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Key to advancing stem cell utilization in regenerative medicine and cell-based therapies is the 

development of systems to expand cells to clinically relevant numbers while maintaining the 

desired stem cell phenotype. Mathematical growth models play an important role in developing 

standardized systems, as they are both predictive tools for expansion potential and tools to 

describe current kinetic parameters of a stem cell population. One disease that may benefit from 

cell therapy is Duchenne Muscular Dystrophy (DMD), a muscle disease characterized by the 

lack of dystrophin expression at the sarcolemma of muscle fibers resulting in muscle fiber 

necrosis and muscle weakness. While transplantation of normal myoblasts into dystrophin-

deficient muscle can restore dystrophin, the use of muscle-derived stem cells (MDSC) has 

enhanced the success of cell transplantation. For these reasons, muscle stem cell isolation and the 

development of transplantation techniques have garnered increased attention recently. One 

limitation of MDSC use is the few numbers of cells available from a muscle biopsy, thus 

presenting the requirement for in vitro expansion. The overall goal of this study was to provide a 

thorough quantitative examination of the expansion of MDSC populations. In this project, an 

imaging system was established to analyze stem cell expansion. The applicability of this system 

was demonstrated in MDSC expansion with cytokine stimulation. It was found that accounting 

for the proliferative heterogeneity that exists in stem cell populations would allow for more 

accurate estimations of kinetic parameters. Next, a more sophisticated imaging system was used 

to further develop an automated system for analysis of MDSC proliferation and behavioral 

characterization. Finally, an understanding of the limits of expansion was explored. The role of 

long-term expansion on stem cell phenotype and regeneration capacity was examined to consider 

the issue of quantity vs. quality of muscle-derived stem cells.  This study provided a systematic 

method for assessing expansion and an in-depth investigation into the natural progression of 

stem cell expansion. It is expected that these findings will provide a biological understanding of 
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the limits of expansion and a foundation for more standardized methods of expansion of MDSC 

as MDSC are advanced to a clinical setting. 
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1.0 INTRODUCTION 

1.1 STEM CELLS AS REAGENTS OF CELL THERAPY AND TISSUE 
ENGINEERING 

Numerous diseased and injured states would presumably benefit from the presence of a cell 

population that can both repopulate and differentiate to functional organ-specific cells. While 

this potential is already the reality of bone marrow transplantation, researchers continue to 

discover stem cells in mature tissues and demonstrate the potential ability of the cells to 

differentiate into multiple lineages. One stem cell that displays such promise is the recently-

isolated muscle-derived stem cell (MDSC). Indeed, evidence supporting the existence of MDSC 

has emerged concurrently—and in part, through—investigations to improve myoblast cell 

transplantation for treatment of muscular dystrophies. Specifically, the potential for MDSC-

based therapy for musculoskeletal injuries, as well as for cardiac and smooth muscle injuries, is 

currently under investigation. This section will also highlight the challenges of utilizing stem 

cells for the overall cell-mediated and tissue engineering applications.  

1.1.1 Basic Biology of MDSC 

1.1.1.1 Characterizing The MDSC As A Stem Cell 

Adult stem cells are defined by two major functions: multilineage differentiation and self-

renewal. These functions are evident in the key role that the stem cells play in development and 

regeneration of specific tissues.   

 

Multilineage Differentiation 

The hierarchy of multilineage differentiation leads to the terms totipotential, pluripotential, 

multipotential, progenitor, and precursor cells. In the earliest stages of development, the 

totipotential zygote and early blastocyst cells give rise to a fully differentiated adult organism. 

Just a few divisions into development, totipotency is lost. At this stage, pluripotential cells are 

present and give rise to cells of all three germ layers; however, the pluripotent cell is no longer 
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capable of giving rise to an entire organism. Germ layer-specific multipotential cells emerge later 

in development and are present in the adult tissues to repopulate and regenerate in response to 

environmental cues. The organ-specific progenitor and precursor cells give rise to a mature 

tissue-specific cell [1].   

 

Evidence of MDSC Multilineage Differentiation 

The mature functional cell of skeletal muscle, the multinucleated myofiber, is surrounded by 

satellite cells that lie outside the sarcolemma, but within the basal lamina. In 1961, Mauro first 

described these satellite cells, which appear to be committed precursor cells, based on their 

location and morphology [2]. The implantation of radiolabeled satellite cells led to the 

understanding of their important role in muscle regeneration [3]. Satellite cells in adult muscle 

remain quiescent until external stimuli trigger re-entry into the cell cycle. Their progeny, 

myoblasts, fuse to form new multinucleated myofibers [4-7].  Cell surface markers associated 

with the satellite cell phenotype, either in the quiescent or activated state, have attempted to be 

elucidated and include: M-cadherin, c-met, and CD34 [6, 8-11].   

 

More recently, evidence supports the existence of a population of multipotential MDSCs able to 

differentiate into other mesodermal cell types. A population of cells, isolated from avian and 

mammalian skeletal tissue using a freeze-thaw procedure, was capable of differentiating into 

muscle, fat, bone and cartilage when stimulated in vitro with the synthetic glucocorticoid, 

dexamethasone [12-15].  More recent characterization of human MDSCs, using the same 

technique, has identified the expression of CD13 and MHC-1, and to a lesser extent CD10 and 

CD56, on these cells [16]; also noted was the lack of hematopoietic marker expression, including 

CD45. These cells were named mesenchymal stem cells based on their potential derivation from 

mesenchymal connective tissue their ability to differentiate into the mesodermal phenotypes.  

For clarity, it should be noted that a population of bone marrow stromal cells has also been 

termed mesenchymal stem cells, referring to their differentiation potential.  Marrow- derived 

mesenchymal stem cells have been described as expressing the proteins SH2, SH3, CD29 CD44, 

CD71, CD90, CD106, CD120a and CD124 [17].  It is not clear if these two populations are the 

same, distinct, or represent different stages of maturation of the same lineage.   
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In vivo studies have also shown that muscle-derived cells can differentiate into mesenchymal 

tissues, functionally regenerating bone and muscle, as well as play a role in cartilage healing.  

Bone-morphogenetic protein 2 (BMP-2) has been identified as an inducing agent that can trigger 

the conversion of the myoblast to the osteogenic pathway[18].  Since this discovery, several 

researchers have transduced murine candidate MDSCs with an adenovirus encoding for BMP-2, 

and transplanted the cells into an allogenic host to demonstrate bone matrix formation and 

cellular differentiation into osteoblasts and osteocytes [19-21]. Genetic engineering of the 

muscle-derived cells provided an effective cellular therapy in healing a critical-size skull bone 

defect [19].  Additionally, muscle-derived cells can induce cartilage healing when seeded onto 

collagen gel scaffolds and placed into a full-thickness cartilage defect [22].  With regard to 

hematopoietic differentiation, muscle-derived cells transplanted into lethally irradiated mice have 

been shown to reconstitute the hematopoietic system [23, 24].  In vitro experiments have 

demonstrated that expression of the transcription factor Pax7 is required for cellular 

differentiation of a specific MDSC population towards the myogenic pathway (satellite cells) 

[25]. It has also been shown that a MDSC population derived from a Pax7-/- animal demonstrated 

a 10-fold increase in hematopoietic colony formation and a limited ability to form skeletal 

muscle cells[25]. This finding suggests that satellite cells and MDSCs are distinct populations. 

Current thinking regarding the multilineage differentiation capability of MDSCs is shown in 

Figure 1.1 [12-14, 19, 23, 26-30] (adopted from [31]). 

 

 

3 



 

 
Figure 1.1 Multilineage Differentiation Of Cell Populations Derived From Skeletal 

Muscle.  

Isolation and identification of stem cell populations is dependent upon specific markers, usually 

exclusive proteins or characteristic profiles of surface proteins. One of the most well-defined 

stem cell populations is the mouse multipotential hematopoietic stem cell (mHSC), which can be 

identified by a characteristic marker profile (Sca-1-positive, c-kit-positive, hematopoietic lineage 

markers-negative) [32-34]. To date, only Sca-1 has been consistently identified on the putative 

MDSC [19, 23, 24]. 

 

Self-Renewal 

The second defining characteristic of a classic stem cell is its self-renewal ability. In tissues in 

which stem cell function is essential, homeostasis is maintained by balancing any tissue loss (due 

to injury or apoptosis) with repopulating organ-specific cells, while at the same time preserving 

the ability of the tissue to undergo future rounds of re-population.  It is believed that asymmetric 

cellular divisions occur such that the stem cell gives rise to one cell destined for differentiation 

and one renewed stem cell. An alternative possibility is that individual cells of the stem cell 
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population respond stochastically by either differentiating or self-renewing. With either 

mechanism, self-renewal of stem cells is accomplished. Generally, the majority of stem cells of 

adults remain quiescent and a small proportion satisfies the needs of normal tissue turnover. 

 

Evidence of MDSC Self-Renewal 

Baroffio et al and Blanton et al have observed that myogenic populations are heterogeneous in 

their ability to self-renew, as some cells have a reduced tendency to differentiate toward the 

myogenic lineage [35, 36].  In a competitive repopulation assay, Jackson et al reconstituted the 

hematopoietic compartment using a population of muscle-derived cells that were positive for c-

kit and stem cell antigen 1 (Sca-1); murine hematopoietic stem cell markers. In the classic 

demonstration of self-renewal, bone marrow isolated from the first rescued animal was shown to 

be capable of rescuing a second lethally-irradiated animal, achieving complete multilineage 

engraftment of the hematopoietic compartment [24].  

1.1.1.2 Satellite Cell or Novel MDSC  

While embryonic stem cells may be identified based on the expression and lack of expression of 

certain markers, stem cells from mature tissues (perhaps with the exception of the hematopoietic 

stem cell, HSC) continue to be defined and identified based on their multipotent and self-renewal 

capabilities. 

 

The satellite cell has long held the title of the muscle cell that is responsible for supplying new 

nuclei to regenerating myofibers while maintaining itself as a reserve population. The satellite 

cell was originally identified histologically based on its location beneath the basal lamina; later, 

it was functionally defined as the cell responsible for differentiation to myoblasts that fuse to 

form myofibers. More recently, it has been questioned whether this cell or a newly identified 

MDSC is also responsible for the multilineage differentiation to other mesodermal tissues. Using 

a variety of isolation techniques, researchers have obtained cells from skeletal muscle digest that 

are able to differentiate to myogenic, hematopoietic, osteogenic, adipogenic, chondrogenic, 

neural and endothelial cell types [12-14, 19, 23, 26-30] (Figure 1.1). Importantly, these MDSC 

appear to have distinct marker profiles as compared to satellite cells. Expression profiles for 

satellite cells vary depending on the activated state, and this profile is subject to change with the 
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degree of differentiation. The marker consistently identified with the satellite cell, whether 

activated or quiescent, is the Pax-7 transcription factor [25]. Stem cell antigen 1 (Sca-1) and 

cluster differentiation 34 (CD34) are the markers most frequently used to characterize the 

MDSC, although Sca-1 expression is the only marker consistently identified on the multipotent 

cells. Further substantiation of the MDSC population’s identity is provided by the inability to co-

localize Pax-7 satellite cells and Sca-1 positive cells [37] or m-cadherin satellite cells and Sca-1 

cells [26]. Although these results suggest that MDSC represent a different cell population than 

satellite cells, it remains unknown whether these Sca-1 [+] cells represent a different stage of 

maturation of the satellite cell. 

 

While satellite cells do appear to possess self-renewal and multilineage differentiation 

capabilities, which identify them as a type of stem cell, MDSC have a broader range of 

multilineage capabilities. Asakura et al. demonstrated that primary satellite cells, expressing the 

myogenic markers MyoD, Myf5, desmin and Pax 7, could differentiate into myogenic, 

osteogenic and adipogenic lineages [38]. This stem cell activity has also been established by the 

C2C12 myoblast cell line [18]. In a further demonstration of stem cell plasticity, MDSC 

expressing Sca-1 and CD34 to various degrees have functionally differentiated toward several 

mesodermal cell types, including all types of blood cells, osteogenic cells, and possibly neural 

and endothelial cells [19, 23, 26, 27]. This broader range of multilineage differentiation suggests 

that MDSC may be predecessors to the more restricted satellite cells or represent 

developmentally-distinct stem cells.  

1.1.1.3 Origin Of The MDSC  

Current studies have examined both the embryonic origin and the immediate mature-tissue origin 

of the MDSC and SP (the multipotent “side population” isolated by FACS using Hoechst efflux). 

