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Piezoelectric resonators are used in electronic devices and electrical circuits as a frequency 

source.  The most commonly used material for the piezoelectric resonators is quartz.  The quartz 

resonator has a tunability of between 10 ppm (0.001%) and 100 ppm (0.01%) of the nominal 

frequency of operation.  This work shows that greater tunability can be achieved using 

resonators made using piezoelectric materials other than quartz and a shunt-tuning technique.  

The tuning afforded by using lead zirconate titanate as the piezoelectric material in a cantilever 

type resonator is explored in detail from an analytical and experimental standpoint.  It is shown 

that this tuning can be up to over 10,000 ppm (1%) of the nominal operational frequency in the 

configuration looked at, which was not optimized to maximize the tuning range.  Questions of 

implementation of the resonator in a commonly used resonator circuit were also answered.  The 

resonator was experimentally shown to be operable in a modified Pierce circuit with a tuning 

range that was analytically predicted.   
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1.0 INTRODUCTION 

 

Time has dictated the movement and behavior of humans for ages.  From early times, the 

seasons have dictated when crops can be grown.  Societies that depended on venison for 

sustenance had to follow the seasonal migrations of their prey.  The advent of more modern 

farming practices has freed humans somewhat from the need to know when the seasons are 

about to change.  However, time still rules the way in which societies are run.  The passage of 

time has been divided into ever smaller pieces: years, months, weeks, days, hours, seconds, and 

now ever smaller fractions of seconds.  Modern day living has been the driving force behind 

this division.   

 

Time keeping itself has had to take major strides to keep pace with the needs of society.  The 

sundial was once the best clock available.  Water and sand clocks followed which used the 

potential energy of water or sand to fill or empty containers.  Markings on the containers were 

used to keep track of the passage of time.  More accurate measures of time became available 

with the advent of mechanical clocks that used some form of stored mechanical energy to drive 

hands around a clock face.  Ingenious mechanisms made this type of clock the most accurate 

time keeping device into the early 20th Century. 

 

In the 1920s, quartz crystal oscillators and clocks were introduced (Gerber, 1985).  This was the 

dawn of a new era in clock accuracies.  Quartz is the material used in the majority of resonators 
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that are found in devices today.  Through the 20th Century higher and higher frequencies and 

greater clock accuracies have been achieved using precision frequency devices.  Current 

precision frequency devices have a frequency source that uses quartz at the lower end of the 

precision spectrum and atomic vibrations at the higher end e.g. the second is defined as 

9,192,631,770 periods of the radiation associated with the transition between the two hyperfine 

levels of the ground state of the Cesium atom, Cs133.  

 

This internationally accepted definition of the second is used in the systems of units that are the 

basis of the physical sciences.  Within the framework defined by the base units, scientific data 

can be recorded, compared and reproduced since the definitions of all the units in the system 

are known. 

 

The growth of the electronics industry worldwide has produced a ready market for accurate 

and cheap frequency sources.  These frequency sources appear in such diverse places as engine 

management systems, wristwatches, cell phones, toasters, radios, cameras and satellites.  The 

desired characteristics of the resonators differ from application to application.  For example, an 

extremely stable frequency source is needed in satellites such as those used in the Global 

Positioning System (GPS), while secure radio communications may need a frequency source 

that can rapidly and accurately switch between various frequencies.   

 

1.1 RESONATORS 

Resonators can either be a mechanical or an electrical device.  In the mechanical devices, a 

mechanical strain is produced in the material and the material properties define the frequency 
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of oscillation.  To be useful in an electronic device, the mechanical strain has to be sensed, 

controlled and converted into an electrical signal.   

 

Mechanical resonators in electronic devices are made in whole or in part of ferroelectric or 

ferroic materials.  Ferroics have a material structure whose orientation can be changed either by 

the application of a magnetic or an electric field or an elastic deformation or some combination 

of these fields and deformations (Rosen, 1992).  In piezoelectric materials this structure or 

domain change is what allows the coupling of mechanical strain and electrical signal through 

the piezoelectric effect.  Piezoelectricity shall be covered in greater detail in the next chapter. 

 

Mechanical resonators for electronic devices are well understood and have been the subject of 

research for almost a century.  A case in point is the ubiquitous quartz resonator that has been 

the subject of study for about 80 years.  There is little that is not known about the physical and 

electrical characteristics of the quartz resonator.  For example, the effects of temperature on the 

frequency of operation of quartz have been characterized and zero-temperature coefficient 

quartz resonators developed.   

 

As mentioned previously, electrical devices are the second type of resonator.  Electrical 

resonators do not have to transform mechanical energy to electrical energy.  This is an 

advantage since there are always energy losses when the energy is transformed from 

mechanical to electrical energy and back again.  These energy losses are further compounded by 

the losses inherent to the devices; through damping found in mechanical components and the 

resistance of electrical components.   
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Current electronics need resonators that operate at higher frequencies.  This need has developed 

concurrently with the shrinking size of electronic devices.  The physical size of both the 

mechanical and electrical resonators is dictated by the frequency of oscillation and the 

properties of the material utilized in the resonator.  A resonator small enough to fit on a chip 

would simplify manufacturing of devices as well as help in further reducing product size. 

 

One of the current focal points of mechanical resonator research has been miniaturization of 

resonators.  This research has been driven by the needs of the electronics industry and the 

burgeoning micro and nano-technology fields.  The ultimate goal of this growing field of 

research is to develop miniature resonators that can be built in conjunction with the electronics 

using micromachining techniques.  Miniature quartz resonators can be built, but quartz 

production steps are not compatible with the micromachining steps used in making electronics.  

Thus materials other than quartz will have to be used. 

 

Using materials other than quartz introduces several issues that need to be addressed before 

these materials can be used in electronic devices.  The frequency range of the resonators made 

from these materials need to be determined.  In addition, the frequency stability, quality factor, 

temperature stability, brittleness, weight, price, availability, etc. of the materials will all need to 

be considered before commercial acceptance of resonators made from substitute materials is 

achieved.   

1.1.1 Resonator Techniques 

Mechanical resonators for electronic devices can be made using piezoelectric materials.  As the 

piezoelectric material is strained this produces changes in the electric charges on the surface of 
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the material.  If electrodes are deposited on the surfaces where these charges accumulate, the 

strain can be measured or sensed from the charge accumulated.  Since applying a charge to the 

surface of the piezoelectric can produce a mechanical strain, the electrodes can also be used to 

actuate strains in the material.  The sensor and actuator are used to induce mechanical vibration 

of the piezoelectric material at a particular frequency of oscillation.  

 

Tuning
Voltage

Output
Frequency

Amplifier

Crystal
Resonator

 
Figure 1.  Simplified quartz crystal circuit diagram 

A simplified quartz crystal oscillator is shown in Figure 1 (Vig, 2001).  The electrode surfaces 

can be seen on either side of the crystal resonator.  In quartz crystal oscillators the crystal 

appears in the feedback loop of the amplifier.  Electrical circuit equivalents for the crystal 

resonator shown have been developed.  One such equivalent circuit is the Butterworth-

VanDyke equivalent circuit in Figure 2.   
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Figure 2.  Butterworth-VanDyke equivalent circuit for crystal resonators 

The equivalent circuit is a second order system  with the values of the circuit elements obtained 

from the dimensions and characteristics of the crystal.  These dimensions and characteristics 

determine the resonance frequency of the oscillator. 

 

The frequency of oscillation can be changed by biasing the capacitor in Figure 1 with a voltage.  

The typical tuning range of a quartz crystal oscillator is less than ten thousandths of the 

operating frequency, i.e. less than 0.01% of the operating frequency.   
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Figure 3.  Simplified piezoelectric resonator circuit 
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In Figure 3 the piezoelectric resonator circuit used in this research is shown.  The differences 

between the quartz crystal circuit shown and the piezoelectric resonator circuit are that there 

are extra electrodes added to the piezoelectric, a ground electrode and an electrode that is used 

for tuning the frequency of resonator.  The shunt tuning technique either leaves the tuning 

circuit contacts open, shorts the electrode to ground or puts a capacitor between the electrode 

and ground.  Depending on the piezoelectric material used, this tuning technique gives a 

theoretical tuning range over 1000 times larger than that afforded by the quartz crystal tuning 

technique. 

 

1.2 OBJECTIVES OF THE WORK 

This work investigates the suitability of one of the alternative piezoelectric materials (other than 

quartz) for making miniature, tunable mechanical resonators.  The piezoelectric material to be 

investigated is lead zirconate titanate (PZT).  This work will focus on the frequency of operation 

of the resonators, the amount of tuning achievable with the shunt tuning technique, and the 

feedback technique and amplifier gain required for resonator operation.   

 

The frequency of vibration of the resonator is dependent on the type of vibration (bending, 

shear, etc) as well as the mode number of the vibration.  The frequencies are also determined by 

the material properties of the resonator and the dimensions of the resonator.  In general, the 

smaller the resonator the higher the frequencies of vibration will be.  Miniaturization of the 

mechanical resonator, consequently, allows a higher frequency resonator to be made.  Hence 

high frequency, miniature, tunable mechanical resonators (with possible on chip applications) 

are realizable.   
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An analytical model was developed to identify the frequencies of vibration of bending 

resonators.  The frequencies of vibration predicted by the bending type model shall be verified 

using cantilever beam bending type resonators.   

 

The effectiveness of the shunt tuning technique to be used is dependent on the type of vibration.  

The electrode placement has to be such that the mechanical vibration that is generated can be 

sensed.  Piezoelectric materials have different degrees of electromechanical coupling to different 

types of mechanical strains.  For some vibration, e.g. shear and longitudinal, the 

electromechanical coupling and ability to electrode the piezoelectric material limits tuning.  

Further, the size and placement of this electrode on the resonator surface determines the 

amount of tuning that can be achieved.   

 

This work shall investigate applying the tuning technique to bending-type resonators.  An 

analytical model was developed that predicts the tuning range available for a bending type 

resonator operating at different frequencies of vibration.  Experimental verification was made 

with cantilever beam bending type resonators.  

 

The gain that needs to be developed in the feedback loop, shown in Figure 1 and Figure 3, is a 

function of the voltage required to cause the vibration and the sensor voltage obtained.  The 

placement and size of the actuator electrode will determine the actuator authority, i.e. how 

much voltage needs to be applied to the electrode to obtain the desired deflection.  The voltage 

generated by the sensor is in turn a function of the sensor placement and size.  Consequently, 

how the actuator and sensor electrode patterns and size affects this gain was determined with a 
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view to reducing the gain required for resonator operation (The ability to physically realize the 

system is a benefit of minimizing the feedback gain).   

 

As discussed above, Quartz crystal resonator technology is well established.  Quartz is also a 

piezoelectric material.  Consequently, some of the circuits that are used in quartz crystal 

resonators were looked at with a view to adapting the circuit architecture to the, tunable, 

mechanical resonator.  To achieve this the more well-known circuit types, Pierce, Colpitts, 

Clapp, etc., were studied and similarities and differences with the current amplifier setup used 

investigated. 
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2.0 PIEZOELECTRICITY 

2.1 THE PIEZOELECTRIC EFFECT 

The piezoelectric effect is exhibited in materials (crystal or non-crystalline) that do not have a 

center of symmetry.  When such a piezoelectric material is mechanically loaded, a change 

occurs in the polarization of the material, i.e. an electrical charge is generated on opposite faces 

of the material.  This phenomenon is called the direct piezoelectric effect.  The converse 

piezoelectric effect occurs when an electrical charge applied to the material causes a mechanical 

stress in the material (Gautschi, 2002). 

 

2.2 PIEZOELECTRIC MATERIALS 

The materials that exhibit the piezoelectric effect can be catalogued into two broad categories 

based on their structure.  These two categories are those piezoelectric materials that are 

crystalline and the materials that are non-crystalline. 

2.2.1 Crystalline Piezoelectric Materials 

2.2.1.1 Quartz. Quartz is the most commonly used piezoelectric material.  As such, other 

materials and the properties that they have are customarily compared to those of quartz.   

 

The form of Quartz (SiO2) that is used for its piezoelectric properties has the α -quartz 

structure.  In this form it consists of repeated tetrahedra of SiO4.  Each of the corners of the 
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tetrahedron is shared with another tetrahedron.  α -quartz can be either natural or artificial.  

The artificial or cultured -quartz can be grown from nutrient (a solution of dissolved natural 

crystals) in an autoclave using seed crystals as the catalyst for crystallization (Gerber, 1985).  In 

this manner, large single crystal quartz can be grown from lots of small natural crystals.  Defects 

in the material are minimized by careful control of the autoclave temperature and temperature 

gradient, careful selection of the material for the nutrient, ensuring slow growth of the crystals 

and inclusion of additives such as Lithium to the nutrient. 

α

 

Z

X
Y

 
Figure 4.  Crystal with crystallographic axes indicated 

In quartz, it has been shown that different cuts exhibit different material property stabilities, 

especially in relation to changes in temperature.  The cuts are defined based on the 

crystallographic axes.  An example crystal with crystallographic axes is shown in Figure 4.  The 

quartz cuts can be either singly or doubly rotated cuts.  In the singly rotated cuts the crystal is 

rotated about only one of the three crystallographic axes before it is cut.  There are rotations 

about two axes of the quartz before slicing in the doubly rotated cut crystal.  The cuts are given 

by rotations about the crystallographic X and Z axes with the angles given by θ  and φ  

respectively.   
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The first cut found to have a zero temperature coefficient is the AT cut and the rotations about 

the axes are  and oo 33.3225.32 ≤θ≤ 0≈φ .  The term zero temperature coefficient refers to the 

change in the frequency of vibration with respect to temperature at a specified temperature 

(usually room temperature).  Some other quartz crystal zero temperature coefficient cuts are the 

SC cut (  and ), the BT cut (  and ) and the RT cut 

( , ).  Other common zero temperature coefficient cuts are the FC cut ( , 

), IT cut ( , ), and the SC cut ( , ).  The LC cut 

( , ) is a linear temperature coefficient cut and is used in crystal thermometers 

(Mason, 1977; Vig, 2001). 

oo 33.3225.32 ≤θ≤ o0.22=φ o20.49=θ 0≈φ

o50.34−=θ 0≈φ o15=θ

o33.34=φ o10.19=θ o08.34=φ o93.21=θ o93.33=φ

o17.11=θ o39.9=φ

 

The density of Quartz is 2649 kg/m3 and the crystal melts at 1710 C.  Compressive strength has 

been measured in the range between 2 and 3 GPa.  Tensile strength is much lower, around 120 

MPa (Gautschi, 2002).  Quartz is a member of the trigonal class 32 and has a piezoelectric strain 

matrix that is populated as below. 

o

⎥
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⎡
−−

−
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000000
20000
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1114

141111

dd
ddd

d    (2.2- 1) 

In the piezoelectric strain matrix, the first three rows correspond to the crystallographic axes, X, 

Y and Z respectively.  The first three columns are extensional strains in the three axis directions, 

,  and , and the last three columns of the strain matrix are the three shear strains, Xε Yε Zε YZε , 

 and , respecctively.  The constants dZXε XYε 11 and d14 are  and  

respectively, where C is charge in Coulombs and N is force in Newtons.  The temperature 

121030.2 −× 1121067.0 −−× CN
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coefficients for the piezoelectric constants d11 and d14 of α -quartz are and 

, where K is temperature change in Kelvin. 

141015.2 −−×− K

14109.12 −−× K

 

2.2.1.2 Rochelle Salt. The work done in 1880 by Pierre and Paul-Jacques Curie on 

crystals, including Rochelle salt, identified the piezoelectric phenomenon.  Single crystals of 

Rochelle salt (NaKC4H406• 4H20) have high piezoelectric sensitivity and were used in the crystal 

pickups of phonographs (Gautschi, 2002).  The Curie temperature of Rochelle salt is 23 C.  The 

Curie temperature is the temperature above which a ferroelectric substance loses its 

ferroelectricity.  Rochelle salt easily dehydrates in vacuum or dry air (Kingery, 1987). 

o

 

2.2.1.3 Tourmaline. Tourmaline, (Na,Ca)(Mg,Fe)3B3Al6Si6(O,OH,F)31, has high 

mechanical strength and, like quartz, is unaffected by most alkali and acids.  It has a density of 

3100 kg/m3.  Like quartz, tourmaline is a member of the trigonal system, though classified as 

3m.  The piezoelectric matrix for the 3m class is, 

⎥
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20000
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152222
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ddd
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dd
d    (2.2- 2) 

The constants d15, d22, d31 and d33 are  and  

respectively.   

121212 1034.0,1033.0,1063.3 −−− ××−× 1121083.1 −−× CN

 

The piezoelectric constant, d33, varies less than two percent over a temperature range from 

 to C.  Tourmaline also does not undergo a change of phase below a temperature of 

C.  However, the crystal is highly pyroelectric and, in its natural form, is brittle.  Natural 

o192− o19

o900
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sources of tourmaline do not yield the necessary quantities and quality of crystal for commercial 

utilization.  Another disadvantage of tourmaline is that artificially grown crystals do not reach 

usable size.  These properties make tourmaline expensive to work with since selection, working 

and finishing the crystals is difficult. 

 

In comparison to quartz, tourmaline has a lower longitudinal thermal expansion coefficient 

over a temperature of  to C.  In the matrix of elastic moduli, the tourmaline co0 o320 11 

coefficient, which relates stress and extensional strain in the crystallographic X direction, is 

three times larger than the quartz c11 coefficient. 

 

2.2.1.4 Gallium Orthophosphate. Crystalline gallium orthophosphate or gallium phosphate, 

GaPO4, due to crystallographic symmetry has no pyroelectric effect and can be used in high 

temperature applications.  The crystal structure is similar to that of α -quartz, i.e. trigonal class 

32.  The piezoelectric strain matrix of gallium phosphate is, therefore, given by Equation (2.2-1).  

Gallium phosphate has a material density of 3570 kg/m3, which is slightly denser than 

tourmaline.  The quartz homeotype GaPO4 is grown hydrothermally from acidic solutions. 

 

The piezoelectric strain matrix coefficients d11 and d14 are  and  

respectively which are higher than the quartz coefficients which are  and 

 respectively (Gautschi, 2002).  No significant changes are observed in the 

coefficients d

12105.4 −× 112109.1 −−× CN

121030.2 −×

1121067.0 −−× CN

11 and d14 to a temperature of C and the deviation is within a few percentage 

points of the value at room temperature at C.  The structure of the low temperature crystal 

is stable to C.  Another benefit of the crystal is that due to the positive temperature 

o500

o700

o950

 14



 

coefficients of the elastic constants c66 and c14, temperature compensated bulk and surface wave 

devices can be constructed from cuts of gallium phosphate.  Bending strength of Gallium 

phosphate has been found to be similar to that of quartz. 

 

2.2.1.5 The CGG Group. The CGG (Ca3Ga2Ge4O14) group is a group that contains more 

than 40 single, synthetic crystal compounds (Gautschi, 2002).  The group crystals are of the 

trigonal class 32, members of which include quartz and gallium phosphate.  Like gallium 

phosphate the CGG group crystals are non-pyroelectric but piezoelectric data is available for 

only about a quarter of the crystals.   

 

Some of the more important crystals from this group are CGG, La3Ga5SiO14 (LGS or Langasite), 

La2Ga5.5Ta0.5O14 (LGT or Langatate), La3Ga5.5Nb0.5O14 (LGN), La3Ga5GeO14 (LGG) and 

Sr3Ga2Ge4O14 (SGG).  All the CGG group crystals show no phase transition below the crystal 

melt temperature and high electromechanical coupling.  For example, SGG sensitivity is 

approximately four times that of quartz.  Characterization of the materials is incomplete at 

elevated temperatures.  Growth of the crystals of LGS is difficult due to evaporation of Ga2O3 

and GeO2 from solution.  During the growth of SGG crystals, evaporation of GeO2 complicates 

matters.  Large crystals of SGG are prone to cracking and often have inclusions that reduce 

crystal quality. 

 

The table below (Gautschi, 2002) summarizes some of the piezoelectric properties of some of the 

CGG group of crystals.  The coefficients eij relate electrical displacement and strain and is the 

product obtained by multiplying the matrix of constants, d, by the matrix of elastic constants, c.  
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Table 1  Piezoelectric Properties of some single crystals of the CGG group 

Material and 
Abbreviation 

Melting 
Temp, Tm 

( C) o

d11

( ) 1−⋅NpC
d14

( ) 1−⋅NpC
e11

( ) 1−⋅CGN
e14

( ) 1−⋅CGN

Ca3Ga2Ge4O14 CGG 1370 5.38 -2.58  -0.0014 
La3Ga5SiO14 LGS 1470 6.16 -5.36 0.45 -0.077 
La3Ga5GeO14 LGG 1470 6.59 -5.51   
La2Ga5.5Ta0.5O14 LGT 1510   0.54 0.07 
La3Ga5.5Nb0.5O14 LGN 1510 6.63 -5.55 0.44 -0.05 
Sr3Ga2Ge4O14 SGG 370 9.41 -6.96 0.567 -0.055 

 

 

2.2.1.6 Lithium Niobate and Lithium Tantalate. Lithium niobate and tantalate have 

excellent electromechanical properties with high piezoelectric sensitivity.  Both lithium niobate 

and tantalate, like tourmaline, belong to trigonal class 3m (see Equation 2.2-2 above).  The Curie 

temperature for lithium niobate (LiNbO3) is C, which is just below its melting 

temperature of C.  The Curie and melting temperatures of lithium tantalate (LiTaO

o1197

o1260 3) are 

C and C respectively (Gerber, 1985).   o620 o1560

 

The material properties of the crystals show relatively low temperature dependence.  Crystals 

of lithium niobate and tantalate require poling to obtain single-domain crystals.  Of the two 

crystals lithium tantalate is quite easily the more dense, 7450 kg/m3 as opposed to 4640 kg/m3 

for lithium niobate.  However, the elastic modulus coefficient, c11, for both materials is quite 

similar, 203 GPa and 229 GPa for niobate and tantalate respectively.  The piezoelectric strain 

constants d22, d31, d33 and d15 are , ,  and  respectively 

for lithium niobate; and , ,  and  for lithium 

tantalate.   

