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IMPORTANCE SAMPLING FOR BAYESIAN NETWORKS: PRINCIPLES,

ALGORITHMS, AND PERFORMANCE

Changhe Yuan, PhD

University of Pittsburgh, 2006

Bayesian networks (BNs) offer a compact, intuitive, and efficient graphical representation of

uncertain relationships among the variables in a domain and have proven their value in many

disciplines over the last two decades. However, two challenges become increasingly critical

in practical applications of Bayesian networks. First, real models are reaching the size of

hundreds or even thousands of nodes. Second, some decision problems are more naturally

represented by hybrid models which contain mixtures of discrete and continuous variables

and may represent linear or nonlinear equations and arbitrary probability distributions. Both

challenges make building Bayesian network models and reasoning with them more and more

difficult.

In this dissertation, I address the challenges by developing representational and computa-

tional solutions based on importance sampling. I First develop a more solid understanding of

the properties of importance sampling in the context of Bayesian networks. Then, I address

a fundamental question of importance sampling in Bayesian networks, the representation

of the importance function. I derive an exact representation for the optimal importance

function and propose an approximation strategy for the representation when it is too com-

plex. Based on these theoretical analysis, I propose a suite of importance sampling-based

algorithms for (hybrid) Bayesian networks. I believe the new algorithms significantly extend

the efficiency, applicability, and scalability of approximate inference methods for Bayesian

networks. The ultimate goal of this research is to help users to solve difficult reasoning

problems emerging from complex decision problems in the most general settings.
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1.0 INTRODUCTION

1.1 MOTIVATION

There is a lot of uncertainty in the world. In order to make decisions under uncertainty, we

need good modelling tools. Bayesian networks (BNs) (Pearl 1988) offer a compact, intuitive,

and efficient graphical representation of uncertain relationships among the variables in a

domain and have proven their value in many disciplines during the last two decades, which

include a variety of decision problems in medical diagnosis, prognosis, therapy planning, ma-

chine diagnosis, user modelling, natural language interpretation, planning, vision, robotics,

data mining, fraud detection, and many others. Some examples of these real-world applica-

tions are described in a special issue of Communication of ACM, on practical applications

of decision-theoretical methods in AI, Vol. 38, No. 3, March 1995.

In addition to modelling power, Bayesian networks provide excellent mechanism for per-

forming probabilistic reasoning tasks. They allow combining our prior knowledge and new

observations easily before reaching answers to a variety of queries. Taking the medical do-

main as an example, a physician first makes observations of the symptoms on a patient,

which are input to a Bayesian network that models the domain. The model can then be

applied to perform reasoning tasks, such as computing how likely the patient has a certain

disease, or what the most likely disease is. Based on the results, the physician can make

decisions regarding which tests to perform and what therapy to prescribe.

For the models that are not too complex, we can obtain exact answers for the reason-

ing tasks. However, two challenges become increasingly critical in practical applications of

Bayesian networks. First, real models are reaching the size of hundreds or even thousands.

Second, some decision problems are more naturally represented by hybrid models which
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contain mixtures of discrete and continuous variables and may have equations and arbitrary

probability distributions. Building these models and reasoning with them becomes more and

more difficult. Exact inference has been shown to be NP-hard for discrete models (Cooper

1990) and even for a very simple hybrid model, a conditional linear Gaussian polytree (Lerner

and Parr 2001). Although approximate inference to any desired precision has been shown to

be NP-hard as well (Dagum and Luby 1993), it is for sufficiently complex models the only

alternative that will produce any result at all in an acceptable amount of time.

1.2 OBJECTIVE

To address the challenges mentioned in the last section, I focus on developing importance

sampling-based approaches. There are two main objectives for this research.

The first objective is to develop more solid understanding of importance sampling. It is

well known that the results of importance sampling are very sensitive to the quality of the

importance function, i.e., the sampling distribution. Although we know theoretically that the

optimal importance function is the actual posterior probability distribution, we usually have

no access to it. Therefore, it is important to understand the properties of good importance

functions.

The second objective is to propose representational and computational solutions for deci-

sion modelling using Bayesian networks. Theoretically, all importance sampling algorithms

asymptotically share the same convergence rate, 1√
m

, where m is the number of samples,

except that the multiplicative constant before the rate may differ significantly across differ-

ent methods (Liu 2001). Therefore, the starting point of sampling really matters. I want

to develop more accurate and more efficient importance sampling algorithms based on novel

approaches to computing good importance functions.

The ultimate goal is to help users to solve difficult reasoning problems emerging from

complex decision problems in the most general settings.

2



1.3 OVERVIEW OF THE DISSERTATION

The outline of the dissertation is as follows.

In Chapter 2, I first define the notation used in this dissertation. Then, I give a gentle

introduction to Bayesian networks, including their mathematical and technical concepts.

I then review existing exact and approximate inference algorithms for Bayesian networks.

Finally, I give a brief introduction to hybrid Bayesian networks.

In Chapter 3, I first give a brief introduction to the basic theory of importance sampling

and outline its underlying assumptions. Although theoretically we know the form of the

optimal importance function, we only have access to its approximations in practice. I discuss

two requirements for a good importance function and translate the theoretical understanding

of the requirements to the context of Bayesian networks.

In Chapter 4, I propose the Evidence Pre-propagation Importance Sampling Algorithm for

Bayesian Networks (EPIS-BN) algorithm, which uses the Loopy Belief Propagation (LBP) (Mur-

phy, Weiss, and Jordan 1999) algorithm to calculate an importance function. My experi-

mental results show that the EPIS-BN algorithm achieves significant improvement over the

AIS-BN algorithm (Cheng and Druzdzel 2000).1 In the end, I point out that the calculation

of an importance function itself is an approximate inference problem.

In Chapter 5, I address a fundamental question for importance sampling in Bayesian

networks, the representation of importance functions. I first derive the exact representation

for the optimal importance function. Since calculating the exact form is usually unaffordable,

we often use its approximations. I review several popular approximation strategies and

propose a strategy based on explicitly modelling the most important additional dependence

relations introduced by the evidence.

In Chapter 6, I propose the Hybrid Loopy Belief Propagation (HLBP) algorithm, which

extends the Loopy Belief Propagation and Nonparametric Belief Propagation (Sudderth, Ih-

ler, Freeman, and Willsky 2003) algorithms to deal with hybrid Bayesian networks. The

main idea is to represent the LBP messages with mixture of Gaussians and formulate their

1For this work, Cheng and Druzdzel received honorable mention in the 2005 IJCAI-JAIR Best Paper
Award Awarded to an outstanding paper published in JAIR in the preceding five calendar years. For 2005,
papers published between 2000 and 2004 were eligible.

3



calculation as Monte Carlo integration problems.

In Chapter 7, I propose the Evidence Pre-propagated Importance Sampling Algorithm

for General Hybrid Bayesian Networks (HEPIS-BN), which uses HLBP to calculate the

importance function. The main advantages of the new algorithm are (1) it does not put

any restriction on the representation of the hybrid Bayesian networks, allowing equations

and arbitrary probability distributions, and (2) given enough computational resources, it

guarantees to converge to the correct posterior probability distributions, unlike most existing

approaches which only produce the first two moments for CLG models.

In Chapter 8, I summarize the contributions of this dissertation and point out some

future research directions.

Some of the material in this dissertation has appeared previously in conference or journal

papers by Yuan and Druzdzel (2003, 2005a, 2005b, 2006).

4



2.0 BACKGROUND

2.1 NOTATION AND GRAPHICAL CONCEPTS

In my notation, I use regular upper case letters, such as X and Xi, to denote single variables

and their corresponding lower case letters, x and xi, to denote their states. I use boldface

upper case letters, such as X = {X1, ..., Xn} to denote a set of variables. Their states are

denoted by the corresponding boldface lower case letters, x = {x1, ..., xn}. I use X−i to

denote the set of variables X minus variable Xi, i.e., X−i = {X1, ..., Xi−1, Xi+1, ..., Xn}. I

use boldface indexed lower case letters, such as xk, to denote samples from a multivariate

probability distribution p(X).

I also define some graph concepts that are needed in this dissertation. A directed graph

is a pair D = {V,E}, where V = {X1, ..., Xn} is a set of nodes, and E = {(Xi, Xj)|Xi, Xj ∈
V, i 6= j} is the set of arcs. Given an arc (Xi, Xj) ∈ E, Xi is called a parent of Xj, and Xj

is called a child of Xi. I denote the set of Xi’s parents as PA(Xi). A directed path in a directed

graph D is a finite distinct sequence of directed arcs of the form ((X0, X1), (X1, X2), ..., (Xm−1, Xm)).

If there is a directed path from Xi to Xj, Xi is said to be an ancestor of Xj, and Xj a de-

scendant of Xi. A node X is called a root if no arcs are directed into X, and a node X is

called a leaf is no arcs start from X.

The underlying graph G of a directed graph D is the undirected graph formed by ignoring

the directions of the arcs in D. A path in an undirected graph G is a finite distinct sequence

of arcs of the form ((X0, X1), (X1, X2), ..., (Xm−1, Xm)). A cycle in an undirected graph G is

a path whose two end nodes coincide. A loop in a directed graph D corresponds to a cycle

in the underlying graph G of D. A complete graph (clique) is a graph with n nodes in which

each node is connected to each of the others through arcs. A directed graph D is acyclic if it
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has no loops. A directed graph D is singly connected (also called polytree) if its underlying

graph G has no cycles. Otherwise, it is multiply connected or loopy.

In a directed acyclic graph D, a path is said to be d-separated by a set of nodes Z if and

only if: (1) the path contains a chain i → m → j or a fork i ← m → j such that the middle

node m is in Z, or (2) the path contains an inverted fork i → m ← j such that the middle

node m is not in Z and such that no descendant of m is in Z. A set Z is said to d-separate

X from Y if and only if Z d-separated every path from a node in X to a node in Y. X and

Y are d-connected by Z if and only if they are not d-separated by Z.

2.2 INTRODUCTION TO BAYESIAN NETWORKS

Bayesian networks are directed acyclic graphs (DAGs) in which nodes represent random

variables and arcs represent direct probabilistic dependencies among them. A Bayesian

network encodes the joint probability distribution over a set of variables {X1, . . . , Xn}, where

n is finite, and decomposes it into a product of conditional probability distributions over

each variable given its parents in the graph. In the case of nodes with no parents, a prior

probability distribution is used. The joint probability distribution over {X1, . . . , Xn} can be

obtained by taking the product of all of these prior and conditional probability distributions:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|PA(Xi)) , (2.1)

where PA(Xi) denotes the parent nodes of Xi. Figure 2.1 shows a highly simplified example

Bayesian network modelling the influence of hiking on a person’s health. The variables in

this model are: Hiking (K), Trail (T ), Mood (M), Weather (W ), Hair style (S), and Health

(H). For the sake of simplicity, I assume that each of these variables is binary. For example,

K has two outcomes, denoted k and k, representing “hiking” and “not hiking,” respectively.

A directed arc between W and K denotes that weather influences the person’s likelihood

of going hiking. Similarly, an arc from K to H denotes that hiking influences the person’s

health.
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Figure 2.1: An example Bayesian network modelling hiking.

Lack of directed arcs is also a way of expressing knowledge, notably assertions of (con-

ditional) independence. For instance, the lack of directed arcs between W , T , M , and H

encodes that weather, trail, mood, and hair style can influence the person’s health, H, only

indirectly through hiking, K. These causal assertions can be translated into statements of

conditional independence: H is independent of W , T , and M given K. In mathematical

notation,

P (H|K) = P (H|K, W ) = P (H|K,T ) = P (H|K, M) = P (H|K, W, T,M) .

Structural independences, i.e., independences that are expressed by the structure of the

network, are captured by so called Markov condition, which states that a node (here H) is

independent of its non-descendants (here W , T , and M) given its parents (here K).

Similarly, the absence of arc T → W means that the type of the trail will not be directly

related to the weather. The absence of any links between hair style (S) and the remainder of

the variables means that S is independent of the other variables. In fact, S would typically

be considered irrelevant to the problem of hiking and is added to the model only for the sake

of illustration.

These independence properties imply that

P (W,T,M, S,K, H) = P (W ) P (T ) P (M) P (S) P (K|W,T, M) P (H|K) ,
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that is, that the joint probability distribution over the graph nodes can be factored into the

product of the conditional probabilities of each node given its parents in the graph. Please

note that this expression is just an instance of Equation 2.1.

2.3 INFERENCE AND COMPLEXITY

The assignment of values to observed variables is usually called evidence. The most important

type of reasoning in a probabilistic system based on Bayesian networks is known as belief

updating, which amounts to computing the posterior marginal probability distributions of

the variables of interest given the evidence. In the example model of Figure 2.1, the variable

of interest could be K and the focus of computation could be the posterior probability

distribution over K given the observed values of W , T , and M , i.e., P (K|W = w, T =

t,M = m). Another type of reasoning focuses on computing the maximum a posteriori

assignment (MAP), i.e., the most probable joint instantiation of the variables of interest

given the evidence. Most probable explanation (MPE) is a special case of MAP, in which the

assignment is to all the unobserved variables. In the example model of Figure 2.1, we may

be interested to know the most likely instantiation of W ,T , and M , given the observed value

of H, i.e., argmax{W,T,M} Pr(W,T,M |H).

A lot of research has focused on addressing these reasoning tasks. Some of them are exact

algorithms, including variable elimination (Zhang and Poole 1994), the junction tree algo-

rithm (Lauritzen and Spiegelhalter 1988), belief propagation for polytrees (Pearl 1988), cutset

conditioning (Pearl 1988), symbolic probabilistic inference (SPI) (Shachter, D’Ambrosio, and

del Favero 1990), and systematic MAP search (Park and Darwiche 2003). However, it has

been shown that exact inference in Bayesian networks is NP-hard (Cooper 1990). With prac-

tical models reaching nowadays the size of thousands of variables, exact inference in Bayesian

networks is apparently infeasible. Although approximate inference to any desired precision

has been shown to be NP-hard as well (Dagum and Luby 1993), it is for sufficiently complex

networks the only alternative that will produce any result at all in an accepted amount of

time. Therefore, many approximate inference algorithms have been proposed. Some of them
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are actually approximate versions of exact algorithms, such as bounded conditioning (Horvitz,

Suermondt, and Cooper 1989), localized partial evaluation (Draper and Hanks 1994), incre-

mental SPI (D’Ambrosio 1993), probabilistic partial evaluation (Poole 1997), and mini-bucket

elimination (Dechter and Rish 2003).

Other algorithms are inherently approximate methods, including loopy belief propaga-

tion (Murphy, Weiss, and Jordan 1999), variational methods (Jordan, Ghahramani, Jaakkola,

and Saul 1998), search-based belief updating (Henrion 1991; Poole 1993), the local MAP

search (Park and Darwiche 2001), the genetic MAP algorithm (de Campos, Gamez, and

Moral 1999), and stochastic sampling algorithms. Stochastic sampling algorithms are a large

family that contains many instances. Some of these are the probabilistic logic sampling (Hen-

rion 1988), likelihood weighting (Fung and Chang 1989; Shachter and Peot 1989), backward

sampling (Fung and del Favero 1994), importance sampling (Shachter and Peot 1989), AIS-

BN (Cheng and Druzdzel 2000), Adaptive IS (Ortiz and Kaelbling 2000), IS VE (Hernan-

dez, Moral, and Salmeron 1998), IS T (Salmeron, Cano, and Moral 2000), and the dynamic

importance sampling (Moral and Salmeron 2003) algorithms. A subclass of stochastic sam-

pling methods, called Markov Chain Monte Carlo (MCMC) methods, includes Gibbs sam-

pling, Metropolis sampling, Hybrid Monte Carlo sampling (Geman and Geman 1984; Gilks,

Richardson, and Spiegelhalter 1996), and Annealed MAP (Yuan, Lu, and Druzdzel 2004). A

major problem of approximate inference algorithms is that they typically provide no guar-

antee with regard to the quality of their results. However, the family of stochastic sampling

algorithms is an exception, because theoretically they will converge to the exact solutions if

based on sufficiently many samples.

2.4 HYBRID BAYESIAN NETWORKS

Up to now, the introduction has been focusing on discrete Bayesian networks. As Bayesian

networks are applied increasingly to real problems, people realize that some decision prob-

lems are more naturally represented by hybrid Bayesian networks that contain mixtures of

discrete and continuous variables. However, inference in such general hybrid models is hard.
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Therefore, the earliest attempts to model continuous variables focused on special instances

of hybrid models, such as Conditional Linear Gaussians (CLG) (Lauritzen 1992). CLG re-

ceived much attention because they have a nice property: we can calculate exactly the first

two moments for the posterior probability distributions of the continuous variables and ex-

act posterior probability distributions for the discrete variables. However, it has been shown

that inference is NP-hard even for the simplest hybrid model, the CLG tree (Lerner and

Parr 2001).

One major assumption behind CLG is that discrete variables cannot have continuous

parents. This limitation was later addressed by extending CLG with logistic and softmax

functions (Binder, Koller, Russell, and Kanazawa 1997; Murphy 1999; Lerner, Segal, and

Koller 2001). The work raised much interest in hybrid Bayesian networks, especially in de-

veloping methodologies for more general non-Gaussian models, such as Mixture of Truncated

Exponentials (MTE) (Moral, Rumi, and Salmeron 2001; Cobb and Shenoy 2005), and junc-

tion tree algorithm with approximate clique potentials (Koller, Lerner, and Angelov 1999).
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3.0 THEORETICAL ANALYSIS OF IMPORTANCE SAMPLING

To address the challenges mentioned in the last chapter, I focus on importance sampling-

based approaches. Importance sampling has become the basis for many successful algorithms

for Bayesian networks (Hernandez, Moral, and Salmeron 1998; Cheng and Druzdzel 2000;

Ortiz and Kaelbling 2000; Moral and Salmeron 2003; Yuan and Druzdzel 2004). Essentially,

these algorithms only differ in the methods that they use to obtain importance functions.

