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ABSTRACT

CHARACTERIZATION OF MULTI-BIT DIFFERENTIAL CHANNELS: A MODIFIED

MODAL SCATTERING PARAMETER APPROACH

Joel Ryan Martin, M.S.

University of Pittsburgh, 2006

High speed inter-chip interconnects have reached and exceeded the multi-gigabit per second bench-

mark using differential signaling. Multi-bit differential signaling (MBDS) has been proposed as

a solution to the 2n per n bit pin requirement of classical differential channels. MBDS does not

currently have a modal characterization similar to the common and differential mode analysis de-

veloped for differential signaling that would allow a description of MBDS channel behavior. This

thesis introduces a modal characterization of MBDS links via the development of modal scattering

parameters that allow the analysis of the communications channel. Simulation results are presented

in conjunction with data collected from a fabricated printed circuit board designed for MBDS links.

Multiple printed circuit board layouts are be presented for analysis and design comparison. It is

shown that the performance of MBDS links can be severely impacted by unoptimized PCB layout.
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1.0 INTRODUCTION

Many current problems in computer system design are centered around the inability to achieve

arbitrarily high bandwidth between several discrete integrated circuits. Printed circuit board (PCB)

traces are a major barrier to gigabit-per-second, low power interconnects due to the domination of

transmission line effects at high frequencies. The length of PCB traces becomes comparable to

the wavelength of the propagating signal at a few hundreds of megahertz and the resulting wave

behavior of both the current and voltage dominate.

A common solution for high speed short range links is differential signaling. Differential

techniques are used in many current backplane and memory interconnect technologies such as

Advanced Micro Devices’ Hypertransport bus specification [10]. Differential signaling has been

the focus of much research and is a mature technology with the supported development of design

techniques at all levels of operation from the driver and receiver circuitry to methods that allow for

the optimization of the PCB design.

Multi-Bit Differential Signaling (MBDS) has been proposed as an extension to differential sig-

naling that seeks to improve upon the area, power and fanout requirements of differential links [5].

MBDS retains all the advantages of differential signaling with the ability to scale the capacity of

the link as needed to meet the demands of the interconnect.

Scattering parameters (S-parameters) have been used by the RF community as a convent way to

characterize a channel, circuit or system and are based on a per port view of the system. Differential

systems are not well described by a ‘per-port’ view of the word; it is the behavior of each port

relative to others in the system that best characterizes the link. A mode specific formulation of

S-parameters has been developed that allows for the quantification of the channel in a domain that

naturally meshes with the description of differential circuits [2].
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Differential mode specific analysis of a channel via multi-modal S-parameters can be per-

formed and the channel performance understood and refined. MBDS does not have an equivalent

mode-specific formulation. A priori analysis of the channel can only be performed via traditional

linear network operators such as S-parameters. Fundamental signal integrity issues in the end-

to-end design of an MBDS link can not be adequately answered without trial an error, either by

simulations or actual fabrication of MBDS links.

This thesis presents a method to characterize MBDS channels. The technique presented allows

for the description of any MBDS link configuration and is used to characterize several proposed

PCB designs for two MBDS configurations. Simulations of several PCB topologies as well as

collected test data are presented. This chapter will introduce several motivating technologies and

techniques that will be used to develop the characterization and concludes with a problem state-

ment. Chapter 2 outlines prior work on the analysis of differential links of which this thesis will

build on. Chapter 3 reviews the development of multi-modal scattering parameters for MBDS

channels. Simulation results and collected test data are presented in Chapters 4 and 5 with con-

cluding remarks in Chapter 6.

1.1 MOTIVATION

1.1.1 Transmission Line Effects

The relationship between voltage and current of n coupled transmission lines with the major dimen-

sion oriented along the z-axis are derived from Maxwell’s equations and are collectively known

as the the telegraphers equations [13]. A conductor of length l begins to exhibit transmission line

behavior when any physical dimension of the line approaches and exceeds the wavelength of the

signal traveling along the line. The equations that describe the resulting voltage and current wave

through a transmission line in the frequency domain are defined as,

(1.1) − ∂

∂z
~V (z, t) = Z~I (z, t) ejωt,

and

(1.2) − ∂

∂z
~I (z, t) = Y~V (z, t) ejωt,
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where the n×n matrices Z and Y are the frequency dependent impedance and admittance matrices,

respectively.

The n × 1 vectors ~V and ~I represent the state of the transmission line as a function of time

and position with the elements of the vectors describing line i. Both L and C are determined by

the geometric structure of the transmission line, the conductor and dielectric properties and the

frequency of the propagating signal.

Taking the derivative of Equation 1.2 in the frequency domain and substituting the result into

Equation 1.1 gives,

(1.3) − d2

dz2
~V (z, t) = ZY~V (z) ejωt,

while the equivalent transform for the current yields,

(1.4) − d2

dz2
~I (z, t) = YZ~I (z) ejωt.

The solutions to these equations are of the form of decaying exponential forward and backward

traveling waves that propagate though the structure on each conductor. The matrix product LC

contains all physical information about the structure and will change as any physical property such

as conductor width varies. These changes directly impact the characteristic impedance, ~ZO defined

as the ratio of the voltage wave to the current wave. Proper impedance matching a the ends of a

transmission line is a critical factor in transmission line behavior as mismatches at either end of

the line create boundary conditions that allow backward traveling wave solutions to 1.3 and 1.4 to

be non-zero.

Ports are defined as an end of the transmission line where z = 0 or z = l where l is the length

of the transmission line. An n conductor transmission line will have 2n ports for each line end.

This thesis will define ports 1 through n to be the plane where z = 0 and ports n + 1 through 2n

as the plane where z = l.

Transmission line effects present an upper bound on the capacity of electrical channels. Miller

and Ozaktas have shown that the maximum bit rate capacity of a transmission line that is dominated

by inductive and capacitive effects is,

(1.5) B ∼= 1015A

l2
,

3



where A is the cross-sectional area of the conductors, l is the length of the line and A
l2

is the aspect

ratio of the interconnect [14]. Planar manufacturing techniques used in PCB and integrated circuit

manufacturing lead to small aspect ratios because of the long lengths compared to the conductor

width or height. Figure 1.1 displays the maximum bit rates over several orders of magnitudes of

varying aspect ratios assuming a unity relation in Equation 1.5.
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Figure 1.1: Effective Bit Rate of Electrical Interconnects of Various Aspect Ratios

The vertical line in Figure 1.1 is drawn where the aspect ratio equals 10−4. This corresponds

to a 25mil wide by 500mil long copper PCB trace fabricated with 1.0mil thick copper. Increasing

the length of the line will cause the aspect ratio to fall below this limit in an inverse square manner.

Practical implementation issues, impedance mismatches for example, will have a detrimental

effect on the channel and cause the realized bit rate to fall below the limit of Equation 1.5. Analysis

methods such as scattering parameters introduced in Section 1.1.4 allow for the characterization of

the channel to identify these effects.
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1.1.2 Differential Signaling

Differential signaling is a signaling scheme where each bit is transmitted over two conductors. [9].

The data is transmitted by allowing a voltage difference to appear between the two conductors

that make up the differential link. An example implementation may transmit a binary one value

by placing the voltage at the source of conductor one, port one, to a preset value vhigh while the

voltage source of conductor two, port two, will be lowered to a preset value vlow. A binary zero

value is transmitted by changing ports one and two to vlow and vhigh, respectively.

The differential receiver tracks the relative voltage of conductor one, v1, and conductor two, v2

at ports three and four. The differential voltage is defined as,

(1.6) vdiff (t) = v1 (t)− v2 (t) ,

while a common voltage is established by the average value of vlow and vhigh,

(1.7) vcommon (t) =
1

2
(v1 (t) + v2 (t)) .