121021 −× 12101 −×− 12106 −× 1121068 −−× CN

12106.7 −× 12103 −×− 12107 −× 1121026 −−× CN
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2.2.1.7 Other single crystal compounds. Lithium tetraborate or LTB (Li2B4O7) has tetragonal 

symmetry of class 4mm.  LTB has a density of 2450 kg/m3, on par with the density of quartz.  

The material has a relatively low melting temperature of C.  Lithium tetraborate is not 

ferroelectric but is pyroelectric.  The crystals of LTB exhibit high electromechanical coupling 

with piezoelectric strain constants d

o917

15 and d33 of  and  respectively 

(Gautschi, 2002). 

121007.8 −× 1121024 −−× CN

 

Bismuth germanium oxide or BGO (Bi12GeO20) and Bismuth silicon oxide or BSO (Bi12SiO20) 

show no pyroelectricity and one independent piezoelectric strain coefficient with d14=d25=d36.  In 

BGO the independent coefficient d14 is .  BSO has a slightly larger coefficient, 

d

112106.37 −−× CN

14 is .  The density of bismuth germanium oxide is 9230 kg/m1121040 −−× CN 3. 

 

Lithium sulfate-monohydrate, also known by the abbreviations LH or LSH has chemical 

formula, Li2SO4•H2O.  Due to dehydration of the crystal above 100 C LSH is not used in 

applications where the temperature exceeds 90 o C.  LSH does have the advantage of having a 

relatively large piezoelectric strain coefficient. 

o

 

The ferroelectric semiconductor SbSI has a peak piezoelectric strain coefficient, d33, of over 

 at about C.  The peak d112102000 −−× CN o15 33 value is twice the value at C.  Another 

shortcoming of SbSI besides the large variation in d

o10−

33 value is that the Curie temperature is a 

mere C. o22
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2.2.2 Non-crystalline Piezoelectric Materials 

The non-crystalline piezoelectric materials are predominantly ceramic in nature.  To exhibit 

piezoelectric behavior the materials require poling.  Poling or polarization is normally achieved 

at an elevated temperature by applying a high electric field across the material. 

 

Ceramics have some advantages over crystalline piezoelectric materials (Gautschi, 2002).  These 

advantages include a lower processing and manufacturing cost, ready availability of the 

constituent materials of the ceramic and higher piezoelectric sensitivity.   

 

Ceramics have some disadvantages as well.  Some of the ceramics are difficult to pole.  During 

poling, the change in size associated with the phase change may cause cracking.  Aging or loss 

of polarization can also occur if the ceramic is under mechanical load at high temperatures.  

These all affect the stability of the piezoelectric ceramic.  Another disadvantage is that the 

ceramics may exhibit dependence of electromechanical properties on temperature.  This is 

especially so in the vicinity of the Curie temperature of the materials.  Thirdly, the temperature 

range over which the ceramic is useful is determined by the Curie temperature above which all 

piezoelectric properties are lost.  Pyroelectricity is another problem that can lead to the inability 

to distinguish between changes in temperature or changes in the mechanical strain of material 

as the root cause of the change in electric field on the material.  Lastly the resistivity of ceramics 

is, in general, lower than in crystals.  This means that sensors made of ceramics cannot be used 

to make quasistatic measurements since the lower resistance of the ceramic in the sensor causes 

charge leakage when changes in strain are very slow (quasistatic).  
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2.2.2.1 Barium Titanate. Crystals of barium titanate, BaTiO3, also show the piezoelectric 

effect but most of the experiments have been undertaken on the ceramic form of the substance 

(Rosen, 1992).   

 

The Curie temperature of barium titanate is only C and it has a material density of 5720 

kg/m

o120

3.  The elastic modulus coefficient c11 is about 166GPa.  Common values of the 

piezoelectric strain coefficients d15, d31 and d33 are ,  and .   1210270 −× 121079 −×− 11210191 −−× CN

 

2.2.2.2 Bismuth Titanate family. Bismuth titanate and several other compounds that are 

related to bismuth titanate through the substitution of one or more elements, belong to a family 

called the bismuth titanate family (Gautschi, 2002).  This family of piezoelectric materials, which 

is also called the bismuth layer structure ferroelectrics, exhibits some enhanced piezoelectric 

through the substitutions effected.  Bismuth titanate has piezoelectric strain coefficients d33, d31 

and d15 of ,  and .  121018 −× 12102 −×− 1121016 −−× CN

 

Bismuth titanate has a Curie temperature of C.  The Curie temperatures of other members 

of the family are Bi

o650

3TiNbO9 C, SrBio940 2Nb2O9 C, Nao440 0.5Bi4.5Ti4O15 C, SrBio655 4Ti4O15 

C and CaBio530 4Ti4O15 C. o787

 

2.2.2.3 Tungsten Bronze family. One of the materials used in transducers in non-

destructive testing and medical purposes is lead metaniobate (PbNb2O6), which is a member of 

the tungsten bronze family (Gautschi, 2002).  Lead metaniobate is used due to its high 

piezoelectric strain coefficients.  Lead metaniobate has a Curie temperature of C and strain o500
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coefficient d33 of .  (BaPb)Nb11210100 −−× CN 2O6 has a lower Curie temperature ( C) and do400 33 

strain coefficient ( ). 1121085 −−× CN

 

2.2.2.4 Perovskite Layer Structure Ferroelectrics. Like the bismuth titanate family, these 

materials have a layered structure.  The best known members Sr2Nb2O7 and La2Ti2O7, have 

quite high Curie temperatures, C and C respectively.  By comparison, the solid 

solution Sr

o1342 o1500

2(Nb0.5Ta0.5)2O7 has a Curie temperature of only C and a piezoelectric strain 

coefficient d

o820

15 of .  Despite its lower Curie temperature, this solid solution has 

the highest resistivity of tested ceramic materials (Gautschi, 2002). 

112106.2 −−× CN

 

2.2.2.5 Lead Zirconate Titanate (PZT). The most widely used of the piezoelectric ceramics 

is lead zirconate titanate or PZT.  PZT is a solid solution of lead zirconate, PbZrO3, and lead 

titanate, PbTiO3.  The solutions are made in a range from pure lead zirconate to pure lead 

titanate.  The percentage of zirconate or titanate in the mix determines not only the phase of the 

solution at a particular temperature but also certain material properties like the piezoelectric 

coefficients. 

 

Lead titanate, at one extreme, has the same basic structure as barium titanate.  The Curie 

temperature of PbTiO3 is C.  One problem of ceramic lead titanate is that it is prone to 

cracking as it cools from the Curie temperature.  Further, attempts at poling at room 

temperature with an electric field are rarely successful.  The high conductivity of the ceramic 

near the Curie temperature makes higher temperature poling impractical.  Lead zirconate is 

antiferroelectric and thus cannot form a piezoelectric ceramic.  If anything above ten mole 

o490
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percent of PbTiO3 is in solid solution with PbZrO3, then the solution becomes ferroelectric 

(Rosen, 1992).  The highest piezoelectric sensitivity is found in a solution that contains 55% lead 

zirconate.  Typical values of the Curie temperature for soft and hard PZT are  and C 

respectively.  PZT is classified as either hard or soft depending on the elasticity of the ceramic.  

PZT-5A and PZT-5H are two examples of soft PZT.  Hard PZT has piezoelectric coefficients d

o250 o330

33 

and d31 of  and  respectively.  Soft PZT has piezoelectric constants 

d

1210190 −× 1121055 −−×− CN

33, d31 and d15 of ,  and .  The density of PZT varies 

depending on composition but is approximately 7700 kg/m

1210425 −× 1210170 −×− 11210500 −−× CN

3.  PZT belongs to the class of 

symmetry 6mm and  which has the matrix of piezoelectric strain coefficients as below. mm∞
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The success of PZT formulations has led to investigations into similar solid solutions.  Two of 

these similar solid solutions are PZN-PT (Lead Zinc Niobate–Lead Titanate) and PMN-PT (Lead 

Manganese Niobate-Lead Titanate).  The chemical formula for PZN-4.5%PT is 

Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 while that of PMN-PT is Pb(Mg1/3Nb2/3)O3-PbTiO3.  For PZN-

4.5%PT the piezoelectric coefficients d33, d31 and d15 are ,  and 

 respectively (Hackenberger, 2002).  PMN-PT has piezoelectric coefficient d

12102140 −× 1210980 −×−

11210130 −−× CN 33 

that varies between  and .  For PMN-PT the advantages of this 

high piezoelectric strain coefficient and a Young’s modulus of 105 GPa are offset by the fact that 

the Curie temperature is as low as C (H.C. Materials Corp., 2002).  Hackenberger indicated 

that PZN-PT crystals grow in irregular shapes and are generally quite small.  PMN-PT crystals 

12101400 −× 112103500 −−× CN

o75
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grow faster and are easier to machine.  PZN-PT and PMN-PT densities are slightly higher than 

the density of PZT at 8300 kg/m3 and 7900 kg/m3 respectively.  

 

2.2.2.6 Aluminum Nitride.  Aluminum nitride is a non-ferroelectric substance that has 

piezoelectric behaviour when deposited as a thin film.  The piezoelectric effect of thin films of 

AlN3 has been observed at temperatures of C (Gautschi, 2002).  Aluminum nitride has a 

density of 3260 kg/m

o1150

3 , modulus of elasticity of 331GPa and a melting temperature of C.  

The piezoelectric coefficient d

o2200

33 of aluminum nitride is  (Dubois, 1998). 112109.3 −−× CN

 

2.2.2.7 Zinc Oxide  Thin films of zinc oxide, ZnO, are used in micro-devices to 

provide actuation or sensing through the piezoelectric effect.  ZnO can be deposited on the 

target surface or substrate by reactive sputtering (Racine, 1998), rf magnetron sputtering (von 

Preissig, 1998) or metalorganic chemical vapor deposition.  Racine also notes that PZT has a 

larger piezoelectric effect.  However, the manufacturing of thin films of ZnO using typical 

integrated circuit techniques is easier than manufacture using PZT as the piezoelectric material.  

For example, there is no need to take precautions against lead leaching into the silicon substrate.  

Zinc oxide has a melting temperature of C, a material density of 5610 kg/mo1975 3 and a 

maximum measured d31 piezoelectric coefficient of  (von Preissig, 1998).   112104 −−× CN

 

2.2.2.8 PVDF. PVDF or polyvinylidene fluoride is a polymer material that exhibits the 

piezoelectric effect.  PVDF is not as dense as PZT, its density is only about 1780 kg/m3 

(Venkatragavaraj, 2001).  PVDF also has a lower piezoelectric strain coefficients d33 and d32.  The 
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d32 and d33 values for PVDF are  and  respectively (Baz, 1996).  Like PZT, 

PVDF requires poling using a high electric field at an elevated temperature.   

12103 −× 1121028 −−× CN

 

To improve the piezoelectric characteristics of PVDF composites are sometimes made using 

other piezoelectric materials.  When PZT is used to make the composites, the characteristics of 

the new composite are between that of PVDF and PZT.  By varying the volume fraction of PZT 

from 10% to 70% piezoelectric strain coefficient d33 were measured and found to be vary 

between  and .  The density of the composite was between about 2600 

kg/m

12102 −× 1121023 −−× CN

3 and 5100 kg/m3 (Satish, 2002).   

 

2.3 PIEZOELECTRIC SYSTEMS, CLASSES AND MATERIAL 
STRAINS 

 

The various piezoelectric materials in the previous section can be categorized according to the 

population of their various constituent matrices; including the piezoelectric strain matrix, d.  

The elements of these matrices determine which class the piezoelectric materials fall into while 

the system is determined by the symmetry of the crystal structure. 

2.3.1 Piezoelectric Systems and Classes 

In piezoelectric materials the material strains are related to electrical field and mechanical stress 

as follows (IEEE Std 176-1987), 

EdTcS TE += −1)(      (2.3- 1) 
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where cE is the constant electrical field mechanical stiffness, T the mechanical stress, dT is the 

transpose of the piezoelectric strain matrix, E is a vector of applied electric field and S is the 

vector of material strains.  This vector of strains is, 
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where the first three rows of the vector of strains are extensional and the last three are shear 

strains.  It follows then that in the piezoelectric strain matrix, d, the elements in the first column 

determine the ability of the material to cause extensional strains in the X direction, the second 

column determines extensional strains in the Y direction, and so on.  Where the elements in the 

strain matrix are zero, it is then impossible to induce strains using applied charge.  For example, 

in bismuth germanium oxide (shown later in Equation 2.3-9), it is impossible to cause 

extensional strains using an applied electrical field.   

 

The general piezoelectric strain matrix is given by, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

363534333231

262524232221

161514131211

dddddd
dddddd
dddddd

d     (2.3- 3) 

The three rows are the crystallographic axes: X, Y and Z respectively.  If, for example, we apply 

a charge to an electrode perpendicular to the X crystallographic axis, we induce strains in the six 

strain directions.  The magnitude of the strains in each of the directions is determined by the 

value of the elements in the first row of the matrix; d1j , where j is 1,2,3…6.   
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2.3.1.1 Orthorhombic System.  Rochelle salt is a member of this system.  Within the 

orthorhombic system, Rochelle salt belongs to class 222.  The form of the piezoelectric strain 

matrix for Rochelle salt is given below. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

•−−−−−
−•−−−−
−−•−−−

=d     (2.3- 4) 

Where the three non-zero elements in the matrix are not equal and indicated by the dots.  The 

dashes are the elements in the matrix with a value of zero.  From the piezoelectric strain matrix, 

it can be seen that charge applied in each of the three crystallographic directions causes shear 

strains. 

 

2.3.1.2 Tetragonal System. Lithium tetraborate is a member of this system in class 4mm.  The 

piezoelectric strain matrix form for this class member is, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−•••
−−•−−−
−•−−−−

=d     (2.3- 5) 

In the strain matrix shown above in Equation 2.3-5, the matrix elements that are tied together by 

a line are equal in value.  For materials in the tetragonal system, charges applied to the surfaces 

perpendicular to the crystallographic axes X and Y induce shear strains and charges applied on 

surfaces perpendicular to Z cause extensional strains in all three directions.   
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2.3.1.3 Trigonal System. Several materials in the previous section on piezoelectric materials 

belong to this system.  These materials are quartz, gallium phosphate and the CGG group in 

class 32, and tourmaline, lithium niobate and lithium tantalate in class 3m.   

 

The piezoelectric strain matrix for class 32 is, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−−−
−−−−

−−•−•
= oo

o

d     (2.3- 6) 

where the matrix elements represented by circles with white centers are negative and the cross 

indicates that the element is twice the magnitude of the elements it is tied to with a line.  The 32 

class of materials has no strains induced by charges applied to surfaces perpendicular to the Z 

axis, shear strains when the charge is on the surfaces perpendicular to the Y axes and a 

combination of shear and extensional strains when the charges are on the surface perpendicular 

to the X axis. 

 

The 3m class strain matrix is, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−•••
−−•−•

•−−−−
= o

o

d     (2.3- 7) 

For this class, charges applied to a surface perpendicular to the X axis causes only extensional 

strains.  Charges on the surface perpendicular to the Z axis causes only shear strains while a 

combination of shear and extensional strains occur with charges on a surface perpendicular to 

the Y axis.   
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2.3.1.4 Hexagonal System. Lead zirconate titanate (PZT) is a class 6mm or  member of 

this system.  The piezoelectric strain matrix is, 

mm∞

⎥
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−•••
−−•−−−
−•−−−−

=d     (2.3- 8) 

The form of the strain matrix is identical to the tetragonal system class 4mm material lithium 

tetraborate.  Shear strains are induced by charges on surfaces perpendicular to the X and Y axes 

and extensional strains by charges on surface perpendicular to the Z crystallographic axis 

(which is the poling axis in PZT and other poled ceramics). 

 

2.3.1.5 Cubic System.  Bismuth germanium oxide (BGO) is a class 23 member of the 

system.  In this class, only shear strains are induced by charges applied to surfaces 

perpendicular to the three crystallographic axes.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

•−−−−−
−•−−−−
−−•−−−

=d     (2.3- 9) 

2.3.2 Piezoelectric Strain Matrices and Induced Strains 

In the previous section the piezoelectric strain matrices for several different classes of 

piezoelectric material were given.  In this section we shall indicate what strains can be induced 

by the different material classes.   

 

The piezoelectric strain matrix, d, indicates the strength with which different material strains are 

coupled to an induced charge or vice versa through the piezoelectric effect.  Table 2 below 
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illustrates the strains that can be induced in the piezoelectric material and the surface 

perpendicular to which the charge needs to be applied to induce the strain.   

 

Table 2.  Applied charges and induced strains 

Charge perpendicular to 
Class Material 

X-axis Y-axis Z-axis 

222 Rochelle Salt YZε  ZXε  XYε  

4mm Lithium Tetraborate ZXε  YZε  ZYX εεε ,,  

32 
Quartz, Gallium 

Phosphate, CGG Group YZYX εεε ,,  XYZX εε ,  - 

3m 
Tourmaline, Lithium 

Niobate and Tantalate XYZX εε ,  YZYX εεε ,,  ZYX εεε ,,  

6mm, mm ∞ Lead Zirconate Titanate ZXε  YZε  ZYX εεε ,,  

23 BGO YZε  ZXε  XYε  

 

This work uses lead zirconate titanate as the piezoelectric material.  From Table 2 it can be seen 

that it is impossible to induce the shear strain XYε .  Also, to induce a shear strain the surface on 

which the strain is produced has to be electroded.  In addition, the electrode surface has to be 

parallel to the poling axis, Z. 
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3.0 RESONATORS AND OSCILLATORS AND THEIR 
CHARACTERISTICS 

 

3.1 RESONATOR CHARACTERISTICS 

There are some characteristics that are considered to be desirable in a resonator.  These are 

characteristics that make the resonator useful.  These characteristics include having a high Q or 

quality factor and frequency stability. 

3.1.1 Q 

The Q value of a resonator is given as a measure of performance.  The equation for Q is, 

dBf
f

Bandwidth
fQ

3∆
==     (3.1- 1) 

In general, the higher the Q value, the better the resonator is.  The advantages of a high Q 

resonator are that the resonator signal will be much larger than the noise that may be present.  

Also, the high Q resonator tends to hold a particular frequency better than a low Q resonator 

would.   

 

The bandwidth of the resonator is the difference in the frequencies at a level 3dB down from the 

peak signal.  The frequency, f, used in the calculation is the frequency at the peak of the 

response of the resonator (see Figure 5 below).   
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Figure 5.  Q Factor 

3.1.2 Stability 

Stability, as it relates to resonators, is the ability of the resonator to maintain a particular 

frequency.  There are three major measures of stability.  These are jitter, drift or aging, and 

temperature stability.  If a resonator is made specifically to be tunable this may cause the 

stability to be worse since the resonator will be more susceptible to disturbances.   

3.1.2.1 Jitter.  Jitter is the variation in the timing of a signal observable over a few 

periods of the signal.  This timing variation is sometimes referred to as phase noise (Vig, 2001).  

The phase noise may be as a result of external electrical interference or mechanical shock and 

vibration applied to the resonator.  Jitter causes non-permanent variations in frequency that are 

observable on time-scales of the order of the period of the resonator.  

3.1.2.2 Drift and Aging Over time the characteristics of the components in a resonator 

may change.  This change in the characteristics of the components may cause a change in 

resonant frequency.  If observed over a long time, the frequency will be seen to drift as the 

characteristics change due to the aging of the components.  External factors such as the impact 
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of radiation on the resonator or changes in the power supplied to the resonator may also cause 

the frequency of the resonator to drift.  It is commonly accepted that drift can be due to a 

combination of effects, both external and internal to the resonator but aging is purely an internal 

effect (Vig, 2001).   

 

Some of the mechanisms of aging (Vig, 2001) include mass transfer due to contamination, stress 

relief in the mounting or bonding of the resonator, outgassing and diffusion, chemical reactions, 

resonator enclosure pressure changes, circuit component aging, as well as changes in the electric 

field on the resonator and changes in controller circuitry (for example in oven controlled 

resonators).  

3.1.2.3 Temperature Stability.  The piezoelectric coefficients of materials are functions of 

temperature.  The coefficients may be strongly affected by changes in temperature or weakly so, 

as in the AT-cut quartz crystals which are designed to have zero temperature coefficient at room 

temperature.  If the resonator material does not have isotropic coefficients of thermal expansion 

then thermal stresses may be introduced into the resonator.  These stresses can cause a change 

in the resonant frequency of the device.   

 

Temperature stability is measured by slowly cycling the resonator temperature through the 

temperature range of operation and noting the change in resonant frequency.  A typical range 

through which the temperature would be cycled is  to C for civilian applications and 

 to C for military applications (MIL-PRF-3098H).  A typical specification for a 

resonator is that the maximum change in frequency over the operating temperature range 

should be 20 ppm. 

o40− o85

o55− o105
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3.2 TYPES OF RESONATORS AND OSCILLATORS 

The various resonator and oscillator types shall be looked at first followed by the resonance and 

oscillation modes utilized in devices.  In this work, the resonators and oscillators shall be 

classified according to the material that is used in manufacture or the nature of the device i.e. 

whether the device is mechanical or electrical in nature.  Crystal resonators shall be looked at 

first followed by atomic devices, microwave devices that use direct electrical coupling, electrical 

circuit devices, and finally mechanical and electromechanical devices.   

