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Extracorporeal blood purification is a promising therapeutic modality for sepsis, a potentially 

fatal, dysfunctional immune disorder caused by infection.  During sepsis, dysregulation of the 

innate immune system leads to excessive release of inflammatory mediators known as cytokines 

into the bloodstream.  Removal of cytokines from the circulating blood may attenuate hyper-

inflammatory signaling and promote immunologic homeostasis.  We are developing an 

extracorporeal blood purification device to remove cytokines from the blood using 

biocompatible, porous, polymeric beads.  Hemoadsorption therapy using our device has 

demonstrated improved survival in a murine sepsis model, and may serve as a novel adjuvant 

therapy to improve patient outcomes in the setting of severe sepsis and septic shock. 

We developed a mathematical model to characterize cytokine adsorption dynamics within 

the device, and used confocal laser scanning microscopy (CLSM) to quantify cytokine transport 

within single sorbent beads.  Finite element modeling was utilized to estimate model parameters 

based on best fits to CLSM data, and the fitted model was used to simulate cytokine adsorption 

behavior under clinically relevant conditions.  We investigated intraparticle cytokine transport 

under competitive and non-competitive adsorption conditions, and demonstrated that effects due 

to coadsorption of serum solutes are likely negligible under physiologic cytokine concentrations.  
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CLSM results indicate that less than 20% of available sorbent surface area is utilized for 

cytokine adsorption.   

Tumor necrosis factor (TNF) is a pleiotropic, pro-inflammatory cytokine, and serves as a 

primary initiator of systemic inflammation during sepsis.  Removal of TNF within the device is 

slow, putatively due to hindered diffusion of the large TNF molecule (51kD) within the sorbent 

pores.  We induced deoligomerization of trimeric TNF into its monomeric subunits, and 

demonstrated significantly accelerated capture of monomerized TNF within the device, 

compared to native TNF.  We investigated small molecules capable of facilitating TNF 

deoligomerization, and proposed techniques to immobilize such molecules on the sorbent 

surface.  Functionalized sorbent beads capable of locally dissociating TNF at the bead surface 

may significantly accelerate capture of TNF from the circulating blood.  This concept could be 

expanded to enhance capture of oligomeric biomolecules using size exclusion filtration materials 

for a variety of disease states.   
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1.0  INTRODUCTION 

Sepsis is a serious medical condition characterized by systemic inflammation caused by 

infection, and affects more than 750,000 individuals per year in the US, with a mortality rate of 

30% [1].  The pathophysiology of sepsis is complex and not entirely understood, but is believed 

to be related to the activity of multiple interdependent humoral mediator pathways [2].  

Therapies aimed at blocking single mediators within the network of pathological processes, such 

as TNF antagonists [3], IL-1 antagonists [4], and anti-endotoxin antibodies [5], have failed to 

improve clinical outcomes.  One promising strategy for the treatment of sepsis is nonspecific 

removal of inflammatory cytokines from the circulating blood [6].  Cytokines are ubiquitous 

inflammatory mediators that are substantially up-regulated during sepsis [7].  Elevated levels of 

circulating cytokines such as IL-6 and TNF are highly associated with increased risk of death [8].  

Nonspecific removal of both pro-inflammatory (e.g. IL-6, TNF) and anti-inflammatory (e.g. IL-

10) cytokines may provide a beneficial clinical effect by promoting overall down-regulation of 

systemic inflammation, and assisting the body in regaining immunologic homeostasis [9].  

Our group is developing an extracorporeal hemoadsorption device to remove cytokines 

from the circulating blood using a novel, biocompatible, sorbent bead technology (CytoSorbTM, 

CytoSorbentsTM, Inc.).  CytoSorb hemoadsorption beads are polystyrene-divinylbenzene porous 

particles with a biocompatible polyvinyl-pyrrolidone coating.  Adsorption to the internal pore 

surface is accomplished by a putative combination of nonspecific hydrophobic interactions, and 
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size exclusion of large molecular weight solutes such as albumin and immunoglobulins.   This 

"semi-selective" approach is effective for broad-spectrum removal of cytokines and other small 

and middle molecular weight inflammatory mediators involved in the pathophysiology of sepsis.  

Kellum, et al. demonstrated rapid clearance of cytokines and increased mean survival time in a 

murine endotoxemia model using CytoSorb hemoadsorption beads [6].  Peng and colleagues 

further demonstrated short-term [10] and long-term [11] mortality benefit of CytoSorb 

hemoadsorption therapy in a murine cecal ligation and puncture (CLP) model of sepsis.    

The first goal of the work presented in this dissertation was to characterize cytokine 

capture dynamics within the hemoadsorption beads (Chapters 3 & 4).  Our group previously 

investigated cytokine removal dynamics within the cytokine adsorption device (CAD) by 

measuring temporal changes in cytokine concentrations in a reservoir during in vitro 

recirculation experiments [12].  However, this technique offered only macro-scale assesments of 

cytokine removal within the entire device, and did not provide insight into cytokine transport 

mechanisms within the beads.  In this work, we sought to directly quantify adsorption behavior 

within single sorbent beads, and test the hypothesis generated from a mathematical model that 

minimal sorbent surface area participates in cytokine adsorption.  We utilized fluorescently-

tagged cytokines and confocal laser scanning microscopy (CLSM) to quantify transport within 

the hemoadsorption beads, and characterized the adsorption behavior in both single-component 

and multi-component solutions.  Results from these studies will be used to optimize bead and 

device properties to maximize cytokine removal efficiency.  Additionally, our mathematical 

model will be incorporated into large-scale inflammatory systems models to predict effects of 

cytokine removal dynamics on downstream physiological pathways.   
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The second goal of this dissertation was to develop techniques to accelerate removal of 

tumor necrosis factor (TNF) within the CAD (Chapters 5 & 6).  TNF is a large oligomeric 

cytokine (51kD) that is an important initiator of systemic inflammatory processes [13], and high 

levels of circulating TNF have been directly correlated with increased mortality rates in sepsis 

[8].  TNF is on the cusp of molecular weight ranges excluded by the sorbent pore structure, 

hence, TNF removal is slow within the device.  We sought to accelerate TNF capture through 

dissociation of oligomeric TNF into its smaller monomeric subunits, thereby enhancing 

diffusional rates into the sorbent pores, and increasing overall removal of TNF.  We also 

examined small molecules capable of dissociating TNF that could be tethered to the sorbent 

surface as a localized mechanism for TNF deoligomerization within the device.  This concept 

presents a novel technique for manipulating the quaternary structure of molecules to facilitate 

faster removal by size exclusion materials, while retaining an optimal pore structure for exlusion 

of necessary large proteins and cells. 

Finally, we discuss future applications based on the concepts presented in this 

dissertation.  The role of anti-TNF or anti-cytokine strategies for the treatment of sepsis remains 

elusive.  However, blood purification is an attractive therapeutic modality for the removal of 

endogenous solutes as well as foreign toxins in a variety of disease states [14].  The primary 

results presented in this work: (1) mathematical modeling of protein transport within 

hemoadsorption beads, and (2) strategies to modulate the quaternary strucure of large solutes to 

accelerate capture within size exclusion filtration materials, may have applications outside the 

realm of sepsis.  We hope that the concepts presented in this dissertation help to advance the 

field of sorbent blood purification, and lead to safe and effective technologies for the treatment 

of the critically ill.     
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2.0  BACKGROUND 

2.1 SEPSIS 

Sepsis can broadly be defined as a systemic inflammatory response to infection.  It is the leading 

cause of death in the intensive care unit (ICU) [1], with mortality rates ranging from 27% to 54% 

in the case of septic shock [15].  Sepsis is estimated to affect at least 750,000 people per year in 

the United States, with total annual costs approaching $20 billion [1].  This rate of incidence is 

projected to increase by 1.5% per annum due to the growing elderly population [1].  Although 

clinicians and scientists have made significant advances in our understanding of the 

pathophysiology of sepsis over the past decades, there has been limited success of new treatment 

strategies.  Sepsis remains one of the most elusive medical problems facing our society, and new 

therapeutic approaches are urgently needed.   

2.1.1 Pathophysiology 

Sepsis is a complex, dysregulatory immunologic state, characterized by interdependent changes 

in coagulatory, circulatory, and immunological systems.  Although infection is typically the 

initial cause of sepsis, deleterious physiological effects have been linked to reaction of the innate 

immune system, not simply from the pathogen itself [16].  A generalized schematic of the 

progression of sepsis is shown in Fig. 1.  The body mounts a normal response to infection 
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through recruitment of immune cells and increased production of inflammatory mediators.  

Various pathogenic products such as pathogen-associated molecular patterns (PAMPS) and 

lipopolysaccharide (LPS) trigger immune cell activation through complex receptor signaling 

(toll-like receptors, etc.) [17].  In response, these cells up-regulate production of pro-

inflammatory mediators such as TNF, IL-1, and IL-6 [18].  Subsequent signaling pathways 

increase nitric oxide-mediated endothelial permeability [19], activate the coagulation cascade 

[20], and trigger production of anti-inflammatory cytokines (IL-10, IL-1ra) [21].  The synergistic 

effects of these physiological events at a systemic level induce vascular hypotension, tissue 

hypoxia, coagulopathy, and direct cell necrosis/apoptosis.  Sepsis can be considered an 

exaggerated and dysfunctional response of the innate immune system to infection.  Complex 

positive feedback signaling networks send the body into a vicious cascade of pathological events, 

ultimately leading to multiple organ failure, and often death.      

 5 



  

normal immune 
response 

sepsis/septic    
shock 

Figure 1:  Generalized schematic of sepsis progression. 

2.1.2 Clinical Indications & Definitions 

In 2001, a consensus report was published by North American and European intensive care 

societies to formally delineate the various stages of sepsis [22].  Their goals were to assist with 

patient recruitment for clinical trials, and generate a more robust understanding of the 

pathophysiology and etiology of systemic inflammatory diseases.  Table 1 summarizes the 

consensus definitions. 
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Table 1:  Standard definitions of the clinical stages of systemic inflammation and sepsis, from the 

2001 International Sepsis Definitions Conference. 

Systemic inflammatory response syndrome 

(SIRS) 

• Body temperature >38.5˚C or <35.0˚C 

• Heart rate >90 beats per min 

• Respiratory rate >20 breaths per min, or 

arterial CO2 tension <32mmHg 

• White blood cell count >12,000/mm3 or 

<400/mm3  

Sepsis SIRS and documented infection 

Severe sepsis 
Sepsis and at least one sign of organ 

dysfunction 

Septic shock 
Severe sepsis and acute circulatory failure 

(mean arterial pressure <60mmHg) 

2.1.3 Hypercytokinemia 

Sepsis is characterized by excessive and sustained release of inflammatory cytokines in the 

tissues and circulating blood, a condition known as hypercytokinemia [23].  Immune cell 

activation via toll-like receptor pathways causes up-regulated production of nuclear factor κB 

(NFκB), a primary transcription factor which controls release of pro-inflammatory mediators 

such as TNF, HMGB-1, and various interleukins [18].  Abundant release of pro-inflammatory 

cytokines in response to the initial pathogenic assault is followed by counterproduction of anti-

inflammatory cytokines such as IL-10 and IL-1 receptor antagonist [24].  Positive feedback 

signaling between these two pathways results in sustained and uncontrolled mediator production, 

thought to be a significant contributor to downstream organ damage and mortality [25]. 

 Numerous pharmacologic interventions have been developed to attenuate the initial pro-

inflammatory response, such as corticosteroids [26], TNF antagonists [3], anti-endotoxin 
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antibodies [5], and IL-1 receptor antagonists [4].  Although animal models demonstrated benefit 

from use of such interventions, human clinical trials have largely been unsuccessful [27-28].  

One hypothesis for the clinical failure of pro-inflammatory inhibitors is that the concept 

essentially ignores significant pathophysiological contributions from the counterregulatory anti-

inflammatory response [29].  Evidence has suggested that an over reactive anti-inflammatory 

response to the initial pathogen-induced pro-inflammatory state results in significant 

immunosupression [23].  The majority of septic patients often survive the initial infectious insult, 

only to succumb to nosocomial infection days or weeks later [30].   

A hypothetical example of sepsis-induced immunologic dysregulation is illustrated in 

Fig. 2.  In one patient (solid line), the initial hyperimmune response to infection is followed by a 

brief state of hypoimmunity, although the body eventually returns to a homeostatic level and 

survives.  In a different patient, the hyperimmune response is followed by sustained 

immunosupression, either leading to recovery or death.  This prolonged state of 

“immunoparalysis” often leads to death via severe nosocomial infections [31] or reactivation of 

dormant viruses [32].  The complex interplay between hyper and hypo immune states during 

sepsis has been a primary challenge in the development of effective mediator-targeted therapies 

[27].  Whereas one patient in the hyperimmune phase may benefit from pro-inflammatory 

inhibitors, immunostimulation therapy for patients experiencing a prolonged anti-inflammatory 

state may be beneficial.  Difficulties in establishing treatment strategies are further compounded 

due to variable timing of patient presentation; i.e. the cytokine cascade is often fully activated by 

the time patients seek hospital care [8].  Thus, point-of-care data on patient-specific 

immunologic trajectories would be beneficial for tailoring appropriate immuno-modulatory 

therapies.     
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Figure 2:  Immunologic responses in the setting of severe sepsis.  Adapted from Hotchkiss, et al. [29] 

2.2 CURRENT TREATMENT STRATEGIES 

2.2.1 Intensive Care Management 

Sepsis and septic shock treatment in the intensive care unit (ICU) is primarily focused on three 

goals:  (1) hemodynamic support, (2) eradication of the infectious agents, and (3) adequate organ 

perfusion and function [33].  Clinical guidelines published by the Surviving Sepsis Campaign 

aimed to define standards of care in severe sepsis and septic shock [34].  Their recommendations 

included: broad-spectrum antibiotic therapy, crystalloid or colloid fluid resuscitation, 

vasopressor guidelines, inotropic therapy, and other adjuvant therapies. 
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 Rivers et al. published a landmark study in 2001, demonstrating improved clinical 

outcomes using  early-goal directed therapy upon patient admission to the emergency department 

[35].  This work was predicated on evidence that global tissue hypoxia is a key factor preceding 

development of multi-organ failure and death [36].  They demonstrated that a goal-oriented 

resuscitation strategy focused on oxygen delivery and demand, implemented within the first six 

hours of emergency department admission, significantly improved morality outcomes in patients 

with severe sepsis or septic shock.  Early-goal directed therapy (EGDT) has now been accepted 

as standard of care for the initial treatment of sepsis [34].  

2.2.2 Pharmaceuticals 

Numerous pharmacologic interventions have been evaluated for their efficacy in the treatment of 

sepsis.  As previously discussed, strategies to blunt the pro-inflammatory response have largely 

been unsuccessful in improving patient outcomes, despite promising results from preclinical 

models [37].  As our understanding of the pathophysiology of sepsis has grown over the past 

decades, the role of sepsis-induced immunosupression has gained traction as an important factor 

in mortality/morbidity [38].  Immunostimulation therapy using interferon-γ improved survival in 

a subgroup of patients with sepsis [39], however, other immune system activating agents such as 

granulocyte colony stimulating factor (GC-SF) [40-41] have generated disappointing clinical 

results. 

Therapies aimed at attenuating sepsis-induced hypercoagulation have shown mixed 

results in clinical trials.  Anticoagulant agents such as antithrombin III [42] and tissue factor 

pathway inhibitor [43] failed clinical trials.  Activated protein C (drotrecogin alpha) 

demonstrated significant mortality reduction in a large, controlled trial [44], and is currently the 
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only FDA approved drug for the treatment of sepsis.  However, enormous controversy 

surrounded the results of the trial [45], and a second study investigating APC in patients with 

severe sepsis and low risk of death was terminated early due to lack of mortality benefit [46].  

According to the Surviving Sepsis Campaign guidelines, use of recombinant APC should be 

limited to patients at high risk of death and low risk for bleeding complications [34]. 

2.3 BLOOD FILTRATION 

Despite significant advances in our understanding of the underlying cellular and molecular 

mechanisms during sepsis, therapies targeting specific immunologic mediators have largely been 

unsuccessful [27].  Due to the complex interplay of various competing and often synergistic 

pathophysiological pathways, non-specific removal of multiple mediators from the blood may 

serve as novel therapy by promoting global immunologic homeostasis [47].  A multitude of 

extracorporeal blood filtration modalities have been developed in recent years, many of which 

have demonstrated potential benefit in preclinical and clinical trials of severe sepsis [14, 47-48].  

Japan, in particular, has embraced blood filtration as a clinical tool in the treatment of sepsis and 

other critical care diseases [49], although further large scale trials are necessary for widespread 

acceptance of these technologies [50].      