The closer the importance function to the actual posterior distribution, the better the perfor-

mance. A good importance function can lead importance sampling to yield excellent results

in a reasonable time. It is well understood that an importance function should have a similar

shape to the the posterior distribution (Rubinstein 1981; Andrieu, de Freitas, Doucet, and

Jordan 2003). However, it is also pointed out that a good importance function should possess

thicker tails than the posterior probability distributions (Geweke 1989; MacKay 1998). Why

thick tails are important and how thick they should be has not been well understood. In this

chapter, I develop some theoretical understandings to the importance of thick tails, which

provide solid justification for several successful heuristics, including ε-cutoff (Cheng and

Druzdzel 2000; Ortiz and Kaelbling 2000), if-tempering (Yuan and Druzdzel 2004), rejection

control (Liu 2001), Pruned Enriched Rosenbluth Method (PERM) (Rosenbluth and Rosen-

bluth 1955; Grassberger 1997; Liang 2002), and intentionally biased dynamic tuning (Cheng

and Druzdzel 2000; Ortiz and Kaelbling 2000).

This chapter is organized as follows. In Section 3.1, I introduce the basic theory of

importance sampling and the underlying assumptions. I also present the form of the optimal

importance function. In Section 3.2, I discuss what conditions an admissible importance

function should satisfy. I also recommend a technique for estimating how well an importance

function performs when analytical verification of the conditions is impossible. In Section 3.3,
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I study the properties of importance sampling in the context of Bayesian networks and

present my theoretical insights into the desirability of thick tails. In Section 3.3.3, I review

several successful heuristics that are unified by the insights.

3.1 IMPORTANCE SAMPLING

I start with the theoretical roots of importance sampling. Let p(X) be a probability density

of X over domain Ω ⊂ R, where R is the set of real numbers. Consider the problem of

estimating the integral

Ep(X)[g(X)] =

∫

Ω

g(X)p(X)dX , (3.1)

where g(X) is a function that is integrable with regard to p(X) over domain Ω. Thus,

Ep(X)[g(X)] exists. If p(X) is a density that is easy to sample from, we can solve the

problem by first drawing a set of i.i.d. samples {xi} from p(X) and then using these samples

to approximate the integral by means of the following expression

g̃N =
1

N

N∑
i=1

g(xi) . (3.2)

By the strong law of large numbers, the tractable sum g̃N almost surely converges as

follows

g̃N → Ep(X)[g(X)] . (3.3)

In case that we do not know how to sample from p(X) but can evaluate it at any point

up to a constant, or we simply want to reduce the variance of the estimator, we can resort to

more sophisticated techniques. Importance sampling is a technique that provides a systematic

approach that is practical for large dimensional problems. Its main idea is simple. First,

note that we can rewrite Equation 3.1 as

Ep(X)[g(X)] =

∫

Ω

g(X)
p(X)

I(X)
I(X)dX (3.4)

with any probability distribution I(X), named importance function, such that I(X) > 0

across the entire domain Ω. A practical requirement of I(X) is that it should be easy to
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sample from. In order to estimate the integral, we can generate samples x1, x2, ..., xN from

I(X) and use the following sample-mean formula

ĝN =
N∑

i=1

[g(xi)w(xi)] , (3.5)

where the weights w(xi) = p(xi)
I(xi)

. Obviously, importance sampling assigns more weight to

regions where p(X) > I(X) and less weight to regions where p(X) < I(X) in order to

estimate Ep(X)(g(X)) correctly. Again, ĝN almost surely converges to Ep(X)[g(X)].

To summarize, the following weak assumptions are important for the importance sam-

pling estimator in Equation 3.5 to converge to the correct value (Geweke 1989):

Assumption 3.1. p(X) is proportional to a proper probability density function defined on

Ω.

Assumption 3.2. Ep(X)(g(X)) exists and is finite.

Assumption 3.3. {xi}∞i=1 is a sequence of i.i.d. random samples, the common distribution

having a probability density function I(X).

Assumption 3.4. The support of I(X) includes Ω.

We do not have much control over what is required in Assumptions 3.1, 3.2, and 3.3,

because they are either the inherent properties of the problem at hand or the requirements

of Monte Carlo simulation. We only have the freedom to choose an importance function

satisfying Assumption 3.4. The apparent reason why the last assumption is important is to

avoid undefined weights in the areas where I(X) = 0 while p(X) > 0, but such samples will

never show up in importance sampling, because we are drawing samples from I(X). Thus,

the problem is bypassed. However, the aftermath of the bypass is manifested in the final

result. Let Ω∗ be the support of I(X). When we use the estimator in Equation 3.5, we have

ĝN =
N∑

i=1

[g(xi)w(xi)]

=
∑

xi∈Ω∗∩Ω

[g(xi)w(xi)] +
∑

xi∈Ω∗\Ω
[g(xi)w(xi)] , (3.6)

where \ denotes set subtraction. Since we draw samples from I(X), all samples are in either

Ω∗ ∩Ω or Ω∗\Ω, and no samples will drop in Ω\Ω∗. Also, all the samples in Ω∗\Ω have zero
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weights, because p(X) is equal to 0 in this area. Therefore, the second term in Equation 3.6

is equal to 0. Effectively, we have

ĝN =
∑

xi∈Ω∗∩Ω

[g(xi)w(xi)]

→
∫

Ω∗∩Ω

g(X)p(X)dX , (3.7)

which is equal to the expectation of g(X) with regard to p(X) only in the domain of Ω∗∩Ω.

So, the conclusion is that the estimator will converge to a wrong value if Assumption 3.4 is

violated. Figure 3.1 shows an example of such erroneous convergence.
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Figure 3.1: Convergence results when using a truncated normal, I(X) ∝ N(0, 2.12), |X| <

3, as the importance function to integrate the density p(X) ∝ N(0, 22). The estimator

converges to 0.8664 instead of 1.0.

Standing alone, the assumptions aforementioned are of little practical value, because

nothing can be said about rates of convergence. Even though we do satisfy the assumptions,

ĝN can behave badly. Poor behavior is usually manifested by values of w(xi) that exhibit

substantial fluctuations after thousands of replications (Geweke 1989). To quantify the
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convergence rate, it is enough to calculate the variance of the estimator in Equation 3.5,

which is equal to

V arI(X)(g(X)w(X))

= EI(X)(g
2(X)w2(X))− E2

I(X)(g(X)w(X))

= EI(X)(g
2(X)w2(X))− E2

p(X)(g(X)) . (3.8)

We certainly would like to choose the optimal importance function that minimizes the

variance. The second term on the right hand side does not depend on I(X) and, hence, we

only need to minimize the first term. This can be done according to Theorem 3.1.

Theorem 3.1. (Rubinstein 1981) The minimum of V arI(X)(g(X)w(X)) over all I(X) is

equal to
(∫

Ω

|g(X)|p(X)dX

)2

−
(∫

Ω

g(X)p(X)dX

)2

and occurs when we choose the importance function

I(X) =
|g(X)|p(X)∫

Ω
|g(X)|p(X)dX

.

Proof. It is enough to prove that
(∫

Ω

|g(X)|p(X)dX

)2

≤
∫

Ω

g2(X)p2(X)

I(X)
dX ,

which can be obtained from the Cauchy-Schwarz inequality:
(∫

Ω

|g(X)|p(X)dX

)2

=
(∫

Ω
|g(X)|p(X)

I1/2(X)
I1/2(X)dX

)2

≤ ∫
Ω

g2(X)p2(X)
I(X)

dX
∫
Ω

I(X)dX (3.9)

=
∫

Ω
g2(X)p2(X)

I(X)
dX .

The equality in Equation 3.9 holds only when

I(X) =
|g(X)|p(X)∫

Ω
|g(X)|p(X)dX

.

The optimal importance function turns out to be rather formal, because it contains the

integral
∫
Ω
|g(X)|p(X)dX, which is computationally equivalent to the quantity Ep(X)[g(X)]

that we are pursuing. Therefore, it cannot be used as a guidance for choosing the importance

function.
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3.2 CONVERGENCE ASSESSMENT OF IMPORTANCE SAMPLING

The bottom line of choosing an importance function is that the variance in Equation 3.8

should exist. Otherwise, the result may oscillate rather than converge to the correct value.

This can be characterized by the Central Limit Theorem.

Theorem 3.2. (Geweke 1989) In addition to assumptions 1-4, suppose

µ ≡ EI(X) [g(X)w(X)] =
∫

Ω
g(X)p(X)dX ,

and

σ2 ≡ V arI(X)[g(X)w(X)] =
∫
Ω

[
g2(X)p2(X)

I(X)

]
dX − µ2 .

are finite. Then

n1/2(ĝN − µ) ⇒ N(0, σ2) .

The conditions of Theorem 3.2 should be satisfied if the result is to be used to assess the

accuracy of ĝN as an approximation of Ep(X)[g(X)]. However, the conditions in general are

not easy to verify analytically in real problems. Geweke (1989) suggests that I(X) can be

chosen such that either

w(X) < w− < ∞,∀X ∈ Ω, and V arI(X)[g(X)w(X)] < ∞ ; (3.10)

or

Ω is compact, andp(X) < p < ∞, I(X) > ε > 0,∀X ∈ Ω . (3.11)

Demonstration of Equation 3.11 is generally simple. Demonstration of Equation 3.10

involves comparison of the tail behaviors of p(X) and I(X). One approach is to use the

variance of the normalized weights to measure how different the importance function is

from the posterior distribution (Liu 2001). If the distribution p(X) is known only up to a
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normalizing constant, which is the case in many real problems, the variance of the normalized

weight can be estimated by the coefficient of variation (cv) of the unnormalized weight:

cv2(w) =

m∑
j=1

(w(xj)− w)2

(m− 1)w2 , (3.12)

where w(xj) is the weight of sample xj, w is the average weight of all samples, and m is the

number of samples.

3.3 IMPORTANCE SAMPLING IN BAYESIAN NETWORKS

Given that inference in Bayesian networks in general is NP-hard (Cooper 1990; Dagum and

Luby 1993), exact inference is not feasible for extremely large or complex models, and we

have to resort to approximate methods. Importance sampling can be easily adapted to solve

belief updating problems in Bayesian networks, and has become the basis of an important

family of approximate methods (Hernandez, Moral, and Salmeron 1998; Cheng and Druzdzel

2000; Ortiz and Kaelbling 2000; Moral and Salmeron 2003; Yuan and Druzdzel 2004). In this

section, I study the properties of importance sampling in the context of Bayesian networks.

The study leads to a theoretical understanding of the desirability of thick tails and provide

justifications to several successful heuristic methods.

3.3.1 Property of the Joint Probability Distribution

Let X = {X1, X2, ..., Xn} be variables modelled in a Bayesian network. Let us pick an

arbitrary scenario of the network, and let p be the probability of the scenario. Let pi

be the conditional (or prior) probability of the selected outcome of variable Xi, i.e., pi =

P (Xi|PA(Xi)) or P (Xi) if Xi has no parents. We have

p = p1p2 . . . pn =
n∏

i=1

pi . (3.13)
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Druzdzel (1994) shows that p approximately follows the lognormal distribution. Here, I

review the main results. Take the logarithm of both sides of Equation 3.13, we obtain

ln p =
n∑

i=1

ln pi . (3.14)

Since each pi is randomly picked from the prior or conditional probability distribution of

the variable, it is a random variable. Therefore ln pi is also a random variable. By Central

Limit Theorem (Liapounov), the distribution of a sum of independent random variables

approaches a normal distribution as the number of components of the sum approaches infinity

under the condition that the sum of the sequence of variances is divergent. The variance of

ln pi is 0 only and only if all values of pi are the same, i.e., Xi follows a uniform distribution

given PA(Xi). However, in practical models, uniform distributions are uncommon, and,

if so, the Liapounov condition is satisfied. Even though in practice we are dealing with a

finite number of variables, the theorem often gives us a good approximation. Therefore, the

distribution of the sum in Equation 3.14 is approximately the following form

f(ln p) =
1√

2π
∑n

i=1σ
2
i

exp
−(ln p−∑n

i=1 µi)
2

2
∑n

i=1 σ2
i

. (3.15)

Although theoretically each probability in the joint probability distribution comes from

a lognormal distribution with perhaps different parameters, Druzdzel (1994) points out that

the conclusion is rather conservative and the distributions over probabilities of different

states of a model might approach the same lognormal distribution in most practical models.

The main reason is that conditional probabilities in practical models tend to belong to

modal ranges, at most a few places after the decimal point, such as between 0.001 and 1.0.

Translated into the decimal logarithmic scale, it means the interval between −3 and 0, which

is further averaged over all probabilities, which have to add up to one, and for variables

with few outcomes will result in even more modal ranges. Therefore, the parameters of

the different lognormal distributions may be quite close to one another. For my incoming

analysis, I make the assumption that all probabilities in the joint probability distribution of

a Bayesian network come from the same lognormal distribution.
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3.3.2 Desirability of Thick Tails

Based on the preceding discussion, we can look at any importance sampling algorithm for

Bayesian networks as using one lognormal distribution as the importance function to com-

pute the expectation of another lognormal distribution. Let p(X) be the target density

and p(ln X) ∝ N(µp, σ
2
p). Let I(X) be the importance function and I(ln X) ∝ N(µI , σ

2
I ).

Consider the problem of computing the following integral

V =

∫

Ω

p(X)dX . (3.16)

We can use the following estimator

V̂N =
N∑

i=1

w(xi) , (3.17)

where w(xi) = p(xi)
I(xi)

. We know that

µ ≡ EI(X)[w(X)] =
∫
Ω

p(X)dX = 1 , (3.18)

which is obviously finite. We can also calculate the variance as

V arI(X)(w(X)) = EI(X)(w
2(X))− E2

I(X)(w(X)) . (3.19)

Plug in the density functions of p(X) and I(X), we obtain

V arI(X)(w(X))

=

∫
p2(X)

I(X)
dX −

(∫
p(X)dX

)2

= −1 +

∫
σI

σ2
pX
√

2π

exp

(
−(2σ2

I − σ2
p)ln

2 X − 2(2µpσ
2
I − µIσ

2
p)ln X + (2µ2

pσ
2
I − µ2

Iσ
2
p)

2σ2
pσ

2
I

)
dX

= −1 +
(σI

σp
)2

√
2(σI

σp
)2 − 1

exp

(
(µI−µp

σp
)2

2(σI

σp
)2 − 1

)

∫
1√

σ2
pσ2

I

2σ2
I−σ2

p
X
√

2π

exp


−

ln X − 2µpσ2
I−µIσ2

p

2σ2
I−σ2

p

2σ2
pσ2

I

2σ2
I−σ2

p




2

dX

=
(σI

σp
)2

√
2(σI

σp
)2 − 1

exp

(
(µI−µp

σp
)2

2(σI

σp
)2 − 1

)
− 1 . (3.20)
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One immediate observation from the above equation is that:

Observation 3.1. The necessary condition for the variance in Equation 3.20 to exist is that

2(σI

σp
)2 − 1 > 0, which means that the variance of the importance function should be at least

greater than one half of the variance of the target density.

σI

σp
can be looked on as an indicator of thick tails. The bigger the σI

σp
, the thicker the

tails of the importance function I(X) than those of P (X). The quantity |µI−µp

σp
| is the

standardized distance between µI and µp with regard to p(X). It can be looked on as an

indicator whether two functions have similar shapes or not. From the table of the standard

normal distribution function, we know that

Φ(X) ∼= 1, when X ≥ 3.90 , (3.21)

where Φ(X) is the cumulative density function of the standard normal distribution. There-

fore, when |µI−µp

σp
| ≥ 3.90, I(X) must be far from close to p(X) in terms of their shapes.

For different values of |µI−µp

σp
|, I plot the variance of the importance sampling estimator as a

function of σI

σp
in Figure 3.2.

We can make several additional observations based on this figure.

Observation 3.2. Given the value of σI

σp
, as |µI−µp

σp
| increases, the variance is monotonically

increasing.

This observation is consistent with the well understood requirement that I(X) should

concentrate its mass on the important parts of p(X). The more I(X) misses the important

parts of p(X), the worse importance sampling performs.

Observation 3.3. Given the value of µI and hence the value of |µI−µp

σp
|, there is a minimum

variance when σI

σp
takes a particular value, say u. As σI

σp
decreases from u, the variance

increases quickly and suddenly goes to infinity. When σI

σp
increases from u, the variance also

increases but much slower.

Observation 3.4. As σI

σp
increases, the performance of I(X) with different µIs differ less

and less.
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Figure 3.2: A plot of the variance of importance sampling estimator as a function of σI

σp

when using the importance function I(ln X) ∝ N(µI , σ
2
I ) with different µIs to integrate the

density p(ln X) ∝ N(µp, σ
2
p). The legend shows the values of |µI−µp

σp
|.

The above two observations clearly tell us that if we do not know |µI−µp

σp
|, i.e., we are not

sure if I(X) covers the important parts of p(X) or not,1 we may want to make the tails of

I(X) thicker in order to be safe. The results may get worse, but not too much worse.

Observation 3.5. The u value increases as |µI−µp

σp
| increases, which means that the more

I(X) misses the important parts of p(X), the thicker the tails of I(X) should be.

The five observations all provide strong support for thick tails. In practice, we usually

have no clue about the real shape of p(X). Even if we have a way of estimating p(X),

our estimation may not be that precise. Therefore, we want to avoid light tails and err on

the thick tail side in order to be safe. One possible strategy is that we can start with an

importance function I(X) with considerably thick tails and refine the tails as we gain more

and more knowledge about p(X).

1I use the term cover to mean that the weight of one density is comparable to that of another density in
a certain area.
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It can be shown that the above results hold not only for Bayesian networks but also for

several well-known distributions, including normal distribution. Although generalizing the

results is hard, we can at least get some idea why in practice we often observe that thick

tails are desirable.