The differential design has several important advantages that allow for high speed links. The

receiver tracks the relative differences in the signal while absolute voltage and current levels are

ignored. The differential nature of the system provides inherent immunity to noise common to

both conductors by removing any noise signal, η (t), common to both conductors. Dynamic range

of the received signal is increased by a factor of two compared to a single-ended system that uses

the same voltage levels as the two conductors of the differential link individually swing through

the same voltage range.

The design of a differential system is typically performed via a change of basis from a nodal

space, where the voltage of each conductor is the basis used to describe the system, to a modal

space where the common and differential voltages define the system. This change of basis is

important because it allows design constrains such as the values of vcommon and |vdiff | to be defined

in a basis that naturally flows from the design. Operating in the nodal space, these constraints must

then be cast in terms of v1 and v2 whereas in the modal space these constraints can be used directly.
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1.1.3 Multi-Bit Differential Signaling

Multiple parallel differential links can be used in parallel if the data rate of a single link is insuffi-

cient. For an n bit differential system, 2n interconnects are required. In some applications this can

provide a restriction on the number of parallel differential links if the number of pins or required

is more than can be provided. Current integrated circuit design practices dictate approximately

one-half of the available pins of a semiconductor die to power and ground sources reducing the

number of pins that can be used for the communications infrastructure.

Multi-bit differential signaling (MBDS) has been proposed as a solution to the area and pin

drawbacks of differential systems. MBDS relies on an ‘n choose m’ or C(n, m) coding scheme

where m of the available n inputs and outputs are always guaranteed to be in a given state with the

remaining m− n in another unique state. A four choose two system is defined by requiring two of

the four conductors to always be at a high voltage level, vhigh, while the remaining two conductors

are lowered to voltage level, vlow. This forms the set X where Xnm = {xnm : xεC (n,m)}. The

number of elements φ in Xnm is given by,

(1.8) φ{Xnm} =
n!

(n−m)!m!
,

and is also known as the binomial coefficient
(

n
m

)
. The value of φ{Xnm} is maximized when n

is m
2

where φ{Xnbn
2
c} = φ{Xndn

2
e}. A classical differential system can be viewed as an MBDS

system with a ‘two choose one’ or C (2, 1) code.

A direct implementation of an MBDS system will use a lookup table to directly map each

element in Xnm to a binary value. When φ{Xnm} is not of two the number of effective bits the

channel can carry with a one to one mapping of elements to binary values is,

(1.9) biteff =

⌊
log2

(
n!

(n−m)!m!

)⌋
.

Figure 1.2 shows how the effective bit width of MBDS links as a function of n grows where

n = bm
2
c. A C (4, 2) MBDS link has six unique codewords with the voltage levels of each con-

ductor n at either vhigh or vlow. The term codeword refers to each element of the set Xnm mapped

onto the voltage levels vlow and vhigh. The codeword {1,−1,−1, 1} defines conductors 1 and 4 at

vhigh while conductors 2 and 3 at vlow. The complete set of valid C (4, 2) codewords are shown
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in Table 1.1. The rows of this table contains each codeword and it’s compliment, defined as each

codewords inverse mapping.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

1

5

9

13

17

21

25

29

33

bi
t ef

f

m

Figure 1.2: MBDS Effective Bit Width for C(m, bm
2
c).

Table 1.1: C (4, 2) MBDS Codewords.

{1, 1,−1,−1} {−1,−1, 1, 1}
{1,−1, 1,−1} {−1, 1,−1, 1}
{1,−1,−1, 1} {−1, 1, 1,−1}

Those codewords that are not partitioned into a representation of a binary value can then be

used for other purposes as these extra codewords are free be used to signal other information

such link control information. Bakos utilized these excess codewords to implement a lightweight

hierarchical error control code over an MBDS link [1].

Extra codewords can also be used to match the characteristics of the channel to the set of code-

words transmitted over the channel. There are six possible codeword combinations in a C (4, 2)
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link; a two bit binary input leaves two extra codewords that can be arbitrarily partitioned or ex-

cluded altogether. These extra codewords give the an extra degree of freedom to leverage against

the design constraints of the system. If there is a subset of codewords that can be pruned from

the code-set, then it becomes advantageous to identify those codewords that may not propagate

through the channel as well as other codewords, depending on how the boundary condition pre-

sented by the codewords form the solution to the telegraphers equations. Currently there is no

method by which to identify such a partitioning.

MBDS as a differential signaling scheme requires a reference voltage to determine the value

of each element of the codeword. This reference is created by a star termination network shown in

Figure 1.3. The locus of the star network is referred to as the common node and is the differential

reference point that is used by the each receiver to compare the voltage level of a conductor to the

common node. The voltage at the common node in a C (4, 2) system with each termination resistor

being equal is given by Kirchoff’s current and voltage laws as,

(1.10) vcommon (t) =
1

4
[v1 (t) + v2 (t) + v3 (t) + v4 (t)] .

Figure 1.3: C (4, 2) Termination Network.
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Any codeword that conforms to the MBDS C (4, 2) code-set will have the same common node

voltage value establishing a fixed voltage reference. Global ground references for high speed

signaling are usually not desirable as the drivers and receivers may not share the same common

ground. This network also gives MBDS common mode noise rejection at the receiver inputs;

interference such as electromagnetic interference that is injected into all members of the MBDS

interconnect will be injected into the common node and removed by the comparators.

This work is partially motivated by the design possibilities that codeword selection MBDS

gives to designers. The question becomes one of characterization, how to analyze the channel

in a manner that is compatible with the restricted nature of MBDS systems. Current techniques

such as scattering parameters are centered around a absolute frame of reference where each port is

examined in terms of the the effect of a linear combination of the inputs to the system.

1.1.4 Scattering Parameters

Scattering parameters (S-parameters) are a linear network analysis tool for multi-port networks.

Similar network analysis tools such as the impedance matrix (Z-network), admittance matrix (Y-

network), or chain matrix (ABCD-network) all perform a linear mapping of input values to output

values. The Z-network maps currents to voltages at each port of the network and are defined as,

(1.11)




v1

v2

...

vn




=




Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

...
... . . . ...

Zn1 Zn2 · · · Znn







i1

i2
...

in




,

or, in a matrix-vector notation [12],

(1.12) ~v = Z~i.

These network descriptions are usually not used in high frequency RF applications where open

and short circuit conditions are necessary at the ports in order to characterize the network. Open

and short circuits will cause undesired reflections at frequencies where transmission line effects

become dominate. These models also suffer from the inability to properly describe the effects

9



the termination of the network has on performance as each Z-matrix is uniquely defined for each

termination network.

S-parameters are defined as the ratio of normalized power waves an to bn. These power waves

are defined at each port n as,

an =
1

2
√

ZOn

(vn + ZOnin) ,(1.13a)

bn =
1

2
√

ZOn

(vn − ZOnin) ,(1.13b)

where n is the physical port terminated by impedance ZOn [11]. Solving Equations 1.13 for the

port voltages and currents gives,

vn =
√

ZOn (an + bn) ,(1.14a)

in =
1√
ZOn

(an − bn) .(1.14b)

an and bn are called power waves due to relation to the definition of power flowing into each

port,

(1.15) Pn =
1

2
Re [VnI

∗
n] =

1

2

[∣∣a2
n

∣∣− ∣∣b2
n

∣∣] ,

where an represents the power wave flowing into port n and bn is the power wave leaving the port.

In a transmission line the voltage and current waves at the ports are the summation of the

forward and backward traveling waves,

vn = v+
n + v−n ,(1.16a)

in = i+n + i−n ,(1.16b)

allowing an and bn to be rewritten as,

an =
v+

n√
ZOn

=
√

ZOni
+
n ,(1.17a)

bn =
v−n√
ZOn

= −
√

ZOni
−
n .(1.17b)
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S-parameters are defined as the fractional relation of the input power waves to the output power

waves with,

(1.18) Sjk =
bj

ak

∣∣∣∣
ai6=k=0

,

where ai6=k = 0 implies that Sjk is the response at port j solely to the stimulus at port k. In vector

notation,

(1.19) ~b = S~a.