During embryogenesis, skeletal muscle development is the result of somite condensation of 

dorsal paraxial mesodermal cells. All skeletal muscle derives from myogenesis of the three 

somitic compartments: the dermomyotome, myotome and sclerotome. Several signals including 

sonic hedgehog (Shh), Wnt, noggin and bone morphogenic proteins (BMPs) have been identified 

in spatio-temporal somite patterning that ultimately leads to expression of differentiated muscle 

cell markers and transcription factors such as Pax-7, myogenic regulatory factor 5, Myf-5 and 
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MyoD [39]. A combination of recent evidence suggests that postnatal precursor satellite cells 

(and MDSC) may derive independently from murine fetal and embryonic myoblasts. The 

fraction of muscle-derived stem cells is not affected in Pax7 knockout mice, suggesting that the 

absence of Pax7 satellite cells does not affect development of MDSC [25]. De Angelis et al. 

demonstrated that satellite-like cells could be derived from the dorsal aorta and co-express both 

myogenic (myoD, myf5, c-met) and endothelial markers (VE-cad, VEGF-R2, CD62P, CD11b, 

CD61) [40]. Surprisingly, these same endothelial markers have been found on adult-derived 

satellite cells. In addition, capillary endothelium of isolated muscle fibers express Sca-1 [37], 

which, as mentioned previously, is the only marker consistently found on MDSC [19, 23, 26, 

27]. It will be interesting to determine if the Sca-1 endothelial cells are part of the lineage that 

includes both MDSC and satellite cells.  

 

Some confusion exists regarding the possibility that MDSCs are a subpopulation of the satellite 

cells that have been described for years.  Investigation of the sp population, described earlier, is 

supportive of a clear distinction between conventional satellite cells and MDSCs.  A difference 

between the sp cells and satellite cells was confirmed through the differential expression of the 

transcription factor Pax7.  Pax7-/- mice demonstrated a complete absence of satellite cells, 

whereas the number of sp cells obtained from these mice was unaffected.  Together, the results 

are suggestive of a model in which the sp cells represent satellite cell progenitors, with Pax7 

expression signaling commitment to the myogenic lineage[25].  This is in agreement with 

observations regarding the satellite cell positioning of sp cells within dystrophin-expressing 

fibers following intravenous delivery in the mdx host [23].  Considerable room for overlap with 

the previously described model is possible. Considering that Pax7-/- mice display normal-

appearing skeletal muscle implies that embryonic myoblast and muscle development may occur 

independently of satellite cell development [11, 25].  However, the definitive origin of the sp 

cells is currently unknown. 

 

There is also a question now of whether the adult multipotent muscle-derived cells are of 

hematopoietic origin. Isolation of the cells from muscle traditionally involved the exclusion of 

hematopoietic cells as recognized by the CD45 marker. Indeed, Jackson et al. [24] reported that 

the FACS-sorted muscle-derived cell with the capacity for hematopoietic reconstitution was 
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CD45[-]Sca-1[+], while our research group similarly found that a preplate-derived CD45[-]Sca-

1[+] population was capable of multilineage differentiation [19, 26]. Recently, Kawada and 

Ogawa have shown that the CD45 [+] population present in a population of heterogeneous 

muscle mononuclear cells is responsible for the hematopoietic reconstitution, while the CD45 [-] 

fraction is primarily responsible for the myogenic differentiation [28]. They suggest that the 

MDSC that hold hematopoietic differentiation potential are of bone marrow origin. These results 

were further supported by the McKinney-Freeman study, which demonstrated that the muscle 

cell population previously reported to express CD45 [-] and to be capable of hematopoietic 

differentiation [24] appears to change with culture conditions, and it is the CD45[+] fraction that 

displays hematopoietic reconstitution capabilities [29]. It is clear that the relationship between 

hematopoietic stem cells and muscle-derived stem cells requires further investigation. 

1.1.1.4 Comparison Of Muscle-Derived Stem Cells To Marrow And Hematopoietic Derived 

Stem Cells  

The well-studied hematopoietic stem cell (HSC) has provided many lessons for the 

characterization and isolation of the muscle-derived stem cell. Several similarities in their stem 

cell behavior and phenotypic profile have led researchers to adopt parallel approaches to 

understanding and exploring the potential benefits of these cells.  

 

Extensive investigation of HSCs and marrow-derived stem cells has shown that these cells 

indeed demonstrate key characteristics of stem cells, namely self-renewal capability and 

multilineage differentiation[41-47]. As outlined above, MDSCs appear to have similar roles. In 

addition to functional similarities, HSCs and MDSCs share common morphological and 

adherence characteristics. Muscle-derived stem cells from a primary isolation are relatively 

small, round and non-adherent. Indeed, isolation techniques, such as the preplate technique, have 

utilized these features to purify the slowly adherent cells from non-myogenic cells [27, 48]. The 

freeze-thaw technique used by Young et al also purifies for a population of small, low adherent 

cells (< 20 µm) [13]. Flow cytometric characterization of MDSC [49] obtained via the preplating 

process has revealed the purification of subpopulations displaying cell surface proteins, Sca-1 

and CD34; similar to those used to characterize hematopoietic stem cells [50-54]. Further, a 

fluorescence-activated cell sorting method, used to isolate a bone marrow ‘side population’ (sp) 
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with hematopoietic reconstitution capacity [51], has been applied to skeletal muscle to isolate a 

population of sp cells as recognized by Hoechst dye 33342 efflux. These muscle-derived sp cells 

that demonstrated myogenic capacity were also shown to be capable of reconstituting the 

hematopoietic lineage of irradiated hosts, yet displayed a different set of surface antigens than 

their marrow-derived counterparts (most notably lacking c-kit, CD45 and CD43) [23]. 

 

As with HSC, varying isolation techniques and the lack of a commonly accepted set of 

identifying proteins, or markers, has made direct comparison of the various MDSC populations 

described by different researchers difficult.  This is compounded by the fact that many of the 

markers, particularly surface proteins, may be differentially upregulated or downregulated in 

vitro, possibly due to such factors as culture conditions.  Characterization of surface markers is 

now performed in a similar manner to that used to identify HSCs, leading to more definable 

populations. A summary of the defining characteristics of recently isolated MDSC populations is 

presented in Figure1.1.  It is convenient to separate the findings based upon the isolation 

technique used: fluorescence-activated cell sorting versus culture techniques. 

1.1.2 Clinical Application Of MDSC To Cellular Therapies 

The most thoroughly investigated use for MDSC is for muscular dystrophy, in particular 

Duchenne Muscular Dystrophy (DMD). MDSCs also have been evaluated as a potential gene 

delivery vehicle for bone healing, cardiac tissue repair and, most recently, urinary incontinence. 

Several features of the MDSC, including its multipotentiality and apparent immuno-protection, 

make it a potentially attractive component of a cell therapy system. 

1.1.2.1 Cell Transplantation, Gene Therapy and the Treatment of Muscular Dystrophy 

Duchenne muscular dystrophy (DMD) is a harsh X-linked muscle disease characterized by 

progressive muscle weakness due to the lack of dystrophin expression at the sarcolemma of 

muscle fibers [55-58]. This lack of dystrophin in the muscle disrupts the linkage between the 

subsarcolemmal cytoskeleton and the extracellular matrix, resulting in muscle fiber necrosis and 

progressive muscle weakness [59, 60]. The interruption of the integration of the cytoskeleton 

with the extracellular matrix via the dystrophin associated proteins (DAPs), and further renders 

the muscle fiber more susceptible to damage after contraction. Despite extensive investigation of 
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various approaches to dystrophin delivery in dystrophic muscle (e.g., cell and gene therapy), as 

of yet there is no treatment to alleviate the muscle weakness resulting from this common 

inherited muscle disease.  

 

Skeletal muscle would appear to be a good target for gene therapy using recombinant proteins 

delivered directly or with a myogenic cell vehicle. Skeletal muscle, representing 10–40% of the 

body’s weight, is highly vascularized tissue and may be an ideal target for systemic 

dissemination of therapeutic genes to the injured muscle as well as to a variety of other organs. 

However, direct gene transfer or non-cell-based approaches have achieved varying degrees of 

success using plasmid DNA, adenovirus (AV), adeno-associated virus (AAV), retrovirus (RV) 

and herpes simplex virus type 1 (HSV-1) vectors to stably express therapeutic proteins in skeletal 

muscle while achieving regulated and tissue-specific expression. One major limitation of this 

approach is the inability of some vectors to infect nondividing myofibers. Transfection with 

complex DNA liposomes has resulted in low toxicity and immunogenecity, but also a low 

efficiency of transfection in myotubes [61]. Furthermore, the retrovirus requires mitotically 

active cells for transfection and results in poor transfection of post-mitotic myofibers. It has been 

suggested that the poor adenoviral transduction of myofibers may be due to the inability of the 

virus to penetrate the basal lamina [62] or to the downregulation of viral receptors [63]. HSV-1 is 

both cytotoxic and immunogenic, and its use is also limited by vector penetration of basal lamina 

[64]. In an even more novel direct approach, Rando et al. have used RNA/DNA oligonucleotides 

or chimeraplasts to induce single point mutations in the mdx model, effectively correcting the 

point mutation of the dystrophic animal [65]. Although the 1–2% conversion efficiency was low, 

it remained stable after 10 weeks. 

 

The goal of the ex vivo gene therapy approach is to transfer the 14 kb dystrophin cDNA to 

autologous cells, removed via biopsy, and then engraft the genetically-engineered cells back into 

the same patient (Figure 1.2, [31]). Several reports suggest that the ex vivo approach may 

improve gene transfer efficiency and long-term persistence as compared with direct gene transfer 

[66]. By selecting in vitro for transduced cells, transfer efficiency may be maximized; by 

utilizing stem cells or long-term proliferating cells, continued and stable expression is expected. 

In comparing transduction efficiency of AV vectors containing the full-length dystrophin gene, it 
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was observed that AV vectors resulted in a greater than 5-fold increase in transduction efficiency 

when using the cell-mediated approach with autologous or isogenic cells as compared to direct 

delivery [66]. 

 

 

 
Figure 1.2 Schematic Of Cell Therapy Using MDSC 

 

Initial studies examined allogeneic transplantation of normal myoblasts into dystrophic muscle. 

In this application, the dystrophin gene is expressed in the normal cell and therefore no foreign 

vectors or viral proteins are required, which also eliminates concerns regarding high titer level 

requirements. In an early study, Rando and Blau purified primary myoblasts and transduced 

them to express the β-galactosidase marker for up to 6 months following implantation [67]. 

Primary myoblasts also were engineered to express therapeutic genes and displayed stable levels 

of the recombinant proteins in the engrafted muscle [68, 69]. Overall, the se early studies found 

that transplantation of normal myoblasts into dystrophin-deficient muscle could create a 

reservoir of normal myoblasts capable of fusing with dystrophic muscle fibers and restoring 

dystrophin [23, 48, 70-92], and thereby enable transient dystrophin delivery and improved 
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strength in the injected dystrophic muscle. Subsequent clinical trials using allogeneic myoblasts 

to deliver dystrophin to DMD patients resulted in safe, transient restoration of the protein; 

however, serum antibodies against the transplanted cell antigens for dystrophin were detected, 

and the poor success was attributed, at least in part, to immune-rejection [79, 84].  

 

Autologous transplantation would be expected to minimize the immune response and graft 

rejection observed with allogeneic grafts. Isogenic murine myoblasts transduced with 

adenovirus, retrovirus or HSV-1 have demonstrated stable gene transfer to skeletal muscle [66, 

93-95], although some immune response against the injected cells still was observed [66]. 

Myogenic progenitor cells became an attractive gene delivery vehicle when it was observed that 

genetically-engineered precursor cells from an mdx animal could enhance muscle regeneration 

and deliver dystrophin using retroviral [19] and plasmid nonviral [96] systems. Beauchamp et al. 

have suggested that the long-term engraftment observed with myoblast transplantation is due to a 

discrete subpopulation with stem cell-like characteristics [75]. More recently, the allogeneic use 

of these muscle-derived stem cells (as compared with satellite cells) has demonstrated that their 

stem cell characteristics, including their ability to differentiate into neural and endothelial cells, 

may play a role in the long-term engraftment and dystrophin delivery (3 months). It is clear that 

the immune-privileged behavior may also play a role in the long-term persistence of dystrophin 

restoration within the muscle of mdx mice [26]. The potential of these muscle-derived cells is 

beginning to be explored in the non-skeletal muscle applications discussed below. 

