 

structure of the incorporated drug. 

Keywords: polyurethane, drug delivery, doxorubicin, DB-67, lysine diisocyanate 
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5.2 INTRODUCTION 

DB-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin), doxorubicin (Adriamycin), and Taxol 

(paclitaxol) are all potent anti-cancer compounds, each exerting their cytotoxic effects by 

interrupting processes essential to cellular growth and proliferation. DB-67 functions by 

inhibiting the enzyme topoisomerase I, a member of a nuclear enzyme family responsible for 

repairing DNA during replication [80, 81, 146, 147]. Doxorubicin functions via two 

mechanisms: first, intercalating DNA and inhibiting transcription, and then by inhibiting the 

enzyme topoisomerase II [148-151]. Finally, taxol exerts its effects via stabilizing polymerized 

microtubules; it is able to halt cell division as well as other vital processes relying on the 

rearrangement of the cytoskeleton [152, 153]. However, when using any of these compounds to 

combat malignancies in the body, it is impossible to avoid exposing normal functioning cells to 

their deleterious effects. The toxic side effects of these compounds ultimately are responsible for 

limiting their efficacy [5, 154-157]. 

Many strategies have evolved in an attempt to selectively deliver chemotherapeutics to 

localized, regions of malignant tissue within the body [4, 41]. One such strategy that has proven 

effective is implantation of degradable polymeric devices at the tumor site loaded with select 

chemotherapeutic agents [158, 159]. Instead of administering a drug to the entire body, these 

strategies serve to limit the exposure of the therapeutic to only a single body compartment or 

even a select region of that compartment. This strategy has proven efficacious and has resulted in 

several patented devices approved by the FDA for the treatment of solid tumors [48, 49, 82, 160, 

161]. Most often, these systems focus on the delivery of a single therapeutic, relying solely on 

diffusion as the primary release strategy. In these systems, the drug load will often be exhausted 

prior to the degradation and absorption of the polymeric material. 

Systems for the simultaneous delivery of multiple therapeutic compounds have also been 

proposed [162-166]. Polymeric systems for the delivery of multiple agents generally consist of 

multiple, distinctly defined phases each capable of delivering a separate compound [167, 168]. 

Typically, each phase possesses different diffusive properties that govern the liberation of the 

impregnated compound. Some of these systems even use multiple synthetic layers to achieve 

staggered rates of delivery [169]. However, the synthesis of such systems is often complex, 

costly, and time-consuming – ultimately preventing their commercialization and application in a 
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clinical setting. A single-phase polymer capable of simultaneous release of multiple therapeutic 

compounds at differing rates would offer an advantage over these systems in terms of cost and 

ease of fabrication.  

Our laboratory has developed polyurethane materials based on lysine and glycerol that 

degrade hydrolytically into non-toxic components – lysine, glycerol and CO2 [87, 170]. These 

polymers can easily be fashioned into differing morphologies using standard urethane processing 

techniques. The degradation characteristics of LDI-glycerol polyurethanes have proven useful in 

design of novel drug delivery systems. The present study is an expansion upon previous work, 

seeking to determine if the release of multiple chemotherapeutic agents at differing rates can be 

achieved from a single-phase polymer system. The delivery strategy is centered on the 

incorporation of drugs into the polymer backbone, being released via passive hydrolysis of 

urethane and urea bonds. The chemical structures of taxol, DB-67, and doxorubicin contain 

different functional groups, and we propose that they can be used to form urethane and urea 

linkages with differing degrees of hydrolytic susceptibility. Due to different rates of hydrolysis, 

each drug should elute from the polyurethane material in a different fashion.  

5.3 MATERIALS AND METHODS 

5.3.1 Materials 

Lysine diisocyanate methyl ester (LDI) was purchased from Chemical Division, Kyowa Hakko 

Kogyo Co. Ltd. (Tokyo, Japan). All other chemicals were obtained from Sigma–Aldrich 

Chemical Co. and were of reagent grade unless otherwise specified (Milwaukee, WI). 

5.3.2 Synthesis of drug-loaded polyurethane foams 

Glycerol (MW 92.01, 0.600 g, 6.5 mmol), LDI (MW 212.20, 2.00 g, 9.5 mmol), DABCO (MW 

112.18, 3.0 mg, 0.027 mmol), and dry DMSO (1.25 ml) were added to a small, dry 20 ml 

reaction flask; four such samples were prepared. Taxol (MW 853.9, 5.0 mg, 5.9 x 10
-3

 mmol), 
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doxorubicin (MW 579.9, 5.0 mg, 8.6 x 10
-3

 mmol), and DB-67 (MW 478.7, 5.0 mg, 1.0 x 10
-2 

mmol) were each added to a different flask. To the fourth flask, the same amounts of taxol, 

doxorubicin, and DB-67 were all added. The flasks were flushed with nitrogen prior to being 

sealed. The reactions were allowed to stir atop a magnetic stir plate in the dark at room 

temperature until the viscosity had attained a value of at least 3.0 x 10
4
 cP. At that time the 

viscous pre-polymer was transferred to a 100 mm PTFE dish and 100 L distilled, deionized 

H2O was added. The pre-polymers were thoroughly mixed 3 times at 2-minute intervals to 

ensure the H2O was fully incorporated. The rising foams were left open to the atmosphere yet 

covered to protect from light while the curing. The resulting polymer foams were then placed 

into a vacuum oven overnight at 25 ºC. The foams were then placed into storage in the dark at 4 

°C for further analysis.   

5.3.3 Drug Reactivity with LDI 

Solution of doxorubicin and DB-67 were prepared in dry DMSO at concentrations of 30.0 and 

10.0 mg/ml, respectively. Two small 5 ml reaction flasks were dried thoroughly and flushed with 

nitrogen, and DABCO (1.5 mg) was added to each flask. To one flask, 400 L of the DB-67 

(0.025 mmol) solution and LDI (MW 212, 5.3 mg, 0.025 mmol) were added to give a 1:1 molar 

ratio of DB-67 to LDI. To the other flask, 200 L of the doxorubicin (0.003 mmol) solution and 

LDI (MW 212, 2.2 mg, 0.009 mmol) were added to give a 1:3 molar ratio of doxorubicin to LDI. 

In each case, a 1:1 isocyanate to total-amine/hydroxyl ratio was obtained. Infrared spectra were 

recorded immediately upon addition of the LDI and 4 hours later in order to determine the 

reactivity of each drug. Taxol reactivity was not assessed at this time due to limited quantities of 

the drug. 

5.3.4 Excitation-emission spectra and fluorescence stability 

Stock solutions of DB-67, doxorubicin, and paclitaxol were prepared in DMSO at a 

concentration of 1.0 mg/ml. Each sample was sonicated for 5 min at 25 ºC to ensure complete 

dissolution. Then 3.0 L of each solution was diluted into 3 ml of PBS (pH 7.4) to arrive at 1.0 

g/ml standard solutions. Each 1.0 g/ml solution was then scanned over a range of excitation 
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and emission wavelengths to elucidate the maximum fluorescent spectra for each compound 

(Cary Eclipse). 

Stock solutions of DB-67 and doxorubicin in DMSO at a concentration of 1.0 mg/ml 

were diluted to a concentration of 1000 ng/ml by taking 50 uL of DMSO stock and adding it to 

50 ml PBS (pH 7.4). The resulting solutions were mixed thoroughly, and a 3 ml sample was 

immediately collected and analyzed for content via fluorescence spectroscopy. The samples were 

then incubated at 70 ºC and protected from ambient light. Three-milliliter samples were 

withdrawn every 24 hours, and the fluorescent signal was measured within 1-hour of the sample 

being collected. Fluorescent decay curves were then constructed from the data collected. 

5.3.5 Evaluation of foam architecture by SEM 

Polyurethane foams containing either DB-67, doxorubicin, taxol, or all three were cut into small 

5 mm x 5mm x 1mm sections, dried thoroughly, and mounted on sample holders. Samples were 

observed at 25X magnification to ensure there were no gross irregularities. Then 10 images were 

collected at 75X from various regions of each sample. Metamorph image analysis software 

(Molecular Devices) was then used to differentiate pores from polymer via a threshold algorithm. 

Threshold images were then used to estimate the % porosity of each polyurethane foam. 

5.3.6 Distribution of DB-67 and doxorubicin within polyurethane 

Foam samples were sliced by hand to a thickness of roughly 500 m and mounted on a glass 

slide. Fluorescent and non-fluorescent images were taken at 100X in order to assess the 

distribution of drug throughout the polyurethane foams (Zeiss AX10 Imager.A1). Alexafluor 647 

and FITC filters were used to visualize the doxorubicin and DB-67, respectively (Chroma). 

5.3.7 DB-67 and doxorubicin release 

LDI-glycerol polyurethane foam samples each containing either DB-67, doxorubicin, or taxol 

and one containing all three were incubated at 10 mg/ml in PBS (pH 7.4) on rocking plates in 
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temperature-controlled rooms at 4, 22, 37 and 70 °C for 10-weeks. Sample chambers were 

protected from light during this time. Every 7 days, 3.0 ml of PBS was retrieved from each 

sample; during the first week, PBS was also collected on day 3. The amount of drug released 

from the polymer was detected via fluorescence spectroscopy using the excitation and emission 

wavelengths particular for each compound. The amount of drug collected was expressed as a 

percent of the total used in the synthetic reaction, being calculated as follows: 
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where (m/V)i represents the concentration of each collected sample and VT the total volume 

(where each time point is designated “i” and  “j” represents the last). Lysine and glycerol 

released from the polymer were not assessed at this time. 