3.2.1 Crystal Resonators and Oscillators 

Crystal is the most common material used in resonators and oscillators.  Crystal resonators are 

grouped according to the mode of vibration that is induced in the crystal or the application that 

the crystal is used in.  Quartz is the most commonly used crystal material in frequency devices 

due to its high stiffness and, consequently, high Q value.  This leads to devices that may be 

capable of better frequency stability.  Other crystalline materials that have recently generated a 

lot of interest are langasite (La3Ga5SiO14) and its isomorphs, langanite (La3Ga5.5Nb0.5O14) and 

langatate (La3Ga5.5Ta0.5O14).  These materials have a higher Q value and piezoelectric coupling 

than quartz crystal (Smythe, 2000). 
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Figure 6.  Examples of shear, flexure and extensional vibration modes 

In the oscillator or resonator application, the crystal is forced to vibrate in one of its particular 

modes through electromechanical coupling using the piezoelectric effect.  The most commonly 

used mode of vibration is the shear thickening mode (see Figure 6).  Other modes involve 

excitation of surface acoustic waves (SAW) or bulk acoustic waves (BAW).  SAW and BAW 

devices operate at high frequencies (MHz range), in low frequency applications the mode of 

vibration may be some type of flexure, either through a bar or tuning fork design.   

3.2.2 Atomic Resonators and Oscillators 

Atomic resonators are of various types but all use the same operating principle.  The resonator 

is populated with a particular chemical species that has an observable transition between 

atomic states.  Firstly, one of the states is selectively populated through manipulation of the 

chemical. The observable transition from the selected state to the depopulated state is then 

detected and used as a timing signal.  Group I elements are the predominant elements used in 

atomic resonators (Gerber, 1985).  Cesium is one such Group I element (The standard second is 

based on Cs133 transitions between two hyperfine levels of the ground state). 
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In general, atomic resonators are not used in isolation but usually have the timing signal from 

the atomic transition used as a source to which a reference crystal oscillator is frequency locked.  

This arrangement describes an active atomic resonator device.  The reference oscillator must be 

some kind of tunable oscillator such as a Voltage Controlled Crystal Oscillator (VCXO).  Passive 

atomic resonator devices use an external signal to cause the atomic transitions.  This external 

signal may be the frequency multiplied output of a reference oscillator.  The output of the 

atomic resonator is then used to lock the reference oscillator.  In the passive device, the atomic 

transitions act as a frequency discriminator or filter. 

ting 

avities or dielectrically loaded cavities.  Frequency of operation of the device is determined 

p capacitively links the input and output lines.  The 

imension of the gap and the use of intervening linking structures determines the operational 

frequency of this device (Oates, 1999). 

 

3.2.3 Microwave Resonators and Oscillators 

A third class of frequency source is the microwave device.  Microwave devices can use either a 

cavity mode vibration or microstrip lines to form the signal source.  In the cavity mode of 

vibration electrical oscillation is generated between the input and output of the device using the 

cavity and the walls of the cavity as coupling.  The cavities can be either superconduc

c

both by the cavity dimensions and the contents of the cavity (Gerber, 1985; Miranda, 2000). 

 

In microstrip line devices, a tiny ga

d
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3.2.4 Electrical Circuits 

A less sophisticated way to generate an oscillating signal is to use electrical circuit components.  

The series combination of an inductive and a capacitive element provide the basic components 

equired (see Figure 7).  The frequency of oscillation of such a circuit is then the square root of 

the inverse of the magnitude of the inductor and the capacitor.  Frequency selection in the 

electrical circuit devices is by the choice of magnitude of the capacitance and inductance of the 

devices.   

 

r

C

L

 

cillator.  

When an odd number of inverters are connected in series to form a ring, the voltage output of 

any of the inverters oscillates with a frequency that is the inverse of twice the sum of the 

propagation delays of the individual inverters in the circuit. 

ical and Electromechanical Resonators and Oscillators 

echanical devices utilize some form of mechanical vibration to provide the frequency of 

Figure 7.  The basic electrical resonant circuit 

An oscillating signal can also be generated using inverters arranged to form a ring os

3.2.5 Mechan

M

interest.  A frequency of interest can be determined by selectively exciting a particular vibration 
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mode.  Mechanical and electromechanical resonators and oscillators may be either macro or 

micro devices.   

 

Most Microelectromechanical Systems (MEMS) oscillators and resonators are built using silicon 

hip manufacturing technology.  The materials that are compatible with silicon chip 

, 1999).

onstrated a comb resonator with a Q factor of 

3400 for a 16.5 kHz resonator operating at 20 mTorr (1 atm= mTorr).  The Nguyen 

c

micromachining are few; consequently, the oscillators and resonators are generally silicon 

based.  As in larger scale oscillators and resonators, the micro systems work by either causing a 

mechanical vibration, which is electrically sensed and actuated, or by causing an electrical 

oscillation in a circuit without an associated mechanical vibration. 

 

Different structures have been demonstrated for generating mechanical vibration in MEMS 

including comb driven resonators and resonant plates.  An example of a comb driven resonator 

is the electrostatically driven micromechanical resonator (Nguyen   Interdigitated fingers 

are cut into a silicon structure that is suspended over the substrate.  An input and an output set 

of these fingers are joined by a folded-beam structure that provides the coupling between input 

and output.  By choosing the suspension structure, number of fingers, etc. a natural frequency 

for the structure can be chosen.  Nguyen dem

5106.7 ×2

resonator is an example of a linear resonant plate.  Torsional resonant plates have also been 

demonstrated (Tang, 1989).  In the torsional resonant plate, the comb drive or interdigitated 

fingers are arranged concentrically to excite torsional vibration of a spiral structure.  Tang 

demonstrated Q factors of about 100 at 40 kHz. 
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Another example of a micro-oscillator component is a varactor design (Yoon, 2000).  A spring 

loaded movable dielectric is actuated using a DC voltage bias across two plates that sandwich 

the dielectric.  The movement of the dielectric changes the effective dielectric constant of the 

tance of the varactor.  The varactor can be used in 

conjunction with other circuit components (as seen in Section 3.2.4 which deals with electrical 

 

3.3 MODES OF RESONANC

3.3.1 Bulk Acoustic Waves (BAW) 

Bulk acoustic waves are waves that propagate through

thickness of the material in the direction of wave propagation determines the wavelength of the 

fundamental mode.  If this thickness is t, then the fundamental mode wavelength is, 

gap between the plates, changing the capaci

circuits) to provide a tunable oscillatory signal. 

E OR OSCILLATION 

 the medium in toto (Gerber, 1985).  The 

t2=λ       (3.3-1) 

The velocity of the acoustic wave in the medium is, 

ρ
=

EvA      (3.3-2) 

where E is the relevant elastic constant in the direction of wave motion and  is the density of 

the material.  The frequency of vibration of the fundamental bulk acoustic mode is, 

ρ

24 t
f

ρ
=

λ
=     (3.3-3) 

Ev
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In BAW devices the acoustic waves are generated between electrodes that are located on 

opposite sides of the material.  The electromagnetic coupling effect of piezoelectric materials 

couples the acoustic waves to electromagnetic waves in the electrodes. 

3.3.2 Surface Acoustic Waves (SAW) 

 is within one acoustic wavelength of the surface (Vig, 2001).  The electrodes on the 

ave 

3.3.3 Direct Electrical Coupling 

Examples of direct electrical coupling vibration are microwave cavity modes and microstrip 

Surface acoustic waves are generated between electrodes situated on the same surface of the 

material.  Wave motion does not penetrate deep into the material and about 90% of the wave 

energy

surface of the surface acoustic w device are interdigitated.  The spacing between the digits is 

half the wavelength of the fundamental mode of the resonator.  If we let the interdigital distance 

be t, then the above equations for bulk acoustic wave vibration can be used. 

In direct electrical coupling, the electrical vibration is not transformed into a physical vibration.  

lines. 

 38



 

3.3.3.1 Microwave Cavity Modes. In the microwave cavity modes, the electric field within 

the cavity undergoes the vibration.  The cavity may be filled with a dielectric material, air or a 

vacuum (Chen, 1990; Mahdi, 1990; Poplavko, 2001).  The dimensions of the cavity and the 

elative permittivity of the material within the cavity affect the impedance of the cavity and 

consequently, the frequency of vibration of the cavity.  In transverse electromagnetic mode 

(TEM) vibration, the electrical field distributions of the various transverse modes resemble the 

membrane modes seen in mechanical vibration.  The walls of the cavity act as nodes of 

vibration and have zero electrical field. 

 

Direct electrical coupling is achieved by connecting the input and output probes to the wall of 

the cavity.  Different connection schemes can be utilized to allow frequency switching and 

tuning (Mahdi, 1990). 

3.3.3.2 Microstrip Lines The resonant structures found in microstrip line oscillators 

include rings an e passes within close proximity of 

the ring.  If the device is to be used as a resonator, the output line may be attached directly to 

ses in close proximity to the ring (see Figure 8).  The space 

r

d strips.  In the ring structures, the input lin

the ring or could be a line that pas

between the lines and the resonant structures acts as a capacitive link.  The impedance and 

resonant frequency of the microstrip line oscillators is determined by the strip dimensions and 

the substrate under the strips (Hammerstad, 1980).   
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Figure 8.  Microstrip Line Oscillator - Ring Type 

3.3.4 Mechanical Vibration 

nical system undergoes or on the dimensions of 

d in vi

se Vibration.  Transverse vibration is generally associated with the 

vibration of beams.  Displacement is in a direction that is perpendicular or transverse to the 

long axis of the beam.  A simple analysis of transverse vibration  c u

Bernoulli-Euler beam equation (Benaroya, 1998), which is, 

There are several different mechanical vibration types.  The vibration types can be classified 

based on the kind of displacement the mecha

mechanical system involve  bration.  Hence, there is transverse vibration, torsional 

vibration, axial vibration, membrane vibration, etc.   

3.3.4.1 Transver

of beams ould se the 

),(2

2

4

4

txpymyEI =
∂

+
∂

   (3.3-4) 
tx ∂∂

 

where E, I and m are the modulus of elasticity, mass moment of inertia and the mass of the 

beam respectively.  The transverse displacement is y and the coordinate measured along the 
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long axis of the beam is x.  A force p, which in general is a function of both the axial coordinate 

and time, may be applied to the beam. 

 

With the appropriate boundary conditions, the above equation can be solved to find both the 

frequency of vibration and the shape of the displacement associated with that frequency of 

vibration (also referred to as mode shape).   

3.3.4.2 Torsional Vibration.  Just as transverse vibration is associated with beams, 

torsional vibration is associated with vibration of shafts.  The equation associated with this type 

of vibration is, 

),()(2

2

xxt ⎦
⎤

⎣
⎡

∂
θ∂

∂
∂

∂
θ∂

where I, G and J are the mass moment of inertia, shear modulus and polar moment of inertia for 

the cross-section of the shaft. The a

txmxGJI θ=⎥⎢−    (3.3-5) 

pplied moment on the shaft is , which can be function of 

oth the axial coordinate and time.  The angular displacement is 

θm

θb .  Solution of this equation 

3.3.4.3 Axial Vibration. Axial or longitudinal vibration involves displacement along the 

axis of the beam.  The general form of the equation for axial vibration is, 

using the appropriate boundary conditions, just as in transverse vibration, gives the frequencies 

of vibration and the associated mode shapes.  

2
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In the above equation,

)()( xmExA =⎥⎢    (3.3-6) 

 the mass per unit length is m(x), cross-sectional area at position x along 

the axial coordinate is A(x) and E is the modulus of elasticity.  The displacement in the axial 

coordinate direction is u.   
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3.3.4.4 Membrane Vibra  Membranes and plates are structures whose dimension in 

the thickness direction

tion. 

 is much smaller than the dimension in the length and width coordinate 

directions.  Membranes are differentiated from plates by their inability to resist bending 

moments.   

e

the equation of motion for the membrane is, 

 

If we let x and y denote the coordinates that define the plan  in which the membrane lies then 

2

222
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here T is the tension in the membrane, m(A) is the mass per unit area, p the force applied to 

the membrane surface and w is the displacement normal to the surface of the membrane i.e. the 

transverse direction.   

3.3.4.5 Plate Vibration. For deflection normal to the plane of the plate, w, the equation of 

motion for a plate is, 

w
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  (3.3-8) 

As before, E is the modulus of elasticity and p is the normal force applied to the plate surface.  

The thickness of the plate is h,  the plate density and ρ ν  the Poisson ratio.  As in all the 

vibration types described in this section, the frequency of vibration and the shape of the 

vibration can be obtained by solving the equation of motion with appropriately applied 

boundary conditions. 
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4.0 DESIGN AND MODELING 

 

There are a large number of choices to be made when designing a resonator.  Decisions on 

vibration type and mode set the frequency range and the frequency of operation.  Once the 

vibration type and mode are decided on, the next choice will be to set a layout for the resonator 

e.g. beam, rod, fork, plate, etc.  The materials available and the properties of the materials 

available determine the dimensions of the resonator.  Adding resonator tunability narrows the 

number of choices that can be made since the tuning technique used in this work is not 

compatible with all resonator types, e.g. SAW devices.  The maximum tuning range available, in 

turn, is determined by the dimensions of the piezoelectric layer that can be used solely for 

tuning.  Sensing and actuation are also to be accomplished using the piezoelectric material and 

so the dimensions of the electrodes for the sensor and actuator have to be determined.  At the 

same time, sizing and placing the sensor and actuator electrodes affects the magnitude of the 

feedback gain required for the operation of the resonator by determining sensor voltage and 

actuator authority.  

 

An analytical model for the resonator would greatly simplify the design process.  Two model 

types were looked at; a simple single degree of freedom model and a single degree of freedom 

Rayleigh-Ritz model developed from the generalized Hamiltonian for electromechanical 

systems.  The resonators were then designed to meet certain frequency, tuning and gain 

requirements using these models.   
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A cantilever bending type resonator was chosen to illustrate the concepts of tuning.  Two one 

degree of freedom analytical models were developed.  A simple beam model and a Rayleigh-

Ritz model.  The simple beam model does not capture the tuning that can be achieved since the 

model is purely mechanical in nature.  The Rayleigh-Ritz model is able to capture both the 

mechanical and electrical nature of the problem.  The Rayleigh-Ritz analytical model was then 

extended to the particular resonator chosen, the cantilever resonator.   

 

Using the model, the analytical bending frequencies of vibration were found.  In addition, the 

analytical tuning range for each of the bending modes was determined.  An analytical model 

was also developed to show what feedback gain would be required to drive the resonator at a 

particular bending frequency of vibration for various actuator and sensor dimensions.   

 

This chapter illustrates the general design and modeling procedure and applies the procedure 

to the cantilever beam.  As indicated earlier, the analytical model can be extended to cover 

bending type cantilever beams with different electrode layouts and dimension.   

 

4.1 DESIGN 

A cantilever beam layout was chosen to illustrate the effects of design choices and the concept 

of a tunable piezoelectric resonator because of the ease with which such beams could be 

manufactured and because of previous experience with cantilever beams.  The cantilever beam 

has lateral or bending beam vibration being the predominant type of vibration.  The materials 

used were aluminum for the substrate and lead zirconate titanate (PZT) as the piezoelectric 

material.   
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Figure 9.  Plan view of the layout of the resonator 

Sheets of 127µm thick aluminum were cut in an Isomet 1000 Precision Saw to form a comb-like 

structure with 2.3mm wide teeth.  The teeth were then cut from the comb structure, forming the 

resonator substrate layer.  An electrode pattern was then etched into the top surface of PZT-5H 

sheets using ferric chloride, FeCl3 (see Figure 9).  This pattern defines the actuator, sensor and 

passive portions of the resonator.  PZT-5H was used for the piezoelectric layer because PZT-5H 

has nickel electrodes that are easily etched.  The electrode in the first three resonators 

(Resonators PS VIII*, PS XII and PS XIII) is gold sputtered onto the top surface of the PZT.  The 

top surface of the PZT sheets for these three resonators were prepared by completely removing 

the nickel electrode using ferric chloride.  The electrode pattern was then formed by scouring 

the sputtered gold surface.  Problems with the gold sputtering machine meant that a different 

approach had to be used to form the electrode pattern for the last three resonators; Resonators 

PS XIV, PS XV and PS XVI.  For these resonators the electrode pattern was formed directly in 

                                                      

*PS stands for Precision Saw and indicates the method used in preparing the substrate.  Resonators were 

consecutively numbered after manufacturing.  Low working resonator yield is indicated by the gaps in the number 

sequence. 
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the nickel electrode using thread soaked in ferric chloride.  The piezoelectric layers were then 

cut to size from the electroded PZT-5H sheets using an X-ACTO knife.   

 

The PZT layer was bonded to the metal substrate using two-part epoxy as the bonding agent.  

Equal volumes of the two parts of the epoxy were mixed and applied to the contacting surfaces.  

The two layers were then joined and placed in a clamp.  The clamp was used to apply a uniform 

pressure ensuring that the layers bond in intimate contact.  As can be seen in Figure 10, the 

substrate layer was designed to be slightly longer than the PZT to aid in mounting the 

cantilever to the clamping device.  This metallic substrate was also used as the electrical ground 

for the system.  Leads were attached to the actuator, sensor and passive portions of the PZT 

using conductive epoxy.  Signals derived from the sensor were used to provide actuation using 

a feedback loop and the lead attached to the passive layer used in frequency tuning. 

 

A set of cantilever beams that were built to the same specification were used to experimentally 

verify the analytical models developed.  The width of the aluminum and PZT-5H layers was 

2.3mm and the layer thickness was 127µm.  The PZT layer was approximately 2.1cm long.  The 

length of the actuator section was approximately 5.4mm and the sensor length was 2.7mm.   

 

Actuator Sensor

PZT
Layer

Aluminum SubstrateClamping Area

Passive Layer

 
Figure 10.  Side view of the layout of the resonator 
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Every effort was expended to try and produce identical resonators.  However, cutting the PZT 

layers by hand introduced some differences in the length and width of the piezoelectric layers.  

In addition, the clamping process sometimes introduced displacement and rotation of the 

piezoelectric layer in relation to the substrate; introducing some layer misalignment.  It is 

expected that these manufacturing issues will manifest themselves in differences in the 

performance of the resonators. 

 

4.2 MODELING OF THE DESIGNS 

A one degree of freedom system was chosen for the analytical model for its simplicity.  The one 

degree of freedom (DOF) system was then analyzed in two ways. Firstly, from equations 

derived from simple beam theory and then with equations from the Hamiltonian principle as 

applied to the full electromechanical system (Hagood, 1990).  In all derivations, the system is 

assumed to be a cantilever beam. 

4.2.1 One Degree of Freedom Systems 

4.2.1.1 Simple Model from the Beam Equation. The exact solution for the frequency of 

vibration of a cantilever beam is (Rao, 1990), 

( ) 4
2

AL
EIln ρ

β=ω      (4.2-1) 

where the term lnβ is from beam theory and is the constant for the nth natural frequency of the 

beam derived from the solution to the beam equation.  E is the modulus of elasticity, I the mass 

moment of inertia, ρ  the beam material density, A the cross sectional area and L the length of 

the beam.   
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The cantilever beam design is a two-ply composite structure.  The upper layer is lead zirconate 

titanate (PZT) and the other layer, to which the PZT is bonded, is metal (aluminum).  Since the 

two materials have different moduli of elasticity, simple application of equation (4.2-1) above is 

impossible.  The mass moment of inertia, I, needs to be calculated from the centroid of the cross 

section which is no longer simply halfway up through the thickness of the rectangular cross 

section of the beam. 

 

Since we know that the frequency of vibration of the system is given by, 

m
k

=ω      (4.2-2) 

where k is the stiffness and m the mass.  Using our two equations, (4.2-1) and (4.2-2), we can 

write, 

ALm
LEIk

ρ=
β= 4

     (4.2-3) 

The contributions of each layer to the stiffness and mass needs to be taken into account and 

added together before using equation (4.2-2) to find the natural frequency.  Calculating the mass 

contribution from each layer is straightforward since all that is needed are the dimensions and 

material densities of the layers.  To find the mass moment of inertia of the system the centroid 

of the cross section of the beam needs to be found (Beer, 1992).  The first step is to define the 

following ratio of the moduli of elasticity. 

1

2

E
En =      (4.2-4) 
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The subscripts refer to the layer number.  If the modulus of elasticity of layer two is greater than 

that of layer one, then the following figure shows the transformation that is done on the section 

to find the centroid (for the case where the converse is true, the transformation would make the 

width of layer two smaller than that of the first layer). 

 

 
Figure 11.  Width transformation in calculation of the centroid 

The dimensions of the cross section after the transformation are then used to find the centroidal 

location by the usual method, i.e. 

12

1122

whnwh
ywhynwhY

+
+

=      (4.2-5) 

As in Figure 11 above, the original width of the layers is w, and the layer thickness and layer 

centroid heights are given by hi and iy , respectively (note that the datum for the centroidal 

heights is the base of the beam).  The subscripts, as before, denote the layer that the dimension 

relates to.  The moment of inertia of each layer is then,  
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The individual moments of inertia, I1 and I2; the corresponding moduli of elasticity; and the 

layer densities can then be used to find the stiffness and mass of the two layer system as 

follows, 

)(
)(

2211

2211
4

AALm
IEIELk

ρ+ρ=
+β=

     (4.2-7) 

The above result can then be substituted into equations 4.2-2 and 4.2-3 to find the bending 

frequencies of operation of the resonator.   

4.2.1.2 Shape Functions applied to the Hamiltonian of the Electromechanical System. The 

generalized Hamiltonian for coupled electromechanical systems (Hagood, 1990) is, 

{∫ =∂+−+−∂
2

1

0)(
t

t
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where, 

∑ ∑

∫

∫ ∫

∫ ∫

•φ∂−•∂=∂

≈

=

+=

ρ+ρ=

i j
jjii

m

V

T
e

V V

TT

V V

T
p

T
s

qxfxuW
W

DEW

TSTSU

uuuuT

PIEZO

SUBSTRATE PIEZO

SUBSTRATE PIEZO

)()(
0

2
1

2
1

2
1

2
1

2
1

&&&&

    (4.2-9) 

T and U are the kinetic and potential energies, and We and Wm are electrical and magnetic 

energies.  W is the work associated with the forces, fi, and charges, qj , applied at the beam 
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positions xi and xj, respectively.  Displacement and velocity are u and u .  The density of the 

material is ρ , with subscript s for the substrate layer and p for the piezoelectric.  S and T are the 

material strain and stress matrices, and E and D are the matrices for the electrical field and 

electrical displacement.   is the scalar electrical potential.  The superscript T denotes the 

transpose.  Matrices and matrix values are denoted by capitalization. 

