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Swapna R. Dontharaju, PhD

University of Pittsburgh, 2007

Radio Frequency Identification (RFID) tags are small, wireless devices capable of automated

item identification, used in a variety of applications including supply chain management,

asset management, automatic toll collection (EZ Pass), etc. However, the design of these

types of custom systems using the traditional methods can take months for a hardware

engineer to develop and debug. In this dissertation, an automated, low-power flow for

the design of RFID tags has been developed, implemented and validated. This dissertation

presents the RFID Compiler, which permits high-level design entry using a simple description

of the desired primitives and their behavior in ANSI-C. The compiler has different back-ends

capable of targeting microprocessor-based or custom hardware-based tags. For the hardware-

based tag, the back-end automatically converts the user supplied behavior in C to low power

synthesizable VHDL optimized for RFID applications. The compiler also integrates a fast,

high-level power macromodeling flow, which can be used to generate power estimates within

15% accuracy of industry CAD tools and to optimize the primitives and / or the behaviors,

compared to conventional practices. Using the RFID Compiler, the user can develop the

entire design in a matter of days or weeks. The compiler has been used to implement

standards such as ANSI, ISO 18000-7, 18000-6C and 18185-7. The automatically generated

tag designs were validated by targeting microprocessors such as the AD Chips EISC and

FPGAs such as Xilinx Spartan 3. The corresponding ASIC implementation is comparable

to the conventionally designed commercial tags in terms of the energy and area. Thus, the

RFID Compiler permits the design of power efficient, custom RFID tags by a wider audience

with a dramatically reduced design cycle.
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1.0 INTRODUCTION

Radio Frequency Identification (RFID) systems are expanding rapidly with their applications

in a wide range of areas. RFID systems consist of Radio Frequency (RF) tags and RF readers

or interrogators. These systems are used for a wide range of applications that track, monitor,

report and manage items as they move between different physical locations. The tags consist

of integrated circuits and an RF antenna. A wide range of extensions such as memory,

sensors, encryption, and access control can be added to the tag. The interrogators query the

tags for information stored on them, which can include items like identification numbers,

user written data, or sensory data. Tags contain a unique tag identification number and

potentially additional information of interest to manufacturers, healthcare organizations,

military organizations, logistics providers and retailers, or others that need to track the

physical location of goods or equipment.

RFID tags generally come in two types, active and passive. Active tags require an internal

power source to power the tag for receiving queries and transmitting responses. Passive tags

do not contain an internal power source and receive energy from the interrogator query.

This energy is used to power the tag to determine and send a response to the query. This

energy may not be sufficient for intensive computation, limiting the complexity of response.

The range of passive tags is also significantly lower compared to active tags. Active tags,

on the other hand, are more costly than passive tags and may also require frequent battery

replacement.

RFID applications are numerous and far reaching. The most widely used applications

can be categorized as those for supply chain management, security, and the tracking of

important objects and personnel. Though standards (ISO/IEC JTC1, ANSI, EPC etc)

have been developed for RFID hardware, software and data management, these applications

1



have customized requirements. The RFID tag circuits for these are implemented in custom

designed chips. Such chips can only be used in specific applications, and therefore, are often

called application specific integrated circuits (ASICs).

The design, development, and fabrication of Application Specific ICs is expensive and

time consuming. The design process of ASICs requires considerable knowledge in digital logic

design, which is very different from application programming in high-level languages such

as C. In addition, it is a long and a tedious process that involves designing, synchronizing

and synthesizing the digital design. Currently, this process involves months for a hardware

engineer to complete. To reduce the design time, effort and cost significantly, it is necessary

to develop design automation tools that allow the designers to reduce the time to move from

specifications to hardware implementations.

The cost of fabrication of ASICs is very high. Small companies and RFID application

programmers are, from a cost standpoint, prohibited from designing their own ASICs. As a

result, the design of RFID systems is being done by large companies with state of the art

hardware design and fabrication capabilities. These companies also drive the direction of the

evolution of RFID systems and, hence, the standards, as technological capability is the key to

the development of standards. With the design automation tool, smaller companies or RFID

application programmers will be able to achieve customized RFID tag ICs implementations

in less time, in a cost effective manner.

The market for RFID tags is characterized by rapidly evolving applications and rather

short market windows. A key concept for coping with such requirements is the retargeting

of system components for different and/or modified applications or standards. The modified

applications can be implemented quickly using the design automation flow.

Power optimization is critical in RFID systems because the power budget is limited in

the case of passive tags and battery drain needs to be limited in the case of active tags

as frequent replacement of batteries may not be feasible. Thus, the tags generated by the

design automation tool must be extremely power efficient.

In this dissertation, an automated, low-power flow for the design of RFID tags has been

developed, implemented and validated. This dissertation presents the RFID Compiler, which

was developed at Electronic Design Automation Laboratory at the University of Pittsburgh.
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Figure 1: RFID Specification Methodology and Compilation Flow
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Figure 1 shows the RFID Compiler flow. The RFID Compiler permits high-level design

entry using a simple description of the desired primitives and their behavior in ANSI-C. The

compiler has different back-ends capable of targeting microprocessor-based or hardware-

based tag controllers. For the hardware-based tag, the back-end automatically converts the

user supplied behavior in C to low power synthesizable VHDL. The compiler also integrates

a fast, high-level power macromodeling flow, which can be used to generate accurate power

estimates and to optimize the primitives and their behaviors.

Figure 2 presents a comparison of different RFID tag design methodologies. The current

state of the art tag development shown in Figure 2(a) requires lengthy design, fabrication,

and testing cycles which can take months, with intellectual property (IP) reuse, to years if

developing new IP. A customizable RFID tag, as shown in Figure 2(b), can handle variations

in standards and requirements as they are developed with a significantly shorter time to

market than current flows. A customizable RFID tag can make flexible RFID systems

economically viable. This tag is mass produced and tailored to a particular RFID use after

fabrication.

In this dissertation, the design flow from the RFID primitives to the power optimized

tag controller is presented. Relative to contemporary technology, the design flow developed

and implemented in this dissertation:

• allows for a simple specification of the RFID primitives and description of the primitives

behavior in C

• allows RFID technology design by a wider audience, not necessarily hardware designers

• generates a low power design

• quickly generates accurate power estimates, which can be used for exploration and opti-

mization of both the standard and the C code for behaviors.

This dissertation presents the algorithms, approaches, and techniques used in the design

flow of the RFID Compiler. The main emphasis of the mechanisms used in this research is

to shorten the design time while producing an implementation which is power efficient.

Several standards have been implemented with the RFID Compiler. Two System-on-a-

Chip implementations for the ISO 18000-7 and ANSI standards were first used to validate
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(a) Current RFID tag design flow. All tag components integrated manually. Estimated time:
months or years.

(b) Automated RFID tag design flow. Prepackaged extensible sili-
con device. Estimated time: hours or days.

Figure 2: Comparison of RFID tag design philosophies.
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the design flow. First, a C program was automatically generated and compiled for the

microprocessor-based system. Second, the microprocessor was replaced with a block of

low-power FPGA logic. For, the 18000-6C and 18185-7 standards, VHDL was generated,

synthesized for ASICs and compared with the corresponding manual implementations. Power

estimates were generated using the power macromodeling flow and were compared with the

power estimates from the traditional methods to validate the accuracy and the gain in

designer productivity.
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2.0 CONTRIBUTIONS

There are two major problems in the current RFID systems. (1) Custom tags, with additional

capabilities beyond those specified in existing RFID tag standards, are sometimes required for

specific applications. To build such custom systems from scratch is generally cost prohibitive

and requires long design times. (2) Power optimization is critical in RFID systems because

the power budget is limited for passive RFID systems and battery drain needs to be limited

for active RFID systems as frequent replacement of batteries is often not feasible after

deployment.

2.1 PROBLEM STATEMENT

The objective of this dissertation is to solve the above problems by presenting a standard de-

sign flow for the rapid development of RFID tags with custom capabilities, for a wide variety

of applications. To address the problem of rapid design of custom tags the RFID specifi-

cation methodology and compilation flow will automatically generates RFID tag controller

code based on a high-level description of the commands to be implemented. The design

methodology is proven by targeting embedded microprocessor-based and hardware-based

prototypes.

To address the problem of developing low-power tags, this dissertation integrates power

as one of the primary metrics early in the design flow. The compiler automatically generates

an application specific simulator for the specified design and accurately estimates the power

consumed by the design with a factor of 100 speedup over traditional power estimation

methods.
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2.2 CONTRIBUTIONS

2.2.1 RFID Compiler for the Microprocessor-based Tag

The RFID compiler allows RFID primitives or the transactions employed by the RFID

systems to be specified using RFID macros, an assembly-like format. These RFID macros are

processed to generate a template file to specify the behavior for each primitive or macro. All

behavior is specified using ANSI-C allowing the user to create arbitrarily complex behaviors.

Finally, the RFID compiler generates a C program as output that is compiled onto the

microprocessor with its platform-specific C compiler.

2.2.2 Hardware RFID Compiler with VHDL Behavior

While the embedded processor approach does provide a reasonable power/energy consump-

tion, improvement is still possible. To improve both the power and capacity of the controller,

a hardware-based RFID controller is explored. The hardware RFID compiler processes the

original RFID macros to generate VHDL template files to specify the behavior. The behavior

for each primitive is specified using VHDL and the remaining code segment for packet pack-

ing, unpacking, and decoding is automatically generated and output in VHDL rather than

in C. Finally, the RFID compiler generates the tag controller VHDL design which is syn-

thesized, mapped, placed, and routed for the target hardware using commercially available

tools. ASIC implementation of the primitives will be evaluated to reduce the energy.

2.2.3 Hardware RFID Compiler with C Behavior

Because C is a significantly more universally known programming language than VHDL or

Verilog, it is desirable to continue allowing the end-user specify the primitive behaviors for

the RFID Tag in C. The extended hardware RFID compiler can read primitive behavioral

descriptions in ANSI-C and generate synthesizable VHDL for combinational implementation.

These combinational blocks are combined with the automatically generated packet packing,

unpacking, and decoding VHDL and synthesized for the reprogrammable hardware target.
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2.2.3.1 EPC C1 Generation 2 Hardware RFID Compiler EPCglobal Class-1 Gen-

eration-2 UHF (Gen-2) specification, recently standardized as ISO 18000 Part 6C, is becom-

ing widely accepted in the supply chain today and is driving the development of passive tags.

The communication primitives of Part 6C are significantly different and more complex than

the ISO 18000 Part 7 standard. This is because the standard relies on multiple variables

and storage of state at several points during each communication operation. This makes the

RFID compiler significantly more general than the original implementation. The Hardware

RFID Compiler with C behavior is extended with features to support Part 6C primitives

and is optimized for low-power and area.

2.2.4 Techniques For Optimizing The Tag Power Consumption

To enable the design of low-power tags, a power macromodeling flow is implemented, which

calculates power at a high level during the RFID compiler design automation process. In

this flow, the RFID compiler automatically generates a SystemC-based application specific

simulator for the input specification. Through access to a pre-profiled library of blocks in

the target fabrication process, the power consumption is estimated within an accuracy of

15% of the conventional ASIC power estimation flows, while being 100 times faster. The

estimates can be used for the optimization of the primitive behaviors and in the evaluation

of alternate protocol designs.

The remainder of the dissertation is organized as follows: Chapter 3 presents the back-

ground for this dissertation and the related work. Chapter 4 describes the stages of the RFID

specification methodology and the compilation flow in detail for the microprocessor-based

system. Chapter 5 describes the Hardware RFID Compilation flow with the behavior speci-

fied in VHDL. Chapter 6 describes the Hardware RFID Compilation flow with the behavior

specified in C. Chapter 6.4 describes the EPC C1 Generation 2 Hardware RFID Compi-

lation flow. Chapter 7 describes the techniques for optimizing the tag power consumption

implemented in the compiler. Finally, the conclusions are presented in Chapter 8.
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3.0 BACKGROUND

A considerable body of literature exists on RFID systems. This chapter provides a brief de-

scription of RFID systems, their architecture, the tag characteristics, the prevalent standards

and common RFID applications.

The focus of this dissertation is to present a standard design flow for the rapid design of

low-power RFID tags with custom capabilities for different applications. The automatically

generated tag controller code targets embedded microprocessor-based and hardware-based

tags. To provide an understanding of the design process and gain in design times, this

chapter covers the relevant aspects of the traditional ASIC design flow. The design flows for

the reconfigurable field programmable gate arrays (FPGAs) and embedded microprocessors

are also included.

This chapter also includes a section describing the commercial RFID systems and other

research programs that build customizable RFID systems. Finally the prototyping environ-

ment used in the University of Pittsburgh compilation flow is described.

3.1 INTRODUCTION TO RFID SYSTEMS

RFID technology is an alternative to barcode technology and it enables identification at a

distance without a line of sight. Figure 3 shows common devices that employ RFID tags.

Figure 4 shows an RFID reader that is used to communicate with the tags. Electronic

tagging is superior to barcodes in many ways. It allows writing data into the tag, interaction

with sensors, scanning a large number of items simultaneously without human error, etc. It

supports a much larger set of unique IDs and additional data such as the manufacturer ID.
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Figure 3: Common RFID Tags

RFID is not a new technology. For instance, the principles of RFID were employed by

the British in World War II to distinguish allied aircrafts from enemy aircrafts. During the

1960s, work on employee access control was carried out at Los Alamos National Laboratories.

For many years this technology has been used in applications as diverse as: animal tracking,

automatic toll collection and many forms of ID badge for access control. Recently, RFID

has become more mainstream. RFID tags can now be achieved at low manufacturing costs

and are being adopted in many new applications.

3.1.1 RFID Architecture

An RFID system mainly consists of tags and readers. The reader, also called the interrogator,

sends and receives RF data to and from the tag via antennas. The tag, or transponder, is

made up of the microchip that stores the data and an antenna. The information collected

from the tags is stored in a back-end database. Figure 5 shows the main components of an

RFID system.

3.1.2 RFID Tag Characteristics

Tags can vary in terms of the frequency at which they communicate, the protocol, how they

are powered and how they store data.

Many types of RFID devices exist, but at the highest level, they can be divided into

active and passive devices. Active tags require a power source and use energy stored in a
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Figure 4: RFID Reader

battery. The active tag’s lifetime, and hence the number of operations, is limited by the

stored energy. They have ranges of over a hundred feet. They typically cost more than the

passive tags and are used to track high value goods like vehicles and pallets.

In the case of passive tags, the reader is responsible for powering and communicating

with the tag. The reader transmits a low power radio signal through its antenna to the tag,

which in turn receives it through its own antenna to power the integrated circuit. As a result,

passive tags transmit information over shorter distances, typically less than 10 feet. Since

they cost considerably less, they are used in tracking low cost items. They do not require

batteries and have an indefinite operational life.

3.1.2.1 Communication There are many different versions of RFID systems that oper-

ate at different radio frequencies. The choice of frequency is dependent on the requirements

of the application. Three primary frequency bands have been allocated for RFID use. The

Low Frequency band (125/134KHz), is most commonly used for access control and asset

tracking. The High Frequency band (13.56 MHz) is used where medium data rate and read

ranges are required. The Ultra High Frequency (850 MHz to 950 MHz and 2.4 GHz to 2.5

GHz) band offers the longest read ranges and highest reading speeds. The techniques in this

dissertation can be applied regardless of the frequency employed.
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Figure 5: The Main Components of an RFID System

3.1.2.2 Computation Most passive tags have simple or no computational capabilities.

They may only have a simple memory that can be remotely accessed. They may have a

simple design that can perform certain XOR and AND operations. Active tags can be more

complex, and could have have a few thousand logical gates to implement logic.

The two basic types of memory available on RFID tags are read-only memories and

read-write memories. Read only chips are programmed with unique information stored on

them during the chip manufacturing process. The information on read only chips can never

be changed. With read write memories, the user can add information to the tag or write

over existing information when the tag is within range of the reader.

3.1.2.3 Security Applications for RFID continue to expand into domains such as elec-

tronic passports, electronic payment systems, and electronic container seals. These appli-

cations have a risk of unauthorized access to sensitive biometric or financial information

through the RFID tag or or tag communication. RFID devices are susceptible to many

forms attacks, which may affect the security and privacy of the individual users or the orga-

nizations. Some of the main attacks possible are physical attacks against tags, counterfeiting
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of tags or readers, eavesdropping messages transmitted in protocols, etc. Some of the attacks

that are less malicious are traffic analysis to detect when and how many messages are sent,

disrupting messages and denial of service attacks.

However, as RFID devices are intended to be small and relatively simple devices, security

protocols and techniques can significantly lag behind the other details such as correctness,

read rate, power consumption, etc. This is primarily because strong authentication and en-

cryption algorithms are complex and would significantly increase the cost and power budget

of the tag. As such, the state of security in RFID systems is generally weak compared to

other mature computational technologies such as Internet servers, shared computing work-

stations, and even smart-cards. Various security techniques have been proposed in the recent

years, including killing tags at the checkout point, physical tag memory separation, rolling

codes, hash locks, challenge-response protocols, etc. An exhaustive study of the security

attacks of RFID as well as the protection techniques is beyond the scope of this dissertation,

but can be found in [5]. Design automation flow discussed in this dissertation could allow

the RFID primitives to support novel security techniques.

3.1.3 RFID Applications

RFID is expected to provide huge advantages to manufacturers by offering the tools to better

plan production and respond more quickly to market demand. The use of RFID tags will

permit automatic management of stock and inventories in shops and warehouses. Supermar-

kets and other retailers across the world are pioneering large-scale item-level deployments of

RFID in consumer goods. Some examples are: Wal-Mart in the US, Marks & Spencer and

Tesco in the UK and Metro in Germany. By using RFID technology for tracking sales, stock

and orders they aim to lower operational costs which in turns impacts the pricing.

The United States Department of Defense has been using active tags to reduce logistics

costs and to improve supply chain visibility for more than 15 years. The US government

is considering the use of RFID tags in the passports to reduce counterfeiting and to enable

automatic identity checking. The European Union is planning to incorporate RFID tags in

the European paper currency to make forgeries difficult and to provide tracking of its use.
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Management of books can be automated by using RFID for libraries. Tags can be

inserted in each volume, thus simplifying the work of library staff as well as improving the

experience of users. Inventories can be carried out without removing books from the shelves,

by automatically detecting missing or misfiled books, or even by using an automatic sorter

for the returned volumes. An example is the use RFID tags in the Vatican Library in Rome

to identify and manage its extensive book and document collection [6].