5.4 RESULTS 

5.4.1 DB-67 and Doxorubicin Reactivity with LDI 

The reactivity of DB-67 and doxorubicin with LDI in the presence of DABCO was determined 

via infrared spectroscopy (Figure 31). Infrared scans of a 1:1 molar reaction between DB-67 and 

LDI show disappearance of the isocyanate (NCO) signal at 2265 cm
-1

 over the 4-hour reaction 

period. The ratio between the peak integrations of the NCO and carbonyl (C=O) was used to 

monitor the extent of the reaction; the ratio decreased from 1.0 to 0.2 over the 4-hour reaction 

period, representing an 80% decrease. Analogous scans of a 1:3 molar reaction between 

doxorubicin and LDI also reveal decay of the isocyanate signal. Initially, the NCO:C=O ratio 

measured 2.8 and decreased to 0.74, representing a 74% decrease of the initial signal. 
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Figure 31 – FT-IR spectra depicting the reactivity of DB-67 and doxorubicin with LID in the presence of a 

tertiary amine urethane catalyst 

 

5.4.2 Excitation-emission spectra and fluorescent stability 

DB-67 and doxorubicin each exhibit characteristic, intense fluorescent spectra that have been 

utilized to study their membrane partitioning kinetics and intracellular mechanisms of action [80, 

81, 171-173]. Taxol also exhibits a fluorescent spectrum, but it is highly dependent upon solvent 

polarity [174]. Each compound also possesses multiple functional groups that can serve as points 
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for chemical attachment into our polyurethane network. An investigation of each compound’s 

fluorescent behavior was undertaken to ensure they were capable of being detected over 

prolonged periods in PBS (pH 7.4) buffer solution. The excitation and emission spectra of DB-67 

and doxorubicin were obtained in PBS buffer (pH 7.4) solution (Figure 32).  

 

 

 

 

Figure 32 – Fluorescent excitation and emission spectra of DB-67 and doxorubicin 

 

The excitation wavelengths for DB-67 and doxorubicin were found to be 395 and 490 nm, 

respectively. The emission wavelengths for DB-67 and doxorubicin were 550 and 590 nm, 

respectively. Unfortunately, the fluorescence of taxol was found to be extremely weak and 

insufficient for accurate detection in PBS buffer solution (data not shown). The chemical 
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structures, number of synthetic attachments, and the excitation and emission wavelengths for 

each compound have been summarized in table 9. 

 

Table 9 – Chemical structure and fluorescent properties of DB-67, doxorubicin, and taxol 

 

 

Fluorescence (nm) 
Compound Structure Attachments 

Excitation Emission 

DB-67 

N

N O

OH

SiCH3 CH3

CH3CH3

O

O
OH

Ch3

CH3

 

2 total: 

aromatic OH,  
tertiary OH 

394 553 

Doxorubicin 

 

6 total: 

primary OH, 

secondary OH,  

tertiary OH, 

 2 aromatic OH, 

primary NH 

490 590 

Taxol 

 

4 total: 
2 secondary OH, 

1 tertiary OH, 

secondary NH 

 

n/a n/a 

  

 

The fluorescence spectrophotometer was then tuned so that the excitation and emission 

signals of DB-67 and doxorubicin registered in the maximum range of the detector. The 

excitation and emission peaks were well delineated from one another and free from background 

interference of the PBS buffer (data not shown). Standard curves ranging from 1.0 – 1000.0 

ng/ml were constructed for each compound, and found to be linear over those concentrations 

(data not shown). Out of the three compounds incorporated into our polyurethane drug delivery 

system, only DB-67 and doxorubicin could be adequately quantified via fluorescence. 

 DB-67 and doxorubicin have been found to be susceptible to chemical degradation in 

aqueous and oxidative environments [175-178]. Although much harsher conditions than we 
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propose were used in these studies, an assessment of the fluorescence stability of the compounds 

in PBS (pH 7.4) buffer was needed (Figure 33). 

  

 

 

 

Figure 33 – Fluorescent decay profiles of DB-67 and doxorubicin at 70 °C over a 2-week period 

 

We chose to only evaluate the fluorescence stability at 70 ºC. Over a 2-week test period, DB-

67’s fluorescent signal was found to increase. On day 14 of the study, DB-67 had achieved a 

32% increase over its original baseline value. On the other hand, doxorubicin’s fluorescent signal 

was found to decay almost immediately upon exposure to aqueous media at 70 ºC. By day-2 of 

the study only 1.4% of the baseline signal remained, and by day-14 only 0.3% registered. 

5.4.3 Polyurethane Foams: SEM analysis and Drug Distribution  

Low-magnification scanning electron micrographs (25X) were taken in order to assess the 

morphology of the polyurethane foam samples (Figure 34). 
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Figure 34 – Scanning electron micrographs demonstrating the morphological features of LDI-glycerol 

polyurethane drug foams 

 

These images reveal the foams largely similar in terms of pore size, shape and distribution. Some 

variation in the foam morphology is to be expected, resulting from the processing methods used 

to fabricate each sample. Higher magnification images (75X) taken from regions of the foam 

specimens, and the porosity was estimated using a threshold imaging technique. Metamorph 

imaging software was able to clearly delineate between the polymer and pore regions of the 

images (data not shown). The average porosity of each foam sample is listed along with the 

release data found in Table 10. 

Fluorescent and non-fluorescent images were obtained in a attempt to qualitatively assess 

the distribution of DB-67 and doxorubicin throughout the LDI-glycerol polyurethane foams 

(Figure 35).  
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Figure 35 – Fluorescent microscope images showing the distribution of DB-67 and doxorubicin through the 

LDI-glycerol polyurethane foam 

 

Bright field images of the foams, each loaded with only a single drug species, appear very 

similar in morphology. Darkened regions of the bright field images are attributable to sample 

thickness. Fluorescent images reveal uniform drug distributions, with the thicker areas of the 

foam samples possessing greater fluorescent signal. Overlaid composite images further prove the 

distribution of both DB-67 and doxorubicin to be uniform throughout the materials. 

 Fluorescent images were then obtained of a sample containing all three drug compounds, 

but only the DB-67 and doxorubicin distributions were assessed (Figure 36).  
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Figure 36 – Fluorescent microscope images showing the distribution of DB-67 and doxorubicin through 

multi-drug LDI-glycerol polyurethane foams 

 

The fluorescence of the multi-drug foam appears more intense than that of the single-drug foams, 

but this can be attributed to sample thickness. The images reveal both DB-67 and doxorubicin to 

be uniformly dispersed throughout the polyurethane, with a composite image further confirming 

this finding.  
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5.4.4 Drug release 

The release of DB-67 and doxorubicin from the polyurethane foams was monitored over a 10-

week period at 4, 22, 37 and 70 °C. The release of each drug species was assessed from multiple 

samples. Polyurethane foams were synthesized containing only DB-67, Taxol or doxorubicin; 

another sample was prepared containing all three. For reasons already mentioned, only DB-67 

and doxorubicin release could be assessed via fluorescence. DB-67 release from the 

polyurethane samples was found to occur in a temperature dependent fashion, with similar 

amounts liberated from both the single and multiple drug foams (Figure 37).  

 

 

 

 

Figure 37 – DB-67 release profiles for single and multi-drug LDI-glycerol polyurethane foams 

 

By day-70 of the degradation studies, 83.9 and 79.4 mol% of the DB-67 had been released from 

the single and multiple agent foams at 70 °C, respectively. The amounts of DB-67 released from 

each foam sample at 4, 22, and 37 °C were substantially less, but occurred in similar amounts for 



 97 

the single and multi-drug foams. Doxorubicin release from the single and multi-drug foams was 

seen to occur in the same temperature dependent fashion (Figure 38).  

 

 

 

 

Figure 38 - Doxorubicin release profiles for single and multi-drug LDI-glycerol polyurethane foams 

 

By day-70, 87.5 and 92.3 mol% were released from the single and multiple drug foams at 70 °C, 

respectively. Again, the amounts released at lower temperatures were substantially less but were 

comparable between the two samples. The release data for the single and multiple drug 

polyurethane foams along with has been summarized in table 10. 
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Table 10 - Release characteristics of DB-67 and Doxorubicin from single and multi-drug LDI-glycerol 

polyurethane foams 

 

 

System Compound 
porosity 

(%) 

sol 

content 

(%) 

Temperature 

(°C) 
mol%

a
 

mass 

loss
b
 

(%) 

day-70 

concentration 

( M) 

day-3 

concentration 

( M) 

day-

70/day-3 

ratio 

4 4.58 39.2 1.23 0.57 2.2 

22 4.94 40.1 1.22 1.88 0.6 

37 7.25 39.8 1.84 2.74 0.7 
DB-67 

36.4 ± 

7.8 
25.0 

70 83.30 95.7 29.78 3.20 9.3 

4 0.25 37.4 0.06 0.01 6.0 

22 1.31 37.6 0.33 0.03 11.0 

37 6.00 38.6 1.51 0.13 11.6 
Doxorubicin 

24.7 ± 

7.0 
24.5 

70 87.49 92.1 31.03 0.50 62.1 

4 ----- 38.1 ----- ----- ----- 

22 ----- 38.8 ----- ----- ----- 

37 ----- 38.9 ----- ----- ----- 

Single 

Taxol 
28.6 ± 

9.8 
27.5 

70 ----- 98.8 ----- ----- ----- 

          