The purpose of the matrix S is to perform a linear mapping of the input stimulus vector ~a to the

stimulus response vector ~b. A two port device with stimulus waves a1 and a2 will have a response

at port 1, b1,

(1.20) b1 = S11a1 + S12a2.

Return loss is given by S11 and describes the fractional amount that a1 is being reflected back

to the source. The insertion loss, S12, defines the attenuates of the power wave received at port two

during propagation to port one.

Measuring S-parameters requires the conditions in Equation 1.18 to be satisfied. A two port

device requires either a1 or a2 are guaranteed to be zero; these conditions require perfect impedance

matching of the port to it’s associated termination. At RF frequencies and higher S-parameters are

preferred to other network descriptions as they can be measured without the use of short or open

circuit conditions at the measurement ports.

11



1.2 PROBLEM STATEMENT

MBDS as a signaling technology retains the benefits of differential systems while reducing the

number of pins required for parallel links. Currently there is no channel characterization technique

available that allows an accurate quantification of the channel that the link will operate over in

a manner that matches the stimulus present on the channel that conforms to MBDS codewords

for any arbitrary C (n,m) link. Current characterization techniques that exist are either on a port

basis that gives no indication of the ensemble behavior of the system or are restricted to a classical

differential, two-choose-one link.

Without this characterization, design classification of MBDS becomes difficult. Each C(n, m)

MBDS link will have n interconnects that must be routed through the PCB or backplane. Unlike

the differential case where routing two coupled wires is limited to a few practical geometries, the

interconnects in an MBDS link will be routed in a three dimensional structure with many possible

configurations. Signal lines that are nearest neighbors may have more of coupling between each

other than those signal lines at the periphery of the structure. The effects of this imbalance are

unknown on the differential voltage and the common node voltage as seen at the output of the

network.

The goal of this work is two fold; first to identify a means that will allow the characterization of

MBDS channels and to survey practical PCB structures to determine layouts that have low loss for

MBDS codewords or to identify those codewords that should be avoided in the MBDS code-set.

1.3 KEY CONTRIBUTIONS

Prior to this work, no method existed to allow the analysis of multi-bit differential channels. De-

sign of PCB’s for test implementations of MBDS circuitry had to be performed from a black box

design perspective where the true impact of the channel on the behavior of the system was not

understood. Chapter 3 introduces a method where a channel, such as a printed circuit board, can

be characterized and the impact of the channel on the overall performance of the system can be

understood.
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Several PCB layouts are tested to determined the impact the topology of the PCB layout has

on the performance of MBDS channels. These layouts are shown in Figures 4.1 and 4.2. Worst

case scenario performance shows that in the case of the star geometry in the C (6, 3) case an

unoptimized design can have a 10dB greater modal power loss than other structures.

This thesis also gives insight into the performance of multiple parallel differential links. Two

differential channels that are close enough to each other such that they can no longer assume to be

isolated, are subsets of the C (4, 2) MBDS code set. By performing the analysis presented here the

impact of the proximity of the two channels can be analyzed.
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2.0 PREVIOUS WORK

Scattering parameters have been in use by RF engineers for over fifty years. The ability to de-

scribe linear networks by power waves are extremely useful in circuit and RF design. Differential

scattering parameters were rigorously developed as a theory when it became recognized that, in a

differential system, references based on individual ports and a global ground reference are unin-

formative. Characterization of the design could not be carried out in a manner that fit the operating

nature of the design.

2.1 DIFFERENTIAL SCATTERING PARAMETERS

Differential, mode specific scattering parameters were developed by Bockelman in 1995 to char-

acterize differential systems in a frame of reference that naturally describes the system [3, 4, 7].

The specific motivation behind differential S-parameters was to develop a formulation that would

allow for higher accuracy of on wafer differential structures.

Differential S-parameters in transmission line structures are uniquely adapted to the natural

propagation of modes in a coupled transmission line structure. In this regime, a mode is defined

as a solution to the transmission line equations outlined in Section 1.1.1. For a two conductor

transmission line Equations 1.1 and 1.2 reduce to,

(2.1)

d
dx

v1 (z, t) = −z1i1 (z) ejωt − zmi2 (z) ejωt

d
dx

v2 (z, t) = −zmi1 (z) ejωt − z2i2 (z) ejωt

d
dx

i1 (z, t) = −y1v1 (z) ejωt − ymv2 (z) ejωt

d
dx

i2 (x, t) = −ymv1 (z) ejωt − y2v2 (z) ejωt,
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where z1, z2, y1 and y2 are the self impedances and admittances per unit length while zm and

ym define the mutual impedances and admittances. The ejωt harmonic time dependence will be

furthermore suppressed while the frequency dependence of all coupling variables zn (ω) and yn (ω)

are not treated in this analysis.

Closed form solutions to these equations have been published by Tripathi [16],

(2.2)

v1 (z) = A1e
−γcz + A2e

γcz + A3e
−γπz + A4e

γπz

v2 (z) = A1Rce
−γcz + A2Rce

γcz + A3Rπe−γπz + A4Rπeγπz

i1 (z) = A1

Zc1
e−γcz − A2

Zc2
eγcz + A3

Zπ1
e−γπz − A4

Zπ2
eγπz

i2 (z) = A1Rc

Zc1
e−γcz − A2Rc

Zc2
eγcz + A3Rπ

Zπ1
e−γπz − A4Rπ

Zπ2
eγπz,

where Rπ = v2

v1
and Rc = v2

v1
and the propagation constant, γ, defined as,

(2.3) γ2
c,π =

y1z1 + y2z2

2
+ ymzm± 1

2

√
(y1z1 − y2z2)

2 + 4 (z1ym + y2zm) (z2ym + y1zm).

π and c are defined as modes of propagation and define the two propagating voltage and current

waves that propagate internally in the structure as solutions to Equation 2.1. A linear combination

of these modes given in Equation 2.2 transform the modes into the nodal equivalent.

Assuming that the lines are symmetric Cohn provided a formulation and terminology such

that the π and c modes reduce to even and odd modes of propagation, e and o respectively [6].

Symmetric coupled lines imply that Rc = 1 and Rπ = −1.

The even and odd modes of propagation are analogous to Equations 1.6 and 1.7. The even

mode of propagation occurs when the two conductors are at the same potential while currents in

the conductors traveling in the same direction. Odd mode propagation requires that the conduc-

tors be at different potentials and the currents traveling in different directions. The characteristic

impedance defined in Equation 2.2 causes Ze = Zc and Zo = Zπ.

The definition of common and differential modes versus even and odd are not always the same.

Even and common modes are only equivalent under the conditions of a symmetric transmission

line; the same relationship is valid for odd and differential modes. For other scenarios where the

system is not subject to the symmetric constraint, this direct relationship may no longer be valid.

Differential and common modes are defined as those modes that impinge upon the system from
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external sources while even and odd modes are those modes that propagate internally as solutions

to Equations 2.1.

Differential and common mode voltages are defined as,

vd (z) = v1 (z)− v2 (z) ,(2.4a)

vc (z) =
1

2
(v1 + v2) .(2.4b)

The definition of differential current is dependent on the realization that the current entering a port

equals the current returning on the other port requiring each port to sink one-half the difference

between the two ports. The common mode current is the sum of the current entering the terminals

of the transmission line. The differential and common mode currents are defined as,

id (z) =
1

2
(i1 − i2) ,(2.5a)

ic (z) = i1 (z) + i2 (z) .(2.5b)

In order to define differential S-parameters, expressions for differential voltage and currents are

necessary and have been derived. The only remaining parameter to derive is the characteristic

impedance of of each mode. Substituting the solutions to the transmission lines in Equation 2.2

into Equations 2.4 and 2.5 the characteristic impedance of each differential mode is simply the ratio

of the forward traveling voltage waves to the forward traveling current waves of each propagation

mode as follows,

zd = 2Zo,(2.6a)

zc =
Ze

2
,(2.6b)

where zo and ze are the characteristic impedances of the odd and even mode of propagation,

respectively.