Furthermore, the theoretical result that the actual posterior distribution is the optimal

importance function is derived based on an infinite number of samples. In practice, we can

only afford a finite number of samples. In order that the samples effectively cover the whole

support of posterior distribution, we often need to make the importance function possess

thicker tails than the posterior distribution. Suppose the mass of the tail area of the actual

posterior distribution is ε and we draw totally N samples. In order that the samples cover

this area, we need at least one sample dropping in it, the probability of which is

p = 1− (1− ε)N .

In the case that Nε << 1, we have

p ≈ Nε . (3.22)

However, since Nε is very small, it is unlikely that any sample will drop in the tail area

of p(X). Given the importance of Assumption 3.4 discussed in Section 3.2, we may deviate

from the correct answer. For the probability to be greater than some value u, we have

N > u/ε . (3.23)

If we cannot afford the needed number of samples, we can instead increase the sampling

density of the importance function in the tail area so that

ε > u/N . (3.24)

This is exactly why in practice importance functions with thicker tails than the actual

posterior distribution often perform better than the latter (Geweke 1989).
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3.3.3 Heuristics for Thick Tails

Given that thick tails are desirable for importance sampling in Bayesian networks, I recom-

mend the following strategy when designing an importance function. First, we need to make

sure that the support of the importance function includes that of the posterior distribution.

Since Ω is compact and p(X) is finite for Bayesian networks, which satisfy the conditions of

Equation 3.11, we only need to make sure that I(X) > 0 whenever p(X) > 0. Second, we

can make use of any estimation method to learn or compute an importance function. The

last step, based on the discussion in the previous section, is to diagnose light tails and try

to get rid of them to achieve thick tails. I review several existing heuristic methods for this

purpose:

ε-cutoff (Cheng and Druzdzel 2000; Ortiz and Kaelbling 2000): ε-cutoff defines the tails

in Bayesian networks to be the states with extremely small or extremely large probabilities.

So, it sets a threshold ε and replaces any smaller probability in the network by ε. At the

same time, it compensates for this change by subtracting it from the largest probability in

the same conditional probability distribution. The purpose is to spread the mass of the joint

probability distribution in order to make it more flat.

If-tempering (Yuan and Druzdzel 2004): Instead of just adjusting the importance function

locally, if-tempering makes the original importance function I(X) more flat by tempering

I(X). The final importance function becomes

I ′(X) ∝ I(X)1/T , (3.25)

where T (T > 1) is the tempering temperature.

Rejection control (Liu 2001): When the importance function is not ideal, importance

sampling often produces random samples with very small weights. Rejection control ad-

justs the importance function I(X) in the following way. Suppose we have drawn samples

x1, x2, ..., xN from I(X). Let wj = p(xj)/I(xj). Rejection control (RC) conducts the follow-

ing operation for any given threshold value c > 0:

1. For j = 1, ..., n, accept xj with probability

rj = min{1, wj/c} . (3.26)
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2. If the jth sample xj is accepted, its weight is updated to w∗j = qcwj/rj, where

qc =

∫
min{1, w(X)/c}I(X)dX . (3.27)

The new importance function I∗(X) resulting from this adjustment is expected to be

closer to the target function p(X). In fact, it is easily seen that

I∗(X) = q−1
c min{I(X), p(X)/c} . (3.28)

Pruned Enriched Rosenbluth Method (PERM) (Rosenbluth and Rosenbluth 1955; Grass-

berger 1997; Liang 2002): PERM is also a population-based method, similar to rejection

control. Rejection control is based on the observation that samples with extremely small

weights do not play much role in the final estimation, but make the variance of sample

weights large. However, there is yet another source of problem: samples with extremely

large weights often overwhelmingly dominate the estimator and make other samples less

effective. To eschew both problems, PERM assumes that the sample weights are built up

in many steps and long range correlations between these steps are often weak. Given the

assumption, PERM adjusts the samples for given threshold values 0 < c− < c− < ∞ using

the following strategy in each step.

For j = 1, ..., n,

1. If c− < wj < c−, accept the sample xj and keep its weight intact.

2. If wj < c−, accept xj with probability 0.5. If the jth sample xj is accepted, its weight is

updated to w∗j = 2 ∗ wj .

3. If wj > c−, we split the sample into two samples, each with weight w∗j = wj/2 .

Effectively, PERM adjusts the importance function so that the new importance function

I∗(X) follows

I∗(X) = q−1
p





2I(X), Ω1 : p(X) > c−I(X);

I(X), Ω2 : c− < p(X)/I(X) < c−;

I(X)/2, Ω3 : p(X) < c−I(X),
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where

qp = 2

∫

Ω1

p(X)dX +

∫

Ω2

p(X)dX + (1/2)

∫

Ω3

p(X)dX . (3.29)

Intentionally biased dynamic tuning (Cheng and Druzdzel 2000; Ortiz and Kaelbling

2000): Dynamic tuning looks on the calculation of importance function itself as a self-

improving process. Starting from an initial importance function, dynamic tuning draws

samples from the current importance function and then use the samples to refine the impor-

tance function in order to obtain a new function. The new importance function improves

the old one at each stage. Dynamic tuning has been applied in several learning-based im-

portance sampling algorithms. However, only two of them observe the importance of thick

tails (Cheng and Druzdzel 2000; Ortiz and Kaelbling 2000) and use ε-cutoff to try to ensure

that property in order to get better convergence rates.

3.4 CONCLUSION

The quality of importance function determines the performance of importance sampling. In

addition to the requirement that the importance function should have a similar shape to the

posterior distribution, it is also highly recommended that the importance function possess

thick tails. The main contribution of this chapter is providing a better understanding of why

thick tails are desirable. By studying the basic assumptions of importance sampling and its

properties in the context of Bayesian networks, I draw several theoretical insights into the

desirability of thick tails, which provide the common ground for several successful heuristic

methods. Most existing heuristics for thick tails are local methods, i.e., they adjust the

importance function locally. I believe that heuristics that are aware of the global structure

of an importance function and make global adjustments may bring better performance.
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4.0 AN IMPORTANCE SAMPLING ALGORITHM FOR BAYESIAN

NETWORKS BASED ON EVIDENCE PRE-PROPAGATION

From the discussion in the last chapter, we understand that the accuracy of importance

sampling is very sensitive to the quality of the importance function. Given that theoretically

the optimal importance function is the actual posterior distribution, the one being sought,

we normally have access only to its approximations. In this chapter, I propose the Evidence

Pre-propagated Importance Sampling Algorithm for Bayesian Networks (EPIS-BN), which

computes an importance function using two techniques: the Loopy Belief Propagation algo-

rithm (LBP) (Murphy, Weiss, and Jordan 1999; Weiss 2000) and the ε-cutoff heuristic (Cheng

and Druzdzel 2000).

This chapter is structured as follows. I first review existing importance sampling algo-

rithms for Bayesian networks. Then, I discuss the details of the EPIS-BN algorithm. After

that, I test the EPIS-BN algorithm on three large real Bayesian networks and observe that

it outperforms AIS-BN (Cheng and Druzdzel 2000) on all three networks, while avoiding

its costly learning stage. I also compare my algorithm against Gibbs sampling and discuss

the role of the ε-cutoff heuristic in importance sampling for Bayesian networks.

4.1 IMPORTANCE SAMPLING ALGORITHMS FOR BAYESIAN

NETWORKS

Importance sampling has become the basis for several state of the art stochastic sampling-

based inference algorithms for Bayesian networks. The accuracy of the algorithms depends

highly on the quality of the importance functions that they manage to get. Theoretically,
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all importance sampling algorithms asymptotically share the same convergence rate, 1√
m

,

where m is the number of samples, except that the multiplicative constant before the rate

may differ significantly across different methods (Liu 2001). Therefore, given a fixed number

of samples, any effort to make the importance function closer to the posterior distribution

will directly influence the precision of sampling algorithms. On the other hand, to achieve

a certain precision, a good importance function can save a lot of samples. This is best

illustrated graphically in Figure 4.1. Obviously, there is a tradeoff between the quality of

the importance function and the amount of effort spent on getting it.

Approximation S ampling  
E

rro
r 

# S a m p le s  

Figure 4.1: Importance sampling: The tradeoff between the quality of importance function

and the amount of effort spent getting the function.

In this section, I review some existing importance sampling algorithms for Bayesian

networks. Based on the different methods that they use to get the importance function, I

classify them into three families.

The first family uses the prior distribution of a Bayesian network as the importance

function. Since they spend no effort in trying to get a good importance function, they

typically need more time to converge. Probabilistic logic sampling (Henrion 1988) and likeli-

hood weighting (Fung and Chang 1989; Shachter and Peot 1989) both belong to this category.
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When there is no evidence observed, the two algorithms reduce to the same algorithm. Their

difference becomes evident only when evidence is introduced. Logic sampling instantiates all

the nodes in a Bayesian network by sampling from the prior distribution and discards samples

that are not compatible with the evidence. Therefore, logic sampling is extremely inefficient

when the evidence is unlikely. On the contrary, likelihood weighting only instantiates the

nodes without evidence and assign each sample weight

w =
∏
xi∈E

P (xi|PA(xi)) , (4.1)

where E is the set of evidential variables. Likelihood weighting improves the accuracy of

sampling by making use of all the samples. However, when the evidence is unlikely, most

of the samples will have small weights, and occasional samples will have large weights that

may dominate the whole sample set. In this case the variance of the weights may become

too large, and, hence, the algorithm may be still inefficient.

The second family resorts to learning methods to learn an importance function. Self-

importance sampling (SIS) (Shachter and Peot 1989), adaptive IS (Ortiz and Kaelbling 2000),

AIS-BN (Cheng and Druzdzel 2000), and dynamic IS (Moral and Salmeron 2003) all be-

long to this family. SIS revises the prior distribution periodically using samples in order to

make the importance function gradually approach the posterior distribution. Adaptive IS

parameterizes the importance function using a set of parameters and devises several updat-

ing rules based on gradient descent to learn an importance function. The AIS-BN algorithm

learns an importance function starting from a modified prior. It modifies the prior using

two heuristics: (1) initializing the probability distributions of parents of evidence nodes to

uniform distribution, and (2) replacing very small probabilities in the conditional probabil-

ity tables composing the importance function by higher values. After that, AIS-BN draws

some samples and estimates an importance function which approaches the optimal impor-

tance function. The dynamic IS algorithm uses probability trees to represent an importance

function. Initially, the importance function is only a rough estimation of the optimal impor-

tance function. After drawing some samples, the algorithms refines the probability trees so

that the weights of the samples become closer to their true values.
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The third family directly computes an importance function in the light of both the

prior distribution and the evidence. The backward sampling (Fung and del Favero 1994),

IS VE (Hernandez, Moral, and Salmeron 1998), and annealed importance sampling (Neal

1998) algorithms all belong to this category. Backward sampling modifies the prior distri-

bution so that it allows for generating samples from evidence nodes in the direction that is

opposite to the topological order of nodes in the network. The IS VE algorithm uses the

variable elimination algorithm (Zhang and Poole 1994) to compute an importance function.

A full variable elimination algorithm is an exact algorithm that looks for optimal solutions.

Instead, IS VE uses an approximate version of the variable elimination algorithm to compute

an importance function. The idea is to set a limit on the size of potentials built when elimi-

nating variables. Whenever the size of a potential exceeds the limit, an approximate version

is created instead. The annealed importance sampling algorithm starts by sampling from

the prior distribution. However, instead of directly assigning weights to the samples, the

algorithm sets up a series of distributions with the last one to be the posterior distribution.

By annealing each sample using Markov chains defined by the series of distributions, the

algorithm tries to get a set of samples that are generated from a distribution that is close to

the posterior distribution.

Empirical results showed that the AIS-BN algorithm achieved over two orders of mag-

nitude improvement in convergence over likelihood weighting and self-importance sampling

algorithms. I will mainly compare my proposed algorithm against the AIS-BN algorithm

in the experiments of this chapter. I also compare my algorithm against Gibbs sampling, an

algorithm from the MCMC family.

4.2 EVIDENCE PRE-PROPAGATED IMPORTANCE SAMPLING

ALGORITHM FOR BAYESIAN NETWORKS

In this section, I introduce the Evidence Pre-propagated Importance Sampling Algorithm

for Bayesian Networks (EPIS-BN). The main idea of the algorithm is first to use LBP

to compute an approximation of the optimal importance function, and then to apply the
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ε-cutoff heuristic to cut off small probabilities in the importance function.

4.2.1 Loopy Belief Propagation

The goal of the belief propagation algorithm (Pearl 1988) is to find the posterior beliefs of

each node X, i.e., BEL(x) = P (X = x|E), where E denotes the set of evidence. In a

polytree, any node X d-separates E into two subsets E+, the evidence connected to the

parents of X, and E−, the evidence connected to the children of X. Given the state of X,

the two subsets are independent. Therefore, node X can collect messages separately from

them in order to compute its posterior beliefs. The message from E+ is defined as

π(x) = P (x|E+) , (4.2)

and the message from E− is defined as

λ(x) = P (E−|x) . (4.3)

π(x) and λ(x) messages can be decomposed into more detailed messages between neigh-

boring nodes as follows:

λ(t)(x) = λX(x)
∏

j

λ
(t)
Yj

(x) , (4.4)

and

π(t)(x) =
∑

u

P (x|u)
∏

k

π
(t)
X (uk) , (4.5)

where λX(x) is a message that a node sends to itself (Murphy, Weiss, and Jordan 1999).

The message that X sends to its parent Ui is given by:

λ
(t+1)
X (ui) = α

∑
x

λ(t)(x)
∑

uk:k 6=i

P (x|u)
∏

k 6=i

π
(t)
X (uk) , (4.6)

and the message that X sends to its child Yj is

π
(t+1)
Yj

(x) = απ(t)(x)λX(x)
∏

k 6=j

λ
(t)
Yk

(uk) . (4.7)
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After a node X has received all its messages, it can compute its posterior marginal

probability distribution by

BEL(x) = αλ(x)π(x) , (4.8)

where α is a normalizing constant. When this algorithm is applied to a polytree, the leaves

and roots of the network can send out their messages immediately. The evidence nodes can

send out their messages as well. By propagating these messages, eventually all messages will

be sent. The algorithm terminates with correct beliefs. With slight modifications, we can

apply the belief propagation algorithm to networks with loops. The resulting algorithm is

called Loopy Belief Propagation (LBP) (Murphy, Weiss, and Jordan 1999; Weiss 2000). We

start by initializing the messages that all evidence nodes send to themselves to be vectors of

a 1 for observed state and 0’s for other states. All other messages are vectors of 1’s. Then,

in parallel, all of the nodes recompute their new outgoing messages based on the incoming

messages from the last iteration. By running the propagation for a number of iterations (say,

equal to the length of the diameter of the network), we can assess convergence by checking

if any belief changes by more than a small threshold (say, 10−3). In general, LBP will not

give the correct posteriors for multiply connected networks. However, extensive investiga-

tions on the performance of LBP report surprisingly accurate results (Berrou, Glavieux, and

Thitimajshima 1993; McEliece, MacKay, and Cheng 1998; Murphy, Weiss, and Jordan 1999;

Weiss 2000). As of now, more thorough understanding of why the results are so good has yet

to be developed. For our purpose of getting an approximate importance function, we need

not to wait until LBP converges, so whether or not LBP converges to the correct posteriors

is not critical.

4.2.2 Importance Function in the EPIS-BN Algorithm

Let X = {X1, X2, ..., Xn} be the set of variables in a Bayesian network, PA(Xi) be the parents

of Xi, and E be the set of evidence variables. Based on the theoretical considerations in

chapter 3, we know that the optimal importance function is

ρ(X\E) = P (X|E) . (4.9)
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Although we know the mathematical expression for the optimal importance function, it

is difficult to obtain the function exactly. In my algorithm, I use the following importance

function:

ρ(X\E) =
n∏

i=1

P (Xi|PA(Xi),E) , (4.10)

where each P (Xi|PA(Xi),E) is defined as importance conditional probability table (ICPT) (Cheng

and Druzdzel 2000).

Definition 4.1. An importance conditional probability table (ICPT) of a node Xi is a

table of posterior probabilities P (Xi|PA(Xi),E) conditional on the evidence and indexed by

its immediate predecessors, PA(Xi).

This importance function only partially considers the effect of all the evidence on every

node. As Cheng and Druzdzel (2000) point out, when the posterior structure of the net-

work changes dramatically as the result of observed evidence, this importance function may

perform poorly. My empirical results show that it is usually a good approximation to the

optimal importance function. I will discuss this issue in more detail in Chapter 5.

The AIS-BN (Cheng and Druzdzel 2000) algorithm adopts a long learning step to learn

approximations of these ICPTs. However, the following theorem shows that in polytrees we

can calculate them exactly.

Theorem 4.1. Let Xi be a variable in a polytree, and E be the set of evidence. The ICPT

P (Xi|PA(Xi),E) for Xi can be calculated as follows:

P (Xi|PA(Xi),E) = α(PA(Xi))P (Xi|PA(Xi))λ(Xi) , (4.11)

where α(PA(Xi)) is a normalizing constant dependent on PA(Xi).

Proof. Let E = E+ ∪E−, where E+ is the evidence connected to the parents of Xi, and E−
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is the evidence connected to the children of Xi, then

P (Xi|PA(Xi),E)

= P (Xi|PA(Xi),E
+,E−)

= P (Xi|PA(Xi),E
−)

=
P (E−|Xi, PA(Xi))P (Xi|PA(Xi))

P (E−|PA(Xi))

=
P (E−|Xi)P (Xi|PA(Xi))

P (E−|PA(Xi))

= α(PA(Xi))P (Xi|PA(Xi))λ(Xi) .

If a node has no evidence as descendant, its ICPT is identical to its CPT. The property

is also pointed out in (Cheng and Druzdzel 2000) (Theorem 2).