&

φ

 

For piezoelectric materials we can write, 
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In the above equation is the matrix of dielectric constants, e the piezoelectric material 

constant relating electrical displacement and strain, and c

Sε

E is the constant electrical field 

mechanical stiffness.  D, E, S and T are the electrical displacement, electric field, mechanical 

strain and mechanical stress respectively (IEEE Std 176-1987).  Solving Equation 4.2-9 for the 

mechanical strain, S, gives us Equation 2.3-1.  Displacement and electrical potentials on the 

piezoelectric that are functions of both position and time can be defined such that, 

)()(),(
)()(),(
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trxtxu

V

r

ψ=φ
ψ=

     (4.2-11) 

then for a differential operator, Lu, and gradient operator, , φL

)()()()()()(),(
)()()()(),(

tvxtvxNtvxLtxLE
trxNtrxLtxuLS

VVV

rruu

ψ−∇==ψ=φ=
=ψ==

φφ

  (4.2-12) 

For the substrate (which is not a piezoelectric material), equation (4.2-10) reduces to, 

ScT S=      (4.2-13) 
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where cS is the constant mechanical strain mechanical stiffness. 

 

In the Hamiltonian the kinetic and potential energy terms including contributions from the two 

layers in the system are, 
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The electrical energy is, 
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Integration of the Hamiltonian gives, 
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If the following substitutions are used, 
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then equations (4.2-16) become, 
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In equation 4.2-11, r and  are defined as functions of only time.  Consequently, it follows that 

the variations of r and  are also only dependent on time.  This means that the volume integrals 

in equation 4.2-18 can be evaluated.  Defining the volume integrals as follows,  
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gives, 
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MS and MP are mass matrices for the substrate and piezoelectric layers respectively, KS and KP 

are the stiffness matrices, CP is the matrix of piezoelectric capacitance, and θ  is the piezoelectric 
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electromechanical coupling matrix.  From the equation above the equations of motion for the 

coupled electromechanical system are, 
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    (4.2-21) 

or using input matrices, Bf and Bq, for the applied forces and charges, 

qBvCr

vfBrKKrMM

qP
T

fPSPS

=+θ

θ+=+++ )()( &&
   (4.2-22) 

Equation 4.2-22 gives the equations of motion for the coupled electromechanical system from 

which the frequency of the bending modes of vibration, tuning range and resonator feedback 

gain can be obtained.  The analytical models developed to obtain these values use equation 4.2-

22 as a basis.  The following chapters will present these models in detail. 

 

 54



 

 

5.0 BENDING FREQUENCIES OF VIBRATION 

 

In this chapter and consequent chapters we shall, in turn, look at the experimental and 

analytical results for bending frequency of vibration, tuning range, feedback gain, and reactance 

and resonator operating frequencies.   

 

5.1 ANALYTICAL MODEL 

The beam design has three distinct sections of piezoelectric material as determined by the 

electrode pattern.  Each of these sections has its particular electromechanical coupling and 

capacitance.  From equation 4.2-21 we can partition θ , CP and  accordingly, which gives, v
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   (5.1-1) 

The superscripts define the three different sections, namely, the actuator, sensor and passive 

portions of the piezoelectric.  Note that the subscripts on the capacitance have been dropped 

since the capacitance is calculated only in the piezoelectric material.  No external charge is 

applied to the passive section of the piezoelectric so, 
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The above equation gives the voltage on the passive portion of the beam as a function of tip 

displacement, r.  Partitioning the equations of motion in equation 4.2-21 and applying the result 

above, 
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Equation 5.1-3 can be rearranged to give the following form, 
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where the term associated with the passive portion of the piezoelectric material has been moved 

from the right hand side of the equation (associated with the inputs) to the left hand side 

(associated with our degree of freedom).  For a single mode of a one degree of freedom system 

it can be seen that the frequency of vibration associated with this degree of freedom is, 
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   (5.1-5) 

since the stiffness, capacitance and mass terms are now scalars.  The multi-modal frequencies of 

vibration are found from the solution of the eigenvalue problem, 

rCKKrMM PpTP
PSPS )()( 12 θθ++=+ω

−
   (5.1-6) 

In our model, solution of equation 5.1-6 gives us our bending frequencies of vibration.   
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5.2 EXPERIMENTAL SETUP 

System identification was performed from the frequency response function of the resonator.  

Bending type frequencies of vibration were identified in the frequency response functions by 

comparison to the analytical model results.   

 

OutputsInputs

Sine Input to
Actuator

Sensor Output

Resonator

Siglab 20-42

PC

 
Figure 12.  Frequency response measurement experimental setup 

A DSP Technology, Inc. SigLab™ Model 20-42 Dynamic Signal and System Analyzer was used 

to undertake a swept sine input to the actuator.  The output of the sensor was then compared to 

the actuator input and a frequency response function was generated by the signal analysis 

software in SigLab, which interfaces with Matlab®.  The sine input was stepped from 1 Hz to 20 

kHz.  An inter-step delay was utilized to improve the quality of the measurement through 
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minimization of the effects of transients.  At each step or frequency data point, 4 averages were 

taken.  The experimental setup is shown pictorially in Figure 12.   

 

5.3 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

The first eight displacement shape functions from the exact solution to the Bernoulli-Euler 

fixed-free beam were used to generate the mass and stiffness matrices of the beam in MathCAD.  

Figure 13 is a plot of these shape functions for a beam of unit length.  Similarly, the 

displacement of the shape functions has also been normalized.  The displacement shape 

functions used in the development of all the analytical models are orthogonal.  Hence, the 

matrices in the equations of motion, equation 5.1-6, used in finding the frequencies of vibration 

of the system are approximately diagonal.   
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Figure 13.  First five displacement mode shapes 
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Using the material properties for the PZT and the substrate layers, Table 3, the MathCAD model 

was used to find the first eight bending mode frequencies of vibration for the beams (Table 4).   

 

Table 3.  Table of material properties used in the model 
 

Property 
 

PZT-5H 
 

Aluminum 

Density (kg/m3) 7700 2800 
Elastic Modulus 50 GPa 79 GPa 

Thickness 125µm  125µm 
Length 2.1cm >2.1cm 
Width 2.3mm 2.3mm 

Relative Dielectric 
constant 3800  

Piezoelectric Strain 
coefficient -320x10-12  

 

The MathCAD data in Table 4 shows that the first five bending modes of vibration are predicted 

to be under 20kHz.  The SigLab used in experiment has a bandwidth of 20kHz and so was used 

for identification of the bending modes of the beams.   

Table 4.  Frequency of vibration from MathCAD 

Mode Number 

Calculated  

Frequency (Hz) 

1 269 

2 1687 

3 4723 

4 9255 

5 15300 

6 22850 

7 31920 

8 42500 
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The frequency response of beams PS XII and PS XVI to 10kHz to sinusoidal excitation from zero 

hertz to ten kilohertz is shown in Figure 14.  Although the two resonators, PS XII and PS XVI, 

are built to the same specification, it can be seen that there are differences in the frequency 

responses.  The differences that are apparent in magnitude of the response as well as location of 

peaks and troughs in response are due to repeatability problems in the manufacturing process.   

 

The experimental bending frequency is taken to be the largest peak in the frequency response in 

the vicinity of the analytically calculated frequency of vibration.  The analytical bending mode 

frequencies of vibration are compared to the experimental values in Table 5.  Two values are 

given for mode number 1 frequency of vibration for resonator PS XII and mode 3 of PS VIII 

because the peaks at those frequencies are of approximately equal magnitude.   
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Figure 14.  Frequency response for beams PS XII and PS XVI to 10kHz 
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Table 5.  Experimental and analytical bending mode frequencies 

Experimental Frequency (Hz) 
Mode 

Number 

Calculated 

Frequency 

(Hz) 
PS  

VIII 
PS  
XII 

PS  
XIII 

PS  
XIV 

PS  
XV 

PS 
XVI 

1 269 261 185/352 250.8 226.25 164.5 268 

2 1687 1609 1897 1740 1732 1781 2109 

3 4723 4655/4952 5530 4870 5074 4999 5238 

4 9255 9488 10770 9320 9311 11317 9998 

5 15300 16000 16130 15570 15487 15184 18445 

 

The frequency responses of the six resonators from zero hertz to ten kilohertz, and from ten 

kilohertz to the maximum frequency of the SigLab equipment are shown in Figure 15 to Figure 

18.   
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Figure 15.  Frequency response to 10kHz for PS VIII, PS XII and PS XIII 
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If we think of the frequency response in terms of poles and zeros in the transfer function from 

the actuator to sensor voltage, then it can be seen in Figure 15 that below about two kilohertz 

there is little difference between the resonators.  At approximately three kilohertz, there is a 

pole in PS XIII that is not apparent in the responses for PS XII and VIII.  In addition, the zero 

near the pole at five kilohertz appears after the pole in only the resonator PS XIII response.  

Looking at Figure 15 and Figure 16 we can see that this reversal occurs again in the pole and 

zero positions near 10kHz with a PS XIII zero before the pole.  Figure 16 also shows that the PS 

XII pole is at a higher frequency then the PS VIII and PS XIII poles. 
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Figure 16.  Frequency response from 10 to 20kHz for PS VIII, PS XII and PS XIII 

In Figure 16 the pole associated with mode 5 bending vibration appears at just below 16kHz for 

PS VIII and about 14kHz for PS XIII.  The zeros associated with these poles are at just over 

14kHz and at over 20kHz for PS XIII and PS VIII respectively.  From the PS XII response the 

peak between 15kHz and 16kHz is the best guess for the location of the fifth bending mode. 
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Figure 17.  Frequency response to 10kHz for PS XIV, PS XV and PS XVI 
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Figure 18.  Frequency response from 10 to 20kHz for PS XIV, PS XV and PS XVI 

Figure 17 shows that the poles and zeros associated with PS XVI are at slightly higher 

frequencies than poles and zeros of PS XIV and PS XV.  The flattened peaks in the response of 

PS XV suggest that the resonator has higher damping than the other two resonators.  This can 
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be seen especially when talking about mode 4 at about 9kHz (Figure 17) and mode 5 at about 

15kHz (Figure 18).  In keeping with the data for the response below 10kHz, mode 5 in PS XVI is 

at about 18kHz which is higher than the response for resonators PS XIV and PS XV, indicating 

that PS XVI is slightly stiffer than PS XIV and PS XV. 

 

5.4 SUMMARY 

The experimental and analytical frequencies are closer at the higher mode numbers.  For mode 

5, five out of six of the experimental values are within ten percent of the analytically calculated 

frequency of vibration.  For modes 2, 3 and 4, three quarters of the analytical values are within 

ten percent.  The lowest frequency mode, mode 1, has only half of the experimental frequency 

values within ten percent of the analytical values.   

 

The differences in stiffness and damping that can be observed within the batch of resonators 

built are due to problems in manufacturing identical resonators by hand. 
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6.0 TUNING RANGE 

6.1 ANALYTICAL MODEL 

Equations 5.1-5 and 5.1-6 are reproduced below, 

PS
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mm
ckk

mm
ckk

+
θ++

=
+

θθ++
=ω

−− 211

   (6.1-1) 

rCKKrMM PpTP
PSPS )()( 12 θθ++=+ω

−
   (6.1-2) 

In these two equations the product of the square of the electromechanical coupling and the 

inverse of the capacitance associated with the passive portion of the piezoelectric appears as a 

stiffness term in the equation for the frequency of vibration.  The three stiffness terms, i.e. the 

stiffness of the substrate, PZT and this coupling-capacitance product, combine in a parallel 

manner as shown in Figure 19.  The product of electromechanical coupling and capacitance is 

what allows tuning of the frequency of vibration.  Altering the electromechanical coupling or 

the capacitance of the passive portion of the piezoelectric can change the stiffness of the system 

and the frequency of vibration.  Since the coupling is set by the electrode placement and size, 

real-time changes in frequency are only possible through manipulation of the capacitance. 
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Figure 19.  Parallel stiffnesses in the resonator 

In this work the electromechanical coupling-capacitance product is altered by way of a 

capacitive shunt.  The shunt is placed in electrical parallel with the capacitance of the passive 

portion of the piezoelectric layer (see Figure 20).  Since the capacitances are in parallel, the total 

capacitance seen by the system is given by the sum of the shunt capacitance and the 

piezoelectric layer capacitance.  If the electrical shunt is left as an open circuit, the capacitance is 

simply that of the passive portion.  When the electrodes are short circuited, the capacitance of 

the passive portion is zero.  Equation 5.1-2 is reproduced below. 
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P
PP
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=

−1)(
0

0
     (6.1-3) 

If the capacitance, CP is zero, then the coupling-capacitance terms no longer appear in the 

stiffness terms in the equations of motion.  Thus, the short circuit and open circuit stiffness 

values define the limits of our tuning. 
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Figure 20.  Electrical shunting of the passive layer capacitance 

The third option is to apply a capacitor in parallel with the passive portion of the piezoelectric 

layer.  As shown in Equation 6.1-4 this produces a total electrical capacitance larger than the 

passive layer value.   

PTPPPP

PPT
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CCCC
TT

θθ>θθ∴

>+=
−− 11

)(
    (6.1-4) 

Since the reciprocal of this value appears in the equations, the effect of the shunt is to reduce the 

effect of the electromechanical coupling on the system. In effect, producing an intermediate 

“stiffness” that is between the open and short circuit stiffnesses.  Continuously varying the 

shunt capacitance therefore would, in principle, allow any frequency between the open and 

short circuit frequencies of vibration to be obtained.   

 

Maximizing the tuning range of the resonators can be achieved by either increasing the 

electromechanical coupling of the passive section of the PZT layer, reducing the capacitance of 

the passive section, or by both increasing the coupling and reducing the capacitance.   
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The dimensions of the piezoelectric and the shape and position of the electrode on the beam sets 

the electromechanical coupling and therefore the coupling is difficult to change after the beam 

has been built.  However, clever selection of the position and dimensions of the passive portion 

can maximize the value of the coupling for selected modes of vibration. 

 

The electromechanical coupling of the passive portion of the resonator, Equation 6.1-5, is the 

volume integral of the product of the displacement and voltage shape functions and the 

piezoelectric material constant, eT.  The displacement shape function varies in value both along 

the length of the beam and from mode to mode.  In theory, for a particular mode a position can 

be found on the beam that maximizes the value of the electromechanical coupling.  This 

position on the beam may be sub-optimal for maximizing the coupling for a different mode and 

so differences in tuning range from mode to mode should occur.  

∫=θ
PIEZO

PV
V

TT
r

P NeN     (6.1-5) 

As seen in Section 2.3 the piezoelectric material matrix of constants, eT, also governs the 

suitability of the shunt tuning method to differing types of vibration.  For PZT, the matrix of 

piezoelectric material constants is, 
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where the columns correspond to the following strains (IEEE Std 176-1987), 

[ ]123123332211 εεεεεε=ε    (6.1-7) 
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The rows in Equation 6.1-6 correspond to an applied charge on the surfaces defined relative to 

the poling direction.  The third row is the poling axis.  From equations 6.1-6 and 6.1-7 if a charge 

is applied on the surface perpendicular to the poling direction, we obtain equal strains in the 

two axes that are perpendicular to the poling direction as well as a strain in the poling direction.  

Different vibration types produce different strains in the piezoelectric material.  Using e a 

determination can be made of both the possibility of using the tuning method for different 

vibration types (from the population of the matrix), and the relative effectiveness of the tuning 

(from the relative values of the constants, eij). 

 

For example, if we electrode the z-surface (the surface perpendicular to the poling axis) 

application of a charge will produce strains in the three axis directions when the piezoelectric 

material is not constrained.  These three unconstrained strains will produce a longitudinal 

vibration device with three frequencies of vibration determined by the dimensions and material 

properties in the three axis directions.  The material properties determine the strain wave 

velocity and the dimensions in the axis directions the time for the strain wave to travel between 

the edges of the material.  If, as we have done in this work, we constrain one of the z-surfaces by 

gluing it to a substrate layer or by holding the lower surface at ground potential (which through 

the coupling afforded by the piezoelectric effect is equivalent), the applied charge causes a 

strain in the top surface that is different from the lower surface inducing bending in the 

transverse direction (rotations around both the x and y axes) and extension in the plane of the 

electrode.   

 

As shall be seen in the next section on feedback gain, the actuator and sensor portions of the 

resonator were chosen to minimize electrode area and required feedback gain.  The passive 
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portion of the resonator was then the leftover piezoelectric material surface area.  No attempt 

was made to optimize the tuning range by placing the passive electrode such that the 

electromechanical coupling is maximized and the capacitance is minimized.  The capacitance 

and electromechanical coupling for each bending mode was analytically calculated and used to 

determine the tuning range of our cantilever beams. 

 

6.2 EXPERIMENTAL SETUP 

 

 
Figure 21.  Tuning range measurement experimental setup 

Shunt tuning data was obtained using the SigLab setup shown in Figure 21.  The leads on the 

passive portion of the resonator were then connected either as an open circuit, a short circuit or 

 70



 

shunted with various capacitors.  Data was taken using the same settings for excitation level 

and inter-step delay used in the frequency response measurements.  Around the bending 

modes of vibration, additional data was taken with smaller frequency steps in the stepped sine 

input to improve the resolution of the data. 

 

6.3 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

The analytical model developed for the beams was used to calculate the change in frequency 

that would be obtained from our designs.  The tuning range shown in Table 6 is the difference 

between the frequency of vibration of the beam with and without the added stiffness provided 

by the shunt on the passive portion of the beams, i.e. the difference between the open and short 

circuit frequencies of vibration.   

 

Table 6.  Theoretical tuning ranges from analytical model 
 

Analytical Model 
Mode  

Number 
ω∆ (Hz) 

iω
ω∆ % 

1 0.62 0.002 

2 24.2 1.4 

3 33.4 0.71 

4 1.65 0.018 

5 15.9 0.1 

6 42.5 0.19 

7 4.44 0.014 

8 15.9 0.004 
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SigLab was used to determine the frequency response of the resonators below 20kHz.  The 

frequency difference in peak responses between the open and short circuit were used to 

determine the experimental tuning range.  Table 7 summarizes the experimentally observed 

and analytically calculated tuning range of the resonators.  In some cases the short circuit 

frequency was higher than open circuit frequency producing the negative values in Table 7.  

This result is counter to expectations since shorting the passive region reduces the stiffness of 

the resonator and, consequently, reduces the frequency of vibration of a particular mode.  Three 

of the six resonators, i.e. PS VIII, PS XIV and PS XV exhibited this behavior.  An explanation for 

this anomaly is given in the Summary section, Section 6.4.  

 

Table 7.  Comparison of tuning range from SigLab and analytical data 

Experimental Change in Frequency (Hz) Mode 
Number 

Analytical 
Frequency 

Change 
(Hz) 

PS  
VIII 

PS  
XII 

PS  
XIII 

PS  
XIV 

PS  
XV 

PS 
XVI 

1 0.62 0.3 2/2 0 0.25 -1.75 1.75 

2 24.2 -5.5 13 10 1 -5 12 

3 33.4 -3.6/-9 55 50 2 3.5 15 

4 1.65 -4 0 90 9 5 2 

5 15.9 -7 20 130 -21 20 43 
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Figure 22.  Changes in frequency response near mode 1, PS XVI 
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Figure 23.  Changes in frequency response near mode 2, PS XVI 

Figure 22 and Figure 23 show resonator PS XVI data obtained from SigLab for bending modes 

one and two.  Three switch conditions are shown; open circuit, short circuit and a 25nF 

capacitive shunt (to obtain an intermediate frequency of vibration).  The two figures show that 
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changing the switch condition on the passive portion of the resonator affects the frequency and 

magnitude of the peak in the frequency response.   

 

Figure 24 to Figure 26 show the effect of switching on the frequency response of beam PS XVI 

for modes three to five.  Changes in frequency and magnitude are readily observable in modes 

three and five.  There is not much observed change in the frequency or magnitude of mode four.  

From Table 7 the expected change in frequency is only approximately two hertz, indicating that 

for mode four the electromechanical coupling is weaker than, for example, coupling to mode 

three. 
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Figure 24.  Changes in frequency response near mode 3, PS XVI 
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Figure 25.  Changes in frequency response near mode 4, PS XVI 

 

1.835 1.84 1.845 1.85 1.855 1.86

x 104

-6

-5.5

-5

-4.5

-4

-3.5

Frequency, Hz

M
ag

ni
tu

de
, d

B

Open Circuit
Switch 4, 25nF Shunt
Short Circuit

 
Figure 26.  Changes in frequency response near mode 5, PS XVI 

Figure 27 to Figure 41 are show the changes in frequency response due to switching of the 

passive portion of resonators PS VIII, PS XII, PS XIII, PS XIV and PS XV.  In Figure 27 the 

change in frequency for resonator PS VIII from holding the passive portion open circuited to 
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short circuiting the passive layer is clear for mode 1.  The PS VIII mode 2 plot (Figure 27) shows 

how the switching does not always cause an observable shift in the peak response frequency.  