1.1.2.2 Bone Healing 

A variety of skeletal injuries and disease, including fracture non-union, skeletal reconstruction, 

implant stabilization, and osteoporosis would benefit from the ability to stimulate bone 

formation. Research in this field has often taken a tissue engineering approach to replace the 

structural tissue. As such, the effort to enhance bone regeneration has focused on both the 

material scaffold and the cellular delivery system. While efforts are being made to engineer 

material to release osteoinductive factors in the damaged environment, the most controllable 

system appears to be cellular delivery. Bone formation resulting from MDSC-mediated gene 

therapy was significantly greater than that obtained following direct BMP-2 (bone morphogenic 

protein-2) delivery at 4 weeks post-implantation [97]. Human muscle-derived cells transduced 
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with a human recombinant bone morphogenic protein-2 (rhBMP-2) have been shown to be 

capable of stimulating the in vivo biological activity of osteogenesis as recognized by 

osteocalcin synthesis and calcium phosphate deposition [98]. Experiments with MDSC 

transduced with both BMP-4 and vascular endothelial growth factor (VEGF) have demonstrated 

synergistic effects of the factors, resulting in promotion of both angiogenesis and osteogenesis 

[99].  

1.1.2.3 Cardiac Repair 

Ischemic heart disease and dysfunctional cardiac muscle would benefit from treatments that both 

restore myogenic cells and deliver therapeutic proteins. Results from myoblast- and satellite cell-

mediated therapy demonstrate that myogenic cells from a skeletal muscle biopsy can be 

successfully engrafted into cardiac muscle [100, 101]. In a preliminary proof-of-concept study, 

Sakai et al. have shown that retrovirally-transduced MDSC delivered to cardiac muscle exhibit 

high level of transgene expression using the β-galactosidase marker [102]. Further studies from 

our research group will examine MDSC-mediated gene transfer in an ischemic model as well as 

within a cardiomyopathic model and compare the results with normal satellite cells. 

 

1.1.2.4 Urological Dysfunction  

Urinary incontinence can result from sphincter muscle deficiency and impaired contractility. 

Although this tissue is composed of smooth muscle under the control of parasympathetic neural 

pathways, skeletal muscle-derived stem cell therapy may augment sphincter function. In a recent 

experiment, Yokoyama et al. compared the ex vivo delivery of β-galactosidase-labeled 

autologous muscle-derived cells to direct injection of bovine collagen as a bulking agent for the 

bladder and urethral wall, and they observed a significant persistence of MDSC-mediated gene 

delivery 30 days post-implantation [103, 104]. Recent evidence suggests that by 2 weeks post-

implantation, the MDSC begin to differentiate toward smooth muscle cells and, importantly, 

improve the contractility of the bladder; in addition, long-term gene delivery is observed for up 

to 6 months post-implantation [105]. 
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1.1.3 Limitations Of Stem Cells In Cell-Therapy Applications 

While stem cell-mediated gene therapy has had some pre-clinical success, these types of 

treatments are not without limitations. On the most basic level, our understanding of the muscle-

derived stem cells is greatly limited. From isolation to culture to transplantation/delivery, the 

fundamental characterization of the stem cells will better prepare us for future clinical 

applications.  

1.1.3.1 Heterogeneity in Phenotype, Identification and Isolation. 

The heterogeneity of cells constituting the stem cell population, as they are isolated today, 

continues to limit efforts to elucidate the phenotype(s) of the cells that are responsible for the 

multipotent and self-renewing behaviors. Indeed, until we have a grasp of how to control these 

processes, we can expect that cells in the population will proceed to various states of 

differentiation either by some default mechanism or due to the culturing conditions. The question 

concerning how to maintain the stem cell phenotype will represent the holy grail. We can expect 

that the answer will be revealed through our efforts to understand which signals (or lack of 

signals) are required to achieve a desired differentiated state.  

Several groups have previously demonstrated muscle-derived cell heterogeneity in both marker 

profile expression and behavioral phenotypes, with these properties resulting in differential 

isolation and transplantation efficiencies [75, 106]. CD34 expression on MDSC has been a focus 

of researchers in the stem cell field, as HSC are readily isolated from bone marrow, peripheral 

blood and cord blood using this marker. However, the utility of this marker for identification and 

isolation of MDSC is not conclusive [37, 49] (Figure 1.1). While the preplate technique separates 

quickly adherent cells from slowly adherent cells, the muscle-derived stem cells constituting the 

slowly adherent population remain heterogeneous in both marker and behavioral phenotypes 

[1,44] Jankowski et al. have demonstrated a link between heterogeneity in CD34 phenotype and 

heterogeneity in proliferation and differentiation behavior. Researchers from our research group 

have shown that the slowly-adherent MDSC, had variable expression of CD34 (25%) and Sca-1 

(58%) when cultivated in vitro [49]. They next showed that a pure, sorted population of CD34 

[+] cells had significant differences in proliferation and differentiation that resulted in improved 

transplantation efficiency in skeletal muscle as compared to CD34 [-] cells isolated from the 

same population of muscle-derived stem cells [106]. Interestingly, the study also indicated that 
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the CD34 [-] phenotype could not be maintained under normal culture conditions, as the culture 

tended to re-establish a CD34 [+] population [106].  Moreover, it cannot be stated with certainty 

that the small degree of MDSC differentiation toward the neural or endothelial lineages, albeit 

remarkable, is not due to a minority cell fraction that exists within the MDSC population. 

Likewise, the muscle side population (MuSP), which differentiates to hematopoietic lineage, has 

been shown to be heterogeneous both at the time of isolation and after culturing. While it was 

originally suggested that the CD45 [-] cells of the SP were responsible for the hematopoietic 

differentiation [24], it was recently shown that the CD45[+] population is actually responsible for 

this phenomenon [28, 29]. 

Because most purification techniques are not able to isolate a phenotypically- defined population 

free of any contaminating cells, we must return to clonal assays to answer these questions 

(regarding the phenotype responsible for stem cell behavior). At this level, one begins to 

recognize the importance of understanding population dynamics that are involved in 1) 

heterogeneity of phenotype, 2) cell culture conditions and 3) isolation, and identification (Figure 

1.3, [31]). It is obvious that the problem of heterogeneity in stem cell populations leads to 

difficulties in identifying the phenotype that is responsible for the stem cell behavior and the 

optimal culture conditions for maintaining the phenotype. Reciprocally, the lack of definitive 

markers for isolation and culture-dependent phenotypic changes lead to heterogeneity. Inherent 

tendencies of the stem cells to differentiate and the associated signaling cascades will also yield a 

heterogeneous population that makes correlation of phenotypic and stem cell-functional 

identification a challenge.  
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Figure 1.3 Challenges in Stem Cell Utilization 

 

 

Another level of complexity arises when we consider that developmental organogenesis is the 

result of the temporal-spatial interactions of many different cell types under the influence of 

various cytokines/growth factors that influence cell behavior in a time- and dose-dependent 

manner. We must understand the intricacies that will be involved in determining the correct 

combinations of cell types that are necessary to regenerate the tissue. In particular, when cell-

mediated gene therapy is to be used in conjunction with tissue engineering for regenerative 

medicine, it is necessary to remember that tissue regeneration is not as simple as cell 

differentiation into a single cell type.  

1.1.3.2 Vector Efficiency and Regulation.  

If the muscle-derived stem cells are to be used in an autologous manner, as in the case of DMD, 

they will need to be genetically engineered to express the therapeutic genes (dystrophin). 

Determination of the best vector system must be a key research goal. A concern is the ability of 

the various vectors to transfect cells at different states in the cell cycle. Indeed, one advantage of 

the ex vivo system as compared to the direct in vivo system is that the large majority of the 
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cultured cells is mitotically active as compared to the post-mitotic myofibers. For example, 

adeno- and adeno-associated viruses are able to transduce dividing and non-dividing cells, do not 

integrate with host DNA and thus eliminate the risk of insertional mutagenesis. Moreover, the 

transient transgene expression observed with AV appears to be overcome with AAV. Packaging 

size, however, now becomes an issue since AAV has an insert capacity of only 4.6 kb. 

Investigators have attempted to circumvent this problem by creating and successfully delivering 

mini- and micro-dystrophin genes inserted into AAV [107, 108]. Remarkably, Harper et al. 

observed that microdystrophins in AAV appear to be sufficient to reestablish normal morphology 

and histology and, importantly, to protect the muscle against damage.  

 

Regulation of transgene expression is necessary to control both the timing and levels of the gene 

product, as well as the cell types which express the transgene. Ozawa et al. suggest that an ideal 

regulatable system should be 1) specific, 2) efficient, 3) dose-dependent, 4) non-immunogenic 

and 5) non-toxic [109]. While the tetracycline system is widely used, other systems such as 

ecdysone, RU486 and FK506/rapamycin also display many of these features[110]. AV and AAV 

vectors, as described above, are able to transfect several different cell types. In the case of 

accidental release of the virus following in vivo delivery, uncontrolled infection of ‘healthy’ cell 

types could result in ectopic transgene expression. This concern has motivated attempts to place 

the transgene under the control of cell- or tissue-specific promoters. Muscle creatine kinase[111] 

and α-skeletal actin [112] promoters have been used to restrict the transcription of vectors to 

muscle tissue. 

1.1.4 Summary 

In summary, the key features of the stem cell as a reagent in cell and tissue engineering include 

1) the ability to give rise to like progeny, 2) the long-term proliferation, 3) the multipotentiality 

that enhances the cell’s integration into organs comprising multiple cell types and 4) the potential 

immune-privileged status. Although the relationship of the MDSC to hematopoietic and 

mesenchymal stem cells is still being investigated, the potential use of these cells in several 

applications is clear as is illustrated with musculoskeletal, cardiac and urological smooth muscle 

applications. An increased understanding of the basic mechanisms that control the attractive 
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characteristics of MDSC and the signals responsible for their proliferation and differentiation 

should be the foremost goal of research focused on optimal utilization of these cells.  

1.2 STEM CELL EXPANSION 

Cell therapies will require that the cells be expanded prior to therapeutic use. In addition, basic 

investigations into stem cell biology often require large numbers of cells. Complicating this is 

the fact that the cells often represent a small proportion of the tissue as compared to somatic 

cells. One estimate suggests that MDSC represent 1 in 105 cells from a skeletal muscle biopsy.   

It is necessary that expansion systems be developed to enable both basic investigations and 

clinical applications. 

1.2.1 Controlling Stem Cell Phenotype 

Understanding mechanisms of cell fate determination is crucial to developing bioreactor systems 

to expand the cells to clinically relevant numbers. Expansion of the undifferentiated stem cell 

phenotype is one of the most challenging aspects in stem cell research. To suggest that efforts be 

focused on maintaining the undifferentiated phenotype implies that such phenotype is known. 

Often this is not the case. As discussed in the previous section, populations of cells, which 

contain stem cells, are heterogeneous populations, which also contains cells which are 

presumably not stem cells. This mixed population hinders efforts to identify the effective 

phenotype. Nonetheless, in theory, it is clear that expansion methods need to maintain the 

functional phenotypic profile. 

 

Ideally, stem cell differentiation and apoptotic pathways would be blocked while the self-

renewal pathway is stimulated. Which biochemical/mechanical regimens are required to do this 

are the focus of the majority of stem cell investigations. Both intrinsic and extrinsic stimuli play 

roles in regulating the molecular pathways which result in cells of various phenotypes. 

Differential intercellular localization and inheritance of molecular determinants result in 

asymmetric daughter cells with different fates [113-116]. It is proposed that such intracellular 

processes may be stochastic. On the other hand, the response of cells to the stem cell niche or 

microenvironment consisting of extracellular matrix including integrins, cytokines and various 
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cell types will be differentially regulated by the receptors on the cells and will stimulate stem 

cells to express alternative phenotypes [117-120].   

 

In addition to retaining the phenotype under expansion, attention also must be given to the long-

term potential of the cell. Stem cell populations are generally believed to have an extended 

replicative lifetime. As cell therapies propose that the advantage of stem cells is the ability of the 

cell to persist over a long time, it will be a concern that increasing cell numbers by increasing 

doubling rate may only increase the rate at which the population approaches senescence or 

perhaps transformation. Hence clinical protocols for stem cell therapeutics will require an 

understanding of the limits of expansion.  

1.2.2 Expansion Systems 

1.2.2.1 Bioreactors  

Currently, MDSC and other stem cells are grown in adherent flask cultures at defined densities. 

Often these densities are kept low to maintain phenotype. Concurrent with an understanding of 

regulation of stem cell fate, it will be necessary to grow cells at higher densities with the goal of 

efficiently obtaining reproducible batches of clinically usable stem cells.  