These definitions of the differential and common mode characteristic impedance can be used

directly in the definition of differential S-parameters. Practical use of such a definition is not easily

achieved as the termination of each differential mode is then different with both of these mode

themselves different from the standard port impedances of most test equipment of 50Ω. For con-

venience and to maintain consistency with the vast array of test equipment in use it is required that

16



Ze = Zo = ZO where ZO is the characteristic impedance of an uncoupled reference transmission

line. Alternative definitions of differential impedance are valid, however the relationship between

differential and standard S-parameters will change.

The requirement that Ze = Zo = ZO is a special solution to Equation 2.1 that forces all ym

and zm to be equal to zero. In this regime, there is no coupling between the conductors of the

transmission lines; each line is coupling only with the ground reference. This choice may seem

overly simplistic and restrictive as well as contrary to the goal of differential S-parameters. This is

resolved by the realization that ZO in Equations 1.13 are the external terminations of the network

and are not the characteristic impedance of the network itself. This defines the reference plane by

which the multi-modal S-parameters are measured as uncoupled transmission lines.

Correct measurements of S-parameters must be performed under conditions of perfect match-

ing, usually with a coaxial cable that satisfies the transmission line Equations 1.1 and 1.2 but has

no coupling; i.e., Ze = Zo = ZO, the exact case differential S-parameters are targeting. To in-

terface a network to testing equipment the parameters need to be developed under the conditions

that allow such testing. The statement that S-parameters can only be determined under conditions

of perfect matching to to be interpreted as a testing condition only. Once the S-matrix has been

characterized, it can then be renormalized under different termination conditions that will then de-

scribe the network under those conditions [15]. This is a useful feature of S-parameters; the effects

of mismatched terminations can be observed.

2.1.1 Differential and Normal Scattering Parameter Relationships

Armed with proper definitions of differential mode voltages, currents and characteristic impedances,

the definition of scattering parameters are identical in the differential case as in the nodal case and

are defined by,

amm (z) =
1

2
√

zmm

(vmm + zmmimm)

∣∣∣∣
z=0,l

,(2.7a)

bmm (z) =
1

2
√

zmm

(vmm − zmmimm)

∣∣∣∣
z=0,l

,(2.7b)
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where mm is used to indicate the operation in the modal definition and not in standard nodal

definition. Differential S-parameters will be defined as multi-modal S-parameters, Smm, while the

normal frame of reference will be defined as nodal S-parameters, Sn.

Port references undergo a new meaning in the differential case. A differential transmission line

in the traditional sense can be viewed as a four port device. Under the differential S-parameter view

the physical ports are reduced to two with port one corresponding to z = 0 and port two located

at z = l. Each port is impinged upon with two different modes of stimulus: ad the differential

mode and ac, the common mode. The S-parameter matrix under the differential formulation then

becomes,

(2.8) ~bmm = Smm~amm,

where each element of Smm, Smbmapbpa , refers to the response mode mb measured at port pb as

a result of the stimulus of mode ma at port pa. For example, Sdc21 implies the multi-modal S-

parameter where physical port 1 is stimulated with a common mode signal with the measured

differential mode response at port 2.

The direct relationship between Sn and Smm is developed by replacing our definitions of vd,

vc, id, ic, zd and zc with there nodal equivalents as shown in the case of ad1,

(2.9)

ad1 = 1
2
√

zd
[vd1 + zdid]

= 1
2
√

2ZO

[
(v1 − v2) + 2ZO

1
2
(i1 − i2)

]

= 1√
2

[
1

2
√

ZO
(v1 − v2)− ZO (i1 − i2)

]

= 1√
2
(a1 − a2) .

The same relationships for all stimulus and response modes at both ports are defined as,

(2.10)

ad1 = 1√
2
(a1 − a2) ad2 = 1√

2
(a3 − a4)

ac1 = 1√
2
(a1 + a2) ac2 = 1√

2
(a3 + a4)

bd1 = 1√
2
(b1 − b2) bd2 = 1√

2
(b3 − b4)

bc1 = 1√
2
(b1 + b2) bc2 = 1√

2
(b3 + b4) .
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Observation of these results leads to a direct relationship between ~an and ~amm,

(2.11)




ad1

ad2

ac1

ac2




=
1√
2




1 −1 0 0

0 0 1 −1

1 1 0 0

0 0 1 1







a1

a2

a3

a4




.

An equivalent transform is defined for ~bmm from ~bn. Rewritten in a vector matrix notation,

(2.12) ~amm = M~an,

where M is defined in Equation 2.11. Using the definition of S-parameters in the nodal and differ-

ential mode case from Equations 1.19 and 2.8 a direct relationship between Sn and Smm is derived

as,

(2.13)

~bmm = Smm~amm

~bmm = M~bn ~amm = M~an

M~bmm = SmmM~amm

~bn = M−1SmmM︸ ︷︷ ︸
Sn

~an,

using this last result gives relationships between Sn and Smm,

Sn = M−1SmmM,(2.14a)

Smm = MSnM
−1.(2.14b)

Equations 2.14a and 2.14b shows that Smm is a linear transform of Sn by mapping ~an and ~bn

to the new basis vectors defined for differential voltages and currents. The transformation matrix

M can be shown to be a unitary operator via the definition of such operators,

(2.15) MM∗T = I,

where I is the identity matrix. Because of unitary nature of M the nodal and the modal space

are entirely equivalent and uniquely describe the same physical system with power in both spaces

being conserved.

19



3.0 MBDS MODAL SCATTERING PARAMETERS

MBDS scattering parameters will be defined in a manner similar to differential S-parameters de-

fined in Chapter 2. A slight but important distinction must be made comparing MBDS and differen-

tial S-parameters. When discussing differential transmission lines, the concept of modal solutions

can be inferred directly from the solutions to the transmission line equations. Differential, or two-

choose-one in MBDS definition, has two modes of signal propagation, two codewords, {1,−1}
and {−1, 1}, being transmitted on two conductors.

For any C (m,n) system, there will be m conductors but the number of codewords, or driven

modes, will be related to Equation 1.8. Modes that propagate internally in the transmission lines

will be referred to as solution modes while MBDS modes will be referred to as driven modes. The

term modal can either refer to solution modes or MBDS modes with the exact meaning depen-

dent on context. Systems that are based on traditional per-port references will be referred to as

nodal systems. The C (2, 1) will continue to be referred to as differential to maintain parity with

previously published work.

3.1 FOUR CHOOSE TWO MODAL S-PARAMETER DERIVATION

The currents and voltages of the four driven modes modes of propagation in the C (4, 2) case will

now be defined. Referring to Section 1.1.1, the transmission line equations are,

(3.1)
− d2

dz2
~V = ZY~V,

− d2

dz2
~I = YZ~I,
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where the ejωt is implicit, ~V and ~I are four element vectors, Z and Y are 4× 4 element matrices.

Closed form solutions to these coupled equations have not been published. Numerical solutions

such as modal decomposition exist whereby the matrix ZY is diagonalized by a linear transform

into a solution space where the differential equations become trivial to solve [8]. The method

utilized in Section 2.1 as the solution to Equations 2.1 is an implementation of this technique for

two-wire transmission lines.

To develop a consistent formulation, it will be assumed that the matrix ZY is diagonalized,

i.e., there is no coupling in the transmission lines. This will define reference plane at the ports of

the network under test as uncoupled transmission lines. The network under test becomes a ’black

box’ that distorts the voltage and currents seen by the reference transmission lines.