Since we define the frequency of the mode to be at the peak in the frequency response, the short 

circuit frequency is said to be higher than the open circuit frequency.   
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Figure 27.  Changes in frequency near modes 1 and 2, PS VIII 

Figure 28 shows the mode 3 frequency response and Figure 29 shows the mode 4 and 5 

responses for resonator PS VIII.  As in the mode 2 data, the data for modes 3 to 5 shows minimal 

shift in frequency or a short circuit frequency that is higher than the open circuit value.  
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Figure 28.  Changes in frequency near mode 3, PS VIII 
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Figure 29.  Changes in frequency near modes 4 and 5, PS VIII 
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Figure 30.  Changes in frequency near modes 1 and 2, PS XII 
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Figure 31.  Changes in frequency near modes 3 and 4, PS XII 
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Figure 32.  Changes in frequency near mode 5, PS XII 

Figure 30 shows the mode 1 and mode 2 frequency responses for resonator PS XII.  The change 

in frequency in mode 1 is approximately 2 Hz for both possible mode 1 responses at 185Hz and 

352Hz.  The change in frequency of the peak response of mode 2 is approximately 13Hz and can 

be clearly seen in the figure.  The 55Hz frequency change in mode 3 peak response is shown in 

Figure 31.  There is no apparent change in the frequency of vibration of mode 4 as seen in the 

frequency response plot.  Mode 5 tuning, as seen in Figure 32, is approximately 20Hz. 

 

Resonator PS XIII mode 1 data, Figure 33, shows differences in magnitude of response away 

from the resonance peak but no difference in the resonance peak frequency.  However, the 

Mode 2 data shows that there is a frequency shift of 10Hz as a result of switching between the 

open and short circuit condition on the passive layer.  Modes 3, 4 and 5 in resonator PS XIII 

(Figure 34 and Figure 35) are also equally well behaved showing frequency tuning of 50Hz, 

90Hz and 130Hz respectively.  In Figure 34 it can be seen that the peak in the frequency 
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response with the intermediate capacitive shunt is on occasion lower in frequency than the 

short circuit peak response frequency.   
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Figure 33.  Changes in frequency near modes 1 and 2, PS XIII 

 

4750 4800 4850 4900
-30

-29.5

-29

-28.5

-28

-27.5

-27

-26.5

-26

-25.5

-25

Frequency, Hz

M
ag

ni
tu

de
, d

B

PS XIII: Mode 3

Open Circuit
Switch 4, 25nF Shunt
Short Circuit

9200 9300 9400 9500
-39

-38.5

-38

-37.5

-37

-36.5

Frequency, Hz

M
ag

ni
tu

de
, d

B

PS XIII: Mode 4

Open Circuit
Switch 4, 25nF Shunt
Short Circuit

 
Figure 34.  Changes in frequency near modes 3 and 4, PS XIII 
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Figure 35.  Changes in frequency near mode 5, PS XIII 
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Figure 36.  Changes in frequency near modes 1 and 2, PS XIV 
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Figure 37.  Changes in frequency near modes 3 and 4, PS XIV 
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Figure 38.  Changes in frequency near mode 5, PS XIV 

Resonator PS XIV frequency response and tuning data can be seen in Figure 36 to Figure 38.  In 

Figure 36, the frequency response curves are smooth and the curves clearly shift to the left (and 

lower in frequency) as we move from the open circuit condition, to the capacitive shunt and to 
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short circuit.  The tuning range for resonator PS XIV modes 1 and 2 is 0.25Hz and 1 Hz 

respectively.  The mode 3 and mode 4 frequency response, Figure 37, is also quite smooth (for 

example in contrast with mode 2 response for resonator PS XV in Figure 39), and the tuning 

effect of switching can be seen.  The tuning range is not as high as was observed in PS XIII, 2Hz 

and 9Hz for modes 3 and 4 respectively versus 50Hz and 90Hz for PS XIII.  Figure 38 is the 

frequency response of resonator PS XIV for the three switch conditions; open circuit, short 

circuit and shunt with a 25nF capacitor.  The data shows that the peak in the frequency response 

is at a higher frequency when the resonator passive layer is short circuited than when the layer 

is held in the open circuit condition.   

 

The tuning data for resonator PS XV is shown in Figure 39 to Figure 41.  Figure 39 shows the 

mode 1 and mode 2 data.  The mode 1 open circuit resonance peak was chosen to be at 164.5Hz.  

Switching from open circuit to the capacitive shunt causes a reduction in magnitude of the 

response below the resonance peak.  This collapse is amplified when we short circuit the 

passive layer.  Consequently, the short circuit peak frequency is higher than the open circuit 

frequency.  Mode 2 data is quite noisy near resonance resulting in a higher short circuit than 

open circuit frequency.  The noisy nature of the data is also apparent in mode 3 and 4 data in 

Figure 40.  However, the tuning range for modes 3 and 4 are 3.5Hz and 5Hz with a short circuit 

frequency below the open circuit value.  The frequency response of mode 5 of resonator PS XV 

can be seen in Figure 41.  The tuning range for this mode is 20Hz.  As with the other modes, the 

resonance curves are not smooth. 

 

 83



 

1780 1800 1820
-15

-14

-13

-12

-11

-10

-9

Frequency, Hz
M

ag
ni

tu
de

, d
B

PS XV: Mode 2

160 165 170 175 180
-40

-35

-30

-25

Frequency, Hz

M
ag

ni
tu

de
, d

B

PS XV: Mode 1

Open Circuit
Switch 4, 25nF Shunt
Short Circuit

Open Circuit
Switch 4, 25nF Shunt
Short Circuit

 
Figure 39.  Changes in frequency near modes 1 and 2, PS XV 
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Figure 40.  Changes in frequency near modes 3 and 4, PS XV 
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Figure 41.  Changes in frequency near mode 5, PS XV 

 

6.4 SUMMARY 

The analytical model predicts that the passive portion of our resonators couples differently to 

the various bending modes.  This differential coupling is borne out in terms of differences in the 

tuning range as a percentage of the open circuit frequency of vibration.  The magnitude of the  

tuning ranges observed in experiment match the predicted values to within an order of 

magnitude with the observed value sometimes surpassing prediction and vice versa.  As was 

seen in Table 7, the experimental tuning range obtained from SigLab is negative for three of the 

resonators.  The open and short circuit frequencies of vibration are chosen to be the peak value 

in the frequency response near the analytically calculate bending mode frequency.  On occasion, 

due to the noisy nature of some of the frequency response data, using the peak value in the 

frequency response causes the short circuit frequency to be recorded as higher than the open 

circuit frequency.   
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An example of this result is shown in Figure 42 which shows the frequency response of 

resonator PS VIII at frequencies close to the analytically calculated frequency of vibration for 

bending mode two.  The bending mode two open circuit frequency of vibration is chosen, as 

indicated by arrow, to be at approximately 1580Hz.  Using the same technique - maximum 

response indicates the bending mode of vibration - the short circuit frequency is chosen to be at 

approximately 1586Hz.  Consequently, the tuning range is indicated as being –6Hz, a result 

contrary to expectation.   
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Figure 42.  Changes in frequency near mode 2, PS VIII 

Another source of variability in the experimental tuning data shown in Table 7 are the 

difficulties encountered in the manufacturing process.  Differences in the size; and therefore the 

frequency of operation and tuning range, of the PZT layers was inevitable since the PZT was cut 

by hand.  In addition, the substrate and PZT layers were joined in a clamping mechanism that 

on occasion allowed misalignment of the two layers.   

 86



 

 

7.0 FEEDBACK GAIN 

7.1 ANALYTICAL MODEL 

It is intended that the amplified sensor signal be fed back to the actuator to drive self-oscillation 

of the resonator.  For a resonator to operate at a particular vibration mode there are gain and 

phase requirements for the loop transfer function at the frequency of vibration.  The resonator 

will only operate at a frequency of vibration for which the magnitude of the loop transfer 

function is one and the phase an integer multiple of  (Gerber, 1985).  This holds true for all 

the different feedback schemes that may be utilized.  The equations developed in this section 

are concerned only with gain and ignore the phase relationship. 

o360

 

An evaluation of the amplification gain required could help give an indication of the feasibility 

of the designs and feedback techniques.  For a particular available gain, it may even be possible 

to predict the mode and frequency of vibration at which the system would operate. 

 

If the sensor voltage is used as the input to a feedback loop whose gain is G the voltage at the 

output (the actuator) is, 

SA Gvv =      (7.1-1) 

Then equation 5.1-4, reproduced below, 
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can be written as, 
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If there are no external forces applied to the beam then f is zero.  Making the substitution for the 

voltage on the sensor for the case where f is zero,  

rCGqCGrCKKrMM SSSASSSAPpTP
PSPS θθ+θ−θ+θ=θθ++++

−−− 11

)()()()( 1
&&  (7.1-4) 

which upon simplification is as below. 

SSSASSSSAPpTP
PSPS qCGrCGCCKKrMM

1211
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θ+θ=θ+θθ+θθ++++
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&&  (7.1-5) 

With the following product, 

SSS qCv
1−

=
′

     (7.1-6) 

a transfer function from the voltage, , to tip displacement can be developed for the system,  Sv ′

2111

)()(
)(

2 SSSSAPPP
PSPS

SA

S CGCCKKMMs
G

sv
sR

T

θ+θθ+θθ++++
θ+θ

= −−−′  (7.1-7) 

Equation 7.1-6 gives the system transfer function from the voltage on the sensor to the 

displacement variable, R(s), when there is a feedback gain G.   

 

Using Equation 5.1-1, reproduced below, 
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   (7.1-8) 

an equation for the actuator voltage of the system as a function of displacement can be written 

for the case where there is no charge accumulation ( ).  This gives the transfer function 

from displacement to actuator voltage as below, 

0=Aq
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A

C
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sv

θ= −1)(
)(
)(

    (7.1-9) 

Concatenating the systems defined by equations 7.1-7 and 7.1-9, 
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 (7.1-10) 

Equation 7.1-10 is the system transfer function from the voltage on the sensor to the actuator 

voltage.  In a resonator, whose characteristics are described by the system transfer function, the 

transfer function is required to have at least a value of unity at the frequency of resonator 

operation.  A feedback gain, G, can be found that would ensure that the transfer function has 

unit value at a particular resonant frequency.  This then would be the minimum feedback gain 

required for the resonator to operate at that particular frequency.  Varying the physical 

dimensions of the sensor and actuator would cause changes in the couplings and capacitances 

of the sensor and actuator portions.  Consequently, the effect of these changes on the gain can 

be determined. 
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7.2 RESULTS 

The cantilever beam resonator actuator is to be driven by the amplified voltage signal from the 

sensor.  For resonance to occur the amplifier gain must be sufficient to drive the resonator from 

the sensor signal.  This means that the gain must be high enough to overcome any losses in the 

electrical and mechanical parts of the resonator.  In addition, the loop phase has to be or 

some integer multiple of .   

o360

o360

 

Using Matlab® the feedback gain required to achieve this has been found.  Any design changes 

made to the sensor and actuator dimensions change four of the elements in the transfer function 

given for the resonator (equation 7.1-10).  These four elements are the electromechanical 

couplings of the sensor and actuator,  and , and the capacitances,  and . Sθ Aθ SC AC

 

Figure 43 shows the gain results obtained from the Matlab model.  The gain, G, required to 

make the magnitude of the loop transfer function equal to one is shown as a function of the 

normalized sensor and actuator lengths.  The actuator, in this plot and subsequent plots of the 

gain and actuator coupling, is located adjacent to the root of the beam.  The actuator length is 

varied from zero to the full beam length.  The sensor is located adjacent to the actuator and its 

length varies from the edge of the actuator to the full beam length.  This sensor and actuator 

placement corresponds to the layout in Figure 9.  The section of the plots where the normalized 

sensor and actuator lengths approach one is the region where no solution can be calculated 

from the model since the normalized sensor and actuator lengths must, at most, add up to the 

normalized beam length, one. 

 

 90



 

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Normalized Sensor Length
Normalized Actuator Length

G
ai

n

 
Figure 43.  Gain for bending mode 1 versus sensor and actuator dimensions 

From Figure 43 it can be seen that the lowest calculated gain is found when the actuator length 

is at least approximately half the beam length.  At the same time it is apparent that in this 

region, changes in sensor length do not seem to affect the magnitude as much as changes in 

actuator length do. 

 

The gain required for operation of the resonator is determined, in part, by the actuator authority 

and the magnitude of the voltage developed on the sensor portion of the PZT layer of the beam.  

Greater actuator authority means a lower voltage for a particular displacement of the beam.  It 

has already been shown that the actuator electromechanical coupling (with no force input), is 

proportional to the displacement of the beam, and thus, proportional to the actuator authority.  

Figure 44 shows how the magnitude of the electromechanical coupling changes as the actuator 

length is increased from a minimal value to the full length of the beam.  Also plotted in the 

figure is the displacement shape function.  
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Figure 44.   as a function of actuator length for bending mode 1 Aθ

From Figure 44, it is apparent that as actuator length grows from zero, there is a rapid increase 

in the magnitude of the authority the actuator has over bending mode one.  This increase is seen 

to diminish as the actuator length approaches full coverage of the beam.  Figure 43 shows that 

this rapid increase in authority occurs in tandem with the decrease in gain.  The diminishing 

increase in authority is exhibited in Figure 43 by the flattening of the gain curve.  Further 

increases in actuator authority beyond about one half beam coverage are offset by decreases in 

sensor output as the sensor shrinks.  Therefore, the optimum design point for minimum gain for 

bending mode one is an actuator that covers about half the beam.  

 

Figure 45 to Figure 52 show the corresponding results (as in Figure 43 and Figure 44) for modes 

two through five.  The first plot for each mode shows the required gain for resonance as sensor 

and actuator lengths are varied.  Each plot shows variations in gain as the actuator length 

changes from zero to the beam length.  It is interesting that for each mode there are bands of 
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high and low gain.  As the mode number increases there are more bands.  This pattern is not 

coincidental but depends strongly on the actuator coupling to any given mode.   

 

The second plot for each mode (following the gain plot) shows the actuator coupling value 

plotted as a function of actuator length normalized to the beam length.  This value is seen to 

vary.  Also shown in each plot is the mode shape itself (The actuator coupling is proportional to 

the second partial derivative of the displacement function with respective to the coordinate x, 

the axis along which the beam length is measured).   
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Figure 45.  Gain for bending mode 2 versus sensor and actuator dimensions 
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Figure 46.   as a function of actuator length for bending mode 2 Aθ
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Figure 47.  Gain for bending mode 3 versus sensor and actuator dimensions 
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Figure 48.   as a function of actuator length for bending mode 3 Aθ
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Figure 49.  Gain for bending mode 4 versus sensor and actuator dimensions 
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Figure 50.   as a function of actuator length for bending mode 4 Aθ
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Figure 51.  Gain for bending mode 5 versus sensor and actuator dimensions 
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Figure 52.   as a function of actuator length for bending mode 5 Aθ

Note that the regions in each gain plot that show the highest required gain correspond to the 

actuator lengths that have coupling factors of zero.  For example, Figure 51 shows that the gain 

required for resonance is largest at approximately 0.15, 0.4, 0.6 and 0.83 of the normalized 

length of the beam.  As can be seen in Figure 52, these correspond to points for which the 

electromechanical coupling, , is zero.  It can also be seen that these points are where the 

displacement shape functions have a gradient of zero.  The same characteristics can be observed 

for each set of figures, with high gain areas occurring when the electromechanical coupling of 

the actuator is low for each mode.  In the high gain bands, with the exception of the first mode, 

it is interesting to note that increasing the sensor length has a deleterious effect vis-à-vis 

minimizing gain.  This result is counterintuitive to expectations; it seems logical that a greater 

sensor area would produce a larger signal voltage and hence cause a lower gain requirement. 

Aθ
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7.3 SUMMARY 

The minimum feedback gain that ensures that the sensor to actuator voltage transfer function 

has at least unit magnitude is seen to depend mainly on the second partial derivative of the 

displacement function or mode shape.  Where the second derivative of the mode shape 

approaches zero the gain approaches maximal value.  This zero in the second derivative of the 

mode shape function corresponds to both the zero in the electromechanical coupling and a 

gradient of zero in the shape function.  Low feedback gain occurs as a consequence of having 

high coupling to the particular mode in question.  This combination of low feedback gain and 

high coupling makes a resonator more efficient at operating at a particular mode. 

 

This result was used in the design of our resonators.  The actuator length was set at 

approximately a quarter of the total beam length.  The electromechanical coupling, which is 

large when the mode shape is far from the high gain (low gradient) region of the displacement 

shape function, is highest for mode six at this length.  In descending order, the magnitude of the 

electromechanical coupling to other modes is mode eight, mode five, mode three, mode seven, 

mode two, mode four and, lastly, mode one.   
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8.0 REACTANCE AND RESONATOR OPERATING 
FREQUENCIES 

 
 

Impedance, resistance and capacitance of an electrical circuit determine the behavior of the 

circuit.  If the impedance, resistance and capacitance are known circuit properties, the behavior 

of the circuit at various frequencies can be determined by transforming the circuit properties 

into their equivalent impedance terms.  These impedance terms have real and imaginary parts.  

An electrical equivalent of the resonator characteristics (mass, stiffness, etc.) can be obtained 

and these terms transformed into impedance.   

 

The imaginary part of impedance is known as reactance and is important in resonator design.  

On a reactance versus frequency plot each point where the reactance equals zero (when the 

impedance is purely real) corresponds to a vibration mode.  When the resonator is placed in a 

driving circuit, such as the Pierce circuit configuration, the operational frequency of the 

resonator is close to the vibration mode frequency but in the positive reactance (or inductive) 

region.  The frequency of vibration shifts into this region due to the reactance that is added to 

the total electrical system by the addition of the Pierce circuit (Parzen, 1983).  

 

In this chapter we shall look at how the equations of motion developed for the resonator can be 

transformed into impedance terms.  The particular resonance requirements for a Pierce circuit 

shall be given in terms of the impedance terms developed.  The setups used to obtain the 
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reactance versus frequency behavior of the resonators and to operate the resonators shall then 

be shown.  The experimental reactance data from the resonators used in this work shall then be 

presented and the reactance and resistance of the actual operational points of the resonator 

using various circuit configurations shall be noted.  Lastly, a summary of the chapter is given. 

 

8.1 ANALYTICAL MODEL 

From the equations developed starting from equation 5.1-1 it can be seen that the product of 

electromechanical coupling and displacement is equivalent to charge in an electrical system.  So 

an electrical equivalent of the mechanical system can be obtained by the transformation, 

010 =+⇔=θ+θ q
C

qLrKrM &&&&     (8.1-1) 

where L is the inductance and C the capacitance of the system.  It has been assumed that the 

electromechanical coupling is not a function of time.  Therefore, the dynamic behavior of the 

system in equations 8.1-1 is unaffected by multiplication by the constant electromechanical 

coupling since the natural frequency of the system does not change.  From equation 8.1-1 above, 

an equation for the impedance of the system as a function of frequency can be written since the 

impedance of inductance, resistance and capacitance are respectively, 

C
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     (8.1-2) 

where ω  is the frequency variable.  The impedance for each mode modeled is then, 
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where j is the imaginary number.  The total impedance of the modeled modes of the system, ZT, 

is then, 

∑=
i iT ZZ

11
     (8.1-4) 
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Figure 53.  Pierce oscillator circuit configuration 

A plot of the imaginary part of impedance (or reactance, X) can then give an indication of 

possible frequencies of vibration of the system since the requirements for oscillation for the 

Pierce oscillator configuration in Figure 53 are (Frerking, 1978; Parzen, 1983), 

rm

rT

RXXg
XXXX

≥
=++=

21

21 0
   (8.1-5) 

where X1 and X2 are the reactances of the capacitors C1 and C2  in the circuit shown and Rr is the 

resistance of the resonator. gm is the gain of the amplifier in the feedback loop.  The subscripts r 

refer to the properties of the resonator.  The first equation gives the phase requirements and the 

second gives the gain requirements for operation of the oscillator.  The gain requirement is 

similar to that seen in the previous chapter.  
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Where the reactance and resistance of the resonator as a function of frequency are available the 

frequency of operation of the oscillator will be seen to be between the resonance and anti-

resonance frequencies of the resonator (Figure 54) where the resistance is small enough to be 

overcome by the gain of the amplifier.  

 

f

X
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Resonance frequencies

 
Figure 54.  Resonance and anti-resonance frequency points 

 

8.2 EXPERIMENTAL SETUP 

Impedance data for the resonators was taken using an Agilent 4294A Precision Impedance 

Analyzer (see Figure 55).  The resonators were in operational configuration with an inductor in 

line (or in series) with the sensor electrode.  A series inductor was used so that impedance data 

obtained would match the setup in the experiments conducted using the modified Pierce 

circuit.  Data obtained was for various series inductances and passive layer switch conditions.   
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Figure 55.  Impedance analysis experimental setup 

To obtain the operational frequency data an amplifier was placed in a feedback loop between 

the sensor and actuator (see Figure 56).  The output line of the amplifier was tied to both the 

actuator and a universal counter.  The gate on the counter was set to 0.1 seconds and the 

frequency of operation of the resonator was read from the display.  The amplifier input signal 

was obtained from the sensor electrode of the resonator.  Both the sensor and actuator 

electrodes were also attached to the inputs of an HP54603B–60Mhz digital oscilloscope. 
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Figure 56.  Operational frequency experimental setup 

Two different schemes were implemented with varying success for amplification of the sensor 

signal.  The first scheme was an amplifier with separate gain and phase adjustment (Figure 57 

and Figure 58).  The phase and gain adjustment is effected by potentiometers.  The circuit is 

connected to positive and negative voltage as well as ground and has seventeen components.  

The second scheme used a variation of the Pierce configuration used in crystal resonators as 

shown in Figure 60 and Figure 59.  The configuration used an inverter as an amplifier.  The 

inverter is a Texas Instruments hex inverter model number SN54HCU04.  C1 and C2 are 47pF 

capacitors and R is a 10k  biasing resistor.  The modified Pierce circuit is the simpler to 

implement, having only four components and requiring only positive voltage and ground 

connections.  Various inductors, L, were used in experiment.  The inductances ranged from a 

low value of 1mH to a high of 82mH. 

Ω
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Figure 57.  Electrical circuit with separate gain and phase adjustment 
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Figure 58.  Circuit diagram of the gain and phase adjustable amplifier 
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Figure 59.  The modified Pierce circuit 
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Figure 60.  Circuit diagram of the variant of the Pierce circuit used in the experiments 
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The effect of switching on operational frequency was also observed.  The operational frequency 

of the resonators was found to be above the bandwidth of SigLab.  Consequently verification of 

the tuning range and position of the bending mode had to be obtained by alternate means.   