Many access control applications also employ RFID tags. The use of RFID cards or

badges makes access control simpler for people as they do not have to manipulate their

identification card. It can also be used for identifying people or for safety reasons, e.g., when

a building must be evacuated. Theft and vandalism are also impeded. Another example of

access control is the keyless and passive entry systems in cars. The owner initiates a secure

exchange of information between the car’s remote unit and the car by the push of a button

on the remote, and the door of the car automatically unlocks itself.

RFID technology is very useful in location sensing, item/animal tracking, healthcare, etc.

Examples include a location sensing prototype system for locating objects inside buildings [7]

and a system for identifying persons and objects inside and outside hospitals [8]. RFID tags

and intelligent transponders are widespread for vehicle to roadside communications, road

tolling and vehicle access control. Different types of RFID systems are being developed to

support all aspects of aviation baggage tracking, sorting and reconciliation [9].

This motivates the need for different RFID customizations and possible interoperability

across domains. This can be easily accomplished using the concepts in this dissertation.

3.1.4 RFID Standards

There are number of standards for RFID systems which have either been published or are in

the process of being elaborated. The main specifications are: ISO (International Organiza-

tion for Standardization [10]) standards, EPC (Electronic Product Code [4]) specifications

and ANSI (American National Standards Institute [11]).

The key active ISO standard is 18000-7 [10], which is an international standard that

defines the air interface for RFID devices used in item management applications. The stan-
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dard defines the forward and return link parameters for an active RFID air interface at 433

MHz and the communications protocol used. The ISO 18185 Part 1 standard [12] is an in-

ternational standard that provides a system for the unique identification and presentation of

information about freight container electronic seals. It is used in conjunction with the other

parts of ISO 18185 such as, Part 4 that specifies data protection and Part 7 that specifies

the physical layer protocol.

The EPC specifications, established by EPCGlobal, distinguish several classes of tags

according to their function. Class 1 corresponds to the most simple tags, which have only a

unique identifier for the tag by default. Class 2 offers more memory and allows authentication

functions to be carried out. Class 3 corresponds to semi-passive tags and finally class 4

corresponds to active tags, which can potentially communicate with each other. Of these,

the Class 1 Generation 2 (or ”Gen 2”) UHF specification is the most widely used [4]. It has

been integrated with the ISO standards as the 18000-6C passive standard [13].

The ANSI/NCITS 256-2001 is the American National Standard for RFID devices [11].

It is intended to allow for compatibility and to encourage interoperability of products for the

growing RFID market in the United States.

As part of this dissertation, I show the comparison of automated implementations of

these standards and in some cases, merge the implementations of different standards such

as ISO 18000-7 and ANSI/NCITS 256-2001.

3.2 HARDWARE DESIGN METHODOLOGIES

Historically, digital hardware has been divided into two main groups, general-purpose pro-

cessor and application specific hardware. A general-purpose processor is a fixed architecture

device which implements a pre-defined set of instructions. General-purpose processors can

be classified as: microprocessors and digital signal processing (DSP) processors among oth-

ers. Examples of microprocessors are Intel’s Pentium family, Sun’s UltraSparc family, Intel’s

XScale, and IBM’s PowerPC for embedded applications, etc. These processors execute pro-

grams stored in some internal or external memories by fetching their instructions, examining
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them and then executing them one after another. An organization of a simple bus-oriented

microprocessor is shown in Figure 6. New programs can be loaded into memory as needed.

The computation of any algorithm is determined by the software program, not the hardware.

Because their instruction sets include very general applications such as arithmetic and log-

ical operators, general-purpose processors can be programmed to perform any conceivable

function. The application can be programmed in a high-level language such as C and is com-

piled for execution on any processor. However, general-purpose processors are slower than

dedicated hardware at performing computationally intensive functions. They also consume

higher power compared to application specific hardware.

Microprocessor

Control Unit

Registers

Arithmetic 
Logic Unit 

(ALU)

Main 
Memory Disk Monitor Mouse & 

Keyboard

Bus

I/O Devices

Figure 6: Organization of a Simple Bus-oriented Microprocessor

For application-specific hardware, an engineer designs all of the circuits specifically for an

application. These circuits or custom hardware implementations, which are often referred to

as application-specific integrated circuits (ASICs), usually lead to better performance than

general-purpose processors since they can be optimized for the specific application. How-

ever, if a new function is required, then an entirely new ASIC must be created. Another

disadvantage of ASICs is the labor-intensive design cycle. It typically takes months or years

for hardware engineers to design a new ASIC and have it fabricated and tested. This also

translates into a high cost and long time-to-market. In spite of these drawbacks, application

specific hardware is widely used whenever performance is of primary importance or product
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volume is very high. By optimizing the hardware for a particular task, an ASIC can often

achieve computation speeds several orders of magnitude faster than doing the same com-

putation using general-purpose hardware, while also requiring lower power. ASICs shine in

extremely high volumes of production of relatively unchanging specification as they provide

the best performance and power solution.

In recent years, programmable logic devices have been increasingly gaining interest, when

high volume is not possible, but custom hardware is desired. They have some of the ad-

vantages of both general-purpose and application-specific hardware. These devices are most

commonly commercially available Field Programmable Gate Arrays (FPGAs) or Complex

Programmable Logic Devices (CPLDs). While FPGAs are large, have higher performance

and consume higher power, CPLDs are small, have lower performance and consume lower

power. These devices provide a relatively large number of programmable functional units

and programmable interconnections. The functionality of the hardware is determined by

how the functional units and interconnections are configured. By changing the configura-

tion, the hardware can be made to perform a completely different function. Different types

of applications can be implemented at speeds between application specific hardware and

general-purpose processors. In addition, the configuration can be changed relatively quickly

from one function to another, giving some of the same flexibility as general-purpose proces-

sors. These programmable logic devices consume lower power compared to general-purpose

processors and higher power compared to application-specific hardware.

3.2.1 Design Flows For ASICs and FPGAs

The traditional design flow for ASICs is depicted in Figure 2(a). It starts with the devel-

opment of a hardware definition for the application. This is usually done with a hardware

description language (HDL). The two main HDLs in use today are VHDL and Verilog. For

HDL coding, a sound knowledge of the digital logic design is required. The functionality of

the HDL is then verified in simulation against the initial specification. The HDL description

of the design is then synthesized into a netlist consisting of cells and their interconnections.

The cells used in the netlist are obtained from a standard cell technology library provided
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by the ASIC manufacturer, typically analogous to basic logic gates. The library defines the

delay models, models for variations of temperature, voltage and manufacturing processes as

well as the functionality of each cell. This gate-level netlist is then simulated to verify the

functionality of the design. The logic cells are then placed on the layout of the chip as a

minimum area arrangement that meets the performance constraints. After placing the logic

gates, the interconnections between logic gates are routed according to the specified netlist.

Post-layout simulation is performed at this level, mainly to verify that the design meets the

specified timing constraints. Pin assignment is then performed to connect the input and

output signals of the design to the I/O pins of a chosen frame. Finally, the physical layout

of the design is sent off for fabrication.

Design RFID 
Specification

Implement in 
VHDL

Correct 
Simulation?

Synthesis, Place 
& Route

Target Device 
Programming

Timing 
Analysis Testing

Final Tag

Figure 7: Design Flow For Reconfigurable Hardware

The traditional design flow for reconfigurable hardware is depicted in Figure 7. To

map an application to reconfigurable hardware, the designer must first define the hardware

structure for the application using a HDL. After that, the HDL code is verified to make sure

that it matches the required functionality, prior to synthesis. The design is then synthesized

into a technology-dependent netlist. This netlist is specified in terms of the basic logic block

of the device. For example, if the Xilinx Spartan-3 series FPGAs are used, the netlist is

specified in terms of Configurable Logic Block (CLB). The incoming netlists and constraints

are mapped into the available resources on the target device. Then the design is placed and

routed onto the device to meet the timing constraints. The timing of the design is then

verified by static timing analysis. The placement and routing processes produce the physical

implementation for the design, which is then translated into a bit stream (commonly known
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as configuration file), which is used to program the target device. This flow is considerably

simpler and shorter than the ASIC design flow. Moreover, once the functionally correct

and synthesizable VHDL is available, mapping to the target device can be done quickly and

efficiently using commercial back-end tools.

The compilation flow developed in this dissertation automatically generates the tag C

program or synthesizable tag VHDL design for compiling on to microprocessors or for map-

ping on to programmable logic devices. This avoids the high initial cost, the lengthy de-

velopment cycles, and the inherent inflexibility of conventional ASICs. RFID tags with

custom capabilities for different applications can be designed and prototyped in a short

amount of time. However, if the tag design is to be manufactured on a very large scale,

ASIC fabrication can be done after prototyping the tag design using a reconfigurable de-

vice.

3.3 RELATED WORK

Several RFID tags are being developed in the industry and in research labs. In this sec-

tion, some of these tags are highlighted. The available customizable RFID systems are

also presented. The differences between these approaches and this dissertation are also

discussed.

3.3.1 Commercial Systems

Some of the companies that develop RFID tags are Savi, Intermec, Phillips, Motorola, Hi-

tachi, etc. The tags are designed using a traditional ASIC design flow. The SaviTag ST-602

is a simple, low cost, tag for real-time tracking of containers and their contents within facil-

ities or across geographies. It has a battery life of four years, a range of about 300 feet and

memory capacity of 36 bytes (see Figure 8(a)) [14]. The SaviTag ST-654 high performance

tag is suited for various applications including tracking of shipping containers, vehicles, and

other large assets. It is claimed to have immunity to some effects such as dirt and enclosures,
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(a) Savi Tag ST-602 (b) Savi Tag ST-654 (c) Savi Reader SR-650

Figure 8: Some RFID Products From Savi [1].

and has a range of up to 300 feet, a typical battery life of five years using lithium cells and

memory capacity of 128K (see Figure 8(b)). The Savi tags are compatible with the Savi

reader products (for example, see Figure 8(c)).

Other custom tags, which are commercially available, are also designed using the stan-

dard ASIC design flow. A novel design of a batteryless, self-powered RFID transponder is

presented in [15]. Data transmission uses frequency shift keying (FSK) modulation and the

circuit is designed such that the output frequencies are implicitly determined, independent

of the load of the antenna. The design is fabricated as a 0.8um CMOS circuit. An integrated

circuit for a battery-less transponder system for high performance identification systems is

described [16]. The operating principle of the system gives a superior performance in read-

ing distance due to separation of the powering and data transmission phases. The design

of a read/write tag targeted towards low-cost applications is described in [17]. An ultra

small RFID micro-chip storing a unique 128-bits ROM ID code, for use in a reliable authen-

tication through a network-based secure ID management is available [18]. An ultra-small

radio-frequency identification chip, called the u-chip, has been developed for use in a wide

range of individual recognition applications [19] . The chip is fabricated using 0.18um stan-

dard CMOS technology. The RFID enabled micro-chip [20] is small sized and low cost, and is
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suitable for attachment to paper media and small products, aiding counterfeit prevention and

product tracking in market environments. A wireless sensor prototype platform (UbiSensor)

presented in [21] combines sensors and RFID resulting in sensing, data processing, network

protocol execution, and energy scavenging capabilities. The platform design is driven by

energy consumption minimization of given tasks. A commercially available microcontroller,

low power RF transceiver, and power generator circuits are used.

3.3.2 Customizable Systems

Figure 9: Rule-based RFID tag system. Source: [2].

A rule-based RFID tag system using ubiquitous chips is proposed in [2] to construct

flexible and scalable systems. Ubiquitous chips are rule-based I/O control devices, to which

several devices such as switches, sensors, LEDs (Light Emitting Diode), etc., can be attached.

Ubiquitous chips use ECA rules for event-driven programming. An ECA rule consists of the

following three parts: events (E), conditions for executing the actions (C) and the actions to

be carried out (A). ECA rules have been used to describe the behaviors of active databases.

An active database is a database system that carries out prescribed actions in response to a

generated event inside / outside of the database. A simple example of an ECA rule is shown

in Figure 10.
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E: A person passes the entrance.

C: He/She has a license to enter the office.

A: Open the door.

Figure 10: Example ECA rule for an employee access control application. Source: [2].

Figure 9 shows a prototype of the system proposed in [2]. An RFID reader and RFID

tags made by Texas Instruments (TI-K2A-001A) are used. The reader is connected to

a ubiquitous chip through a conversion module. The conversion module converts the ID

received from the RFID reader into the ubiquitous chip format. The application program

is input into the ubiquitous chips using rules to describe behaviors. Using this system,

an employee access control application is implemented. The authors then show how this

system can be customized using a different set of rules when the application is extended to

support a different type of access control. This approach may be useful when applications

are simply extended, however, when a completely new application or a new protocol needs

to be implemented the tag itself will require customization. Our RFID design automation

flow allows full customization of RFID tags.

One of the main components of an RFID system communication is the physical layer

protocol employed to encode bits of information. The physical layer features for the bit

encoding mechanism vary across various RFID standards. For example, the ISO 18000 Part

7 active tag standard specifies Manchester encoding [22] to transmit encoded data RFID

interrogators and tags [10] while the ISO 18000 Part 6C standard defines different physical

layer features of transactions among readers and tags. Pulse-Interval Encoding (PIE) [13]

is utilized to encode data transmitted from readers to tags and either FM0 [23] or Miller

encoding [24] is utilized to encode the backscattered data from tags back to readers [13]. [3]

describes a methodology by which the physical layer decoder and encoder hardware blocks

can be automatically generated from a high-level specification of the protocol. This design

flow is shown in Figure 11. The user describes the waveform features of the encoding scheme
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such as edge transitions, level detection, pulse width detection, etc. from a physical layer

specification. The user can then combine one or more wave features to represent bits or

groups of bits. The physical layer synthesis tool then automatically generates hardware

blocks for encoding and decoding the signal in VHDL. These VHDL descriptions are created

from the combination of predefined parameterized hardware libraries and automatically gen-

erated hardware blocks for detecting and generating the waveform features in the encoding.

RFID standard
Bit coding specification

Physical layer
waveform feature 

library

Synthesis
Physical layer

waveform 
features

Encoder
VHDL

Decoder
VHDL

Figure 11: The generation flow for an RFID data encoder and decoder. Source: [3].

3.4 RFID PROTOTYPING ENVIRONMENT

The RFID compiler uses a simple specification of the RFID design to create the RFID

tag controller. The complete tag prototype consists of a programmable controller, an air

interface, and a power-aware smart buffer that sits in between, as shown in Figure 12. The

smart buffer [25], implemented in an FPGA, contains a small amount of logic to detect

whether incoming packets are intended for the tag, thereby allowing the controller to remain

powered down to reduce overall system power consumption. The Air Interface serves as

an interface between the smart buffer and the interrogator, with the necessary receiver and

transmitter circuitry to allow the RFID tag to communicate with the RFID interrogator.
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Response
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Extensible, low - power, RFID tag 

Figure 12: Extensible, low-power RFID tag.
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4.0 RFID SPECIFICATION METHODOLOGY AND COMPILATION

FLOW

The RFID specification methodology and compilation flow are illustrated in Figure 13. The

RFID primitives from the specification of the standards and the proprietary extensions are

first converted into a simple assembly-like description or RFID macros. The first stage of the

compiler, the RFID Parser (rfpp), reads this and builds it into the compiler. The user then

defines the tag behavior in response to each RFID primitive in ANSI-C. To simplify the user

interaction, the RFID Parser generates C code templates automatically. The user uses simple

ANSI-C constructs to plug in the behavior into the template. The RFID Compiler (rfcc)

generates the tag controller C code based on the input RFID macros and the tag behavior.

The C code is compiled using an embedded compiler to generate executable binary for the

microprocessor of the tag.

Figure 13: RFID Specification Methodology and Compilation Flow

To provide the background for understanding the inputs to the RFID specification

methodology and compilation flow, the basic RFID command structures from the ISO 18000

Part 7 and ANSI-256 specifications are described in Section 4.1. The process for converting
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the basic RFID structures from the standard specification into a form read by the compiler is

described in Section 4.2. The process for inserting the RFID tag response behavior described

in the standard into the automatically generated behavior template into the form read by

the compiler is shown in Section 4.3. Section 4.4 describes the process to generate the final

program to be executed on the tag. Section 4.5 describes the prototype microprocessor based

system developed, and the experimental results are shown in Section 4.6.

4.1 DESCRIPTION OF THE PRIMITIVES

4.1.1 ISO 18000 Part 7

As an illustration of the RFID standards specification, a primitive, Collection command has

been selected from the ISO/IEC 18000-7:2004(E) standard. The format of the fields in the

interrogator to tag command format for the Collection command primitive and its response

are shown in Figure 14. Each RFID primitive has a unique field called the command code

or opcode, which serves as the identifier and signals the tag what type of command is being

issued. In addition to the opcode, each RFID primitive contains a number of other fields of

varying lengths as positions for data present as can be inferred from Figure 14. The command

contains a CRC to ensure the command packet is properly formed. The remainder of the

packet contains particular fields appropriate to the command. For example, the command

type field indicates the presence of Tag ID and Owner ID fields. Broadcast commands do

not contain a Tag ID while point to point commands contain a specific Tag ID of the target

tag. The Owner ID field, which is programmed in the tag’s memory, allows the segregation

of different groups of tags within the whole population.

Similarly, the tag response includes the command code, CRC and other data fields. The tag

response also includes a tag status field, which consists of nested fields such as acknowledge,

tag type, battery, etc.
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Collection Command
Prefix Type Owner Id Interrogator Id Opode Size Reserved CRC
8 bits 8 bits 24 bits 16 bits 8 bits 16 bits 8 bits 16 bits

Response
Tag Status Message Length Interrogator Id Tag Id Opode CRC

4 bits 1 bit 2 bits 1 bit 2 bits 2 bits

Tag Status
Modefield Reserved Ack Reserved Tag Type Reserved User Id Battery

4 bits 1 bit 2 bits 1 bit 2 bits 2 bits 1 bit 4 bits

Figure 14: Collection Command and Response Format (ISO 18000-7)

4.1.2 ANSI NCITS 256-2001

Figure 15 shows the interrogator to tag command format for the Get Tag Status command.

As in the case of ISO 18000-7 commands, the command contains a command code to signal

the tag what type of command is being issued, a CRC to ensure the command packet is

properly formed and other appropriate data fields. Similarly, the tag response includes the

command code, CRC, and a tag status field, which consists of nested fields such as reserved,

beeper, battery, etc.