4 3.99 37.9 1.08 0.43 2.5 

22 4.50 37.1 1.10 1.48 0.7 

37 6.69 40.7 1.63 2.59 0.6 
DB-67 

28.4 ± 

11.1 
25.1 

70 79.37 92.3 32.91 2.86 11.5 

4 0.79 0.17 0.06 2.8 

22 1.87 0.46 0.15 3.1 

37 2.14 2.14 0.33 6.6 
Doxorubicin 

same as 

above 

same as 

above 

70 92.95 

same as 

above 

30.62 2.27 13.5 

4 ----- ----- ----- ----- 

22 ----- ----- ----- ----- 

37 ----- ----- ----- ----- 

Multiple 

Taxol 
same as 

above 

same as 

above 

70 ----- 

same as 

above 

----- ----- ----- 

a: at day-70, b: mass loss = (initial mass - final mass)/(initial mass) x 100%  

 

 The release profiles of the multi-drug polyurethane foams reveal substantial differences 

to exist between the two drug species at different temperatures (Figure 39). At 37 °C, there is an 

initial rapid rise of DB-67 that stabilizes at a concentration around 1.6 x 10
-6

 M (6.7 mol%). The 

doxorubicin concentration slowly rises in a linear fashion from the onset of the degradation 

experiment, eventually elevating above the concentration of DB-67 on day-49, reaching a 

maximum of 2.1 x 10
-6

 M (8.6 mol%) at day-70. At 70 ºC, the concentrations of DB-67 and 

doxorubicin in solution are seen to rise in parallel with one another. Doxorubicin is slightly 

higher at the onset and then later surpassed by DB-67 by day-63. However, the relative 

percentages of the material eluting from the polymer indicate that doxorubicin is eluting more 

rapidly than is DB-67. 

 



 99 

 

 

 

Figure 39 – Comparison of DB-67 and doxorubicin release from multi-drug LDI-glycerol polyurethane foams 

at 37 and 70 C° 

 

5.5 DISCUSSION  

The reactions of DB-67 and doxorubicin with LDI reveal differences in their ability to form 

urethane bonds. After a 4-hour period, nearly all the isocyanate signal has disappeared from the 

reaction mixture. The signal registering in the isocyanate region after 4 hours is largely attributed 

to background noise. Notice that there has also been a concomitant decrease in the signal around 

the carbonyl region of the spectra around 1700 cm
-1

. In the reaction of LDI and doxorubicin, we 

would expect a much larger initial NCO : C=O ratio due to the number of functional groups 

present on the drug. However, in the reaction between doxorubicin and LDI there appears to be a 

lower initial isocyanate signal relative to the DB-67 reaction. This apparent discrepancy can be 

largely attributed to the rapid reaction of the primary hydroxyl and amine groups in 

doxorubicin’s structure with the isocyanate before the initial IR scan could be obtained. There is 

also an increase in the carbonyl region of the spectra after 4 hours that was used to calculate the 

NCO:C=O ratio.  
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The fluorescent spectra of DB-67 and doxorubicin exhibit distinct differences and 

provide an opportunity to follow the simultaneous release of both species from a single 

polyurethane foam sample. The doxorubicin excitation band at 490 nm, while somewhat broad, 

is well delineated from the 395 nm excitation band of doxorubicin. The excitation band of DB-67 

at 395 nm does overlap to a small degree with doxorubicin, but if the sample is sufficiently 

dilute, ensuring all of the DB-67 reaches an excited state, minimal interference at the 550 nm 

emission should be present. Furthermore, the aqueous fluorescence of taxol was found to be 

extremely weak, and its inclusion in the polymer sample should not interfere with the detection 

of DB-67 and doxorubicin. Furthermore, the fluorescent excitation and emission bands of taxol 

lie closer to the ultra-violet region of the spectra. These bands being well removed from those of 

DB-67 and doxorubicin should not interfere with their detection. 

 While the fluorescent intensity of free doxorubicin was found to decay rapidly in PBS at 

70 ºC, the same was not found to be true when the drug was released from polyurethane foam. 

The signal of doxorubicin was found to persist throughout the duration of the study allowing us 

to account for more than 85% of the original content, suggesting that the reaction of the drug 

with LDI retarded its fluorescent decay. The ability of the polyurethane foam to stabilize the 

fluorescence of doxorubicin is a striking feature of our delivery system. We have noted similar 

effects related to the release of fluorescent naphthalene analogs from our delivery system in the 

past. Many promising drug candidates have failed to provide any clinical benefit due to 

premature inactivation in the body before interaction with a target site; DB-67 is one such 

candidate. It is our hope that incorporation of a drug into our polyurethane delivery vehicle will 

prove useful in counteracting these limitations imposed by the body’s unique chemical and 

metabolic environment. 

The synthetic conditions and processing methods used in this study resulted in 

remarkable consistent polyurethane foams. The sol% amongst each sample was found to be 

remarkably similar and the porosity was well conserved. The mass losses measured after the 

degradation experiments demonstrated temperature dependence, and the mol% of drug released 

was similar between multi and single drug systems. The distribution of the drugs also appears to 

be uniform when assessed with fluorescent microscopy. It is interesting to consider the ratio of 

drug concentration at day-70 to the initial concentration measured on day-3. A ratio less that one 

can be considered to represent a “burst” release pattern, while a ratio greater than one indicates a 
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“delayed” release pattern. Under this classification, doxorubicin is always released in a delayed 

fashion regardless of temperature. In contrast, DB-67 is released in a burst fashion at 4 and 70 

ºC, while delayed release is observed at 22 and 37 ºC. The contrasting release features at 

different temperatures can account for the initial burst release of DB-67 followed by the delayed 

release of doxorubicin at 37 ºC in the multiple drug system. 

5.6 CONCLUSIONS 

In the present study, we have described the synthesis and performance of novel drug-eluting 

polyurethane foams synthesized from LDI and glycerol capable of releasing multiple drugs at 

different rates. This is achievable due to the incorporation of the drug moieties into the backbone 

of the polyurethane network, utilizing each drug’s pendant functional groups to achieve differing 

rates of hydrolysis. The staggered release of multiple drugs from a single-phase material 

represents an improvement over current controlled-release technology. The improvements are 

manifest in the simplified processing techniques required to achieve staggered-release. This 

research opens new avenues of exploration in dosing strategies limited to select regions of tissue 

accessible to the implanted devices. Also, combining the synergistic actions DB-67 and 

doxorubicin on the topoisomerase enzyme target would certainly prove useful in halting tumor 

progression. It is our hope that this release technology will enable the further development of 

drug candidates previously considered inadequate for clinical use.  
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6.0  INCORPORATION OF INCORPORATION OF CATIONIC AND ANIONIC 

CONSTITUENTS ACCELERATES THE RELEASE OF DB-67 FROM LDI-GLYCEROL 

POLYURETHANE IMPLANTS 

6.1 ABSTRACT 

This study seeks to determine the effect of ionic ligands on the drug delivery characteristics of 

biodegradable polyurethane materials synthesized from lysine diisocyanate (LDI) and glycerol. 

Two naturally occurring ionic ligands, choline chloride (CC) and isethionic acid (ISE), and DB-

67, a potent anti-cancer compound, were covalently incorporated into LDI-glycerol polyurethane 

films and foams using a a tertiary amine catalyst. It was shown that the sulfonate group on ISE 

does not react to a significant degree with LDI. The morphological characteristics of the 

polyurethane films and foams were then assessed via SEM, and significant differences related to 

the ionic ligands were found to exist. Differences in the distribution of DB-67 throughout the 

films and foams were assessed via fluorescence microscopy. The materials were then evaluated 

for their drug delivery characteristics in vitro. The results of this study clearly indicate that the 

incorporation of ionic ligands into LDI-glycerol polyurethanes has significant effects on the 

morphology and drug distribution characteristics, ultimately affecting the drug delivery profiles 

of these materials.   

Keywords: choline chloride, isethionic acid, polyurethane, drug-delivery, camptothecin 
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6.2 INTRODUCTION 

Ionic species are prevalent in biology and are intricately involved in many of the essential 

physiologic processes required to maintain homeostasis. Choline chloride (CC) is a naturally 

occurring amine salt that is found in the lipids that make up cell membranes and in the 

neurotransmitter acetylcholine [179]. It has been classified as an essential nutrient by the Food 

and Nutrition Board of the National Institute of Medicine, usually grouped within the Vitamin B 

complex. Isethionic acid (ISE) is a short chain alkane sulfonate containing hydroxyl group that is 

a water soluble liquid used in the manufacture of mild, biodegradable and high foaming anionic 

surfactants [180]. It is also naturally occurring and studies suggest that cardiac myocytes are 

capable of converting taurine to isethionic acid [181, 182]. The carbon analogue of choline, 3,3-

dimethyl-butanol (DMB), while not naturally occurring, has been used in the past to probe the 

physiology of cholinergic transmission [183, 184]. These three structures, while each serving 

separate and vastly different physiologic roles, do share a unique relationship. 

These three compounds are all similar in terms of their chemical structures, each 

possessing a primary alcohol and an organic functional group separated by an ethyl chain (Figure 

37). The various organic functional groups – quaternary amine for CC, sulfonate for ISE, and t-

butyl for DMB – impart a specific ionic character to the molecule: CC is cationic, ISE is anionic, 

and DMB can be considered a neutral species. These three compounds with similar organic 

structures provide a starting point to begin exploring the effect of ionic additives in erosive drug 

delivery implants. 
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Figure 40 – Structure of CC, ISE and DMB 
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Hydrolysis is one of the dominant mechanisms for polyurethane degradation, and its rate 

is highly dependent upon material composition [185]. Hydrolysis can essentially be considered 

as a “reversal of condensation”. Most degradable polyurethanes are thermoplastic elastomers co-

polymers that are heterogeneous in nature, being composed of both hard and soft segments. The 

hard segment is typically comprised of high glass transition temperature (Tg), semi-crystalline 

aromatic diisocyanate with a low molecular weight chain extender; the soft segment is typically 

low Tg polyester with high molecular weight. Degradation in these materials occurs quite quickly 

via ester hydrolysis, while the urethane bond is more resistant to cleavage [131]. However, 

urethane hydrolysis does occur, albeit at a much slower rate that is largely dependent upon the 

hydrophobic character of the diisocyanate used to fashion the polyurethane [186]. 