In multiply connected networks, getting the exact λ messages for all variables is equivalent

to performing exact inference. However, since our goal is to obtain a good and not necessarily

the optimal importance function, we can simply use LBP to estimate the λ messages. I

anticipate that importance function thus obtained should also provide good performance.

4.2.3 The EPIS-BN Algorithm

The basic EPIS-BN algorithm is outlined in Figure 4.2. There are three main stages in the

algorithm. The first stage includes Steps 1-2, which initialize the parameters. The second

stage, including Steps 3-6, applies LBP and ε-cutoff to calculate an importance function.

The last stage, Step 7, does the actual importance sampling.

The parameter m, the number of samples, is a matter of a network-independent tradeoff

between precision and time. More samples will lead to better precision. However, the

optimal values of the propagation length d and the threshold value ε for the ε-cutoff are

highly network dependent. I will recommend some values based on my empirical results in

Section 4.3.2.

33



Algorithm: EPIS-BN

Input: Bayesian network B, a set of evidence variables E, and a set of

non-evidence variables X;

Output: The marginal distributions of non-evidence variables.

1. Order the nodes according to their topological order.

2. Initialize parameters m (number of samples), ε, and d (propagation

length).

3. Initialize the messages that all evidence nodes send to themselves

to be vectors of a 1 for the observed state and 0’s for other states,

and all other messages to be uniformly vectors of 1’s.

4. for i ← 1 to d do

For all of the nodes, recompute their new outgoing messages

based on the incoming messages from the last iteration for all of

the nodes.

end for

5. Calculate the ICPTs using the final messages according to Equa-

tion 4.11.

6. Enhance the importance function by the ε-cutoff heuristic.

7. for i ← 1 to m do

si ← generate a sample using the importance function in Equa-

tion 4.10.

Compute the importance score wiScore of si.

Add wiScore to the corresponding entry of each score table.

end for

8. Normalize each score table, output the estimated beliefs for each

node.

Figure 4.2: The Evidence Pre-propagated Importance Sampling Algorithm for Bayesian

Networks (EPIS-BN).
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4.3 EXPERIMENTAL RESULTS

To test the EPIS-BN algorithm, I applied it to three large real Bayesian networks: AN-

DES (Conati, Gertner, VanLehn, and Druzdzel 1997), CPCS (Pradhan, Provan, Middleton,

and Henrion 1994), and PathFinder (Heckerman 1990), and compared my results to those

of AIS-BN and those of Gibbs sampling, a representative of the MCMC methods, which

are believed to perform well in Bayesian networks. The ANDES network (Conati, Gert-

ner, VanLehn, and Druzdzel 1997) consists of 233 nodes. This network has a great depth

and high connectivity and it was shown to be difficult for the AIS-BN algorithm (Cheng

and Druzdzel 2000). The CPCS network that I used has 179 nodes, which is a subset of

the full CPCS network created by Max Henrion and Malcolm Pradhan. The PathFinder

network (Heckerman 1990) contains 135 nodes. This section presents the results of my

experiments.

4.3.1 Experimental Method

To compare the accuracy of sampling algorithms, I compare their departure from the exact

solutions, calculated using the clustering algorithm (Lauritzen and Spiegelhalter 1988). I use

the Hellinger’s distance (Kokolakis and Nanopoulos 2001) as the distance metric. Hellinger’s

distance between two networks, which have probabilities P1(xij) and P2(xij) for state j

(j = 1, 2, ..., ni) of node i respectively, such that Xi /∈ E is defined as:

H(F1, F2) =

√√√√√√√

∑
Xi∈N\E

ni∑
j=1

{√P1(xij)−
√

P2(xij)}2

∑
Xi∈N\E

ni

, (4.12)

where N is the set of all nodes in the network, E is the set of evidence nodes, and ni

is the number of states for node i. Hellinger’s distance weighs small absolute probability

differences near 0 much more heavily than similar probability differences near 1. In many

cases, Hellinger’s distance provides results that are equivalent to Kullback-Leibler divergence.

However, a major advantage of Hellinger’s distance is that it can handle zero probabilities,

which are common in Bayesian networks. Cheng & Druzdzel (2000) used mean square
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Figure 4.3: A plot of the influence of propagation length on the precision of LBP and EPIS-

BN.

error (MSE) in their experiments. The main drawback of MSE is that it assigns equal

distance for the same absolute probability difference all over the range [0, 1]. However, the

probability differences near 0 are believed to be more important than those near 1.

4.3.2 Parameter Selection

The propagation length d has major influence on the precision of the EPIS-BN algorithm.

Since we are using the LBP algorithm only to get the approximate λ messages, we need not

wait until it converges. There are two reasons to use only a small number of iterations. First,

usually the influence of evidence on a node attenuates with the distance of the node from
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the evidence (Henrion 1989). Therefore, we can save a lot of futile computation if we stop

the propagation process after several iterations. Second, for networks with loops, stopping

propagation after a number of iterations that is less than the size of the smallest loop avoids

double counting of evidence (Weiss 2000).

Figure 4.3 shows the results of an experiment that I conducted to test the influence of

the propagation length on precision of the results of LBP and EPIS-BN on all the three

networks. I randomly selected 20 evidence nodes for each network. After performing different

number of iterations of LBP, I ran the EPIS-BN algorithm and generated 320K samples.

The results show that a length of 2 is already sufficient for EPIS-BN to yield very good

results. Increasing the propagation length improves the results of LBP, but minimally for

EPIS-BN. This indicates that whether or not LBP converges is not critical to the EPIS-BN

algorithm. Although for different networks and evidence, the optimal propagation length was

different, my experiments showed that the lengths of 4 or 5 were sufficient for deep networks.

For shallow networks, I chose the depth of the deepest evidence as the propagation length.

Another important parameter in EPIS-BN is the threshold value ε for ε-cutoff. The

optimal value for ε is also network dependent. My empirical tests did not yield a universally

optimal value, but I recommend to use ε = 0.006 for nodes with the number of outcomes

fewer than 5, and ε = 0.001 for nodes with the number of outcomes between 5 and 8.

Otherwise, I recommend ε equal to 0.0005. These recommendations are different from those

in (Cheng and Druzdzel 2000). The main reason for this difference is that the ε-cutoff is

used at a different stage of the algorithm and for a different purpose.

Since Gibbs sampling only changes the state of one node at each time, it is faster in

drawing one sample. Therefore, suppose there are n nodes in a Bayesian network, I let

Gibbs sampling draw a number of samples that is equal to n times the number of samples

that other algorithms draw. I let it burn in first with 5000 samples. This forms a very

conservative experimental setup favoring Gibbs sampling. Taking ANDES as an example,

I present the running time of the three algorithms in Table 4.1. Notice that the overhead of

AIS-BN is much longer than that of EPIS-BN and Gibbs sampling.
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Overhead Sampling Time (seconds)

Gibbs 0.016 507.172

AIS-BN 0.875 8.328

EPIS-BN 0.015 8.344

Table 4.1: Running time (seconds) of the Gibbs sampling, AIS-BN, and EPIS-BN algo-

rithms on the ANDES network with 320K samples (n × 320K for Gibbs sampling, where

n is the number of nodes).

4.3.3 A Comparison on Convergence Rates

Figure 4.4 shows a typical plot of the convergence rates of Gibbs sampling, AIS-BN, and

EPIS-BN algorithms on the three networks. In this experiment, I randomly selected 20

evidence nodes for the networks. I also report the results achieved by LBP with 200 itera-

tions. Its convergence curve is flat because its precision is not a function of the number of

samples. The first column of the figure shows the results of all three algorithms, while the

second column shows important fragments of the plots on a finer scale. The results show

that EPIS-BN achieved a precision nearly one order of magnitude higher than AIS-BN on

the ANDES network and minimally better performance than AIS-BN on the CPCS and

PathFinder networks. Even though LBP sometimes approaches the precision of EPIS-

BN, such as on the CPCS network, it is usually at least one order of magnitude worse than

EPIS-BN. Although Gibbs sampling drew many more samples and ran much longer than

the other algorithms, its precision is still much worse than EPIS-BN and AIS-BN, and it

is also worse than that of LBP. The reason that Gibbs sampling does not converge at all

on the PathFinder network is maybe due to the fact that there are many deterministic

relations in PathFinder, which violates the ergodic property that Gibbs sampling relies

on.
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Figure 4.4: Error curves of the Gibbs sampling, AIS-BN, LBP, and EPIS-BN algorithms.

The plots on the righthand side show important fragments of the plots on a finer scale.
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4.3.4 Results of Batch Experiments

I generated a total of 75 test cases for each of the three networks. These cases consisted

of five sequences of 15 cases each. For each sequence, I randomly chose a different number

of evidence nodes: 15, 20, 25, 30, 35 respectively. The evidence nodes were chosen from a

predefined list of potential evidence nodes. The distribution of the prior probability of

evidence across all test cases of this experiment is shown in Figure 4.5. The prior probability

of evidence was extremely small: between 10−4 and 10−18 in ANDES, between 10−6 and

10−34 in CPCS, between 10−6 and 10−32 in PathFinder, yielding the average around 10−16.

I believe that these cases represent difficult real inference problems.
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Figure 4.5: The distribution of the probabilities of the evidence for all the test cases.

For each of the test cases, I ran AIS-BN and EPIS-BN algorithms for 320K samples

and Gibbs sampling for n × 320K samples. Figure 4.6 shows the box plots of the results.
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(a1) ANDES results (a2) ANDES results in detail

(b1) CPCS results (b2) CPCS results in detail

(c1) PathFinder results (c2) PathFinder results in detail

Figure 4.6: Boxplots of the results of the Gibbs sampling, AIS-BN, and EPIS-BN al-

gorithms. Asteristics denote outliers. The plots on the righthand side show important

fragments of the plots on a finer scale.
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Gibbs AIS-BN EPIS-BN

ANDES µ 0.07841 0.04784 0.00260

σ 0.01632 0.04968 0.00151

CPCS µ 0.04505 0.00089 0.00082

σ 0.03635 0.00022 0.00026

PathFinder µ 0.23451 0.00273 0.00112

σ 0.07634 0.00944 0.00102

Table 4.2: Mean and standard deviation of the Hellinger’s distance of the Gibbs sampling,

AIS-BN, and EPIS-BN algorithms.

The corresponding statistics are shown in Table 4.2. The results show that EPIS-BN was

significantly better than AIS-BN on ANDES network. EPIS-BN was also better than

AIS-BN algorithm on the CPCS and PathFinder networks. The results of a paired one-

tailed t-test for the results of three networks were 7.16×10−12, 0.008, and 0.075 respectively.

Although the improvement on CPCS and PathFinder seems minimal compared to the

improvement on ANDES network, I will show later that the smaller improvement is quite

possibly due to the ceiling effect. Gibbs sampling was overall much worse than AIS-BN and

EPIS-BN for these test cases.

Figure 4.7 shows the Hellinger’s distance of all the test cases. The graphs again show that

EPIS-BN performs much better than AIS-BN on the ANDES network and slightly better

on the CPCS and PathFinder networks. Although the performance of Gibbs sampling is

not influenced much by the probability of evidence, its performance is poor for the test cases

that I generated.

The improvement of the EPIS-BN algorithm over the AIS-BN algorithm on the CPCS

and PathFinder networks was smaller than that on the ANDES network. To test whether

this smaller difference is due to the ceiling effect, I performed experiments on these networks

without evidence. When no evidence is present, both EPIS-BN and AIS-BN reduce to

42



0.00

0.05

0.1 0

0.1 5

0.2 0

0.2 5

2 .5 1 E -1 8 9 .6 1 E -1 5 5 .1 5 E -1 3 1 .3 3 E -1 0 7 .6 6 E -09 1 .9 3 E -07 4 .08 E -05

Probability of Evidence

H
e

ll
in

g
e

r'
s

 D
is

ta
n

c
e

G ib b s

E P IS -B N

A IS -B N

0.0000

0.001 0

0.002 0

0.003 0

0.004 0

0.005 0

0.006 0

0.007 0

0.008 0

0.009 0

0.01 00

2 .5 1 E -1 8 9 .6 1 E -1 5 5 .1 5 E -1 3 1 .3 3 E -1 0 7 .6 6 E -09 1 .9 3 E -07 4 .08 E -05

Probability of Evidence

H
e

ll
in

g
e

r'
s

 D
is

ta
n

c
e

E P IS -B N

L in e a r (E P IS -B N )

(a1) ANDES results (a2) ANDES results in detail

0.00

0.05

0.1 0

0.1 5

0.2 0

0.2 5

4 .5 4 E -3 5 5 .1 0E -2 9 8 .6 6 E -2 5 2 .7 5 E -2 1 2 .7 1 E -1 8 3 .9 2 E -1 5 2 .9 5 E -08

Probability of Evidence

H
e

ll
in

g
e

r'
s

 D
is

ta
n

c
e

G ib b s

E P IS -B N

A IS -B N

0.0000

0.0005

0.001 0

0.001 5

0.002 0

0.002 5

4 .5 4 E -3 5 5 .1 0E -2 9 8 .6 6 E -2 5 2 .7 5 E -2 1 2 .7 1 E -1 8 3 .9 2 E -1 5 2 .9 5 E -08

Probability of Evidence

H
e

ll
in

g
e

r'
s

 D
is

ta
n

c
e

E P IS -B N

A IS -B N

L in e a r (A IS -B N )

L in e a r (E P IS -B N )

(b1) CPCS results (b2) CPCS results in detail

0.00

0.05

0.1 0

0.1 5

0.2 0

0.2 5

0.3 0

0.3 5

0.4 0

0.4 5

8 .2 2 E -3 3 1 .08 E -2 0 9 .1 0E -1 6 6 .8 9 E -1 4 3 .8 5 E -1 1 9 .00E -09 1 .08 E -06

Probability of Evidence

H
e

ll
in

g
e

r'
s

 D
is

ta
n

c
e

G ib b s

E P IS -B N

A IS -B N

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

8 .2 2 E -3 3 1 .08 E -2 0 9 .1 0E -1 6 6 .8 9 E -1 4 3 .8 5 E -1 1 9 .00E -09 1 .08 E -06

Probability of Evidence

H
e

ll
in

g
e

r'
s

 D
is

ta
n

c
e

E P IS -B N

A IS -B N

L in e a r (A IS -B N )

L in e a r (E P IS -B N )

(c1) PathFinder results (c2) PathFinder results in detail

Figure 4.7: Sensitivity of the Gibbs sampling, AIS-BN, and EPIS-BN algorithms to the

probability of evidence: Hellinger’s distance plotted against the probability of evidence. The

plots on the righthand side show important fragments of the plots on a finer scale.
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probabilistic logic sampling (Henrion 1988). I ran probabilistic logic sampling on all three

networks with the same number of samples as in the main experiment. I observed that the

Hellinger’s distance of the results was on the order of 10−4. Because when no evidence is

present, the importance function is the ideal importance function, it is reasonable to say

that 10−4 is the best precision that a sampling algorithm can achieve on the networks. In

case of the CPCS and the PathFinder networks, AIS-BN already comes very close to

this precision. Therefore, the improvement of EPIS-BN over AIS-BN in the CPCS and

PathFinder networks is actually significant, and it testifies to the fact that the EPIS-BN

algorithm uses a close to optimal importance function. Another question is why the ANDES

network is hard for both EPIS-BN and AIS-BN. The reason is maybe due to the fact that

the treewidths of the networks are different. The ANDES network has treewidth 18, but

CPCS and PathFinder only have 9 and 5 respectively. Treewidth is a good indication of

the complexity of the networks.

4.3.5 The Roles of LBP and ε-cutoff

Since EPIS-BN is based on LBP (P) in combination with the ε-cutoff heuristic (C), I

performed experiments that aimed at disambiguating their role. I denote EPIS-BN without

any heuristic method as the E algorithm. E+PC represents the EPIS-BN algorithm. I

compared the performance of E, E+P, E+C, E+PC. I tested these algorithms on the

same test cases generated in the previous experiments. The results are given in Figure 4.8.

The results show that the performance improvement is coming mainly from LBP. The ε-

cutoff heuristic demonstrated inconsistent performance. For the CPCS and PathFinder

networks, it helped to achieve a better precision, while it made the precision worse for the

ANDES network. I believe that there are at least two explanations of this observation.

First, the ANDES network has a much deeper structure than the other two networks. The

loops in the ANDES network are also much larger. LBP performs better on the networks

with this kind of structure. Therefore, we already have near optimal ICPTs. There is no

need to apply the ε-cutoff heuristic any more. Second, the proportion of small probabilities in

these networks is different. The ANDES network only has 5.8 percent small probabilities,
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(a1) ANDES results (a2) ANDES results in detail

(b1) CPCS results (b2) CPCS results in detail

(c1) PathFinder results (c2) PathFinder results in detail

Figure 4.8: Boxplots of the results of the E, E+C, E+P, and E+PC algorithms. Asteristics

denote outliers. The plots on the righthand side show important fragments of the plots on

a finer scale. E: EPIS-BN without any heuristics. E+C: EPIS-BN with only ε-cutoff. E+P:

EPIS-BN with only LBP. E+PC: the EPIS-BN algorithm.
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while the CPCS network has 14.1 percent and the PathFinder has 9.5 percent. More

extreme probabilities will make the inference task more difficult, so ε-cutoff plays a more

important role on the CPCS and PathFinder networks.

4.4 CONCLUSION

In this chapter, I describes the EPIS-BN algorithm, which applies LBP to calculate an

approximation of the optimal importance function. I also use the ε-cutoff heuristic to cut

off smaller probabilities by high values. The resulting algorithm is elegant in the sense of

focusing clearly on precomputing the importance function without a costly learning stage.

My experimental results show that the EPIS-BN algorithm achieves a considerable im-

provement over the AIS-BN algorithm, especially in cases that are difficult for the latter.