 

Resonator frequency response data above the maximum frequency of the SigLab analyzer, i.e. 

20kHz, was obtained using the output of a Stanford Research Systems DS345 30MHz 

Synthesized function generator to drive the actuator of the resonator.  The sensor and actuator 

voltages were then measured using an HP54603B–60Mhz digital oscilloscope.  Data for various 

switch conditions was taken and the peaks in the response of the resonators determined using 

Matlab. 

 

8.3 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

8.3.1 Resonator PS VIII 

Using the amplifier with separate phase and gain adjustment circuits, the open circuit frequency 

was 37.693kHz and short circuit frequency varied between 37.684kHz and 37.686kHz.  This 

gives a tuning range between 6Hz and 9Hz.  The operating frequency observed when the 

resonator was driven in the modified Pierce circuit configuration by the inverter is shown in 

Table 8.  The operational frequency indicates that the resonator is operating near bending mode 

8.  

 

 

 

 107



 

Table 8.  Resonator PS VIII inverter driven tuning and operating frequencies in kHz 

Series Inductance 
Switch Condition 

4.7mH 9.4mH 82mH 

Open Circuit 37.43-37.46 36.02-36.08 16.58-16.64 

25nF Shunt 37.44-37.46 36.01-36.04 16.53-16.61 

Short Circuit 37.44-37.45 36.01-36.07 16.51-16.60 

Total Tuning .01-.02 .01-.07 .04-.13 

 

Using the function generator and digital oscilloscope, the open circuit frequency of the mode 

that the resonator was operating near is 38.21kHz. The 25nF shunt and short circuit frequency 

was 38.2kHz.  This 10Hz tuning is close to what is observed in operation with the modified 

Pierce circuit as shown in Table 8 and with the amplifier with separate gain and phase 

adjustment.  The experimentally observed tuning (10Hz at the low end, to 70Hz at the high end) 

is in close agreement with the approximately 16Hz analytically calculated as the tuning 

expected for bending mode 8 of the resonator.  With the 82mH series inductor the resonator is 

operating close to bending mode 5 and 6 for which the expected tuning is approximately 16Hz 

and 43Hz respectively.  The experimentally observed tuning of between 40Hz and 130Hz is 

within this range. 
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Figure 61.  Resistance and Reactance, resonator PS VIII with 4.7mH series inductor 
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Figure 62.  Resistance and Reactance, resonator PS VIII with 9.4mH series inductor 
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Figure 63.  Resistance and Reactance, resonator PS VIII with 82mH series inductor 

Figure 61, Figure 62 and Figure 63 show the open circuit reactance and resistance as a function 

of frequency for resonator PS VIII with a 4.7mH, 9.4mH and 82mH series inductor respectively.  

From the figures it can be seen that the operational frequency for all the series inductance cases 

shown in Table 8 are in the positive reactance or inductive region.  With the 4.7mH series 

inductor, the operational frequency was approximately 37.4kHz.  From Figure 61, the resistance 

is approximately 5kΩ  and the reactance less than 10kΩ  at this frequency.  With the 9.4mH 

series inductor, Figure 62 shows that the resistance and reactance at 36kHz, the operational 

frequency, are approximately 4k  and 10kΩ Ω  respectively.  With the 82mH series inductor, 

Figure 63, at the operational frequencies of between 16.51kHz and 16.64kHz the resistance is 

approximately 2kΩ  and the reactance is between approximately 4kΩ  and 6kΩ .  As will be 

seen with the other resonators, the resistance at the operational frequency when using the 

modified Pierce circuit is always below 10kΩ .  The reactance at the operational points is also 
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between a resonance and anti-resonance point on the reactance curve (see data in Figure 64 to 

Figure 66). 
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Figure 64.  R and X, full range, resonator PS VIII with 4.7mH series inductor 
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Figure 65.  R and X, full range, resonator PS VIII with 9.4mH series inductor 
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Figure 64 to Figure 66 show the resistance and reactance of resonator PS VIII with various series 

inductors between 5k  and 40k .  With the resonator driven by the modified Pierce circuit 

the operational frequency is expected to be found where the reactance of the resonator is 

positive or inductive.  For a series inductance of 4.7mH and 9.4mH (Figure 64 and Figure 65) the 

inductive regions of the reactance curves are from approximately 9kHz to 10kHz, 15kHz to 

20kHz, and 23kHz and 38kHz.  The minimum resistance of the resonator over all the inductive 

regions, in both cases, is found to be in the last inductive region (between approximately 23kHz 

and 38kHz) and it is in this region that the resonator operates, as indicated by the data in Table 

8.  The inductive regions are slightly different for resonator PS VIII with the 82mH series 

inductor.  As can be seen in Figure 66, the inductive regions are between approximately 9kHz 

and 10kHz, 15kHz and 17kHz, 20kHz and 24kHz, and 37kHz to over 40kHz.  The minimum 

resistance in these inductive regions is found between approximately 15kHz and 17kHz.  Again, 

as seen with the 4.7mH and 9.4mH series inductors, this is the region in which the resonator 

operates.   

Ω Ω
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Figure 66.  R and X, full range, resonator PS VIII with 82mH series inductor 

8.3.2 Resonator PS XII 

Table 9.  Resonator PS XII inverter driven tuning and operating frequencies in kHz 

Run 1 Run 2 

Series Inductance Series Inductance 
Switch  

Condition 
1mH 2mH 4.7mH 9.4mH 1mH 2mH 4.7mH 9.4mH 

Open Circuit 33.668 33.654 33.529 32.34-32.4 33.720 33.460 33.325 32.190 

25nF Shunt 33.594 33.578 33.453 32.212 33.626 33.372 33.233 32.088 

Short Circuit 33.577 33.564 33.434 32.188 33.623 33.357 33.207 32.060 

Total Tuning .091 .09 .095 0.212-0.152 .097 .103 .118 .130 
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No signal was observed when the amplifier with separate gain and phase adjustment were used 

to drive the resonator.  The tuning and operating frequencies of PS XII using the inverter as the 

amplifier are summarized in Table 9. 

 

Using the function generator and digital oscilloscope, the open and short circuit frequencies of 

the mode that the resonator operates on are 34.06kHz and 33.98kHz respectively.  This gives a 

tuning range of 80Hz, which is close to the tuning range when PS XII is operating.  The 

analytically calculated tuning is, as seen before with resonator PS VIII, approximately 16Hz.  

The tuning observed experimentally when resonator PS XII was driven using the inverter in the 

modified Pierce circuit is between approximately 90Hz and 212Hz.  All the experimentally 

observed tuning ranges and the analytically calculated tuning range are within an order of 

magnitude of each other.  
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Figure 67.  Resistance and Reactance, resonator PS XII with 1mH series inductor 
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Figure 67 is the reactance and resistance as a function of frequency for resonator PS XII with a 

1mH series inductor.  The range 33.5kHz to 34.5kHz covers the observed operational 

frequencies for the 1mH series inductors used in the experiment.  As expected the operational 

frequencies fall in the inductive region of reactance.  The maximum resistance at the frequencies 

of operation of resonator PS XII is approximately 5kΩ  at 33.6kHz.  The reactance is between 

5k  and 10kΩ .  Figure 68 and Figure 69 show the resistance and reactance data for a 2mH and 

4.7mH inductor in series with resonator PS XII.  The resistance and reactance values at the 

operational frequencies of the resonator with the 2mH and 4.7mH series inductors are similar to 

the values with the 1mH series inductor, i.e. less than 5k

Ω

Ω  for resistance and 10kΩ  for 

reactance. 
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Figure 68.  Resistance and Reactance, resonator PS XII with 2mH series inductor 
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Figure 69.  Resistance and Reactance, resonator PS XII with 4.7mH series inductor 
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Figure 70.  Resistance and Reactance, resonator PS XII with 9.4mH series inductor 

The resistance and reactance of resonator PS XII with a 9.4mH series inductor is shown in 

Figure 70.  The resonator is inductive at the operational frequencies with resistance less than 
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6k  and inductance less than 10kΩ Ω .  As was seen with resonator PS VIII, the reactance is 

between a resonance and anti-resonance point in the reactance curve.  
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Figure 71.  R and X, full range, resonator PS XII with 2mH series inductor 
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Figure 72.  R and X, full range, resonator PS XII with 4.7mH series inductor 
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Figure 73.  R and X, full range, resonator PS XII with 9.4mH series inductor 

The reactance and resistance curves for resonator PS XII with a 2mH, 4.7mH and 9.4mH series 

inductor are shown in Figure 71, Figure 72 and Figure 73 respectively.  The frequency range 

shown is between 5kHz and 40kHz.  The inductive regions of resonator PS XII for these three 

series inductance are similar: approximately 5kHz to 6kHz, 10kHz to 12kHz, 16kHz to 18kHz, 

around 19kHz, 20kHz to 23kHz, and 23kHz to 35kHz.  The operational frequency of the 

resonator PS XII (for all the series inductors used) is in between approximately 32kHz and 

33.72kHz.  This is in the last inductive region (approximately 23kHz to 35kHz).  As has been 

seen previously, this region has the lowest resistance magnitude of all the inductive regions.  

8.3.3 Resonator PS XIII 

Using the amplifier with separate gain and phase adjustment the open circuit operating 

frequency was between 34.31kHz and 34.304kHz.  Short circuit frequency was between 

34.303kHz and 34.309kHz for a tuning range of between 1Hz and 7Hz.  The analytically 

expected tuning range for PS XIII operating at mode 8 is approximately 16Hz.  The tuning 
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observed experimentally using the amplifier with separate gain and phase adjustment was 

within an order of magnitude of the analytical tuning range.   

 

Table 10 summarizes the operating frequency and tuning shown in operation of resonator PS 

XIII using an inverter as the amplifier in the modified Pierce circuit.  There is no tuning with the 

1mH series inductor and a frequency shift of 130Hz with the 2mH inductor.  The operational 

frequency is much higher than observed with the other resonators.  Contrary to expectations 

short circuit frequency is higher than the open circuit frequency.   

 

Table 10.  Resonator PS XIII inverter driven tuning and operating frequencies in kHz 

Series Inductance 
Switch Condition 

1mH 2mH 

Open Circuit 102.88 102.66 

25nF Shunt 102.879 102.70 

Short Circuit 102.88 102.79 

Total Tuning 0 -.13 

 

The reactance and resistance of resonator PS XIII with a 1mH series inductor is shown in Figure 

74.  At the operational frequency of the resonator, i.e. approximately 102.9kHz, the reactance 

and resistance are under 2k .  As expected the resonator operates inductively with the 

frequency of vibration between the resonance and anti-resonance frequencies.   

Ω

 

 119



 

100 100.5 101 101.5 102 102.5 103
-2

-1

0

1

2

3

4

Frequency, kHz

V
al

ue
 o

f R
es

is
ta

nc
e 

or
 R

ea
ct

an
ce

Resonator PS XIII: 1mH Series Inductance

Reactance, X (kΩ)
Resistance, R (kΩ)

 
Figure 74.  Resistance and Reactance, resonator PS XIII with 1mH series inductor 
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Figure 75.  Resistance and Reactance, resonator PS XIII with 2mH series inductor 

Figure 75 shows resistance and reactance of resonator PS XIII with a 2mH series inductor.  The 

operational frequency of the resonator is between 102.6kHz and 102.8kHz.  The reactance and 

resistance at these frequencies are below 2kΩ  and 5kΩ  respectively.  
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Figure 76.  R and X, full range, resonator PS XIII with 1mH series inductor 

As can be seen in Figure 76, resonator PS XIII with the 1mH series inductor is inductive in 

regions near approximately 15kHz, 20kHz, from 25kHz and 35kHz, and from approximately 

60kHz to 105kH e z.  Within these inductive regions, the resistance has the lowest magnitud

between 60kHz and 105kHz.  This low resistance magnitude region coincides with the 

operational frequency of the resonator with the 1mH series inductor.  Figure 77 shows 

resistance and reactance curves for resonator PS XIII with a 2mH series inductor.  The inductive 

regions with the 2mH series inductor are the same as was seen with the 1mH inductor with the 

exception of the last region.  PS XIII is inductive from slightly earlier, approximately 40kHz to 

105kHz.  Again the resistance has the smallest magnitude in this region and the frequency of 

operation of PS XIII with the modified Pierce circuit is within this region.   
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Figure 77.  R and X, full range, resonator PS XIII with 2mH series inductor 

8.3.4 Resonator PS XIV 

Using the amplifier with separate gain and phase adjustment the open circuit frequency was 

between 37.754kHz and 37.757kHz.  The 25nF shunt operating frequency was 37.742kHz and 

short circuit frequency was 37.741kHz giving a frequency shift of between 13Hz and 16Hz.  This 

gives very good agreement with the analytically calculated tuning range of 16Hz for bending 

mode 8.  

 

Table 11 summarizes the data obtained when using the inverter in the modified Pierce circuit to 

drive the resonator.  With the 1mH and 2mH series inductors there was very little change in 

frequency from open to short circuit, 4Hz and –3Hz respectively.  There was no frequency 

change with the 4.7mH and 9.4mH inductors.  

 

 

 122



 

Table 11.  Resonator PS XIV inverter driven tuning and operating frequencies in kHz 

Series Inductance Switch  

Condition 1mH 2mH 4.7mH 9.4mH 

Open Circuit 37.691 37.655 37.562 37.204 

25nF Shunt 37.687 37.656 37.561 37.203 

Short Circuit 37.687 37.658 37.562 37.204 

Total Tuning .004 -.003 0 0 

 

The peak in the open circuit frequency response was found to be at 38.06kHz using the function 

generator and digital oscilloscope.  With the 25nF shunt the peak in the response was at 

38.04kHz and short circuit frequency peak was 38kHz.  This gives a frequency shift of 60Hz; 

however, this shift in frequency was not observed in the actual operation of the resonator.   

 

The operational frequency of resonator PS XIV driven by the inverter in the modified Pierce 

circuit configuration varies from 37.2kHz with a 9.4mH series inductor to approximately 

37.7kHz with a 1mH inductor.  Figure 78 shows that the resistance of the resonator is 

approximately 10kΩ  at 37.7kHz range and the reactance is positive and approximately 10kΩ  

as well.  The 2mH series inductor data, Figure 79, is similar to the 1mH data; the resistance and 

reactance are both approximately 10kΩ .   
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Figure 78.  Resistance and Reactance, resonator PS XIV with 1mH series inductor 
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Figure 79.  Resistance and Reactance, resonator PS XIV with 2mH series inductor 
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Figure 80.  Resistance and Reactance, resonator PS XIV with 4.7mH series inductor 
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Figure 81.  Resistance and Reactance, resonator PS XIV with 9.4mH series inductor 

With 4.7mH series inductance, Figure 80, and 9.4mH series inductance, Figure 81, the 

inductance and resistance at the operational frequencies is approximately 10k .  In Figure 78 Ω
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to Figure 81 it can be seen that increasing the series inductance causes a reduction in the 

magnitudes of both the reactance and resistance over the frequency range 37kHz to 38kHz.  All 

the operational points of the resonator are in the inductive region between a resonance and anti-

resonance point with low resistance.   
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Figure 82.  R and X, full range, resonator PS XIV with 1mH series inductor 
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Figure 83.  R and X, full range, resonator PS XIV with 2mH series inductor 
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Figure 84.  R and X, full range, resonator PS XIV with 4.7mH series inductor 

 

 127



 

5 10 15 20 25 30 35 40
-100

-80

-60

-40

-20

0

20

40

60

80

100

Frequency, kHz

V
al

ue
 o

f R
es

is
ta

nc
e 

or
 R

ea
ct

an
ce

Resonator PS XIV: 9.4mH Series Inductance

Reactance, X (kΩ)
Resistance, R (kΩ)

 
Figure 85.  R and X, full range, resonator PS XIV with 9.4mH series inductor 

Resonator PS XIV resistance and reactance curves from 5kHz to 40kHz for 1mH, 2mH, 4.7mH 

and 9.4mH series inductors are shown in Figure 82, Figure 83, Figure 84 and Figure 85 

respectively.  The inductive regions are the same for all the inductance cases: 16kHz to 19kHz, 

and 22kHz to 38kHz.  The frequency of operation of resonator PS XIV for all inductance cases in 

the modified Pierce configuration spans the frequencies from approximately 37.2kHz to 

37.7kHz.  These frequencies are within the higher of the two inductive regions of resonator PS 

XIV and, as can be seen in Figure 82 to Figure 85 , coincide with the lowest resistance 

magnitudes.  

8.3.5 Resonator PS XV 

Using the amplifier with separate gain and phase adjustment the open circuit frequency of 

operation was 20.505kHz to 20.506kHz.  The 25nF shunt operating frequency was 20.492kHz to 

20.495kHz.  The short circuit frequency of operation was 20.496kHz to 20.498kHz.  This gives a 

total tuning of between 7Hz and 10Hz.  Frequencies near 20.5kHz correspond to mode 6 
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operation of the resonator.  The analytically calculated tuning range for bending mode 6 is 

approximately 43Hz.  The experimentally observed tuning range is therefore within an order of 

magnitude of the analytical tuning value.  

 

The frequency and tuning when the resonator was driven by an inverter in the modified Pierce 

circuit is summarized in Table 12.  The maximum tuning observed was 80Hz with the resonator 

operating at 312.9kHz.  There was little to no tuning with series inductance of 2mH and higher.   

 

Table 12.  Resonator PS XV inverter driven tuning and operating frequencies in kHz 

Series Inductance Switch  

Condition 1mH 2mH 4.7mH 9.4mH 

Open Circuit 312.9 32.428 32.38 32.279 

25nF Shunt 312.85 32.427 32.38 32.275 

Short Circuit 312.82 32.427 32.38 32.276 

Total Tuning .08 .001 0 .003 

 

With the function generator and digital oscilloscope, the peak open circuit and 25nF shunt 

responses near the operating frequency of the resonator were at 32.54kHz.  The short circuit 

peak was at 32.535kHz, giving a frequency shift of 5Hz.  Operation at 32kHz corresponds to 

mode 7 vibration and the analytically calculated tuning range is 4Hz.  The 5Hz tuning observed 

using the function generator – oscilloscope combination, and the up to 3Hz observed in the 

modified Pierce configuration are, consequently, very close to the analytically calculated value.  
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Figure 86.  Resistance and Reactance, resonator PS XV with 1mH series inductor 

Figure 86 shows that the magnitude of the resistance and reactance is less than 3kΩ  at the 

operating frequency of resonator PS XV with a 1mH series inductor.   
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Figure 87.  Resistance and Reactance, resonator PS XV with 2mH series inductor 
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Figure 88.  Resistance and Reactance, resonator PS XV with 4.7mH series inductor 
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Figure 89.  Resistance and Reactance, resonator PS XV with 9.4mH series inductor 

The data for reso ure 

87 to Figure 89.  The resistance and reactance magnitudes are less than 10k  at the frequency 

of operation.  As was seen in the data for resonator PS XIV, increasing the series inductance 

nator PS XV with a 2mH, 4.7mH and 9.4mH series inductor is shown in Fig

Ω
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causes reductions in the magnitude of both the reactance and resistance.  The operational 

frequencies are all in the inductive region of the impedance curve.   
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Figure 90.  R and X, 5kHz to 100kHz, resonator PS XV with a 1mH series inductor 
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Figure 91.  R and X, 100kHz to 320kHz, resonator PS XV with a 1mH series inductor 

 132



 

5 10 15 20 25 30 35 40
-100

-80

-60

-40

-20

0

20

40

60

80

100

Frequency, kHz

V
al

ue
 o

f R
es

is
ta

nc
e 

or
 R

ea
ct

an
ce

Resonator PS XV: 2mH Series Inductance

Reactance, X (kΩ)
Resistance, R (kΩ)

 
Figure 92.  R and X, full range, resonator PS XV with 2mH series inductor 
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Figure 93.  R and X, full range, resonator PS XV with 4.7mH series inductor 
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Figure 94.  R and X, full range, resonator PS XV with 9.4mH series inductor 

The resistance and reactance curves for resonator PS XV in Figure 90 to Figure 94 show several 

regions of positive reactance.  Looking at the curves for the resonator with the 1mH series 

inductor, Figure 90 and Figure 91, we see that there are a multitude of inductive regions.  For 

frequencies below 100kHz the lowest resistance in an inductive region is between 20kΩ  and –

18k  in the region from 82kHz to 95kHz.  Above 100kHz the lowest resistance values in an 

gions are between 2k  and –10k

Ω

inductive re Ω Ω  in the region from 170kHz to 310kHz. 

 

For the 2mH, 4.7mH and 9.4mH series inductances, the positive reactance region between 

approximately 29kHz and 33kHz is where the magnitude of resistance is at a minimum.  The 

operating frequencies of between 32.4kHz and 32.2kHz fall in this region. 

8.3.6 Resonator PS XVI 

Using the amplifier with separate gain and phase adjustment to drive the resonator the open 

circuit frequency of operation was 40.227kHz, the 25nF shunt frequency was 40.221kHz and the 
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short circuit frequency was 40.226kHz.  This is a frequency shift of about 1Hz.  These 

frequencies correspond to bending mode 8 operation of resonator PS XVI.  The expected tuning 

range is 16Hz. 

 

The data obtained when driving resonator PS XVI using the inverter driven modified Pierce 

circuit is shown in Table 13 and Table 14.  The frequency shift observed is between 18Hz for 

switching on mode 6 (18kHz) and 229Hz for mode 8 switching.  The analytically calculated 

tuning range is approximately 43Hz for mode 6 and 16Hz for mode 8.  The tuning observed 

of magnitude of the expected frequency shift. 