A number of large-scale bioreactors are available to provide a means to expand stem cells. From 

rotary cell culture systems, roller bottles, spinner flasks and perfused fixed bed to collagen 

microspheres these large surface-area systems aim to control the biochemical and mechanical 

environment as a standardized process, while generating sufficient numbers of defined cells for 

study, for antibody or virus production, or for growing 3-D tissue constructs.  

 

However, no FDA approval exists for expansion of stem cells for clinical use. Currently, bone 

marrow stem cell transplantation (BMT) is the only cell therapy being used in practice 

(hepatocyte transplantations are in clinical trials). BMT transplants benefit from the availability 

of donor recall, i.e. being able to obtain additional units if necessary. However as new cell 

therapies with limited cell sources are brought to clinic, expansion methods will need to be 

standardized and approved. Umbilical cord blood stem cells (UCB) use is one such therapy that 

may be likely to receive approval as the cells are currently in use as an alternative to BMT for 
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hematologic disorders, and Phase I/II and III trials are underway on the safety and efficacy of 

different expansion systems (Table 1, [121]).  

 

Nevertheless, it cannot be overemphasized the need to control the stem cell fate by controlling 

the microenvironment and the current lack of knowledge in this area for many stem cell types. It 

can be expected as well that much of the cell fate regulation that is learned in monolayer studies 

will need to be repeated and re-developed as cells in new 3-D biomechanical environments of 

bioreactors are likely to respond differently.  
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Table 1.1 Stem Cell Expansion System. Development towards Clinical Trials [121]. 
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Table 1.1 (continued) 



 

 

 

1.2.2.2  Modeling Expansion and Predicting Output 

Mathematical growth models will play an important role in developing such systems, as they can 

be both predictive tools for expansion potential as well as tools to characterize and measure 

current kinetic parameters of a stem cell population Proliferative heterogeneity is an important 

characteristic of stem cell populations which must be incorporated into models.  While 

asynchronous exponential growth often is used to model cell population dynamics, few cell 

populations behave in this way in vitro [122-125] or in vivo [126, 127]. Even tumorogenic cells 

behave nonexponentially [128-131]. Nonexponential growth is the result of nondividing cells 

present in the population. Biologically, the nondividing nature of these cells is attributable to 

quiescence, terminal differentiation, senescence or cell death, while mathematically it translates 

to a growth fraction, α, which is <1, and/or a death rate, µ, which is >0. Thus the population size 

at time t, N (t), depends directly on 1) the birth rate (which is a function of the cell cycle time), 2) 

the growth or mitotically active fraction and 3) the death rate. Mathematical models designed to 

describe nonexponential growth are the result of variations on these three themes.  

 

Early models of nonexponential growth recognized that it was necessary to account for the 

“lakes” of necrotic cells observed in the core of tumors [132, 133]. Tumor growth does not 

continue on an exponential path; rather, it reaches a plateau as cell death removes proliferating 

cells from the population [126]. Many of the early, ad hoc models used Gompertz or logistic 

distributions to describe the S-shaped curve [134, 135] which was typically due to space and 

nutrient deprivation. Gyllenberg and Webb [135] explained the Gompertzian tumor growth 

curves by using parameters to represent the rates of cells transitioning reversibly between the 

proliferative and quiescent states as a function of tumor size, thereby incorporating variable 

growth fraction. Reducing the number of model parameters, Izquierdo and Perez [136] described 

the quiescent or nonproliferating component as proliferating cells with “long” division times and 

a birth rate equal to 1. Other models have used the theory of age-dependent branching processes 

to account for changes in growth fraction or changes in cell division rate associated with cell age 

[137-139]. In similar vein Hayflick’s hypothesis of limited cellular lifespan may be incorporated 
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into models as a finite number of divisions [140] or a decreased doubling rate associated with 

time [141], such that cellular senescence is consequently modeled as a change in growth fraction. 

Even contact-inhibited cell growth has been modeled by including terms to describe the 

probability of a cell dividing as dependent on its position in 1-, 2- or 3-dimensional space [142] 

such that the proliferation rate, specifically the growth fraction, decreases as N increases and 

cells occupy more space.  

 

The Sherley model [143], based on difference equations, demonstrates growth of populations 

with asymmetric divisions that result in dividing cells and quiescent or senescent cells. This 

model is particularly well-suited for studying the expansion of all cell populations, as it does not 

make the logistic assumption of a saturation density that is associated with age or space-nutrient 

depletion. Stem cells require specific culture conditions to maintain the stem cell phenotype or 

self-renewing divisions; such populations often are maintained at a density well below any 

culture-induced carrying capacity. The Sherley model can be used to describe growth in 

“unrestricted” conditions. In addition to predicting long-term expansion, it provides useful 

parameters to describe the current behavior of the population. This model can be used to estimate 

division time, mitotic fraction or population doubling time, and therefore enables researchers to 

assess the behavior of a particular cell population under various culture conditions.  

1.2.3 Controlling stem cell aging 

The promise of stem cells in cell therapy and functional tissue engineering is quite clear. As 

described above, expansion methods will need to consider regulation of extrinsic and intrinsic 

biostimuli that lead to symmetric or asymmetric divisions, control of self-renewal and 

differentiation pathways, practical scalable culture systems, and mathematical models for 

prediction. Another layer of complexity results when it is considered, how the stem cell 

phenotype changes with extensive expansion or more generally with cellular aging.  

 

More than 40 years ago, Hayflick first reported that normal human fibroblasts undergo a limited 

number of divisions in vitro [144, 145], and it was concluded that the number of population 

doublings was ~50. Since then many investigators have similarly reported a finite number of 

population doublings for euploid cells in culture. On the other hand, the current thinking is that 

24 



 

stem cells have a unique proliferation potential that is several times greater than this number 

[146-149]. It has also been proposed that stem cells may possess unlimited or indefinite 

replicative potential. And indeed long-term proliferation potential is often used to characterize 

stem cells. 

 

It would appear that large numbers of cells could be generated by expansion of the stem cells. 

However, numerous studies in the field of cellular aging have shown that cells with a high 

replicative age, often have chromosomal mutations. Incomplete DNA replication at the telomeres 

(G-rich repeat units at the ends of chromosomes) leads to telomere shortening with each cell 

cycle. Once the telomeres reach a critical length, cellular senescence is reached. A number of 

other cellular degenerative changes are associated with serial propagation or aging of cells in 

culture including abnormal structures in the cytoplasm, changes in metabolism, loss of methyl 

groups and reiterated sequences from DNA, and reduction in replicative efficiency and growth 

rate [148]. In addition to the concern that such expanded and aged populations have reduced 

functional capabilities, accumulation of damage over the cell lifetime leads to increase 

probability of cancer. 

 

Closely tied with the concept of increased replicative cycles is the concept of oncogenesis. As 

mentioned above, extensively expanded stem cells may become targets of transformation due to 

the damage. On another level, there is an association between stem cells and cancer cells which 

may exist even prior to long-term expansion. The self-renewal pathway, which is a defining 

characteristic of stem cells, may share some signals associated with oncogenesis. Recently, the 

notch, sonic hedgehog and wnt signaling pathways have been implicated in self-renewal of 

hematopoietic stem cells [reviewed in [150-153] and interestingly, it has been suggested that 

hematopoietic stem cells are more likely than committed progenitors to undergo transformation 

[150]. Taken together, the use of expanded stem cells demands examination into the quality of 

the cells. 
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1.3 PROJECT OBJECTIVES 

The overall goal of this project was to provide a thorough quantitative examination of the 

expansion of MDSC populations. In this project, a novel imaging system was used to analyze 

stem cell expansion. The applicability of this system was tested by using MDSC stimulated with 

cytokines (Objective #1). Next, a more sophisticated automated imaging system was examined to 

further develop a model to enumerate cell proliferation, which accounted for the alternative cell 

fates (Objectives #2, #3). This model addressed the innate heterogeneity of stem cell populations. 

Finally, understanding of the limits of expansion was important. Here, the focus was on the issue 

of quantity vs. quality of stem cells as the role of long-term expansion on stem cell phenotype 

and regeneration capacity were examined (Objective  #4).  This project provided quantitative 

tools and approach to describe stem cell expansion and improved the understanding of the limits 

of MDSC expansion. 

1.3.1 Objective 1: Development of a cell expansion analysis system and identification of 
cytokines to expand MDSC 

Using a cell culture system specifically designed for time-lapsed imaging of single cells or 

colonies of cells over long periods of time, a video record of cell growth will be obtained. This 

system uses a biobox incubator mounted to the stage of the microscope, which is linked to a 

CCD camera (Automated Cell Technologies, Inc., Pittsburgh, PA). Several features of this 

instrumentation and supporting software will provide advantages over conventional growth 

monitoring methods. This system will use multi-well plates which are of small surface area and 

allows for the use of small quantities of cells as compare to using particle counters which 

requires larger quantities of cells plated in flasks. Previous methods also required separate flasks 

for each timepoint and division rate is indirectly estimated based on the exponential equation 

(N=N0*ek*t). Directly from the continuous images, automated measures of the total numbers of 

cells were made at any time point and the division times were accurately determined by direct 

observation of cytokinesis. 

 

It was proposed that 2 key parameters of numerical stem cell expansion are 1) division rate and 

2) fraction of cells which are mitotically active. In theory, 2 mechanisms exist to expand cell 

populations. First, the division rate may be increased; second, the fraction of dividing cells may 
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be increased, e.g by recruiting cells out of quiescence. Data obtained from the imaging system, 

as described in Specific Aim 1.1, was combined with the non-exponential Sherley growth model 

to obtain these 2 parameters. This numerical model uses the observed division time to generate a 

growth curve that fits the experimental data. Few experimental methods exist to quantitate the 

fraction of dividing cells. This system provides a unique opportunity to consider both the 

dividing and nondividing fractions within the stem cell population. The applicability of this 

model was tested for expansion data of MDSC obtained using the imaging system. 

 

The growth kinetics of muscle stem cells was characterized in culture medium supplemented 

with epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-2), insulin-like growth 

factor-1 (IGF-1), Flt-3 ligand, hepatocyte growth factor (HGF), or stem cell factor (SCF).  EGF, 

FGF-2 and IGF-1 have previously been shown to stimulate the proliferation of myogenic 

precursor cells or myoblasts. While the FLt-3 ligand, HGF and SCF have been demonstrated to 

increase the number of hematopoietic stem cells. The GF was screened for their ability of to 

increase the overall number of muscle-derived stem cells. Next the mechanism of expansion, i.e. 

how the growth factors affect the parameters was examined described in Objective 1.3.1.2.  

 

1.3.2 Objective 2:  Establish A Mathematical Model To Enumerate Stem Cell 
Proliferation, Which Accounts For The Alternative Stem Cell Fates 

In the second Aim of this project, the model was further developed that can be used with 

heterogeneous stem cell populations to enumerate the various subpopulations. Proliferative 

heterogeneity is the key characteristic of stem cell populations that must be incorporated into 

models.  Biologically, the nondividing nature of these cells is potentially attributable to 

quiescence, terminal differentiation, and senescence or cell death. This model was based on the 

Sherley model but will incorporate terms for the possible fates of terminal differentiation, 

senescence and apoptosis. First, the model assumptions was more thoroughly examined and 

tested. Then, the framework was used to add two specific compartments of nondividing cells; 

apoptotic cells and differentiating cells. Experimental conditions were established to induce these 

conditions and the experimental data will be used to test the validity of the models. 
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In addition morphological and behavioral data from time-lapsed images of cell population 

growth were collected in order to identify additional parameters that are key in identifying stem 

cell populations with enhanced regenerative functions. In a subtractive-like assay, less 

committed stem cells were compared with more committed progenitors on > 65 different 

parameters. Key differences were identified. This was ultimately used to characterize putative 

stem cell populations for regenerative potential as well as obtaining kinetic information pertinent 

to clinical application such as expansion time and replicative history. 

1.3.3 Objective 3: Develop a characteristic kinetic and behavioral profile using 
automated imaging system 

Stem cells continue to be defined based on their behavior; in particular their self-renewal and 

multipotential activities. To date, no molecular markers that are exclusive to all stem cells have 

been identified. The proliferative heterogeneity described above plays, at least in part, a role in 

the heterogeneity of molecular markers. Therefore in order to take these cells to clinic, the 

cellular characteristics that are most reliable in predicting the desired functional capacity of the 

stem cells must be defined clearly. 