Our laboratory has synthesized a new class of polyurethane materials based on lysine and 

glycerol that degrade hydrolytically into non-toxic components – lysine, glycerol and CO2 [87]. 

Lysine diisocyanate (LDI) and glycerol readily react to form dense polyurethane networks 

suitable for a variety of biomaterial applications [88, 170, 187]. These materials hydrolyze on a 

much longer time scale than the typical degradable polyurethane, and we have previously 

fashioned hydrolysable drug delivery systems from these materials intended for the long-term 

controlled release of therapeutic compounds within the body. Our delivery technology relies on 

the chemical incorporation of therapeutic compounds into a polyurethane network via pendant 

hydroxyl and amine functional groups present within a drug’s chemical structure. Drug release 

occurs in a slow, predictable fashion as the polyurethane erodes. 

In an attempt to alter the degradation rates and hence the release characteristics of our 

delivery systems, we propose the incorporation of ionic species into LDI-glycerol polyurethanes. 

Urethane degradation alters in response to local ion concentrations [188], and it is our hope that 

inclusion of biocompatible ionic species into the polymer will provide a similar effect. This 

study should provide yet another means to the alter degradation rates of our LDI-glycerol 

polyurethanes and control the release profiles of drug delivery systems fashioned from them. 
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6.3 MATERIALS AND METHODS 

6.3.1 Materials 

Lysine diisocyanate methyl ester (LDI) was purchased from Chemical Division, Kyowa Hakko 

Kogyo Co. Ltd. (Tokyo, Japan). ).  7-tert-butyldimethylsilyl-10-hydroxycamptothecin (DB-67) 

was obtained from Dr. Dennis Curran at the University of Pittsburgh, Chemistry Dept.  

(Pittsburgh, PA). Bismuth 2-ethylhexanoate was obtained from Alfa Aesar (Ward Hill, MA). All 

other chemicals were obtained from Sigma–Aldrich Chemical Co. and were of reagent grade 

unless otherwise specified (Milwaukee, WI). 

6.3.2 Synthesis of Ionic Films and Foams 

Polyurethane films were fashioned by taking glycerol (MW 92.01, 1.00g, 10.9 mmol), Bismuth 

2-ethylhexanoate (MW 638.61, 5 mg, 7.8 x 10
-3

 mmol), DB-67 (MW 478.70, 10 mg, 2.1 x 10
-3

 

mmol), and dry DMSO (2.5 ml) and adding them to a small, dry 20 ml reaction flask. The 

requisite amount of isethionic acid (ISE) (MW 148.1, 370 mg, 2.5 mmol) choline chloride (CC) 

(MW 139.6, 349 mg, 2.5 mmol) or 3,3-dimethyl-butanol (DMB) (MW 102.2, 255 mg, 2.5 mmol) 

to arrive at 6.0 mol% was added to the flask. Mol% was calculated as the number of mols of 

additive over the total mols of reactant, expressed as a percent. The contents were mixed at room 

temperature until thoroughly dissolved. The reaction flask was then transferred to an ice bath 

atop a magnetic stir plate and allowed to chill for 15 min. LDI (MW 212.20, 6.00 g, 28.3 mmol) 

was then added and the vial was flushed with nitrogen prior to being sealed. The flask was 

placed back in the ice bath and mixed for 1 hr. The reaction flask was removed from the ice bath 

and stirred at room temperature until the viscosity sufficiently increased such that it could no 

longer be mixed atop the magnetic stir plate; its viscosity was approximately 3.0 x 10
4
 cP at this 

time. The viscous pre-polymer was then transferred to a 65 mm PTFE dish submerged in an 

ethyl acetate (EtAc) bath. The polymer was allowed to cure for 48 hours in the EtAc bath. The 

PTFE dish was then removed from the bath and placed into a vacuum oven at 25 ºC for 24 hours. 

The polymer films were then stored in the dark at 4 ºC for further processing and analysis. 
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The same procedure and amounts of reactants were used in fashioning the polyurethane 

foams, except this time 1,4-diazobicyclo[2.2.2]-octane (DABCO) (MW 112.2, 8.0 mg, 7.0 x 10
-2

 

mmol) was used as a urethane catalyst. After sufficient viscosity had been attained, the viscous 

pre-polymer was transferred to a 100 mm PTFE dish and 100 L distilled, deionized H2O was 

added. The pre-polymers were thoroughly mixed 3 times at 2-minute intervals to ensure the H2O 

was fully incorporated. The rising foams were left open to the atmosphere yet covered to protect 

from light while the curing. The resulting polymer foams were then placed into a vacuum oven 

overnight at 25 ºC. The foams were then placed into storage in the dark at 4 °C for further 

analysis. The average hydroxyl functionality (Favg) was calculated for each of the materials 

according to the following equation: 

 

Favg =
nixi

xi
 

 

where ni is the number of hydroxyl functional groups on a molecule and xi is the number of 

moles of that molecule. 

6.3.3 ISE Reactivity with LDI 

In order to determine if the sulfonate group of ISE reacts with isocyanate (NCO), LDI (89mg), 

ISE (125 mg), and 2.0 ml dry, DMSO were added to a small dry reaction flask to achieve a 1:1 

OH to NCO ratio. Another vial was prepared with the same amount of DMSO and ISE, but LDI 

(178 mg) was used to provide a 1:1 ratio of LDI to ISE. Infrared spectra of each reaction were 

obtained immediately after the addition of LDI. No urethane catalyst was used to facilitate the 

reactions. The flasks were mixed atop a magnetic stir plate for 6 days, and infrared spectra were 

recorded again. Peak integrations for the NCO and carbonyl (C=O) peaks were obtained and 

used to track the progress of the reactions over the 6-day period. 
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6.3.4 Swelling studies 

Polyurethane foams and films containing either 6 mol% CC, ISE or DMB and corresponding 

control materials containing 0 mol% ionic constituent were prepared as previously described. 

Small samples on the order of 50.0 mg was obtained from each of the polyurethane foams, and a 

30.0 mg discs was cut from each film with a 4 mm tissue biopsy punch (Sklar Instruments). The 

samples were weighed and then placed in 40.0 ml distilled, deionized water atop a magnetic stir 

plate and slowly agitated. Their weights were recorded over time in the following manner: every 

minute for the first 10 minutes, every 2 min for the next ten minutes, every five minutes for the 

rest of the first hour, every 10 minutes during the second hour, every 20 minutes during the third 

hour, and then every 30 minutes for the remaining 2 hours. The samples were weighed again 

after 24 hours. The amount of water taken up by the foam and film samples was expressed as a 

percent increase over the original weight. The samples were then dried to constant weight, and 

the sol content of each sample was determined as previously described by Huang [115]. 

6.3.5 SEM Evaluation of Polymer Architecture 

Polyurethane foams and films containing either choline chloride, isethionic acid, taxol, or all 

three were cut into small 5 mm x 5mm x 1mm sections, dried thoroughly, and mounted on 

sample holders. The foam materials were sliced through on horizontal and vertical cross-sections 

in various places about the samples. A 4 mm tissue biopsy probe was used to remove discs from 

several regions of the film, and those discs were sliced through on horizontal and vertical cross-

sections. Samples were observed at 25X magnification to ensure there were no gross 

irregularities. A series of images were taken of each specimen. For foams, images were taken at 

25X, 100X, and 2000X of the sample top, bottom, and cross-section. For films, images were 

taken at 100X, 200X, and 2000X of the sample top, bottom, and cross-section. Images were then 

compared to one another in order to elucidate the morphological changes imparted by the ionic 

constituents. 



 108 

6.3.6 DB-67 Distribution throughout the Polyurethanes 

Film and foam samples were dried thoroughly and then sliced to a thickness of approximately 

500 m and mounted on a glass slide. Fluorescent and non-fluorescent images were taken at 

100X filter in order to assess the distribution of DB-67 throughout the ionic and control film and 

foam polyurethane materials (Zeiss AX10 Imager.A1). A FITC filter was used to visualize the 

DB-67 compound within the sample (Chroma). 

6.3.7 Drug Release 

LDI-glycerol polyurethane foam samples containing DB-67 and 6 mol% of CC, ISE, or DMB 

were incubated at 10 mg/ml in PBS (pH 7.4) on rocking plates in temperature-controlled rooms 

at 4, 22, 37 and 70 °C for 10-weeks. A sample containing only DB-67 and no ionic constituent 

was incubated at 10 mg/ml as well. Sample chambers were protected from light during this time. 

Every 7 days, 3.0 ml of PBS was retrieved from each sample; during the first week, PBS was 

also collected on day 3. The amount of DB-67 released from each polymer sample was detected 

via fluorescence spectroscopy using the excitation and emission wavelengths particular for DB-

67. The total amount of drug collected was calculated as follows: 

 

mol% =
1
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where (m/V)i represents the concentration of each collected sample and VT the total volume 

(where each time point is designated “i” and  “j” represents the last). Lysine and glycerol 

released from the polymer were not assessed at this time. 
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6.4 RESULTS 

6.4.1 ISE Reactivity with LDI 

It is well know that primary hydroxyl groups readily react with isocyanate to form urethane 

bonds with or without the addition of a urethane catalyst. It is easily concluded that both CC and 

DMB will readily incorporate into LDI-glycerol polyurethane materials in a predictable fashion. 