Get Tag Status Command
Command Code Interrogator Id Tag Id CRC

8 bits 16 bits 24 bits 16 bits

Response
Tag Id Interrogator Id Tag Status CRC
24 bits 16 bits 8 bits 16 bits

Tag Status
Reserved Beeper Checksum Battery Error

4 bits 1 bit 1 bit 1 bit 1 bit

Figure 15: Get Tag Status Primitive and Response Format (ANSI)
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4.2 MACROS SPECIFICATION

The simple assembly-like descriptions corresponding to the RFID primitives and their re-

sponses are termed RFID macros. Each RFID macro description has a short character string

that corresponds to the name of the primitive, a number corresponding to the value of the

opcode, a set of operands corresponding to the primitive’s format and a set of operands

corresponding to the response format.

Figure 16 shows the RFID macros file corresponding to the Owner ID Write primitive.

In order to capture the details of the lengths of each field in the primitive, the macros file has

been conceptually broken into a declarations section and a main section. The declarations

section allows the user to pre-declare the lengths of all the fields that will occur in the

primitives and the responses. This eliminates the need to specify the field’s length multiple

times as the field can occur in multiple primitives and / or multiple responses. In the main

section, the primitives and the corresponding responses are defined in terms of the fields

thereof.

In some cases, the fields in the primitive or the response have multiple nested fields of

varying lengths. These fields can be described with ease, as shown in Figure 16, thereby

providing the user with the capability to adopt any level of granularity in manipulating

the primitives and / or responses. In the macros shown in Figure 16, the string used to

denote the owner ID write command is ionw. The decimal value of the command code

corresponding to the owner ID write command is “137”. Figure 17 shows an example RFID

macros file containing the Get Tag Status primitive shown in Figure 15.

The grammar for the RFID specification is shown in Figure 18. The RFID parser parses

the macros specification file. The operand declarations and RFID macros are stored in a

symbol table. Each macro data structure has the name, opcode, a pointer to the list of

command operands and a pointer to the list of response operands.
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declarations
prefix(8)
type(8)
ownerid(24)
interid(16)
tagid(32)
comcode(8)
siz(16)
res(8)
crc(16)
tagstatus(16)[

modefield(4)
reserved1(3)
acknowledge(4)
reserved2(2)
tagtype(3)
reserved3(1)
userid(1)
battery(1)
]

mesglen(8)

main
icol(16) prefix type ownerid interid comcode siz res crc

tagstatus mesglen interid tagid ownerid crc
ionw(137) prefix type ownerid tagid interid comcode crc

tagstatus mesglen interid tagid comcode crc

Figure 16: Macros specification (ISO 18000-7).
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declarations
interid(16)
tagid(32)
comcode(8)
crc(16)
astatus(8) [
reserved(4)
beeper(1)
checksum(1)
lowbattery(1)
error(1)
]

main
asta(23) comcode interid tagid

tagid interid astatus

Figure 17: Macros specification (ANSI-256).

rfidspec : declarations macros
macros : macro

| macros macro
macro : name opcode cmdoperands rspoperands
cmdoperands : operand

| cmdoperands operand
rspoperands : operand

| rspoperands operand
declarations : nesteddec

| simpledec
| declarations nesteddec
| declarations simpledec

nesteddec : simpledec LBR simpledecs RBR
simpledecs : simpledec

| simpledecs simpledec
simpledec : string LBR precision RBR
opcode : integer
precision : integer
operand : string
name : string

Figure 18: RFID Specification Grammar.
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for (each macro in macros list)
{

get macro name, its response list
for each (operand in response list)
{

get its information from symbol table
print to template file

}
}

Figure 19: Pseudo-code for Template Generation.

4.3 TEMPLATE FOR BEHAVIOR

The RFID interrogator (Reader) transmits an RFID primitive to the tag through an air

interface. The tag responds to the interrogator’s primitive by way of changing its current

state and / or transmitting a response message back to the interrogator. The nature of the

tag behavior is specified to the RFID compiler, to be incorporated in the end tag software.

The user specifies tag behavior in a programming language such as ANSI-C.

To simplify the user interaction, the RFID parser generates a template for the response

behavior indicating where the user must specify such custom behavior. Any C language

constructs (conditionals, loops, etc.) can be added (or left unchanged) by the user to check

the values of the fields of the incoming RFID primitive and to specify the values of the

fields of the response. The pseudo-code for template generation is shown in Figure 19.

The template generated for the Collection command (icol in the macros specification in

Figure 14) is shown in Figure 20. A file containing similar templates for all the macros that

were included in the macros specification file will be generated for the user.

Figure 21 shows the completed behavior for the Collection command. The values of

the fields in the response are manipulated as per the ISO 18000-7 specification. All details

regarding the size and the position of the fields in the interrogator command and in the

response packet are handled automatically by the compiler and need not be specified in the
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TAGSTATUS.modefield =
TAGSTATUS.reserved1 =
TAGSTATUS.acknowledge =
TAGSTATUS.reserved2 =
TAGSTATUS.tagtype =
TAGSTATUS.reserved3 =
TAGSTATUS.userid =
TAGSTATUS.battery =
RESPONSE.mesglen =
RESPONSE.interid =
RESPONSE.tagid =
RESPONSE.ownerid =
RESPONSE.crc =

Figure 20: Template Generated for Behavior of Collection Command.

TAGSTATUS.modefield = 0;
TAGSTATUS.reserved1 = 7;
if (commandValid)

TAGSTATUS.acknowledge = 0;
else

TAGSTATUS.acknowledge = 1;
TAGSTATUS.reserved2 = 3;
TAGSTATUS.tagtype = 2;
TAGSTATUS.reserved3 = 1;
TAGSTATUS.userid = 1;
TAGSTATUS.battery = 0;
RESPONSE.mesglen = 112;
RESPONSE.interid = interid;
RESPONSE.tagid = tagid;
RESPONSE.ownerid = ownerid;
RESPONSE.crc = crc;

Figure 21: Behavior of Collection Command After User Input.
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behavior. Hence the complexities of unpacking the command and packing the response are

abstracted away from the user. However, the user’s option to manipulate each individual

field in the response has been preserved. Thus, the customization of responses and state

changes can increase in complexity with user familiarity.

The completed behavior for the Collection command command is shown in Figure 21,

illustrating how simple C constructs can be used to plug in the response behavior of the tag.

4.4 MICROPROCESSOR-BASED CONTROLLER

The final phase of the compiler is the computer (target microprocessor) code generation

based on the input macros specification and the tag behavior. The compiler generates

decode instructions that identify the incoming RFID primitive. For each case of an incoming

command, the compiler also creates routines that unpack the command into the fields that

it is expected to contain. The corresponding behavior is then attached to each case of an

incoming command. The routines for packing the response are then generated. The result

is that the final generated RFID C program, from the above steps, receives the incoming

RFID primitive, identifies it based on the value of its opcode, unpacks its fields, executes its

behavior, packs its response and sends it to the interrogator.

Figure 22 shows the pseudo-code for the tag program generation. First, the decoder

function is generated. The initialization part involves generating code for initialization of

the variables in the symbol table (e.g. operand declarations) and code for retrieving the

opcode from the received RFID command. Then a switch statement is constructed. For

each macro in the macros list, cases are added. For the response and all of its nested

operands, C structs are created with the members as the operands and their widths. Then

the symbol table is looked up and code is generated for setting the width of each operand to

the value originally specified in the input macros specification. Next, code is generated for

invoking the cyclic redundancy check (CRC) function to check the incoming command. The

code for extracting the operands from the command into strings is generated. These strings

can be manipulated within the behaviors corresponding to different primitives. This uses
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// generate header file
define constants for opcode values
define functions for decoder, unpacking of integer command to strings,

packing strings, crc checking, etc

// generate C file
// generate decoder function
for (each symbol in symbol table)

generate code to initialize variables
generate code for getting opcode from command
make switch statement
for (each macro)
{

create a case
// add following statements to it-

for (each operand in response)
if (nested)

generate structs with fields and width of fields
generate a struct for response
add each response operand and its width to it
declare objects of each above struct
for (each operand in response) {

look-up width from symbol table, initialize width members in structs
initialize operand members in above structs to zero

}
generate code for invoking crc function on command
// unpacking
for (each operand in response) {

generate code for extracting each operand from command into a string
}
// behavior
attach code for behavioral C
// packing
for (each operand in response) {

generate code for packing each operand into a response string
}
generate code for calculating crc of response and append it to response
invoke function to send response

}
create default case
generate other functions

Figure 22: Pseudo-code for Tag Program Generation.
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the width values and position of each operand in the command. The user supplied behavior

is attached to the corresponding macro case. Once the response code has been appended,

the code for packing the operands into a response string is generated. This uses the width

values and position of each operand in the response. Next, code is generated for invoking

the CRC function on the response, attaching the value to the response and for invoking the

function to send the response.

A commented code skeleton that follows the pseudo-code of the generated tag program

is shown in Figure 23.

4.5 THE PROTOTYPE MICROPROCESSOR SYSTEM

The prototype microprocessor system was simulated using an Altera APEX 20 FPGA for

Smart Buffer implementation and three different processor cores: the Intel StrongARM at

206 MHz [26], the Intel XScale 80200 at 733 MHz [27], and the 16-bit EISC microprocessor

at 50 MHz from ADChips [28]. A prototype system was built with an Avnet development

board, an EISC development board, and an Air Interface prototype board fabricated using

PCB Express.

Figure 24 shows the interface between the EISC processor and the Smart Buffer. Thirteen

of the EISC processor’s I/O pins are used for communicating the command and response.

When an complete RFID command is received, the Smart Buffer interrupts the processor.

EISC reads the command from the FIFO queue in the Smart Buffer, the length of which

is indicated by the Smart Buffer. This is implemented as an interrupt service routine in

the EISC and is shown in Figure 25. Once the complete command is received, this routine

invokes the decoder function, described in Section 4.4. When the decoder completes its

execution, the tag’s response is packed. The response is decomposed into packets and is sent

to the Smart Buffer as shown in Figure 26. The processor then directs the Smart Buffer to

transmit the RFID response to the analog front-end. These two routines are specific for the

EISC microprocessor. When a different microprocessor is to be used for the RFID tag, these

routines need to be updated by the application programmer.
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void decoder() {
 // Declare all the operands
 long opcode;
 long prefix = -1;
 long type = -1;

.. 
// Get the opcode from command
StringCopy(opcode_str, command_array_ptr, 8);
opcode = strtoul(opcode_str, &array_endptr, 2);
.. 
switch(opcode) {

case ICOL: {
typedef struct TAGSTATUS_STRUCT {

long modefield;
int size_modefield;
...// next field 

} TAGSTATUS_STRUCT;

typedef struct RESPONSE_STRUCT {
TAGSTATUS_STRUCT tagstatus;
int size_tagstatus;
long mesglen;
int size_mesglen;
...// next field 

} RESPONSE_STRUCT;
                                 ..

TAGSTATUS.modefield = 0;
TAGSTATUS.size_modefield = 4;
...// next field 
RESPONSE.size_tagstatus = 16;
RESPONSE.mesglen = 0;
RESPONSE.size_mesglen = 8;
...// next field 
// Unpacking command:
// Extracting field prefix:
StringCopy(prefix_str, command_array_ptr, 8);
prefix_int = strtoul(prefix_str, &prefix_ptr, 2);
for(loop=0; loop<8; loop++) 

*command_array_ptr++; 
...// extract next field 
// Behavior of ICOL

 TAGSTATUS.modefield = 0;
TAGSTATUS.reserved1 = 7;
...// behavior of next field 
// Packing response:
FieldToString(tagstatus_ptr, TAGSTATUS.modefield, TAGSTATUS.size_modefield);
array_ptr = PackFieldInArray(array_ptr, tagstatus_ptr);  
...// pack next field

                     SendResponse(array_ptr, word_size, num_words);
}

case IUDW: {
.. 

}
..// case next macro 
default: break;

}
 // reset array for next command
 command_array_str[0] = '\0';

}

Figure 23: Outline of Compiler-generated Tag Program
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Figure 24: Interface Between the EISC processor and the Smart Buffer

The system was tested with a variety of automatically generated controller programs

including anywhere from 1 to 14 RFID Primitives. While fitting additional primitives in

the prototype system is theoretically possible, limitations of available memory on the board

prevented a larger program size from being used.

The RFID compiler was used to generate three different programs: Program A with

24 RFID primitives, Program B with 12 primitives, and Program C with 4 RFID primi-

tives. Experiments were conducted by executing 14 primitives of Program A, 1 primitive of

Program A, 1 primitive of Program B, and 1 primitive of Program C.

The sim-panalyzer [29] and XTREM [30] tools were used to estimate the power dissi-

pation of the compiler-generated microprocessor-based tag for the ARM-based cores. Sim-

panalyzer is a cycle accurate, architecture-level power simulator built on the SimpleScalar

processor simulator. XTREM is a SimpleScalar-based power and performance simulator tai-

lored specifically for the Intel XScale micro-architecture. SimpleScalar’s sim-profile tool was

used to obtain ARM instruction and instruction class profiles for the RFID tag programs.

Because an instruction set simulator was not available for the EISC processor to measure

the execution time, the application was run on the development board and a pin output

was set from low to high upon each iteration. The total duration was measured using an

oscilloscope. The energy consumed by EISC is calculated as the average power consumption

multiplied by the measured execution time. The EISC power estimate was provided by AD

Chips [28], which is estimated to be within about 10% accuracy of an instruction level power

estimation approach [31].
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void EXT_IRQ1_ISR()
{

_PIO0_LDAT = 0x0001; // Read signal
_PIO1_MOD  = 0x0000;    // Write PIO1 [15:0] 
_PIO1_LDAT = 0x0000; // Initial 
_PIO1_MOD  = 0x0002;    // Write PIO1 [15:2] and [0]; 

// PIO1 [1]: Open collector output  
_PIO1_LDAT = 0x0040; // PULL 
_PIO1_MOD  = 0x0002; // PIO1 [1]: Open collector output 
empty      = (_PIO1_EDAT & 0x0002) >> 1; // Reading only the empty bit. 

// Discarding everything else.
command_array_ptr = command_array_str;
while (((_PIO1_EDAT & 0x0002) >> 1) == 0)
{

_PIO1_MOD  = 0x0002;    // Write PIO1 [15:2] and [0]
_PIO1_LDAT = 0x0044; // PULL
_PIO1_MOD  = 0xFF02;
r_data_1   = _PIO1_EDAT >> 8;

byte_ptr = byte_str; // Convert byte to bit-string
FieldToString(byte_ptr, r_data_1, 8);

byte_ptr = byte_str; // Pack bit_string into command array
command_array_ptr = PackFieldInArray(command_array_ptr, byte_ptr);

_PIO1_MOD  = 0x0002;    // Write PIO1 [15:2] and [0] 
_PIO1_LDAT = 0x0040; // PULL

}
// Decode and Execute Command
decoder();

_PIO1_MOD  = 0x0000;    // Write PIO1 [15:0] 
_PIO1_LDAT = 0x0000; // Initial 
_ISR_END = EXT1_INT_Clr;

}

Figure 25: Interrupt Service Routine to Read the Incoming Command from the Smart Buffer
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void SendResponse(char *array_ptr, int word_size, int num_words)
{

int outputword, i, loop;
char buffer_str1[50], buffer_str0[50];
char *array_endptr;
char Tx00_str[9] = {"00000000"};
char Tx04_str[9] = {"00000100"};
char *Tx00_ptr;
char *Tx04_ptr;

Tx00_ptr  = Tx00_str;
Tx04_ptr  = Tx04_str;
_PIO1_MOD  = 0x0000;     
_PIO1_LDAT = 0x0000; // Init

for(i=0; i< num_words; i++)
{

StringCopy(buffer_str1, array_ptr, word_size);
StringCopy(buffer_str0, array_ptr, word_size);
outputword = strtoul(buffer_str1, &array_endptr, 2);

strncat(buffer_str1, Tx00_ptr, word_size);
for(loop=0; loop< num_words; loop++)

*array_ptr++;
outputword = strtoul(buffer_str1, &array_endptr, 2);

_PIO1_LDAT = outputword;

strncat(buffer_str0, Tx04_ptr, word_size);
outputword = strtoul(buffer_str0, &array_endptr, 2);

_PIO1_LDAT = outputword;
_PIO1_LDAT = 0x0000; 

}

_PIO1_MOD  = 0x0000;   // Direction 
_PIO1_LDAT = 0x0000; // Init
_PIO1_LDAT = 0x0066;  // Transmit
_PIO1_LDAT = 0x0000; // Init

}

Figure 26: Routine to Send the Response to the Smart Buffer
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4.6 RESULTS

Figures 27 and 28 show the power and energy consumption results of the compiler-generated

tag program on the Intel StrongArm SA -110 [26], Intel XScale 80200 [27], and the ADChips

16-bit EISC [28].

These results show the power consumption only during the active phase of the RFID

transaction (e.g. the time after the entire packet is received by the smart buffer when the

packet is processed and the response is generated by the smart buffer). During this time, the

smart buffer is active and its ASIC implementation consumes 0.29mW, as shown in [25].

This power is negligible compared to the processor power.

The frequencies of operation used are 206.40MHz for StrongArm, 733MHz for XScale,

and 50 MHz for EISC. Both the ARM-based processors operate in the 250-400 mW range,

while the XScale uses significantly less energy (10s versus 100s of µJ). The EISC proces-

sor uses an order of magnitude less power than the ARM-based cores, but operates at

a much slower clock speed. However, the energy consumed is still less than half of XS-

cale.

It can be seen that the power consumption of XScale is less than that of StrongArm

though they both implement the ARM Instruction Set Architecture. This is because the

XScale family of microprocessors uses deep pipelines and micro-architectural optimizations

for high performance [27]. Further, the reduced power consumption and greater clock speed

of XScale 80200 result in its far lower energy consumption.
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Figure 27: Power consumption results for microprocessor-based RFID tags.

Figure 28: Energy results for microprocessor-based RFID tags during response generation.
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5.0 HARDWARE RFID COMPILER WITH VHDL BEHAVIOR

The overhead of using a microprocessor-based controller for the RFID tag is considerable.

For example, Intel StrongARM and XScale processors operate in the hundreds of mW range.

While the smart buffer is intended to alleviate much of the controller’s power consumption

by putting the processor to sleep, the ARM-based processors can require hundreds of in-

structions to be executed to generate the response for a single primitive. This can result in

significant energy usage even with the smart buffer. Ideally, the EISC processor would be

used for low-power purposes, however, system memory is a limitation.

A hardware-based solution may improve both the power and capacity of the controller.

This chapter presents extensions to the RFID compiler design flow to generate VHDL for

targeting a hardware-based controller. The compilation flow the for the Hardware-based

RFID tag is shown in Figure 29.