Equation 3.1 can be solved with the above simplifying condition for the propagating voltage

waves from the reference plane,

(3.2)

v1 (z) = v+
1 e−γ1z + v−1 eγ1z

v2 (z) = v+
2 e−γ2z + v−2 eγ2z

v3 (z) = v+
3 e−γ3z + v−3 eγ3z

v4 (z) = v+
4 e−γ4z + v−4 eγ4z,

where v+,− is the amplitude of the forward and backward traveling voltage wave and γ is the

propagation constant for each line. An equivalent solution exists for the current,

(3.3)

i1 (z) = i+1 e−γ1z + i−1 eγ1z

i2 (z) = i+2 e−γ2z + i−2 eγ2z

i3 (z) = i+3 e−γ3z + i−3 eγ3z

i4 (z) = i+4 e−γ4z + i−4 eγ4z,

with the same variable definitions for the voltage waves.

MBDS driven modes will now be defined. A C (4, 2) link has six valid codewords as defined in

Table 1.1. A possible for MBDS modes could include defining six differential modes, one for each

codeword, plus one common mode describing the common potential and current of each conductor.

It is unnecessary to include each codewords with it’s associated complement as the pair represent
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the same information. The two codewords in the differential case, {1,−1} and {−1, 1}, have the

voltage and current definition from Equations 2.4 and 2.5,

(3.4)
vd{1,−1} = v1 − v2 = − (v2 − v1) = −vd{−1,1}

id{1,−1} = 1
2
(i1 − i2) = −1

2
(i2 − i1)− id{−1,1} .

Substituting the voltage definitions for the two codewords in Equation 2.7a, the definition of

amm gives the result,

(3.5) ad{−1,1} =
1√
2

(a2 − a1) = −ad{1,−1} ,

and contains the same power wave information; the sign change indicates that the ‘direction’ of

the mode has been reversed.

C(4, 2) modes will be defined by parsing the code-set to remove complements and defining

the three differential modes and one common mode similar to Equations 2.4 and 2.5. The voltage

of each mode is defined as,

(3.6)

vm1 = v1 + v2 − v3 − v4

vm2 = v1 − v2 + v3 − v4

vm3 = v1 − v2 − v3 + v4

vmc = 1
4
(v1 + v2 + v3 + v4) ,

and the modal current definition is defined by,

(3.7)

im1 = 1
4
(i1 + i2 − i3 − i4)

im2 = 1
4
(i1 − i2 + i3 − i4)

im3 = 1
4
(i1 − i2 − i3 + i4)

imc = i1 + i2 + i3 + i4.

Given the definitions for modal current and voltage, a definition for impedance can be de-

volved. Substituting the definition of the forward traveling modal voltage for vm1 in Equation 3.2,

(3.8) v+
m1

(z) = v+
1 e−γ1z + v+

2 e−γ2z − v+
3 e−γ3z − v+

4 e−γ4z.
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The current is defined by the definition of characteristic impedance as the ratio of the traveling

voltage and current wave of each line n and the modal current definition given in Equation 3.3,

(3.9) i+m1
(z) =

1

4

(
v+

1

ZO1

e−γ1z +
v+

2

ZO2

e−γ2z +
v+

3

ZO3

e−γ3z − v+
4

ZO4

e−γ4z

)
.

The reference plane is assumed to be balanced where ZO1 = ZO2 = ZO3 = ZO4 = ZO. Under

this condition the modal impedance zm1 is determined as,

(3.10) zm1 =
v+

m1

i+m1

= 4ZO.

Voltage and current waves for the remaining modes follow the same derivation. Impedance

definitions for all modes can be determined as,

zm1 = zm2 = zm3 = 4ZO,(3.11a)

zmc =
ZO

4
.(3.11b)

Comparing Equation 2.6 with Equations 3.11 implies that that the C (4, 2) network is simply

an extension of the differential case.

3.1.1 Modal and Nodal S-Parameter Relationship

Port definitions will retain the semantics introduced in Section 2.1.1 with the extension that there

are now three differential modes. amm and bmm power waves can now be defined using the defini-

tion of C (4, 2) modal currents, voltages and impedances. am1,1, the application of im1 and vm1 at

z = 0, is defined as,

(3.12)

am11 = 1
2
√

zm1
[vm1 − zm1im1 ]

= 1
2
√

4ZO

[
v1 + v2 − v3 − v4 + 4ZO

4
(i1 + i2 − i3 − i4)

]

= 1
4
√

ZO
[v1 − Z0i1 + v2 − Z0i2 − v3 + Z0i3 − v4 + Z0i4]

= 1
2
[a1 + a2 − a3 − a4] .
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Similar derivations can be made for all amm and bmm from the nodal frame of reference are

defined as,

(3.13)

am11 = 1
2
[a1 + a2 − a3 − a4] am12 = 1

2
[a5 + a6 − a7 − a8]

am21 = 1
2
[a1 − a2 + a3 − a4] am2,2 = 1

2
[a5 − a6 + a7 − a8]

am31 = 1
2
[a1 − a2 − a3 + a4] am32 = 1

2
[a5 − a6 − a7a + a8]

amc1 = 1
2
[a1 + a2 − a3 − a4] am12 = 1

2
[a5 + a6 − a7 − a8]

bm11 = 1
2
[b1 + b2 − b3 − b4] bm12 = 1

2
[b5 + b6 − b7 − b8]

bm21 = 1
2
[b1 − b2 + b3 − b4] bm22 = 1

2
[b5 − b6 + b7 − b8]

bm31 = 1
2
[b1 − b2 − b3 + b4] bm32 = 1

2
[b5 − b6 − b7 + b8]

bmc1 = 1
2
[b1 + b2 − b3 − b4] bm12 = 1

2
[b5 + b6 − b7 − b8] .

Converting between Smm and Sn can be performed in the same manner as in Equation 2.11,

(3.14)




am11

am12

am21

am22

am31

am32

amc1

amc2




=
1

2




1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 1 −1 0 0 0 0

0 0 0 0 1 −1 1 −1

1 −1 −1 1 0 0 0 0

0 0 0 0 1 −1 −1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1







a1

a2

a3

a4

a5

a6

a7

a8




.

A equivalent definition exists for ~bmm. Following the derivation of Equation 2.13, a linear

transform can be defined from Sn to Smm and vice versa by,

Sn = M−1SmmM,(3.15)

Smm = MSnM
−1,(3.16)

where M is defined in Equation 3.14. The matrix M is a linear operator that maps Sn to Smm and

obeys the properties of such operators as defined in section 2.1.1.
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3.2 SIX CHOOSE THREE MODAL S-PARAMETER DERIVATION

The C(6, 3) modal derivation is performed in a similar manner to the C (4, 2). The same assump-

tions used the C(4, 2) case are repeated; the reference plane will be uncoupled transmission lines

at the ports of the network. The uncoupled assumption will allow us to define six-conductor trans-

mission line equations for the voltage and current waves analogous to Equations 3.2 and 3.3.

A C (6, 3) link has twenty unique codewords. Parsing the code-set to remove equivalent com-

pliments and adding our definition of a common mode analogous to Equations 3.6 and 3.7 the

driven modal voltage on the transmission lines are,

(3.17)




vm1 (z)

vm2 (z)

vm3 (z)

vm4 (z)

vm5 (z)

vm5 (z)

vm6 (z)

vm7 (z)

vm8 (z)

vm9 (z)

vm10 (z)

vmc (z)




=




1 1 1 −1 −1 −1

1 1 −1 1 −1 −1

1 1 −1 −1 1 −1

1 1 −1 −1 −1 1

1 −1 1 1 −1 −1

1 −1 1 −1 1 −1

1 −1 1 −1 −1 1

1 −1 −1 1 1 −1

1 −1 −1 1 −1 1

1 −1 −1 −1 1 1

1
6

1
6

1
6

1
6

1
6

1
6







v1 (z)

v2 (z)

v3 (z)

v4 (z)

v5 (z)

v6 (z)




.