Many hypotheses have been proposed regarding the effects of blood filtration during 

systemic inflammatory disorders.  Honoré and Matson [51] suggested that removal of cytokines 

from the blood leads to cytokine depletion in the tissues, due to concentration gradients between 

the two compartments.  Ronco and colleagues [52] postulated that cytokine removal during the 

early pro-inflammatory phase could stop the inflammatory cascade, and limit subsequent organ 
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damage.  Peng and colleagues [53] suggested that blood filtration modulates function of 

inflammatory cells, with significant effects on leukocyte trafficking and bacterial clearance from 

the tissues. 

2.3.1 Endotoxin Removal using Polymyxin B 

Lipopolysaccharide (LPS) is a bacterial endotoxin found in the cell membrane of Gram-negative 

bacteria.  High concentrations of endotoxin in the circulating blood have been associated with 

increased mortality rates in severe sepsis [54], and LPS has been shown to be an important 

trigger of the pro-inflammatory innate immune response [55].  Hence, there is significant interest 

in systemic removal of LPS from the blood as a potential treatment for Gram-negative sepsis 

[56].  Polymyxin B is an antibiotic that binds and neutralizes endotoxin, although clinical use has 

been limited due to acute toxicity [57].  However, immobilization of polymyxin B on solid 

supports within an extracorporeal device has been shown to remove endotoxin without leaching 

polymyxin B into the circulating blood [58]. 

Endotoxin removal using a polymyxin B blood filtration device (Toraymyxin) has been 

used widely in Japan since 1994.  However, widespread use of the device has been limited due to 

lack of large scale clinical trials.  In 2005, the first European randomized controlled trial (RCT) 

reported results using polymyxin filtration in sepsis [59].  They demonstrated improvement in 

cardiac function and hemodynamics status, but found no significant changes in either endotoxin 

concentration or 28-day mortality.  More recently, a multicenter RCT in Italy reported 

improvement in hemodynamic parameters and reduction in 28-day mortality using polymyxin B 

hemoperfusion in the setting of severe sepsis or septic shock [60].  However, the study has been 

criticized due to significance of the clinical endpoints, and the fact that the trial was stopped 
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early due to a ruling by the hospital ethics committee [61].  Additional trials are currently 

underway using polymyxin B hemoperfusion [62-63], and further analysis of safety and clinical 

benefit are necessary for widespread acceptance of the technology.    

2.3.2 Hemofiltration 

Hemofiltration refers to convective removal of solutes from the blood using semi-permeable 

membranes.  Selectivity is based on solute molecular size – large solutes are excluded from 

entering the porous membrane, while smaller solutes pass through the membrane pores and into 

a separate fluid channel.  Hemofiltration is a promising adjuvant treatment modality for sepsis 

due to the non-specific nature of solute removal.  As previously discussed, therapies aimed at 

blocking individual pro- or anti-inflammatory mediators have not demonstrated clinical efficacy.  

Broad-spectrum removal of multiple immunologic mediators (e.g. cytokines, chemokines) may 

have a beneficial effect by modulating the excessive innate immune responses towards a state of 

homeostasis.  

Standard “renal dose” continuous hemofiltration [25-30 mL/kg/hr] appears to be 

ineffective in the treatment of sepsis [64-65].  However, high volume hemofiltration (HVHF) 

[>35 mL/kg/hr] has shown promise as a therapeutic tool due to accelerated rates of mediator 

clearance from the plasma, compared to conventional hemofiltration [66].  Numerous clinical 

studies have demonstrated beneficial effects of HVHF on hemodynamic parameters [67-68] and 

expected mortality [69-70], although further large scale RCTs are necessary to support clinical 

efficacy of HVHF in the treatment of sepsis and septic shock [47].  In recent years, additional 

hemofiltration technologies have been developed, such as cascade hemofiltration [71], coupled 

plasma filtration adsorption (CPFA) [72], high cut-off hemofiltration/hemodialysis [73], and 

 13 



high-adsorption hemofiltration [74].  Although stand-alone hemofiltration therapies such as those 

described above may prove to be safe and effective for the treatment of severe sepsis, synergistic 

effects of combined technologies (e.g. high volume + high adsorption hemofiltration) may 

elucidate new concepts for blood filtration in the critically ill [75].   

2.3.3 Hemoadsorption  

Hemoadsorption refers to removal of blood solutes through direct adsorption to sorbent 

materials, typically through hydrophobic, electrostatic, or van der Waals’ interactions [76].  In 

contrast to hemofiltration, hemoadsorption offers two important advantages: (1) extremely high 

material surface area, and (2) self-regulating solute removal via concentration dependent 

diffusion.  Due to highly interconnected porous networks, sorbent materials offer far greater 

surface area than standard hollow fiber hemofiltration membranes.  This distinction is critical 

given recent evidence that cytokine removal using hemofiltration is predominantly due to 

adsorption on the filter surface [77].  As a result of limited surface area of standard hemofilters, 

cytokine removal efficiency rapidly decreases over time due to saturation of the filter [78].  An 

additional benefit of sorbent-based blood filtration is self-regulating solute removal, i.e. rate of 

removal is dependent on solute concentration in the blood.  In contrast to convective removal 

using hemofiltration, diffusion-mediated hemoadsorption provides a regulated removal 

mechanism, which may be more effective in modulating blood mediator levels towards 

homeostasis.     

Although sorbent blood filtration has existed for decades, recent innovations in sorbent 

biocompatibility and tunable pore structure have piqued interest in using hemoadsorption as an 

adjuvant therapy for severe sepsis [76].  CTR (Kaneka Corporation) is a sorbent comprised of 
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cellulose beads functionalized with a hydrophobic ligand, and has been shown to effectively 

remove small and middle molecular weight molecules such as cytokines and bacterial toxins in 

vitro [79].  Additionally, hemoadsorption therapy using CTR significantly reduced mortality 

rates in an endotoxemic rat model [79].  CytoSorbTM (CytoSorbents, Inc.) are polystyrene-

divinylbenzene sorbent beads with a biocompatible polyvinyl-pyrrolidone coating.  Kellum and 

colleagues demonstrated rapid cytokine removal and improved survival in an endotoxemic rat 

model using CytoSorb hemoadsorption therapy [6].  Furthermore, they utilized a physiologically 

relevant cecal ligation & puncture (CLP) septic rat model, and demonstrated reduction in 

circulating cytokines, improved mean arterial pressure, and improved short-term survival 

compared to sham treatment [10].  
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3.0  INVESTIGATING CYTOKINE ADSORPTION DYNAMICS USING CONFOCAL 

LASER SCANNING MICROSCOPY 

A robust understanding of cytokine capture within the hemoadsorption device is necessary to 

optimize device performance.  Aspects such as clinical operational parameters and downstream 

physiological effects in vivo are predicated on cytokine removal dynamics within the device.  

Our group previously characterized cytokine removal using simple mass balance methodology:  

temporal changes in cytokine concentration in a reservoir were measured during in vitro 

recirculation capture using small sorbent cartridges, where mass of cytokine removed from the 

reservoir was assumed to be captured by the sorbent beads [12].  Although this technique offered 

a generalized model of cytokine removal dynamics, we sought to directly measure cytokine 

adsorption within single sorbents beads as direct validation of model predictions.   

Kellum, et al. demonstrated rapid clearance of cytokines and increased mean survival 

time in a murine sepsis model using CytoSorb hemoadsorption beads [6].  They measured 

cytokine removal using cytokine-rich blood from rats challenged with endotoxin, in an ex vivo 

circuit containing a hemoadsorption column packed with 10g of CytoSorb beads.  A similar 

circuit and endotoxin challenge was used for in vivo experiments to determine effects from 

hemoadsorption therapy on the inflammatory response and survival.  IL-6, IL-10, and TNF were 

rapidly removed by the device, with <50% of the initial concentrations present after 1hr of 

recirculation.  Despite significant cytokine removal rates observed in the study, a model analysis 
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performed by our group predicted that cytokine adsorption is limited to the outer ~15μm of the 

sorbent particle over a clinically relevant time period (4-6 hours).  Given the large diameter of 

CytoSorb beads (450μm), this prediction suggested that less than 20% of the sorbent surface area 

participates in cytokine adsorption.  To test this hypothesis, we utilized confocal laser scanning 

microscopy (CLSM) to quantify adsorption of fluorescently labeled cytokine within single 

sorbent beads.  CLSM was first applied to studies of adsorption in sorbent materials by Ljunglöf 

and Hjorth [80], and provides a powerful tool for direct visualization and quantification of 

fluorescently labeled proteins adsorbed within sorbent particles.  Numerous authors have utilized 

CLSM to study protein uptake phenomena in packed-bed chromatography sorbents [21, 81-87].  

Hubbuch, et al. [88] provides an extensive review of CLSM as an analytical tool in 

chromatographic research.   

In this study, CLSM was used to quantify IL-6 adsorption dynamics in CytoSorb 

hemoadsorption beads, and to compare intraparticle spatial adsorption profiles to predictions of 

our previous mathematical model [12].  Our application of CLSM differs from previous sorbent 

CLSM studies in two important aspects: 1)  CytoSorb beads are significantly larger than sorbents 

typically characterized using CLSM (450μm compared to 90μm average particle diameter, 

respectively) [88]; and 2)  physiological cytokine levels found in human sepsis are significantly 

smaller than protein concentrations typically used in sorbent applications (~pg/ml compared to 

~mg/ml, respectively) [6, 88].  Accordingly, in our study we developed new strategies to 

minimize signal attenuation within the bead, to study cytokine-fluorophore degree of labeling, 

and to examine effects of bulk cytokine concentration on adsorption.      
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3.1 MATERIALS & METHODS 

3.1.1 Materials 

Lyophilized recombinant human IL-6 (MW = 21kD, >95% purity) and DyLightTM 549 

fluorescent labeling kits were purchased from Thermo Scientific (Rockford, IL).  DyLight 549 is 

an N-hydroxysuccinimide (NHS) ester activated fluorophore (MW = 982Da) that reacts with 

primary amines on the target protein to form stable, covalent bonds.  The DyLight 549 

fluorophore has an excitation and emission maxima of 562nm and 576nm, respectively.  Bovine 

serum albumin (MW = 66kD, >96% purity) was used as a negative control, and was purchased 

from Sigma Aldrich (St. Louis, MO).  Low molecular weight impurities were eliminated by 

running BSA (1mg/ml) in 10mM PBS through a SuperdexTM200 gel permeation column 

(AKTAexplorer FPLC, GE Healthcare) at 0.1ml/min flow rate.  The 66kD major protein 

component was collected and used for all subsequent BSA fluorescent labeling.   

3.1.2 Fluorescent Labeling 

Lyophilized recombinant human IL-6 (20μg) was reconstituted in 0.5ml 10mM PBS and 

fluorescently labeled with the DyLight 549 fluorophore as follows:  15μg dried fluorophore was 

reconstituted in 100μl 10mM PBS and 8μl 0.67M sodium borate buffer, as recommended by the 

manufacturer.  Reconstituted fluorophore (either 50μl or 5μl) was added to 250μl reconstituted 

IL-6 in PBS and incubated in the dark for 60min.  Unreacted fluorophore was removed using 

resin spin columns provided by the manufacturer.  Protein-fluorophore degree of labeling (DOL) 
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could not be directly measured due to low cytokine concentrations used in this study.  The FPLC 

purified BSA was fluorescently labeled in the same manner as IL-6.   

3.1.3 Bead Preparation 

CytoSorb hemoadsorption beads were provided by CytoSorbents, Inc. (Monmouth Junction, NJ).  

CytoSorb beads are polystyrene-divinylbenzene porous particles (450μm avg. particle diameter, 

67% porosity, 1.02g/cm3 density, 0.8-5nm pore diameter, 850m2/g surface area) with a 

biocompatible polyvinyl-pyrrolidone coating.  Fluorescently labeled IL-6 was incubated with 

CytoSorb beads as follows:  Labeled IL-6 was diluted in 10mM PBS with BSA (10mg/ml) added 

as a stabilizing protein, to yield final IL-6 concentrations of approximately 1μg/ml, 0.1μg/ml, 

and 0.01μg/ml.  1mg CytoSorb bead mass was added to each 1ml aliquot, and samples of each 

IL-6 concentration were placed on a rocker shielded from light for 2, 5, and 18 hours, at ambient 

temperature.  Labeled BSA was added to 1mg CytoSorb bead mass in 1ml PBS to yield a BSA 

concentration of approximately 20μg/ml.  BSA samples were placed on a rocker shielded from 

light for 2, 5.5, and 21.5 hours, at ambient temperature.  At the end of each incubation time 

point, beads were removed from the corresponding sample, and manually sliced in half using a 

thin razor blade.  Beads that were sliced exactly or as close to the particle centerline as possible 

were selected for CLSM analysis.  Sliced beads were placed sliced side down on a glass cover 

slip in a droplet of PBS, and imaged using CLSM, as follows. 
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3.1.4 Confocal Microscopy 

A schematic of the confocal setup with a sliced CytoSorb bead is illustrated in Fig. 3.  An 

Olympus FluoViewTM FV1000 confocal microscope outfitted with a UPlanSApo 20X/.75 oil 

objective and a HeNe laser (543nm excitation, 572nm emission) was used for all confocal 

imaging.  During image capture, the microscope objective was focused such that the confocal 

plane was localized within the bead, close to the sliced edge to minimize signal loss through the 

bead.    Images were acquired by horizontal scan at 1024x1024 pixel resolution, corresponding to 

0.621μm pixel size.  Digital images of sliced beads were analyzed using ImageJ software 

(National Institutes of Health), and intraparticle signal intensity profiles were generated by 

quantifying a horizontal segment of the image across the diameter of each bead (4 - 5 beads were 

imaged at each incubation time point).  Beads incubated in PBS/BSA buffer without 

fluorescently labeled IL-6 were sliced and imaged as a control, and background signal was found 

to be negligible.   
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Figure 3:  Schematic of a sliced CytoSorb bead in the confocal microscope setup.   

3.1.5 Data Analysis 

DiLeo, et al. developed a simple model analysis to study cytokine adsorption dynamics within 

CytoSorb hemoadsorption beads [12].  The model predicts the following intraparticle cytokine 

adsorption profile:    
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where is the mass of cytokine adsorbed on the internal pore surface per unit bead mass, qo 

is the mass of cytokine adsorbed on the particle surface, ρ is the bead mass density, and R is 

radius of the bead.  The model is concentration dependent, where adsorbed cytokine (q) is 

proportional to free cytokine (c) through the Langmuir adsorption isotherm, 
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.  

The mathematical model contains one unknown parameter, D
Kqmax

=α , where qmax and K are 
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Langmuir adsorption isotherm parameters, and D is the effective diffusion coefficient of the 

cytokine within the porous bead matrix.  In our application, signal intensity generated by 

fluorescently labeled IL-6 within the sorbent particle is predominantly due to adsorbed rather 

than free cytokine, due to the large sorbent surface area and low bulk cytokine concentrations.  

Accordingly, the value of α was estimated at each incubation time point by fitting Eq. 1 to 

intraparticle IL-6 CLSM fluorescence intensity curves using nonlinear least squares regression in 

MatlabTM, with ρ = 1.02g/cm3.  Intraparticle signal intensity profiles for each bead were 

normalized by dividing the signal intensity value at each pixel by the maximum signal intensity 

value found at the edge of each bead.  Student’s t-test was used to evaluate any statistical 

differences between the fitted α values.     
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3.2 RESULTS  

3.2.1 IL-6 Adsorption Profiles  

A CLSM image illustrating adsorption of fluorescently labeled IL-6 within a CytoSorb 

hemoadsorption bead after 5 hours incubation is shown in Fig. 4.  IL-6 adsorption is limited to 

the outer most pores where a thin ring of fluorescence is observed penetrating into the bead from 

the bead surface.  No signal is detected near the center of the particle.   

 

 

Figure 4:  CLSM image of a CytoSorb bead after 5hr incubation with fluorescently labeled IL-6. 
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Intraparticle intensity profiles for IL-6 at 2hr, 5hr, and 18hr incubation at 1μg/ml are 

illustrated in Fig. 5(a).  Intensity is normalized by the maximum intensity found at the bead 

surface (Imax), where Imax ~ qo from Eq. 1.  Normalized intensity is greatest at the bead surface 

(I/Imax = 1), and quickly decays as IL-6 diffuses into the sorbent and adsorbs to the pore walls.  

The protein front slowly moves through the particle over time, yet even after 18hr incubation 

time, IL-6 does not penetrate farther than 30μm into the bead.  Intraparticle intensity profiles for 

labeled BSA at 2hr, 5.5hr, and 21.5hr incubation are illustrated in Fig. 5(b).  In contrast to the 

behavior observed for IL-6, BSA does not continually penetrate into the bead over time.  The 

mathematical model (Eq. 1) was fit to the IL-6 CLSM curves at each time point, as shown by the 

solid lines in Fig. 5(a).  Good agreement exists between the model fits and the CLSM data (R2 > 

0.98 for all fits).  Fig. 6 illustrates fitted values for the model parameter α at each time point.  