RFID 
Specification

Convert to 
RFID Macros

RFID Parser
rfpp

Behavior 
Template

Include RFID 
Behavior in 

VHDL

RFID Compiler
rfvhd

Commercial 
Synthesis 

Flow

Hardware 
based RFID 

Tag

Figure 29: Hardware RFID Compiler with VHDL Behavior
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5.1 VHDL BEHAVIOR-BASED FRONT-END

Since the code generated by the compiler needs to be synthesizable VHDL, the behavior for

each primitive also needs to be input in VHDL. The RFID parser was modified so that it

generates VHDL assignment statements in the templates after processing the original macros

file described in Section 4.2.

The template generated for the Collection command (in Figure 14) is shown in Figure 30.

The completed behavior for the same command is shown in Figure 31. The behavioral

VHDL statements added by the user need to be synthesizable. The code segment for packet

packing, unpacking, and decoding is automatically generated and output in VHDL rather

than in C. Finally, the RFID compiler generates the tag controller VHDL design which is

synthesized, mapped, placed, and routed for the target FPGA device using commercially

available tools.

5.2 HARDWARE CONTROLLER-BASED BACK-END

PACT HDL (Power Aware Architecture and Compilation Techniques) is a compiler target-

ing the C language that produces synthesizable HDL usable for either FPGA designs or

Application Specific ICs (ASICs) with a framework for both power and performance opti-

mizations [32]. The VHDL abstract syntax tree (AST) of PACT HDL has been used in the

RFID compiler back-end to create the RFID tag controller VHDL. The VHDL design so gen-

erated is industry-standard, and may be synthesized and profiled for power using commercial

tools.

An outline of the automatic VHDL generation using the VHDL AST is shown in Fig-

ure 32. The highest VHDL data structure is a design file. Therefore, the back-end creates

a DesignFileClass. A design file contains a design unit. A design unit contains an entity

declaration and an architecture declaration. Classes are instantiated for each of these data

types and added to the design file.
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modefield =
reserved1 =
acknowledge =
reserved2 =
tagtype =
reserved3 =
userid =
battery =
mesglen =
interid =
tagid =
ownerid =
crc =

Figure 30: Template Generated for Behavior of Collection Command

modefield := ”0000”;
reserved1 := ”111”;
if (commandValid = ’1’) then

acknowledge := ’0’;
else

acknowledge := ’1’;
end if;
reserved2 := ”11”;
tagtype := ”010”;
reserved3 := ’1’;
userid := ’0’;
battery := ’0’;
mesglen := X”0E”;
crc := X”0000”;

Figure 31: Behavior of Collection Command After User Input
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A VHDL entity declaration contains the description of the communication between that

entity and the external blocks. The top-level entity contains the ports (input and output

declarations), a global symbol table of VHDL signals, and multiple process nodes corre-

sponding to the tag state machine. The process nodes contain local symbol tables with

VHDL variables and statement nodes. Statement nodes such as assignments, if statements,

etc., are made of expressions and operators.

A new UserDefinedStatementClass, descended from SequentialStatementClass, was added

to the VHDL AST to support the synthesizable VHDL statements input by the user to de-

scribe the behavior of the primitives.

5.3 IMPLEMENTATION OF PRIMITIVES

The Hardware RFID Compiler was validated by implementing the primitive logic for different

hardware targets. The system was tested with 2 primitives up to 40 primitives. 40 primitives

was selected as the maximum because it provided room for all the primitives of the ANSI-

256 and the ISO 18000-7 standards, with room for several customized primitives. The

commands from ISO 18000-7 and ANSI-256 have been summarized in Figure 33 and Figure 34

respectively. The commands are explained in Section 4.1. The corresponding hardware

implementations are discussed in Sections 5.3.1 and 5.3.2.

5.3.1 FPGA-Based Implementation

The prototype FPGA-based system was implemented in simulation using a Xilinx Spartan 3

XC3S400 FPGA to implement the smart buffer and a Xilinx Coolrunner II XC2C512 CPLD

to implement the primitive logic programmed into the microprocessor in the previous system.

The primitive logic was also implemented in simulation using an Actel Fusion AFS090 FPGA.

The entire system was also loaded onto a single Spartan 3 XC3S400 and tested in hardware.

The system was tested with 2 primitives up to 40 primitives.
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// Create design file
DesignFileClass *df = new DesignFileClass();
// Create top level design unit
DesignUnitClass *du = new DesignUnitClass(new LibraryClauseClass("IEEE"));
// Add use clauses
UseClauseClass *uc = new UseClauseClass(selName);
du->addClause(useClause); //...
// Create entity
EntityDeclrClass *entity = new EntityDeclrClass(entityId, decs); 
// Add ports to entity 
InterfaceClass *ports = new InterfaceClass(SIG, portId, portMode, portSubtype);
entity->addPortInterface(ports); //... 
// Add entity  to top level design
du->setLibUnit(entity);
// Create architecture
ArchitectureDeclrClass *architecture = new ArchitectureDeclrClass(behavior, id); 
// Add signals, etc
SignalDeclrClass *sigDec = new SignalDeclrClass(idlist, subType);
architecture->addBlock(sigDec);  
// Create process 
ProcessStatementClass *processStmt = new ProcessStatementClass(taglogic);
// Add sensitivity
processStmt->addSensitivity(id); //...
// Add declarations
while(symbolTable) {
      IdentifierClass *procDecId = new IdentifierClass(symbolTable->operandName); 

  range = new DiscreteRangeClass(DOWNTO, d0, new DecimalClass(decList->value));     
  subtype = new SubtypeIndicationClass(STD_LOGIC_VECTOR, range); 

      VariableDeclrClass *varDec = new VariableDeclrClass(procDecId, subtype); 
      processStmt->addDeclaration(varDec); //...
}   
// Create case statement
CaseStatementClass *caseStmt = new CaseStatementClass(currentstate);
// Add case body
CaseBodyClass *caseBody = new CaseBodyClass(s0);
// Add statements to case body
sigAssignStmt = new SignalAssignmentStatementClass(responseReady, prWaveform);
caseBody->addSequential(sigAssignStmt);
// Parse and Add user supplied behavior statements to case body //...
// Add packing logic statements // ...
// Add completed case to process 
processStmt->addSequential(caseStmt);
// Add completed process to architecture
architecture->addConcurrent(processStmt);
// Add completed architecture to design unit
du->addClause(architecture);
// Add design unit to design file
df->addDesignUnit(du);

Figure 32: Outline of Automatic VHDL Design Generation Using VHDL AST.
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Collection
Collection with data
Collection with user id
Sleep
Read tag status
Firmware version
User ID length read
User ID length write
User ID read
User ID write
Owner ID read
Owner ID write
Model number
Set password
Set password protect
Unlock
Write memory
Read memory

Figure 33: Commands from ISO 18000 Part 7.

Collection
Sleep
Sleep all but
Sleep all but group
Get tag status
Get version
Set group code
Get group code
Get error
Clear error
Beeper on
Beeper off
Write memory
Read memory

Figure 34: Commands from ANSI NCITS 256-2001.
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Table 1: Area and performance result for implementing the primitive logic on a Coolrunner

II XC2C512

Primitives 2 4 6 8 10 12 15 20 24 30 35 40
Macrocells 332 335 338 340 350 366 426 447 447 447 449 447
% used 66% 66% 67% 67% 69% 72% 84% 88% 88% 88% 88% 88%
Product Terms 444 477 514 506 477 552 772 953 993 1106 1181 1213
% used 25% 27% 29% 29% 27% 31% 44% 54% 56% 62% 66% 68%
Registers 262 267 271 271 283 307 422 443 443 443 443 443
% used 52% 53% 53% 53% 56% 60% 83% 87% 87% 87% 87% 87%
Func. Block Inputs 360 379 408 391 338 396 611 767 801 870 900 914
% used 29% 30% 32% 31% 27% 31% 48% 60% 63% 68% 71% 72%
FMax (MHz) 49 41 41 40 49 41 41 29 33 33 26 30

The area and performance results for the user defined primitive logic are shown in Table 1

for the Coolrunner II XC2C512 CPLD and Table 2 for the Actel Fusion AFS090 FPGA. They

are summarized against the available resources in Figure 35. Figure 36 shows the resource

utilization of the user defined primitive logic and the smart buffer logic on the Spartan 3

prototype system.

From Figures 35 and 36, it can be seen that the logic required by the RFID tag response

generation fits into all the three devices. The Coolrunner II is a small, low-power device and

has 512 macrocells. They are utilized by up to 88% by the 40 primitive tag program. The

Actel Fusion device has 2304 VersaTiles which are utilized by up to 19%. The Spartan 3

provides plenty of capacity, with 7168 Look Up Tables (LUTs). The tag program along with

the smart buffer logic utilizes only about 37% of this.

Table 2: Area for implementing the primitive logic on an Actel Fusion AFS090.

Primitives 2 4 6 8 10 12 15 20 24 30 35 40
Cells 315 317 324 351 359 376 388 430 439 470 493 501
VersaTiles 256 258 265 292 300 317 329 371 380 411 434 442
% used 11.1% 11.2% 11.5% 12.7% 13.0% 13.8% 14.3% 16.1% 16.5% 17.8% 18.8% 19.2%
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(a) Primitive logic on a Coolrunner II.

(b) Primitive logic on an Actel Fusion.

Figure 35: Resource utilization of user defined logic for FPGA-based prototype systems.
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Figure 36: Resource utilization of user defined primitive logic and smart buffer on a Spartan

3 prototype system.
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The power consumption of the Xilinx FPGA devices including the Spartan 3 and Cool-

runner II was estimated using Xpower from Xilinx. For the Actel Fusion FPGA, the tool

used was SmartPower from Actel. Switching statistics for the tools were generated from

cycle-accurate, post place and route simulations of actual test data.

While the Spartan 3 certainly provides plenty of capacity, its power consumption, albeit

potentially lower than the ARM-based processors, is still not as low as desired. Unfortu-

nately, much of this is due to the quiescent power of 92 mW. In order to further reduce

power, the Fusion and Coolrunner II implementations were explored. For these systems, the

smart buffer is not implemented in reconfigurable logic. Only the user defined primitive con-

troller generated by the compiler is implemented in the CoolRunner / Fusion devices. The

power and energy consumption of the Coolrunner2-based RFID tag controller are displayed

in Table 3. The power consumption results for the Fusion-based RFID tag are summarized

in Figure 37.

The Actel Fusion FPGA consumes 12.98 mW for the 40 primitive tag program. Its

quiescent power is 7.5 mW. However, for the same primitives running on a Coolrunner II

FPGA, the required power drops to 1.1 mW. Additionally, the Coolrunner quiescent power is

approximately 50 µW, which is a reasonable power consumption for idle modes of an active

RFID tag.

5.3.2 ASIC Implementation

The RFID system designer can choose the between FPGAs and ASICs as the implementation

medium for designing tags, in the early stages. We described the significant differences in

design times and flexibilities of these mediums in Section 3.2. Metrics such as area (which

affects the cost), performance and power consumption differences also need to be considered

to assess whether an FPGA implementation is feasible. Of these, the primary factors for the

design of an RFID tag are low power and low area.

Recently, there have been a number of attempts to quantify the difference between FPAGs

and standard cell ASICs in terms of area, performance and power consumption. A recent

work compares a 90 nm CMOS SRAM-programmable FPGA and a 90 nm CMOS standard
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Table 3: Power and energy results for implementing the primitive logic on a Coolrunner II

XC2C512

Number of Power (mW) Energy (µJ)
Primitives Dynamic Quiescent Total Total
2 1.06 0.05 1.11 0.00111
4 1.06 0.05 1.11 0.00111
6 1.06 0.05 1.11 0.00111
8 1.07 0.05 1.12 0.00112
10 1.06 0.05 1.11 0.00111
12 1.06 0.05 1.11 0.00111
15 1.24 0.05 1.29 0.00129
20 1.24 0.05 1.29 0.00129
24 1.24 0.05 1.29 0.00129
30 1.24 0.05 1.29 0.00129
35 1.24 0.05 1.29 0.00129
40 1.24 0.05 1.29 0.00129

Figure 37: Power consumption for implementing the primitive logic on Actel Fusion.
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Table 4: Area for implementing the primitive logic on a 0.16µm ASIC. ASIC area is in

100µm2.

Primitives 1 2 4 6 8 10 12 15 20 24 30 35 40
Cells 3761 3809 3836 3841 3835 3859 3961 3990 4140 4170 4235 4264 4298
Area 1.076 1.092 1.097 1.098 1.097 1.105 1.116 1.121 1.158 1.161 1.174 1.182 1.187

cell technology [33]. According to this work, the dynamic power consumption of FPGAs is

about 12 times more than ASICs. Further, the area required to implement the same logic

on FPGAs is about 40X more than on ASICs when only combinational logic and flip-flops

are used. When blocks such as multiplier / accumulators and memories are used, the area

gap is reduced to 20 X. The performance is about 4X worse in FPGAs.

Thus, implementing the primitives in ASICs may potentially save a significant amount

of power and area of the RFID tag. In this section, we implement RFID primitives in ASICs

to further explore this. These results can also be used for comparing the automatically

generated designs to the commercial ASIC RFID tags. Up to 40 RFID primitives generated

using the RFID compiler were implemented in custom cell-based ASIC hardware at 0.16 µm.

The area results are displayed in Table 4. The power consumed by the various hardware

implementations is summarized in Figure 38.

The energy consumed by the ASIC implementation per transaction is 0.07 nJ per trans-

action when active, which is comparable to the energy used by commercial active tags (for

example, see [14]) which are implemented as ASICs. This is much less than the 13 nJ and

1.3 nJ consumed per transaction for tags using Fusion FPGA and Coolrunner II CPLD, re-

spectively. Futher, the static power consumed by the ASIC implementation is 0.4 µW, which

is about two orders of magnitude less than that of the low-power Coolrunner II CPLD. The

area of the ASIC controller is less than 4300 cells for a 40 primitive controller, which is also

comparable to the commercial active tags.
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Figure 38: Power consumption comparison for implementing the primitive logic on a Cool-

runner II XC2C512, an Actel Fusion AFS090, and 0.16µm ASIC.
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6.0 HARDWARE RFID COMPILER WITH C BEHAVIOR

The software RFID compiler (described in Chapter 4) generates a complete application in

C that is compiled for the target microprocessor in the RFID Tag. While the behavior is

specified in C by the user, much of the remaining C code is automatically generated from

the RFID macros. For the initial hardware RFID compiler (described in Chapter 5), this

automatically generated code segment (e.g. for packet handling, etc.) was output in VHDL

rather than C. In many ways, generating the VHDL code from the RFID macros is actually

more natural as VHDL handles arbitrary bit widths more naturally than C/C++.

Because C is a significantly more universally known language than VHDL or Verilog, it

is desirable to continue having the end-user specify the primitive behaviors for the RFID

Tag in C code. This requires that the C code be converted in synthesizable hardware code.

Preferably, this code would also be as simple as possible and optimized for power.

In order to synthesize primitives into VHDL, a new version of the hardware RFID com-

piler was developed based on both the automated VHDL generation described in Chapter 5

and the SuperCISC compilation flow described in [34, 35]. The hardware RFID compiler

can read primitive behavioral descriptions in non-modified ANSI-C and generate entirely

synthesizable VHDL for combinational implementation. These combinational blocks are

combined with the automatically generated packet packing, unpacking, and decoding VHDL

and synthesized for the reprogrammable hardware target. The RFID compiler automatically

handles the generation of a finite state machine (FSM) controller for the final tag hardware.
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6.1 C BEHAVIOR-BASED FRONT-END

The compilation flow the for the hardware-based RFID tag is shown in Figure 39. The RFID

compiler processes the original RFID macros (previously shown in Figure 16) to generate

C template files to specify the behavior. The behavior for each primitive is specified using

ANSI-C. The back-end converts this into synthesizable VHDL and generates the final tag

VHDL.

6.2 BACK-END INTEGRATED WITH SUPERCISC COMPILER

Figure 39: Hardware RFID Compiler with C Behavior

The completed behavior in ANSI-C of each primitive is marked for hardware creation as

shown in Figure 40. Each such behavior is fed into the SuperCISC compiler [34, 35]. The

SuperCISC compiler converts each primitive behavior into a combinational hardware block.

Figure 41 shows the conversion of the input C code into combinational hardware. First

the C code is represented in a control and data flow graph (CDFG) representation as shown

in Figure 41(a) for the Collection (icol) primitive. CDFGs are commonly used within

compilers for transformations and optimizations. Many behavioral synthesis tools also use

CDFGs as their internal representation [36, 37]. The CDFG shown in Figure 41(a) has the

control flow graph (CFG) on the far left. The edges between each block represent control

dependencies. Generally, control dependencies indicate that a decision must be made to

decide which hardware becomes active next. Often, cycle boundaries are created due to the
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int main() 
{ 
  int commandValid = 1;
  // fields in the command 
  int prefix, type, ownerid, interid, comcode, siz, res, crc;
  // fields in the response
  int modefield, reserved1, acknowledge, reserved2, tagtype, 
      reserved3, userid, battery, mesglen, tagid;  
  #pragma HWstart; 
  modefield = 0;
  reserved1 = 7;
  if (commandValid)
    acknowledge = 0;
  else
    acknowledge = 1;
  reserved2 = 3;
  tagtype = 2;
  reserved3 = 1;
  userid = 0;
  battery = 0; 
  mesglen = 14;
  #pragma HWend; 
  return (modefield + reserved1 + acknowledge + reserved2 + 
      tagtype + reserved3 + userid + battery + mesglen); 
} 

Figure 40: Behavior of Collection Command Marked for Hardware Creation.
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control dependencies during synthesis of CDFGs. Each block in the CFG is a basic block

containing a data flow graph (DFG). All of the basic blocks in the CFG are shown to the right

of the CFG. Edges in the DFG represent data flow dependencies and can be implemented

with combinational logic only (e.g. no cycle boundaries) during behavioral synthesis.

The SuperCISC compiler translates the CDFG into an entirely combinational represen-

tation called a super data flow graph (SDFG). This process takes advantage of several well

known compiler transformations such as loop unrolling and function inlining as well as a

technique called hardware predication to convert all control dependencies into data depen-

dencies creating an entirely combinational representation. The SDFG for the ionw is shown

in Figure 41(b). Because the SuperCISC technique removes the need for many potentially

high-power consumption sequential constructs such as registers and clock trees, SDFG-based

hardware implementations are extremely power efficient [38].

Next, the SuperCISC compiler translates the SDFG of each primitive into a VHDL de-

scription using the VHDL AST data structures described in Section 5.2. The DesignFileClass

node has a design unit, with an entity node describing its ports and an architecture node

describing its function. The generated VHDL for the Collection (icol) primitive is shown

in Figure 42.

The SuperCISC compiler was modified by adding a function, printComponentDetails(),

that walks through the DesignFileClass node, reads the ports in the entity, and prints the

information to a text file. An outline of this function is shown in Figure 43.