However, it is difficult to predict how the presence of a sulfonate group in ISE will affect the 

synthetic reaction. Therefore, it was of interest to determine the reactivity of ISE with LDI, and 

this was monitored via infrared spectroscopy (Figure 41).  

 

 

 

 

Figure 41 - FT-IR data depicting the reaction of LDI with ISE at 1 NCO : 1OH and 1LDI : 1 ISE molar ratios 

 

In the 1:1 NCO to OH reaction, complete disappearance of the NCO signal is realized by day-6.  

The ratio of the NCO to carbonyl (C=O) peak integrations progresses from 1.9 at day-0 to 0.3 at 
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day-6, indicating that all of the NCO has reacted with the primary OH. In a 1:1 LDI to ISE 

reaction, significant NCO signal is observed to persist at day-6. The NCO/C=O peak ratio 

changes from 2.1 at day-0 to 1.0 at day-6, indicating that half of the isocyanate has reacted.  

6.4.2 Swelling Studies 

Polyurethane foam and film samples loaded with 6 mol% ISE, CC, or DMB and corresponding 

control materials containing no ionic additives were assessed for their ability to take up water in 

an aqueous environment incrementally over a 5 hour period (Figure 42).  

 

 

 

 

Figure 42 - Swelling studies for the 6 mol% CC, ISE, DMB, and control foam and film LDI-glycerol 

polyurethanes loaded with DB-67 
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Foam samples were observed to take up approximately 3 to 4 times more water than their 

corresponding films. Over a 24-hour period, the control foam and film samples were observed to 

absorb and additional 103% and 23%, respectively. The non-ionic DMB species were observed 

to absorb slightly greater amounts of water, with the foam and film species each absorbing and 

additional 110% and 26%, respectively. The amounts of water absorbed by the ionic foams and 

films were significantly greater than those observed for either of the controls. The ISE foam and 

film samples absorbed 149% and 46%, while the CC foams and films absorbed an additional 

171% and 50%, respectively. The general trend amongst the foam and film samples regarding 

water uptake was as follows: CC > ISE > DMB > control. The samples were left to soak for a 

full 24-hours, and the mass was recorded again. The trend was still observed with each material 

taking up slightly more mass over the 19-hour interval, except for the ISE and CC foams which 

had begun to deteriorate. 

6.4.3 SEM analysis and DB-67 distribution 

Scanning electron micrographs of the LDI-glycerol polyurethane materials demonstrate that 

some significant changes in morphology occur with the addition of ionic constituents. All 

internal surfaces of the sample obtained via horizontal and vertical cross sectioning were similar 

in appearance. The top surfaces of the foams and films both appeared smooth in nature. The tops 

of the film samples free of pores, while the top surface of the foam samples had reduced number 

and size of pores. The bottom surfaces of the film samples appeared similar in nature to the top, 

and the bottom surfaces of the foams appeared similar to the cross sections. Only vertical cross-

sectional images are shown to illustrate the material morphology. Low and high magnification 

images demonstrate the differences that exist between the film samples (Figure 43).  
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Figure 43 - SEM images of the 6 mol% CC, ISE, DMB, and control LDI-glycerol polyurethane films loaded 

with DB-67 

 

The images indicate that the ionic samples, CC and ISE, both possess cavitations throughout the 

materials. The cavitations in the CC sample appear much more ordered and larger at higher 

magnification than those in the ISE material. There are no cavitations present in either the DMB 

or 0 mol% control foams, although there are some distinct surface irregularities. The 
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irregularities are much more prevalent at high magnification on the surface of the 0 mol% 

control film than on the DMB film. Low and high magnification SEM images of the LDI-

glycerol polyurethane foam materials reveal the materials to be much more similar to one 

another than previously observed amongst the film samples (Figure 44).  

 

 

 

 

Figure 44 - SEM images of the 6 mol% CC, ISE, DMB, and 0 control LDI-glycerol polyurethane foams 

loaded with DB-67 
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There are slight variations amongst the foam morphologies in terms of the number and size of 

the pores. However, high magnification images show that the surfaces of the materials are all 

very similar in nature. The surface irregularities are much less drastic in nature than the film 

samples. The surface of the CC foam exhibits small cracks across its surface, while the other 

samples are quite smooth and uniform.  

DB-67 possesses an intense, characteristic fluorescent profile, making an ideal candidate 

for assessing the controlled-release characteristics of our polyurethane materials [81, 177]. The 

emission band of the DB-67 moiety corresponds closely with that of FITC, a fluorescent probe 

commonly used in many biological assays. As such, we were able to visualize the distribution of 

DB-67 throughout thin sections of the various polyurethane materials using fluorescence 

microscopy. The distribution of DB-67 throughout the polyurethane films was observed to vary 

to a considerable degree (Figure 45).  

 

 

 

 

Figure 45 - Fluorescent microscope images demonstrating DB-67 distribution through the CC, ISE, DMB and 

control LDI-glycerol polyurethane film samples 
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Bright field images reveal the ionic film samples to each possess a unique material morphology, 

each differing in appearance quite considerably from either of the control species. Fluorescent 

images of the ionic films demonstrate the DB-67 distribution closely following the material 

morphology, with intense pockets of signal scattered throughout. The DMB sample exhibits a 

relatively disperse distribution of drug, but does possess intense bands coursing throughout the 

film. The control film possesses a uniform distribution of DB-67, similar to what was observed 

in the polyurethane foam materials. The distribution of DB-67 throughout the polyurethane foam 

materials was observed to be uniform relative to the film materials (Figure 46).  

 

 

 

 

Figure 46 - Fluorescent microscope images demonstrating DB-67 distribution through the CC, ISE, DMB and 

control LDI-glycerol polyurethane foam samples 

 

Bright field images demonstrate variations in pore size and shape to exist, and some slight 

variation can be expected after considering the material processing methods used to fashion the 
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foams. The fluorescent images reveal that the DB-67 distribution to be relatively and uniform, 

with signal intensity closely following foam thickness and morphology.  

6.4.4 Drug release 

Incorporation of ionic ligands has already proved to alter the swelling characteristics of the ionic 

foams relative to the DMB and control materials. As a result, we can anticipate distinct 

differences to occur amongst the materials with regard to their release of incorporated DB-67. 

The release of DB-67 and from the polyurethane films and foams was monitored over a 6-week 

period at 4, 22, 37 and 70 °C. The release of each drug species was assessed from multiple 

samples. The concentration profiles of DB-67 obtained in solution for the LDI-glycerol 

polyurethane films and foams were found to be temperature dependent and revealed some 

interesting differences (Figure 47).  
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Figure 47 - Concentration profiles for the release of DB-67 from the CC, ISE, DMB, and control LDI-glycerol 

polyurethane films and foams 

 

Initially, all of the materials exhibit a burst release of drug with subsequent decay. The day-3 

concentrations of DB-67 in solution can be ordered with regard to ionic constituent and follow 

the trend CC > ISE > DMB > control. Concentrations of DB-67 obtained form the ionic CC and 

ISE foams were approximately twice those contained form the corresponding films. Surprisingly, 

more DB-67 was released from the DMB film than from the corresponding foam. Similar 

concentrations of DB-67 were obtained from each of the control materials.  

In addition, the relative amount of DB-67 liberated from each film and foam system was 

recorded, eliciting some key differences between the various materials (Figure 48).  
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Figure 48 - Release profiles showing the mol% of DB-67 retrieved from the CC, ISE, DMB, and control LDI-

glycerol polyurethane films and foams 

 

The burst release observed in the concentration profiles for the films and foams is observed to be 

quite small relative to the total DB-67 content of the materials. At the end of the 6-week period, 

the ionic films had released a greater percentage of their total drug load into solution than the 

corresponding films. The CC and ISE foams released 42.0% and 35.0% of their DB-67 content, 

respectively, while each of the ionic films each released 22.4%. The DMB and control materials 

each released significantly less DB-67 than the materials containing any ionic ligands. The drug 

release characteristics have been summarized in Table 11. 
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Table 11 - Release characteristics of DB-67 from ionic and control LDI-glycerol polyurethane films and foams 

 

 

System Compound Fav g  

sol 

content 

(%) 

Temperature 

(°C) 
mol%

a
 

day-42 

concentration 

( M) 

day-3 

concentration 

( M) 

day-42/day-

3 ratio 

4 1.3 0.25 0.05 5.0 

22 3.5 0.71 0.32 2.2 

37 6.9 1.33 0.71 1.9 

choline 

chloride 
2.6 20.3 

70 22.3 4.67 1.64 2.8 

4 0.8 0.16 0.06 2.7 

22 4.0 0.79 0.24 3.3 

37 5.4 0.98 1.00 1.0 

isethionic 
acid 

2.6 28.3 

70 22.4 4.61 1.24 3.7 

4 0.02 0.12 0.01 12.0 

22 1.4 0.26 0.08 3.3 

37 2.5 0.46 0.42 1.1 

3,3-

dimethyl-

butanol 

2.6 23.4 

70 8.3 1.61 0.63 2.6 

4 0.03 0.01 0.00 ----- 

22 0.3 0.06 0.01 6.0 

37 0.7 0.15 0.09 1.7 

Film 

none 3.0 19.9 

70 6.9 1.69 0.22 7.7 

         