The α values were not statistically different between any two IL-6 incubation time points (p > 

0.1). 
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Figure 5:  (a) Normalized IL-6 CLSM intraparticle intensity profiles at 2hr, 5hr, and 18hr incubation 

times, with corresponding nonlinear regression model fits.  (b) Normalized BSA CLSM intraparticle intensity 

profiles at 2hr, 5.5hr, and 21.5hr incubation times. 
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Figure 6:  α values estimated by best fit of the model to IL-6 CLSM intensity profiles.  The α values 

were not statistically different (p > 0.1) for any two incubation time points tested. 

3.2.2 Effect of Bulk IL-6 Concentration 

Labeled IL-6 concentrations were varied to confirm that normalized adsorption profiles were 

independent of bulk IL-6 concentration.  Fig. 7(a) illustrates intraparticle IL-6 intensity profiles 

for CytoSorb beads incubated for 5hr with 1μg/ml, 0.1μg/ml, and 0.01μg/ml labeled IL-6.  

Similar penetration curves were observed for all concentration values tested.  Intensity profiles 

were fit to the mathematical model (Eq. 1), and α was estimated by best fit of the model to the 

CLSM data (Fig. 7(b)).  The α values were not statistically different between any two bulk IL-6 

concentrations tested (p > 0.49). 
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Figure 7:  (a) Intraparticle intensity profiles for various concentrations of labeled IL-6 incubated for 

5 hours with CytoSorb beads.  (b) Corresponding α values were not statistically different for any two IL-6 

concentrations tested (p > 0.49). 
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3.2.3 Effect of Fluorophore Labeling on IL-6 Adsorption 

We tested whether the degree of labeling (DOL) affected IL-6 adsorption by reducing the DOL 

during the fluorophore-cytokine conjugation step.  The DOL was decreased by reducing the 

volume of fluorophore added to IL-6 during conjugation [89].  Fig. 8 illustrates the maximum 

intensity values at the bead surface after 5hr incubation with IL-6 labeled using either 5μl or 50μl 

fluorophore.  Beads incubated with IL-6 conjugated with less fluorophore demonstrated lower 

maximum intensity values.  This indicates a lower DOL for IL-6 samples conjugated with 5μl 

fluorophore since the same IL-6 concentration and imaging parameters were used for both DOL 

conditions.  As demonstrated in Fig. 9(a), the low DOL (5μl fluorophore) and the high DOL 

(50μl fluorophore) IL-6 intensity profiles are similar after 5hr incubation.  The curves were fit to 

the mathematical model (Eq. 1) to determine α values (Fig. 9(b)).  The α values were not 

statistically different between the two DOL conditions (p > .25).   
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Figure 8:  Comparison of maximum intensity values at the bead surface under different IL-6 labeling 

conditions.   
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Figure 9:  (a) Normalized IL-6 intraparticle intensity profiles for 5μl and 50μl labeling conditions 

after 5hr incubation with CytoSorb beads.  (b) Corresponding α values were not statistically different (p > 

.25) between the DOL conditions. 
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3.3 DISCUSSION 

The goal of this work was to examine the dynamics of cytokine adsorption within single sorbent 

particles using confocal laser scanning microscopy (CLSM).  Results indicate that IL-6 

adsorption dynamics can be modeled using classical adsorption/diffusion mechanisms, and a 

single model parameter, D
Kqmax

=α , can characterize interactions between IL-6 and CytoSorb 

beads, where qmax and K are Langmuir adsorption isotherm parameters, and D is the effective 

diffusion coefficient within the porous matrix.  After 5hr incubation with sorbent beads, IL-6 

adsorption was limited to the outer 15μm of the pore structure, which represents use of less than 

20% of available surface area for adsorption.  The CytoSorb pore structure was designed to 

exclude large molecular weight solutes such as albumin and immunoglobulins.  We confirmed 

that BSA (66kD) does not penetrate appreciably into the sorbent due to size exclusion of BSA 

from the internal pore structure.   

In our previous work in which the mathematical model was developed [12], we fit our 

model to ex vivo data on cytokine removal from septic rat blood circulated through a 

hemoadsorption device containing the same CytoSorb beads [90].  We have also fit the 

mathematical model to in vitro studies of cytokine removal from spiked serum circulated through 

CytoSorb cartridges [91].  In these recirculation experiments, as opposed to batch incubation 

experiments performed in this study, the same mathematical model yields a parameter, Γ, given 

by: 

DKq max=Γ    

The Langmuir parameters, qmax and K, cannot be practically measured in CytoSorb beads 

due to the large amount of recombinant cytokine needed.  We can estimate, however, an 
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intraparticle IL-6 diffusion coefficient by dividing Γ by α, which yields D2.  Using Γ = 1.05x10-4 

cm2•ml•min-1•g-1 for IL-6 in the in vitro recirculation studies, and α = 20.8 min•cm3•g-1•μm-2 

from this study, the IL-6 effective diffusion coefficient is estimated as 3.7x10-9 cm2/s.  Assuming 

a free IL-6 diffusion coefficient of 1.0x10-6 cm2/s  and hydrodynamic radius of 2nm from 

similarly sized molecules [92-93], theoretical hindered diffusion models [94-96] predict 

intraparticle diffusion coefficients within the range of our estimated value, given the approximate 

pore size of CytoSorb beads (0.8-5nm).  

The CLSM technique presented here differs from typical CLSM studies due to the large 

size of CytoSorb beads, and the low protein concentrations necessary to mimic cytokine levels 

found in human sepsis.  In typical CLSM studies, signal attenuation by the sorbent material is 

either neglected or corrected using mathematical light attenuation models [21, 97].  Given the 

large size of CytoSorb beads compared to other sorbents (450μm vs. 90um, respectively), signal 

attenuation could not be neglected nor adequately corrected by these attenuation models.  

Accordingly, we needed to eliminate signal attenuation by slicing the beads in half prior to 

imaging.  Slight variations in sliced bead geometry from the slicing technique may have resulted 

in variability observed in the CLSM adsorption profiles, however, we would not expect small 

geometric variations to significantly affect average penetration behavior given the small 

penetration depths relative to particle diameter.  In typical CLSM studies, the steric effect of 

fluorophore conjugation on protein adsorption is assumed negligible because of large sorbent 

pore sizes relative to protein size [98].   Given the small size of CytoSorb pores compared to 

other sorbents, we wanted to assess whether steric effects due to fluorophore conjugation might 

alter cytokine intensity profiles.  The DOL could not be measured directly due to low cytokine 

concentrations used, but we lowered IL-6 DOL by reducing the molar excess of fluorophore 
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during the conjugation step, and demonstrated that IL-6 adsorption was unaffected.  This result 

indicates minimal interference from fluorophore conjugation, and we would expect unlabeled IL-

6 to perform in a similar manner. 

Typical in vivo IL-6 levels in human sepsis are less than 0.001μg/ml [6].  We could not 

obtain adequate signal to noise levels of intensity at this bulk IL-6 concentration.  Theoretically, 

normalized intensity profiles for IL-6 adsorption should be independent of bulk IL-6 

concentration when adsorption is occurring in the linear portion of the Langmuir adsorption 

isotherm.  We found no statistical difference in adsorption behavior as measured by the α 

parameter for bulk IL-6 concentrations of 1μg/ml, 0.1μg/ml and 0.01μg/ml.  Accordingly, the 

adsorption dynamics of IL-6 at physiological levels is unlikely to differ from that reported here.  

 CLSM results indicate that IL-6 adsorption dynamics agree with predictions of our 

mathematical model, and that IL-6 adsorption is confined to the outer 15μm of the CytoSorb 

sorbent over a clinically relevant time period.  Given this observation, less than 20% of available 

sorbent surface area is utilized for cytokine adsorption.  For the current large size of CytoSorb 

beads, the surface area for diffusion into the beads relative to bead volume is small for a given 

mass of beads.  Smaller CytoSorb beads may provide significantly faster cytokine capture by 

maximizing available surface area for diffusion per bead mass.  We are currently developing and 

testing smaller CytoSorb beads to accelerate cytokine capture in a hemoadsorption device. 

 

 

 

**The work in this chapter was published as:  Kimmel JD, Gibson GA, Watkins SC, Kellum 
JA, Federspiel WJ. IL-6 adsorption dynamics in hemoadsorption beads studied using confocal 
laser scanning microscopy. Journal of Biomedical Materials Research: Part B.  2010, 92B(2): 
390-6. 
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4.0  MODELING COMPETITIVE ADSORPTION WITHIN HEMOADSORPTION 

BEADS 

In Chapter 3, we presented a study of intraparticle IL-6 adsorption dynamics in PBS/BSA buffer, 

and CLSM results agreed with predictions of a single component adsorption/diffusion model 

[99].  PBS/BSA buffer was used as a simple protein solution, where cytokine adsorption 

behavior could be studied without potential confounding effects such as competitive adsorption 

of plasma solutes, interactions with soluble cytokine receptors, etc.  In order to more closely 

mimic physiologic conditions in this study, we sought to characterize intraparticle cytokine 

adsorption dynamics in serum.  Specifically, we wanted to confirm the assumption generated in 

our earlier modeling work that coadsorption of serum solutes within the beads does not 

significantly affect cytokine removal dynamics under clinically relevant cytokine levels [12]. 

Preliminary results from CLSM work in serum could not be predicted by our single 

component model presented in Chapter 3.  We hypothesized that the observed intraparticle 

cytokine adsorption behavior was due to coadsorption of serum solutes, and therefore extended 

our original model to include competitive adsorption effects.  Inclusion of multicomponent 

adsorption necessitated more complex modeling approaches, since an analytical solution to the 

model equations could not be obtained as was the case in our original model development [99].   

Many authors have investigated protein transport within sorbent materials, typically 

utilizing commercial chromatography sorbents (ion exchange, affinity, hydrophobic interaction, 
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etc.) and simple, well characterized protein solutions [21, 83, 100-101].  While these techniques 

offer insight for optimization and scale-up for certain industrial applications, they are not suitable 

for analysis of complex feed solutions such as whole blood or plasma used in a hemoadsorption 

device [102].  Recent developments in sorbent-based blood purification modalities indicate a 

need for further understanding of mass transport within these materials [76, 103-104].  

Specifically, clinically relevant analyses are necessary to characterize mass transport under 

physiologic conditions, a criterion that is not addressed in traditional chromatography studies 

where parameters such as pH, protein concentration, and ionic strength can be manipulated.  

Multicomponent protein adsorption has been investigated in various types of 

chromatography sorbents by others [102, 105-110].  Martin, et al. [110] developed a two-

component pore diffusion model to predict intraparticle concentration profiles in ion exchange 

SP Sepharose FF beads, and validated the model using batch and shallow-bed adsorption 

experiments.  Gallant [105] described multi-component adsorption in ion exchange particles 

using the steric mass action model (SMA) [111], and observed displacement of low affinity 

protein and salt components by a higher affinity protein.  Bak, et al. [102] utilized a complex 

feedstock (rabbit antiserum) to investigate removal of antibodies by various affinity-based 

sorbents.  They developed a lumped parameter model and quantified Langmuir kinetics through 

equilibrium and batch adsorption studies.   

In this study, confocal laser scanning microscopy (CLSM) was used to quantify 

intraparticle adsorption dynamics of fluorescently labeled IL-6 in serum, and results were 

compared to predictions of a competitive adsorption model.  We present for the first time a study 

of intraparticle mass transport using CLSM in whole serum.  Quantifying cytokine adsorption 

dynamics within the hemoadsorption beads is technically challenging due to (1) low cytokine 
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concentrations typically found in sepsis ( < 1ng/ml), and (2) difficulties of performing CLSM in 

whole serum due to autofluorescence of adsorbed serum solutes.  In this work, we used 

supraphysiologic IL-6 concentrations necessary to achieve adequate CLSM signal to noise ratios, 

and fit a multicomponent model to the observed IL-6 intraparticle intensity profiles.  The fitted 

model was then used to simulate physiologic IL-6 concentrations which were below the 

detection limit of the CLSM technique, to determine if competitive adsorption effects were 

relevant under clinical conditions.   

4.1 MATERIALS & METHODS 

4.1.1 Materials 

Recombinant human IL-6 (MW = 21kD, >95% purity) and an NHS-activated fluorophore 

(DyLightTM 549, MW = 982Da) were purchased from Thermo Scientific (Rockford, IL).  IL-6 

was conjugated with the fluorophore as follows:  15μg dried fluorophore was reconstituted in 

100μl 10mM PBS and 8μl 0.67M sodium borate buffer.  50μl reconstituted fluorophore was 

added to 250μl IL-6 (40μg/ml) in PBS and incubated in the dark for 60min.  Unreacted 

fluorophore was removed using resin spin columns provided by the manufacturer.  CytoSorb 

beads were provided by CytoSorbents, Inc. (Monmouth Junction, NJ).  CytoSorb beads are 

polystyrene-divinylbenzene porous particles (450μm avg. particle diameter, 67% porosity, 

1.02g/cm3 density, 0.8-5nm pore diameter, 850m2/g surface area) with a biocompatible 

polyvinyl-pyrrolidone coating.      
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4.1.2 Confocal Laser Scanning Microscopy 

Confocal laser scanning microscopy (CLSM) was used to quantify intraparticle adsorption 

profiles within the sorbent beads.  Labeled IL-6 was spiked into horse serum (Invitrogen, 

Camarillo, CA) to achieve cytokine concentrations of ~1μg/ml.  1ml aliquots of IL-6 in horse 

serum or horse serum alone were incubated with 1.5mg CytoSorb beads for 2.5hr, 5hr, and 21hr 

on a rocker at ambient temperature.  At the specified time points, beads were removed from 

solution, sliced in half using a thin razor blade, and placed in a droplet of PBS on a cover slip for 

CLSM analysis.  An Olympus FluoViewTM FV1000 confocal microscope outfitted with a 

UPlanSApo 20X/.75 oil objective and a HeNe laser (543nm excitation, 572nm emission) was 

used for all confocal imaging.  During image capture, the microscope objective was focused such 

that the confocal plane was localized within the bead, close to the sliced edge to minimize signal 

loss through the bead (Fig. 3).    Images were acquired by horizontal scan at 1024x1024 pixel 

resolution, corresponding to 0.621μm pixel size.  Digital images of sliced beads were analyzed 

using ImageJ software (National Institutes of Health), and intraparticle intensity profiles were 

generated by quantifying a rectangular segment of the image across the diameter of each bead (4 

– 5 beads were imaged at each incubation time point).  Refer to Kimmel et al. [99] (Chapter 3) 

for further details regarding the CLSM technique.    

Baseline autofluorescence profiles from adsorbed serum solutes at each time point were 

quantified by averaging CLSM intraparticle intensity values for 4 – 5 beads incubated only with 

serum.  This procedure was repeated using different serum/bead samples, and intensity data was 

found to be repeatable using the same microscope and laser parameters.  Mean baseline serum 

intensities were subtracted from mean IL-6 intensities at each radii point to separate serum 

autofluorescence signal from IL-6 fluorophore signal.  Resulting intraparticle intensity data were 
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normalized by the maximum intensity within each particle (I/Imax), and spatial position was 

normalized by the average particle radius (r/R).   

4.1.3 Theoretical Model Development 

Mass transport within the sorbent beads is mediated by diffusion into the porous structure, and 

physical adsorption to the interior polymer surface via hydrophobic interactions.  The governing 

equation for adsorption/diffusion of species i within a single sorbent bead is: 
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where qi(r,t) is the mass density of adsorbed species i per bead mass, at radial position, r, in the 

bead.  Di is the effective intraparticle diffusion coefficient of species i, and ci(r,t) is the mass 

concentration of species i within the liquid phase of the sorbent pores.  The following 

assumptions are made: (1) film diffusion effects are negligible, (2) concentration in the liquid 

phase of the pores is much smaller than concentration in the adsorbed phase, (3) intraparticle 

adsorption is fast compared to diffusion, such that local equilibrium applies, (4) adsorption is 

modeled using the multicomponent Langmuir isotherm, where 
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form of the governing equation is created using: 

r*= r / R      qi*= qi / qi
max    ci*= ci / ci

in      t*= t / ts 

where R is the average particle radius, qi
max is the maximum adsorbed mass of specie i per bead 

mass, ci
in is the initial bulk concentration of specie i, and ts is a time scale corresponding to the 

experimental conditions used in the study.  Dropping asterisks and combining parameters: 
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 Mass transport of serum components (lumped for simplicity as a single species, a) and 

cytokine (species b) are modeled in a two component competitive adsorption system: 
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where qij terms are derived from the multicomponent Langmuir isotherm:  
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Here we define Ki as a dimensionless “relative affinity” coefficient, given by Ki = ci
in/ci50.  We 

can consider cytokine adsorption to be in a “low relative affinity” regime (Kb << 1) given cb
in  ~ 

O(10-6 mg/ml) and C50 for protein adsorption in typical sorbent beads ~ O(10-1mg/ml) [90].  