The equation for modal currents are defined in a similar manner to Equation 3.7 with the

appropriate normalizing factor and will not be repeated here. Modal impedance for each mode is

derived analogous to Equation 3.10 as,

(3.18)
zmx = 6ZO,

zmc = ZO

6
.

25



Using the definitions of modal voltage, impedance and current the relationship between ~amm

and ~an is defined as,

(3.19)


am1,1

am1,2

am2,1

am2,2

am3,1

am3,2

am4,1

am4,2

am5,1

am5,2

am6,1

am6,2

am7,1

am7,2

am8,1

am8,2

am9,1

am9,2

am10,1

am10,1

amc,1

amc,2




=
1√
6




1 1 1 −1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 −1 −1 −1

1 1 −1 1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 −1 1 −1 −1

1 1 −1 −1 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 −1 −1 1 −1

1 1 −1 −1 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 −1 −1 −1 1

1 −1 1 1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 1 −1 1 −1

1 −1 1 −1 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 1 −1 −1 1

1 −1 −1 1 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 1 1 −1

1 −1 −1 1 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −1 1 −1 1

1 −1 −1 −1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1







a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12




.

An equivalent definition exists for ~bmm using the matrix M defined in Equation 3.19. Unlike

the differential and C (4, 2) case, a linear transform between the nodal and modal basis can not be

defined because the matrix M is not invertible. This is a consequence of the fact that M is not

square. There is no unique linear mapping between the modal definitions and the nodal definitions

as there are more modes than nodes. In the modal space, the nodal space becomes overdetermined.
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This is not restricted to the C (6, 3) MBDS link. Any MBDS link that has does not have the

same number of modes as conductors automatically falls into this situation. Since a linear trans-

form can not be defined a direct relationship between Sn and Smm can not be defined. Solutions

such as a pseudo-inverse of the matrix M can be used to find a least-squares matrix that would

provide a way to convert between the modal space and the nodal space but these methods are

undesirable as there are many possible such solutions.

A numerical technique can be defined using the definitions of Equations 1.18 and 3.19. S-

parameters are defined simply as a ratio between ax and by and Equation 3.19 gives a way to move

between ~an and ~amm as well as ~bn and ~bmm.

To calculate multi-modal S-parameters it will be assumed that Sn is already known. The rows

of the matrix M conform to proper MBDS codewords. This is not by accident and is the same for

differential and for C (4, 2) multi-modal S-parameters in Equations 2.10 and 3.14. Using the rows

of this matrix as an ~anmx vector, the response vector ~bnmx can be calculated via Sn. Once ~bnmx is

known it is converted to ~bmm via Equation 3.19 to give all the modal responses to the input mode

~anmx . ~amm is then calculated by following the definition in Equation 3.19. Because M is not a

valid linear transform, non-zero modal terms will appear in the result vector ~amm. Because of this,

each ~amm must be calculated by using the appropriate input codeword otherwise power will not be

conserved. Using the ~bmm and the amm the column of the Smm matrix reserved for this stimulus

can be calculated by applying the definition of S-parameters.

3.3 GENERALIZED MBDS MULTI-MODAL S-PARAMETERS

The C (6, 3) derivation provides a method whereby the number of differential modes is greater than

the number of solutions to the transmission line equations. This will allow the characterization of

any MBDS channel via S-parameter measurements.

Keeping parity with all situations presented so far, the consistent reference plane of uncoupled

transmission lines will be assumed. The forward traveling voltage wave at the reference measure-

ment plane for each reference conductor, i, is defined as,

(3.20) v+
i (z) = v+

i e−γiz,
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with the forward traveling current wave defined via,

(3.21) i+i (z) = i+i e−γiz,

with the harmonic time dependence suppressed.

Using the definition of the reference plane of uncoupled transmission lines the modes for each

MBDS link must be then be defined. The differential modes can be defined by parsing the set Xnm

that contains the MBDS codewords to remove codewords that are complements. This will reduce

the size of the set φ{Xnm}, defined in Equation 1.8, by one half. The voltage definition of the

differential modes is,

(3.22) vmx =
m∑

i=1

kivi,

where ki are elements of each codeword ynm in the set, Ynm = {ynm : yεC (n,m) , ynm = ȳnm}.

The modal current is defined as,

(3.23) imx =
1

m

m∑
i=1

kiii.

The common mode must also be added to the set of modal current and voltage definitions.

They are defined as,

vmc =
1

m

m∑
i=1

vi,(3.24a)

imc =
m∑

i=1

ii.(3.24b)

Modal impedance is defined as,

zmi
= mZO,(3.25a)

zmc =
ZO

m
,(3.25b)

with the assumption that the structure under test is terminated with impedance ZO at each physical

port.
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The power waves flowing into and out of the structure being tested can be determined by

replacing the modal current, voltage and impedance definitions for each mode into the power wave

equations. For multi-modal port one, z = 0, having nodal ports one through n,

(3.26)
amx,1 = 1

2
√

zmx
[vmx − zmximx ] ,

= 1√
m

[
∑m

i=1 kiai] ,

with the definition for multi-modal port two equivalent with the replacement of ai with am+i. The

same definition exists for bmx,y.

These definitions allow us to write a relationship between ~am, ~an, ~bm, and ~bn by defining a

matrix M that will convert the nodal frame of reference into a modal solution. The rows of the

matrix M are the members of the set Ynm defined at physical ports one and two, with the common

mode definition included, and multiplied by the normalizing factor 1√
m

.

Once M has been defined, the algorithm outlined in Section 3.2 can be applied to determine

the Smm matrix given the Sn matrix.

The C (4, 2) MBDS S-parameters have the advantage that if either the nodal or the multi-modal

S-matrix is known it can uniquely describe the multi-modal or nodal S-matrix. A multi-modal S-

matrix can be directly characterized through the use of power splitters and baluns to generate the

appropriate stimulus and measure the multi-modal response. Multi-modal characterization of other

MBDS links can only be individually defined by an associated nodal S-matrix as each multi-modal

S-matrix corresponds to an entire set of nodal S-parameters.
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4.0 EXPERIMENTAL DESIGN

The methods defined in Chapter 3 were used to analyze several proposed PCB trace configurations

of C (4, 2) and C (6, 3) MBDS links. A simulation design flow was developed and is comple-

mented by the manufacture and characterization of the structures presented here. The analysis

flow allows for the extraction of all nodal and multi-modal S-parameters.

Simulations were performed for three different basic geometries of trace configuration in a

PCB for C (4, 2) and C (6, 3) links. The three chosen configurations included a planar layout

where all traces were routed on the same PCB layer, a square geometry where the outline of the

trace stack-up is rectangular in shape and a star geometry designed to present the most overall

symmetric surroundings to each trace. These configurations are presented in Figures 4.1 and 4.2

for both the four choose two and the six choose three links. The trace numberings one through

m correspond to nodal ports 1 one m and m + 1 though 2m, i.e., trace one in the C (4, 2) planar

geometry identifies nodal ports one and five.

Simulations of each link configuration are performed by creating a model of a one-half inch

section of PCB trace using Ansoft HFSS to create a high frequency, wide band model of the be-

havior of the electromagnetic field in the PCB. Ansoft Designer is used to combine the individual

PCB sections into a single eight inch PCB model. Vias, connectors or other components are not

simulated in this model. All transmission line structures are bounded on adjacent layers above

and below of the model with ground planes. The nodal S-parameter matrix for the eight inch

model is calculated in Designer with all measurement ports simulating a reference 50Ω termina-

tion impedance. The nodal S-Parameter matrix is then imported into Matlab and the multi-modal

S-parameter matrix was calculated. The HFSS model was solved for frequencies up to 25GHz.