The automatic generation of the packet packing, unpacking, and decoding VHDL uses the

VHDL AST data structures and is similar to the automatic VHDL generation described in

Section 5.2. However, in this case, the behavior components need to be attached to the RFID

tag DesignFileClass node. For this, the RFID compiler parses the text file generated by the

printComponentDetails() function and constructs the corresponding component declarations,

instances and port mappings in the tag controller VHDL. An outline of the corresponding

function, addBehavComponent(), is shown in Figure 44. The resulting synthesizable VHDL

is synthesized, mapped, placed, and routed for the target FPGA or ASIC using commercially

available tools.
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(a) Control and data flow
graph.

(b) Super data flow graph.

Figure 41: Synthesis process for the Collection (icol) command.
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;
use IEEE.std_logic_arith.all;
entity icol is
port (

signal commandValid: IN std_logic_vector(31 DOWNTO 0);
signal modefield_out: OUT std_logic_vector(31 DOWNTO 0);
signal reserved1_out: OUT std_logic_vector(31 DOWNTO 0);
signal acknowledge_out: OUT std_logic_vector(31 DOWNTO 0);
signal reserved2_out: OUT std_logic_vector(31 DOWNTO 0);
signal tagtype_out: OUT std_logic_vector(31 DOWNTO 0);
signal reserved3_out: OUT std_logic_vector(31 DOWNTO 0);
signal userid_out: OUT std_logic_vector(31 DOWNTO 0);
signal battery_out: OUT std_logic_vector(31 DOWNTO 0);
signal mesglen_out: OUT std_logic_vector(31 DOWNTO 0));

end entity icol;
architecture behavior of icol is
signal con2: std_logic_vector(31 DOWNTO 0):= "00000000000000000000000000000000";
signal con4: std_logic_vector(31 DOWNTO 0):= "00000000000000000000000000000111";
signal sig6: std_logic;
.......
component is_not_equal_to
port ( .. );
component mux
port ( .. );
begin
I0:component is_not_equal_to
port map (A => commandValid, .. );
I1:component mux
port map (A => con10, .. );
process (con2, con4, sig25, con14, con16, con18, con20, con22, con24)
begin

modefield_out <= con2;
reserved1_out <= con4;
acknowledge_out <= sig25;
reserved2_out <= con14;
tagtype_out <= con16;
reserved3_out <= con18;
userid_out <= con20;
battery_out <= con22;
mesglen_out <= con24;

end process;
end architecture behavior;

Figure 42: VHDL Design for the Collection (icol) command.
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void printComponentDetails(DesignFileClass *dfin) 
{
  list<DesignUnitClass *> *dulist = dfin->getDesignList();
  if (dulist->size() > 0) {

dulist->pop_back();
// Get each design unit and its entity

    DesignUnitClass *du_entity = dulist->back();
    LibraryUnitClass *lb = du_entity->getLibUnit();
    EntityDeclrClass *ed = (EntityDeclrClass *)lb;
    // Open a file for each entity 

FILE *fp = fopen((ed->getName())->getStr(), "w");
    fprintf(fp, "%s\n",(ed->getName())->getStr());
    fprintf(fp, "portlist:\n");
    if ((ed->getPortList()) != 0) {

InPtr = "IN  ";
OutPtr = "OUT ";   
list<InterfaceClass *> *plist = ed->getPortList();
list<InterfaceClass *>::iterator listIter;
InterfaceClass *front = plist->front();
// Traverse the list of ports
for(listIter = plist->begin(); listIter != plist->end(); ++listIter) {

list<IdentifierClass *> *idlist = (*listIter)->getId(); 
IdentifierClass *portid = idlist->front(); 
ModeClass *mode = (*listIter)->getMode();
outPortName = (char *)malloc(strlen(portid->getStr()) + 1);
portc = portid->getStr();
// Write name of port, width and in/out info to file
if ((mode->getKey()) == OUT) {

outPortName = strncpy(outPortName,portc,(strlen(portc)-strlen("_out")));
outPortName[strlen(portc) - strlen("_out")] = '\0';
portPtr = strcpy(portPtr, OutPtr);
portPtr = strcat(portPtr, outPortName);
if (*listIter == front)

fprintf(fp, "%s\n",portPtr);
else if (strcmp(outPortName, prev_portc)) 

fprintf(fp, "%s\n",portPtr);        
    prev_portc = outPortName;
  }

else if ((mode->getKey()) == IN) {
inPortName = portid->getStr();
portPtr = strcpy(portPtr, InPtr);
portPtr = strcat(portPtr, inPortName);
if (*listIter == front)

fprintf(fp, "%s\n",portPtr);
else if (strcmp(inPortName, prev_portc))

fprintf(fp, "%s\n",portPtr);
prev_portc = inPortName;

}
 }

  }
   }
}

Figure 43: SuperCISC Function That Prints Details of Each Entity.
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void addBehavComponent(FILE *behavFile, ArchitectureDeclrClass *architecture) {
  // Create a Component Declaration Class, Component Instantiation Class 
  ComponentDeclrClass *component1; 
  ComponentInstantiationStatementClass *compInstance;
  do {
    c = fgets(line_ptr, 200, behavFile);

..    
if (c != NULL) { .. 

      if (j == 1) { ..
compNamePtr = strcpy(compNamePtr, line_ptr);
// Construct Component Declaration
component1 = new ComponentDeclrClass(compName, compGlist, compPlist);  
// Construct Component Instantiation Class 
compInstance = new ComponentInstantiationStatementClass(compInName, instanceName);

  }
      else if (j == 2) {

indicatePtr = strcpy(indicatePtr, line_ptr);
..

  }
      else {

    if (portsFollow) {
      if (!strncmp(portPtr, InPtr, 3)) {

compMode =  new ModeClass(IN); 
for (k = 0; k < 4; k++)

*portPtr++;
portNamePtr = strcpy(portNamePtr, portPtr);
.. 

              InterfaceClass *compInterface = new InterfaceClass(SIG, compId, compMode, 
                                                 compSubtype);

// Add port to component declaration
component1->addPort(compInterface);
..
AssociationClass *compPortAssoc = new AssociationClass(compId, compId);  
// Add port to component instance
compInstance->addPort(compPortAssoc);                     

  }
      else if (!strncmp(portPtr, OutPtr, 3)) {

    compMode =  new ModeClass(OUT);
    ..

             // Add port to component declaration
    // Add port to component instance
  }

    } 
  }

    }
  } while (c != NULL);
  // Add component to architecture 
  architecture->addBlock(component1);
  // Add instance to architecture
  architecture->addConcurrent(compInstance);
}

Figure 44: RFID Compiler Function That Adds Components to the RFID Tag VHDL AST.
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6.3 IMPLEMENTATION OF PRIMITIVES

Up to 24 RFID primitives generated using the RFID compiler were implemented in custom

cell-based ASIC hardware at 0.16 µm. These include the 16 primitives of the ISO 18000-7

and the 8 primitives of the ANSI standards, which were described previously in Section 4.1.

The tool used for synthesis and area estimates is Design Compiler. Power was estimated

using PrimePower. The area and power results are displayed in Table 5. As expected, the

tag design uses more standard cells and increases in area as new primitives are added. The

dynamic power increases slightly from the design with one primitive to the design with two

primitives, but does not increase significantly as more primitives are added.

Table 5: Area and Dynamic Power for implementing the primitive logic on a 0.16µm ASIC.

ASIC area is in 100µm2. Dynamic Power is in mW. Quiescent Power <0.4µW.

Primitives 1 2 4 6 8 10 12 15 20 24
Cells 3859 4140 4170 4207 4251 4306 4348 4389 4490 4525
Area 1.107 1.142 1.159 1.172 1.178 1.194 1.215 1.222 1.264 1.270
Power 0.075 0.082 0.083 0.085 0.085 0.085 0.085 0.085 0.085 0.086

6.3.1 Comparison With Hardware RFID Compiler With VHDL Behavior

The ASIC designs implemented using the two versions of the hardware RFID compiler are

compared in terms of their areas and power consumption. The results are shown in Figures

45 and 46. There is an increase in area and power consumed when C behavior is used instead

of direct VHDL. For the tag with a single primitive, there is a nominal increase in area of

2.91%. As the primitives are added, the area increase percentage rises slightly, and is 9.37%

for the tag with twenty four primitives. The dynamic power increase percentage ranges from

29.38% for the tag with a single primitive to 34.48% for the tag with twenty four primitives.

The increase in area and power is in part due to how design compiler does resource

sharing. It is also partly due to some extra logic introduced by the hardware predication

pass of the SuperCISC Compiler. Design compiler does allow resource sharing through use

of specialized controls, which provide an opportunity to reduce this overhead.
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Figure 45: Area Comparison of the Two Hardware RFID Compilers.

Figure 46: Power Comparison of the Two Hardware RFID Compilers.
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6.3.2 Comparison With The ISO 18185 RFID Standard

The ISO 18185 Part 1 standard [12] is an international standard that provides a system for

the unique identification and presentation of information about freight container electronic

seals. It is used in conjunction with the other parts of ISO 18185 such as, Part 4 that specifies

data protection and Part 7 that specifies the physical layer protocol.

The electronic seal mandatory data includes seal id, seal status, battery status,

details on the sealing and opening times, and protocol information. The seal id is a

combination of the tag manufacturer id and the tag id and is used to uniquely identify

the seal. It is permanently programmed into the seal during manufacturing. The seal

status indicates the open, closed or sealed state of the seal.

Figure 47 shows the interrogator to tag command / response formats for the Sleep All

But and Get Seal Model commands. The command contains fields such as a protocol to

identify the data link layer packet structures, an opcode code to identify the command and

options to indicate whether it is a point to point or a broadcast command and whether

the command duration fields are present. The command duration fields are specified by

the interrogator in point to point commands so that the tag may switch to sleep mode after

waiting for the described duration. The Sleep All But command is a broadcast command. In

response to this command, the specified seal remains awake while all the other seals return

to sleep mode. This command does not require a response back to the interrogator. In the

case of Get Seal Model command, the tag response includes the opcode code, the nested

seal status, and other data fields.

Figure 48 shows an example RFID macros file containing the Sleep All But, Get Seal

Version, Get Seal Model, and Collection primitives. Using the RFID compiler, commands

of the ISO 18185 Part 1 standard were implemented with 0.16 µm custom cell-based ASIC

hardware. The tool used for synthesis and area estimates is Design Compiler. Power was

estimated using PrimePower.

Table 6 shows the total area and the power consumption of ISO 18185 Part 1 seal designs

for a 0.16 µm ASIC. Figure 49 shows a comparison of the power consumption of the ISO

18000-7 and the ISO 18185 tag designs. The 18185 design is much smaller than the ISO
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Sleep All But Command
Protocol Options Interrogator Code Length Manufacturer Tag CRC

8 bits 8 bits 16 bits 8 bits 8 bits 16 bits 32 bits 16 bits

Get Seal Model Command
Protocol Options Manf. Tag Inter. Code Min Time Max Time Len CRC

8 bits 8 bits 16 bits 32 bits 16 bits 8 bits 16 bits 16 bits 8 bits 16 bits

Get Seal Model Response
Protocol Status Length Interrogator Manufacturer Tag Code Model CRC

8 bits 16 bits 8 bits 16 bit 16 bits 32 bits 8 bits 8 bits 16 bits

Status
Mode State Reserved Acknowledge Reserved Type Reserved Reserved Battery
4 bits 2 bits 1 bit 1 bit 2 bits 3 bits 1 bit 1 bit 1 bit

Figure 47: Example command/response formats from ISO 18185 Part 1.

18000 Part 7 tag design. From Figure 49, we can see that the power consumption is also

correspondingly lower. This could be in part because the commands in ISO 18185 Part 1

do not incorporate security mechanisms such as passwords. For example, ISO 18000 Part

7 provides a password style security mechanism by the set password, set password protect,

and unlock commands. There is also an additional layer of privacy introduced by the user

id field. The logic required to implement the checking of these fields increases the total area

and the power consumption of the tag designs.
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declarations
protcl(8)
options(8)
manuf(16)
tagid(32)
interid(16)
opcode(8)
mindur(16)
maxdur(16)
arglen(8)
crc(16)
status(16)[

modefield(4)
state(2)
reserved(1)
acknowledge(1)
reserved2(2)
sealtype(3)
reserved3(1)
reserved4(1)
battery(1)

]
paclen(8)
wsize(16)
criteria(8)
nodata(0)
version(16)
model(16)

main
sleepbt (22) protcl options interid opcode arglen manuf tagid crc

nodata

sealver (12) protcl options manuf tagid interid opcode mindur maxdur arglen crc
protcl status paclen interid manuf tagid opcode version crc

sealmd (14) protcl options manuf tagid interid opcode mindur maxdur arglen crc
protcl status paclen interid manuf tagid opcode model crc

collect (16) protcl options interid opcode arglen wsize criteria crc
nodata

Figure 48: Macros specification for Sleep All But command from ISO 18185 Part 1.
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Table 6: Area and Dynamic Power for implementing the ISO 18185 primitive logic on a

0.16µm ASIC. ASIC area is in 100µm2. Dynamic Power is in mW. Quiescent Power <0.4µW.

Primitives 1 2 3 4 5 6 7 8 9 10
Cells 1904 1940 2015 2120 2278 2348 2415 2447 2491 2526
Area 0.7171 0.7284 0.7398 0.7678 0.7779 0.8125 0.8349 0.8509 0.8664 0.8815
Power 0.0338 0.0371 0.0379 0.0381 0.0382 0.0382 0.0383 0.0384 0.0385 0.0386

Figure 49: Power consumption comparison for implementing the ISO 18000-7 and ISO 18185

primitive logic on a 0.16µm ASIC.
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6.4 THE ISO 18000 PART 6C STANDARD

The ISO 18000 Part 6C UHF standard [13] is becoming a widely accepted standard in Radio

Frequency Identification (RFID) applications in supply chain management and is driving

development of passive tags. It is a recent amendment to the ISO 18000 Part 6 that describes

the RFID air interface for devices operating at 915 MHz and the communications protocols

used. Part 6C extends the existing part 6 standard which previously contained type A and

B devices with a type C modeled after the EPCGlobal C1 G2 specification.

The communication primitives of ISO 18000 Part 6C standard are significantly different

and more complex than the ISO 18000 Part 7 standard. This protocol relies on intermediate

storage to retain the state of the system. The size of the command code field is smaller and

there are fewer number of commands in the system. This relates to increased complexity of

the device in this protocol. As an analogy, the ISO 18000 Part 7 standard is analogous to

a Reduced Instruction Set Computer (RISC) style processor while the ISO 18000 Part 6C

protocol is analogous to a Complex Instruction Set Computer (CISC) style processor.

The complexity of the Part 6C standard makes the design of these tags extremely time

consuming and challenging for reducing power consumption and silicon area. In this chapter,

various features of the ISO Part 6C standard are examined and compared to the ISO 18000

Part 7 standard for active tags. The Hardware RFID Compiler is extended to support the

design of Part 6C tags.

6.4.1 Description of ISO 18000 Part 6C Standard Interrogator Commands

An interrogator manages tag populations using three basic operations, select, inventory, and

access. The selection concept is similar to broadcasts using the Owner ID from ISO 18000

Part 7. The Select command is applied successively to pick a particular tag population

based on user-specific criteria, enabling union, intersection, and negation based tag parti-

tioning. An interrogator begins an “inventory round” by transmitting a Query command

in one of four sessions. One or more tags may reply to this. The interrogator then de-

tects a single tag reply and requests more information from the tag. The access concept

70



Table 7: ISO Part 6C Command Codes

Command Code Length Mandatory?
(bits)

QueryRep 00 4 Yes
Ack 01 18 Yes
Query 1000 22 Yes
QueryAdjust 1001 9 Yes
Select 1010 >44 Yes
NAK 11000000 8 Yes
ReqRN 11000001 40 Yes
Read 11000010 >57 Yes
Write 11000011 >58 Yes
Kill 11000100 59 Yes
Lock 11000101 60 Yes
Access 11000110 56 No
BlockWrite 11000111 >57 No
BlockErase 11001000 >57 No

is similar to point to point communications in ISO 18000 Part 7. The access operation

allows the issuing of commands that read from or write to a tag once the tag is uniquely

identified.

Table 7 shows the 18000 Part 6C commands and their command codes. Custom and

proprietary commands are supported by the protocol with command codes in the range

“E000” - “E1FF”.

6.4.2 Tag States and Slot Counter

ISO 18000 Part 6C tags implement features such as accessing and killing passwords, checking

the electronic product code (EPC), CRC checking, manipulating the slot counter, pseudo-

random number generation, etc. The states and keys of the target device are used to facilitate

tag singulation, collision arbitration, security encoding, etc.

Tags implement a 15-bit slot counter, which is used for collision arbitration. The slot

counter is loaded with a random value when the tag receives a Query command. The

QueryAdjust and QueryRep commands can also modify the values of the slot counter.
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Tags have seven states including ready, arbitrate, reply, acknowledged, open, secured,

and killed. The ready state is a holding state for energized tags that are neither killed nor

participating in an inventory round. The arbitrate state is a holding state for tags that are

participating in an inventory round but whose slot counters hold non-zero values. Tags in

the reply state backscatter the appropriate reply. A tag in the acknowledged state transi-

tions to other states based on the command received. Tags in the open state can execute all

access commands except Lock. Tags in the secured state can execute all access commands.

The Kill command puts the tag in the killed state, in which it does not respond to any

further interrogator commands. This state is not reversible. Figure 50 shows a partial state

diagram of the tag. The state transitions introduced by some of the commands are shown.

6.4.3 Tag Memory

ISO 18000 Part 6C tags contain memory segmented into four memory banks. Figure 51

shows the logical memory map of the tag. The memory banks are for user memory, tag

identifier (TID) memory, the EPC memory, and a reserved memory. The user memory can

be used for user specific data storage. The TID memory contains the TID and may contain

other vendor or tag specific data. The EPC memory contains a CRC-16, the protocol control

bits (PC), and the EPC that identifies the type of object to which the tag will be attached.

The reserved memory contains the kill and access passwords. The access password is a 32-

bit value that must be issued to put the tag in the secured state. The kill password is a

32-bit value that is used to permanently disable the tag. The interrogator uses the Write,

BlockWrite, and BlockErase commands to edit the memory.