Hence, cytokine concentrations in our application are much less than those necessary to reach ½ 

bead saturation (C50).  Assuming that competing serum components are at higher bulk 

concentrations than cytokine (Ka >> Kb), adsorption terms are simplified to: 
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From these relationships, we can see that qaa is proportional to Ka, and qba is proportional to Ka 

and Kb.  Since Kb << Ka, we can consider the qba term negligible in Eq. 2, i.e. adsorption of 

species a (serum) is independent of adsorption of species b (cytokine).  The qab term in Eq. 3 

gives rise to cytokine displacement by the higher relative affinity serum species. Our previously 

published single component model is a subset of the current model, where cytokine displacement 

is considered negligible (qab ≈ 0).     

4.1.4 Model Fitting to CLSM Data 

Given the set of coupled equations describing mass transport of serum components and cytokine 

(Eq. 2 & 3, respectively), the unknown model parameters are: 
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We can separate known constants from the α terms:  ρ = 1.02g/cm3, R = 266µm, ts = 21hr, cb
in = 

1µg/ml.  The remaining unknown parameters are: 
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The equation describing cytokine mass transport (Eq. 3) has three unknown parameters (Ka, Kb, 

βb), but Kb and βb only appear as a product, and therefore the two parameters cannot be fitted 

independently.  A value of βb = 1x1012 mgbead·mgcytokine
-1·cm-2·s was used as a reasonable estimate 

based on previous work [99] in which the effective diffusion coefficient of IL-6 within CytoSorb 

beads was calculated, thereby permitting independent fitting of the remaining parameters.   

The system of equations was solved for qb (adsorbed cytokine) using the finite element 

method with Comsol MultiphysicsTM, and a parameter optimization technique was developed as 
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follows:  numerical solutions from Comsol were imported into MatlabTM, and the three unknown 

model parameters (βa, Ka, Kb) were iteratively fit to IL-6 CLSM data by minimizing sum of 

squares error (SSE) between the numerical solutions and CLSM data using a Nelder-Mead 

simplex algorithm: , where Nt is the number of incubation 

time points, Nr is the number of radii data points, and dj(i) is the normalized CLSM intensity 

value at incubation time j and radius segment i.  Parameters were fit to 2.5hr and 5hr, or 2.5hr, 

5hr and 21hr CLSM data sets, and SSE was calculated as the cumulative error for all time points.  

CLSM data were normalized by the maximum intraparticle intensity values, and model 

simulations were normalized by the maximum intraparticle qb values.  CLSM intensities are 

directly proportional to adsorbed cytokine within the particle, therefore normalized CLSM and 

simulation data can be compared in this manner.  Normalized CLSM and simulation data were 

multiplied by ten within the parameter optimization routine to ensure that calculated SSE values 

were substantially greater than the tolerance of the error minimization algorithm. 
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4.1.5 Parametric Analysis 

A parametric analysis was performed to determine (1) if multiple sets of parameter combinations 

existed that could fit the IL-6 CLSM data equally well, and (2) sensitivity of the model to 

parameter perturbations.  Initial guesses for βa, Ka, and Kb values were varied within a nominal 

range for each parameter, and best fit parameter values were estimated for all combinations using 

the iterative error minimization algorithm (Table 3).  Parameter sensitivity was examined by 

running model simulations using a subset range of parameter values (Table 4), and then plotting 
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parameter values vs. SSE to quantify model sensitivity to parameter perturbations.  All 

parametric analyses were run using solutions to the 2hr and 5.5hr time points.  

4.2 RESULTS 

4.2.1 Model Fits to Confocal Microscopy Data 

Confocal laser scanning microscopy (CLSM) was used to quantify intraparticle adsorption 

profiles of fluorescently labeled IL-6 in horse serum.  Baseline serum autofluorescence profiles 

for beads incubated only with horse serum for 2.5hr, 5hr, and 21hr are illustrated in Fig. 10.  

Various middle molecular weight serum solutes diffuse into the sorbent pores and adsorb to the 

polymer surface; certain adsorbed molecules autofluoresce in the wavelength range utilized 

during CLSM.  Intraparticle intensity profiles for beads incubated with labeled IL-6 in horse 

serum are illustrated in Fig. 11.  In contrast to adsorption behavior observed for baseline serum 

incubations, IL-6 profiles demonstrate peak intensities within the bead interior, suggesting 

competitive displacement phenomena [110].    Mean spatial intensities are shown from 4-5 beads 

imaged at each time point for both baseline and IL-6 incubations.  Beads incubated in PBS were 

imaged to ascertain background signal from the bead itself, and intensities were negligible 

compared to those observed with serum or labeled   IL-6 incubations (data not shown). 
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Figure 10:  CLSM intraparticle intensity profiles for beads incubated with horse serum for 2.5hr, 

5hr, and 21hr.  Error bars indicate standard deviation from multiple beads imaged at each time point. 
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Figure 11: CLSM intraparticle intensity profiles for beads incubated with fluorescently labeled IL-6 

in horse serum for 2.5hr, 5hr, and 21hr.  Error bars indicate standard deviation from multiple beads imaged 

at each time point. 

 

Baseline serum autofluorescence data (Fig. 10) were subtracted from CLSM profiles for 

labeled IL-6 in serum (Fig. 11), and resulting IL-6 profiles were used for model fitting.  Model 

simulations were fit to normalized IL-6 CLSM data using an iterative parameter optimization 

technique. Model fits for 2.5hr and 5hr time points are illustrated in Fig. 12 and Fig. 13, 

respectively.  The corresponding best fit parameter values are shown in Table 2.  Model 

predictions agree with the observed CLSM intraparticle cytokine profiles, indicating competitive 

adsorption between IL-6 and serum components.  As IL-6 and serum solutes concurrently diffuse 
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into the internal pore structure, high affinity serum components likely compete for binding sites 

with IL-6, leading to cytokine displacement within the particle.  The model was also fit to IL-6 

CLSM data for 2.5hr, 5hr, and 21hr incubation times (Fig. 14, Fig. 15, and Fig. 16, respectively).  

Addition of the 21hr time point did not have a substantial effect on the best fit parameter 

estimates compared to the 2.5/5hr simulation.  Discrepancies between model predictions and 

CLSM data at the bead surface (r/R=1) are likely due to imaging artifacts, as obtaining consistent 

CLSM intensity values in this region is technically challenging.   

 

Figure 12:  IL-6 CLSM profile for 2.5hr incubation and corresponding model fit.  Model simulations 

were run using the 2.5/5hr CLSM data.   
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Figure 13:  IL-6 CLSM profile for 5hr incubation and corresponding model fit.  Model simulations 

were run using the 2.5/5hr CLSM data. 
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Figure 14:  IL-6 CLSM profile for 2.5hr incubation and corresponding model fit.  Model simulations 

were run using the 2.5/5/21hr CLSM data.  

 47 



 

Figure 15:  IL-6 CLSM profile for 5hr incubation and corresponding model fit.  Model simulations 

were run using the 2.5/5/21hr CLSM data.  
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Figure 16:  IL-6 CLSM profile for 21hr incubation and corresponding model fit.  Model simulations 

were run using the 2.5/5/21hr CLSM data.  

 

 

Table 2:  Best fit model parameters based on sum of squares error (SSE) minimization between 

model simulations and IL-6 CLSM data. 

 Ka Kb βa (s·ml·mg-1·cm-2) SS Error 

2.5hr, 5hr 4.43 1.43e-5 6.82e10 115.4 

2.5hr, 5hr, 21hr 5.10 9.43e-6 6.89e10 341.8 
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4.2.2 Parametric Analysis 

A parametric analysis was performed to determine if multiple combinations of the three model 

parameters fit the CLSM data equally well.  The parameter optimization routine was run using a 

range of initial parameter guesses (Table 3), and small differences in best fit parameter estimates 

were observed compared to those reported in Table 2.   

 

Table 3:  Initial guess parameter values used within the parameter optimization routine, and 

resulting range of best fit parameter estimates. 

 Initial parameter guesses 

  low               high 

Best fit parameter estimates 

low           high 

Ka 1 10 2.4 3.8 

Kb 5e-6 1e-3 1.3e-5 1.52e-5 

βa 

(s·ml·mg-1·cm-2) 

3e10 50e10 7.27e10 9.56e10 

 

Variability of best fit parameter values was further examined to determine if these fluctuations 

were a result of multiple solutions to the model equations, or simply numerical tolerances of the 

error minimization algorithm.  Parameter sensitivity was investigated by observing effects on 

model behavior (quantified by SSE) due to perturbations in parameter inputs (Table 4).   
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Table 4:  Range of parameter inputs used to test parameter sensitivity of the model.  Eleven 

equidistant parameter values were used within each specified parameter range. 

 Parameter ranges 

  low               high 

Ka 3.5 4.5 

Kb 0.5e-5 10e-5 

βa 

(s·ml·mg-1·cm-2) 

3e10 50e10 

 

Figures 17-19 illustrate model dependency on the three parameters (βa, Ka, Kb).  For each 

three dimensional graph, two parameters are plotted against SSE while the third parameter is 

held constant.  A representative plot is shown for each parameter combination: Ka vs. Kb (Fig. 

17), Ka vs. βa (Fig. 18), Kb vs. βa (Fig. 19).  For each case, eleven separate graphs were generated 

using values for the third variable which was not plotted, but model behavior was comparable 

between each of the eleven graphs for all cases.  In Figs. 17-18, changes in Ka have minimal 

effects on SSE, indicating negligible dependence of the model on Ka.  Fig. 19 illustrates model 

dependence on both Kb and βa.  A smaller slice of the Kb vs. βa graph was investigated to 

determine if multiple local minima existed that could result in variability of best fit parameter 

values obtained by the error minimization algorithm.  Fig. 20 illustrates a 100-fold smaller range 

of parameter values for Kb and βa.  Small fluctuations in SSE are observed, which may cause the 

error minimization algorithm to terminate in any of the local SSE minima wells.  Therefore, 
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small differences in best fit parameters based on initial parameter guess are most likely due to 

sensitivity of the SSE minimization algorithm, not multiple solutions to the model equations.    
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Figure 17:  Effects on model behavior due to perturbations in parameter inputs.  Ka and Kb are 

plotted against SSE, where βa = 3e10 s·ml·mg-1·cm-2.   
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Figure 18: Effects on model behavior due to perturbations in parameter inputs.  Ka and βa are 

plotted against SSE, where Kb = 0.5e-5.   
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Figure 19:  Effects on model behavior due to perturbations in parameter inputs.  Kb and βa are 

plotted against SSE, where Ka = 3.5.   
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Figure 20:  Model sensitivity to small changes in Kb and βa.   

4.2.3 Physiologic Cytokine Concentration Simulation 

The model was simulated for clinically relevant cytokine concentrations (cb
in = 1ng/ml) that were 

below the detection limit for CLSM analysis, using the best fit model parameter values estimated 

from IL-6 CLSM data at 1µg/ml IL-6 concentrations (Table 2; 2.5hr & 5hr values).  Fig. 21 

illustrates model simulations for 2.5hr, 5hr and 21hr cytokine incubations at 1ng/ml IL-6 

concentration.  Predicted adsorption profiles demonstrate single component diffusion/adsorption 
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dynamics, in contrast to the displacement behavior observed for CLSM profiles at higher 

(~1µg/ml) IL-6 concentrations.  βa, Ka, and Kb were varied to determine if small changes in 

parameter inputs affected predicted adsorption behavior at low cytokine concentration, however, 

the same qualitative adsorption patterns were observed for all parameter values tested (data not 

shown).  These results indicate that competitive adsorption effects between serum components 

and cytokine within the hemoadsorption beads are likely negligible at clinically relevant cytokine 

concentrations.  

 

Figure 21:  Model simulations for low cytokine concentration incubations (cin = 1ng/ml).   
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4.3 DISCUSSION 

The hemoadsorption device can be considered “semi-selective”, by which middle molecular 

weight solutes (< ~50kD) such as cytokines are captured within the sorbent beads, while 

essential large molecules such as albumin and immunoglobulins are restricted from the interior 

sorbent structure via pore size exclusion.  This approach enables broad spectrum removal of both 

pro- and anti- inflammatory cytokines, as well as other middle MW mediators that may play a 

role in the pathophysiology of sepsis [53].  Various serum solutes adsorb to the hydrophobic 

interior of the beads along with cytokines, and may affect cytokine removal dynamics within the 

device.  The goal of this work was twofold: (1) to directly quantify competitive adsorption 

effects between cytokines and other adsorbing solutes within the sorbent beads, and (2) to utilize 

a multicomponent mathematical model to predict whether these effects are relevant at 

physiologic cytokine concentrations used with the device, which were below the CLSM 

detection limit. 

In Chapter 3, we demonstrated that IL-6 intraparticle adsorption in the presence of PBS + 

5% BSA was predicted by a single component diffusion/adsorption model [99].  In order to more 

closely mimic physiological conditions in this study, CLSM was performed with labeled IL-6 in 

horse serum, and resulting adsorption profiles indicated possible competitive adsorption 

behavior.  We developed a two component model to describe concurrent diffusion and 

adsorption of cytokine and serum solutes, where all possible serum components were simplified 

into a single adsorbing species.  We fit the model to CLSM data obtained at supraphysiologic 

cytokine concentrations necessary for adequate CLSM signal (~1µg/ml), and then used the fitted 

model to predict adsorption behavior at physiologically relevant cytokine concentrations 

(~1ng/ml) which were under the CLSM detection limit.  The model was fit to 2.5/5hr and 
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2.5/5/21hr incubation data, and differences in best fit parameter estimates were negligible (Table 

2).  All parameter sensitivity and low concentration simulation results were obtained using best 

fit parameter values from the 2.5/5hr data, as this time scale is relevant to clinical use of the 

device.   

Sorbent CLSM studies are typically performed using simple protein solutions, where a 

molecule of interest is labeled with a fluorophore, and visualized within the particle using laser 

excitation at a specific wavelength [88].  In this study, we were interested in examining 

adsorption behavior within a biological fluid, and found that accumulation of adsorbed serum 

solutes within the sorbent particle caused autofluorescence profiles over a wide range of 

excitation wavelengths.  We chose an excitation/emission wavelength (543/572nm) that 

minimized serum autofluorescence and maintained adequate signal from the labeled IL-6.  A 

simple signal processing technique was developed to subtract average serum autofluorescence 

signal from labeled IL-6 signal, and model simulations were fit to the post-processed IL-6 

profiles.  Although CLSM profiles of adsorbed serum components were quantified (Fig. 10), we 

chose to fit model simulations only to adsorbed IL-6 profiles.  Intraparticle profiles from serum 

autofluorescence varied greatly depending on wavelength used during CLSM, likely due to 

differing diffusional rates and autofluorescence emissions of serum solutes.  These data were not 

suitable for model fitting, therefore we used the IL-6 adsorption profiles to fit model parameters 

corresponding to diffusion/adsorption of both IL-6 (Kb) and serum solutes (βa, Ka). 

The set of model equations contained four unknown parameters (βa, Ka, βb, Kb), however, 

the βb term existed only as a product with Kb, and therefore these two parameters could not be 

fitted independently.  A value of βb = 1x1012 mgbead·mgcytokine
-1·cm-2·s was used as a reasonable 

estimate based on previous results from Chapter 3 in which the effective diffusion coefficient of 
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IL-6 within CytoSorb beads was calculated.  Model fitting results indicate that a single 

combination of the three fitted parameters fits the IL-6 CLSM data.  Small differences in best fit 

parameter estimates based on initial parameter guesses (Table 3) are likely due to numerical 

tolerances within the error minimization algorithm, given the local SSE minima observed over 

small ranges of parameter values (Fig. 20).  A range of best fit parameter inputs (Table 4) was 

tested using the low concentration simulation, and no qualitative changes in predicted IL-6 

adsorption profiles were observed from those illustrated in Fig. 21.   Additionally, varying βb 

values did not have a meaningful effect on predicted low concentration IL-6 adsorption profiles 

(data not shown).  Overall, our model fitting and parametric analysis results indicate that under 

clinically relevant cytokine concentrations (cin = 1ng/ml), competitive adsorption effects within 

the hemoadsorption beads due to coadsorption of serum solutes are not likely.   