A test PCB with the same transmission line structures was manufactured on a six-layer man-

ufacturing process with 1.0oz copper traces in each signal plane and FR-4 dielectric. To maintain
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Figure 4.1: C (4, 2) Simulation and Test PCB Configurations.

parity with the simulations, a grounded plane bounds the upper and lower level of the traces. The

PCB is analyzed with an Agilent Technologies 8712ET RF Network Analyzer in the range of

300KHz to 1.3GHz to collect the nodal S-parameter data. Matlab is used to generate the multi-

modal S-parameters.

The goal of these experiments is to identify those structures that result in the lowest losses for

MBDS modes. The design flow allows for the capture of all sixty-four C (4, 2) nodal and multi-

modal S-parameters, the 144 nodal S-parameters and 484 multi-modal C (6, 3) S-parameters. This

thesis will only concentrate on return loss, Sxx and Smxmx11, and insertion loss S-parameters,Sx(m+x)

and Smxmx21. Cross modal characteristics will not be presented here.
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Figure 4.2: C (6, 3) Simulation and Test PCB Configurations.
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5.0 EXPERIMENTAL RESULTS

5.1 FOUR CHOOSE TWO RESULTS

5.1.1 Planar Geometry

The results for the eight inch simulations and measured data for the C (4, 2) from 300kHz to

1.3GHz for the planar geometry are shown in Figures 5.1 and 5.2. The plots show the insertion

loss and the return loss in both the nodal and multi-modal space over the frequency range from

300kHz to 1.3GHz.

Figure 5.1 shows the effects of the asymmetry created perpendicular to the plane of the PCB

by the two traces that only have one neighbor giving different off diagonal terms in ZY. The

return loss in the nodal space of Figure 5.1a indicates that because of the asymmetry the inner two

conductors in this configuration also have a different characteristic impedance and leads to higher

return loss.

The degeneracy created by the different nodal responses is translated into the modal space as

displayed in Figure 5.2. Sm1m121 displays a lower insertion loss than the other differential modes.

This particular mode corresponds to codeword {1, 1,−1,−1} and creates an situation where the

voltage and current waves split along the vertical axis of symmetry and both conductors on each

side have the same potential and current direction and a different current and voltage relative to the

mirror side. Sm2m221, corresponding to codeword {1,−1, 1,−1}, has higher loss over the entire

frequency range and at some frequencies is 1dB lower than Sm1m121. Electrostatic plots of the

electric field of this geometry for Sm1 and Sm2 with a 100mV potential difference are shown in

Figure 5.3.
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(d) Measured Return Loss

Figure 5.1: Simulated and Measured C (4, 2) Nodal Insertion and Return Loss, Planar Geometry,

300KHz to 1.3GHz.
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(d) Measured Return Loss

Figure 5.2: Simulated and Measured C (4, 2) Multi-Modal Insertion and Return Loss, Planar Ge-

ometry, 300KHz to 1.3GHz.
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(a) Codeword {1,1,-1,-1}

(b) Codeword {1,-1,1,-1}

Figure 5.3: Electrostatic Field Plots of Two MBDS Codewords with a 100mV Relative Differential

Voltage Difference.

The asymmetry has a noticeable impact on the modal return loss Sm1 . This indicates that the

solution modes that are propagating inside the transmission line structure for m1 have a character-

istic impedance that is much closer to the modal impedance than any of the other modes leading to

lower loss.

The C (4, 2) link also gives insight to the behavior of coupled differential signals in addition

to MBDS signals. Each MBDS link analysis with even m and n equal to bm
2
c captures the be-

havior of the subset of m
2

parallel differential links. This behavior in a C (4, 2) captured by Sm2

and Sm3 behavior in Figures 5.1 and 5.2. It can be seen that on average MBDS codewords have

similar losses to two coupled differential channels and in certain cases outperforms such channels

with lower modal power loss for valid MBDS modes that would not exists on parallel differential

channels.
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5.1.2 Square Geometry

The results of the simulations and measured response of the C (4, 2) MBDS link from 300KHz to

1.3GHz for the square geometry are shown in Figures 5.4 and 5.5. The plots contain the insertion

loss and the return loss of both the nodal and multi-modal s-parameters.
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(d) Measured Return Loss

Figure 5.4: Simulated and Measured C (4, 2) Nodal Insertion and Return Loss, Square Geometry,

300KHz to 1.3GHz.

The square layout has the property that both the simulated insertion loss and the return loss are

identical for all traces in the nodal space. The high degree of symmetry in both the horizontal and
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vertical directions allow each trace to effectively see the same coupling as any of it’s neighbors.

However, unlike the planar geometry, the square geometry has a higher return loss of some modes

over the frequency range leading to a higher overall loss in the insertion loss.

The measured data presented in Figures 5.4b and 5.4d do not behave in such a tight fashion.

Referring to Figure 4.1, traces one and four are equal throughout the frequency range and are both

fabricated on the same layer of the PCB. Traces two and three exhibit the same effect and are also

co-planar. The manufacture of the PCB claimed different layer thickness tolerances for the two

places that these traces are patterned on suggesting that the copper thickness of these signal layers

is different.

Sm1m121 displays a 20dB lower return loss and as a result shows has a lower insertion loss than

the other modes for the square structure. Figure 5.5 indicates that there can be a strong dependence

on the particular codeword being transmitted and the channel behavior. Mode one in the square

geometry in both the simulated and measured data has lower insertion and return loss than modes

two or three indicating this codeword couples very well into the PCB. Mode one is a preferred

mode while mode two has the highest return loss and the lowest power output at the terminus of

the PCB and should be avoided if possible in the construction of the MBDS link with this geometry.
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(d) Measured Return Loss

Figure 5.5: Simulated and Measured C (4, 2) Multi-Modal Insertion and Return Loss, Square

Geometry, 300KHz to 1.3GHz.
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5.1.3 Star Geometry

The results for the eight inch simulations and measured results for the C (4, 2) for the star geometry

from 300KHz to 1.3GHz are shown in Figures 5.6 and 5.7. The plots show the insertion loss and

the return loss in both the nodal and multi-modal space.
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Figure 5.6: Simulated and MeasuredC (4, 2) Nodal Insertion and Return Loss, Star Geometry,

300KHz to 1.3GHz.

The return loss in the nodal indicates that the characteristic impedance of the conductors are

not equal. Designer reports that at 2.5GHz the characteristic impedance of traces two and three are
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42Ω with the remaining traces at 52Ω. Designer calculates the s-parameters using ideal 50Ω ports

that couple the power waves into the star geometry with lower return loss than the reference plane

of the network analyzer causing the shift between Figures 5.6c and 5.6d.
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Figure 5.7: Simulated and Measured C (4, 2) Multi-Modal Insertion and Return Loss, Star Geom-

etry, 300KHz to 1.3GHz.

The differences between the trace impedances causes the simulated multi-modal response to

fracture depending on the driven mode introduced to the structure as can be seen in Figure 5.7b.

However, the differences between the ideal simulated multi-modal ports and the real measurement

ports cause the measured multi-modal response to behave in an equal manner as shown in Figure
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5.7c. The unequal characteristic impedance of this structure should be avoided as the results be-

come more dependent on the actual ports used to measure the S-parameters and higher return loss

associated with port impedance mismatches.

5.1.4 High Frequency Simulations

High frequency operation of structures presented in this thesis is also simulated in the range from

500MHz to 25GHz with the representative modal responses of of the various geometries are pre-

sented in Figure 5.8. Differential and common modes of propagation are shown in these plots.

Insertion loss for all the structures decays rapidly in the high frequency range. Approaching

25GHz, both the planar and the star geometry have some modes with lower forward term loss than

the square geometry with the relative differences negligible compared to the absolute loss of each

mode. Return loss at high frequencies provides the best differentiation for these the structures.