6.4.4 Security Features

The interrogator can lock or unlock each individual area of memory. This includes the ac-

cess password, kill password, the EPC memory bank, the TID memory bank and the user

memory bank. Tags must be in their secure state to use the lock command. Locking read

and write protects the passwords and write protects the other memory banks. The inter-

rogator can also permalock the lock status for a password or memory bank so that it is
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Figure 50: Partial state diagram of ISO Part 6C tag from the EPCGlobal Class 1 Generation

2 document [4].
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Figure 51: Logical Memory Map of ISO Part 6C Tag [4].

unchangeable. Permalock bits, once asserted, cannot be deasserted. This prevents the mem-

ory from being altered maliciously. Another security feature in the 18000 Part 6C standard

is the Kill command. It can permanently deactivate the tag when the interrogator issues

the correct kill password. After this is executed, the tag no longer responds to interrogator

commands.

Thus, the ISO 18000 Part 7 and Part 6C protocols represent opposite ends of the com-

plexity spectrum for tag implementations. As shown in the protocol overviews from Sections

4.1 and 6.4, the ISO 18000 Part 7 standard is analogous to a RISC style processor and

the ISO 18000 Part 6C standard is analogous to a CISC style processor. RISC processors

are based on a small number of simple instructions, but require a large instruction count

for an application. CISC processors have a number of complex instructions that allow an

application to require a much lower instruction count. Typically, embedded processors that

target reduced power as a metric are RISC style processors with the prime example of

the ARM processor family. General purpose processors, particularly for desktop computers
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Query Command
QCmd DR M TRext Sel Session Target Q CRC-5
4 bits 1 bit 2 bits 1 bit 2 bits 2 bits 1 bit 4 bits 5 bits

Response
RN16
16 bits

Figure 52: Query command and response format from ISO Part 6C.

where power is only a concern for heat dissipation, the processor architectures are more

CISC with vector and very long instruction word (VLIW) processing engines to augment

the processor.

6.5 IMPLEMENTING ISO 18000 PART 6C

The commands or primitives issued by the interrogator request that the tag perform a set of

actions. The specifications of these commands widely vary from ISO Part 7 to Part 6C. The

RFID compiler that targets a hardware-based controller, which was described in Chapter 6,

has been used to implement the ISO Part 6C primitives.

Figure 52 shows the fields for the first communication step of the ISO Part 6C Query

command, which achieves similar functionality as the Collection command. However, the

Query command has several subsequent communications as indicated by Figure 53. To

automate the generation of the tag controller for a prototype implementation, the primitives

are implemented as RFID macros as shown in Figure 54. For comparison, the fields required

for executing the Collection command of the Part 7 standard are shown in Figure 14.

The command code field of Part 6C commands can have variable bit widths. This

decimal value is also included in the macros specification. For example, in Figure 54, this is

indicated by “4”. The decimal value of the command code for Query is indicated by “8”.

The template generated for the Query command is shown in Figure 55. The behavior for

the Query command is shown in Figure 56.
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Interrogator issues Req_RN
containing same RN16

INTERROGATOR TAG

Interrogator accesses Tag.
Each access command uses
handle as a parameter

Tag verifies handle. Tag ignores
command if handle does not match

5

6

7

8

Interrogator acknowledges
Tag by issuing ACK with
same RN16

3

Two possible outcomes:
1) Valid RN16: Tag responds with {PC, EPC}
2) Invalid RN16: No reply

4

Interrogator issues a Query,
QueryAdjust, or QueryRep

1

Two possible outcomes:
1) Slot = 0: Tag responds with RN16
2) Slot <> 0: No reply

2

Query/Adjust/Rep

ACK(RN16)

RN16

{PC, EPC}

Req_RN(RN16)

handle

command(handle)

NOTES:
  -- CRC-16 not shown in transitions
  -- See command/reply tables for command details

Two possible outcomes:
1) Valid RN16: Tag responds with {handle}
2) Invalid RN16: No reply

Figure 53: Communications required as part of the 18000 Part 6C Query command [4].
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declarations
DR(1)
M(2)
TRext(1)
Sel(2)
Session(2)
Target(1)
Q(4)
CRC-5(5)
RN16(16)
RN(16)
PC(16)
EPC(16)
CRC-16(16)
MemBank(2)
WordPtr(8)
Data(16)
Header(1)

main
query(4,4) DR M TRext Sel Session Target Q CRC-5

RN16

ack(2,1) RN
PC EPC CRC-16

req_rn(8,193) RN CRC-16
RN CRC-16

Figure 54: Macros specification file for commands required as part of the 18000 Part 6C

Query command.

RN16 =
inventoryFlag =
current_state =
...

Figure 55: Template generated for Query command.
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if (current_state != KILLED) {
if ((current_state == ACKNOWLEDGED) || (current_state == OPEN)

|| (current_state == SECURED)) && ((sel_var == sel)
&& (target_var == target))) {

if (session == last_session) {
if (inventory_flag == ’A’)

inventory_flag = ’B’;
else if (inventory_flag == ’B’)

inventory_flag = ’A’;
} else {

slot_counter = rand((1<<Q) - 1);
if (slot_counter != 0)

current_state = ARBITRATE;
else

current_state = REPLY;
if (current_state == REPLY)

RN16 = slot_counter;
}

}
}

Figure 56: Tag behavior for Query command.
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6.5.1 Extensions to The Hardware RFID Compiler For ISO 18000-6C

The Part 6C Tag’s behavior and the next state logic for each command is different for each

of the 7 states that it can be in. Apart from this state-dependent logic for each command,

there is also logic that is performed state-independently. For the example, when the Query

command is received, the slot counter is loaded with a pseudo-random number, if the Tag is

in any state other than killed. The Compiler has been modified so that the state variables,

global keys, etc can be declared in the macros file, and they are generated as global VHDL

signals (or global variables in C). The primitive components are then able to share values of

state variables and keys.

The command code field of Part 6C commands can have variable bit widths, which is

input in the macros file, as shown in Figure 54. The Compiler has been modified to parse

the width of the command code and use it while extracting the opcode and remaining fields

in the command packet.

Implementation of Random Number Generation: The Part 6C standard specifies

that tags should implement a random or pseudo-random number generator. There are a

number of ways to generate pseudo-random numbers in hardware. The linear feedback shift

register (LFSR) is the most commonly used. The LFSR is a shift register which, using

feedback, modifies itself on each rising edge of the clock. The feedback causes the value on

the shift register to cycle through a set of unique values. One of the ways to implement an

LFSR is using the Fibonacci implementation, where the outputs from some of the registers

are Exclusive OR-ed together and fed back to the input of the shift register. For example,

Figure 57 shows a 3-bit Fibonacci LFSR. When the shift register is loaded with a non-

zero seed value and then clocked, the output from the LFSR (Q2) will be a pseudo-random

binary sequence. For example, Table 8 shows the sequence that is produced from the circuit

in Figure 57 when the seed is 111.

The length of the sequence depends on the length of the shift register and the number

and position of the feedback taps. This is expressed using a polynomial. By selecting

the appropriate polynomial, the maximal length sequence for the given LFSR size can be

obtained. For a 16-bit LFSR, by using outputs from registers 16, 15, 13 and 4 in a Fibonacci
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implementation, the corresponding maximal sequence length of 65535 can be obtained [39].

This has been implemented in the RFID Compiler. Different LFSR implementations were

considered, but they were found to be larger and more power consuming compared to the

LFSR shown in Figure 58. It was the optimal choice in terms of area and power and it

also meets Part 6C’s specification of the probability of the 16-bit random number (Section

6.3.2.5 of [13]). According to the specification, the probability that any RN16 drawn from

the random number generator has value RN16 = j, for any j, shall be bounded by 0.8 / 216

< P ( RN16 = j ) < 1.25 / 216. The probability of our 16-bit LFSR is 1 / (216 - 1) and is

1.53 · 10−05.

Thus, a 16-bit random number is generated by the LFSR. The standard specifies that

tags should be able to extract Q-bit subsets from the RN16 to preload the tag’s slot counter.

The range of the random number is to be limited to (0, 2Q−1). For this a simple ‘AND’ logic

is implemented. For example, consider the 16-bit random number, 0x1A0D, and a Q value

of 3. The corresponding value of 2Q−1 is 7. The random number is AND-ed with 7, resulting

in 5, which is in the range (0, 7).

XOR

D Q0 D Q1 D Q2

Clock

Output

Figure 57: A 3-bit Fibonacci LFSR.
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Table 8: LFSR Sequence For The Seed ‘111’.

Q2 Q1 Q0
1 1 1
1 1 0
1 0 0
0 0 1
0 1 0
1 0 1
0 1 1
1 1 1

6.5.2 Comparison with ISO 18000 Part 7

To understand and compare the complexity of different standards such as the ISO 18000

Part 7 and Part 6C, the RFID compiler has been used to implement commands from both

standards. A representative command, Query, was selected from Part 6C and has been

implemented in hardware and synthesized for an ASIC. Similarly, the Collection command,

which realizes similar functionality from Part 7 standard, was implemented in hardware

and targeted to the same ASIC process. Table 9 shows the power and area results for

implementing these two commands. The Query command is larger and requires more power

than the Collection command. We also compared the Query command and the Collection

command with nine additional primitives from the ISO 18000 Part 7 standard. As shown in

Table 9, the Query command is still larger and consumes more power than these.

6.5.3 Custom Hardware-based Tag

Using the RFID compiler, up to five inventory commands of the ISO 18000 Part 6C standard

were implemented with 0.16 µm custom cell-based ASIC hardware. To evaluate the effec-

tiveness of the automated approach in providing a rapid prototype and accurate estimate of

resource requirements of the RFID system, the areas of the automated tag designs generated

by the RFID Compiler have been compared to the areas of our own manual tag designs for

the above targets. The tool used for estimating area is Design Compiler.
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library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_std.all;

entity gen2lfsr is
port(

clk : in STD_LOGIC;
rst : in STD_LOGIC;
generateQ : in STD_LOGIC;
Q : out UNSIGNED(16 downto 1)

);
end gen2lfsr;

architecture a of gen2lfsr is

signal lfsr : UNSIGNED(16 downto 0);
signal load_v : UNSIGNED(16 downto 1);
constant lfsr_cmp : UNSIGNED(16 downto 0) := (others => ’0’);
signal load : STD_LOGIC;

begin
Q <= lfsr(16 downto 1);
load_v(16 downto 2) <= (others => ’0’);
load_v(1) <= ’1’;
load <= ’1’ when (lfsr = lfsr_cmp) else ’0’;
lfsr(0) <= ’0’;

process(clk, rst, load_v, load, generateQ)
begin

if (rst = ’1’) then
lfsr(16 downto 1) <= (others => ’0’);

elsif (rising_edge(clk)) then
if (generateQ = ’1’) then

if (load = ’1’) then
lfsr(16 downto 1) <= load_v;

else
lfsr(1) <= (lfsr(16) xor lfsr(15)) xor (lfsr(13) xor lfsr(4));
lfsr(16 downto 2) <= lfsr(15 downto 1);

end if;
end if;

end if;
end process;
end a;

Figure 58: VHDL for 16-bit LFSR.
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Table 9: Power and energy results for implementing Query, Collection and 10 ISO Part 7

primitives (inclusive of Collection) as a 0.16µm ASIC. ASIC area is in 100µm2. Dynamic

power is in mW. Quiescent Power <0.4µW.

Primitives Dynamic Power (mW) Area (100µm2)
Query 0.06752 1.1642
Collection 0.06308 1.0944
10 primitives 0.06495 1.1232

Table 10 shows the total area of ISO 18000 Part 6C tag designs for a 0.16um ASIC.

For the ASIC implementation of five primitives, there is a very large increase in area of up

to 66.56%. This can be compared to the nominal increase in area of 9.37% in the case of

the compiler-generated ISO 18000 Part 7 tag with 24 primitives, shown in Section 6.3. The

reason for this increase is explained below.

Consider the C behavior for the Query command, shown in Figure 56. It contains

multiple if-then-else conditional constructs to check the various states, sessions, variables,

etc. If-then-else constructs can be implemented in hardware using a multiplexer acting

as a binary switch to predicated output datapaths. In the CDFG representation of an if-

then-else statement, control flow creates basic block boundaries with control flow edges.

Using hardware predication, these control flow dependencies are converted into data flow

dependencies. Each symbol defined in either or both of the then and the else basic blocks is

predicated by inserting a multiplexer.

The ISO 18000 Part 6C protocol is complex and uses multiple states and keys. Due to the

large number of symbols and multiple levels of if-then-else statements in the C code, many

multiplexers may have been instantiated in the hardware. In the ASIC design flow, design

compiler automatically performs resource sharing if no timing constraints are violated. The

tool identifies sharable resources as the ones used in the same case statement or if statement

branches, which is not the case for most of the multiplexers generated in the automated

VHDL design. Thus, for these designs, resource sharing has not occurred, thereby leading

to greatly increased area. Manual design compiler controls can be potentially used for
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Table 10: Area for implementing the original compiler-generated Part 6C primitive logic on

a 0.16µm ASIC. ASIC area is in 100µm2.

Primitives 1 2 3 4 5
Manual 1.1642 1.1933 1.2288 1.2313 1.3212
Automated 1.3817 1.5883 1.7913 1.8760 2.2006
% increase with automation 18.68% 33.10% 45.78% 52.36% 66.56%

increased sharing to reduce the area in the ASIC designs. Further, all the variables in the

automatically generated VHDL components are 32 bits wide, since the SuperCISC compiler

has no knowledge of their actual width. Most of the variables are originally much smaller,

for example, the current state variable in Figure 56 is only 3 bits wide. This explains the

smaller area of the manual implementations. This motivates the need for improving the

compiler synthesis.

6.6 COMPILER OPTIMIZATIONS

Area optimizations have been built in to the RFID Compiler. A precision pass updates the

sizes of the CDFG input and output nodes, followed by a conversion pass that examines each

operation node and reduces its size to the minimum bit width calculated based on its inputs.

Figure 59 shows an outline of the precision pass that updates the sizes of CDFG nodes. An

example precision file used in the design of a Part 6C tag with five commands is shown in

Figure 60. The width of most of the variables is between 1 and 3 bits.

The result of these optimizations is a substantial reduction in the area of the original

design, of up to 33.63%, as seen in Figure 61 and Table 11.
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void Precision::do_file_set_block(FileSetBlock *fsb) {
// iterate through the files that were loaded
for ( all file set blocks) {

FileBlock *fb = fsb->get_file_block(i);
// if there are cdfgs generated
cdfgAn = to<cdfgAnnote>(fb->peek_annote("cdfg_annote"));
// get the list of cdfgs
list<cdfg*> *cdfg_list = cdfgAn->get_cdfg_list();
for ( all cdfgs ) {

if(the_cdfg->is_active()) {
// function reads the precision file and
// stores each node and precision info
// in a map data structure
fillPrecisionArray();
for( all basic blocks ) {
baselist = basicblocks->get_IO_nodes(the_cdfg->is_live());
if(baselist != NULL) {
for( all cdfg io nodes ) {

// cast to cdfg base node
cdfg_base *cb = *CBiter;
if (cb != NULL) {
// lookup node’s precision value from map using name
int intp = GetPrec(LString(cb->get_string()));
// set new precision
cb->set_prec(intp);
cb->set_sign(false);

}
}

}
}

}
}

}
}

Figure 59: Outline of Precision Pass That Updates Sizes of CDFG Nodes.
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current_state 3
next_state 3
inventory_flag 1
last_session 2
session 2
target_var 1
target 1
sel_var 2
sel 2
updown 3
Q 4
RN16 16

Figure 60: Example precision file.

6.7 RESULTS

Using the final version of the hardware RFID compiler, up to five inventory commands of

the ISO 18000 Part 6C standard were implemented with 0.16 µm custom cell-based ASIC

hardware and a Spartan 3 FPGA. The tag controller designs were implemented by adding

commands incrementally to the design. The commands implemented are Query, QueryAd-

just, QueryRep, Nak, and Ack. The areas of the automated tag designs generated by the

RFID Compiler have been compared to the areas of manual tag designs for the above targets.

The tools used for estimating area are Design Compiler and Precision Synthesis for ASIC

and FPGA targets, respectively.

Tables 11 and 12 show the total area and power consumption of ISO 18000 Part 6C

tag designs for ASICs. Table 13 shows the resource utilization of Part 6C tag designs for

a Spartan 3 FPGA. For the ASIC implementation of five primitives, there is a nominal

increase in area of up to 10.55%. We note that there is a trend that as primitives are added

the area increase percentage rises. This is in part due to the hardware predication in the

SuperCISC compiler and how design compiler does resource sharing as previously explained

in Section 6.5.3. Design compiler does allow resource sharing through use of specialized

controls, which provide an opportunity to reduce this overhead.
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Figure 61: Area for implementing the Part 6C primitive logic on a 0.16µm ASIC with and

without optimizations.
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Table 11: Area for implementing the fully optimized Part 6C Inventory primitive logic on a

0.16µm ASIC. ASIC area is in 100µm2.

Primitives 1 2 3 4 5
Manual 1.1642 1.1933 1.2288 1.2313 1.3212
Automated 1.1326 1.2159 1.2842 1.2942 1.4606
% increase with automation -2.71% 1.89% 4.51% 5.11% 10.55%
% improvement as a result 18.03% 23.45% 28.31% 31.01% 33.63%
of optimizations

It can be seen that this area increase did not occur with other synthesis tools for FPGAs.

The FPGA resource utilization is almost the same for both the approaches and actually im-

proves slightly with the automated approach. The utilization of CLB slices and latches

consistently improved with the use of design automation, for the tag with up to five prim-

itives. While the utilization of global buffers and IOs remained constant, the utilization of

function generators was variable.

Table 14 shows the dynamic power and total area of more ISO 18000 Part 6C tag designs

for a 0.16um ASIC. The commands that have been added are Select, Req RN, Read and

Write. These results also confirm the fact that the ISO 18000 Part 6C tag designs are

significantly larger and more complex than tag designs of other standards. However, with

the use of the design automation tool, tag implementations that are very similar in area and

power to corresponding manual designs can be achieved in less time.

Table 12: Dynamic power for implementing the fully optimized Part 6C Inventory primitive

logic on a 0.16µm ASIC. Dynamic power is in mW. Quiescent Power <0.4µW.

Primitives 1 2 3 4 5
Manual 0.0640 0.0650 0.0657 0.0659 0.0666
Automated 0.0649 0.0657 0.0670 0.0676 0.0682
% increase with automation 1.34% 1.05% 1.98% 2.52% 2.40%
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Table 13: Resource utilization for implementing the Part 6C Inventory primitive logic on a

Spartan 3 FPGA.