The work presented in this chapter describes a technique to quantify competitive protein 

adsorption effects within hemoadsorption beads in whole serum.   Most studies of mass transport 

within sorbent particles are applicable to well characterized feed stocks, whereas the complexity 

of biological fluids requires new methodologies to examine mass transport phenomena.  Results 

confirm assumptions of our original model [12] that competitive adsorption effects do not 

significantly affect cytokine capture within the device under physiologic conditions.   
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5.0  DISSOCIATION OF OLIGOMERIC TNF AS A TOOL FOR ACCELERATED 

TNF REMOVAL 

Tumor necrosis factor-α (TNF) is a potent, pleiotropic cytokine involved in the regulation of 

multiple physiological and pathophysiological signaling pathways [112-113].  TNF is an 

important initiator of the systemic inflammatory response [13, 114], and elevated levels of 

circulating TNF have been associated with increased mortality rates in sepsis [8].  Removal of 

TNF along with other inflammatory cytokines from the circulating blood may help attenuate 

systemic inflammation and promote immunologic homeostasis to patients treated for severe 

sepsis [9].  The goal of this work was to characterize TNF capture dynamics within the device to 

elucidate mechanisms for improved TNF removal using hemoadsorption.          

TNF is secreted by numerous cell types as a 17kD monomer, which noncovalently 

associates to form a bioactive 51kD homotrimer [115].  Binding of TNF to its soluble and cell 

surface receptors is thought to be exclusive to the 51kD “bioactive” trimeric form [116-118], 

whereas monomeric TNF has demonstrated negligible bioactivity in vitro [119] and in vivo 

[120].  Trimeric TNF can spontaneously dissociate over time into its monomeric constituents 

[121], and chemical and biological compounds have been investigated for their ability to perturb 

TNF quaternary structure [122-124].  Various pharmacologic modalities have been developed to 

antagonize TNF activity, largely through sequestration of circulating TNF by soluble TNF 

receptor constructs [125-126] or anti-TNF antibodies [127].  While some of these strategies have 
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demonstrated efficacy in animal models [128], few have been successful in human clinical trials 

of sepsis [27].  Concurrent removal of TNF with other pro- and anti- inflammatory cytokines 

may provide a beneficial clinical effect by promoting down-regulation of systemic inflammation, 

versus blocking single cytokines within the complex network of interconnected humoral 

signaling pathways.    

TNF is typically removed at slow rates in porous adsorbent devices [129-132], including 

our device, due to the large size of TNF (51kD) compared to other targeted cytokines such as IL-

6 (21kD), IL-10 (19kD), and IL-8 (8kD).  Monoclonal antibodies against TNF have been 

physically adsorbed [133] or covalently attached [134] to sorbent surfaces to facilitate enhanced 

capture of TNF from biological fluids.  In our device, slow TNF removal is putatively due to 

hindered diffusion of the large trimeric molecule within the small sorbent pores (0.8-5nm).  

Trimeric TNF is on the cusp of molecular weight ranges excluded by the sorbent pore structure, 

thus resulting in ineffective removal.  Small pores are required in the device to exclude essential 

large plasma proteins such as albumin, but allow smaller MW solutes such as cytokines to be 

removed from the blood.  We hypothesized that TNF capture could be significantly accelerated 

by promoting dissociation of trimeric TNF into its smaller monomeric constituents, allowing 

faster diffusion of monomeric TNF into the sorbent pores, and increasing overall removal of 

bioactive TNF.  The work presented in this chapter characterizes the dissociation behavior of 

TNF using DMSO to promote TNF deoligomerization.  Gel filtration chromatography was 

utilized to confirm changes to TNF molecular size, and in vitro packed bed capture experiments 

were used to quantify TNF removal rates by the sorbent beads.    
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5.1 MATERIALS & METHODS 

5.1.1 Materials 

Recombinant human TNF (51kD, >95% purity) and IL-6 (21kD, >95% purity), Bis[2-

(succinimidooxycarbonyloxy)ethyl]sulfone (BSOCOES) crosslinker, and dimethyl sulfoxide 

(DMSO) were purchased from Fisher Scientific (Waltham, MA).  BSA (>96% purity) was 

purchased from Sigma Aldrich (St. Louis, MO).  Horse serum and recombinant human soluble 

TNF receptor-I (sTNF-RI) were purchased from Invitrogen (Camarillo, CA).  Human blood was 

obtained from healthy volunteers at the University of Pittsburgh Medical Center.  All human 

blood protocols were approved by the University Institutional Review Board.  Whole blood 

samples were collected in silica-coated clotting tubes (BD Bioscience, Franklin Lakes, NJ), and 

serum was collected after clotting and centrifugation, according to manufacturer instructions.  

CytoSorb sorbent beads were provided by CytoSorbents, Inc. (Monmouth, NJ).  CytoSorb beads 

are polystyrene-divinylbenzene porous particles (450μm avg. particle diameter, 67% porosity, 

1.02g/cm3 density, ~0.8-5nm pore diameter, 850m2/g surface area) with a biocompatible 

polyvinyl-pyrrolidone coating. 

5.1.2 TNF Crosslinking 

Intramolecular TNF crosslinking was performed using BSOCOES, a 435Da bifunctional 

crosslinking reagent consisting of a 13Å spacer arm with NHS-ester reactive groups on both 

ends.  The NHS-ester binds to primary amine groups on the TNF molecule, covalently linking 

adjacent monomeric subunits to form a stable trimer.  2mg BSOCOES was dissolved in 200µl 
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DMSO, and 2.5µl of the dissolved reagent was added to 250µl of TNF or IL-6 (40µg/ml) in 

PBS.  The products were incubated for 30min at ambient temperature, and excess crosslinker 

was removed using centrifugal desalting columns.   

5.1.3 Gel Filtration Chromatography 

Gel filtration chromatography was performed using a SuperdexTM75 column and 

AKTAexplorerTM FPLC system (GE Healthcare, Piscataway, NJ).  TNF was spiked in human 

serum, horse serum, or PBS + 10mg/ml BSA to achieve TNF concentrations of ~1ng/ml.  

Samples were incubated with 0% or 10% DMSO for 24hr at 4˚C, and 50µl aliquots were injected 

into the gel filtration column at a flow rate of 0.8ml/min.  The column was equilibrated and 

eluted with 10mM PBS + 1mg/ml BSA, and 0% or 10% DMSO (corresponding to TNF samples 

incubated with 0% or 10% DMSO).  Effluent fractions of 250µl were collected and assayed for 

TNF using ELISA.  Chemically crosslinked TNF in PBS + 10mg/ml BSA was incubated with 

0% or 10% DMSO for 24hr at 4˚C, and injected into the column in the same manner as described 

above.  Soluble TNF receptor-I (sTNF-RI) (50ng/ml) was spiked with TNF into human serum or 

PBS+ 10mg/ml BSA, and injected into the column in the same manner as described above.  BSA 

(67kD), ovalbumin (43kD), chymotripsinogen (25kD), and RNAase (13.7kD) in PBS or PBS + 

10% DMSO were used as molecular weight standards to calibrate the column. 

5.1.4 TNF Capture in a Sorbent Device 

TNF or IL-6 was spiked in human serum or horse serum to achieve cytokine concentrations of 

~1ng/ml.  Samples were incubated with 0% or 10% DMSO for 24hr at 4˚C, and 8ml aliquots 
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were recirculated through a device filled with 1.5g CytoSorb beads, at a flow rate of 0.8ml/min 

using a peristaltic pump.  The reservoir was sampled at specific time points during recirculation, 

and cytokine concentrations were quantified using ELISA.  Chemically crosslinked TNF or IL-6 

was spiked in PBS + 50mg/ml BSA +/- 10% DMSO for 24hr at 4˚C, and recirculated through a 

sorbent device in the same manner as described above.  sTNF-RI (50ng/ml) was spiked with 

TNF or IL-6 in human serum or PBS + 50mg/ml BSA, and recirculated through a sorbent device 

in the same manner as described above.  All cytokine capture trials were run in duplicate or 

triplicate, and cytokine concentration averages are shown with error bars indicating standard 

deviation between the trials.        

 Cytokine capture data were fit to a mathematical model previously developed by our 

group [12] using nonlinear least squares regression, where cytokine removal rate is dependent on 

convection through the column, and adsorption/diffusion within the porous beads.  Removal rate 

was quantified for each capture experiment by fitting the data to the model, and then using the 

fitted model to interpolate time to reach 50% concentration in the reservoir (t1/2).  t1/2 values were 

calculated for each cytokine capture trial, and average values are shown +/- standard deviation 

between the trials.  Differences in removal rates between experimental conditions were evaluated 

by statistically comparing t1/2 values using Student’s t-test.  p-values < .05 were considered 

statistically significant.    

5.1.5 ELISA Controls 

ELISA controls were performed to ensure that manipulation of TNF molecular structure did not 

affect detection within the ELISA assay.  TNF concentrations were measured by ELISA for 

samples before and after 24hr incubation without DMSO, with 10% DMSO, and crosslinked 
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TNF.  Student’s t-test was used to statistically compare cytokine concentrations quantified by 

ELISA.  Mass concentrations were not statistically different (p > .05) before and after 24hr 

incubation for each sample, indicating consistent TNF quantitation under the conditions tested 

(data not shown).  TNF + DMSO samples were assayed using DMSO in the ELISA standards 

calibration, and no differences were observed between standard curves with or without DMSO. 

5.2 RESULTS 

5.2.1 Gel Filtration Chromatography 

5.2.1.1   TNF in PBS/BSA Buffer 

TNF was incubated with 10% DMSO to promote dissociation of TNF oligomeric structure.  Fig. 

22(a) illustrates TNF FPLC effluent after 24hr incubation with 0% and 10% DMSO in PBS + 

10mg/ml BSA, quantified for TNF using ELISA.  Under native conditions (0% DMSO), TNF 

eluted as a 38kD oligomer, consistent with apparent molecular weight observed by others [123, 

135].  TNF eluted entirely in 10kD monomeric form after incubation with 10% DMSO.  

Chemically crosslinked TNF was incubated for 24hr with 0% and 10% DMSO in PBS + 

10mg/ml BSA.  Fig. 22(b) demonstrates that crosslinked TNF eluted as a 38kD oligomer after 

incubation with 0% or 10% DMSO.  The slight shift in TNF peaks was due to column MW 

calibration differences between PBS and PBS + 10% DMSO mobile phases.  This result 

indicates covalent linkage of TNF subunits via chemical crosslinking, which are subsequently 

resistant to dissociation by DMSO.  Additionally, chemical crosslinking does not form high 

molecular weight aggregates of multiple TNF molecules, but promotes only intramolecular 
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binding [136].  Soluble TNF receptor-I (sTNF-RI) and TNF were spiked in PBS + 10mg/ml BSA 

to determine effects of TNF/receptor binding on TNF molecular size (Fig. 22(c)).  As expected, 

addition of sTNF-RI promoted formation of a large molecular weight TNF complex (58kD), 

compared to the molecular size observed for TNF alone in PBS/BSA buffer (38kD). 
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Figure 22:  Gel filtration chromatography of TNF in PBS + 10mg/ml BSA.  (a) TNF incubated with 

0% or 10% DMSO (b) Crosslinked TNF incubated with 0% or 10% DMSO.  (c) TNF spiked with sTNF-RI.  

 

5.2.1.2   TNF in Serum 

TNF was spiked in horse serum and human serum to investigate possible interactions between 

TNF and serum constituents.  TNF incubated with 0% and 10% DMSO in horse serum eluted at 

38kD and 10kD, respectively (Fig. 23(a)), consistent with the elution volumes observed for TNF 

in PBS/BSA buffer (Fig. 22(a)).  TNF incubated in human serum eluted as two distinct peaks – 

one corresponding to a 35kD specie, and another corresponding to a 58kD specie (Fig. 23(b)).  

The latter result can be explained by TNF binding to endogenous sTNF-R, which promotes 

formation of a large molecular weight complex [135], similarly observed when recombinant 

sTNF-RI was added to TNF in PBS/BSA buffer (Fig. 22(c)).  The absence of a significant 
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receptor-bound peak in horse serum is likely due to inefficient binding between spiked human 

TNF and endogenous horse sTNF-R, or negligible levels of sTNF-R in the horse serum.  sTNF-

RI was added to TNF in human serum, resulting in a single broad peak ~50kD.  Human serum 

and horse serum without spiked TNF were run as controls, and endogenous TNF was not 

detected in the FPLC effluent.  
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Figure 23:  Gel filtration chromatography of TNF in horse and human serum.  (a) TNF in horse 

serum incubated with 0% or 10% DMSO (b) TNF in human serum with sTNF-RI.   

5.2.2 TNF Capture in a Sorbent Device 

5.2.2.1   TNF Capture with DMSO 

Effects of TNF deoligomerization on capture behavior in a sorbent device were tested using 

CytoSorb sorbent beads.  TNF capture in horse serum after incubation with 0% and 10% DMSO 

for 24hr is illustrated in Fig. 24.  TNF capture was substantially accelerated after incubation with 

10% DMSO, compared to TNF incubated without DMSO (t1/2 = 13.3 +/- 1.5min vs. 112.8 +/- 

13.3min, respectively; p < .05).  IL-6 capture after 24hr incubation with and without 10% DMSO 
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were equivalent (t1/2 = 30.9 +/- 5.2min vs. 25.7 +/- 3.5min, respectively; p > .05), indicating that 

DMSO effects on capture rates are specific to TNF structural manipulation. 

 

 

Figure 24:  TNF and IL-6 capture from horse serum within a cytokine adsorption device.  Model fits 

are shown for 0% DMSO (solid lines) and 10% DMSO (dashed lines) incubations. 

5.2.2.2   Crosslinked TNF Capture 

Crosslinked TNF was incubated with 0% and 10% DMSO for 24hr, and capture was performed 

in PBS + 50mg/ml BSA.  Crosslinked TNF capture was the same after incubation with 0% and 

10% DMSO (t1/2 = 50.0 +/- 7.5min vs. 48.3 +/- 3.2min, respectively; p > .05) (Fig. 25), further 

substantiating FPLC results (Fig. 22(b)) that chemical crosslinking covalently stabilizes TNF 

trimeric structure and prevents DMSO induced monomerization.  Crosslinked TNF capture was 
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slower than native TNF capture in PBS/BSA buffer (t1/2 = 50.0 +/- 7.5min vs. 23.9 +/- 1.0min, 

respectively; p < .05).  Crosslinked IL-6 capture was slower than native IL-6 capture (t1/2 = 19.7 

+/- 1.2min vs. 12.9 +/- 0.5min, respectively; p < .05), though percent IL-6 removed after 4 hours 

was the same. 

 

Figure 25:  Crosslinked TNF and IL-6 capture from PBS + 50mg/ml BSA buffer in a cytokine 

adsorption device.  Model fits are shown for native TNF and IL-6 (solid lines), XL-TNF and XL-IL6 (dashed 

lines), and XL-TNF + 10% DMSO (dotted line). 
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5.2.2.3   TNF + sTNF-RI Capture 

TNF was incubated with soluble TNF receptor-I (sTNF-RI) to examine effects of receptor 

binding on TNF capture.  Fig. 26 illustrates TNF capture from PBS + 50mg/ml BSA with and 

without sTNF-RI coincubation.  TNF capture was slower after incubation with sTNF-RI 

compared to TNF alone (t1/2 = 68.9 +/- 12.7min vs. 31.7 +/- 1.5min, respectively; p < .05).  IL-6 

was incubated with sTNF-RI, and capture was statistically faster compared to IL-6 alone (t1/2 = 

11.5 +/- 0.7min vs. 12.9 +/- 0.5min, respectively; p < .05), although the difference in removal 

rate magnitudes was negligible.   

 

Figure 26:  TNF and IL-6 capture from PBS + 50mg/ml BSA buffer with sTNF-RI in a cytokine 

adsorption device.  Model fits are shown for TNF and IL-6 (solid lines), and TNF and IL-6 + sTNF-RI 

(dashed lines). 
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5.2.2.4   TNF Capture in Human Serum 

TNF was spiked in human serum from healthy volunteers, and capture results are illustrated in 

Fig. 27.  Capture rates were the same between TNF spiked in human serum with sTNF-RI and 

TNF alone (t1/2 = 217.7 +/- 34.9min vs. 172.8 +/- 2.5min, respectively; p > .05).  Capture of TNF 

incubated with 10% DMSO in human serum was accelerated compared to baseline TNF capture 

in human serum (t1/2 = 217.7 +/- 34.9min vs. 18.1 +/- 2.3min, respectively; p < .05).  Baseline 

TNF capture (no incubation period) was equivalent between horse and human serum – percent 

TNF removal at the 4hr end point was within 10% agreement (data not shown). 