4 1.4 0.28 0.10 2.8 

22 3.8 0.73 0.35 2.1 

37 6.2 1.15 0.70 1.6 

choline 

chloride 
2.6 28.1 

70 58.0 12.66 1.42 8.9 

4 1.1 0.21 0.12 1.8 

22 4.4 0.85 0.27 3.1 

37 7.4 1.34 0.77 1.7 

isethionic 

acid 
2.6 26.5 

70 46.3 9.54 1.28 7.5 

4 0.06 0.01 0.00 ----- 

22 0.4 0.09 0.01 9.0 

37 0.9 0.17 0.10 1.7 

3,3-

dimethyl-

butanol 

2.6 25.9 

70 6.9 1.5 0.37 4.1 

4 0.04 0.01 0.00 ----- 

22 0.09 0.02 0.00 ----- 

37 0.6 0.11 0.02 5.5 

Foam 

none 3.0 24.3 

70 14.2 3.07 0.26 11.8 

a: at day-42  

 

6.5 DISCUSSION 

Infrared spectroscopy was used to monitor the reaction of ISE with LDI to determine how the 

presence of the sulfonate group would affect the urethane chemistry. The reactions were carried 

out in the absence of any urethane catalyst in order to avoid many of the common side reactions 

associated with their use [19, 20, 144]. It was determined that all of the available NCO was 

consumed in a 1:1 NCO to OH reaction, and that only half of the NCO was consumed in a 1:1 

LDI to ISE reaction. These findings indicate that the NCO did not react to a significant degree 
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with the sulfonate group present on ISE. Its presence in the reaction should not interfere with the 

synthetic chemistry used to synthesis the polyurethane materials.  

Swelling studies reveal significant differences to exist amongst the polyurethane foam 

and film materials in terms of their water uptake over a 24-hour period. The incorporation of 

ionic ligands can be expected to have two effects on the polymer’s water uptake. First, cations 

and anions are known to hydrate to differing degrees, so the cationic and anionic polymers may 

follow similar trends [189]. Second, the monofunctional additives interrupt the network 

architecture, serving as a site of chain termination since each ionic species is mono-functional. In 

order to control for this, DMB was chosen as a non-ionic control so that the uptake due to 

alterations in the network could be examined separate from the ionic species. As expected, the 

DMB foams and films did absorb more mass that the corresponding control, indicating Favg has 

an effect on swelling. However, the difference between the ionic and non-ionic species was 

substantially larger than the difference between the DMB and control species.  

SEM images indicate that the material morphology is vastly different between the film 

and foam samples. The film samples demonstrate a unique characteristic, morphology for each 

of the CC and ISE ionic samples. Each one demonstrates distinct pores to be present throughout 

the bulk of the material. The film samples also reveal surface irregularities that are strikingly 

different from one another, but it may be that these irregularities are artifacts of the cross-

sectioning process. A razor blade was used to slice the materials so that the internal surfaces 

could be visualized. However, the irregularities are sufficiently different from one another to 

suggest that they are likely related to the material structure. The foam samples for the most part 

appear quite similar under low and high magnifications. 

The vast differences between the film and foam morphology can easily be correlated to 

the processing techniques used to prepare them. A non-solvent casting technique was used to 

prepare the film samples, which provided the materials significant time to cure. The extended 

curing time allowed the pre-polymer to reorient itself prior to the formation of covalent urethane 

bonds. However, the foam process is relatively rapid, and occurs over a much shorter time 

interval. This interval is likely insufficient to allow for material rearrangement. As a result, the 

materials appear quite similar under the electron microscope.  

Fluorescence microscopy was able to clearly demonstrate the distribution of DB-67 

throughout each polyurethane material. Signal intensity is not necessarily representative of the 
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amount of DB-67 from one image to the next due to variations in sample thickness and 

microscope settings, but we do obtain a clear distribution pattern. There was a considerable 

difference observed between the foam and film samples with respect to drug distribution. Each 

of the polyurethane foams exhibited a relatively uniform distribution, while the film materials 

samples each possessed a rather unique distribution characteristic of the material morphology. 

These apparent differences are believed to be by-products of the processing techniques used to 

fashion the foams and films. The foam curing process was rapid, occurring over a period of 

hours. The film curing process was slow, occurring over a period of days. The extended duration 

of film curing process allows the material to segregate, a process that appears to be dictated by 

the ionic species incorporated into the sample. As a result, the DB-67 distribution in the ionic 

materials can be expected to be quite different from that observed in the foam materials. 

Differential release of DB-67 occurred from the ionic film and foam materials in a temperature 

dependent manner. A comparison of the concentration profiles from the materials at 37 °C 

demonstrates reveals some interested in trends that can be correlated to ionic character (Figure 

49).  

 

 

 

 

Figure 49 - Release of DB-67 from the ionic films and foams at 37 °C 
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Release of DB-67 from the ionic foams (CC and ISE) is remarkably similar at 37 °C over the 6-

week test period, in terms of the amounts and timing of drug release. The incorporation of ionic 

ligands was expected to affect the overall network architecture, by decreasing the average 

hydroxyl functionality of the polymer. However, the incorporation of DMB into the polyurethane 

foams and films does not appear to have anywhere near the effect that incorporation of an ionic 

species has. Consistently greater amounts of DB-67 were observed to elute from the ionic 

materials, while there was only a slight increase due to DMB incorporation. 

Similar effects were also observed to occur at 70 °C. Once again, the ionic film and foam 

materials (ISE and CC) are observed to release significantly greater amounts of DB-67 into 

solution than their corresponding non-ionic materials (Figure 50).  

 

 

 

 

Figure 50 - Release of DB-67 by the ionic materials at 70 °C 

 

The chain termination effect of the ligands is apparent when comparing the DMB foam to the 

control material. The release rates of DB-67 observed with the CC, ISE, DMB, and especially 

the control materials are much slower than previously observed for other LDI-glycerol drug 
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delivery systems. This is due to the need to increase the amount of LDI in the synthetic reaction 

in order to completely dissolve the ionic species. The additional LDI that was required resulted 

in an NCO:OH ratio of 1.7 in the synthetic reaction, where previously a value of 1.0 had been 

used. A much more slowly degrading polymer can be expected due to the increased number of 

urea bonds in the material, which hydrolyze much more slowly than urethane bonds. Overall, the 

incorporation of ionic species into LDI-glycerol polyurethane materials was found to increase the 

rates at which DB-67 is eluted into solution through a material degradation and erosion process. 

6.6 CONCLUSIONS 

In this study, we have present a means to alter the controlled, long-tem delivery of the 

camptothecin analogue DB-67 from biocompatible, biodegradable polyurethane films and foams 

constructed from LDI and glycerol via the incorporation of ionic ligands. We have demonstrated 

via FT-IR that LDI does not react to any significant degree with sulfonate functional groups. We 

then incorporated naturally occurring ionic ligands, choline chloride and isethionic acid, and DB-

67 into the polymer network via covalent urethane bonds. The ionic ligands were shown to alter 

the swelling characteristics of the materials to a considerable degree. A non-ionic control ligand, 

3,3-dimethyl-butanol, did not demonstrate a similar effect on swelling characteristics of the 

materials. Scanning electron micrographs revealed substantial differences in morphology 

between the film materials, but not the foams. Fluorescence microscopy was used to demonstrate 

substantial differences in the DB-67 distribution throughout the films, but not the foams. Drug 

release was observed to proceed in a temperature dependent manner via erosive kinetics. The 

incorporation of ionic ligands hastened the release of DB-67 from the polymer films and foams 

in a characteristic and predictable manner. These results clearly demonstrate that the controlled 

release of drugs from LDI-glycerol polyurethanes can be altered with via the incorporation of 

cationic and anionic ligands. 
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7.0  GENERAL DISCUSSION 

7.1 INTRODUCTION 

Humans have always attempted to improve their health by ingesting or administering drugs. 

Examples appear throughout recorded history, from every continent and culture. Biblical 

examples include Noah producing alcohol and Christ being offered a sedative to ease the intense 

pain of crucifixion [190, 191]. The use of opium was described by Theophrastus in the third 

century B.C., the stimulating powers of methyl-xanthines was exploited by ancient Arabian 

shepherds, and the paralyzing properties of curare were recognized by native South Americans 

centuries before the arrival of western civilization [192]. Chemotherapy of cancer, which some 

consider a modern development, existed in some form or another for more than 400 years [193]. 

Vaccination, the intentional exposure to minute doses of pathogen, was used in China and India 

to prevent smallpox and other infections centuries before the birth of Pasteur [194].  

 Even during the 20
th

 century, drug discovery has often resulted from purely empirical 

observations and happenstance. The anticancer effects of nitrogen mustard were realized during 

the development of chemical warfare agents, and penicillin was discovered after the inadvertent 

contamination of a cell culture experiment [195, 196]. As technology has advanced, particularly 

after 1970, methods of drug discovery and mass production of therapeutics have become more 

sophisticated and rational in their approach. The mass production of insulin for the treatment of 

diabetes is merely one example in which advances in scientific technology resulted in 

tremendous gains in therapeutic efficacy [197]. In parallel with the rapid rise of modern 

pharmaceutical technology and biotechnology, the cellular and molecular basis for the action of 

many drugs has been uncovered. Today drug design benefits from an accumulated base of 

scientific knowledge. The interactions between neurotransmitters and their receptors, the 

regulation of hormone secretion, and the sensitivity of tumor cells to specific kinds of chemicals 
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have resulted in advanced treatments for depression, effective means of birth control, and 

curative chemotherapy for some select malignancies (i.e. – Hodgkin’s lymphoma), respectively.  