Primitives 1 2 3 4 5
IOs
Manual 419 419 419 419 419
Automated 419 419 419 419 419
% increase with automation 0% 0% 0% 0% 0%
Global Buffers
Manual 2 2 2 2 2
Automated 2 2 2 2 2
% increase with automation 0% 0% 0% 0% 0%
Function Generators
Manual 720 757 787 789 817
Automated 713 742 814 814 825
% increase with automation -0.97% -1.98% 3.43% 3.17% 0.98%
CLB Slices
Manual 569 572 580 580 588
Automated 559 563 571 571 571
% increase with automation -1.76% -1.57% -1.55% -1.55% -2.89%
Dffs or Latches
Manual 1138 1143 1159 1159 1176
Automated 1118 1125 1141 1141 1141
% increase with automation -1.76% -1.57% -1.55% -1.55% -2.98%

Table 14: Area and Dynamic power for implementing the fully optimized Part 6C Access

primitive logic on a 0.16µm ASIC. ASIC area is in 100µm2. Dynamic power is in mW.

Quiescent Power <0.4µW.

Primitives 6 7 8 9
Area 1.5114 1.5630 1.6136 1.6566
Cells 4281 4463 4593 4756
Power 0.06824 0.06829 0.06840 0.06898
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7.0 TECHNIQUES FOR OPTIMIZING THE TAG POWER

CONSUMPTION

With the increasing power density of modern circuits as the number of transistors per chip

scales, power efficiency has increased in importance. Power consumption has become im-

portant in servers and portable devices like laptops. Also, in embedded computing, power

efficiency has long been and remains the primary design goal next to performance.

However, for RFID tags, power consumption has been held as the secondary metric.

Typically, the biggest metric of concern for the silicon controller devices for the tag has been

cost. In chip fabrication terms, the cost of the device directly relates to the CMOS process

chosen for implementation and the area of the device produced. Older CMOS processes such

as 0.18 µm to 0.35 µm are targeted for RFID as they are relatively cheap to produce than

the newer 65 nm - 90 nm processes. The design goal is to create a device with the smallest

area using one of these older processes.

RFID protocols are typically designed without taking into account many of the impacts

of their final implementation. For example, the design of a protocol can significantly impact

the complexity of the protocol realization requiring additional area and cost in the final

implementation. Additionally, this complexity can impact the power consumption. Even

decisions about primitive opcode encoding can significantly impact power consumption while

only minimally impacting area. With existing design flows, to gain an accurate estimate of

power consumed for a protocol implementation, the protocol must be designed, tested for

correctness, implemented in hardware, and finally studied for power. This process can take

months or years of engineering effort to complete. RFID companies typically do not have

this type of man power available to dedicate for this purpose.
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Power consumption is critical in both passive and active devices. For an active device,

the amount of power/energy consumption required by the tag dictates the lifetime that a

tag may operate. For a passive device, the range and complexity of computation for features

such as added security capability or access to sensors are directly impacted by power usage.

Since the amount of available energy is limited, it has to be budgeted wisely by the tag.

To enable low-power design, a power macro-modeling technique that works in concert

with the RFID design automation flow and calculates the power estimate of the tag so de-

signed is presented in this dissertation. While this technique is targeted towards hardware-

based tags, an application specific instruction processor (ASIP) is studied for possible re-

duction of power in the design of microprocessor-based tags.

7.1 POWER MACROMODELING

7.1.1 Motivation

As shown in this dissertation, the RFID compiler, as illustrated in Figure 62, allows the

RFID system designer to design and implement new RFID protocols in a matter of hours.

A team of design engineers without this tool would require months or longer. By requiring

the team to examine the power and area impacts of their completed designs to optimize the

tag would require additional time and effort.

Figure 62: RFID high-level specification methodology and compilation flow.
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However, the generation of the performance and area details of the design requires spe-

cialized ASIC synthesis tools such as Synopsys Design Compiler which must be manually

tuned to achieve good results. Performance and area may be estimated at this level but

require additional computer aided design effort such as placement, routing, and design rule

checking with tools like Cadence SoC Encounter to get a more accurate result, requiring

additional time and effort. Achieving power consumption statistics requires an additional

level of effort by simulating the design and putting it through additional power estimation

tools such as Synopsys Nanosim, or HSPICE.

Hardware system designers have come up with diverse approaches for energy/power

reduction at all levels of abstraction starting from the physical level up to the system level.

Experience shows that a high level method may have a larger impact since the degree of

freedom is still very high. In order to conduct efficient system-level optimizations, high-level

power modeling tools are required.

In the following subsections, a tool is described based on a power macromodeling tech-

nique that calculates a power estimate at a high level during the design automation process

of the RFID compiler. The tool generates a behavioral representation of the hardware that

generates a custom simulator for the controller design generated by the RFID compiler.

Through access to a pre-profiled library of blocks in the target CMOS process, the power

consumption can be estimated one hundred times faster than the fastest ASIC power esti-

mation flows. Thus, the user has near instantaneous feedback about the power consumption

of their design without detailed knowledge of ASIC synthesis and power estimation flows.

7.1.2 Power Macromodeling Framework

Power macromodeling was originally proposed by Gupta and Najm as a fast power estimation

technique that considers the impact of different input combinations on the circuit [40]. This

technique has been shown to be far more accurate than static power estimation methods that

do not consider design input values. Power macromodeling has been proposed for a variety

of purposes including high-level synthesis of circuits for minimal power consumption [41, 42].

Power macromodeling discretizes the components used to build up the circuit into functional
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blocks that can be implemented and analyzed for their power consumption based on different

input stimuli. These results are then compiled into a lookup table of power consumption

based on different characteristics of the input stimuli. During a behavioral simulation of the

system, rather than computing the power consumption of the block based on the simulated

inputs, a table look-up is performed to determine the power value at a significant savings in

time and effort.

An overview of our power macromodeling flow used in our RFID compilation flow is

shown in Figure 63. The SystemC generation occurs just prior to VHDL generation in

Figure 62. The RFID compiler reads the RFID protocol description, including the RFID

macros and their corresponding behavioral in C and automatically generates a system level

simulator for the tag in the SystemC language.

SystemC is a hardware description language built using C++ libraries that include fa-

cilities for discrete event simulation, concurrency, fixed width bit vectors, and block-based

design, amongst others. As it is at heart a C++ program, a SystemC description of the

hardware design is compiled into an executable custom simulator for that particular hard-

ware design [43]. SystemC is particularly appropriate for power macromodeling as the power

table and estimation behavior can be seamlessly integrated into the simulator through C++

code. Additionally, the final simulator is typically fast as the simulator is a compiled binary

rather than an interpreted simulation of other hardware description languages.

After the SystemC simulator is generated, it is compiled into a binary using a software

compiler. Probabilistic input test vectors are then automatically generated for use in simula-

tion. The compilation flow executes the simulation and generates annotated trace files with

information about all the functional units in the design. These functional units have been

pre-profiled for power based on input parameters described in more detail in Section 7.1.2.1.

The power estimation of each RFID primitive and the overall tag design is calculated by

combining the trace information with the profiles to determine each units power, which

is aggregated. The resultant power estimates correspond to the actual activity of the tag

behavior in hardware.
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Figure 63: Power macromodeling flow. Prior to VHDL code generation in Figure 62, this flow

generates a SystemC model to allow power analysis. The user changes the specification until

an acceptable power result is achieved, and then Figure 62 resumes at VHDL generation.
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7.1.2.1 Library of Power Profiles It is often assumed that the only statistic for that

impacts the dynamic power consumption is the density of bit transitions between input

vectors. However, it has been suggested that three parameters of input signals are important

to accurately estimate power dissipated in digital circuits [40, 44, 45]. They are: average

input signal probability, p, the aforementioned average transition density, d, and spatial

correlation, s. Transition density represents the frequency of bit changes between two or

more values in sequence. Signal probability describes the number of ‘1’s to appear within a

value. Spatial correlation describes the likelihood for ‘1’s and ‘0’s to appear in groups within

the value.

All the types of functional units used by the RFID compiler for hardware generation, such

as addition, equivalence, multiplexers, etc., have been power profiled with different values

of p, d, and s. These have been used to construct a library of power profiles1. We used the

Markov chain-based sequence generator described in [46] that converts the probabilistic p,

d, and s values into an actual sequence of test vectors for use in simulation. Measurements

were taken at 0.1 intervals ranging from 0.05 to 0.95 in each probabilistic dimension. The

functional units are synthesized using 0.16µm Oki cell-based ASIC technology. The synthesis

was executed with Synopsys Design Compiler and the power was estimated using Synopsys

PrimePower.

The power consumption for functional units such as adder, multiplier, AND operation

and XOR operation profiled as described above is displayed in Figure 64. This chart plots

power versus p, d, and s. Power is indicated as a color between black and white where

solid black represents the least power consumed by the device and solid white indicates the

most power consumed by the device. From Figure 64, it can be seen that the most power

is consumed by the adder when spatial correlation is low and transition density is high.

This shows that using transition density, d, alone for dynamic power optimization can be

insufficient, although it is often considered the only metric of interest.

1The power profiles were originally published in [38].
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7.1.2.2 SystemC Simulator Construction The SystemC simulator construction is

completed in two phases. In the first phase, the user specified C behaviors that correspond

to the different RFID primitives are converted into SystemC designs. In the second phase, the

compiler generates the simulator framework for the entire tag, which includes the unpacking,

decode and packing logic. The simulator is made by compiling the SystemC design.

Generation of RFID Primitive Designs: The user specified C behaviors that

correspond to the different RFID primitives are represented as SDFGs in the SuperCISC

compilation flow, as explained in detail in Section 6.2. An SDFG is an extension of the

more common control and data flow graph (CDFG) where basic blocks have been merged

by converting control edges into data edges using hardware predication [34, 35].

The original SuperCISC compilation flow was extended with a SystemC generation pass.

The pass translates each super data flow graph (SDFG) into a behavioral SystemC design.

This uses the SystemC abstract syntax tree (AST) of PACT HDL for the intermediate

representation, which contains data structures that behave according to the SystemC spec-

ification. The highest AST data structure is a SystemC program. A program contains a

top-level module or header and a cc file. A module contains its name, the headers, a global

symbol table of signals, the module declaration items such as ports and a process block. A cc

file is made of behavior declaration items, that describe the behavior of the items declared

in the header file. Each item can be a process behavior, a method behavior or a global

variable declaration. The process nodes contain local symbol tables with VHDL variables

and statement nodes. The method nodes contain statement nodes, a list of arguments,

etc. Statement nodes such as assignments, if statements, etc., are made of expressions and

operators.

The SystemC AST was modified to compile within the SUIF2 compiler. This required

changing the STL structures to use the SUIF STL replacement structures. The SUIF STL

replacements are made to behave similarly to the STL structures but some of the methods

from the STL structures are not defined.

Figure 65 shows the outline for SystemC simulator generation from a control and data

flow graph. A top-level SystemC module is created and ports are added for each input

and output node. The module’s SystemC code generation is expanded in Figure 66. In
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(a) Adder (b) Multiplier

(c) AND Operation (d) XOR Operation.

Figure 64: 4-D plots of p, d, and s versus power for functional units synthesized as 0.16µm

OKI ASICs. Power is indicated as a color between black and white where solid black rep-

resents the least power consumed by the device and solid white indicates the most power

consumed by the device. Measurements are taken at 0.1 intervals in each dimension p, d,

and s.
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sc_program *cdfg2sc(cdfg *graph) {
// Create a new SystemC module, adding ports for each I/O node.
sc_module *m = create module(graph);
// Walk the control data flow graph and generate the module
sc_program *p = walk cdfg(graph,m);
// Generate .cc and .h files for the custom simulator.
sc_print(p);
// Generate the main program (testbench) to run the simulation
sc_tb *tb = cdfg2sctb(graph);
sc_print(tb);

}

Figure 65: Outline for SystemC simulator generation.

sc_program *walk cdfg(cdfg *graph, sc module *m) {
// Get the basic block list
list<bb *> *bblist = graph->get bblist();
for (each bb in the bblist) {

for (each node in the bb) {
// Create unique module declaration generate SystemC
if (have not seen this node type) {

create module for this node type;
}
// Instantiate the module
if (operation or mux) {

instantiate the module;
// Create a signal for every node within the cdfg
sc_signal declr *sig = new sc_signal_declr(

convert type(node), convert name(node));
m->addDeclrItem(sig);

}
// Link bottom nodes to output ports
connect outputs(graph, m);

}
}

Figure 66: Outline for SystemC module generation.
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this step, each node in the graph is examined and unique module declarations are added to

the design. The modules’ SystemC code is then generated and they are instantiated in the

design. Finally, the bottom CDFG nodes are linked to the output ports.

Trace instructions are added to each node’s design, which save information about the

functional units associated with changing signal values. The generation of trace instructions

is outlined in Figure 67. Once each node is constructed, the list of statements is passed to

the generateTraces() function. This function examines each statement in the list such as

assignment, if, switch, function call, etc, and invokes traceInstrs() with the expressions in

the statement. The function traceInstrs() constructs and returns a list of trace statements

for each expression recursively. All the trace instructions are appended to the original list

of statements in the node.

Generation of The Simulator Framework: In the second phase, the RFID Compiler

generates the simulator framework for the entire tag, which includes the unpacking, decode

and packing logic. The compiler uses the information in the input macros file along with

the SystemC AST data structures to generate this. An outline of the simulator framework

generation is shown in Figure 67.

The SystemC hardware blocks generated in the first phase are instantiated in the de-

sign for the complete tag simulator. This is done by addBehavComponent(). The text file

generated by the printComponentDetails() function, described previously in Section 6.2, is

parsed, and the corresponding module declarations, instances and port mappings are con-

structed. Trace instructions are added to the functional units in the top-level design. The

test-bench is then constructed, with instances of the top level module in the design and the

signal generator. The signal generator drives the command line by reading from a command

text file. The test-bench opens separate trace files for each of the primitive modules and

finally runs the simulation.

7.1.2.3 Power Estimation The power macromodeling flow automatically generates

probabilistic input test vectors for use in the tag simulation. It uses the Markov chain-

based sequence generator, used in Section 7.1.2.1, to generate test vectors with p, d, and s

values that are evenly distributed in the 3-dimensional space. Since the actual commands
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list<sc_statement *> generateTraces(statement list) {
for(each statement in statement list) {

if(stmt->isAssignment()) {
list<sc_statement *> trlist = traceInstrs(expression);
append trace instructions list to statement list;

}
if(stmt->isFunction()) {

for(each argument in function) {
list<sc_statement *> trlist = traceInstrs(argument);
append trace instructions list to statement list;

}
}
if(stmt->isIf()) {

list<sc_statement *> trlist = traceInstrs(ifexpr);
append trace instructions list to statement list;
list<sc_statement *> then_traces = generateTraces(then statement list);
list<sc_statement *> else_traces = generateTraces(else statement list);
sc_if *i = new sc_if(ifexpr, then_traces, else_traces);
append if statement to statement list;

}
if(stmt->isSwitch()) {

list<sc_statement *> trlist = traceInstrs(switchexpr);
append trace instructions list to statement list;
for(each case) {

list<sc_statement *> casetlist = generateTraces(case statement list);
list<sc_statement *> trlist = traceInstrs(caseexpr);
append trace instructions list to the case’s trace list;
sc_case *ci = new sc_case(caseexpr, casetlist);
create switch and/or append case;

}
append switch statement to statement list;

}
}
return statement list;

}

Figure 67: Outline for trace instruction generation.
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void generateCode(opcodeList, decList) {
sc_module *module = new sc_module(m_name);
add input and output ports;
sc_cc_file *ccfile = new sc_cc_file(m_name);
sc_program *p = new sc_program(module, ccfile);
create process block and declarations;
add declr item to module;
create process and add to block;
create sensitivity list and add items;
create processes csm1_clocked_proc, csm1_nextstate_proc, etc;
// create behavior for taglogic
// add signal declarations from symbol table
for(each operand in symbol table) {

sd = new sc_signal_declr(new sc_base_type(SC_LV, decList->pValue),
new sc_name(tempsymb->operandName));

module->addDeclrItem(sd);
for(each nested operand) {

sd = new sc_signal_declr(nested-type, nested-id);
module->addDeclrItem(sd);

}
}
// add behavior instances
for(each opcode) {

open opcode file;
idec = new sc_instance_declr(new sc_name(opcodeName), inum);
module->addDeclrItem(idec);
addBehavComponent(fp, module, block, iname);

}
add statements;
create decoder switch statement;
for(each opcode) {

create case;
add unpacking statements for each operand in command;
add packing statements for each operand in response;

}
construct behavior for all processes;
add trace instructions;
// generate test bench
sc_tb_file *tb = generate_tb(opcodeList);
sc_print_h(p);
sc_print_cc(p);
tb->print(tbfile);

}

Figure 68: Outline for simulator framework generation.
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Figure 69: An example module. Energy of the module is based on the energy of each of the

individual functional units addition, equivalence, multiplexer, and logical not.

issued by the RFID reader may be unknown at the time of simulation, sequences with all

possible statistics are applied to the tag simulation. However, while designing tags for a given

RFID system, the user may be able to pre-determine the expected workloads generated by

the RFID reader. The user can use these input vectors instead of the probabilistic vectors

for designing tags that are power-optimized for the actual workloads.

When the simulation is executed, a trace file is generated with the program execution

statistics. If the signal values at a functional unit change, a trace instruction records the

unit’s identification, its signal values and the time the unit spent in the calculation. Dur-

ing power estimation, each trace instruction is read and the module power is constructed

behaviorally. The power estimation is illustrated using a simple example module, shown in

Figure 69.

The energy calculation for the module is based on the energy consumed by each of the

functional units. In the example, this consists of an adder, an equivalence checker, a selector,

and logical not. Consider the adder unit. Based on its inputs, the p, d, and s values are

computed using the technique described in [46]. For the inputs (0,1), the computed p, d,

and s values are 0.017, 0.031, and 0.061. The power consumed by the adder for these values
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is obtained by looking up the library, and is 1.14 · 10−6 W. The corresponding energy is cal-

culated as the power multiplied by the time spent in executing the add operation. Similarly,

the power consumed by the equivalence operator, logical not operator, and the multiplexer

units are 1.09 · 10−6 W, 1.22 · 10−6 W, and 1.14 · 10−6 W, respectively. The energy of the

module is constructed by aggregating the individual energies. Energy is averaged over the

simulation time to calculate power.

7.1.2.4 Results We compared our power macromodeling approach to generating a de-

sign and power profiling it with existing tools. The flow we compared to was design synthesis

using Synopsys Design Compiler and power profiling by simulating the design in Mentor

Graphics ModelSim to generate switching information and power estimation using Synopsys

PrimePower.

Table 15 shows the run times and power estimated with the power macromodeling tech-

nique and the traditional power estimation method for the Part 6C inventory primitives. As

can be seen from the table, the power consumption is estimated to be very similar between

both techniques. The power estimated by the power macromodeling technique is slightly

higher, and is 4.76% on average. However, the calculation time was improved by 108, on

average.