Experimental results also show that the improvement comes mainly from LBP. As the perfor-

mance of the EPIS-BN algorithm will depend on how well LBP approximates the posterior

probability distributions, any technique that can improve the LBP algorithm can also bring

improvements to the EPIS-BN algorithm. Although Gibbs sampling seems not so sensitive

to probability of the evidence, its convergence is slow for high dimensional problems in my

experiments.
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5.0 REPRESENTATIONS OF THE IMPORTANCE FUNCTION

One of the main problems of importance sampling in Bayesian networks is the representation

of the importance function. Typically, we represent an importance function as a factorization,

i.e., a product of conditional probability tables (CPTs), e.g., the ICPTs used in the EPIS-

BN algorithm. Given diagnostic evidence, additional dependence relations will be introduced

among the variables. Consequently, the factorization of the original network cannot represent

the optimal importance function anymore. To address this problem, I first derive the exact

form for the CPTs of the optimal importance function. Since the CPTs may become too

huge for large networks, we usually only use their approximations. I review several existing

approximation strategies and point out their limitations. After a simple analysis of the

influence of evidence in Bayesian networks, I propose an approximation strategy that tries

to capture the most important additional dependence relations introduced by the evidence.

My experimental results show that the new strategy offers an immediate improvement in the

quality of the importance function.

The remainder of this chapter is structured as follows. Section 5.1 derives the exact form

for the CPTs of the optimal importance function in a Bayesian network with diagnostic

evidence. Section 5.2 reviews several existing approximation strategies for the CPTs and

points out their limitations. Section 5.3, based on an analysis of the influence of evidence in

Bayesian networks, I proposes an approximation strategy that tries to accommodate the most

important additional dependence relations introduced by the evidence. Finally, Section 5.4

presents experimental results.
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5.1 A GENERAL REPRESENTATION FOR IMPORTANCE FUNCTIONS

IN BAYESIAN NETWORKS

Importance sampling can be easily adapted to solve a variety of inference problems in

Bayesian networks, especially finding posterior marginals for unobserved variables. To make

importance sampling in Bayesian networks feasible, we typically need an importance func-

tion that is factorized as the product of a sequence of CPTs. More formally, suppose P (X)

models the joint probability distribution over a set of variables {X1, X2, ..., Xn}. By the

chain rule, we can factorize it as follows.

P (X) = P (X1)
n∏

i=2

P (Xi|X1, ..., Xi−1) . (5.1)

To draw a sample for X, we draw samples from each of the CPT P (Xi|X1, ..., Xi−1)

sequentially. We can easily get the CPTs in Bayesian networks with no evidence, because if

X1, X2, ..., Xn are in the topological order of the network, we can simplify the above equation

to

P (X) =
n∏

i=1

P (Xi|PA(Xi)) , (5.2)

where P (Xi|PA(Xi)) are explicitly modelled in Bayesian networks. The above simplification

reflects the so called Markov condition (Pearl 1988), which states that a node is independent

of its non-descendants given only its parents. Importance sampling under such circumstances

is easy to implement. However, when diagnostic evidence exists, it can dramatically change

the dependence relations among the variables. Suppose that in addition to the unobserved

variables X, we also have an evidence set E = {E1, ..., Em}. We know that the posterior

distribution of the network can still be factorized using the chain rule.

P (X|E) = P (X1|E)
n∏

i=2

P (Xi|X1, ..., Xi−1,E) . (5.3)

However, the simplification made for Equation 5.2 can no longer be made here, because

we cannot just throw away the variables in {X1, ..., Xi−1}\PA(Xi), on some of which Xi may

depend given the evidence. Before I analyze how to simplify P (Xi|X1, ..., Xi−1,E), I first

introduce the following definition.
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Definition 5.1. Consider a Bayesian network with unobserved variables X = {X1, ..., Xn}
and evidence set E. For an ordering of X1, ..., Xn, the relevant factor of Xi, denoted as

RF(Xi), is the set of variables that appear before Xi in the ordering and are d-connected to

Xi conditioned on the parents of Xi, the evidence E, and the other variables in {X1, ..., Xi−1}.

Intuitively, RF(Xi) includes the additional variables that Xi needs to condition on in

{X1, ..., Xi−1}. Note that RF(Xi) is specific to a particular ordering of the variables; It may

contain different variables for different orderings. Given the definition, Equation 5.3 can now

be simplified to

P (X|E) =
n∏

i=1

P (Xi|PA(Xi),E, RF(Xi)) . (5.4)

However, we now have no explicit forms of the CPTs in the network any more. If we

want to compute and store the CPTs, we need to break the constraint of the original network

structure and accommodate the additional dependence among the variables. One solution

is to construct a new network in which each node Xi has arcs coming from the variables in

both PA(Xi) and RF(Xi). I call such network factorizable.

Definition 5.2. Consider a Bayesian network with unobserved variables X = {X1, ..., Xn}
and evidence set E. A factorizable network is a new network that represents the same

distribution as the original network and whose posterior distribution P (X|E) can be fully

factorized to a product of CPTs, one for each unobserved variable Xi in X.

Factorizable structure is not unique, because it depends on the ordering of the nodes and

evidence introduced in the network. Particularly, we have the following results.

Theorem 5.1. Adding arcs from RF(Xi) to Xi for all Xi in a Bayesian network yields a

factorizable network.

Proof. The theorem follows immediately from the definition of relevant factor.

One algorithm to construct a factorizable structure for a Bayesian network given particu-

lar evidence is described in Figure 5.1. Theorem 5.2 proves the correctness of the algorithm.

Theorem 5.2. Applying the algorithm in Figure 5.1 to a Bayesian network with evidence

E and unobserved variables X = {X1, ..., Xn} yields a factorizable network.
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Algorithm: Building a factorizable network.

Input: Bayesian network B, a set of evidence variables E, and a set of

unobserved variables X;

Output: A factorizable structure.

1. Order the nodes in X in the reverse of their topological order.

2. Mark the nodes that are ancestors of evidence nodes in E.

3. Following the ordering in Step 1, check each node if it is marked

or has evidence. If so, add an arc between each pair of its parents

given that no arc exists between them, such that the orientation

of the arc is from the node appearing later in the ordering to the

earlier one.

4. When adding an arc between two nodes, expand the CPT of the

child by duplicating the entries for different states of the parent.

Figure 5.1: The algorithm for building a factorizable network.

Proof. I prove the theorem by contradiction. Suppose the resulting network is not factoriz-

able, there must be a node Xi that is dependent on another node Xj given all Xi’s parents.

The only way the situation may happen is when Xi and Xj share some evidence E as com-

mon descendant. Let Y be the ancestor of E which is also the closest common descendant of

Xi and Xj. If Y exists, since Y is an ancestor of evidence, Algorithm 5.1 must have added

arcs between Y ’s parents. That contradicts that Y is the closest common descendant of

Xi and Xj. If Y does not exist, E must be the closest common descendant of Xi and Xj.

Again, Algorithm 5.1 would have added arcs between E’s parents. It contradicts that E is

the closest common descendant of Xi and Xj. Therefore, the resulting structure must be

factorizable.

The following corollary immediately follows Theorem 5.2.

Corollary 5.1. The set of new parents added by Algorithm 5.1 for each Xi is the relevant
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factor of Xi, i.e., RF(Xi).

Algorithm 5.1 is similar to the graph reduction method proposed in (Olmsted 1983;

Shachter 1990). Indeed, my procedure will introduce the same additional arcs as the graph

reduction method if two methods use the same ordering. However, the difference is that

graph reduction absorbs the evidence while reducing the graph, which, in the end, results

in a new network without evidence variables. In my procedure, I separate graph reduction

and evidence absorption. We first create a new network that still represents the same distri-

bution as the original one. Given the new structure, we can factorize the full joint posterior

distribution using chain rule and absorb evidence into each CPT separately. Ortiz (2001)

presents a similar idea for constructing an optimal importance function, in which he suggests

first triangulating the Bayesian network and making it chordal, and then constructing the

new structure from the chordal graph. My approach avoids his intermediate step.

In Step 3 of Algorithm 5.1, we add arcs between all the parents of a node if they do

not already exist. Hence, the last parent will get arcs coming from all the other parents.

If the CPT size of the last parent is initially large, or if there are many parents, the new

CPT for the last parent may blow up. Even if not, the new structure will make importance

sampling inefficient. To remedy the problem, I propose several heuristics for preprocessing

the ordering of the parents. All the heuristics are subject to the partial constraints of the

original network, which include arcs or directed paths that already exist among parents.

The first method is to order the parents in the descending order of the number of their own

parents. By doing so, we are trying to make the last parent have as less incoming arcs as

possible, which can reduce the size of the CPTs. The second method is to order the parents

in a descending order of the size of their CPTs. Since our purpose is to minimize the size

of CPTs, the second heuristic is more effective. I will use it in all the experiments in this

chapter.
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5.2 APPROXIMATION STRATEGIES FOR THE IMPORTANCE

FUNCTIONS

From Equation 5.4, we can see that to build a factorizable structure, we need to add many

arcs to the new structure when we have diagnostic evidence. These extra arcs make a network

much more complex and make the calculation of the CPTs much more difficult. Although I

proposed several heuristics for minimizing the size of CPTs, they can still grow too large. In

fact, this process is practically equivalent to exact inference in the network. Therefore, we

usually only use approximations of the full factorizable structures. Here I will review several

approximation strategies used by the existing importance sampling algorithms for Bayesian

networks. I will use a running example to illustrate these strategies.

Example: A simple Bayesian network with three binary variables in Figure 5.2 param-

eterized as follows:

a 0.2

¬a 0.8

b 0.7

¬b 0.3

a ¬a

P (C|A,B) b ¬b b ¬b

c 0.99 0.01 0.1 0.9

¬c 0.01 0.99 0.9 0.1

µ´
¶³

µ´
¶³µ´

¶³

@@R ��	

A B

C

Figure 5.2: A simple Bayesian network.

Variable C is observed in state ¬c. We can easily calculate the posterior joint distribution

over A and B.
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P (A,B|¬c) a ¬a

b 0.0024 0.8560

¬b 0.1009 0.0408

¤
Original CPT-based Importance Function: Probabilistic logic sampling (Henrion

1988) assumes that the importance function has the same CPTs as the original network for

all the variables. Likelihood weighting (Fung and Chang 1989; Shachter and Peot 1989) goes

a step further and assumes that the importance function has the following form:

P (X|E) =
n∏

i=1

P (Xi|PA(Xi)\E.E ∩ PA(Xi)) (5.5)

It uses the same CPTs as the original distribution for nodes with no evidence parents.

Otherwise, it shrinks CPTs for those nodes with evidence parents. Obviously, this approxi-

mation only takes into account the primitive influence of the evidence, the influence of the

evidence nodes on the CPTs of their children. As you can see from the running example,

original CPT-based importance function is far away from the actual posterior distribution.

Example: Original CPT-based importance function for the running example.

P (A,B) a ¬a

b 0.14 0.56

¬b 0.06 0.24

¤
ICPT-based Importance Function: Several algorithms notice the limitations of the

importance function used by likelihood weighting and propose a different form of importance

function. They still assume the same structure for the importance function as the original

Bayesian network, but they realize that the evidence has influence on the CPTs of all the

nodes and propose the following form of importance function:

P (X|E) =
n∏

i=1

P (Xi|PA(Xi)\E,E). (5.6)
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Each P (Xi|PA(Xi)\E,E) is called an importance CPT (ICPT), a concept first proposed

in (Cheng and Druzdzel 2000). However, there are actually many algorithms that use the

above importance function, in spite of the fact that they differ in the methods of estimat-

ing the actual tables. Several dynamic importance sampling algorithms, including AIS-

BN (Cheng and Druzdzel 2000), self-importance sampling (Shachter and Peot 1989), and

adaptive IS (Ortiz and Kaelbling 2000), use different learning methods to learn the ICPTs.

I derive the formula of calculating the ICPTs using loopy belief propagation messages (Pearl

1988; Murphy, Weiss, and Jordan 1999) in Chapter 4. The importance function in Equa-

tion 5.6 offers a big improvement over the representation of Equation 5.5, as you can see

from the running example. However, this representation still only takes into account partial

influence of the evidence. In case the evidence dramatically changes dependence relations

among the variables, this approximation will be sub-optimal as well.

Example: ICPT-based importance function for the running example.

P (A,B) a ¬a

b 0.0886 0.7697

¬b 0.0146 0.1270

¤
A dynamic importance sampling algorithm using the preceding importance function may

learn a different importance function, depending on what distance measure it tries to min-

imize. For the running example, we need two parameters to parameterize the importance

function. If we use K-L divergence as the distance measure, we get the same solutions

as above. If we minimize the variance of the importance sampling estimator, the learned

importance function has the following joint probability distribution.

Example: Importance function learned by minimizing the variance of the importance

sampling estimator for the running example.

P (A,B) a ¬a

b 0.1531 0.6487

¬b 0.0379 0.1604

¤
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We can see that we cannot achieve the optimal importance function by learning. The

reason is that the actual posterior distribution typically needs more parameters to param-

eterize than the importance function. For the running example, the actual posterior dis-

tribution needs three parameters. Obviously, it is in general impossible to perfectly fit a

three-parameter distribution with a two-parameter distribution.

Variable Elimination-based Importance Function: Hernandez et al. (Hernandez,

Moral, and Salmeron 1998) propose to use the variable elimination (Zhang and Poole 1994)

algorithm to eliminate the variables one by one in order to get the CPTs. If the calculation is

carried out exactly, they will get the exact form of the importance function as in Equation 5.4.

However, variable elimination is infeasible for large complex networks. Therefore, they set

a threshold to the CPT size. Whenever the size of a CPT generated when eliminating a

variable exceeds the threshold, they generate multiple smaller tables to approximate the

single big table. Therefore, there is no explicit form for their importance function.

For the simple running example, since variable elimination can be carried out exactly,

Hernandez et al.’s method is able to generate the exact CPTs.

Example: Variable Elimination-based importance function for the running example. If

we eliminate B before A, we get conditional forms P (A) and P (B|A), which are

a 0.1033

¬a 0.8967

P (B|A) a ¬a

b 0.0232 0.9545

¬b 0.9768 0.0455

¤
A simple calculation shows that the importance function is indeed equivalent to the

actual posterior distribution. However, for larger models, variable elimination-based impor-

tance function often need to use several tables to approximate a single big table. Since the

approximation is driven mostly by table size, the approximation can be also sub-optimal.

Salmeron et al. (Salmeron, Cano, and Moral 2000) later propose to improve the approxima-
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tion using probability trees to represent the CPTs.

5.3 AN INFLUENCE-BASED APPROXIMATION STRATEGY FOR

IMPORTANCE FUNCTIONS

In the previous section, I argue that some existing approximations cannot approximate the

posterior distribution well. I now begin to discuss one approximation strategy that is based

on the influence among variables in a Bayesian network introduced by the evidence.

First, I provide an analysis of the influence of evidence. We know that in general di-

agnostic evidence makes the ancestors of evidence nodes conditionally dependent. We need

to model the most important dependence relations in order to obtain a good importance

function. One useful measure to model the relative strength of the dependence relations

among the variables in a Bayesian network is the sensitivity range of the probability of an

event y with respect to an event x (Henrion 1989). More formally, suppose that E = e is the

observed evidence which might affect the assessment of the probability of x, giving P (x|e).
Suppose that Y is conditionally independent of E given X. Then the sensitivity range is

defined as the derivative of P (y|e) with respect to P (x|e):

SR(y, x) ≡ ∂P (y|e)
∂P (x|e) . (5.7)

Henrion (1989) has shown that for the causal link in Figure 5.3, the sensitivity range

SR(y, x) with respect to e satisfies the following inequality:

|SR(y, x)| ≤ 1. (5.8)

Essentially, the result shows that the evidence on a node has more influence on its im-

mediate children than its further descendants. Now, I extend the result to more general

scenarios. First, let us look at the diagnostic link in Figure 5.4. Given conditional indepen-

dence, P (y|x) = P (y|x, e). We have

P (y|e) = P (y|x)P (x|e) + P (y|¬x)(1− P (x|e)) . (5.9)

56



µ´
¶³

µ´
¶³

µ´
¶³@@R

-

E

X Y

Figure 5.3: A causal link.
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Figure 5.4: A diagnostic link.

Taking the derivative with respect to P (x|e), we get

SR(y, x) = P (y|x)− P (y|¬x) . (5.10)

Obviously, Equation 5.8 also holds for the diagnostic link. It shows that the evidence on

a node has more influence on its immediate parents than its further ancestors. Now, let us

look at a more interesting case. Suppose we have an intercausal network as in Figure 5.5,

we have

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

@@I
�

��	
E

X Y

Z

Figure 5.5: An intercausal link.

P (y|z, e) = P (y|x)P (x|z, e) + P (y|¬x)(1− P (x|z, e)) . (5.11)

57



Taking the derivative with respect to P (x|z, e), we get

SR(y, x) = P (y|x)− P (y|¬x) . (5.12)

Again, Equation 5.8 holds for this case. This result shows that, although an evidence

node introduces dependence among its ancestors, the strength of the dependence will become

weaker as the distance between the ancestors increases.

To summarize, my discussion essentially shows that, in general, as the distance from

a variable to the evidence becomes larger in a Bayesian network, the evidence usually has

less influence on the posterior distribution of the variable. Also, the dependence relations

among the immediate parents of an evidence node are stronger than those among its further

ancestors. Similarly, we can show the same results using another dependence measure called

mutual information.

For each CPT P (Xi|PA(Xi),E, RF(Xi)) in Equation 5.4, PA(Xi) are immediate parents

of Xi, so their influence are usually strong. E contains the observed variables, so it only

reduces the complexity of the CPT. However, the variables in RF(Xi) have varying distances

from Xi. From the analysis, I believe that by throwing away the variables that are further

away from Xi, I can still reserve a good approximation of the original CPT. Therefore, I

propose to approximate the full importance function by adding additional arcs only among

the parents of evidence. By modelling the most important additional dependence among the

variables, I anticipate that the importance function can be quite close to the actual posterior

distribution. Keeping adding arcs makes the network more complex, which may only bring

minimal improvement but makes the computation more costly.