 

In this objective, advanced technology which is capable of quantifying more than 65 proliferative 

and differentiative characteristics of live stem cells, was utilized to identify the comprehensive 

behavioral fingerprint of particular cell populations, termed a PhenoPrint (Automated Cell 

Systems). In the muscular dystrophy model, the desired outcome is enhanced regenerative 

capacity of MDSCs. Several lines of emerging evidence suggest that this phenotypic behavior 

may be the best forecaster of muscle regenerative capacity, particularly when evaluating muscle 

stem cells. In addition, such information is very valuable to compare stem cell populations. 

1.3.4 Objective 4: Examine The Role Of Long-Term Expansion On Stem Cell 
Phenotype And Regeneration Capacity 

Cellular aging is an inevitable aspect of expansion and is a concern that needs to be investigated 

as cell therapies are brought to clinic. In an effort to define what the limits are for expansion of a 

population of muscle-derived stem cells, both in vitro and in vivo differentiation capability as 

well as signs of aging and transformation in cells extensively expanded under normal culture 

conditions were examined. 
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In the third specific aim, a continuous culture of MDSC was established. As the population were 

being expanded several different characteristics of the MDSC phenotype were explored; 1) 

proliferation kinetics, 2) morphology 3) stem cell markers, 4) myogenic molecular markers, 5) in 

vitro differentiation capacity 6) in vivo regeneration capacity and 7) signs of transformation. 

 

It was hypothesized that extensive expansion may affect these characteristics and will need to be 

considered as stem cell populations are expanded for basic investigations or as they are to be 

used for cell therapy applications. 

 

The overall goal of this project is to provide a thorough quantitative examination of the 

expansion of muscle stem cell populations. In summary, Objective 1 established a system to 

enumerate stem cell expansion and identify cytokines which may stimulate growth.  Objective 2 

focused on improving a growth model for stem cell expansion, to account for the alternative cell 

fates and identified important parameters of expanding stem cells, while Objective 3 provided a 

quantitative behavioral profile. Objective 4 examined the role of long-term ex vivo expansion on 

stem cell phenotype and regeneration capacity.  This project provides quantitative tools to 

describe stem cell expansion and it improves the understanding of the limits of expansion of 

MDSC. 
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2.0  BIOINFORMATIC IMAGING SYSTEM PART I: OPTIMIZING CELL 
CULTURE CONDITIONS AND IMAGING. 

 

2.1  INTRODUCTION 

 

As outlined in the previous section, both basic science investigations and cell therapy 

applications are constrained by the insufficient number of cells obtained from the source or 

biopsy and also the cells’ limited proliferative capacity. In vitro expansion of this population is 

paramount to obtain suitable numbers of cells. Expansion has long been the focus of researchers 

working with the well-studied hematopoietic stem cells (HSC). Extensive efforts to expand these 

cultures have found the greatest promise with cytokine-induced expansion.  In this section, a 

novel system was investigated as a system to study in vitro stem cell expansion. First, conditions 

were optimized for the MDSC and second, the effect of cytokine-induced expansion on MDSC 

proliferation kinetics was analyzed as a test of the feasibility of this system. 

 

The imaging system examined here consists of a cell culture system and microscopy specifically 

designed for time-lapsed imaging over long periods of time. In the system, an environmentally 

controlled biobox incubator is mounted to the stage of the microscope, which is in turn linked to 

a CCD camera (Automated Cell Technologies, Inc., Pittsburgh, PA). Ultimately, a video record 

of cell growth is obtained. Several features of this instrumentation and supporting software will 

provide advantages over conventional growth monitoring methods. This system uses multi-well 

plates which are of small surface area and allows for the use of small quantities of cells as 

compared to using particle counters (e.g. Coulter counters) which requires larger quantities of 

cells plated in flasks. Previous methods also required separate flasks for each timepoint and 

division rate is indirectly estimated based on the exponential equation (N=N0*ek*t). Directly from 

30 



 

the continuous images, automated measures of the total numbers of cells can made at any time 

point and the division times can accurately determined by direct observation of cytokinesis. 

 

Selection of a growth model to use in conjunction with the imaging data is a central 

consideration. Cell growth characterization is frequently modeled as exponential growth. 

However, the key assumption is that one hundred percent of the cell population is dividing. The 

use of non-exponential and time–lag models may be used to forgo this assumption [154]. Such 

models can further provide numerical estimates of several parameters of cell growth kinetics, 

such as (1) fraction of dividing cells, (2) rate of commitment to division, (3) distribution of the 

cells in the cell cycle, and (4) degree of synchronization in the cell cycle. The fraction of 

dividing cells is one parameter that was selected to be included in the expansion study. 

 

Few experimental methods exist to actually measure the fraction of dividing cells. Researchers 

generally have used the growth data with the exponential model to estimate the doubling time, 

which was often confused as the cell division time. (See Appendix A for a detailed discussion of 

this common error.)  In this study, a numerical model is used to eliminate the assumption that the 

mitotic fraction is 1.0 by taking into account the observed division time to generate a growth 

curve that represents the true growth kinetics. Indeed, when the fraction of dividing cells is 1.0, 

the exponential model is applicable. However, stem cell populations may be expected to have 

division patterns such that one daughter cell proceeds to a differentiated lineage, and the other 

daughter cell maintains a mitotically inactive stem cell phenotype. In this case, the fraction of 

dividing cells would be predicted to be 0.5. One could speculate on a range of division patterns 

that may exist for a population of stem cells. This model allows for characterization of the 

division behavior that will ultimately aid in the elucidation of the self-renewal mechanism 

required for expansion of these cultures. This information may also be useful in understanding 

which cytokines can recruit quiescent cells in vivo.  

 

Examination of cytokine-induced expansion using the imaging system provide 2-fold importance 

First, it is a practical test of this system and model as it represents the standard investigation into 

cell growth stimulation, and second, it provides important information of methods to expand 

muscle-derived stem cells. To test the effect of various growth factors on the proliferation of the 
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muscle-derived stem cells (MDSCs), a primary culture of MDSCs (CD34 [+]/Sca-1 [+]/ CD45 [-

]) and a clone of muscle-derived stem cells, MC13 (CD34 [-/+]/Sca-1 [+]/CD45 [-]), were 

examined in the presence of EGF, FGF-2, IGF-1, Flt-3 ligand, HGF, and SCF. We then used the 

Sherley model to examine the underlying mechanisms associated with an increase in cell 

numbers. It was proposed that the expansion of MDSC could be attributed to at least two factors: 

(1) shortened division time and/or (2) an increase in the number of mitotically active cells 

(recruitment into G1). The response of the primary stem cells to the cytokines was then 

compared with the response of the cultured stem cells.  

 

The results suggested that imaging system and model were practical and reliable methods to 

quantitate muscle-derived stem cells expansion. Further, the MDSC could be expanded in vitro 

with various cytokines but the mechanism by which these cells became expanded differed from 

the freshly isolated (MDSC) and cultured (MC13) muscle-derived stem cells. 

2.2 METHODS 

2.2.1  Imaging System  

The imaging system shown here consists of a Nikon Eclipse TE-2000-U microscope with a 

customized mechanical stage (Figure2.1). The x-y position of the stage is under the control of the 

user such that any position on a culture plate may be selected for viewing. The system 

accommodates any sized multi-well plates from 6-well to 384-well. Multiple viewfields can be 

selected in each well. Each viewfield or x-y position that is selected becomes the location for 

time-lapsed imaging. Image acquisition may be made up to 20 times per second and is limited by 

the number of different locations which are selected in a given experiment. Individual images are 

recorded in jpeg format which may subsequently be viewed using a number of viewers such as 

Nathan’s Viewers (Automated Cell, Inc) or NIH ImageJ (National Institutes of Health) or 

converted to movie as .mov or .avi format.  
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Figure 2.1 Bioinformatic Cell Culture and Imaging System 

 

2.2.2  Cell Cultures and Culture Medium  

A primary cell culture, MDSC, was obtained from normal C5710J newborn (3 wk) mice using 

the preplate technique previously described [19, 48, 65, 82]. The clone of muscle-derived stem 

cells, MC13 cells, was previously established in our lab, also using the preplate technique [19]. 

This cell line was derived from 3-week-old newborn mdx mice [19] and was at passage 25. The 

preplate technique was used to purify slowly adhering, MDSC, which were cultured in 

Dubecco’s modified Eagle medium with 5% horse serum, 5% fetal calf serum, 1.25% chick 

embryo extract, and 1% penicillin/streptomycin (10,000 U and 10,000 µg/mL, respectively) at 

37ºC and 5% CO2. 

2.2.3  Experimental Settings  

A number of cell culture and imaging settings needed to be optimized to facilitate data collection 

of MDSC growth. Important experimental settings include: cell plating density, image 

acquisition intervals, duration of cell growth, viewfield limits, phase contrast, fluorescence 

exposure frequency. Various cell plating densities, image acquisition intervals, etc. were tested in 

order to determine the best settings to capture events of interest. To measure division time by 

direct observation of cytokinesis, we determined the density at which cells could be visibly 

tracked without losing the cell to follow-up as it interacted with other cells. Similarly, the extent 
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of cell migration was examined at the various densities to determine the maximal area of 

coverage possible for a given viewfield (to increase statistical N), while maintaining the accuracy 

of observing the cytokinetic events. Lastly, phase contrast was examined to optimize contrast for 

automated image analysis.  

2.2.4  Growth Model 

The Sherley growth model for non-ideal exponential cell growth was examined as a method to 

describe MDSC expansion. This model is presented in more detail in Chapter 3. Briefly, 

population size, N, at any time, t, depends on at least two parameters: 1) the division time (DT) 

and 2) the mitotic fraction (α) or the fraction of daughter cells which are actively dividing:  
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It can be recognized from this equation that at least 2 mechanisms exist, in theory, to expand cell 

populations. First, the division rate may be increased; second, the fraction of dividing cells may 

be increased, e.g. by recruiting cells out of quiescence. Data obtained from the imaging system, 

was combined with the Sherley growth model to obtain these 2 parameters where the numerical 

model uses the observed division time to generate a growth curve that fits the experimental data. 

Few experimental methods exist to quantitate the fraction of dividing cells. The imaging system 

provides the unique opportunity to consider both the dividing and nondividing fractions within 

the stem cell population. The applicability of this model for expansion data of MDSC obtained 

using the imaging system was tested here. 

2.2.5  Cell Growth with Cytokines 

The growth kinetics of muscle stem cells was characterized in normal 20% serum medium and in 

10% serum culture medium supplemented with epidermal growth factor (EGF), fibroblast 

growth factor-2 (FGF-2), insulin-like growth factor-1 (IGF-1), Flt-3 ligand, hepatocyte growth 

factor (HGF), or stem cell factor (SCF).  EGF, FGF-2 and IGF-1 have previously been shown to 

stimulate the proliferation of myogenic precursor cells or myoblasts. While the FLt-3 ligand, 

HGF and SCF have been demonstrated to increase the number of hematopoietic stem cells. We 
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will screen for the ability of these growth factors to increase the overall number of muscle-

derived stem cells. Next the mechanism of expansion, i.e. how the growth factors affect the 

parameters described in 2.2.3 was examined. MDSC were isolated as previously described [155] 

. The growth factors examined were human recombinant EGF (100 ng/mL, Gibco BRL), human 

recombinant FGF-2 (100 ng/mL, Gibco BRL), murine natural IGF-1 (100 ng/mL, Gibco BRL), 

human recombinant Flt-3/Flk-2 ligand (25 ng/mL, Sigma), human recombinant HGF (25 ng/mL, 

Sigma), and mouse recombinant SCF (25 ng/mL, Sigma). 

 

The MDSCs and MC13 cells were plated in 24-well collagen-coated plates at a density of 450 

cells/well (2 cm2) in 10% serum medium, as described above. Growth factors were added at the 

time of plating and again added with fresh medium 60 hours after plating. Cells were allowed to 

adhere for 6-12 hours. Using the microscopic imaging system, time-lapsed visible imaging was 

obtained for individual cells and subsequently for growing colonies [156]. In these experiments, 

groups of 4 to 6 cells were selected for imaging. Coordinate positions of these view fields were 

recorded by the CytoWorks software program that subsequently controls the time and position of 

stage movement. Images of each view field were acquired at 10-minute intervals for 4 days. For 

each cell type and treatment condition, 18 view fields were selected from 6 wells. Cell 

population growth was monitored by counting the total number of cells, N, in the view field at 

12-hour intervals.  

 

Cell Cycle Duration  

From the video images, 100 cells were randomly selected and then tracked. The division time, 

DT, of each cell was determined by direct observation of the time lapsed between cytokinesis. 