Table 16 shows the run times and power estimated using the above methods for some

of the ISO 18000-7 primitives. These primitives consume much less power than similar Part

6C primitives. For instance, compare the Collection command from ISO 18000 Part 7 and

the Query command from ISO 18000 Part 6C standards. These commands have similar

functionality but use a significantly different protocol. Both the power estimation methods

show the significant advantage of Collection over Query for power. However, the run time

was improved by 241 times and 89 times, respectively. For the ISO 18000-7 commands, the

power estimated by the power macromodeling technique is, on an average, 6.84% more than

that estimated by the traditional method. The calculation time was improved by 251, on

average. For full tag designs, this technique provides an answer in seconds while the other

technique can take minutes or hours.
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Table 15: Power Macromodeling vs. Traditional Method For Commands From ISO 18000-

6C.

Primitives Query QueryAdj QueryRep Nak Ack
Power Macromodeling
Power (mW) 0.120 0.061 0.063 0.036 0.057
Time (s) 0.46 0.34 0.33 0.27 0.35
Traditional Method
Power (mW) 0.113 0.059 0.061 0.034 0.052
Time (s) 40.71 36.02 36.92 34.75 36.11
Times Speedup 89 106 112 129 103
Power Difference 6.19% 3.04% 3.61% 4.40% 10.49%

Table 16: Power Macromodeling vs. Traditional Method For Commands From ISO 18000-7.

Primitives Collection Sleep OwnerId UserId Status
Power Macromodeling
Power (uW) 0.0114 0.0086 0.0086 0.0057 0.0084
Time (s) 0.13 0.12 0.12 0.13 0.11
Traditional Method
Power (uW) 0.0113 0.0079 0.0079 0.0051 0.0080
Time (s) 30.31 29.45 29.24 32.38 30.66
Times Speedup 241 243 246 257 269
Power Difference 0.53% 8.22% 8.22% 12.40% 4.86%

Table 17: The impact of modifying a standard can be studied using the Power Macromod-

eling Flow. Results shown are for reducing the number of states in the Part 6C standard

state machine to six. On average, power is reduced by 10.97%. Similarly, many different

modifications can be modeled.

Primitives Query QueryAdjust QueryRep Nak Ack
Original
Power (mW) 0.120 0.061 0.063 0.036 0.057
Time (s) 0.46 0.34 0.33 0.27 0.35
Modified
Power (mW) 0.115 0.054 0.055 0.030 0.051
Time (s) 0.46 0.33 0.31 0.25 0.34
Power Difference -4.17% -11.48% -12.84% -16.01% -10.37%
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7.1.3 Evaluation of Alternate Protocol Designs: Example

Many design parameters in the protocol such as reducing or adding a state, adding or remov-

ing a variable, size of command code, size of variables, etc may have an impact in the power

consumed by the final implementation. The impact may be significant depending on the

behavior of each command with respect to the state or variable. The power macromodeling

flow can be used to evaluate such variations in protocol designs.

For example, consider the Part 6C tag. The tag state machine has seven states as

explained in Section 6.4. Almost every primitive behavior implements different actions in

each state. Table 17 shows results for reducing the number of states in the Part 6C standard

state machine to six. It can be seen that all the primitives consumed lesser power as a

result of the modification. The difference is highest for the Nak command and lowest for

the Query command. The average decrease in power is 10.97%, which is significant. Thus

power analysis of alternate protocols can be done effectively and in a very short time.

7.2 STUDY OF APPLICATION SPECIFIC INSTRUCTION SETS FOR

MICROPROCESSORS

Application Specific Instruction Processors can achieve much better levels of performance and

power efficiency than general purpose processors, since they contain only those capabilities

necessary to execute certain target workloads [47, 48].

For the microprocessor-based implementation of RFID primitives, power may be reduced

by designing an ASIP. Reducing the size of the instruction set architecture of the target em-

bedded processor can significantly reduce the amount of logic for instruction decode as well

as settings to the remainder of the processor. This generally translates into reduced power

consumption. In some cases removal of high-power consuming capabilities (e.g. multipli-

cation) can also result in significant power savings. In this dissertation, the instruction set

architecture of the EISC and ARM processors are studied and the number of instructions

used by the RFID program are evaluated.
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Figure 70: ARM instruction profile.

7.2.1 Power and Area study of ISA subset of EISC CPU

SimpleScalar’s sim-profile tool was used to obtain ARM instruction and instruction class

profiles for RFID tag controller software. Figure 70 shows a profile of ARM instructions

for different runs of the RFID program. Since an instruction set simulator for EISC was

unavailable, the instructions were only statically profiled. Figure 71 shows a profile of EISC

instructions for the 4 primitive RFID program.

The total number of instructions in the EISC ISA is 56[49]. The number of instructions

used by the static instruction profile of the RFID program is 38. If the remaining instructions

can be removed from the ISA, the instruction decode, execute and data path will become

simpler. Since the architecture of EISC is not known, we assume that there is a linear

reduction of an arbitrary percentage of the total power per instruction. Based on this, we

estimate the impact of removing instructions. Assume N% of power is consumed by Decode

+ Execute + Data Path. From Table 18, I are the subset of EISC instructions that are
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Figure 71: EISC instruction profile.

Table 18: Power study for reducing EISC ISA.

Total number of instructions in ESIC ISA, I 56
Instructions used by RFID program, I’ 38
I’/I 0.68

% of Total Power for Decode + Execute + Data Path, N 5 10 15 Original ISA
Power of N (mW) 1.48 2.95 4.43 N/A
Reduction in Power of N with Reduced ISA (mW) 0.47 0.95 1.42 N/A
After optimization:
Energy consumption for 4 Primitive Program (uJ) 17.01 16.73 16.45 17.29
Energy consumption for 12 Primitive Program (uJ) 19.16 18.84 18.53 19.47
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Figure 72: Energy consumption of RFID C program generated by the compiler for different

values of N.
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required by the system. Power of N is calculated as N% of 29.5mW. Then the reduction in

power of N with reduced ISA is (Power of N Power of N * 0.68). Using the new reduced

power the energy consumption is calculated as Power * Run Time of RFID program.

Different values of N have been chosen to indicate the different fractions of power that

could be consumed by Decode + Execute + Data Path in EISC. The energy consumption

of the two-benchmark programs have been calculated based on the different values of N. Ta-

ble 18 shows a summary of the above calculations. Figure 72 shows the energy consumption

of the RFID program for different values of N. It can be seen that the power consump-

tion, and therefore the energy, of the RFID program on EISC can be reduced by removing

instructions that are not required from the ISA.

We have presented a study for potential power reductions by reducing the size of the

instruction set architecture of EISC. It is possible to further explore power optimizations for

the microprocessor-based tag. It is also possible to design the processor to be sensitive to

commonly occurring patterns in the resulting software run on the processor. The instruction

encoding can be adjusted to reduce the number of bits required to encode an instruction,

as well as to reduce the bit changes between different instructions which impact power

consumption.
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8.0 CONCLUSIONS

Radio Frequency Identification (RFID) tags are being used in an increasingly wide variety

of applications. Although standards exist, custom tags, with additional capabilities, are

sometimes required for specific applications. However, the lack of supportive design envi-

ronments for these custom systems results in an unacceptably long deployment time for

leveraging the benefits of RFID technology. To significantly reduce the design time, it is

necessary to develop the design automation tools that allow the designers to capture a spec-

ification more quickly as well as reducing the time necessary to move from specification to

hardware implementation.

This objective has been achieved in this dissertation by the RFID specification method-

ology and compilation flow, which permits automated design of low-power RFID tags. The

main contributions of this dissertation include:

• developing and implementing high-level design entry using a simple description of RFID

primitives and their behavior in ANSI-C, and a back-end capable of targeting microprocessor-

based tags,

• developing and implementing a front-end capable of supporting behavior specification in

VHDL and a back-end capable of targeting custom hardware-based tags,

• developing and implementing a back-end integrated with the SuperCISC compilation

flow, and thus allowing the RFID compiler to automatically convert the user supplied

behavior in C to low power synthesizable VHDL optimized for RFID applications, and

extending it with features to support primitives from the ISO 18000-6C protocol, and,

• developing and implementing a power macromodeling flow, which calculates power at a

high level during the RFID compiler design automation process.
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8.1 CONTRIBUTIONS

8.1.1 RFID Compiler for the Microprocessor-based Tag

For high-level design entry, simple assembly-like description of the standards, or RFID

macros were designed. A parser was built to read this and build it in to the compiler.

To enter the tag behavior in response to each RFID primitive, ANSI-C was chosen. To sim-

plify the user interaction, the parser automatically generates C code templates, that indicate

where the user must specify such custom behavior. The user uses simple ANSI-C constructs

to plug in the behavior into the template.

The first compiler back-end was developed and implemented to target microprocessor-

based tags. The RFID Compiler generates the tag controller code based on the input RFID

macros and the tag behavior in the C language. The output C code is compiled using an

embedded compiler to generate executable code for the microprocessor target integrated

with the tag. Three low-power embedded microprocessors were selected and power profiled

in Chapter 4. In terms of energy consumption, StrongARM is consistently 4-6 times worse

than XScale requiring hundreds of µJ compared to tens of µJ for XScale. For ease of

comparison, consider program B which contained 12 primitives. This program was run or

modeled successfully on all platforms. Of the microprocessors, StrongARM performed the

worst, requiring about 4 times more energy than an XScale and almost 10 times that of an

EISC. However, for the low-power EISC processor, system memory is a limitation.

8.1.2 Hardware RFID Compiler with VHDL Behavior

The overhead of using a microprocessor-based controller for the RFID tag is considerable

compared to a hardware-based controller. The ARM-based processors require hundreds

of instructions to be executed to generate the response for a single primitive, resulting in

significant energy usage compared to custom hardware-based designs. While the EISC pro-

cessor is a low-power processor option, system memory is a limitation. To improve both the

power and capacity of the controller, the hardware-based RFID compiler was described in

Chapter 5. The hardware RFID compiler processes the RFID macros to generate VHDL
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template files and the final tag controller in VHDL. Xilinx Spartan 3, Coolrunner II and

Actel Fusion devices were targeted for tag designs. The energy required by the Coolrun-

ner is in the nJ range while the best performing processor (EISC) still requires 17 µJ, for

the same primitives. The ASIC implementation drops the energy consumed down to 0.07

nJ per transaction when active, which is comparable to the energy used by commercial ac-

tive tag ASICs. The area of the ASIC controller is less than 4300 cells for a 40 primitive

controller, which is also comparable to the conventionally designed active tags used in the

industry.

8.1.3 Hardware RFID Compiler with C Behavior

Because C is a significantly more universally known language than VHDL or Verilog, it

is desirable to have the user specify the primitive behaviors for the RFID Tag in C while

generating a custom hardware in VHDL. In order to synthesize C-based primitives into

VHDL, the back-end of the hardware RFID compiler is integrated with the SuperCISC

compilation flow in Chapter 6. The SuperCISC compiler and the RFID compiler were

extended so that the behavioral VHDL components can be instantiated and combined with

the automatically generated tag hardware. The ASIC designs implemented using the two

hardware RFID Compilers are compared in terms of their areas and power consumption.

There is a nominal increase in area when C behavior is used instead of direct VHDL, and

requires 2.91% and 9.37% more area for the tags with a single primitive and twenty four

primitives of ISO 18000-7, respectively. This area overhead can be reduced through the use

of specialized controls for resource sharing in the design compiler tool.

Different standards such as the ISO 18000-7, ISO 18000-6C, ANSI, ISO 18185, etc were

implemented using the RFID compiler. The communication primitives of ISO 18000-6C

(Gen-2) standard are significantly different and more complex than those of the ISO 18000-7

standard. The standard relies on intermediate storage and storage of state at several points

during each communication operation. The states and keys of the target device are used

to facilitate operations such as tag singulation, collision arbitration, and security encoding.

We compare the ASIC implementations of the ISO 18000 Part 6C Query command and
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the ISO 18000 Part 7 Collection command, which have similar functionality. The Query

implementation is not only much larger and consumes significantly more power than the

Collection command implementation, but also requires more power than ten combined ISO

18000 Part 7 commands.

8.1.3.1 EPC C1 Generation 2 Hardware RFID Compiler The C behavior-based

hardware RFID compiler was extended to support the Part 6C standard in Chapter 6.4.

The compiler-generated Part 6C inventory and access primitives were targeted to the Xilinx

Spartan 3 FPGA and ASICs and compared with corresponding manual designs. For the tag

Spartan 3 design, the resource utilization is almost the same for both the approaches and

improves slightly with the RFID compiler-based approach. For the tag ASIC design, the area

was found to increase by up to 66.56%, due to the large number of variables and the complex

behaviors. This is in part due to how design compiler does resource sharing. To reduce this

overhead, area optimizations have been built in to the RFID Compiler. A precision pass

updates the sizes of the CDFG input and output nodes, followed by a conversion pass that

examines each operation node and reduces its size to the minimum bit width calculated

based on its inputs. With these optimizations the area increase is substantially reduced to

10.55%. Thus, the use of the design automation tool can make the design of the complex

Part 6C tags faster, while achieving tag implementations that are very similar in area and

power to the corresponding manual designs.

8.1.4 Techniques For Optimizing The Tag Power Consumption

Power optimization is critical in RFID systems because the power budget is limited. How-

ever, during the design of RFID tags, power consumption has been held as the secondary

metric, next to cost. Further more RFID protocols are typically designed without taking

into account many of the area and power consumption impacts of their final implementa-

tion. This is partly because it takes months or years of engineering effort to gain an accurate

estimate of power consumed for a tag or a protocol implementation, with the existing design

flows.
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This dissertation enables the programmer to tackle the power problem early in the design

flow by describing a power macro-modeling technique that works in concert with the RFID

design automation flow. The power macro-modeling flow, described in Chapter 7:

• calculates power at a high level during the RFID compiler design automation process

• generates estimates which are within 15% accuracy and about one hundred times faster

than the conventional ASIC power estimation flows

• allows optimization of the primitives and / or the behaviors and the effective evaluation

of alternate protocol designs

• does not require detailed knowledge of ASIC synthesis and power estimation flows

The power macromodeling component integrates into the RFID compiler, which reads the

RFID protocol description, including the RFID macros and their corresponding behavior in

C and automatically generates a hardware design for the tag in the SystemC language. The

SystemC description of the hardware design is compiled into a custom simulator executable

for that particular hardware design. SystemC was chosen because the various steps in power

macromodeling are easily and seamlessly integrated into the simulator using C++ code.

The final simulator is typically fast as the simulator is a compiled binary rather than an

interpreted simulation of hardware description languages.

The SystemC simulator construction is completed in two phases. In the first phase, the

user specified C behaviors that correspond to the different RFID primitives are converted

into SystemC modules. For this, a pass that converts the control and data flow graphs

into SystemC code was implemented in the SuperCISC compiler. In the second phase, the

RFID compiler generates the simulator framework for the entire tag. For this, the RFID

compiler was extended with a back-end to generate the SystemC simulator and the SystemC

modules are integrated into the framework. After the SystemC simulator is generated, it is

compiled into a binary using a software compiler. Probabilistic input test vectors are then

automatically generated for use in simulation. The compilation flow executes the simulation

and generates annotated trace files with information about all the functional units in the

design. These functional units have been pre-profiled for power based on various input

parameters. The power estimation of each RFID primitive and the overall tag design is
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calculated by combining the trace information with the profiles to determine each units

power. The resultant power estimates correspond to the actual activity of the tag behavior

in hardware.

The power macromodeling flow has been used to implement and profile primitives from

the ISO 18000-7 and 18000-6C standards. These were compared to VHDL primitives syn-

thesized using the conventional methods. For both the standards, the power consumption

is estimated to be very similar between both techniques. For the ISO 18000-6C commands,

the power estimated by the power macromodeling technique is slightly higher, and is 4.76%

on average. However, the calculation time was improved by a factor of 108, on average.

For the ISO 18000-7 commands, the power estimated by the power macromodeling tech-

nique is, on an average, 6.84% more than that estimated by the traditional method. The

calculation time was improved by a factor of 251, on average. For full tag designs, this

technique provides an answer in seconds while the conventional technique takes minutes or

hours.

Many design parameters in the protocol such as reducing or adding a state, adding or

removing a variable, size of command code, size of variables, etc may have an impact in

the power consumed by the final implementation. The impact may be significant depending

on the behavior of each command with respect to the state or variable. As an example,

the power macromodeling flow was used to evaluate the result of reducing the number of

states in the Part 6C standard state machine to six. All the primitives consumed less power

as a result of the modification, on average 10.97% and the average run time was only 0.34

s. Thus, using the power macromodeling flow, power analysis of alternate protocols can be

done effectively and in a very short time.

Thus, this dissertation created an easier and faster way for RFID application program-

mers to develop low-power RFID tags for their applications.
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8.2 FUTURE RESEARCH

The RFID compiler developed in this dissertation automates the design of the tag controller,

while the physical layer encodings are implemented manually. The physical layer protocol

also varies across different standards. One possibility of extending this dissertation would

be to integrate the compiler with the automatic generation of physical layer decoder and

encoder blocks specified in [3].

In this dissertation, the RFID compiler was used to implement tag controllers with

communication primitives from different standards such as the ISO 18000-7, ISO 18000-6C,

ANSI and ISO 18185. The RFID compiler also has the capability of implementing controllers

for RFID readers. The communication primitives used by the readers can be similarly input

to the compiler to automatically generate the corresponding controllers. The compiler is

also applicable to other wireless devices such as digital cell phones, blue tooth devices, etc.,

in which the communication can be decomposed into primitives.

The existence of multiple keys and intermediate states and the complexity of primitives

in the ISO 18000 Part 6C protocol presents challenging design problems compared to the

simpler ISO 18000 Part 7 protocol. The use of the RFID compiler can make the design

of these tags faster, however, the original complexity is not reduced. One solution is to

examine the needs of the protocol and explore modifications to the protocol that leads to

simpler implementations. A second possibility is to examine ways to decompose the CISC-

like primitives in the standard to create a more RISC-like implementation.

While the power macromodeling technique is targeted towards hardware-based tags, an

application specific instruction processor (ASIP) is studied for microprocessor-based tags,

and shows a possible reduction of power in their design. One possibility of extending this

dissertation is to provide a tool for implementing an ASIP tag tailored for the application.

The power macromodeling flow has been used to evaluate variations in protocol designs.

Another possibility of extending this dissertation is to use the flow to study the existing

standards and to propose modifications to them or even to design a new standard.
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