Table 13.  Resonator PS XVI inverter driven tuning and operating frequencies in kHz, run 1 

using both amplifier schemes is within an order 

 

Series Inductance Switch  

Condition 1mH 2mH 4.7mH 9.4mH 14.1mH 82mH 

Open Circuit 39.535 39.495 39.378 35.749 35.086 18.767 

25nF Shunt 39.480 39.439 39.331 35.560 34.940 18.744 

Short Circuit 39.470 39.429 39.322 35.520 34.906 18.740 

Total Tuning .065 .066 .056 .229 .180 .027 

 

The open circuit, 25nF shunt and short circuit peaks in frequency response using the digital 

oscilloscope and frequency generator were 40.115kHz, 40.03kHz and 40.025kHz respectively.  

This gives a tuning range of 90Hz, which is comparable to the range observed during the 

operation of 

 

the resonator using an inverter as the amplifier and the analytical tuning range.   
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Table 14.  Resonator PS XVI inverte perating frequencies in kHz, run 2 

Series Inductance 

r driven tuning and o

Switch  

Condition 82mH1mH 2mH 4.7mH 9.4mH 14.1mH  

Open 17 39.568 39.446 23 12 02-18 3 Circuit 39.6 35.8 35.2 18.8 .79

25nF 56 39.513 39.398 34 60 71-18 1 Shunt 39.5 35.6 35.0 18.7 .78

Short Circuit 39.545 39.501 39.389 35.597 35.025 18.765-18.775 

Total Tuning .072 .067 .057 .226 .187 .018-.037 

 

Figure 95 and Figure 96 show the measured resistance and reactance as a function of frequency 

for resonator PS XVI with a 1mH and 2mH series inductor, respectively, between 39kHz and 

40kHz.  The operational frequency with the 1mH inductor is between approximately 39.47kHz 

and 39.62kHz.  Over this range, the maximum reactance and resistance of resonator PS XVI is 

just less than 10k .  The operational frequency, reactance and resistance ranges of the 

resona he 2mH inductor are appr  to 39.57kHz and 5k  to 10k

Ω

Ω Ω  tor with t oximately 39.43kHz

for both resistance an tanc

 

d reac e.   
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Figure 95.  Resistance and Reactance, resonator PS XVI with 1mH series inductor 
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Figure 96.  Resistance and Reactance, resonator PS XVI with 2mH series inductor 
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The measured resistance and reactance with 4.7mH and 9.4mH series inductors is shown in 

Figure 97 and Figure 98 respectively.  The 4.7mH series inductor operational frequency range is 

39.32kHz to 39.45kHz.  The reactance is between 5kΩ  and 10kΩ  over this range.  The 

resistance is approximately 5k .  With the 9.4mH series inductor the operational frequency 

range of resonator PS XVI over the two test runs and different switch conditions is between 

35.52kHz and 35.82kHz.  The measured resistance, as can be seen in Figure 98, is less than 5k

Ω

Ω  

and does not change much between 39kHz and 40kHz.  The measured reactance is between 

5k  and 10k .  

 

Ω Ω
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Figure 97.  Resistance and Reactance, resonator PS XVI with 4.7mH series inductor 
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Figure 98.  Resistance and Reactance, resonator PS XVI with 9.4mH series inductor 

Figure 99 is the 14.1mH series inductor measured resistance and reactance data.  During the 

data acquisition the measurement bridge in the impedance analyzer was unbalanced producing 

data in M  (three orders of magnitude different than the other data obtained); the data may 

not be valid.  In general, the same trend in the data is observed.  The reactance data is at a 

higher value at 39kHz gradually reducing in value to 40kHz.  Over the same range the 

resistance approaches zero from below.   

 

In the data in Figure 95 to Figure 98 the data follows the same trends that were seen in data 

from resonators PS XIV and PS XV.  As the series inductance is increased, the magnitude of the 

resistance and reactance reduces over the frequency range shown, which is near the operational 

frequency.  In a n a 

Ω

ddition, all the operational points are inductive (positive reactance) betwee

resonance and anti-resonance point with low resistance and reactance magnitudes.   
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Figure 99.  Resistance and Reactance, resonator PS XVI with 14.1mH series inductor 
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Figure 100.  Resistance and Reactance, resonator PS XVI with 82mH series inductor 

With the 82mH series inductor the frequency of operation of the resonator ranged from 

18.74kHz to approximately 18.80kHz.  As can be seen in Figure 100, the resistance at these 

frequencies is approximately 2k .  The reactance is less than 4Ω kΩ .   
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Figure 101.  R and X, full range, resonator PS XVI with 1mH series inductor 
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Figure 102.  R and X, full range, resonator PS XVI with 2mH series inductor 
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Figure 103.  R and X, full range, resonator PS XVI with 4.7mH series inductor 
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Figure 104.  R and X, full range, resonator PS XVI with 9.4mH series inductor 
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Figure 105.  R and X, full range, resonator PS XVI with 82mH series inductor 

Figure 101 to Figure 105 show the resistance and reactance of resonator PS XVI from 5kHz to 

45kHz with 1mH, 2mH, 4.7mH, 9.4mH and 82mH series inductors.  Data for the resonator with 

14.1mH series inductance is not shown due to the lack of validity of the values for reactance and 

resistance obtained from the impedance analyzer.  In Figure 101, Figure 102, Figure 103 and 

Figure 104 the resonator is inductive over the same frequency ranges: approximately 18kHz to 

21kHz, 23kHz to 36kHz, and 37 to 40kHz.  Over these inductive ranges there are two regions 

with low resistance magnitudes.  These are near 36kHz and 40kHz.  The magnitude of the 

resistance near 36kHz is slightly lower than that at 40kHz – about 1kΩ  less - but the resonator 

does not operate at the lower resistance operating point until the series inductance is at least 

9.4mH.  Figure 105 shows the resistance and reactance of resonator PS XVI with an 82mH series 

inductor.  The kHz and inductive regions are approximately between 17kHz and 19kHz, 21

24kHz, 36kHz and 37kHz, and above 40kHz.  The resistance has the lowest magnitude in the 

region between 17kHz and 19kHz, which contains the operating point of resonator PS XVI with 

an 82mH series inductor. 
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8.4 SUMMARY 

The amplifier circuit with the separate gain and phase adjustment was able to drive five out of 

six of the resonators.  Of those five that were successfully driven, two operated at a different 

mode than was observed with the modified Pierce circuit.  When the resonators operated at the 

same mode using both amplifier schemes, the frequency was alway higher when the driver 

was the amplifier circuit with separate gain and phase adjustment.  The differences in 

frequencies were 60Hz (resonator PS XIV), 250Hz (resonator VIII), and 700Hz (resonator PS 

XVI).   

 

The resonators were all driven by an inverter in the modified Pierce circuit at frequencies (in 

most cases) above 30kHz

s 

.  The reactance at the operational frequencies was always positive.  

Positive reactance corresponds to a e and anti-resonance frequency.  

With the inverter in the Pierce configuration this is the region in which the resonator is expected 

to operate.  The magnitude of the resistance and reactance at the operational point of the 

resonators in all cases was below 10k

 point between a resonanc

Ω .  The operational frequency was also found to be not 

only in a region of positive reactance but also in the one region that had the lowest overall 

resistance.  The shunt tuning concept was found to be compatible with our modified Pierce 

amplifier configuration with tuning ranges that were of the same magnitude as that observed 

through SigLab, the frequency generator-oscilloscope combination (for frequencies above 

20kHz) and the other resonator operational configuration.   
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9.0 CONCLUSIONS AND FUTURE WORK 

9.1 CONCLUSIONS 

This work investigated tunable piezoelectric resonators.  Firstly, the techniques used in the 

implementation of resonators in general were introduced.  The importance of piezoelectricity 

and piezoelectric materials to the area of resonators was illustrated.  The results of a survey of 

various crystalline and non-crystalline piezoelectric materials were given.  The piezoelectric 

material classes were then introduced and the i fluence of the piezoelectric strain matrices, by 

which the mate r ristics used in 

measuring the performance of resonators were given.  The different resonators were then 

categorized according to type; th  used.  The resonator design 

used in the work was then introduced and a single degree-of-freedom model developed.  The 

model was developed using the Hamiltonian of the electromechanical system and the bending 

mode shape functions for a cantilever beam.  This analytical model was then used in 

conjunction with experiment to look at our design from the standpoint of frequency of 

vibration; tuning; and feedback gain; and implementation.  From these four aspects of the 

design the following conclusions can be drawn: 

1. Tuning 

The analytical model showed that there would be differences, for a particular electrode pattern, 

in the tuning range of the various bending modes.  This was borne out by the experimental data 

obtained.  Experimental tuning data was obtained from SigLab; the resonator driven by a 

frequency generator with the response observed on a digital oscilloscope; and from the 

n

rials a e classified, on material strain illustrated.  Next the characte

en according to resonance mode
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observed change in operational frequency in the various implementation configurations 

employed.  The maximum difference between experimental and analytical tuning was, at most, 

one order of magnitude.  Lastly and most importantly, it has been demonstrated that the shunt 

tuning technique is compatible with classical resonator techniques, in particular, the Pierce 

cuit ation.   

nsion; and that the function is different for each of the bending modes 

 feedback gain were shown to exist at points where the 

he dimensions of the sensor and actuator.   

cir configur

2. Frequency of Vibration 

In general, there was very good agreement between the analytically calculated bending 

frequency and the frequency of vibration observed in the resonators used in experiment: 

approximately three quarters of the experimental frequencies of vibration are within 10% of the 

analytical value.  There were resonator-to-resonator differences in the experimentally observed 

frequency of vibration; attributable to the difficulties encountered in the manufacturing process. 

3. Feedback Gain 

The analytical model was used to show that the feedback gain is a function of sensor and 

actuator electrode dime

looked at.  Bands of high

electromechanical coupling approaches zero.  This is an intuitive result since low coupling 

would mean that the sensor signal would be small; and that the ability of the actuator to drive 

that particular mode would be low; therefore, the feedback gain would need to be high to 

overcome the effects of the low coupling.  The high feedback gain bands were seen to be a 

function of the actuator dimension.  These results from the analytical model were used in the 

design process to determine t

4. Implementation 

Two implementations of the resonator were shown.  These implementations were successful to 

varying degrees.  The more successful implementation of the resonator was in the modified 
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Pierce configuration.  In this configuration, using an inverter as the logic gate, all the resonators 

were driven at the higher bending modes (bending mode 5 and higher).  The operational 

frequency point in the Pierce configuration was found to be determined by the reactance and 

resistance of the resonator.  The operational frequency, in all cases, was in a region of positive 

reactance where the resonator operates inductively. The frequency of operation was in the 

inductive region that had the smallest resistance magnitude.  Less successful were the 

plifier which had separate gain and phase adjustment.  In all the implementations using the am

implementations there was varying success at using the switching technique to change the 

frequency of vibration.  The tuning range in the implementations varied from implementation-

to-implementation, resonator-to-resonator, and for the different series inductances applied to a 

single resonator (Table 15and Table 16).  In Table 15 and Table 16, the shaded cells indicate 

experiments that produced no signal.   

 

Table 15.  Comparison of tuning range from Pierce circuit operation and analytical data 

Experimental and Analytical Changes in Frequency (Hz) Series 
Inductance 

(mH) PS PS PS PS PS PS XVI VIII XII XIII XIV XV 
1  91, 97 (16) 0 4 (16) 8 65, 72 (16) 

2  90, 103 (16) -130 -3 (16) 1 (4) 66, 67 (16) 

4.7 10-20 (16) 95, 118 (16)  0 0 (4) 56, 57 (16) 

9.4 10-70 (16) 
130 (16) 

152-212,  
 0 3 (4) 229, 226 (16) 

14.1      180, 187 (16) 

82 40-130 (43)     27, 18-37 (43) 
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Table 16.  Com te gain and 
phas

imental and Analyt han n Fr ncy (H

parison of tuning range from operation with circuit with separa
e adjustment, and analytical data 

Exper ical C ges i eque z) 
 

PS 
VIII 

 P PS XVI PS 
XII 

PS
XIII 

PS 
XIV 

S 
XV 

Experimental 6-9   1-7 13-16 7-10 1 

Analytical 16 16 N/A 16 43 16 

 

9.2 FUTURE WORK 

or the tunable piezoelectric resonators to be useful in applications, the variability that was 

bserved in the tuning range and frequency of operation of the resonators needs to be reduced.  

The variabili

process.  New manufacturing techniques that would produce resonators that have closer 

characteristics need to be developed.  The problems with the current techniques are two: cutting 

the materials accurately, a gning th ers during gl  At en e aluminum 

substrate is cut with any precision.  A method to cut the PZT layer more accurately needs to be 

eveloped.  Cutting the PZT by hand gave resonators that were adequately similar but higher 

frequency resonators would, of necessity, need to be dimensionally smaller which would only 

exacerbate the disparity in the performance of the gluing 

F

o

ty was identified as being due to the difficulties encountered in the manufacturing 

nd ali e lay uing.  pres t, only th

d

the resonators.  In addition, during 

phase of manufacturing, a method to align the layers accurately and join them under pressure 

needs to be formulated.  Currently two plexiglass plates, between which the resonator is 

sandwiched, are forced together using four machine screws tightened by hand.  Some 

movement of the plates relative to each other is inescapable and produces some misalignment 

of the resonator layers. 
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The other issue that needs to be addressed is pre-selection of the frequency of operation during 

the design stage.  As has been seen, the resonator in the Pierce configuration operates in a 

positive reactance region with the smallest resistance magnitude.  For pre-selection of the 

operational frequency to be successful; therefore, we need to be able to manipulate the 

magnitude of the resistance near the bending mode that has been identified as the frequency of 

operation of the resonator.  The manipulation would involve ensuring that the lowest resistance 

magnitude while the resonator is inductive is at frequencies near the selected bending mode.  

Addressing the problems in manufacture and frequency pre-selection will have great influence 

on maturing the tunable piezoelectric resonator technology. 

 

 149



 

 

 

BIBLIOGRAPHY 

1. J. Ahn, S. Jun, D. Kim, G.Y. Yeom, J.B. Yoo, J. Lee and T. Sands, “Fabrication of 
Piezoelectrically Driven Micro-Cantilever using Pb(ZrTi)O3 Films”, Proceedings of the 12th 
IEEE International Symposium on Applications of Ferroelectrics, 2000, Vol. 2, pp 721-724, 2001. 

 

2. R.A. Bale, J.D. Maines and K.J. Palmer, “Frequency Hopping using SAW Oscillators”, 
Ultrasonics Symposium Proceedings, pp 248-250, 1975. 

 

3. S. Ballandras, S. Brasrour, N. Griffaton, J.F. Gelly and F. Lanteri, “Experimental and 
Theoretical Analysis of Silicon-Based Piezoelectric Transducers for Ultrasound Imaging”, 1st 
Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & 
Biology, pp 97-100, 2000. 

 

4. A. Baz and J. Ro, ”Vibration control of plates with active constrained layer damping”, Smart 
Materials and Structures, Vol. 5, No. 3, pp 272-280, 1996. 

 

5. S.P. Beeby, N. Ross and N.M. White, “Thick film PZT/Micromachined Silicon 
Accelerometer”, Electronics Letters, Vol. 35, No. 23, pp 2060-2062, 1999. 

 

6. S.P. Beeby and N.M. White, “Thick-film PZT-Silicon Micromechanical Resonator”, 
Electronics Letters, Vol. 36, No. 19, pp 1661-1662, 2000. 

 

7. F.P. Beer and E.R. Johnston, Jr., Mechanics of Materials, 2nd Edition; McGraw-Hill, Inc., 1992. 
 

8. H. Benaroya, Mechanical Vibration: Analysis, Uncertainties and Control, Prentice-Hall, Inc., 
1998. 

 

9. J.J. Bernstein, S.L. Finberg, K. Houston, L.C. Niles, H.D. Chen, L.E. Cross, K.K. Li and K. 
Udayakumar, “Micromachined High Frequency Ferroelectric Sonar Transducers”, IEEE 
Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 44, No. 5, pp 960-969, 
1997. 

 

10. A.R. Brown, G.M. Rebiez, “A Varactor-Tuned RF Filter”, IEEE Transactions on Microwave 
Theory and Techniques, Vol. 48, No. 7, pp 1157-1160, 2000. 

 

 150



 

11. I. Browning, J. Crabb and M.F. Lewis, “A SAW Frequency Synthesizer”, Ultrasonics 
Symposium Proceedings, pp.245-247, 1975. 

 

12. I. Browning and M.F. Lewis, “Theory of Multimoding in SAW Oscillators”, Ultrasonics 
Symposium Proceedings, pp 256-259, 1976. 

 
13. H.D. Chen, K.R. Udayakumar and L.E. Cross, “Development and Electrical Characterization 

of Lead Zirconate Titanate Thick Films on Silicon Substrates”, Proceedings of the 9th IEEE 
International Symposium on Applications of Ferroelectrics, 1994, pp 495-498, 1994. 

 

14. S. Chen, K. A. Zaki and R. G. West, “Tunable, Temperature-Compensated Dielectric 
Resonators and Filters”, IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 8, 
pp 1046-1052, 1990. 

 

15. D.L. DeVoe, “Piezoelectric thin film micromechanical beam resonators”, Sensor and Acutators 
A: Physical, Vol. 88, pp. 263-272, 2001. 

 

16. A. Dubey, G.S. Tyagi and G.P. Srivastava, “Magnetically Tunable Microstrip Resonator 
based on Polycrystalline Ferrite”, Electronics Letters, Vol. 37, No. 21, pp 1296-1297, 2001. 

 

17. M.-A. Dubois, P. Muralt, H. Matsumoto, V. Plessky, “Solidly Mounted Resonator Based on 
Aluminum Nitride Thin Film”, Proceedings of the IEEE Ultrasonics Symposium, 1998, Vol. 1, 
pp. 909- 912, 1998. 

 

18. M.E. Frerking, Crystal Oscillator Design and Temperature Compensation, Van Nostrand 
Reinhold Company, 1978. 

 

19. G. Gautschi, Piezoelectric Sensorics, Springer-Verlag, 2002. 
 

20. E.A. Gerber and A. Ballato (eds.), Precision Frequency Control, Vols. 1 and 2, Academic Press 
Inc., 1985. 

 

21. H.C. Materials Corporation: Piezoelectric Crystal Properties. Retrieved on the 16th of October 
2002 from http://www.hcmat.com/Piezo/Property/pro-table.htm. 

 

22. W. Hackenberger, Ferroelectric Materials for Actuation and Energy Storage, TRS Ceramics, Inc. 
Retrieved on the 5th of November 2002 from, 
http://www.darpa.mil/dso/thrust/md/Exoskeletons/presentations/mar_01_2000/hackenberger2.pdf. 

 

 151

http://www.hcmat.com/Piezo/Property/pro-table.htm
http://www.darpa.mil/dso/thrust/md/Exoskeletons/presentations/mar_01_2000/hackenberger2.pdf


 

23. N.W. Hagood, W.H. Chun and A. von Flotow, “Modelling of Piezoelectric Actuator 
Dynamics for Active Structural Control”, Proceedings AIAA/ASME/ASCE/ASC 31st Structures, 
Structural Dynamics and Material Conference, AIAA-90-1097-CP, pp. 2242-2256, 1990. 

 

24. N.W. Hagood and A. von Flotow, “Damping of Structural Vibrations with Piezoelectric 
Materials and Passive Electrical Networks”, Journal of Sound and Vibration, Vol. 146, No. 2, 
pp. 243-268, 1991. 

 
25. E. Hammerstad and O. Jensen, “Accurate Models for Microstrip Computer-aided Design”, 

IEEE MTT-S International Microwave Symposium Digest, pp 407-409, 1980. 
 

26. M.J. Hill, R.W. Ziolkowski and J. Papapolymerou, “A High-Q Reconfigurable Planar EBG 
Cavity Resonator”, IEEE Microwave and Wireless Components Letters, Vol. 11, No. 6, pp 255-
257, 2001. 

 

27. M. Hoffmann, H. Kuppers, T. Schnelller, U. Bottger, U. Schnakenberg, W. Mokwa and R. 
Waser, “A New Concept and First Development Results of a PZT Thin Film Actuator”, 
Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics, 2000, Vol. 
1, pp 519-524, 2001. 

 

28. IEEE Std 176-1987, IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics 
Engineers, 1987. 

 

29. W.S. Ishak, K. Chang, W.E. Kunz and G. Miccoli, “Tunable Microwave Resonators and 
Oscillators Using Magnetostatic Waves”, IEEE Transactions on Ultrasonics, Ferroelectrics and 
Frequency Control, Vol. 35, No. 3, pp 396-405, 1988. 

 

30. W.E. Kingery, E. Lense (eds), Ceramics and Civilization, Vol. III: High-Technology Ceramics – 
Past, Present and Future, American Ceramic Society, Inc., 1987 

 

31. M. Koch, N. Harris, A.G.R. Evans, N.M. White and A. Brunnschweiler, “Screen Printing of 
Thick Piezoelectric PZT Layers onto Silicon Micromachined Membranes”, IEEE Colloquium 
Recent Advances in Micromachining Techniques, Digest No. 1997/081, pp 2/1-2/3, 1997. 

 

32. M. Koch, N. Harris, A.G.R. Evans, N.M. White and A. Brunnschweiler, “A Novel 
Micromachined Pump based on Thick-Film Piezoelectric Actuation”, International Conference 
on Solid-State Sensors and Actuators, Transducers ’97, pp 353-356, 1997. 

 

33. S.S. Lee and R.M. White, “Self-Excited Piezoelectric Cantilever Oscillators”, 8th International 
Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Vol. 1, pp 417-420, 1995. 

 

 152



 

34. A. Mahdi, A. Khanifar and D.P. Howson, “Digital Switching of Mobile Radio Transmitter 
Cavity Resonators”, Microwaves, Antennas and Propagation, IEE Proceedings H, Vol. 137, No. 5, 
pp 321-324, 1990. 