Each cell/event was recorded as either 1) cell division with cell cycle time, 2) no cell division 

(cell could be visually tracked but was not observed to divide or underwent cell death) or 3) cell 

lost to follow-up, cell either migrated out of the viewfield or was lost in the crowd of cells.  

 

Mitotic Fraction 

To determine the mitotic fraction, α, the best fit of the population growth data to the model 

equation was determined by nonlinear regression using the software package SigmaStat. This 

35 



 

program uses the Marquardt-Levenberg algorithm for nonlinear least squares regression analysis. 

Approximately 6 curves for each treatment were fitted using the SigmaStat statistical software 

package, and the fraction dividing, α, parameter was estimated as the average of the 6 fitted 

curves. 

2.2.6 Statistical Analysis 

To assess the effect of the cytokines on expansion, comparisons of the total cell numbers at each 

time point were made using the Student’s t-test. Distribution of cell cycle or division times were 

tested for normality using the Kolmogorov-Smirnov test. Subsequently, comparisons of cell 

cycle times were performed on the nonparametric data using the Mann-Whitney rank sum test 

(p<0.05 significance level) using the Minitab Statistical package. The dividing fraction was 

determined using nonlinear regression with the correlation coefficient R2 > 0.90. The Student t-

test was used to determine significant differences for the fractions of dividing cells (p<0.05 

significance level). 

2.3  RESULTS 

2.3.1  Experimental Settings/ Optimal Cell Culture Conditions 

Cell Culture Plate Selection 

The key data which was to be collected using this system was the number of cells in a viewfield 

and the time-lapsed between cytokinetic events. The ideal situation would be to image all cells 

within a well in one viewfield. For example, using a 384-well plate and a 4x objective, the entire 

area (0.25 cm2) of the well can be captured. However, this requires that flatfield images be taken. 

It is not feasible to acquire phase contrast images on this size well due to the surface tension of 

the liquid medium on the plastic sides and the resulting meniscus. The maximal area of phase 

contrast for a multi-well plate is within the center of the well where the meniscus of the liquid 

medium is flattest. In order to unambiguously discern individual cells, phase contrast was desired 

as opposed to flatfield images. The larger area of the multiwell plate, the larger the area of phase 

contrast. In order to balance the costs of adding cytokines, and possibly antibodies in future 

analyses, with the maximal viewing area of phase contrast, 24-well plates were selected (x 

nanogram cytokine/well) as compared to 48-well plates (0.5x ng cytokine/well), 12-well plates 

(2x ng cytokine/well) or 6-well plates (3x ng cytokine/well).  
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Cell Density and Experiment Duration 

Several densities were tested to determine the best density to maintain normal cell growth and 

allow capture of the events of interest. Again the key events of interest were clear distinction of 

cells at a given timepoint and the ability to visually track cells between cytokinetic events. Cells 

plated at various densities showed density-dependant growth. We observed that when MDSC 

were plated at the lowest density (<100 cells/cm2) there was less cell growth than expected for 

this population. While events were easily distinguished at this density, it appeared that fewer of 

the cells entered the cell cycle, suggesting a minimum carrying capacity required for MDSC. At 

higher densities (1000 cells/cm2), a larger sample size was theoretically available for data 

collection, however, tracking cells in between cytokinetic events was difficult and most cells 

were lost to follow-up as crowding occurred rapidly. Moreover, the duration which experimental 

data could be obtained was less than 2 days as the culture reached a carrying capacity for the 

limited space within 1-2 doublings, again suggesting logistic growth: 

 

The goal was to be able to visually examine cell growth in the absence of either a minimum 

carrying capacity or a maximum carrying capacity. A density of 225 cells/cm2 was selected as 

one, which allowed for stem cell growth to occur with exponential kinetics (in theory, stem cells 

are capable of unlimited replication) as compared to the other densities which resulted in logistic 

growth.  At this confluency, most cells could be visually tracked for a period of up to 5 days 

without being lost to follow-up. This reduced, but did not eliminate, the bias that would have 

existed for cells with shorter division times being able to be tracked more easily. While the 

probability of losing a cell to follow-up is still greater for cells with longer division times, it was 

found that less than 8% of the cells were lost to follow-up when initial plating density was 225 

cells/cm2. 

 

Frequency of Image Acquisition and Experiment Duration 

The actual event of cytokinesis is between 20-30 minutes. Cells undergo a characteristic 

rounding up prior to separation. The clearly detectable rounded up morphology is even 

distinguishable from the G1 morphology of cells that are natural small and round. In order to 

capture this event, we selected 10-minute intervals for image acquisition. In this way, at least 2 
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images provide the necessary data for division time. In addition, it was recognized that if an 

experiment ran 96 hours and N vs. t was collected up to t =96 hours, it was desired that division 

times be representative of the entire 96 hours. Therefore, a randomly selected cell, in an 

asynchronous population, which began its cycle at t = 86 hours e.g., would not have time to 

complete its cycle before the experiment ended and the data would again be biased towards cells 

which had shorter division cycles. In order to allow representative division times for day 4 cells 

to be included in the average DT estimate, imaging proceeded through 5 days, allowing enough 

time to complete data acquisition for cells initiating the cell cycle on day 4 or t < 96 hours. While 

the cell growth curve remained N (t) vs. t =0  t=96 hours. 

2.3.2 Cell Growth with Cytokines 

Primary MDSC 

The primary MDSC population size, N, was increased significantly with EGF (72 hrs, 96 hrs, 

p<0.05), and also, to a lesser extent, by FGF-2 (96 hrs, p<0.05), SCF (72 hrs, 96 hrs, p<0.05), 

and IGF-1 (96 hrs, p<0.05) (Figure 2.2). Proliferation of the MDSC was significantly inhibited 

by Flt-3 (96 hrs, p<0.01), while HGF did not significantly affect cell growth of MDSC at any 

timepoints tested (Figure2.3). 

 
Figure 2.2 Increased Cell Growth of Primary MDSC with Growth Factors. 
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Figure 2.3 Decreased Cell Growth of Primary MDSC with Growth Factors 

 

Cultured MC13 

The long-term cultured MC13 cells were also expanded in vitro with FGF-2 (72 hrs, 96 hrs, 

p<0.05), EGF (72 hrs, 96 hrs, p<0.05), IGF-1 (72 hrs, 96 hrs, p<0.05) and SCF (96 hrs, p<0.05) 

(Figure2.4). . Similar to that observed with MDSC, FLT-3 significantly inhibited the 

proliferation of MC13 at 96 hours (p<0.01), while HGF did not significantly inhibit or stimulate 

cell population growth of MC13 at any time point tested (Figure2.5). 

 

 

 
Figure 2.4 Increased Cell Growth of Cultured MC13 with Growth Factors 
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Figure 2.5 Decreased Cell Growth of Cultured MC13 with Growth Factors 

 

 

 

Cell Cycle Duration 

To examine the contribution of division time on proliferation kinetics, cell cycle times in the 

presence of the growth factors were determined (n=100). The mean cell division time for non-

stimulated MDSCs was determined to be 15.8±3.8 hours; for MC13 cells, the division time was 

estimated as 16.0±5.3 hours (Figure2.6). The cell cycle times for MDSCs and MC13 cells did 

not differ significantly (p=0.43). Of the four growth factors (EGF, FGF-2, IGF-1, and SCF) that 

expanded the primary MDSC population size, only FGF-2 reduced the division time (13.8±2.5, 

p<0.01), suggesting that other mechanisms, such as the recruitment of quiescent stem cells 

towards proliferation, were responsible for the MDSC expansion (see below). In fact, SCF 

(which was found capable of expanding the MDSCs) significantly lengthened the division time 

to the same extent as observed with FLT-3 and HGF, where there was an inhibition of growth 

and no effect on cell growth, respectively (Figures 2.3 and 2.5).  For the long-time cultured 

MC13 cells, there was a direct correlation between reduction of division time and the expansion 

of cells. The division time was significantly reduced in the presence of those cytokines which led 

to an increase of total cell numbers (EGF, FGF-2, IGF-1, and SCF) (Figures 2.4. 2.6). This result 

suggests that the expansion of MC13 is primarily made through a decrease of division time.  
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Figure 2.6 Division Time (DT) or Cell Cycle times of Primary and Cultured myogenic cells 

in the presence of Growth Factors 

 

Mitotic Fraction 

To examine the contribution of the dividing fraction, α, on proliferation kinetics, the effect of 

growth factors on the percentage of mitotically active cells was also investigated. The total 

number of cells, N, at 12-hour intervals was obtained as described above. The percentage of 

dividing/mitotically active cells was then estimated by applying the non-exponential growth 

model to the growth data. The correlation coefficient, R2, which describes how well the data 

actually fits to the model such that 0 < R2 <1.0, was greater than 0.95 in all of the cases with the 

exception of MDSCs + FGF-2, where R2>0.90 (n=2). The fitted growth curve estimated that 

75% of the primary MDSC population was actively cycling. Addition of EGF, IGF-1, or SCF to 

the medium significantly increased the number of mitotically active MDSC cells to 86% 

(p<0.01), 84% (p<0.04), and 92% (p<0.001), respectively (Figure 2.7A). This likely accounts for 

the expansion of MDSCs under the influence of these various cytokines, which could not be 
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attributed to division time shortening (Figure 2.6A). Interestingly, although HGF stimulation 

increased the number of dividing cells (82%), the concomitant lengthening of the cell cycle 

caused a net reduction in population size as compared with non-stimulated cells. The cultured 

MC13 cell clones had no significant increases in the mitotic fraction, α  in the presence of any of 

the growth factors, suggesting that the observed increases in proliferation is attributed to a 

reduced cell cycle duration (Figure 2.6B).  

 

 

 
Figure 2.7 Mitotic Fraction, a, or Percentage of Daughter cells which divide, of Primary 

and Cultured myogenic cells in the presence of Growth Factors 

 

Based on these results, we have proposed a potential mechanism for the differential response of 

MDSC and MC13 to cytokine stimulation (Figure 2.8). The results suggest that the expansion of 

freshly isolated MDSC is primarily mediated by the recruitment of non-mitotic cells into mitosis 

while the MC13 are expanded via a reduction in the length of the cell cycle. Consequently, both 
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mechanisms result in an increase in cell number in the muscle-derived stem cells following 

stimulation with the appropriate cytokines. 

 

 

 
Figure 2.8 Behavioral mechanisms for increase for myogenic cell expansion 

2.4 DISCUSSION 

Methods for stem cell expansion will be advanced through a better understanding of the 

processes that lead to increased numbers of cells in culture. A number of growth factors and 

other cytokines have emerged as either stimulatory or inhibitory factors that affect the 

proliferation of cells. Here we have examined 2 key parameters that are responsible for cell 

expansion, including the length of cell division cycle and mitotic fraction. The effects of 6 

commonly used growth factors on muscle-derived stem cells revealed different mechanisms for 

stimulating cell proliferation. An increase in the dividing fraction, α, suggested that cells in G0 

were recruited into G1, whereas a decrease in division time suggested that cells already in the 

cycle had reduced the length of, or eliminated, a phase of the cycle (e.g., G1 and G2 are 
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commonly absent in cells with DT = 10-12 hours). We have demonstrated here that EGF, FGF-2, 

IGF-1 and SCF can be used to expand MDSC and MC13 in vitro. Moreover, we have observed 

the mechanisms by which these growth factors used to expand myogenic stem cells (MDSC and 

MC13) differ; the GF decreases the division time in MC13 and increases the mitotic fraction in 

the MDSC.  

 

Using a novel system to directly observe cells both in culture and in real time, combined with a 

sensitive mathematical model, we were able to investigate a key parameter of stem cell behavior: 

recruitment into mitotic activity. The cell culture system that we used here allows for several 

hundreds of colonies to be imaged during 1 experiment. Direct observations of divisions are 

made without the use of calculated estimates based on relative fluorescence, as in BrdU labeling. 

In this way, the fraction of dividing cells is estimated directly from the same experiment that is 

used to estimate the cell cycle time. This reduces any errors associated with multiple 

experimental procedures (e.g., combining BrdU experiments with standard cell/particle counters 

to establish a growth curve). In addition, the BrdU or [3H] thymidine technique of estimating cell 

cycle length again assumes that all cells give rise to 2 daughter cells and uses an exponential 

model.  Importantly, this model uses an additional parameter that provides insight into a 

mechanism for proliferating cells that is not explained by change in division time alone. Studies 

examining division time alone could misinterpret the efficacy of using a given growth factor to 

expand cultures. For example, examining the division time in the presence of SCF may suggest 

that this growth factor would not be useful in expansion of MDSCs (Figure 2.6A). It is revealed 

here that, although the division time is significantly longer, there is a substantial increase in 

population size due to the recruitment of cells into mitotic activity (Figure 2.7A). Likewise, this 

model is able to suggest the underlying mechanism of the growth factor’s action, particularly the 

phase of the cycle in which it exerts its effects.  