 

Figure 27:  TNF capture from human serum with sTNF-RI, or incubated with 10% DMSO, in a 

cytokine adsorption device.  Model fits are shown for TNF +/- DMSO (solid lines), and TNF + sTNF-RI 

(dashed lines). 
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5.3 DISCUSSION 

Tumor necrosis factor (TNF), a 51kD pro-inflammatory cytokine, is removed at a slow rate 

within the device compared to smaller cytokines, putatively due to hindered diffusion of the 

large trimeric TNF molecule within the sorbent pores.  Similar deficiencies in TNF capture have 

been reported using other cytokine-targeted sorbent materials [129-132].  Small sorbent pores are 

necessary to prevent essential large plasma proteins such as albumin from being removed by the 

device; hence, our goal was to develop strategies to accelerate TNF removal while maintaining 

an optimal pore size for whole blood filtration.  The present work investigated the structural 

behavior of oligomeric TNF in vitro, and sought to quantify how specific perturbations of TNF 

quaternary structure would affect TNF capture within the hemoadsorption device. 

 TNF exists in solution primarily as a noncovalently associated homotrimer [115, 121, 

136].  DMSO, a polar organic solvent, was used to disrupt subunit hydrophobic interactions and 

promote dissociation of the trimeric molecule, which was confirmed using gel filtration 

chromatography.  Subsequent capture of monomerized TNF was substantially faster than native 

TNF capture in the device: removal halftime (t1/2) in horse serum = 13.3 +/-1.5min vs. 112.8 +/- 

13.3min, respectively; p < .05.  Cytokine capture is mediated by molecular diffusion into the 

internal pore structure, and adsorption to the polymeric surface through non-specific 

hydrophobic interactions.  Trimeric TNF (51kD) is on the cusp of molecular weight ranges 

excluded by the CytoSorb pore structure, thus resulting in ineffective removal.  We previously 

demonstrated that BSA (66kD) does not appreciably penetrate into the sorbent over time 

(Chapter 3, [99]), and would expect slower capture of large cytokines (e.g. TNF, 51kD) 

compared to smaller cytokines (e.g. IL-6, 21kD) within the adsorption device.   
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 We covalently crosslinked TNF subunits to stabilize the trimeric structure, and confirmed 

that DMSO incubation had no effect on crosslinked TNF molecular size nor capture within the 

device.  In PBS/BSA buffer, crosslinked TNF was removed at a slower rate than native TNF (t1/2 

= 50.0 +/- 7.5min vs. 23.9 +/- 1.0min, respectively; p < .05).  We demonstrated using gel 

filtration chromatography that both native and crosslinked TNF exist predominantly in trimeric 

form under the experimental conditions presented.  However, it is likely that a small population 

of monomeric TNF exists under native conditions, which can diffuse into the sorbent pores 

quickly and promote subsequent dissociation of bulk phase trimeric TNF to maintain equilibrium 

in the reservoir.  This hypothesis can explain why crosslinked TNF is removed at a slower rate 

than native TNF. 

 Soluble TNF receptors (sTNF-R) are typically present in serum at ~ng/ml levels [137], 

and bind circulating TNF.  They attenuate TNF signaling by blocking TNF activation of cell-

surface receptors [138], and conversely, can prolong circulating TNF half-life by acting a slow 

release reservoir [135].  Expression of sTNF-R are elevated during sepsis [139],  and their 

interactions with TNF may affect TNF removal dynamics within the device.  When sTNF-RI 

was spiked with TNF in PBS/BSA, TNF capture was slower compared to TNF alone (t1/2 = 68.9 

+/- 12.7min vs. 31.7 +/- 1.5min, respectively; p < .05), due to the larger size of the TNF/receptor 

complex.  In human serum, spiked TNF eluted in both free (38kD) and higher MW (58kD) 

forms, the latter likely due to interactions with endogenous TNF receptors.  When recombinant 

sTNF-RI was spiked with TNF in human serum, FPLC effluent shifted towards a single broad 

peak, suggesting a higher ratio of receptor bound TNF, but the effects on TNF capture were 

minimal.  TNF + 10% DMSO capture in horse and human serum were comparable (t1/2= 13.3 +/- 

1.5min vs. 18.1 +/- 2.3min, respectively; p = .04).  TNF in horse serum eluted primarily in 
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trimeric form, while TNF in human serum eluted in trimeric and receptor-bound forms.  

Equivalent TNF capture rates in human and horse serum after DMSO incubation suggest that 

DMSO induced TNF monomerization prevents TNF/sTNF-R binding, which is consistent with 

findings in the literature indicating that TNF actively binds its soluble and cell receptors only in 

trimeric form [116-118].       

Horse serum, human serum, and PBS/BSA buffer were used as test solutions to 

investigate different aspects of TNF adsorption dynamics.  PBS/BSA buffer was the most 

simplistic, and allowed us to study native TNF without the influence of soluble TNF receptors or 

significant amounts of coadsorbing solutes.  Horse serum provided a more realistic 

understanding of TNF capture within the device, although the absence of a substantial receptor-

bound TNF peak in the FPLC effluent suggested minimal binding between spiked human TNF 

and endogenous horse soluble receptors.  Finally, human serum was used to investigate 

TNF/sTNF-R interactions, although these results should not be extrapolated to predict in vivo 

dynamics, where the effects of mediator production by inflammatory cells and cytokine 

tissue/plasma transport are immensely complex.  Overall, significantly slower TNF capture rates 

in horse serum compared to buffer (t1/2 = 112.8 +/- 13.3min vs. 23.9 +/- 1.0min, respectively) are 

likely due to coadsorption of middle molecular weight solutes, which can cause pore occlusion 

and hindered TNF diffusional rates within the sorbent pores. Slower IL-6 capture was also 

observed in serum vs. buffer (t1/2 = 25.7 +/- 3.5min vs. 12.9 +/- 0.5min, respectively), but the 

effects of coadsorption and pore occlusion on TNF capture are likely exacerbated due to the 

large size of TNF (51kD) compared to IL-6 (21kD).  Furthermore, similarities between (1) 

baseline TNF capture in horse serum, (2) baseline TNF capture in human serum, and (3) TNF + 
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sTNF-R capture in human serum, suggest that soluble receptor binding is not the primary 

mechanism for slow TNF capture within the device. 

Results from this study demonstrate that dissociation of oligomeric TNF is an effective 

strategy to significantly improve TNF capture within sorbent materials.  TNF is an important 

initiator of systemic inflammation during sepsis, and removal of TNF from the circulating blood 

may help attenuate hyper-inflammatory signaling pathways and improve patient outcomes in the 

setting of severe sepsis.  TNF deoligomerization promotes fast diffusion and adsorption of the 

small monomeric species within the sorbent beads.  As monomeric TNF is continually removed, 

bulk phase trimeric TNF likely dissociates to maintain trimer/monomer equilibrium in the 

reservoir, although this phenomenon needs to be investigated in vivo where the equilibrium 

between monomeric, trimeric, and receptor-bound TNF are more complex.    

The clinical efficacy of anti-TNF or anti-cytokine therapies for sepsis remains unclear 

[13, 27], but the TNF deoligomerization concept presented in this work may have broad 

applications in other disease states where TNF removal from the plasma is targeted, such as 

rheumatoid arthritis or Crohn’s disease [126].  Additionally, this technique could be extended to 

improve capture of oligomeric cytokines such as IL-10, or other oligomeric biomolecules using 

size exclusion filtration materials.  Although we utilized DMSO as a simple agent to induce TNF 

dissociation, a variety of small molecules have been shown to facilitate TNF deoligomerization 

[122-124].  Chapter 6 describes ongoing efforts to develop sorbent materials with immobilized 

dissociative agents, to locally deoligomerize TNF at the sorbent surface as a clinically viable 

hemoadsorption modality.  

 
**The work in this chapter was published as:  Kimmel JD, Lacko CS, Delude RL, Federspiel 
WJ. Characterizing accelerated capture of deoligomerized TNF within hemoadsorption beads 
used to treat sepsis.  Journal of Biomedical Materials Research: Part B.  2011, 98B(1); 47-53. 
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6.0  SMALL MOLECULE DISSOCIATION OF OLIGOMERIC TNF 

Results presented in Chapter 5 demonstrate accelerated removal of deoligomerized TNF 

compared to native TNF removal within the sorbent device.  DMSO incubation was used to 

dissociate trimeric TNF as proof of principle, however, incorporation of DMSO into the 

circulation is not a clinically feasible tool.  Our ultimate goal is to develop surface modified 

sorbent beads capable of locally dissociating TNF within the device, eliminating the need for 

systemic administration of dissociating agents into the blood.  This concept could have broad 

applications for dissociation of other large oligomeric molecules within a size exclusion filtration 

device.  For example, one could envision dialysis fibers modified with small molecules capable 

of dissociating a variety of oligomeric molecules, facilitating removal of large solutes normally 

restricted by pore size exclusion.  We have used TNF as a model to investigate feasibility of 

small molecule induced deoligomerization, and discuss potential applications outside the realm 

of cytokine capture for the treatment for sepsis. 

6.1 SCREENING OF SMALL MOLECULE CANDIDATES    

TNF is a homotrimer composed of three subunits stabilized by noncovalent hydrophobic 

interactions.  As discussed previously, DMSO likely dissociates trimeric TNF through disruption 

of these subunit hydrophobic interactions.  There has been great interest, particularly in the 
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pharmaceutical field, of identifying small molecule drugs that could dissociate TNF and 

consequently inactivate TNF biological activity in vivo [124].  Small molecules (< ~5kDa) are 

attractive candidates for conjugation to sorbent surfaces, due to their large size compared to 

solvents such as DMSO (78Da), and availability of functional groups that can be used for 

covalent linkage to a polymer surface.  Using data available in the literature, a series of small 

molecules were tested to determine efficacy in promoting TNF deoligomerization (Table 5). 

 

Table 5:  Selection of small molecules tested for their ability to deoligomerize trimeric TNF. 

Suramin 

MW = 1.4kDa 

 

Trypan Blue 

MW = 873Da 

Evans Blue 

MW = 961Da 
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Table 5 (continued): 

Erythrocin B 

MW = 880kDa 

 

Triton X-100 

MW = 647Da 

 

    

Suramin was chosen as a primary candidate based on its documented ability to dissociate 

TNF [123].  Suramin destabilizes the trimeric TNF quaternary structure, resulting in biologically 

inactive monomeric species [140]. Mancini, et al. performed molecular computational 

simulations, and concluded that electrostatic interactions and length/symmetry of the suramin 

molecule are responsible for interactions between suramin and the TNF trimer (Fig. 28) [122].  

Trypan Blue and Evans Blue were identified as inexpensive structural analogues of suramin, and 

were therefore included in the screening process.  Erythrocin B is an organic dye which has been 

shown to interact with TNF [141].  Triton X-100 is an amphiphilic surfactant which has been 

used to dissociate TNF [136].  Triton X-100 likely acts by interfering with TNF subunit 

interactions through its hydrophobic hydrocarbon group.    
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Figure 28:  Computer simulation of suramin docked within the TNF trimeric core [122].                   

6.1.1 Methods 

TNF was incubated in horse serum with each of the dissociating agents listed in Table 5, and 

standard in vitro recirculation capture experiments were performed to determine effects on TNF 

capture rates.  Recirculation was performed as previously described in Chapter 5.  Briefly, TNF 

was incubated with 1mM, 5mM, or 10mM of each dissociating agent for 24hr at 4˚C, and 

deoligomerization efficacy was evaluated by comparing TNF capture after incubation with 

baseline TNF capture.  We assumed that accelerated TNF removal rates after incubation with 

dissociating agents were due to monomerization of trimeric TNF, as was observed using DMSO 

(Chapter 5).  IL-6 capture controls were performed to ensure that effects from dissociating agent 

incubation on capture were specific to TNF.   
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6.1.2 Results 

TNF capture in horse serum after incubation with suramin (1mM, 5mM, 10mM), Trypan Blue 

(1mM, 10mM), Evans Blue (1mM, 10mM),  Erythrocin B (1mM, 10mM), and Triton X-100 

(1.5mM) are illustrated in Figs. 29-33, respectively.  Trypan Blue, Evans Blue, and Erythrocin B 

had negligible effects on TNF capture.  These compounds have known affinities for albumin 

[142], therefore they may bind free albumin in horse serum, preventing potential interactions 

with TNF.  Suramin accelerated TNF capture in a dose dependent manner, likely due to partial 

deoligomerization of trimeric TNF.  Suramin incubation did not, however, accelerate TNF 

capture to the extent that was observed after 10% DMSO incubation.  Triton X-100 incubation 

significantly accelerated TNF capture, resulting in similar capture rates compared to 10% DMSO 

incubation.  This result suggests that Triton X-100 incubation is effective in completely 

dissociating TNF into monomeric form, as was shown previously using DMSO and gel filtration 

chromatography (Fig. 22).     
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Figure 29:  TNF capture in horse serum after 24hr incubation with suramin (1mM, 5mM, 10mM).  

Baseline TNF capture and TNF capture after 24hr incubation with 10% DMSO are shown as references. 
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Figure 30:  TNF capture in horse serum after 24hr incubation with Trypan Blue (1mM, 10mM).  

Baseline TNF capture is shown as a reference. 

 

 85 



 

Figure 31:  TNF capture in horse serum after 24hr incubation with Evans Blue (1mM, 10mM).  

Baseline TNF capture is shown as a reference. 
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Figure 32:  TNF capture in horse serum after 24hr incubation with Erythrocin B (ErB) (1mM, 

10mM).  Baseline TNF capture is shown as a reference. 
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Figure 33:  TNF capture in horse serum after 24hr incubation with Triton X-100 (1.5mM).  Baseline 

TNF capture is shown as a reference. 

 

IL-6 was incubated with 1mM suramin in PBS/BSA buffer for 24hr, and effects on IL-6 

capture were negligible compared to baseline IL-6 capture (Fig. 34).  Additionally, IL-6 was 

incubated with 1.5mM Triton X-100 in horse serum for 24hr, and effects on IL-6 capture were 

minimal (Fig. 35).  These results suggest that effects from suramin and Triton X on cytokine 

capture are specific to TNF structural manipulation.  Similar results were observed with IL-6 + 

10% DMSO capture (Fig. 24).   
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Figure 34:  IL-6 capture in PBS/BSA buffer after incubation with 1mM suramin.  Baseline IL-6 

capture is shown as a reference. 

 89 



 

Figure 35:  IL-6 capture in horse serum after incubation with 1.5mM Triton X-100.  Baseline IL-6 

capture is shown as a reference. 

6.2 KINETICS OF TNF DEOLIGOMERIZATION 

Based on results from screening of dissociating agent candidates, suramin and Triton X-100 

demonstrated efficacy in accelerating TNF capture, putatively through deoligomerization of 

trimeric TNF.  Although previous work with DMSO (Chapter 5) and the small molecule 

screening were performed using 24hr incubation with TNF, a clinically feasible device must 

have the ability to promote TNF deoligomerization within a time scale consistent with 
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therapeutic use of the device (~ 4-6hr).  Therefore, kinetic studies were performed using DMSO, 

suramin, and Triton X-100 to quantify effects of incubation time on TNF capture rates.   

6.2.1 Methods 

6.2.1.1  Gel Filtration Chromatography 

Gel filtration chromatography was performed using a SuperdexTM75 column and 

AKTAexplorerTM FPLC system (GE Healthcare, Piscataway, NJ).  TNF was spiked in PBS + 

10mg/ml BSA to achieve TNF concentrations of ~1ng/ml.  Samples were incubated with 10% 

DMSO for 15min, 4hr, and 24hr, and 50µl aliquots were injected into the gel filtration column at 

a flow rate of 0.8ml/min.  The column was equilibrated and eluted with 10mM PBS + 1mg/ml 

BSA + 10% DMSO.  Effluent fractions of 250µl were collected and assayed for TNF using 

ELISA. 

6.2.1.2  Recirculation Capture 

DMSO (10% v/v) was incubated with TNF in PBS/BSA buffer for 15min, 4hr, and 24hr prior to 

capture.  Suramin (1mM) was incubated with TNF in PBS/BSA buffer for 0hr (immediate 

capture), 4hr, and 24hr prior to capture.  Triton X (1.5mM) was incubated with TNF in horse 

serum for 4hr and 24hr prior to capture.  As a control, TNF was incubated alone in serum for 

24hr to determine effects from overnight incubation on baseline TNF capture.  All recirculation 

capture experiments were performed as previously described in Chapter 5.   
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6.2.2 Results 

Gel filtration chromatography results illustrate TNF deoligomerization kinetics in the presence of 

10% DMSO (Fig. 36).  After short incubation times (~15min), TNF primarily exists in trimeric 

form.  By the 4hr incubation time point, a substantial monomer peak is observed, and at 24hr, 

TNF elutes primarily in monomeric form.  These results indicate that TNF deoligomerization 

using DMSO is a relatively slow process, whereby TNF oligomeric structure is destabilized by 

DMSO, and slowly converts from trimeric to monomeric form over the experimental time 

course.   