New technology and clearer biological insight have led to new classes of therapeutic and 

prophylactic agents. Consider some of the new products available to patients in the United States 

over the last few years listed in Table 12 [198]. 

 

Table 12 – Newly approved therapeutics available on the US market 

 

 

AGENT TRADE NAME INDICATION 

Hepatitis B subunit Recombivax HB® (Merck & 

Co., Inc.) 

 

Vaccination against hepatitis B 

Human insulin Humilin® (Eli Lilly) 

 

Treatment of diabetes 

Monoclonal antibody against 

CD3 

Orthoclone OKT® (Ortho 

Biotech) 

 

Prevention of organ rejection 

Human growth hormone Protopin® (Genentech, Inc.) 

 

Growth failure in children 

Human interleukin-2 Proleukin® (Chiron 

Therapeutics) 

 

Metastatic renal cell carcinoma 

Erythropoietin Epogen® (Amgen) 

Procrit® (Ortho Biotech) 

 

Anemia 

Interferon beta-1a Avonex® (Biogen, Inc.) 

 

Multiple sclerosis 

Interferon alpha-n3 Alferon® (Immunex Corp.) 

 

Intralesional treatment of 

refractory external condylomata 

acuminata 

 

Tissue plasminogen activator Activase® (Genentech, Inc.) 

 

Acute myocardial infarction 

ß-cerebrosidase Ceredase® (Genzyme, Corp.) 

 

Enzyme deficiency 

Deoxyribonuclease (DNase) Pulmozyme® (Genentech, Inc.) Cystic fibrosis 

  

 

Even more complex agents such as chimeric antibodies, gene-based drugs, anti-sense 

oligonucleotides, and virus-like particles, are emerging as clinically viable entities. New clinical 

approaches involve cells as well as molecules; the introduction of genetically modified cells into 

humans has blurred the distinction between conventional pharmacology and transplantation. A 

revolution in drug development is clearly upon us. 
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 This wealth of new technology and the resulting new armaments in the war against 

disease will require new strategies for drug and vaccine administration. Most current methods for 

drug administration are direct descendents of ancient practices, changing little over the past few 

decades [199]. Egyptian physicians employed pills, ointments, salves, and other forms of 

treatment over 4,000 years ago. Hippocrates, alluding to modern sterile procedures, warned 

against the introduction of environmental pathogens into open wounds in the 4
th

 century B.C. 

Intravenous injections were first performed in humans in 1665, only a few decades after 

Harvey’s description of the circulatory system. Subcutaneous injections were introduced by 

Wood in 1853 and the modern hypodermic needle was developed by Luer in 1884. 

 While pills and injections have enabled significant medical advances to be attained, these 

methods are inadequate for the delivery of new therapies made possible because of the explosion 

in biotechnology. Recombinant proteins frequently have short half-lives, poor permeability in 

membranes, and serious toxicity when delivered systemically in large doses. General methods 

for the delivery of gene-therapy vectors are still unknown, since the uptake, bio-distribution, 

expression, and toxicity of oligonucleotides have yet to be systematically studied. Similar to new 

rational approaches to drug and vaccine design, new delivery technologies must exploit findings 

from basic science. Some of these hurdles may not be overcome for decades, yet the need for 

advanced therapies persists. 

7.2 OLD COMPOUNDS, NEW APPROACHES 

The approval of new therapies by the US Food and Drug Administration has slowed over the 

past few years, in part due to the new challenges encountered with advanced biotechnologies 

[200, 201]. However, the decline in approvals also stems from a lack of suitable drug candidates. 

Simply put, drug compounds are not being discovered at rates high enough to continue rapid 

expansion of the pharmaceutical industry [202]. Numerous large drug companies are beginning 

to see their blockbuster drug go off patent without any suitable replacement candidates in their 

developmental pipeline. However, substantial room exists for improvement on currently 

available and previously identified drug compounds. New clinical indications for drugs can 

continue to be explored and implemented. In addition, vast numbers of potential drug candidates 
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have previously been identified, but many were unable to be implemented into any efficacious 

therapies. Some reasons for this include stability of the drugs active state within the body, 

susceptibility to physiologic pH changes, rapid clearance via the kidney and liver, and even the 

manifestation of severe, toxic side effects encountered with the most modest of dosing regimens. 

 The design of controlled-release drug delivery systems enables one to reexamine 

previously discarded drug candidates. One of the model drug compounds used in this study, DB-

67, is a perfect example of this phenomenon. DB-67 has been reported successful in numerous 

scientific endeavors, yet its application to any specific disease state has yet to be realized. A 

previously discussed, DB-67 is subject to rapid inactivation within the body in its native state 

[5]. The dynamic equilibrium between the lactone and hydroxy-acid is severely shifted due to the 

drugs ability to bind to serum albumin. As a result, the drug exists almost entirely in its inactive 

state, with little potential to ever realize its therapeutic potential. The work detailed in this 

dissertation focuses on the incorporation of DB-67 into various degradable polyurethane drug 

delivery systems via labile covalent bonds. Yet, this was just a starting point and essentially any 

compound with pendant hydroxyl or amine groups could easily have served as the model 

compound. The incorporation of chemotherapeutic agents into implantable reservoirs is a proven 

strategy in the battle against cancer, and we chose to base our delivery systems on this 

technology [48, 203-205]. DB-67 was chosen primarily for its fluorescent spectrum, which 

enabled the detection of the species at minute concentrations in aqueous media. The true focus of 

this dissertation is to discern how a controlled-release drug delivery system’s properties can be 

modulated via chemical means. 

7.3 CONTROLLED RELEASE VIA COVALENT INCORPORATION 

The vast majority of ddgradable controlled release systems rely on diffusion as the primary 

release strategy [31]. Small molecule drugs are incorporated into a pre-fashioned polymer 

matrix, usually with the aid of a volatile solvent. The drug is dissolved in the solvent, the matrix 

is then soaked in the solvent for an extended period, and the solvent is removed. This leaves the 

drug dispersed throughout the polymer matrix, absorbed onto its surface. These types of systems 

provide only a transient release phase, and the matrix material remains long after the drug load 
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has been exhausted. When delivering large drug molecules such as proteins, the compound can 

be incorporated into porous matrices; the drug becomes entrapped due to small pore size relative 

to the large drug compound or tortuous routes of diffusion. While long-term release over months 

and even years has been reported from such systems, the short half-lives of proteins within these 

matrices often leads to release of inactive drug species [206-208]. 

 It was our goal to design a system capable of releasing small drug molecules over an 

extended period. If this were to be the case, the release rate would need to be dictated by material 

erosion, not by diffusion. It was hypothesized that this could be achieved by covalently 

incorporating a drug moiety via its pendant functional groups into the polymer matrix. The vast 

majority of drug compounds have either free amine or hydroxyl groups, or both, present 

somewhere within their chemical structures. These functional groups can easily converted to 

urethane bonds in the presence of a suitable catalyst. DB-67 possess two hydroxyl groups, one 

aromatic and one tertiary, that were used to incorporate the species into a polyurethane network 

fashioned from LDI and glycerol. We have demonstrated that it is possible to release a small 

molecule drug over an extended period from such systems, with the release dictated by material 

erosion rather than drug diffusion. 

7.4 CONTROLLED RELEASE VIA ALTERATIONS IN MATERIAL 

MORPHOLOGY 

It has been demonstrated repeatedly through numerous scientific studies that a material’s 

morphology significantly impacts its ability to deliver a drug compound [209-211]. For example, 

porous polymer matrices release drug at rates significantly different from hydrogels and thin 

films. Surface to volume considerations become important when designing materials to elute 

drug at pre-determined rates. If one can accurately control the material morphology, then one can 

essentially tailor the release properties to meet specific application criteria.  

The versatility of polyurethane materials results from their unique chemistry. The 

material properties correlate to the poly–alcohols, –amines, and –isocyanates used to synthesize 

them. Once the reactants have been chosen and their relative molar ratios are defined, the 

blowing, gelling, and cross-linking reactions that condense these agents into urethane and urea 
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bonds can be selected to occur to differing degrees This gives rise to numerous structural 

permutations of a solitary reactant mixture. We have utilized these tools to design polyurethane 

materials with differing material morphology. 

The first LDI-glycerol polyurethane drug delivery system described was a small solid 

disc cut from a cast polymer film. A viscous LDI-glycerol pre-polymer was prepared, 

incorporating DB-67 into the material via labile urethane linkages. The film was prepared via a 

non-solvent casting technique, where the polymerization solvent and the polymer non-solvent 

were miscible. The resulting polymer discs were shown to be relatively uniform in terms of their 

drug content and morphology. The first permutation on LDI-glycerol polyurethane drug delivery 

systems was a foam material prepared from the same reactant mixture used in the synthesis of 

the polyurethane discs. By using a different catalyst and processing techniques, we were able to 

construct a second drug delivery system with vastly different material morphology. As 

hypothesized, the drug elution rates from the two systems were vastly different from one another. 

The foam materials degraded at a much faster rate, delivering more of its drug-load into solution 

than the corresponding disc materials. The difference in the release rates of the two-systems can 

be correlated to the material morphology, more specifically, the surface-to-volume ratio. 