5.4 EXPERIMENTAL RESULTS

To justify my proposed approximation strategy, I tested it on the EPIS-BN algorithm. I

performed my experiments on the ANDES (Conati, Gertner, VanLehn, and Druzdzel 1997),

CPCS (Pradhan, Provan, Middleton, and Henrion 1994), and PathFinder (Heckerman

1990) networks. My comparison was based on the average Hellinger’s distance (Kokolakis
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and Nanopoulos 2001) between exact posterior marginals of all unobserved variables and

sampling results.

5.4.1 Results of Different Representations on ANDES

In this experiment, I generated a total of 75 test cases for the ANDES network. These

cases consisted of five sequences of 15 cases each. For each sequence, I randomly chose

a different number of evidence nodes: 15, 20, 25, 30, 35 respectively. I used three different

representations of importance function in this experiment. The first one was represented by

ICPTs, as in Equation 5.6. For the second one, I only added additional arcs between the

parents of the evidence nodes. For the third one, I carried out Algorithm 5.1 fully and added

all the necessary arcs to make the network factorizable. I then ran EPIS-BN on the three

importance functions. The results are shown in Figure 5.6.

As we can see, adding arcs between the parents of evidence nodes brings immediate

reduction in error. A paired one-tail t-test at p = 0.00029 level shows that the improvement

is significant. Since the new importance function has few new arcs, its influence on the

running time was minimal. Adding more arcs to get the exact importance function form did

not improve the results, but only made the algorithm less efficient. P-value in this case is

0.0018. The results clearly agree with my analysis of the influence of evidence.

5.4.2 Results of Different Representations on CPCS and PathFinder

In this experiment, I used the same experimental setup and did some experiments on the

CPCS and PathFinder networks. The results are shown in Figure 5.7. Again, adding arcs

among the parents of evidence nodes brings immediate improvements for EPIS-BN. Adding

more arcs to get the exact importance function form did not improve the results, but only

made the algorithm less efficient.
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Figure 5.6: Hellinger’s distance of the EPIS-BN algorithm on three different representations

of importance function on ANDES. Parents: the importance function with additional arcs

between parents of evidence. All: the importance function with all additional arcs. Numbers

beside the boxplots are the median errors.

5.5 CONCLUSION

In this chapter, I address a key problem of importance sampling in Bayesian networks, the

representation of the importance function. Typically, we represent an importance function

as a factorization, i.e., the product of a sequence of conditional probability tables (CPTs).

However, when the networks become too large or complex, we usually cannot afford to calcu-

late or store the CPTs of the exact importance function. Therefore, different approximations

have been taken. I reviewed several popular approximation strategies for the CPTs and point

out their limitations. Then, based on an analysis of the influence of evidence in Bayesian

networks, I propose an approximation strategy that aims at accommodating the most impor-
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Figure 5.7: Hellinger’s distance of the EPIS-BN algorithm on three different representations

of importance function on (a) CPCS and (b) PathFinder.

tant additional dependence introduced by the evidence. The proposed importance function

is easier to interpret. My experimental results also show that the new approximation strat-

egy offers an immediate improvement of the quality of the importance function and almost

the same performance as the full factorizable structures. However, there were two approx-

imations happened during the experiment. We not only approximated the representations

of the importance functions, but also used an approximate algorithm, LBP, to calculate the

actual functions. In my future work, I plan to perform extra experiments to disambiguate

the effect of the two approximations. Also, by introducing more parameters, the improved

importance function form also brings much potential for dynamic sampling algorithms, as

they can learn theoretically better importance functions.
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6.0 HYBRID LOOPY BELIEF PROPAGATION

This dissertation so far has been focusing on discrete Bayesian networks. As Bayesian

networks (BNs) (Pearl 1988) are applied to more practical domains, people realize that

some problems are more naturally represented by hybrid Bayesian networks that contain

mixtures of discrete and continuous variables. However, several factors make inference in

hybrid models extremely hard. First, they may include linear and non-linear deterministic

relations. Second, the models may contain arbitrary probability distributions. Third, the

orderings among the discrete and continuous variables may be arbitrary. Actually it has been

shown that inference is NP-hard even for the simplest parametric case, the CLG tree (Lerner

and Parr 2001).

Since the general case is difficult, the earliest attempts to model continuous variables fo-

cused on special instances of hybrid models, such as Conditional Linear Gaussians (CLG) (Lau-

ritzen 1992). CLG received much attention because it has a nice property: we can calculate

exactly the first two moments for the posterior probability distributions of the continuous

variables and the exact posterior probability distributions for the discrete variables. How-

ever, one major assumption behind CLG is that discrete variables cannot have continuous

parents. This limitation was later addressed by extending CLG with logistic and softmax

functions (Lerner, Segal, and Koller 2001; Murphy 1999). These attempts raised much in-

terest in hybrid Bayesian networks, especially in developing methodologies for more general

non-Gaussian models, such as Mixture of Truncated Exponentials (MTE) (Cobb and Shenoy

2005; Moral, Rumi, and Salmeron 2001), and junction tree algorithm with approximate clique

potentials (Koller, Lerner, and Angelov 1999). Most of these approaches rely on the junction

tree algorithm (Lauritzen and Spiegelhalter 1988). However, as Lerner et al. (Lerner, Segal,

and Koller 2001) pointed out, it is important to have alternative solutions in the case that
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junction tree algorithm-based methods are not feasible.

In this chapter, I propose the Hybrid Loopy Belief Propagation (HLBP) algorithm, which

extends the Loopy Belief Propagation (LBP) (Murphy, Weiss, and Jordan 1999) and Nonpara-

metric Belief Propagation (NBP) (Sudderth, Ihler, Freeman, and Willsky 2003) algorithms

to deal with general hybrid Bayesian networks. The main idea is to represent each LBP

message as a Mixture of Gaussians (MG) and formulate its calculation as a Monte Carlo in-

tegration problem. The extension is far from trivial due to the enormous complexity brought

by deterministic equations and mixture of discrete and continuous variables. Another ad-

vantage of the algorithm is that it approximates the true posterior probability distributions,

unlike most existing approaches which only produce the first two moments for CLG models.

I also propose a technique called lazy LBP, which can significantly improve the efficiency of

LBP and related methods.

I depart this chapter a little from importance sampling, the main theme of this dis-

sertation, because I believe that HLBP itself is an important method for hybrid Bayesian

networks. I will investigate how to use the HLBP algorithm to calculate importance functions

for importance sampling in the next chapter.

The remainder of this chapter is structured as follows. In Section 6.1, I propose the Hybrid

Loopy Belief Propagation (HLBP) algorithm and discuss how to calculate LBP messages

in hybrid Bayesian networks. Section 6.2 discusses an efficient method to sample from a

product of several mixtures of Gaussians. Section 6.3 discusses how to deal with evidence

and deterministic relations in HLBP. In Section 6.4, I propose a technique that I call Lazy

LBP to improve the efficiency of HLBP. Finally in Section 6.5, I present some experimental

results.

6.1 HYBRID LOOPY BELIEF PROPAGATION

To extend LBP to hybrid Bayesian networks, we need to know how to calculate the messages.

It is evident that no closed-form solutions exist for the messages in general hybrid models.

However, I observe that their calculations can be formulated as Monte Carlo integration
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problems. Since we are dealing with mixtures of discrete and continuous variables, we will

have integrations and summations mixed together. For simplicity, I will only use integrations

in the message definitions.

First, let us look at the π
(t+1)
Yj

(x) message defined in Equation 4.7. I plug in the definition

of π(t)(x) in Equation 4.5 and rearrange the equation in the following way:

π
(t+1)
Yj

(x)

= αλX(x)
∏

k 6=j

λ
(t)
Yk

(x)

∫

u

P (x|u)
∏

k

π
(t)
X (uk)

= α

∫

u





P (x,u)︷ ︸︸ ︷
λX(x)

∏

k 6=j

λ
(t)
Yk

(x)P (x|u)
∏

k

π
(t)
X (uk)





.

Essentially, I put all the integrations outside of the other operations. Given the new

formula, I realize that I have a joint probability distribution over x and uis, and the task is

to integrate all the uis out and get the marginal probability distribution over x. Since P (x, u)

can be naturally decomposed into P (x|u)P (u) for this message, calculating the message can

be solved using a Monte Carlo sampling technique called Composition method (Tanner 1993).

The idea is first to draw samples for each uis from π
(t)
X (ui), and then sample from the product

of λX(x)
∏
k 6=j

λ
(t)
Yk

(x)P (x|u). I will discuss how to take the product in the next subsection. For

now let us assume that the computation is possible. To make life even easier, I make further

modifications and get

π
(t+1)
Yj

(x)

= α

∫

u





λX(x)
∏
k

λ
(t)
Yk

(x)P (x|u)
∏
k

π
(t)
X (uk)

λ
(t)
Yj

(x)





.

Now, for the messages sent from X to its different children, we can share most of the calcu-

lation. We first get samples for uis and then sample from the product of λX(x)
∏
k

λ
(t)
Yk

(x)P (x|u).

For each different message π
(t+1)
Yj

(x), we use the same sample x but assign it different weights

1/λ
(t)
Yi

(x).
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Let us now consider how to calculate the λ
(t+1)
X (ui) message defined in Equation 4.6. First,

I plug in the definition of λ(t)(x) in Equation 4.4 and rearrange the equation analogously:

λ
(t+1)
X (ui)

= α

∫

x

λX(x)
∏

j

λ
(t)
Yj

(x)

∫

uk:k 6=i

P (x|u)
∏

k 6=i

π
(t)
X (uk)

= α

∫

x,uk:k 6=i





P (x,uk:k 6=i|ui)︷ ︸︸ ︷
λX(x)

∏
j

λ
(t)
Yj

(x)P (x|u)
∏

k 6=i

π
(t)
X (uk)





. (6.1)

It turns out that here we are facing a quite different problem from the calculation of

π
(t+1)
Yj

(x). Note now we have P (x, uk : k 6= i|ui), a joint distribution over x and uk(k 6= i)

conditional on ui, so the whole expression is only a likelihood function of ui, which is not

guaranteed to be integrable. As in (Sudderth, Ihler, Freeman, and Willsky 2003; Koller,

Lerner, and Angelov 1999), I choose to restrict my attention to densities and assume that

the ranges of all continuous variables are bounded (maybe large). The assumption only solves

part of the problem. Another difficulty is that composition method is no longer applicable

here, because we have to draw samples for all parents ui before we can decide P (x|u). I

note that for any fixed ui, Equation 6.1 is an integration over x and uk, k 6= i. The integral,

complex as it is, can be carried out using Monte Carlo methods. Therefore, we can evaluate

λ
(t+1)
X (ui) up to a constant for any value ui, although we do not know how to sample from

it. This is exactly the time when importance sampling becomes handy. We can estimate the

message by drawing a set of samples as follows: we sample for ui from a chosen importance

function, evaluate λ
(t+1)
X (ui) using Monte Carlo integration, and take ratio between the final

value and I(ui) as the weight for this sample. A simple choice for the importance function is

the uniform distribution over the range of ui, but we can improve the accuracy of Monte Carlo

integration by choosing a more informed importance function, the corresponding message

λ
(t)
X (ui) from the last iteration. Because of the iterative nature of LBP, messages usually

keep improving over each iteration, so they are clearly better importance functions. More
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formally, I am essentially rearranging Equation 6.1 as follows.

λ
(t+1)
X (ui)

= α

∫

x,uk:k 6=i





λX(x)
∏
j

λ
(t)
Yj

(x)P (x|u)λ
(t)
X (ui)

∏
k 6=i

π
(t)
X (uk)

λ
(t)
X (ui)





.

Now we know how to use Monte Carlo integration methods to calculate the messages

for LBP, represented as sets of weighted samples. To complete the algorithm, we need to

figure out how to propagate these messages. That involves operations like sampling, multi-

plication, and marginalization. Sampling from a message represented as a set of weighted

samples may be easy to do; we can use resampling technique to achieve that. However,

multiplying two such messages is not straightforward. Therefore, I choose to use density

estimation techniques to approximate each continuous message using a mixture of Gaus-

sians (MG) (Sudderth, Ihler, Freeman, and Willsky 2003). A K component mixture of

Gaussian has the following form

M(x) =
K∑

i=1

wiN(x; µi, σi) , (6.2)

where
K∑

i=1

wi = 1. MG has several nice properties. First, we can approximate any continuous

distribution reasonably well using a MG. Second, it is closed under multiplication. Last, we

can estimate a MG from a set of weighted samples using a regularized version of expectation

maximization (EM) (Dempster, Laird, and Rubin 1977; Koller, Lerner, and Angelov 1999)

algorithm.

Given the above discussion, I outline the final HLBP algorithm in Figure 6.1. I first

initialize all the messages. Then, I iteratively recompute all the messages using the Monte

Carlo methods described above. In the end, I calculate the messages λ(x) and π(x) for each

node X and use them to estimate the posterior probability distribution over X.
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Algorithm: HLBP

1. Initialize the messages that evidence nodes send to themselves and

their children as indicating messages with fixed values, and initialize

all other messages to be uniform.

2. while (stopping criterion not satisfied)

Recompute all the messages using Monte Carlo

integration methods.

Normalize discrete messages.

Approximate all continuous messages using MGs.

end while

3. Calculate λ(x) and π(x) messages for each variable.

4. Calculate the posterior probability distribution for all the variables

by sampling from the product of λ(x) and π(x) messages.

Figure 6.1: The Hybrid Loopy Belief Propagation (HLBP) algorithm.
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6.2 PRODUCT OF MIXTURES OF GAUSSIANS

One question that remains to be answered in the last section is how to sample from the

product of λX(x)
∏
k 6=j

λ
(t)
Yk

(x)P (x|u). I address the problem in this section. If P (x|u) is

a continuous probability distribution, we can approximate P (x|u) with a MG. Then, the

problem becomes how to compute the product of several MGs. The approximation is often a

reasonable thing to do because we can approximate any continuous probability distribution

reasonably well using MG. Even when such approximation is poor, we can approximate

the product of P (x|u) with an MG using another MG. One example is that the product of

Gaussian distribution and logistic function can be approximated well with another Gaussian

distribution (Murphy 1999).

Suppose we have messages M1,M2, ..., MK , each represented as an MG. Since MG is

closed under multiplication, a straightforward solution is to explicitly carry out the product

and get a single final MG in the end. Sampling from the final MG becomes trivial. However,

this method will easily produce a MG with a huge number of Gaussian components. Assum-

ing each message has N components, the final MG would have NK components. This is not

desirable for an iterative algorithm like HLBP. Another approach to do the multiplication is

to use importance sampling. We can randomly pick one component N(x; µiji
, σiji

) from each

message Mj according their weights, multiply them into a single Gaussian N(x; µ̂∗K , σ̂∗K),

and draw a sample from the final Gaussian. However, we have to assign each sample the

following weight

w =

K∏
i=1

N(x; µiji
, σiji

)

N(x; µ̂∗K , σ̂∗K)
.

The weight comes up because the product of Gaussians is only proportional to another

Gaussian. Sudderth et al. use Gibbs sampling algorithm to address the problem (Sudderth,

Ihler, Freeman, and Willsky 2003). The idea is based on the observation that a sample

from the whole product must be a sample from one component in the final MG, which is

a product of K Gaussians, one from each MG message. If we treat the selection of one

component from each MG message as a random variable, which we call a label, we can use

Gibbs sampling to draw a sample from the joint probability distribution of all the labels
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P (L1, L2, ..., LK). We then use the sample to select the Gaussian components, multiply

them into a single Gaussian, and draw a sample from it. The shortcoming of the Gibbs

sampler is its efficiency: We usually have to carry out several iterations of Gibbs sampling

in order to get one sample.

Here, I propose a more efficient method to draw importance samples from a product of

MGs. The idea originates from the chain rule. I note that the joint probability distribution

of the labels of all the messages P (L1, L2, ..., LK) can be factorized using the chain rule as

follows:

P (L1, L2, ..., LK) = P (L1)
K∏

i=2

P (Li|L1, ..., Li−1) . (6.3)

Therefore, the idea is to sample from the labels sequentially based on the prior or condi-

tional probability distributions. Let wij be the weight for the jth component of ith message

and µij and σij be the component’s parameters. We can sample from the product of mes-

sages M1, ...,MK using the algorithm presented in Figure 6.2. The main idea is to calculate

the conditional probability distributions cumulatively. Due to the Gaussian densities, the

method has to correct its bias introduced during the sampling by assigning the samples

weights. The method only needs to go over the messages once to obtain an importance

sample and is much more efficient than the Gibbs sampler in (Sudderth, Ihler, Freeman,

and Willsky 2003). Empirical results show that the precision obtained by the importance

sampler is comparable to the Gibbs sampler given a reasonable number of samples.

6.3 BELIEF PROPAGATION WITH EVIDENCE

Special care is needed for belief propagation with evidence and deterministic relations. In my

previous discussions, I approximate P (x|u) using MG if P (x|u) is a continuous probability

distribution. It is not the case if P (x|u) is deterministic or if X is observed. I discuss the

following several scenarios separately.

Deterministic relation without evidence: I simply evaluate P (x|u) to get the value x as

a sample. Because I did not take into account the λ messages, I need to correct the bias by

weighting samples. For the message πYi
(x) sent from X to its child Yi, I take x as the sample
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Algorithm: Sample from a product of MGs M1 ×M2 × ...×MK .

1. Randomly pick a component, say j1, form the first message M1

according to its weights w11, ..., w1J1 .

2. Initialize cumulative parameters as follows

µ∗1 ← µ1j1 ; σ∗1 ← σ1j1 .

3. i ← 2; wImportance ← w1j1 .