 

monomer 

trimer 

Figure 36:  Gel filtration chromatography effluent of TNF after incubation with 10% DMSO for 

15min, 3hr, and 24hr. 
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Kinetic capture studies with DMSO, suramin and Triton X were performed to quantify 

effects of incubation time on TNF capture behavior within the sorbent device.  As illustrated in 

Figs. 37, 38 and 39, incubation time significantly affected TNF capture rates.  Longer incubation 

times resulted in faster TNF removal, likely due to continued dissociation of oligomeric TNF 

into monomeric form, as was shown using DMSO and gel filtration chromatography (Fig. 36).  

Results from instant capture (addition of dissociating agent immediately prior to capture) using 

DMSO or suramin demonstrated slow capture within the first 15-30min, but resulted in overall 

increased capture by the 4hr end time point.  This result is likely due to progression of TNF 

deoligomerization throughout the 4hr capture time frame.  Baseline TNF capture rates were 

compared before and after 24hr incubation without addition of dissociating agents, and TNF 

capture after incubation was slightly faster than baseline capture (Fig. 40).  This result is most 

likely due to spontaneous partial dissociation of TNF, which has been shown to occur over 

extended time frames at low (~ng/ml) TNF concentrations [143].  We did not perform gel 

filtration chromatography studies with suramin and Triton X, but would expect similar behavior 

as was observed with DMSO.  We used TNF capture within the sorbent device as a measure of 

deoligomerization efficacy, since TNF removal rate is the primary outcome we are interested in 

manipulating.  Furthermore, results from Chapter 5 demonstrated that TNF removal rate is a 

direct indicator of TNF oligomeric state.   
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Figure 37:  TNF capture in PBS/BSA buffer after 0hr (instant capture) or 24hr incubation with 10% 

DMSO.  Baseline TNF capture is shown as a reference. 

 94 



 

Figure 38:  TNF capture in PBS/BSA buffer after 0hr (instant capture), 4hr or 24hr incubation with 

1mM suramin.  Baseline TNF capture is shown as a reference. 
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Figure 39:  TNF capture in serum after 4hr or 24hr incubation with Triton X-100 (1.5mM).  Baseline 

TNF capture is shown as a reference. 
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Figure 40:  Baseline TNF capture in serum with and without 24hr incubation.   

6.3 SURAMIN IMMOBILIZATION ON THE SORBENT SURFACE 

Suramin and Triton X-100 demonstrated efficacy in accelerating TNF removal, putatively due to 

dissociation of oligomeric TNF structure, as shown by others [122-123, 136].  Our next step was 

to investigate methodologies for immobilization of these small molecules on the sorbent surface.  

A multitude of factors must be considered to successfully establish a functionalized sorbent 

surface, such as:  available functional groups on the target molecule and polymer surface to 

initiate covalent linkage, sufficient size of the small molecule such that interaction with the 

sorbent is limited to the outer surface, functionality of the small molecule while in an 
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immobilized state, etc.  Suramin was chosen as a test candidate to determine if (1) it could be 

covalently immobilized on the sorbent surface, and (2) it retained the ability to interact with TNF 

while immobilized.   

6.3.1 Methods 

Feasibility of suramin immobilization on a sorbent surface was tested using aminated CytoSorb 

beads.  Aminated beads (Lot# TDG-077-166) were provided by CytoSorbents, Inc. (Monmouth 

Junction, NJ), and contained approximately 9% NH2 groups per the manufacturer.  Suramin was 

conjugated to the sorbent surface using formaldehyde-mediated condensation of active hydrogen 

groups on the suramin molecule with primary amine groups on the sorbent (Mannich reaction 

(Fig. 41)).  This type of chemical reaction is useful for molecules that do not contain functional 

groups (OH, NH2, COOH, etc.) typically utilized for conjugation chemistries.  We hypothesized 

that the various hydrocarbon rings present on the suramin molecule (Table 5) would enable 

linkage to amine groups on the sorbent surface via the Mannich reaction, as shown by others 

[144]. 

 

Figure 41:  A generalized example of the Mannich reaction (Figure from Pierce Biotechnology, 

www.piercenet.com).   
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Since no direct assays can easily be utilized to quantify suramin concentrations in free 

solution or on the bead surface, radiolabeled (3H) suramin (Moravek Biochemicals, Brea, CA) 

was used as a tracer to track the suramin conjugation reaction.  5µl 3H suramin (33.7µg/ml, 

1mCi/ml) was added to 10ml coupling buffer (0.1M MES, pH 4.7) and 40µl coupling reagent 

(37% formaldehyde) in two test tubes.  10µl samples were removed from each tube and added to 

10ml liquid scintillation cocktail (Ultima GoldTM, Perkin Elmer) for liquid scintillation counting 

(LSC) (LS1800 LSC, Beckman Coulter).  Approximately 50mg dried beads (standard polymer or 

aminated, dried in a 37˚C oven overnight) were added to the test tubes and incubated on a rocker 

at 37˚C for 24hr.  Dried beads were used to prevent diffusion of suramin into the internal pore 

structure.  Aqueous solutions do not penetrate into the hydrophobic interior of the dried beads, 

therefore this technique can be used to restrict immobilization of small molecules to the outer 

sorbent surface.  After incubation was complete, 10µl liquid samples were removed from each 

tube and processed for LSC as described above.  Both tubes were then drained and flushed five 

times with wash buffer (0.1M Tris, pH 8.0).  After the final wash step, 10µl liquid samples were 

removed from each tube and processed for LSC.  Beads were removed from the tubes (not all 

could be retrieved), and directly added to 10ml LS cocktail for scintillation counting.  

6.3.2 Results           

Radioactivity levels were quantified using liquid scintillation counting (LSC), and resulting 

counts per minute (CPM) were directly proportional to concentration of radiolabeled (3H) 

suramin in the test liquid (confirmed using a standard curve, data not shown).  Fig. 42 illustrates 

CPM of 3H suramin spiked in conjugation buffer before (pre inc) and after (post inc) 24hr 

incubation with standard and aminated dried sorbent beads.  A significant decrease in CPM was 
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observed after incubation with both standard and aminated beads, possibly indicating physical 

adsorption of suramin to the sorbent surface, rather than covalent linkage.  Since the standard 

beads do not have free NH2 groups on the surface, it is unlikely that covalent linkage occurred 

between suramin and the standard polymer.  Given the hydrophobic nature of the suramin 

molecule (multiple hydrocarbon rings), we hypothesized that hydrophobic interactions and/or 

hydrogen bonding were the main adsorptive forces between suramin and the sorbent beads, 

rather than covalent linkage to the sorbent surface.  Fig. 43 illustrates CPM measurement of the 

wash effluent after incubation, and direct CPM measurement of the sorbent beads after washing.  

Substantial CPM in the wash effluent indicates desorption of suramin from both standard and 

aminated beads.  Additionally, high CPM from the beads themselves indicates significant 

amounts of suramin retained either on the bead surface or within the bead pores.  Collectively, 

results suggest that under the conditions tested, 3H suramin physically adsorbs to the sorbent and 

partially desorbs after washing.   
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Figure 42:  Liquid scintillation counts (CPM) for 3H suramin incubated with standard and aminated 

CytoSorb beads. 
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Figure 43:  Liquid scintillation counts (CPM) for 3H suramin wash effluent and beads post 

incubation.   
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6.4 SURAMIN LOADED SORBENT BEADS 

Results from Section 6.3 indicate that covalent linkage of suramin to aminated beads was 

unsuccessful, however, suramin was found to physically adsorb to standard sorbent beads, and 

subsequently desorb during the wash phase.  This result presented a potential technique for 

creating a localized microenvironment at the bead surface where suramin could be loaded onto 

the bead, desorb/diffuse out of the bead during cytokine capture, and locally interact with TNF to 

initiate TNF deoligomerization.  To test this hypothesis, we investigated (1) the kinetics of 

suramin desorption from the beads and (2) effects of suramin preloading on TNF capture. 

6.4.1 Methods 

6.4.1.1  Suramin Loading  

Radiolabeled suramin was spiked into a solution of 1mM native suramin to quantify desorption 

kinetics of suramin loaded beads.  10μl 3H suramin (33.7μg/ml) was added to 8ml of 1mM 

suramin in 10mM PBS.  A standard capture column was filled with 1.5g CytoSorb beads, flushed 

with PBS, and the 1mM suramin solution was recirculated through the column for 20hr at a flow 

rate of 0.8ml/min.  Although initial suramin/sorbent interaction studies (Section 6.3) were 

performed with dried beads, we were unable to rewet dried beads for subsequent TNF capture 

experiments.  Therefore, we pursued suramin loaded beads using standard wet sorbent to 

examine effects from suramin loading on TNF capture.  We expected the small suramin 

molecule to diffuse/adsorb to the interior wet sorbent pore structure, however, we hypothesized 

that sufficient suramin would adsorb to the outer sorbent surface to promote interactions with 

bulk phase TNF.  
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6.4.1.2  TNF Capture with Suramin Loaded Beads   

TNF (~1ng/ml) was spiked into a PBS + 5% BSA solution, and recirculated through the suramin 

loaded column for 4 hours, in the same manner as standard capture experiments previously 

described.  A sample was taken from the reservoir immediately after the first pass of TNF 

solution through the column, and samples were periodically removed from the reservoir 

throughout capture to quantify both 3H suramin levels (using liquid scintillation counting) and 

TNF concentration (using ELISA).  In a separate experiment, beads were loaded with 1mM 

suramin as described above, and chemically crosslinked TNF capture in PBS/BSA buffer was 

performed as previously described in Section 5.2.  IL-6 capture using suramin loaded beads was 

performed as a control to ensure that effects of suramin on cytokine capture were specific to 

TNF.   

6.4.2 Results  

Radiolabeled suramin was spiked into 1mM suramin to quantify desorption kinetics of suramin 

loaded beads.  Fig. 44 illustrates radioactivity (CPM) in the reservoir during TNF capture using 

suramin loaded beads.  Suramin desorbs/diffuses out of the bead over time into the reservoir, 

reaching equilibrium at approximately 120min.  TNF and IL-6 capture using suramin loaded 

beads are shown in Figs. 45 and 46, respectively.  TNF capture is accelerated compared to 

baseline TNF capture in PBS/BSA, although slower than TNF capture after 24hr incubation with 

1mM free suramin.  IL-6 capture was equivalent between suramin loaded beads, 24hr incubation 

with 1mM suramin, and baseline IL-6 capture.   
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Figure 44:  Radioactivity counts (CPM) of 3H suramin desorbing from suramin loaded beads during 

TNF capture. 
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Figure 45:  TNF capture using beads loaded with 1mM suramin.   
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Figure 46:  IL-6 capture using beads loaded with 1mM suramin.   

 

TNF capture results using suramin loaded beads suggest that accelerated TNF capture 

could be a result of either (1) suramin desorbing/diffusing into the reservoir and dissociating 

TNF during recirculation, as originally hypothesized, or (2) adsorbed suramin acting as an 

affinity mechanism to bind TNF on the sorbent surface during capture.  To test these hypotheses, 

capture with chemically crosslinked TNF and suramin loaded beads was performed.  We 

previously demonstrated that crosslinked TNF is resistant to dissociation due to covalent linkage 

of individual subunits (Chapter 5).  Therefore, suramin loaded beads should have no effect on 

crosslinked TNF capture if suramin is indeed desorbing from the bead and inducing TNF 

deoligomerization.  Fig. 47 illustrates that capture of crosslinked TNF is accelerated using 
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suramin loaded beads, compared to baseline capture of crosslinked TNF.  This result suggests 

that accelerated capture of TNF using suramin beads is due to binding of TNF to physically 

adsorbed suramin on the sorbent surface.       

 

Figure 47:  Crosslinked TNF capture using beads loaded with 1mM suramin.   
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6.5 TRITON X-100 LOADED BEADS 

Results from small molecule screening indicated that Triton X-100 incubation was effective in 

accelerating TNF capture, to even a greater extent than suramin.  Therefore, we repeated the 

same procedure used to load suramin onto sorbent beads, except with Triton X-100, and 

evaluated effects of Triton X-100 loaded beads on TNF capture.   

6.5.1 Methods 

1.5mM Triton X-100 was dissolved in 8ml of 10mM PBS.  A standard capture column was filled 

with 1.5g CytoSorb beads, flushed with PBS, and the Triton X-100 solution was recirculated 

through the column for 20hr at a flow rate of 0.8ml/min.  TNF (~1ng/ml) was spiked into horse 

serum, and recirculated through the Triton X-100 loaded column for 4 hours, in the same manner 

as standard capture experiments previously described. 

6.5.2 Results 

TNF capture using Triton X-100 loaded sorbent beads is illustrated in Fig. 48.  Unexpectedly, 

capture was slower using the loaded sorbent beads compared to baseline TNF capture.  Given the 

amphiphilic structure of Triton X-100, the hydrophobic portion of the molecule may physically 

adsorb to the hydrophobic interior of the bead, exposing the hydrophilic tail to the surrounding 

aqueous environment.  Under these conditions, Triton X-100 most likely does not significantly 

interact with TNF at the bead surface, and may actually restrict TNF adsorption to the internal 

pore structure.  Potential chemical immobilization strategies to conjugate the Triton X-100 
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hydrophilic tail to the sorbent surface, thereby exposing the hydrophobic portion, may facilitate 

interaction with TNF, although these experiments have not been performed.   

 

 

Figure 48:  TNF capture using sorbent beads loaded with Triton X-100.   
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6.6 DISCUSSION 

Results presented in Chapter 5 demonstrated significant acceleration of TNF capture within the 

sorbent device using DMSO preincubation.  While this technique offered rationale for utilizing 

TNF deoligomerization to enhance TNF capture rates, DMSO is not a clinically feasible tool due 

to potential toxicity in the body.  Our ultimate goal is to functionalize the surface of sorbent 

beads to induce localized deoligomerization of TNF within the device.  To that end, we screened 

potential small molecule candidates for their efficacy in promoting TNF dissociation.  Suramin 

was selected for further investigation based on its known ability to dissociate TNF [122-123], 

and potential for immobilization on the sorbent surface due to its chemical structure. 

 We attempted to covalently attach suramin to the surface of dried aminated sorbent 

beads, but observed similar levels of suramin loading on both aminated and standard beads, 

suggesting simple physical adsorption as the primary interaction mechanism between suramin 

and the bead.  Covalent linkage of small molecules to surfaces is often difficult due to the dearth 

of available functional groups on the target molecule.  Although further optimization of the 

conjugation reaction could lead to effective covalent linkage between suramin and the aminated 

sorbent surface, these experiments were outside the scope of the current work.  Instead, we chose 

to investigate the ability of physically adsorbed suramin to locally interact with TNF and 

accelerate TNF capture within the device.  

A central challenge for loading small molecules onto the surface of porous beads is the 

difficulty in restricting adsorption/immobilization only to the outer surface of the beads.  

Diffusion of small molecules into the interior sorbent pores would likely result in minimal 

interaction with TNF due to limited penetration of TNF expected within the bead (see Chapter 

3), compared to rapid diffusion of small molecular weight solutes (suramin MW = 1.4kDa, TNF 
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MW = 51kD).  Hence, we investigated whether physically adsorbed suramin could interact with 

TNF either by binding TNF at the sorbent surface, or through desorption into the reservoir and 

subsequent deoligomerization of TNF.  Although initial suramin/sorbent interaction studies 

(Section 6.3) were performed with dried beads, we were unable to rewet dried beads for 

subsequent TNF capture experiments.  Therefore, we pursued suramin loaded beads using 

standard wet sorbent to examine effects from suramin loading on TNF capture.  We expected the 

small suramin molecule to diffuse/adsorb to the interior wet sorbent pore structure, however, we 

hypothesized that sufficient suramin would adsorb to the outer sorbent surface to promote 

interactions with bulk phase TNF.  

 Cytokine capture results using suramin loaded beads demonstrated accelerated removal 

of TNF from PBS/BSA buffer, and minimal effects on IL-6 capture.  However, crosslinked TNF 

capture using suramin loaded beads was also accelerated, indicating that suramin induced TNF 

deoligomerization was not responsible for the observed TNF capture behavior.  Instead, results 

suggest that physically adsorbed suramin acts as an affinity mechanism to bind TNF and enhance 

TNF capture rates.  The exact mechanism of suramin interaction with TNF is unknown, 

however, the same interactions which cause TNF dissociation in free solution could lead to 

transient binding of TNF to physically adsorbed suramin on the sorbent surface.  Alternatively, 

desorption of suramin into the reservoir could potentially accelerate TNF capture via trimeric 

dissociation under optimized suramin loading conditions, although further work is needed to 

verify this hypothesis. 