 

35. W.P. Mason and R.N. Thurston (eds.), Physical Acoustics, Vol. XIII, pp 115-181, Academic 
Press, 1977. 

 

36. MIL-PRF-3098H. Performance Specification: Crystal Units, Quartz, General Specifications for, 
1997. 

 

37. F.A. Miranda, G. Subramanyam, F.W. Van Keuls, R.R. Romanofsky, J.D. Warner and C.H. 
Mueller, “Design and Development of Ferroelectric Tunable Microwave Components for 
Ku- and K-Band Satellite Communication Systems”, IEEE Transactions on Microwave Theory 
and Techniques, Vol. 48, No. 7, pp 1181-1189, 2000. 

 

38. P. Muralt, D. Schmitt, N. Ledermann, J. Baborowski, P.K. Weber, W. Steichen, S. Petitgrand, 
A. Bosseboeuf, N. Setter and P. Gaucher, “Study of PZT Coated Membrane Structures for 
Micromachined Ultrasonic Transducers”, 2001 IEEE Ultrasonics Symposium, Vol. 2, pp 907-
911, 2001. 

 

39. C.T.-C. Nguyen, “Frequency-Selective MEMS for Miniaturized Low-Power Communication 
Devices”, IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, pp 1486-1503, 
1999. 

 

40. D.E. Oates and G.F. Dionne, “Magnetically Tunable Superconducting Resonators and 
Filters”, IEEE Transactions on Applied Superconductivity, Vol. 9, No. 2, pp 4170-4175, 1999. 

 

41. T.E. Parker and J.P. Sage, “A SAW Oscillator using Two Acoustic Paths”, Ultrasonics 
Symposium Proceedings, pp 243-247, 1976. 

 

42. B. Parzen, A. Ballato, Design of Crystal and Other Harmonic Oscillators, J. Wiley & Sons, Inc., 
1983.  

 

43. P.K. Petrov and N. M. Alford, “Tunable Dielectric Resonator with Ferroelectric Element”, 
Electronics Letters, Vol. 37, No. 17, pp 1066-1067, 2001. 

 

44. B. Piekarski, D. DeVoe, M. Dubey, R. Kaul and J. Conrad, “Surface micromachined 
piezoelectric resonant beam filters, Sensors and Actuators A: Physical, Vol. 91, pp 313-320, 
2001. 

 

 153



 

45. Y.M. Poplavko, Y.V. Prokopenko, V.I. Molchanov and A. Dogan, “Frequency-Tunable 
Microwave Dielectric Resonator”, IEEE Transactions on Microwave Theory and Techniques, Vol. 
49, No. 6, pp 1020-1026, 2001. 

 

46. G.A. Racine, P. Muralt and M.A. Dubois, “Flexural-standing-wave elastic force motor using 
ZnO and PZT thin film on Micromachined silicon membranes for wristwatch applications”, 
Smart Materials and Structures, Vol. 7, No. 3, pp 404-416, 1998. 

 

47. S.S. Rao, Mechanical Vibrations, 2nd Edition; Addison-Wesley, 1990. 
 

48. C.Z. Rosen, B. V. Hiremath and R. Newnham (eds.), Piezoelectricity, American Institute of 
Physics, 1992. 

 

49. B. Satish, K. Sridevi and M.S. Vijaya, “Study of piezoelectric and dielectric properties of 
ferroelectric PZT-polymer composites prepared by hot-press technique”, Journal of Physics 
D: Applied Physics, Vol. 35, No. 16, pp 2048-2050, 2002. 

 

50. C.B. Saw, P.M. Smith, P.J. Edmonson and C.K. Campbell, “Mode Selection in a Multimode 
SAW Oscillator using FM Chirp Mixing Signal Injection”, IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, Vol. 35, No. 3, pp 390-395, 1988. 

 

51. R.C. Smythe, R. C. Helmbold, G.E. Hague and K. A. Snow, “Langasite, Langanite, and 
Langatate Bulk-Wave Y-Cut Resonators”, IEEE Transactions on Ultrasonics, Ferroelectric,s and 
Frequency Control, Vol. 47, No. 2, pp 355-360, 2000. 

 

52. Q. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore, “Thin-Film Bulk 
Acoustic Resonators and Filters Using ZnO and Lead-Zirconium-Titanate Thin Films”, IEEE 
Transactions on Microwave Theory and Techniques, Vo. 49, No. 4, pp 769-778, 2001. 

 

53. W.C. Tang, T-C. H. Nguyen and R.T. Howe, “Laterally Driven Polysilicon Resonant 
Microstructures”, IEEE Proceedings on Micro Electro Mechanical Systems, ‘An Investigation of 
Micro Structures, Sensors, Actuators, Machines and Robots’, pp 53-59, 1989. 

 

54. E. Venkatragavaraj, B. Satish, P.R. Vinod and M. S. Vijaya, “Piezoelectric properties of 
ferroelectric PZT-polymer composites”, Journal of Physics D: Applied Physics, Vol. 34, No. 4, 
pp 487-492, 2001. 

 

55. J.R. Vig, “Quartz Crystal Resonators and Oscillators for Frequency Control and Timing 
Applications: A Tutorial”, Rev. 8.5.1.2, AD-M0001251, 2001. 

 

 154



 

56. F.J. von Preissig, H. Zeng, E.S. Kim, “Measurement of piezoelectric strength of ZnO thin 
films for MEMS applications”, Smart Materials and Structures, Vol. 7, No. 3, pp. 396-403, 1998. 

 

57. H. Xu, E. Gao and Q.Y. Ma, “Active Tuning of High Frequency Resonators and Filters”, 
IEEE Transactions on Applied Superconductivity, Vol. 11, No. 1, pp 353-356, 2001. 

 
58. M. Yamaguchi, K. Hashimoto, R. Nanjo, N. Hanazawa, S. Ttsutsumi and T. Yonezawa, 

“Ultrasonic Properties of PZT Thin Films in UHF-SHF Ranges Prepared by Sol Gel 
Method”, IEEE International Frequency Control Symposium, pp 544-551, 1997. 

 
59. J.H. Yoo, S.M. Hwang, H.S. Yoon, H.S. Jeong, J.S. Kim and C.S. Yoo, “Piezoelectric 

Properties of PNW-PMN-PZT Ceramics for High Power Piezoelectric Transformer”, 
Proceedings of the IEEE Symposium on Applications of Ferroelectrics, 2000, Vol. 1, pp 495-498, 
2001. 

 

60. J. Yoon and C.T.-C. Nguyen, “A High-Q Tunable Micromechanical Capacitor with Movable 
Dielectric for RF Applications”, International Electron Devices Meeting Technical Digest, pp 
489-492, 2000. 

 

61. T. Yun, K. Chang and R.S. Tahim, “A Wideband Voltage-Tunable Dielectric Resonator 
Oscillator Controlled by a Piezoelectric Transducer”, Microwave Symposium Digest, IEEE 
MTT-S International, Vol. 3, pp 1435-1437, 2001. 

 

 155


	An Investigation Into The Design and Control of Tunable Piezoelectric Resonators
	Committee Membership Page
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION
	1.1 RESONATORS
	1.1.1 Resonator Techniques
	Figure 1. Simplified quartz crystal circuit diagram
	Figure 2. Butterworth-VanDyke equivalent circuit for crystal resonators
	Figure 3. Simplified piezoelectric resonator circuit

	1.2 OBJECTIVES OF THE WORK

	2.0 PIEZOELECTRICITY
	2.1 THE PIEZOELECTRIC EFFECT
	2.2 PIEZOELECTRIC MATERIALS
	2.2.1 Crystalline Piezoelectric Materials
	2.2.1.1 Quartz
	Figure 4. Crystal with crystallographic axes indicated
	Equation (2.2-1)

	2.2.1.2 Rochelle Salt
	2.2.1.3 Tourmaline
	Equation (2.2-2)

	2.2.1.4 Gallium Orthophosphate
	2.2.1.5 The CGG Group
	Table 1. Piezoelectric Properties of some single crystals of the CGG group

	2.2.1.6 Lithium Niobate and Lithium Tantalate
	2.2.1.7 Other single crystal compounds

	2.2.2 Non-crystalline Piezoelectric Materials
	2.2.2.1 Barium Titanate
	2.2.2.2 Bismuth Titanate family
	2.2.2.3 Tungsten Bronze family
	2.2.2.4 Perovskite Layer Structure Ferroelectrics
	2.2.2.5 Lead Zirconate Titanate (PZT)
	Equation (2.2-3)

	2.2.2.6 Aluminum Nitride
	2.2.2.7 Zinc Oxide
	2.2.2.8 PVDF

	2.3 PIEZOELECTRIC SYSTEMS, CLASSES AND MATERIAL STRAINS
	2.3.1 Piezoelectric Systems and Classes
	Equation (2.3-1)
	Equation (2.3-2)
	Equation (2.3-3)
	2.3.1.1 Orthorhombic System
	Equation (2.3-4)

	2.3.1.2 Tetragonal System
	Equation (2.3-5)

	2.3.1.3 Trigonal System
	Equation (2.3-7)
	Equation (2.3-6)

	2.3.1.4 Hexagonal System
	Equation (2.3-8)

	2.3.1.5 Cubic System
	Equation (2.3-9)


	2.3.2 Piezoelectric Strain Matrices and Induced Strains
	Table 2. Applied charges and induced strains




	3.0 RESONATORS AND OSCILLATORS AND THEIR CHARACTERISTICS
	3.1 RESONATOR CHARACTERISTICS
	3.1.1 Q
	Equation (3.1-1)
	Figure 5. Q Factor

	3.1.2 Stability
	3.1.2.1 Jitter
	3.1.2.2 Drift and Aging
	3.1.2.3 Temperature Stability


	3.2 TYPES OF RESONATORS AND OSCILLATORS
	3.2.1 Crystal Resonators and Oscillators
	Figure 6. Examples of shear, flexure and extensional vibration modes

	3.2.2 Atomic Resonators and Oscillators
	3.2.3 Microwave Resonators and Oscillators
	3.2.4 Electrical Circuits
	Figure 7. The basic electrical resonant circuit

	3.2.5 Mechanical and Electromechanical Resonators and Oscillators

	3.3 MODES OF RESONANCE OR OSCILLATION
	3.3.1 Bulk Acoustic Waves (BAW)
	Equation (3.3-1)
	Equation (3.3-2)
	Equation (3.3-3)

	3.3.2 Surface Acoustic Waves (SAW)
	3.3.3 Direct Electrical Coupling
	3.3.3.1 Microwave Cavity Modes
	3.3.3.2 Microstrip Lines
	Figure 8. Microstrip Line Oscillator - Ring Type


	3.3.4 Mechanical Vibration
	3.3.4.1 Transverse Vibration
	Equation (3.3-4)

	3.3.4.2 Torsional Vibration
	Equation (3.3-5)

	3.3.4.3 Axial Vibration
	Equation (3.3-6)

	3.3.4.4 Membrane Vibration
	Equation (3.3-7)

	3.3.4.5 Plate Vibration
	Equation (3.3-8)




	4.0 DESIGN AND MODELING
	4.1 DESIGN
	Figure 9. Plan view of the layout of the resonator
	Figure 10. Side view of the layout of the resonator

	4.2 MODELING OF THE DESIGNS
	4.2.1 One Degree of Freedom Systems
	4.2.1.1 Simple Model from the Beam Equation
	Equation (4.2-1)
	Equation (4.2-2)
	Equation (4.2-3)
	Equation (4.2-4)
	Figure 11. Width transformation in calculation of the centroid
	Equation (4.2-5)
	Equation (4.2-6)
	Equation (4.2-7)

	4.2.1.2 Shape Functions applied to the Hamiltonian of the Electromechanical System
	Equation (4.2-8)
	Equation (4.2-9)
	Equation (4.2-10)
	Equation (4.2-11)
	Equation (4.2-12)
	Equation (4.2-13)
	Equation (4.2-14)
	Equation (4.2-15)
	Equation (4.2-16)
	Equation (4.2-17)
	Equation (4.2-18)
	Equation (4.2-19)
	Equation (4.2-20)
	Equation (4.2-21)
	Equation (4.2-22)



	5.0 BENDING FREQUENCIES OF VIBRATION
	5.1 ANALYTICAL MODEL
	Equation (5.1-1)
	Equation (5.1-2)
	Equation (5.1-3)
	Equation (5.1-4)
	Equation (5.1-5)
	Equation (5.1-6)

	5.2 EXPERIMENTAL SETUP
	Figure 12. Frequency response measurement experimental setup

	5.3 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS
	Figure 13. First five displacment model shapes
	Table 3. Table of material properties used in the model
	Table 4. Frequency of vibration from MathCAD
	Figure 14. Frequency response for beams PS XII and PS XVI to 10kHz
	Table 5. Experimental and analtyical bending mode frequencies
	Figure 15. Frequency response to 10kHz for PS VIII, PS XII and PS XIII
	Figure 16. Frequency response from 10 to 20kHz for PS VIII, PS XII and PS XIII
	Figure 17. Frequency response to 10kHz for PS XIV, PS XV and PS XVI

	5.4 SUMMARY

	6.0 TUNING RANGE
	6.1 ANALYTICAL MODEL
	Equation (6.1-1)
	Equation (6.1-2)
	Figure 19. Parallel stiffnesses in the resonator
	Equation (6.1-3)
	Figure 20. Electrical shunting of the passive layer capacitance
	Equation (6.1-4)
	Equation (6.1-5)
	Equation (6.1-6)
	Equation (6.1-7)

	6.2 EXPERIMENTAL SETUP
	Figure 21. Tuning range measurement experimental setup

	6.3 COMPARISON OF ANALYTCIAL AND EXPERIMENTAL RESULTS
	Table 6. Theoretical tuning ranges from analytical model
	Table 7. Comparison of tuning range from SigLab and analytical data
	Figure 22. Changes in frequency response near mode 1, PS XVI
	Figure 23. Changes in frequency response near mode 2, PS XVI
	Figure 24. Changes in frequency response near mode 3, PS XVI
	Figure 25. Changes in frequency response near mode 4, PS XVI
	Figure 26. Changes in frequency response near mode 5, PS XVI
	Figure 27. Changes in frequency near modes 1 and 2, PS VIII
	Figure 28. Changes in frequency near mode 3, PS VIII
	Figure 29. Changes in frequency near modes 4 and 5, PS VIII
	Figure 30. Changes in frequency near modes 1 and 2, PS XII
	Figure 31. Changes in frequency near modes 3 and 4, PS XII
	Figure 32. Changes in frequency near mode 5, PS XII
	Figure 33. Changes in frequency near modes 1 and 2, PS XIII
	Figure 34. Changes in frequency near modes 3 and 4, PS XIII
	Figure 35. Changes in frequency near mode 5, PS XIII
	Figure 36. Changes in frequency near modes 1 and 2, PS XIV
	Figure 37. Changes in frequency near modes 3 and 4, PS XIV
	Figure 38. Changes in frequency near mode 5, PS XIV
	Figure 39. Changes in frequency near modes 1 and 2, PS XV
	Figure 40. Changes in frequency near modes 3 and 4, PS XV
	Figure 41. Changes in frequency near mode 5, PS XV

	6.4 SUMMARY
	Figure 42. Changes in frequency near mode 2, PS VIII


	7.0 FEEDBACK GAIN
	7.1 ANALYTICAL MODEL
	Equation (7.1-1)
	Equation (7.1-2)
	Equation (7.1-3)
	Equation (7.1-4)
	Equation (7.1-5)
	Equation (7.1-6)
	Equation (7.1-7)
	Equation (7.1-8)
	Equation (7.1-9)
	Equation (7.1-10)

	7.2 RESULTS
	Figure 43. Gain for bending mode 1 versus sensor and actuator dimensions
	Figure 44. Electromechanical coupling as a function of actuator length for bending mode 1
	Figure 45. Gain for bending mode 2 versus sensor and actuator dimensions
	Figure 46. Electromechanical coupling as a function of actuator length for bending mode 2
	Figure 47. Gain for bending mode 3 versus sensor and actuator dimensions
	Figure 48. Electromechanical coupling as a function of actuator length for bending mode 3
	Figure 49. Gain for bending mode 4 versus sensor and actuator dimensions
	Figure 50. Electromechanical coupling as a function of actuator length for bending mode 4
	Figure 51. Gain for bending mode 5 versus sensor and actuator dimensions
	Figure 52. Electromechanical coupling as a function of actuator length for bending mode 5

	7.3 SUMMARY

	8.0 REACTANCE AND RESONATOR OPERATING FREQUENCIES
	8.1 ANALYTICAL MODEL
	Equation (8.1-1)
	Equation (8.1-2)
	Equation (8.1-3)
	Equation (8.1-4)
	Figure 53. Pierce oscillator circuit configuration
	Equation (8.1-5)
	Figure 54. Resonance and anti-resonance frequency points

	8.2 EXPERIMENTAL SETUP
	Figure 55. Impedance analysis experimental setup
	Figure 56. Operational frequency experimental setup
	Figure 57. Electrical circuit with separate gain and phase adjustment
	Figure 58. Circuit diagram of the gain and phase adjustable amplifier
	Figure 59. The modified Pierce circuit
	Figure 60. Circuit diagram of the variant of the Pierce circuit used in the experiments

	8.3 COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS
	8.3.1 Resonator PS VIII
	Table 8. Resonator PS VIII inverter driven tuning and operating frequencies in kHz
	Figure 61. Resistance and Reactance, resonator PS VIII with 4.7mH series inductor
	Figure 62. Resistance and Reactance, resonator PS VIII with 9.4mH series inductor
	Figure 63. Resistance and Reactance, resonator  PS VIII with 82mH series inductor
	Figure 64. R and X, full range, resonator PS VIII with 4.7mH series inductor
	Figure 65. R and X, full range, resonator PS VIII with 9.4mH series inductor
	Figure 66. R and X, full range, resonator PS VIII with 82mH series inductor

	8.3.2 Resonator PS XII
	Table 9. Resonator PS XII inverter driven tuning and operating frequencies in kHz
	Figure 67. Resistance and Reactance, resonator PS XII with 1mH series inductor
	Figure 68. Resistance and Reactance, resonator PS XII with 2mH series inductor
	Figure 69. Resistance and Reactance, resonator PS XII with 4.7mH series inductor
	Figure 70. Resistance and Reactance, resonator PS XII with 9.4mH series inductor
	Figure 71. R and X, full range, resonator PS XII with 2mH series inductor
	Figure 72. R and X, full range, resonator PS XII with 4.7mH series inductor
	Figure 73. R and X, full range, resonator PS XII with 9.4mH series inductor

	8.3.3 Resonator PS XIII
	Table 10. Resonator PS XIII inverter driven tuning and operating frequencies in kHz
	Figure 74. Resistance and Reactance, resonator PS XIII with 1mH series inductor
	Figure 75. Resistance and Reactance, resonator PS XIII with 2mH series inductor
	Figure 76. R and X, full range, resonator PS XIII with 1mH series inductor
	Figure 77. R and X, full range, resonator PS XIII with 2mH series inductor

	8.3.4 Resonator PS XIV
	Table 11. Resonator PS XIV inverter driven tuning and operating frequencies in kHz
	Figure 78. Resistance and Reactance, resonator PS XIV with 1mH series inductor
	Figure 79. Resistance and Reactance, resonator PS XIV with 2mH series inductor
	Figure 80. Resistance and Reactance, resonator PS XIV with 4.7mH series inductor
	Figure 81. Resistance and Reactance, resonator PS XIV with 9.4mH series inductor
	Figure 82. R and X, full range, resonator PS XIV with 1mH series inductor
	Figure 83. R and X, full range, resonator PS XIV with 2mH series inductor
	Figure 84. R and X, full range, resonator PS XIV with 4.7mH series inductor
	Figure 85. R and X, full range, resonator PS XIV with 9.4mH series inductor

	8.3.5 Resonator PS XV
	Table 12. Resonator PS XV inverter driven tuning and operating frequencies in kHz
	Figure 86. Resistance and Reactance, resonator PS XV with 1mH series inductor
	Figure 87. Resistance and Reactance, resonator PS XV with 2mH series inductor
	Figure 88. Resistance and Reactance, resonator PS XV with 4.7mH series inductor
	Figure 89. Resistance and Reactance, resonator PS XV with 9.4mH series inductor
	Figure 90. R and X, 5kHz to 100kHz, resonator PS XV with a 1mH series inductor
	Figure 91. R and X, 100kHz to 320kHz, resonator PS XV with a 1mH series inductor
	Figure 92. R and X, full range, resonaotr PS XV with 2mH series inductor
	Figure 93. R and X, full range, resonator PS XV with 4.7mH series inductor
	Figure 94. R and X, full range, resonator PS XV with 9.4mH series inductor

	8.3.6 Resonator PS XVI
	Table 13. Resonator PS XVI inverter driven tuning and operating frequencies in kHz, run 1
	Table 14. Resonator PS XVI inverter driven tuning and operating frequencies in kHz, run 2
	Figure 95. Resistance and Reactance, resonator PS XVI with 1mH series inductor
	Figure 96. Resistance and Reactance, resonator PS XVI with 2mH series inductor
	Figure 97. Resistance and Reactance, resonator PS XVI with 4.7mH series inductor
	Figure 98. Reistance and Reactance, resonator PS XVI with 9.4mH series inductor
	Figure 99. Resistance and Reactance, resonator PS XVI with 14.1mH series inductor
	Figure 100. Reistance and Reactance, resonator PS XVI with 82mH series inductor
	Figure 101. R and X, full range, resonator PS XVI with 1mH series inductor
	Figure 102. R and X, full range, resonator PS XVI with 2mH series inductor
	Figure 103. R and X, full range, resonator PS XVI with 4.7mH series inductor
	Figure 104. R and X, full range, resonator PS XVI with 9.4mH series inductor
	Figure 105. R and X, full range, resonator PS XVI with 82mH series inductor


	8.4 SUMMARY

	9.0 CONCLUSIONS AND FUTURE WORK
	9.1 CONCLUSIONS
	Table 15. Comparison of tuning range from Pierce circuit operation and analytical data
	Table 16. Comparison of tuning range from operation with circuit with separate gain and phase adjustment, and analytical data

	9.2 FUTURE WORK

	BIBLIOGRAPHY