 

While we observed an increase in MDSC proliferation in response to SCF, EGF, and IGF-1 by 

increasing the number of mitotically active cells, the long-term cultured MC13 cells showed no 

change in the percentage of mitotically active cells in response to these same growth factors. 

Rather, the MC13 cells responded to these cytokines by shortening their division time (see 

Figure 2.8 for proposed mechanism for the differential effects of cytokines on stem cell 
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expansion). This suggests that the non-dividing fractions differ between the MDSC and MC13 

populations. It is conceivable that the non-dividing MDSC fraction consists of quiescent stem 

cells in G0 that may still be recruited into the cell cycle, whereas the MC13 non-dividing fraction 

consists of post-mitotic cells that are terminally committed myoblasts (Figure 2.8). This theory 

would further suggest temporal effects of the growth factors. The growth factors may act at 

different phases of the cell cycle, depending on the extent of culturing.  

The MDSCs are highly stimulated by EGF. Indeed, other groups have demonstrated the ability of 

EGF to increase proliferation of progenitor stem cells. Takahashi et al. [157] achieved a 5-fold–

increased expansion of hematopoietic progenitors (CD34 [+]) in the presence of EGF. Epidermal 

growth factor-like repeat motifs (delta-like, dlk) present on stromal cells were observed to 

promote colony formation by hematopoietic (Sca-1 [+]/linlo/-) stem cells in co-culture [158].  

Moreover, Reynolds and Weiss [159] have demonstrated that adult CNS stem cells show 

increased proliferative activity in the presence of EGF. Here, we observed that although EGF 

stimulation does not reduce the division time of MDSCs, this growth factor could increase the 

fraction of dividing myogenic stem cells (85%, compared with 77% of the control), which 

ultimately would predict a 10-fold in vitro expansion after 2 weeks. Conversely, the MC13 cell 

line responded to EGF by a different mechanism. EGF stimulation shortened the division time 

(12.5±3.5 hours compared with 16.0±5.3 in control); however, this was not accompanied by an 

increase in the number of actively dividing cells. MC13 cultures were expanded most effectively 

with FGF-2. Interestingly, studies with neural stem cells have found EGF and FGF-2 to have 

temporally regulated effects on proliferation [160, 161]. Gritti et al [160] have observed that 

colonies initially formed with EGF stimulation may be further expanded with FGF-2. This 

suggests that in vitro expansion of stem cell cultures may require the careful timing of growth 

factor administration. 

 

SCF-induced expansion of the primary MDSCs is attributed to the increase in the mitotically 

active fraction. Interestingly, the mean division time of these cells is significantly longer than 

that of non-stimulated cells. Although our putative stem cells did not initially express c-kit [19, 

49] receptor for SCF, it may be up-regulated in the presence of the ligand. Moreover, the long-

term cultured MC13 cells responded to SCF by shortening the length of their cell cycle, again 
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suggesting that the effect of the growth factor is temporally regulated in muscle-derived stem cell 

populations. 

 

Two of the growth factors that we screened in this study demonstrated either inhibitory or no 

effects on cell proliferation. Flt-3 ligand and HGF have been previously demonstrated to increase 

proliferation of hematopoietic stem cells[162-164]. However, these studies have generally used 

cocktails of cytokines. In particular, Flt-3 used in combination with SCF has been shown to 

increase the number of colony forming units, CFU, (similar to an increase in α) and the size of 

the colonies [164]. These results may also suggest that the muscle-derived stem cells behave 

differently than the hematopoietic stem cells. 

2.5 CONCLUSIONS 

 

In summary, this study identifies growth factors that can expand muscle-derived stem cells. We 

have shown that EGF, FGF-2, SCF, and IGF-1 are valuable cytokines to expand both primary 

and cultured MDSC populations. In particular, EGF stimulation led to the greatest overall 

increase in cell number in primary cultures as more cells were recruited into the cell cycle. In 

addition, long-term cultured stem cells may be effectively stimulated with FGF-2 through a 

significant reduction in division time. Finally, this study illustrates the significance of examining 

multiple growth parameters to determine whether or not a given growth factor can be used for 

the expansion of muscle-derived stem cells.  
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3.0 MODELLING PROLIFERATIVE HETEROGENEITY 

3.1  INTRODUCTION 

Key to advancing stem cell expansion is the development of reproducible, scalable systems to 

expand cells to clinically relevant numbers [165-169] while maintaining the desired stem cell 

phenotype.  The systems will rely on a sufficient understanding and control of the basic 

mechanisms involved in the determination of stem cell fate, in particular the choice between self-

renewal and differentiation. The multiple stem cell fates are regulated by both intrinsic and 

extrinsic controls. Differential intercellular localization and inheritance of molecular 

determinants result in asymmetric daughter cells [113-116]. In addition, the stem cell niche or 

microenvironment consisting of extracellular matrix including integrins, cytokines and various 

cell types differentially stimulates stem cells to express alternative phenotypes [117-120]. While 

efforts to biologically understand these controls develop, mathematical models are also necessary 

to quantitatively assess the status of the expanding population. Mathematical growth models will 

play a key role in developing such systems, as they can be both predictive tools for expansion 

potential as well as tools to characterize and measure current kinetic parameters of a stem cell 

population. 

 

Proliferative heterogeneity is the key characteristic of stem cell populations that must be 

incorporated into models.  Asynchronous exponential growth, which assumes proliferative 

homogeneity, is used most often to model cell population dynamics, although few cell 

populations behave in this way in vitro [122-125] or in vivo [126, 127]. Even tumorogenic cells 

behave nonexponentially [128-131]. Nonexponential growth is the result of nondividing cells 

present in the population. (Nonexponential is used here to refer to non-ideal, base 2, exponential 

growth.) Biologically, the nondividing nature of these cells is attributable to quiescence, terminal 

differentiation, senescence or cell death (Figure 3.1), while mathematically it translates to a 

growth fraction, α, which is <1, and/or a death rate, µ, which is >0. Thus the population size at 
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time t, N (t), depends directly on 1) the birth rate (which is a function of the cell cycle time), 2) 

the growth or mitotically active fraction and 3) the death rate. Mathematical models designed to 

describe non-ideal exponential growth are the result of variations on these three themes. 

 
Figure 3.1 Proliferative heterogeneity within stem cell populations. 

 

 

Early models of tumor growth recognized that it was necessary to account for the “lakes” of 

necrotic cells observed in the core of tumors [132, 133]. Tumor growth does not continue on an 

exponential path; rather, it reaches a plateau as cell death removes proliferating cells from the 

population [126]. Many of the early, ad hoc models used Gompertz or logistic distributions to 

describe the S-shaped curve [134, 135] which was typically due to space and nutrient 

deprivation. Gyllenberg and Webb [135] explained the Gompertzian tumor growth curves by 

using parameters to represent the rates of cells transitioning reversibly between the proliferative 

and quiescent states as a function of tumor size, thereby incorporating variable growth fraction. 

Reducing the number of model parameters, Izquierdo and Perez [136] described the quiescent or 

nonproliferating component as proliferating cells with “long” division times and a birth rate 

equal to 1. Other models have used the theory of age-dependent branching processes to account 

for changes in growth fraction or changes in cell division rate associated with cell age [137-139]. 

In similar vein Hayflick’s hypothesis of limited cellular lifespan may be incorporated into 

models as a finite number of divisions [140] or a decreased doubling rate associated with time 

[141], such that cellular senescence is consequently modeled as a change in growth fraction. 

Even contact-inhibited cell growth has been modeled by including terms to describe the 

probability of a cell dividing as dependent on its position in 1-, 2- or 3-dimensional space [142] 
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such that the proliferation rate, specifically the growth fraction, decreases as N increases and 

cells occupy more space.  

 

The Sherley model [170], based on difference equations, demonstrates growth of populations 

with asymmetric divisions that result in dividing cells and quiescent or senescent cells. This 

model is particularly well-suited for studying the expansion of all cell populations, as it does not 

make the logistic assumption of a saturation density that is associated with age or space-nutrient 

depletion. Stem cells require specific culture conditions to maintain the stem cell phenotype or 

self-renewing divisions; such populations often are maintained at a density well below any 

culture-induced carrying capacity. The Sherley model can be used to describe growth in 

“unrestricted” conditions. In addition to predicting long-term expansion, it provides useful 

parameters to describe the current behavior of the population. This model can be used to estimate 

division time, mitotic fraction or population doubling time, and therefore enables researchers to 

assess the behavior of a particular cell population under various culture conditions.  

 

This chapter develops practical models for describing cell growth in general, but are particularly 

well-suited for examining stem cell populations. Here, the assumptions of the Sherley model, 

which describes heterogeneous expansion in the absence of cell loss, were examined. Next, terms 

were incorporated into the model to account for 1) cell loss or apoptosis and 2) cell 

differentiation. Using muscle-derived stem cells induced to apoptose or to undergo myogenic 

differentiation, good fits were observed for these modified equations. These experiments 

contribute to both a biological and mathematical understanding of stem cell dynamics. Further, it 

is expected that the models will prove useful in establishing standardization of cell culture 

conditions and scalable systems, as will be required to develop clinical protocols for stem cell 

therapeutics. 

3.2  METHODS 

3.2.1 Derivation and Assumptions of Nonlinear, Non-Ideal Exponential Population 
Growth 

Population growth and estimations of proliferation parameters often are calculated using the 

exponential equation 
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where the number of cells, N, at time, t, depends solely on the initial number of cells, N0, and its 

division time, DT; this equation assumes that all cells are actively dividing to give rise to 2 

daughter cells. In order to more accurately describe the dynamics, the Sherley model [170] 

includes a parameter that accounts for the presence of nondividing cells:  
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In the previous chapter, this model was used to describe cell expansion occurring with negligible 

cell loss [171], where α is the mitotic fraction and DT is the division time (FD and GT, 

respectively in Sherley et al.).  The aim of this section was to more closely examine the growth 

model. First, the three primary assumptions of this model were verified —namely that 1) the DT 

is constant 2) dividing cells are capable of giving rise to both dividing and non-dividing cells and 

3) non-dividing cells do not reenter the cell cycle during the observed period. The assumptions 

are evident in the derivation of the model. 

 

To begin, we define alpha, α, as the fraction of daughter cells which are dividing. Therefore 1-α 

is the fraction that is not dividing. After some discrete time interval =1, the number of live cells, 

N1, is equal to the number of cells in the initial population, N0, which did not divide plus two 

times the number which did divide (assuming cells split to 2 daughter cells): 

 

001 21 aN -a)N ( N  +=  

 

Next, we assume that the nondividing cells remain as nondividing cells and do not re-enter the 

cell cycle (an alternate derivation that does not make this assumption is shown in Appendix B).  

The fraction of daughter cells which are dividing remains constant, such that at time interval = 2, 

we have 
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and at time interval =3, 
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Expanding and rearranging these terms reveals a geometric series. For example, at i =2, as 

above,  
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Expanding this equation, we have 
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Simplifying, 
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Multiplying both sides by 2 and re-arranging gives 
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Dividing the right-hand side by 2 gives 
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then reveals the geometric series. For any i=0  to i=n, we have   
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Now, we define  i = any positive value t/DT, where DT= division time, Ni = the number of live 

cells at time t, and N0= the initial number of cells and apply the identity 
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to provide the model equation for cell growth: 
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Here, we can see that if α = 1, the equation reduces to the general exponential equation 

. Moreover if 0.5<α<1, the growth is exponential at a rate < 2 base. If 0<α<0.5, 

growth increases asymptotically and levels off. Lastly if α=0.5, the expression 

t/DT  NN 20=
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from equation (1) is an indeterminate quotient of type 0/0. We can apply l’Hospital’s rule to get 

rid of the indeterminacy, and solve near α=0.5 by letting f(x)= 1-(2x)(t/DT)+1 and g(x) = 2(1-2x). 

Both f(x) and g(x) are differentiable as x a 
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Therefore as α approaches 0.5, the model equation becomes DTtN  NN  200 +=  and there is 

linear growth with a slope of N0/2DT.  