 The concepts presented in this chapter describe the framework for surface 

functionalization of sorbent beads with small molecules capable of locally dissociating TNF 

within the adsorption device.  In the ideal case, the target molecule would be covalently tethered 
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to the sorbent surface, possibly through utilization of a large MW spacer arm such as 

polyethylene glycol (PEG).  Use of a spacer arm would have three potential functions: (1) 

presenting the small molecule away from the sorbent surface such that localized interactions with 

the bead surface are minimized, (2) preventing diffusion of the small molecule into the interior 

sorbent pores by using a spacer arm larger than the MW cut off of the pores, and (3) enabling a 

broad range of potential conjugation chemistries through functionalized terminal ends of the 

spacer arm.  In addition to tethering the dissociating agent to the sorbent surface, the kinetics of 

induced TNF deoligomerization must be rapid, such that deoligomerization can proceed within a 

time scale corresponding to clinical use of the device.  Under the experimental conditions 

presented, physically adsorbed suramin acts as an affinity mechanism to bind TNF at the sorbent 

surface.  This result suggests that suramin could be used as an inexpensive ligand to bind TNF, 

compared to using recombinant anti-TNF antibodies [133], which have high affinities for TNF, 

but are prohibitively expensive for use in a clinical device. 

 Although suramin was used a test candidate to explore the concept of surface 

functionalized beads, preliminary results suggest that amphiphilic surfactants such as Triton-X 

could also be promising dissociative agents.  Further work is needed to explore mechanisms of 

small molecule induced TNF deoligomerization, and feasibility of conjugating such molecules to 

the surface of sorbent beads.  We foresee the concept of oligomeric molecule dissociation as a 

broad framework for facilitating removal of large solutes using size exclusion filtration 

materials.  Small sorbent pores are necessary in direct blood filtration devices to prevent removal 

of cells and essential large molecular weight molecules (e.g. albumin, immunoglobulins).  

However, structural manipulation of molecules within the device could enable targeted removal 

of large solutes while retaining a small pore size.  The concept of functionalized size exclusion 
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sorbent materials could potentially be expanded to accelerate removal of various oligomeric 

solutes, such as cytokines, enzymes, and bacterial products in a variety of disease states. 
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7.0  SUMMARY & CONCLUSIONS 

Despite significant advances in our understanding of the biological mechanisms during sepsis, 

little progress has been made in the development of effective clinical therapies.  Over the past 

decades, experimental therapies have often targeted individual mediators within the 

dysfunctional immunologic, coagulatory, or hemodynamic systems.  The failures of these 

therapies indicate that new approaches are necessary to combat the interdependent cellular and 

molecular pathways that result in poor clinical outcomes.  Recent evidence has suggested that a 

complex interplay between pro-inflammatory and compensatory anti-inflammatory events leads 

to systemic dysfunction of multiple physiological systems during sepsis.  A new paradigm based 

on broad-spectrum mediator removal from the blood has emerged as a promising therapeutic 

modality.  Non-specific removal of endogenous mediators may help down-regulate systemic 

inflammation and modulate the dysfunctional innate immune response towards homeostasis.  

The work presented in this dissertation summarizes efforts to characterize the behavior of 

sorbent beads used within a cytokine adsorption device, and to explore novel sorbent materials 

for enhanced cytokine capture.     

The first goal of this dissertation was to investigate cytokine transport dynamics within 

sorbent beads, and compare the results to predictions of a mathematical model (Chapters 3 & 4).  

We utilized confocal laser scanning microscopy (CLSM) to quantify penetration profiles of 

fluorescently tagged IL-6 in PBS/BSA buffer, and found that intraparticle adsorption dynamics 
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agreed with predictions of a single component adsorption/diffusion model.  Results indicated that 

only a small portion (< 20%) of available sorbent surface area participates in cytokine 

adsorption, suggesting significant enhancements in cytokine removal could be realized by 

utilizing smaller sorbent beads.  Further work by our group confirmed this hypothesis, 

demonstrating accelerated cytokine capture using small diameter sorbent beads compared to 

standard sorbent beads (50μm vs. 260μm avg. radius, respectively) in a redesigned device [145].  

IL-6 CLSM was also performed in serum to simulate physiologically relevant conditions, and 

resulting intraparticle profiles demonstrated peak intensities within the bead interior, deviating 

from results obtained using PBS/BSA buffer.  We developed a two component competitive 

adsorption model, and demonstrated that CLSM behavior in serum was likely due to competitive 

adsorption between cytokine and coadsorbing serum solutes.  We utilized a numerical 

simulation/parameter optimization technique, and concluded that competitive adsorption effects 

were likely negligible under physiologic cytokine concentrations.  This work was the first study 

to investigate protein adsorption dynamics within sorbent beads in whole serum, and may serve 

as a novel technique for investigating solute transport within sorbent blood filtration materials. 

The second goal of this dissertation was to investigate techniques to accelerate TNF 

capture within the device (Chapters 5 & 6).  Although various studies have illustrated the 

unstable oligomeric behavior of TNF in vitro, we are the first group to use deoligomerization as 

a method for enhanced removal of TNF within a size exclusion filtration device.  We utilized 

DMSO to dissociate trimeric TNF into monomeric form, and demonstrated significantly 

accelerated capture of monomeric TNF compared to native TNF within the device.  DMSO was 

used as a simple dissociating agent, however, systemic injection of DMSO into a patient is not a 

clinically feasible tool.  We screened a series of small molecules for their ability to destabilize 
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TNF subunit interactions, and found that preincubation with suramin or Triton X-100 were 

effective in accelerating TNF capture, putatively due to TNF deoligomerization. 

Strategies were discussed for tethering small molecules to the sorbent surface, with the 

goal of developing functionalized sorbent materials capable of locally dissociating TNF within 

the device.  Suramin loaded sorbent beads demonstrated accelerated TNF capture in PBS/BSA 

buffer, although results suggest that this effect was due to binding of TNF to suramin on the 

sorbent surface, rather than suramin-induced TNF deoligomerization.  Further research in this 

area should focus on: kinetics of TNF deoligomerization relative to therapeutic duration of the 

device, efficacy of TNF dissociating agents while in an immobilized state, and potential effects 

from functionalized sorbent beads on removal of other solutes.  The concept of dissociating large 

oligomeric molecules within a size exclusion filtration device may have broad applications 

outside the realm of TNF removal for sepsis.  TNF removal from the circulating blood may be a 

novel adjuvant therapy for other diseases such as rheumatoid arthritis or Crohns’ disease, where 

pharmacologic anti-TNF therapies have been used.  Additionally, the technology could be 

expanded to facilitate dissociation of other oligomeric molecules using functionalized size 

exclusion sorbent materials for a variety of disease states. 

In conclusion, blood purification may be a promising strategy to improve patient 

outcomes in the setting of severe sepsis and septic shock.  The work presented in this dissertation 

summarizes efforts to characterize cytokine capture within sorbent beads, and to elucidate novel 

mechanisms for enhanced capture of a large oligomeric cytokine.  Sorbent blood purification for 

the treatment of sepsis is a nascent field, and limited studies have investigated solute transport 

within hemoadsorption beads.  We believe that a robust, mechanistic understanding of cytokine 

capture within the device will facilitate development of clinically useful technologies.  Our 
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future goals are to integrate models of cytokine capture with large-scale systems models of 

inflammation, in an attempt to understand downstream immunologic effects from 

hemoadsorption therapy.   Additionally, we plan on developing new sorbent materials with 

enhanced adsorptive capabilities, capable of modulating capture of specific solutes through 

disruption of molecular structure.  We hope these concepts will lead to new developments in the 

field of blood purification for the critically ill.    
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APPENDIX A 

BSA EFFECTS ON CYTOKINE TRANSPORT 

In Chapter 3, IL-6 CLSM studies were performed in PBS + 1% BSA.  BSA was used as a carrier 

protein to help stabilize low concentration IL-6 and prevent nonspecific adsorption to tubing, 

pipette tips, etc.  However, in vitro recirculation capture experiments in buffer (Chapters 5 & 6) 

were performed using PBS + 5% BSA, as this concentration of BSA is comparable to total 

albumin levels found in the blood.  We previously assumed that BSA concentration would have 

negligible effects on cytokine removal within the device, since BSA (66kD) does appreciably 

adsorb within the sorbent pores due to pore size exclusion.  In this experiment, we directly tested 

effects of BSA concentration on (1) CLSM intraparticle transport behavior, and (2) in vitro 

cytokine capture rates within the sorbent device. 

A.1 BSA EFFECTS ON INTRAPARTICLE TRANSPORT 

We previously demonstrated that BSA does not penetrate into the sorbent pores over time 

(Chapter 3, Fig. 5b), putatively due to size exclusion of the large albumin molecule (66kD).  In 

that experiment, gel permeation chromatography was utilized to remove small MW impurities in 
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the BSA stock prior to BSA labeling.  In preliminary work, we observed significant penetration 

of unknown solutes into the sorbent interior when fluorescently labeled BSA stock (no 

chromatographic purification) was incubated with sorbent beads.  We attributed this behavior to 

small MW impurities in the BSA, which can rapidly diffuse into the bead over time.   

A.1.1 Methods 

CLSM was performed as described in Chapter 3.  Briefly, IL-6 or TNF was fluorescently 

labeled, and incubated with CytoSorb beads in PBS + BSA (0%, 0.1%, 1%, 2.5% or 5%) for 2hr, 

5hr, and 24hr.  Beads were removed at the specific time points, sliced, and imaged using CLSM.  

Images were quantified for signal intensity across the diameter of the bead, and 4-5 beads were 

imaged at each time point. 

A.1.2 Results 

CLSM intraparticle intensity profiles for TNF incubated with varying BSA concentrations for 

5hr are shown in Fig. 49.  As BSA concentration increases, resulting intensity profiles exhibit 

reduced peak intensities, and greater penetration distance into the bead.  The experiment was also 

performed using labeled IL-6 in varying concentrations of BSA, and intraparticle intensity 

curves exhibited the same qualitative behavior as observed with TNF (data not shown). 
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Figure 49:  CLSM intraparticle intensity profiles of fluorescently labeled TNF incubated with 

CytoSorb beads for 5hr.  Beads were incubated in PBS and varying concentrations of BSA. 
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A.2   BSA EFFECTS ON RECIRCULATION CAPTURE 

Results from CLSM studies demonstrated significant effects from BSA concentration on 

intraparticle cytokine penetration behavior.  We evaluated BSA concentration effects on 

recirculation capture to determine whether the CLSM behavior translated to appreciable effects 

on cytokine removal rates within the sorbent device. 

A.2.1 Methods 

In vitro recirculation capture was performed as described in Chapter 5.  Briefly, columns were 

packed with 1.5g CytoSorb beads, and primed with 10mM PBS.  IL-6 was spiked in PBS + BSA 

(1%, 2.5%, 5%, 10%), and recirculated through the column at a flow rate of 0.8ml/min.  IL-6 

concentration in the reservoir throughout capture was quantified by ELISA. 

A.2.2 Results 

IL-6 removal rates using a sorbent device under varying BSA concentrations are illustrated in 

Fig. 50.  BSA concentration has a significant effect on IL-6 capture, where higher BSA 

concentrations resulted in slower IL-6 removal. 
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Figure 50:  IL-6 removal within a sorbent device using variable BSA concentrations in the reservoir. 

A.3 DISCUSSION 

The goal of this study was to examine effects from BSA on cytokine adsorption/diffusion 

dynamics within the sorbent beads.  We previously demonstrated that BSA (66kD) does not 

appreciably penetrate into the sorbent pore structure (Chapter 3), putatively due to the large size 

of the BSA molecule relative to the small pore diameter.  This data was generated by first 

running stock BSA (>96% purity) through a gel permeation column to remove impurities, 

followed by fluorescent labeling of the BSA molecule.  However, preliminary CLSM work using 

unpurified BSA suggested that small molecular weight impurities in the BSA stock could affect 
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cytokine removal dynamics within the sorbent beads.  We therefore directly tested effects of 

BSA on intraparticle cytokine transport using CLSM, and on cytokine removal within a sorbent 

device using in vitro recirculation capture. 

CLSM results demonstrated significant effects from BSA concentration on intraparticle 

cytokine transport (Fig. 49).  As BSA concentration increases, resulting intensity profiles exhibit 

reduced peak intensities, and greater penetration distance into the bead.  We hypothesize that as 

BSA concentration in the bulk liquid increases, small MW impurities diffuse faster into the bead 

interior, due to increased concentration gradient.  As these solutes diffuse into the bead, they 

likely adsorb to the polymer surface and minimize subsequent cytokine adsorption by reducing 

available binding sites.  Therefore, cytokine must diffuse farther into the bead before accessing a 

binding site, as observed in the CLSM data.  Recirculation capture experiments also 

demonstrated significant effects from BSA concentration on cytokine capture.  IL-6 removal rate 

decreased with increasing BSA concentration in the reservoir, likely due to similar mechanisms 

observed with the CLSM data.  In addition to effects from diffusion/adsorption of small MW 

impurities within the bead interior, adsorption of BSA on the sorbent surface likely affects 

cytokine capture.  Increased BSA concentration in the reservoir would facilitate greater BSA 

adsorption on the bead surface, likely resulting in pore occlusion and hindered transport of 

cytokine into the bead interior.  Results from this study demonstrate significant effects from BSA 

on cytokine transport within the hemoadsorption beads.  Although BSA was initially utilized as a 

simple protein solution to examine cytokine adsorption dynamics, results indicate that realistic 

media (serum, plasma) should be utilized to generate physiologically relevant conditions for 

examining cytokine transport within the hemoadsorption device. 
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APPENDIX B 

CYTOKINE DESORPTION FROM SORBENT BEADS 

CytoSorb hemoadsorption beads are comprised of a polystyrene-divinylbenzene copolymer, with 

a biocompatible polyvinyl-pyrrolidone coating.  Protein adsorption to the internal polymer 

surface is assumed to be a result of hydrophobic interactions.  Other molecular interactions such 

as electrostatic, hydrogen bonding, and van der Waals forces may also contribute to cytokine 

retention by the sorbent beads.  In our intraparticle modeling work (Chapters 3 & 4), we utilized 

the Langmuir adsorption isotherm to describe simple physical adsorption equilibrium between 

cytokine and the polymer surface.  However, we were further interested in determining whether 

the adsorption process could be considered irreversible, where adsorbed cytokine would not 

desorb from the bead once the concentration gradient was reversed (i.e. adsorbed cytokine within 

the bead, no cytokine in the bulk reservoir).  The current experiment directly tested this 

hypothesis by performing a standard in vitro cytokine capture, followed by elution using serum 

without spiked cytokine, and measurement of desorbed cytokine in the reservoir over time. 
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B.1 METHODS 

A standard in vitro IL-6 capture experiment was performed as previously described.  Briefly, a 

column was packed with 1.5g CytoSorb beads, and flushed with PBS.  IL-6 was spiked in horse 

serum, and recirculated through the column for 4hr at a flow rate of 0.8ml/min.  Aliquots were 

removed from the reservoir periodically and quantified for IL-6 concentration using ELISA.  

After the last time point, the reservoir was switched to horse serum without any spiked IL-6, and 

the serum solution was recirculated for an additional 4hr.  Reservoir aliquots were sampled after 

the first pass of serum through the IL-6 loaded column, and then periodically throughout the 4hr 

experiment. 

B.2 RESULTS 

Capture/desorption results are illustrated in Fig. 51.  IL-6 is removed from the reservoir 

throughout the first 4hr of the experiment, as expected.  However, once the reservoir was 

switched to serum without IL-6, negligible amounts of IL-6 were detected in the reservoir for the 

remainder of the experiment.  This result suggests minimal desorption of IL-6 from the sorbent 

beads after the IL-6 concentration gradient was reversed. 
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Figure 51:  Standard IL-6 recirculation capture in horse serum, followed by elution with horse serum 

(no IL-6).   

B.3 DISCUSSION 

Results from this study demonstrate that IL-6 adsorption within the sorbent beads can be 

considered an irreversible process under the experimental conditions presented.  Physical 

adsorption is an equilibrium state whereby solute adsorption/desorption is dictated by the 

concentration gradient between adsorbed and free species, and affinity between the solute and 

surface.  However, hydrophobic interactions between proteins and a highly hydrophobic surface 
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(polystyrene-divinylbenzene) include complexities not assumed under a general Langmuir-type 

adsorption isotherm.  Protein adsorption on hydrophobic surfaces is often accompanied by 

protein unfolding and spreading along the surface to form a minimal energetic state.  The 

required energy to subsequently desorb the unfolded protein is likely much greater than available 

by simply reversing the solute concentration gradient.  Results from this study suggest that 

cytokines adsorb to the hydrophobic polymer surface, and remain bound under clinically relevant 

conditions.  Although this phenomenon was not tested in vivo, results using whole blood would 

likely not differ from those observed here.      
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