Although exact measurements were not taken, it is clear from scanning electron micrographs that 

the LDI-glycerol foam materials possess a much greater surface-to-volume ratio than do the 

polyurethane discs. Considering the crude processing techniques used to fashion these materials 

in the laboratory, there is substantial opportunity to further refine these materials by utilizing 

sophisticated synthetic techniques. Once tighter control on material morphology can be gained, 

materials can begin to be evaluated for their controlled release potential. Further studies will 

elucidate key structure-release correlations that can be used to develop tightly regulated 

controlled release systems.  

7.5 CONTROLLED RELEASE VIA CATALYST MECHANISM 

Polyurethanes are among the most versatile of synthetic materials, and an enormous body of 

literature exists describing their synthesis and differing material properties. As previously 

mentioned, the physical properties of polyurethane materials can easily be tailored to specific 
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material applications. Countless review articles detailing the vast number of processing 

manufacturing techniques exist and aid the engineer in designing a material for a specific 

function [212-218]. The synthetic component that is most important in dictating the material 

properties of the polyurethane is the catalyst. The mechanisms of many urethane catalysts have 

been deduced, and the selectivity and specificity resulting from the individual mechanisms can 

be used to control polyurethane synthesis. 

 In light of these facts, it was hypothesized that the controlled release of DB-67 from LDI-

glycerol polyurethane materials could be altered by a change in catalyst alone. To this end, 

tertiary amine catalysts with different reactivity profiles were selected. The non-selective catalyst 

1,4-diazobicyclo[2.2.2]-octane (DABCO), is known to readily catalyze the gelling, blowing, and 

cross-linking reactions, while 4,4’-(oxydi-2,1-ethane-diyl)bismorpholine (DMDEE) primarily 

catalyzes the blowing reaction [219]. As a result, of the differences in the catalytic activities of 

DABCO and DMDEE, the release of DB-67 from the resulting foams should vary. A significant 

difference in the release of DB-67 from the LDI-glycerol polyurethane foams was detected, 

proving that controlled release can be modulated via only a change of urethane catalyst. 

Considering the crude processing techniques used to fashion the foams, there remains 

considerable room for further investigation.  

Using more sensitive processing techniques should result in the ability to actively control 

material properties and provide finer control of drug release relative to urethane catalyst. In 

addition, other catalyst systems with different selectivity from either DABCO or DMDEE should 

be assessed in order to elucidate key catalyst-release correlations. These correlations can then be 

used in the design and synthesis of highly regulated drug delivery systems. They may even be 

able to be expanded to other polymer systems besides polyurethanes, such as polyesters. 

7.6 CONTROLLED RELEASE VIA DRUG STRUCTURE 

It is no surprising fact that drugs delivered from controlled release systems possess differing 

chemical structures. The chemical structure of the agent ultimately determines the how the 

interaction with the target biological system occurs. Since the modulation of biological processes 

is dependent upon the chemical structure of a drug, it is therefore necessary to incorporate 
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different structures into controlled release systems. Differential release has been observed to 

occur for a variety compounds, based primarily on their hydrophobic or hydrophilic character 

[220-222]. As previously described, drug loading is done in a passive fashion where the drug is 

absorbed onto but not attached into the polymer. Solubility, diffusive properties, and the drug’s 

affinity for the polymer matrix determine its eventual release characteristics. 

However, one can look beyond the hydrophobic and hydrophilic character of a drug, and 

begin to examine its physical structure. DB-67 and doxorubicin possess unique chemical 

structures, characterized by two and six functional groups, respectively (Figure 51). 

 

 

 

 

Figure 51 – Structure and attachments of DB-67 and doxorubicin 

 

We have shown that LDI will react with these functional groups to varying degrees in the 

presence of a urethane catalyst. Since every drug will possess different number and type of 

functional groups, it is possible to form urethane and urea bonds in differing chemical 

environments. It was then hypothesized that these differing urethane and urea bond will exhibit 

different susceptibility to hydrolysis. Since hydrolysis is the primary mechanism governing drug 

release from the LDI-glycerol polyurethanes, each drug should elute at its own characteristic 

rate. In essence, the number and type of functional group present on the drug will dictate it’s 

controlled release when tethered into the polyurethane network via covalent linkages. 
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In order to test this hypothesis, a series of naphthalene related compounds were selected 

to serve as model drug compounds. Mono- and bi-functional hydroxyl and amine derivatives 

comprising the series were incorporated into LDI-glycerol polyurethane foams in order to assess 

their release rates. It was subsequently found that material structure plays a key role in dictating 

the release of these compounds from the polyurethane foams. A “true” drug-delivery LDI-

glycerol polyurethane foam was then made, incorporating DB-67, doxorubicin, and paclitaxol. 

Once again, release rates were shown to correlate to a drug’s chemical structure, presumably due 

to the differential hydrolysis of urea and urethane bonds. 

Typically, when multiple drugs have been released from a single device, it has been 

accomplished via two separate phases or multiple reservoirs[163, 223-230]. The diffusive 

properties of the two-phases govern the release of the encapsulated drug compounds. Our 

approach is different in that multiple drug release has been accomplished from a single-phase 

material. Not only is the material single-phase, but also it was fashioned in a one-step synthetic 

reaction. This area of drug delivery has only just begun to be explored, but one can already see 

the advantages gained in terms of ease of fabrication and versatility with respect to incorporation 

of different drug species. It is our hope to continue exploration of multiple release systems based 

on the differential hydrolysis of urethane and urea bonds. 

7.7 CONTROLLED RELEASE VIA IONIC LIGANDS 

Controlled drug release is a complex process, relying on a precise balance between biology and 

materials science. We can often look to nature for clues on how to exhibit control over material 

performance and behavior. For instance, the amphiphilic nature of phospholipids facilitates the 

ordered structure of cellular membranes, and the precise regulation of ion concentrations 

underlies brain and kidney function. Ionic substances are indeed important to normal physiologic 

regulation, maintaining many of the precise balances required for homeostasis. It was of interest 

to determine if ionic constituents could be used to augment the controlled-release from LDI-

glycerol polyurethanes. 

 The use of ionic species in drug delivery has been limited, mainly augmenting the 

swelling characteristics of various hydrogel delivery systems [231-233]. It was hypothesized that 
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the degradation rates of LDI-glycerol polyurethane materials could be enhanced via the 

incorporation of ionic ligands. The reasons for this are two-fold: (1) the swelling characteristics 

of the material will change leading to enhanced water uptake and (2) the presence of ions is 

noted to affect degradation of polyurethanes, enhancing their breakdown [188]. Choline chloride 

and isethionic acid, two naturally occurring ionic ligands, were chosen to assess ionic effects on 

LDI-glycerol controlled release systems. The biologic function of these materials has already 

been discussed in a previous chapter. However, it should be noted again that both ligands contain 

one primary hydroxyl functional group; choline chloride is cationic and isethionic acid is 

anionic. Incorporation of these ligands into the polymer network essentially results in chain 

termination since they are mono-functional. Chain termination will effectively change the overall 

hydroxyl functionality, changing the network architecture in the process. The non-ionic species, 

3,3-dimethyl-butanol, is structurally similar to CC and ISE and was used as a control for the 

overall change in network architecture 

 We have decidedly shown that the incorporation of ionic ligands drastically alters the 

swelling rates and the overall drug delivery characteristics of the LDI-glycerol polyurethane 

materials. These ligands were mono-functional and represented only two possible ionic groups – 

quaternary amines and sulfonates. Future work should examine the relative effect of other ionic 

groups, such as carboxylic acids and phosphate, both of which are known to react to a slight 

degree with isocyanates. The incorporation of such ligands may result in substantial changes in 

material properties due to the reactivity of the acid and phosphate group. Multi-functional ionic 

species should also be examined. Ligands with multiple hydroxyl groups and amine groups, as 

well as multiple ionizing groups should be evaluated in tandem. The results present here only 

hint at the potential of ionic ligands to modulate drug delivery.  

7.8 CONCLUSION 

The results presented in this dissertation lay the groundwork for future endeavors in controlled 

release drug delivery systems based on LDI-glycerol polyurethane materials. Chemical means of 

controlling drug-delivery have been investigated, including the following: (1) covalent 

incorporation of drug species, (2) manipulation of material morphology, (3) catalytic control of 
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drug elution, (4) differential release based on drug structure, and (5) role of ionic ligands. 

Covalent incorporation of a number of drug structures was possible, and the release rates 

corresponded to material erosion, rather than drug diffusion. The polyurethane film systems 

released materials at a much slower rate then their corresponding foam materials. The film and 

foam drug delivery systems were shown to exert significant anti-proliferative effects in vitro 

against malignant glioma cell lines related to the controlled release of DB-67. A simple change 

in catalyst has been shown to alter release rates from otherwise identical LDI-glycerol 

polyurethane materials. A drug’s chemical structure was able to dictate its release profile 

following covalent incorporation, making release of multiple drugs at different rates from a 

single-phase material possible. Finally, the ionic ligands choline chloride and isethionic acid 

were shown to substantially alter swelling and release characteristics of LDI-glycerol materials. 

As a result, of this work, a number of key design principles have been elucidated that will aid in 

the future development of controlled release systems. Significant progress was made with regard 

to each chemical control method, but in doing so, more questions were posed than could be 

answered. Drug delivery is truly a complex process, lying at the intersection of three worlds: 

chemistry, biology, and engineering. For the rational design of biomaterials, an understanding of 

polymer chemistry and polymer physics is necessary, but not sufficient. Equally important is a 

quantitative understanding of the principle rates that govern drug transport, interaction, and 

clearance in both normal physiologic and abnormal pathologic situations. This is not always an 

easy environment in which to work, but tremendous potential to treat or even cure human disease 

serves as motivation. 
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