4. while (i ≤ K)

Compute new parameters for each component of ith message as

follows

σ̂∗ik ← ((σ∗i−1)
−1 + (σik)

−1)−1,

µ̂∗ik ← (µik

σik
+

µ∗i−1

σ∗i−1
)σ̂∗ik.

Compute new weights for ith message with any x

ŵ∗
ik = wikŵ

∗
i−1ji−1

N(x;µ∗i−1,σ∗i−1)N(x;µik,σik)

N(x;µ̂∗ik,σ̂∗ik)
.

Calculate the normalized weights w̄∗
ik.

Randomly pick a component, say ji, from the ith message using

the normalized weights.

Let µ∗i ← µ̂∗iji
; σ∗i ← σ̂∗iji

.

i ← i + 1;

wImportance = wImportance× w̄∗
iji

.

end while

5. Sample from the Gaussian with mean µ∗K and variance σ∗K .

6. Assign the sample weight ŵ∗
KjK

/wImportance.

Figure 6.2: An importance sampler for sampling from a product of MGs.

and assign it weight λX(x)
∏
k 6=i

λ
(t)
Yk

(x). For the message λX(ui) sent from X to its parent Ui,

I take value ui as a sample for Ui and assign it weight λX(x)
∏
k

λ
(t)
Yk

(x)/λ
(t)
X (ui).
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Stochastic relation with evidence: The messages πYj
(x) sent from evidence node X to its

children are always indicating messages with fixed values. The messages λYj
(x) sent from

the children to X have no influence on X, so I need not calculate them. I only need to

update the messages λX(ui), for which I take the value ui as the sample and assign it weight

λX(e)
∏
k

λ
(t)
Yk

(e)/λ
(t)
X (ui), where e is the observed value of X.

Deterministic relation with evidence: This case is the most difficult. To illustrate it more

clearly, I use a simple hybrid Bayesian network with one discrete node A and two continuous

nodes B and C (see Figure 6.3).

Example: ¤

a 0.7

¬a 0.3

B

N(B; 1, 1)

P (C|A,B) a ¬a

C C = B C = 2 ∗B

µ´
¶³

µ´
¶³µ´

¶³

@@R ��	

A B

C

Figure 6.3: A simple hybrid Bayesian network.

Let C be observed at state 2.0. Given the evidence, there are only two possible values for

B: B = 2.0 when A = a, and B = 1.0 when A = ¬a. We need to calculate messages λC(a)

and λC(b). If we follow the routine and sample from A and B first, it is extremely unlikely

for us to hit a feasible sample; Almost all the samples that we get would have weight 0.0.

Clearly we need a better way to do that.

First, let us consider how to calculate the message λC(a) sent from C to A. Suppose we

choose uniform distribution as the importance function, we first randomly pick a state for

A. After the state of A is fixed, we can solve P (C|A,B) to get the state for B and assign
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N(B; 1, 1) as the weight for the sample. Since A’s two states are equally likely, the message

λC(A) would be proportional {N(2; 1, 1), N(1; 1, 1)}.
For the message λC(b) message sent from C to B, since we know that B can only take

two values, we choose a distribution that puts equal probabilities on these two values as the

importance function for sampling B. Not that the state of B will also determine A as follows:

when B = 2, we have A = a; when B = 1, we have A = ¬a. We then assign weight 0.7 to

the sample if B = 2 and 0.3 if B = 1. However, the magic of knowing feasible values for B

does not happen often in practice. Instead, we can first sample for A from πC(A), {0.7, 0.3}.
Given the value of A, we can solve P (C|A,B) for B and assign each sample weight 1.0. So

λC(b) have probabilities proportional to {0.7, 0.3} on two values 2.0 and 1.0.

To generalize, in order to calculate λ messages sent out from a deterministic node with

evidence, we need to sample from all parents except one, and then solve P (x|u) for the

remaining parent. There are several issues that we need to consider here. First, since we

want to use the values of other parents to solve for the chosen parent, we need an equation

solver. We used an implementation of the Newton’s method for solving nonlinear set of

equations (Kelley 2003). However, not all equations are solvable by this equation solver or

any equation solver for that matter. We may want to choose the parent that is easiest to

solve. This can be tested by means of a preprocessing step. In more difficult cases, we have

to resort to users’ help and ask at the model building stage for specifying which parent to

solve or even specify the inverse functions manually. When there are multiple choices, one

heuristic that I find helpful is to choose the continuous parent with the largest variance.

6.4 LAZY LBP

We can see that HLBP involves repeated density estimation and Monte Carlo integration,

which are both computationally intense. Efficiency naturally becomes a concern for the

algorithm. To improve its efficiency, I propose a technique called Lazy LBP, which is also

applicable to other extensions of LBP.

After evidence is introduced in the network, we can pre-propagate the evidence to reduce
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computation in HLBP. First, we can plug in any evidence to the conditional relations of its

children, so we need not calculate the π messages from the evidence to its children any

more. Similarly, we need not calculate the λ messages from its children to the evidence

either. Secondly, evidence may determine the value of its neighbors because of deterministic

relations, in which case we can evaluate the deterministic relations in advance so that we

need not calculate messages between them.

Furthermore, from the definitions of the LBP messages, we immediately have the follow-

ing results.

Theorem 6.1. The λ(x) messages from the children of a node with no evidence as descendant

are always uniform.

Theorem 6.2. A message needs not be updated if the sender of the message has received no

new messages from its neighbors other than the recipient of the message.

Based on Equation 4.6, λ messages should be updated if incoming π messages change.

However, I have the following result.

Theorem 6.3. The λ messages sent from a non-evidence node to its parents remain uniform

before it receives any non-uniform messages from its children, even though there are new π

messages coming from the parents.

Proof. Since there are no non-uniform λ messages coming in, Equation 4.6 simplifies to

λ
(t+1)
X (ui) = α

∫

x,uk:k 6=i

P (x|u)
∏

k 6=i

π
(t)
X (uk)

= α

∫

x,uk:k 6=i

P (x, uk : k 6= i|ui)

= α .

Finally for HLBP, we may be able to calculate some messages exactly. For example,

suppose a discrete node has only discrete parents. We can always calculate the messages

sent from this node to its neighbors exactly. In this case, we should avoid using Monte Carlo

sampling.
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6.5 EXPERIMENTAL RESULTS

I tested the HLBP algorithm on two benchmark hybrid Bayesian networks: emission net-

work (Lauritzen 1992) and its extension, augmented emission network (Lerner, Segal, and

Koller 2001) in Figure 6.4. Note that HLBP is applicable to more general hybrid models,

and I chose these networks only for comparison purpose. To evaluate how well HLBP per-

forms, I discretized the ranges of continuous variables to 50 intervals and then calculated

the Hellinger’s distance (Kokolakis and Nanopoulos 2001) between the results of HLBP and

the exact solutions obtained by a massive amount of computation (likelihood weighting with

100M samples) as the error for HLBP.
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Figure 6.4: Emission network (without dashed nodes) and augmented emission network

(with dashed nodes).

6.5.1 Parameter Selection

HLBP has several tunable parameters. We have the number of samples for estimating mes-

sages (number of message samples) and the number of samples for estimating the integration

(number of integration samples) in Equation 6.1. We also have have the number of Gaussian

mixture components, regularization constant for preventing over fitting, and stopping likeli-
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hood threshold for the EM algorithm for estimating MGs. The most dramatic influence on

precision comes from the number of message samples, shown as in Figure 6.5(a). Counter

intuitively, the number of message integration samples does not have as big impact as we

might think (see Figure 6.5(b) with 1K message samples). The reason, I believe, is that

when we draw a lot of samples for messages, the precision of each sample becomes less crit-

ical. In my experiments, I set the number of message samples to 1, 000 and the number of

message integration samples to 12. It is also important for the EM algorithm to accurately

approximate the messages using MGs. Therefore, the other parameters also play important

roles. I typically set regularization constant to 0.8, likelihood threshold to 0.001, and the

number of Gaussian mixture components to 2.
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Figure 6.5: The influence of (a) the number of message samples and (b) the number of

message integration samples on HLBP on the augmented emission network when observing

CO2Sensor and DustSensor both to be true and Penetrability to be 0.5.

I also compared the performance of two samplers for product of MGs: the Gibbs sam-

pler (Sudderth, Ihler, Freeman, and Willsky 2003) and the importance sampler in Section 6.2.

As we can see from the graph, when the number of message samples is small, Gibbs sam-

pler has slight advantage over the importance sampler. As the number of message samples

increases, the difference becomes negligible. Since the importance sampler is much more

efficient, I use it in all our other experiments.
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6.5.2 Results on Emission Networks

I note that mean and variance alone, focus of prior work in the field, provide only limited

information about the actual posterior probability distributions. Figure 6.6 shows the pos-

terior probability distribution of node DustEmission when observing CO2Emission at −1.6,

Penetrability at 0.5, and WasteType at 1. I also plotted in the same figure the correspond-

ing normal approximation with mean 3.77 and variance 1.74. We can see that the normal

approximation does not reflect the true posterior. While the actual posterior distribution

has a multimodal shape, the normal approximation does not tell us where the mass really

is. In Figure 6.6, I also plotted the estimated posterior probability distribution of the node

DustEmission by HLBP. HLBP seemed able to estimate the shape of the actual distribution

very accurately.
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Figure 6.6: Posterior probability distribution of DustEmission when observing CO2Emission

to be −1.6, Penetrability to be 0.5 and WasteType to be 1 on the emission network.

In Figures 6.7(a) and (b), I plot the average error curves of 50 runs of HLBP and Lazy

HLBP (HLBP enhanced by Lazy LBP) as a function of the propagation length. We can see

that HLBP only needs several steps to converge. Furthermore, HLBP achieves better preci-

sion than its lazy version, but Lazy HLBP is much more efficient than HLBP. Theoretically,

Lazy LBP should not affect the precision of HLBP. The reason for the difference between
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the precision of HLBP and Lazy HLBP is that we use importance sampling to estimate the

messages. Since I use the messages from the last iteration as importance functions, iterations

will help improving the functions. In the case that the messages are calculated exactly, for

example in discrete Bayesian networks, Lazy LBP will improve the efficiency of LBP while

providing the same results.

I also tested the HLBP algorithm on the augmented Emission network (Lerner, Segal, and

Koller 2001) with CO2Sensor and DustSensor both observed to be true and Penetrability to

be 0.5 and report the results in Figures 6.7(c,d). I again observed that not many iterations

are needed for HLBP to converge. In this case, Lazy HLBP provides comparable results

while improving the efficiency of HLBP.
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Figure 6.7: Results of HLBP and Lazy HLBP: (a) error on emission, (b) running time on

emission, (c) error on augmented emission, (d) running time on augmented emission.
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6.6 CONCLUSION

The contribution of this chapter is three-fold. First, I propose the Hybrid Loopy Belief

Propagation (HLBP) algorithm, which extends LBP and NBP to deal with hybrid Bayesian

networks. The algorithm is general enough to deal with linear or nonlinear equations and

arbitrary probability distributions and naturally accommodate the situation where discrete

variables have continuous parents. Another advantage of the algorithm is that it approx-

imates the true posterior probability distributions, unlike most existing approaches which

only produce the first two moments for CLG models. Second, I propose an importance

sampler to sample from a product of MGs, whose accuracy is comparable to the Gibbs sam-

pler in (Sudderth, Ihler, Freeman, and Willsky 2003) given a reasonable number of samples.

Third, I propose a technique called lazy LBP to improve the efficiency of HLBP. Just as

LBP, I anticipate that HLBP will work well for many practical models and can serve as a

promising approximate method for hybrid Bayesian networks. The HLBP algorithm also has

other indirect applications. In the next chapter, I investigate how to use HLBP to calculate

importance functions for importance sampling in hybrid models.
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7.0 EVIDENCE PRE-PROPAGATED IMPORTANCE SAMPLING

ALGORITHM FOR GENERAL HYBRID BAYESIAN NETWORKS

Many importance sampling-based algorithms have been proposed to deal with inference tasks

in discrete Bayesian networks. Importance sampling algorithms, such as likelihood weight-

ing (LW) (Fung and Chang 1989; Shachter and Peot 1989), AIS-BN (Cheng and Druzdzel

2000), Dynamic IS (Moral and Salmeron 2003), and EPIS-BN (Yuan and Druzdzel 2006)

algorithms, have demonstrated their merits in discrete Bayesian networks. Since sampling

does not put any restriction on the representation of the models, we would anticipate that

it should be a natural choice for inference in general hybrid Bayesian networks. However,

not much work has been done in this direction except for CLG models (Gogate and Dechter

2005).

In this chapter, I propose the Evidence Pre-propagated Importance Sampling Algorithm

(HEPIS-BN) to deal with inference in general hybrid Bayesian networks. The main idea is to

use HLBP discussed in the last chapter to estimate an importance function for importance

sampling. I also proposed a novel technique called soft arc reversal to deal with determin-

istic variables with evidence. Given enough time, the algorithm guarantees convergence to

the correct posterior probability distributions, unlike most existing approaches which only

produce the first moments of the posteriors for CLG models.

The remainder of the chapter is structured as follows. In Section 7.1, I discuss a general

representation of hybrid Bayesian networks. In Section 7.2, I propose the Evidence Pre-

propagated Importance Sampling Algorithm for General Hybrid Bayesian Networks (HEPIS-

BN) and discuss how to use HLBP to calculate the importance function. Finally, I present

an some empirical evaluation in Section 7.3.
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7.1 A GENERAL REPRESENTATION OF HYBRID BAYESIAN

NETWORKS

In order not to limit the modelling power of a Bayesian network-based tool, we should make

the representation of hybrid Bayesian networks as general as possible. First, the represen-

tation should not only allow mixtures of discrete and continuous variables, but also allow

arbitrary orderings between them, including discrete variables with continuous parents. Sec-

ond, the representation should allow linear or nonlinear equations and arbitrary probability

distributions. With these goals in mind, I propose the following representation.

A hybrid Bayesian network contains a mixture of discrete and continuous nodes and can

be factorized as a product of hybrid conditional probability tables (HCPTs), one for each

variable conditional on its parents. HCPT is defined as follows:

Definition 7.1. For any node X, its parents PA(X) is divided into two disjoint sets: discrete

parents DPA(X) and continuous parents CPA(X). Then, its hybrid conditional probability

table (HCPT) P (X|PA(X)) is a table indexed by its discrete parents DPA(X) and with each

entry represented as one of the following conditional relations:

1. If X is discrete with no continuous parents, a discrete conditional probability distribution;

2. If X is discrete with continuous parents, a general softmax function dependent on CPA(X)

linearly or nonlinearly (Lerner, Segal, and Koller 2001);

3. If X is continuous and stochastic, a deterministic equation dependent on CPA(X) plus

a noise term having an arbitrary continuous probability distribution with parameters de-

pendent on CPA(X) as well;

4. If X is continuous and deterministic, a deterministic equation dependent on CPA(X).

Following a popular convention, I use discrete variables only as indices. I can easily relax

this assumption and allow discrete variables behave as numerical variables. There is only

one entry in a node’s HCPT if it has no discrete parents. Also, the equation part in the

third representation only shifts the location of the noise term. To simplify my discussion, I

always treat the conditional relations as distributions.
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7.2 EVIDENCE PRE-PROPAGATED IMPORTANCE SAMPLING

ALGORITHM FOR GENERAL HYBRID BAYESIAN NETWORKS

In this section, I propose the Evidence Pre-propagated Importance Sampling algorithm for

General Hybrid Bayesian Networks (HEPIS-BN). As in EPIS-BN, I am interested in making

use of the λ messages of HLBP to calculate an importance function. Since variables are

all discrete in discrete Bayesian networks, I can multiply the λ messages with CPTs to

get the ICPTs. For hybrid Bayesian networks, there are two situations under which the

precomputation can still be done. First, for a discrete variable with only discrete parents,

its HCPT reduces to a CPT, so I can still multiply it with the λ message to get an ICPT.

Second, for a stochastic continuous variable with only discrete parents, each conditional

probability distribution in HCPT has fixed parameters. Therefore, I can first approximate

P (x|u) with an MG and then multiply the λ message into HCPT to get an ICPT. The

approximation is often a reasonable thing to do because I can approximate any continuous

probability distribution reasonably well using an MG. Even when such approximation is

poor, I can approximate the product of P (x|u) with an MG using another MG. For example,

the product of Gaussian distribution and logistic function can be approximated with another

Gaussian distribution (Murphy 1999).

It is a different story for a variable with continuous parents. If the variable is discrete,

we have an undetermined discrete distribution dependent on the continuous parents. For a

continuous variable, we have a continuous probability distribution with parameters depen-

dent on the continuous parents. In both cases, we cannot multiply the λ message until the

continuous parents are instantiated. The solution is to postpone the computation and store

the λ messages together with the HCPTs. During sampling, once a node’s continuous par-

ents are instantiated, we can approximate the product of the node’s conditional probability

distribution with its λ message using an MG and fulfill further sampling.

There is one situation under which the λ messages are useless. As soon as the parents

of a deterministic node with no evidence are instantiated, the node itself is also determined.

I simply evaluate the deterministic relation to get its value. Therefore, importance function

and original distribution are the same for the node. Its λ message can be simply discarded.
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Now, let us discuss the HEPIS-BN algorithm, which boils down to drawing a single

sample. The importance function that we have now is expressed as a set of ICPTs for some

variables and a set of HCPTs and λ(x) messages for the others. The HEPIS-BN algorithm

works as follows. I first order all the nodes in their topological order and initialize the weight

of the current sample to be 1.0. For each node X in the ordering, I draw a sample for it and

adjust the weight according to the following several scenarios.

For a deterministic node with no evidence, as I discussed above, we can simply evaluate

the deterministic relation and get the value for X. There is no need to adjust the weight.