All layouts have very low return loss for Sm1 with the star and planar geometries having a lower

Sm3 return loss than the square structure. If the excess codeword capability of the MBDS link is

not required then all codewords corresponding to this mode should be discarded to allow for the

highest coupling into the transmission line.
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(c) Insertion Loss, Square Geometry
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(d) Return Loss, Square Geometry
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(e) Insertion Loss, Star Geometry
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(f) Return Loss, Star Geometry

Figure 5.8: Simulated and Measured C (4, 2) Multi-Modal Insertion and Return Loss for Planar,

Square and Star Geometries, 500MHz-25GHz.
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5.2 SIX CHOOSE THREE RESULTS

The multi-modal simulation and measured results for the C (6, 3) links with the geometries listed in

Figure 4.1 are presented here for all twenty differential modes. The common mode of propagation

is not shown in these figures. Compared to the C (4, 2), for all the links presented here, there is

more variation among the different insertion loss S-parameters as it becomes increasingly harder

to create a symmetric structures in the high aspect ratio environment of printed circuit boards. The

return loss of these simulated geometries display how strongly certain modes can naturally couple

into the structure than other modes.

5.2.1 Planar Geometry

The multi-modal behavior of the planar geometry is shown in Figure 5.9. The simulated and mea-

sured multi-modal S-parameters do not entirely agree for the planar geometry and are related to the

phases of the individual nodal S-parameter signals. Stimulating physical port one with codeword

{1,1,1,-1,-1,-1}, as an example, a phase shift of any of individual nodes causes a fraction of the

modal power to be transferred into other modes. This can be seen by the differences between the

simulated return loss, Figure 5.9c, and the measured return loss shown in Figure 5.9d. Phase shift

differences in the individual nodal responses cause the peaks and valleys of the return loss in the

modal space to add to a more complicated response than the ideal simulated reference port. The

sources of these phase shifts include the longer trace lengths necessary to break out the transmis-

sion line structure into the SMA’s connecting the network analyzer to the PCB while avoiding vias.

The nodal insertion loss S-parameters are shown in Figure 5.10 for comparison.

5.2.2 Square Geometry

The magnitude of the multi-modal insertion loss of the measured and simulated responses shown in

Figure 5.11 show less differences than the planar structure presented in Section 5.2.1. Comparing

the simulated and measured return loss plots for this structure again show that the phases of the

measured nodal responses are impacting the behavior of the multi-modal response.
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(a) Simulated Insertion Loss
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Figure 5.9: Simulated and Measured C (6, 3) Multi-Modal Insertion and Return Loss, Planar Ge-

ometry, 300KHz to 1.3GHz.
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(a) Simulated Insertion Loss
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(b) Measured Insertion Loss

Figure 5.10: Simulated and Measured C (6, 3) Nodal Insertion and Return Loss, Planar Geometry,

300KHz to 1.3GHz.

5.2.3 Star Geometry

The multi-modal simulated and measured S-parameters of the C (6, 3) star structure are shown in

Figure 5.12. Similar to the square and planar geometries the return loss differences between the

simulated and measured structure display the impact of the non-ideal ports used to measure the

structure. Even with these differences, the measured insertion losses and return losses of the dif-

ferential modes are less than simulation predicts indicating that the characteristic modal impedance

of the PCB matches the reference plane better than the ideal simulated ports. The differences be-

tween the simulations and the measured data can also be attributed to the differing characteristic

impedance of traces one and six of the star structure as reported by Designer, similar to the effects

of the C (4, 2) star structure.

Comparing the measured insertion loss of Figures 5.9b, 5.11b and 5.12b the star and square

structures have lower loss that the planar structure. Due to the differing characteristic impedances

of the traces of the star structure and the co-equal modal behavior of the square structure indicates

that the square structure presented in this thesis is a good candidate for implemented C (6, 3) links.
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Figure 5.11: Simulated and Measured C (6, 3) Multi-Modal Insertion and Return Loss, Square

Geometry, 300KHz to 1.3GHz.

47



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
−3.5

−3.25

−3

−2.75

−2.5

−2.25

−2

−1.75

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

dB

Frequency, MHz

(a) Simulated Insertion Loss

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
−3.5

−3.25

−3

−2.75

−2.5

−2.25

−2

−1.75

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

dB

Frequency, MHz

(b) Measured Insertion Loss

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

dB

Frequency, MHz

(c) Simulated Return Loss

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

dB

Frequency, MHz

(d) Measured Return Loss

Figure 5.12: Simulated and Measured C (6, 3) Multi-Modal Insertion and Return Loss, Star Ge-

ometry, 300KHz to 1.3GHz.
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5.2.4 High Frequency Simulations

The high frequency simulations show the same high-loss behavior in the PCB as in the four choose

two case. These results are displayed in Figure 5.13. At frequencies above 5GHz, the relative

differences in modal propagation become constants functions. Above 5GHz the relative loss of

the modes to each other is becoming much less significant than the total loss of each mode. De-

creasing amount of power loss in the PCB at these frequencies is material dependent than structure

dependent.

5.3 MODIFIED SIX CHOOSE THREE STAR GEOMETRY

The star geometry was modified through a trial an error approach using Ansoft HFSS to bing the

impedance of each conductor closer to matching the reference impedance of 50Ω as the reference

plane. The modified star geometry is listed in Figure 5.14.

The multi-modal insertion and return loss for this structure are shown in Figure 5.15. Even with

the optimization of the impedance matching, the star structure retains the high return loss shown in

Figures 5.12a and 5.12b. Some of the modal insertion loss terms do show less loss but compared

to the original geometry the modified star geometry does not show significant improvement.
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Figure 5.13: Simulated C (6, 3) Multi-Modal Insertion Loss for the Planar, Square and Star Ge-

ometries, 500MHz-25GHz.
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Figure 5.14: Modified C (6, 3) Star Geometry.
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Figure 5.15: Simulated C (6, 3) Multi-Modal S-Parameters, Modified Star Geometry, 300kHz-

1.3GHz.
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6.0 CONCLUSIONS

6.1 CONTRIBUTIONS OF THE ANALYSIS

This work demonstrates a method where a multi-bit differential signaling channel is characterized.

The method presented allows for the analysis of any MBDS channel configuration. The formula-

tion also provides a method where parallel differential channels that are close in proximity can be

analyzed to determine the effects each channel will have on the other.

It is also shown that the channel configuration can impact the loss of power delivered to and

the power transmitted by the channel and that this loss can be dependent on the particular MBDS

codeword being transmitted across the channel. Configurations where there is a loss of symmetry

of each conductor relative to it’s neighbors will cause the modal loss in the system to be codeword

dependent. This loss can be overcome by changing either the geometry of the channel or using

the excess codewords in the code-set to remove those codewords with high loss. For the C (4, 2)

and C (6, 3) MBDS links the square geometry has the lowest overall loss or has the most similar

multi-modal characteristics of the configurations shown in Figure 4.1 and Figure 4.2.

Of the structures presented in this paper, the greatest impact on the MBDS multi-modal space

occurs due to changes in the direction perpendicular to the plane of the PCB. The jump from

C (4, 2) to C (6, 3) causes a greater variation in the modal responses of the square and star structure

than was observed in the C (4, 2) case due to the extra PCB layer. Conversely, modifying the star

geometry to bring the impedances of each trace equal to each other does not improve the overall

multi-modal response of the structure.
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6.2 FUTURE RESEARCH

Further work can be conducted into the ability to properly terminate the transmission line struc-

ture and provide the proper common node voltage reference in the MBDS channel. The complex

geometries presented in this paper and any other feasible layout may not be optimally terminated

with the star termination network MBDS utilizes to generate the common node voltage. A termi-

nation network that properly matches the transmission line structure may not generate the proper

voltage levels necessary for MBDS. Using the multi-modal S-parameters it may be possible to

build a hybrid termination structure that provides proper transmission line termination and MBDS

voltage levels.

Characterization of the channels presented in this thesis is performed by calculating Smm after

measuring Sn. Using the techniques presented in this thesis a conceptual pure-mode network

analyzer could be constructed where the network is stimulated with MBDS codewords and the

measured response used to calculate multi-modal S-parameters.
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