For a stochastic node with no evidence, if its ICPT is already calculated, I find the correct

importance function I(x) in ICPT and draw a sample from it. Otherwise, I can find the

correct conditional probability distribution P (x|u), evaluate its parameters using continuous

parents, and multiply it with the λ message to get the importance function I(x) represented

as an MG. I then sample from I(x) and update the weight as follows:

w = w ∗ P (x|u)

I(x)
. (7.1)

For a stochastic node with evidence, there is no need to sample for it anymore. I simply

take the evidence e as the sample and adjust the weight as follows:

w = w ∗ P (e|u) . (7.2)

We need to pay special attention to deterministic nodes with evidence. This is a difficulty

that is often ignored for importance sampling in discrete Bayesian networks but manifested

in hybrid Bayesian networks. Note that traditional sampling methods sample the networks in

the topological order. However, when deterministic nodes with evidence exist, it is extremely

unlikely to hit a sample that satisfies the deterministic equations. To address the problem,

I propose a technique that I call soft arc reversal: I draw samples for all the parents except

one and solve the remaining variable based on the other parents’ values. The name is due to

the fact that the technique is related to performing a physical arc reversal on the network.

I illustrate the idea using a concrete example. Suppose we have a small hybrid Bayesian

network with three continuous variables A, B, and C as in Figure 7.1. C is a deterministic

node dependent on A and B. Let C be observed at 4.0. If we use a conventional importance
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sampling technique to deal with this network, we would sample A and B first and accept

the evidence of C as a sample. However, such a sample would almost certainly have zero

probability, because it is extremely unlikely to get values for A and B that satisfy the

deterministic equation P (C|A,B). We have to break the routine to avoid this problem. I

note that once I get the value for either A or B, the value of the other variable is already

determined. For example, suppose we get sample 2.0 for A. Then B can only take value 1.0.

Therefore, instead of sampling for B, we should simply take 1.0 as the sample.

Example: ¤

P (C|A,B)

C = A + 2 ∗B

µ´
¶³
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¶³µ´
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@@R ��	
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C

Figure 7.1: A simple hybrid Bayesian network.

We need to consider several issues in order to decide which of the parents to choose to

be the new child. First, since we want to use the values of the other parents to solve for the

chosen one, we need an equation solver. In my implementation, I use the Newton’s method

for solving nonlinear set of equations (Kelley 2003). However, not all equations are solvable

by this equation solver or any equation solver for that matter. We may want to choose

the parent that is easiest to solve. This can be tested using a preprocessing step. In more

difficult cases, we have to resort to modeler’s help and ask for specifying which parent to

solve or even specify the inverse functions manually. When there are multiple choices, one

heuristic that I find useful is to choose the parent with the largest variance. There are also

circumstances under which we need to resort to upper level arc reversal if all the parents are

deterministic as well.

We now know how to draw a single sample. What remains is to repeat the process

until we get enough samples. I outline the HEPIS-BN algorithm in Figure 7.2. Since we
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are only interested in the λ(x) messages, many optimizations can be done to improve the

efficiency of the HEPIS algorithm. First, the Lazy LBP technique proposed in Chapter 6 is

also applicable here. The idea is to avoid redundant computations. Furthermore, for those

nodes that are not ancestors of evidence, since they always have uniform λ messages, we do

not need to calculate the π messages.

7.3 EXPERIMENTAL RESULTS

I tested the HEPIS-BN algorithm on three hybrid Bayesian networks: emission network and

augmented emission network in Figure 6.4, and augmented crop network (Lauritzen 1992;

Lerner, Segal, and Koller 2001) in Figure 7.3. For the emission networks, I use the same

parameterizations as in (Lerner, Segal, and Koller 2001). For the augmented crop network,

I added a deterministic node TotalPrice to the original crop network and parameterized it

as in Table 7.1. The HEPIS-BN algorithm is applicable to more general hybrid models; I

choose the networks only for comparison purpose. To evaluate how well HEPIS-BN per-

forms, I discretized the ranges of continuous variables to 50 intervals and then calculated

the Hellinger’s distance (Kokolakis and Nanopoulos 2001) between the results of HEPIS-BN

and the exact solutions obtained by a massive amount of computation (LW with 100M sam-

ples) as the error for HEPIS-BN. I also tried to compare my algorithm against another Monte

Carlo method, the Gibbs sampling implemented in BUGS (Gilks, Thomas, and Spiegelhalter

1994), but encountered convergence difficulties, similar to those reported in (Lerner, Segal,

and Koller 2001), so I compared my algorithm mainly against LW.

7.3.1 Parameter Selection

Since we have several tunable parameters in the HEPIS-BN algorithm, I did some experi-

ments to choose their values. Just as in EPIS-BN, I observe that only a few steps of HLBP

are necessary for HEPIS-BN to achieve a good performance, shown as in Figure 7.4(a). The

accuracy of the message estimation is crucial to the performance of the HLBP algorithm.
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Algorithm: HEPIS-BN

Input: Hybrid Bayesian network B, a set of evidence variables E, and a set

of non-evidence variables X;

Output: The marginal distributions of non-evidence variables.

1. Order the nodes according to their topological order.

2. Initialize parameters m (number of samples) and d (propagation length).

3. Initialize the messages that all evidence nodes send to themselves to be

indicating messages with fixed values and all other messages to be uniform.

4. for i ← 1 to d do

For all the nodes, recompute their outgoing messages when necessary

based on incoming messages from last iteration using Monte Carlo inte-

gration techniques.

end for

5. Calculate λ(x) message for every node.

6. Precompute the ICPTs for some of the nodes.

7. for i ← 1 to m do

wScore ← 1.0.

for each Xj in X

Draw sample for Xj and adjust wScore accordingly.

end for

Add wScore to the corresponding entry of each score table.

end for

8. Normalize each score table, output the estimated beliefs for each node.

Figure 7.2: The Evidence Pre-propagated Importance Sampling Algorithm for General Hy-

brid Bayesian Networks (HEPIS-BN).

However, I found that typically I can use much more conservative parameters for HEPIS-BN.

For example, we typically do not need many message samples for HEPIS-BN, shown as in
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Figure 7.3: The augmented crop network.

Variable Distribution

Subsidize (S) (0.3,0.7)

Crop (C) N(C; 5, 1)

Price (P) S N(P; 10-C, 1)

¬S N(P; 20-C, 1)

TaxRate (T) N(T; 0.5, 0.1)

TotalPrice (TP) P*(1+T)

Buy (B) (α= exp(TP−14.0)
1+exp(TP−14.0)

, 1-α)

Table 7.1: Parameterizations of the augmented crop network.

Figure 7.4(b). I also found that the Lazy LBP technique is more beneficial for HEPIS-BN

than for HLBP itself. The reason is maybe that I apply HLBP to calculate an importance

function. There is no need to over fit the posterior probability distributions. In my following

experiments, I set propagation length to 4, number of message samples to 250, and num-

ber of integration samples to 12. For the EM algorithm in HLBP, I set number of mixture

components to 2, regularization constant to 10.0, and likelihood precision threshold to be
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Figure 7.4: (a) The influence of the propagation length on HEPIS-BN, (b) The influence of

the number of message samples on HEPIS-BN.

7.3.2 Results on the Emission Network

I first tested my algorithm on the emission network. I observed CO2Emission at −2.5, Pen-

etrability at 0.5 and WasteType at 1. I ran LW and HEPIS-BN for the same number of

samples (4K) and plot out the estimated posterior probability distributions of node DustE-

mission in Figure 7.5. I note that HEPIS-BN and LW were both able to correctly estimate the

shape of the exact posterior probability distribution, with HEPIS-BN demonstrating better

performance than LW. Again, normal approximation only provides a very rough estimation

of the actual posterior distribution.

I also plot the average error curves of 50 runs of both algorithms with 40K samples in

Figure 7.6(a). To get a better idea how these algorithms perform, I also plot the results of

LW on emission network with no evidence (this is the ideal case from the point of view of

the LW algorithm). Although results thus obtained are not strictly lower bounds, they can

at least serve as an indication of the limiting precision of importance sampling algorithms on

the network. I observe that HEPIS has a precision even better than the ideal case. However,

since HEPIS-BN is more complicated than LW, it requires more running time, roughly twice

as much as LW on the emission network in my implementation.
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Figure 7.5: The posterior probability distributions of DustEmission estimated by LW and

HEPIS-BN, together with the normal approximation when observing CO2Emission to be

−1.6, Penetrability to be 0.5 and WasteType to be 1 on the emission network.
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Figure 7.6: Error curves of LW and HEPIS-BN on the emission network with evidence: (a)

CO2Emission = −1.6, Penetrability = 0.5 and WasteType = 1, (b) CO2Emission = −0.1,

Penetrability = 0.5 and WasteType = 1. Ideal case: LW on the emission network with no

evidence.
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I also used a more unlikely evidence with CO2Emission at −0.1, Penetrability at 0.5 and

WasteType at 1 to test the robustness of LW and HEPIS-BN. It is more unlikely because

when I set Penetrability to 0.5 and WasteType to 1, the posterior probability distribution

of CO2Emission has a mean of −1.55. The error curves are shown in Figure 7.6(b). We can

see that LW clearly performed worse in this case, but HEPIS-BN seemed quite robust to the

likelihood of the evidence and maintained its precision. To get a more clear understanding,

I gradually changed the observed value of CO2Emission and ran both algorithms on these

cases. The results are plotted in Figure 7.7. I observe that LW kept deteriorating in face of

unlikely evidence, while HEPIS-BN’s performance was more stable.
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Figure 7.7: The influence of the observed value of CO2Emission on LW and HEPIS-BN when

observing Penetrability to be 0.5 and WasteType to be 1 on the emission network.

The emission network is only a small network. I anticipate that the advantage of HEPIS-

BN will be more evident in real models, which are typically much more complex. To test

the hypothesis, I transformed the emission network into a dynamic model with three slices

and a total of 27 variables, and observed CO2Emission at −0.1 and Penetrability at 0.5 in

the first and third slice of the model. The results of the algorithms are shown in Figure 7.8.

While LW showed a much worse precision, the precision of HEPIS-BN was still close the

that of the ideal case. Therefore, although HEPIS-BN typically requires more running time

per sample, it will outperform LW on complex models.
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Figure 7.8: Error curves of LW and HEPIS-BN on the dynamic emission network.

7.3.3 Results on Other Networks

I also plotted the convergence results on the augmented emission network with CO2Sensor

and DustSensor observed to be true in Figure 7.9(a), the same evidence as in (Lerner, Segal,

and Koller 2001). Again, I observe that HEPIS-BN has better performance than LW.

I discussed how to deal with deterministic relations in importance sampling. To verify

that the proposed technique works properly, I revised the crop network and added a nonlinear

deterministic node to it as in Figure 7.3(b). Suppose we observe TotalPrice to be 18.0. Note

that the classic LW does not work for the model. I enhanced it with the soft arc reversal

technique that I discussed in Section 7.2. I ran the same experiment as in last subsection,

and plotted out the error curves in Figure 7.9(b). I again observe that HEPIS-BN performed

better than LW on this network and its precision was comparable to the ideal case.
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Figure 7.9: Error curves of LW and HEPIS-BN on (a) the augmented emission network when

CO2Sensor and DustSensor are observed to be true, and (b) the augmented crop network

when totalprice is observed to be 18.0.

7.4 CONCLUSION

In this chapter, I proposed a new algorithm called Evidence Pre-propagated Importance Sam-

pling Algorithm for General Hybrid Bayesian Hetworks (HEPIS-BN). I tested the algorithm

on three small benchmark hybrid models and observed that HEPIS-BN performed much

better than LW. More importantly, I observed that HEPIS-BN was stable in face of unlikely

evidence. This property makes HEPIS-BN a promising approach for addressing inference

tasks in much larger real models.

In summary, the contribution of the chapter is three-fold. First, I proposed a general

representation for hybrid Bayesian networks that allows linear or nonlinear equations and

arbitrary probability distributions and naturally accommodates the situation where discrete

variables have continuous parents. Second, I proposed the novel soft arc reversal technique

that deals with deterministic nodes with evidence. Finally, based on all the preceding tech-

niques, I proposed the HEPIS-BN algorithm that is able to deal with general hybrid Bayesian

networks. The algorithm guarantees to converge to the correct posterior distributions given

enough time, unlike most existing methods which only produce the first two moments for
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CLG models. I believe the proposed techniques extends the scope of problems to which

Bayesian networks are applicable.
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8.0 CONCLUSIONS

8.1 SUMMARY OF CONTRIBUTIONS

This dissertation contains both theoretical and algorithmic contributions. Here is a brief

summary.

I developed a theoretical understanding of the properties of importance sampling in the

context of Bayesian networks. It is well known that the accuracy of importance sampling

is sensitive to the quality of the importance function. Given that theoretically the optimal

importance function is the actual posterior distribution, the one being sought, we normally

only have access to its approximations. A good importance function should satisfy two

requirements. First, it should have a shape that is similar to the target density. Second, the

importance function should possess thicker tails than the target density. I developed some

theoretical insights into the importance of the second property in the context of Bayesian

networks. My results provide a solid justification for several successful heuristics used in

importance sampling.

There are many importance sampling-based algorithms for Bayesian networks. Essen-

tially, they only differ in the representation of importance functions and the methods used to

calculate the functions. Typically, we represent the importance function as a factorization,

i.e., the product of a sequence of conditional probability tables (CPTs). Given diagnostic

evidence, additional dependence relations are introduced among the variables. Consequently

we cannot use the factorization of the original network to represent the optimal importance

function any more. I first derive the exact form for the CPTs of the optimal importance

function. Since calculating the optimal importance function is practically equivalent to

exact inference in the network, we usually only use its approximation. I review several ex-
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isting approximation strategies and point out their limitations. After a simple analysis of

the influence of evidence in Bayesian networks, I propose an approximation strategy that

tries to accommodate the most important additional dependence relations introduced by the

evidence.

I proposed the Evidence Pre-propagated Importance Sampling Algorithm for Bayesian

Networks (EPIS-BN), which applies the Loopy Belief Propagation algorithm to calculate

an approximation of the optimal importance function and uses the ε-cutoff heuristic to cut

off smaller probabilities by some higher thresholds. The resulting algorithm is elegant in the

sense of focusing clearly on precomputing the importance function without a costly learning

stage. My experimental results show that the EPIS-BN algorithm achieved a considerable

improvement over the AIS-BN algorithm, especially in the cases that were difficult for the

latter. Experimental results also showed that the improvement came mainly from LBP.

I proposed the Hybrid Loopy Belief Propagation (HLBP) algorithm, which extends Loopy

Belief Propagation (LBP) and Nonparametric Belief Propagation (NBP) to deal with hy-

brid Bayesian networks. The algorithm is general enough to deal with linear or nonlinear

equations and arbitrary probability distributions and naturally accommodates the situation

where discrete variables have continuous parents. It can also accurately estimate the actual

shape of the posterior probability distributions. Furthmore, I also proposed a new impor-

tance sampler for sampling from a product of mixtures of Gaussians. Finally, I proposed

a technique called lazy LBP that significantly improves the efficiency of HLBP. The idea is

also applicable to LBP and its other extensions. Similarly to LBP, I anticipate that HLBP

will work well for many practical models and can serve as a promising approximate method

for general hybrid Bayesian networks.

I proposed the Evidence Pre-propagated Importance Sampling Algorithm for General Hy-

brid Bayesian Networks (HEPIS-BN), which uses HLBP to calculate an importance function.

I tested the algorithm on three small benchmark hybrid models and typically observed that

HEPIS-BN performed much better than LW. More importantly, I observed that HEPIS-BN

was stable in face of unlikely evidence. This property makes HEPIS-BN a promising approach

for addressing inference tasks in much larger real models. There are several advantages of the

new algorithm. First, the algorithm is general enough to deal with hybrid Bayesian networks
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representing linear or nonlinear equations and arbitrary probability distributions. Second,

the algorithm provides the guarantee to converge to the correct posterior distributions given

enough computational resources, unlike most existing methods which only produce the first

two moments for CLG models. Third, the algorithm naturally accommodates the situation

where discrete variables have continuous parents.

8.2 FUTURE WORK

It is my hope that this dissertation convinces the scientific community that importance

sampling-based algorithms are useful when they face extremely complex models or hybrid

models with arbitrary uncertain relations. I now outline some open research directions that

may lead to fruitful research.

Given that the desirability of heavy tails for importance functions of importance sam-

pling, it would be desirable to devise more informed methods to ensure this property. Typi-

cally, existing heuristics for heavy tails are local methods, i.e., they often make adjustments

to the importance functions locally without understanding their global behavior. Heuristics

that are aware of global structures and modify the importance functions in a more systematic

way would certainly lead to better algorithms.

I proposed a suite of importance sampling-based algorithms for (hybrid) Bayesian net-

works in this dissertation. The common idea of these algorithms is to pre-propagate evidence

in order to compute better importance functions. On the top of them, it is actually a very

general framework. Essentially, we can formulate the calculation of importance function as

another approximate inference problem. Since the goal is to get good importance functions

for importance sampling, we can apply any efficient approximate algorithms for this purpose.

I have shown that LBP is a good method, but other approaches may work better when LBP

does not.

Also, my analysis of the representation of importance function has also indication for

future research. Learning-based importance sampling algorithms were useful for inference in

Bayesian networks. However, their performance is also restricted by the quality of the repre-
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sentation of importance function. Better representations have theoretically more capability

to mimic the actual posterior distributions. Previous approaches typically did not take into

account this factor. My analysis of the representation of importance function may lead to

better learning-based importance sampling algorithms.

Finally, I propose representational and computational solutions to inference problems in

general hybrid Bayesian networks. These algorithms are general enough to deal with hybrid

Bayesian networks representing equations and arbitrary probability distributions. Therefore,

they provide much more modelling power and can help build models to represent decision

problems in more general settings, such as financial or engineering domains.

8.3 CLOSING REMARKS

I believe that the algorithms described in this dissertation significantly extends the efficiency,

applicability, and scalability of approximate methods for Bayesian networks. The ultimate

goal of this research is to help users to solve difficult reasoning problems in complex decision

problems in the most general settings.
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