3.2.2 Testing The Assumptions Of The Sherley Equation 

To test if DT is constant in the confluency range of 10-50%, the previously described 

microscopic imaging system was used [106, 171]. Muscle-derived stem cells, MDSC, were 

obtained as described in earlier work [19, 26, 48], and were plated on collagen-coated flasks at 

250 cells/cm2  with normal culture medium containing 10% fetal calf serum (FCS), 10% horse 

serum (HS), 0.5% chick embryo extract (CEE) and 1% penicillin/streptomycin in Dubecco’s 

Modified Eagle Medium (DMEM, Gibco). Time-lapsed videos consist of images acquired every 
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10 minutes for a period of 5 days. DT of the dividing cells (n=75-100) was measured as the 

lapsed time between cytokinetic events. Division times were determined for each day, according 

to the day on which the cycle began. Three replicate experiments were performed. The 

distribution of DTs was compared among the various days using Kruskal-Wallis one-way 

ANOVA on ranks. 

 

To verify that dividing cells are capable of giving rise to both dividing and non-dividing cells, 

we first defined a non-dividing cell as one that did not divide in three times the median division 

time.  Next, we directly observed the time-lapsed images for asymmetric divisions and 

constructed cellular division lineage trees. 

3.2.3  Derivation Of The Population Growth Model With Cell Loss 

As shown in section 3.2.1, the stem cell population consists of dividing cells and nondividing 

cells. The nondividing fraction may be further defined as cells which are 1) quiescent, 2) 

terminally differentiated/ postmitotic, or 3) apoptotic/ necrotic. In this way, the nondividing 

fraction, 1-α, may be expressed as 

 
m d qa ++=−1  

 

where a is the dividing fraction, q is the quiescent fraction, d is the postmitotic differentiated 

fraction and m is the apoptotic/necrotic/dying fraction, and the sum of all the probabilities of 

being in any one of these states is equal to 1. Briefly, a series of discrete equations, starting with 

time interval =1 would be 
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which leads to the equation  
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Alternatively, the nondividing fraction may be simplified to 1-α and we can further define µ as 

the rate at which dead cells are formed or the fraction of cells of the entire population which 

undergoes cell death. Then, 
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As shown in section 3.2.1, these series are reduced to  
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which describes cell expansion in the presence of both cell division and cell death. 
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We define Mi as the cumulative number of dead cells at interval i as  
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The rate at which cells die, µ, may be constant or may vary with time. Equation (2) can be used 

to numerically estimate values of both α and µ. Previously, α was estimated using nonlinear 

regression and experimentally derived values of Ni in the absence of significant cell loss [171]. 

Under conditions of significant cell loss, equation (2) will provide a better estimate of α by 

accounting for cell loss due to cell mortality or migration, Mi. If equation (2) is re-written as   

i
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then experimental measurements of (N+M)i should provide an improved curve-fit estimate of the 

key parameter of interest, α.  The term, Mi, which is new to this equation, enables a more 

accurate prediction of α under conditions of substantive cell loss. In the absence of the term, the 

mitotic fraction is underestimated, as the total number of cells generated appears lower than in 

actuality.  

 

To test the validity and applicability of this model, MDSCs were plated on 6-well collagen-

coated plates at a density of 250 cells/cm2 in normal growth medium, as described above. Cell 

death or apoptosis was induced using the transcription inhibitor actinomycin D (AD) (0.5 ng/mL, 

Sigma), which previously has been demonstrated to activate the caspase cascade [172, 173]. 

Images of population growth were acquired every 10 minutes for a 5-day period. From the video 

record the live cell count, N(t), was determined at 12-hr intervals and DTs were measured as 
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described above. Cell loss due to cell death was measured by continuous viewing of the video 

record. Cell death was recognized as a series of events including 1) cessation of movement, 2) 

cell blebbing, shrinkage or bursting, 3) change in phase contrast due to compromised membrane 

and finally 4) cell detachment from the substratum. Apoptotic activity was confirmed by 

immunocytochemistry with anti-caspase-3 antibody (1:250, Zymed). Mitotic activity was 

observed by BrdU incorporation using biotinylated mouse anti-BrdU (1:250, Zymed), 

streptavidin-488 (1:1000, Sigma) and Hoechst 33258 (1:104 Sigma). The number of dead cells 

measured during the interval t = 0 to t =12 hours was recorded as M (t=12 hrs). Accordingly, M 

(t=24 hrs) was determined as M (t=12 hrs) plus the number of dead cells measured during the 

interval t = 12 to t =24 hours. In this way, all experimental data were determined from the same 

experiment. The population growth data (Ni and Mi) and DT, then were curve-fit to equation (2) 

using nonlinear regression (Sigma Stat 2.0, Jandel Scientific) to determine the R2 Pearson 

product-moment coefficient of determination and to estimate α. Three replicate experiments 

were performed; α parameters were compared using Student’s t-test. 

3.2.4  Derivation Of The Population Growth Model With Differentiation 

In stem cell population growth there is a dynamic balance between self-renewal and 

differentiation processes. Such populations are rarely homogeneous in vitro as the stem cell has a 

tendency, in response to a variety of signals, to give rise to precursor and fully differentiated cell 

types, while at the same time maintaining its reserve self. To provide a mathematical model for 

this cell growth and to understand these processes, we must include a term to account for 

nondividing, terminally differentiated cells. A term accounting for them may be added to 

equation (1) or (2) in the exact same way that the cell loss term was added earlier. Essentially, 

the number of live cells, N, in a differentiating stem cell population consists of three sub-

populations: 1) the self-renewing cells, NSelf-Renewing; 2) the mitotically active precursor cells, 

NPrecursor and 3) the terminally differentiated cells, NDifferentiated, such that 

 
atedDifferentiecursornewingSelf- NN  NN ++= PrRe  

 

To simplify, we say that the first two compartments are made up of proliferating cells while the 

third compartment represents nondividing cells. Thus we can write  
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To validate the growth model containing the term accounting for differentiation, we examined 

the population growth kinetics of myogenic cells under differentiation-inducing conditions. In 

the unique case of myogenic differentiation, several mononuclear cells fuse together to form 

multinucleated myotubes that morphologically denote the terminally differentiated state. The 

mononuclear population is mitotically active and consists of both self-renewing MDSCs and 

myogenic precursor cells. The total number of cells that have fused to become terminally 

differentiated myotubes is equal to the total number of nuclei in all of the myotubes. In essence, 

growth modeling in this way becomes an exercise in nuclei counting. In the specific case of stem 

cell growth with myogenic differentiation, we can substitute NProliferating = NMonoNuclear, and 

NDifferentiated = NFusedNuclei, into equation (3) to obtain: 

 

 
α)(

α-(  .  N N N
(t/DT)

 eiFused NuclrMonoNuclea













−
)

+=+
+

212
2150 

1
0   (3.1) 

 

To induce differentiation MDSCs first were plated at a density of 1000 cells/cm2 on collagen-

coated flasks in normal medium for 48hrs, then were cultured for 96hrs with 2.5% serum 

medium containing 1.25% HS, 1.25% FCS, 0.5% CEE and 1% penicillin/streptomycin in 

DMEM. Population growth was recorded using the microscopic imaging system. This video was 

used to determine NMononuclear, NFusedNuclei and DT. Proliferation and differentiation were 

confirmed by immunocytochemical staining performed at 24-hr intervals with anti-BrdU and 

anti-myosin heavy chain (anti-MyHC, 1:250, Sigma), a marker for differentiated muscle cells. 

Nuclei were visualized using Hoechst. The growth data then were curve fit to the model to obtain 

the R2 correlation coefficient for the nonlinear regression and an estimation of the mitotic 
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fraction. As above, three replicate experiments were preformed and α parameters were compared 

using Student’s t-test. 

3.3  RESULTS 

3.3.1  Validation Of Growth Model Assumptions 

The distribution of cell cycle times observed during the 24-hour intervals was compared, and 

there were no statistical differences among the median division times (day 1 DT = 13 hours, day 

2 DT = 14 hours, day 3 DT = 16 hours; p = 0.411). The distributions of DTs were skewed to the 

right with >90% of the cells dividing in the range of 10-24 hours. Indeed, less than 1% of the DT 

were less than 10 hours, so that the majority of the DTs outside of this range were > 24 hours. 

The median cell cycle duration for the first three days was 15 hours  (median = 15 hours, p<0.05, 

Kruskal-Wallis one-way pairwise ANOVA on ranks). Although the statistical analysis revealed 

no significant difference among the days, there was a consistent trend toward increasing cell 

cycle time with the distribution appearing to widen and shift toward longer times (Figure 3.2). 

 

Figure 3.2 Daily Distribution of Cell Division or Cycle Times. 
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We also observed asymmetric divisions that were recognized as cell divisions that gave rise to 2 

daughter cells, one of which divided while the other did not. A representative division lineage 

tree which includes asymmetric divisions is shown in Figure 3.3. As expected, the nondividing 

daughter cell generally underwent cell death, or was observed to become quiescent (Figure 3.3); 

less frequently, the nondividing state was the result of differentiation, which was observed as cell 

fusion. 

 

 
Figure 3.3 Cell Division Lineage Tree. 

 

It is important to note that the division lineage shown here (Figure 3.3) is not the typical type of 

division for the muscle-derived stem cell in normal culture condition. Rather, the majority of 

divisions are symmetric divisions. In addition, the model assumption that states that non-dividing 

cells remain as non-dividing cells and do not re-enter the cell cycle in the observed period was 

supported by our finding of a minority of cells which were present at the initiation of the video 

and undergo no division in the 5-day period. We also observe as illustrated in Figure 3.3 the 

presence of nondividing subpopulation which result from dividing cells yet remain quiescent or 

mitotically inactive for > 45 hours. These findings support that the assumptions for equation 

derivation are valid. Asymmetric divisions are evident under normal growth conditions (20% 

serum medium); open circles ( ) indicate mitotically active cell, closed circles ( ) indicate 

nondividing cells, bulleted circles ( ) indicate unknown fate. 
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3.3.2  Validation Of Growth Model With Cell Loss 

Cell death was significantly increased in populations treated with actinomycin D, and we observe 

this effect to increase in a dose-dependant manner. In order to test the applicability of this model 

we selected the dose of 0.5ng/mL AD which permitted cell division while also inducing cell 

death. Cell death was recognized morphologically using the video record (Figure 3.4). We 

observed cell death to occur at various stages of the cell lifetime. Some cells underwent cell 

death immediately after cytokinesis or, interestingly, at the same time as an expected division 

cycle (i.e. when one sister cell underwent cytokinesis, the other died). It was also common for 

apoptotic or necrotic cells to persist for several hours or days before undergoing cell death.  

 
Figure 3.4  Time-lapsed video demonstrating visualization and morphological recognition of 

cell death.  

 

The video findings of cell death were supported by anti-caspase-3 immunocytochemistry (Figure 

3.5) of the cells treated with actinomycin D. Co-staining of caspase-3 (gray cells, white arrows), 

BrdU (white nuclei, arrowheads) and nuclei (gray nuclei) revealed the presence of apoptotic 

cells, mitotically active cells and nonmitotic cells in the population. 
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Figure 3.5 Immunocytochemistry to co-stain proliferating cells, apoptotic cells, and 

proliferating cells. 

 

The growth data (N + M) were fit using nonlinear regression with model equation (2), and the 

α parameter was numerically estimated. As a measure of how well the model predicts the data, 

i.e. the independent variable (t) predicts the dependant (N+M) variable in this model, we observe 

a strong association, with coefficients of determination to be R2= 0.874, 0.887 and 0.935 

(p<0.001). The mean mitotic fraction of the 3 replicates was estimated to be 0.45 (Table 3.1). 

Figure 3.6 shows the data fit to the model accounting for cell loss [equation (2)] compared to 

data fit to the model without the cell loss term (N v. t) [equation (1)]. When the cell loss term is 

not included, the coefficients of determination range from R2=0.417 to 0.849 and α is 

significantly underestimated as 0.34 (p<0.05).  

 

 

 
Figure3.6 Curve-fit data. Experimental data sets for MDSC growth with induced 

apoptosis are fit to the model equations using nonlinear regression. 
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One representative replicate is shown here (Figure 3.6). Enumeration of cell loss yields a total 

cell count (N+M) which is higher than live cell count alone (N). R2 values for N+M versus t 

(black curve) range from 0.87 to 0.94 (n=3), with mean α = 0.45, in comparison to R2 values for 

N versus t (gray curve) which range from 0.42 to 0.85 (n=3), with mean α = 0.34. 

 

Table 3.1 Comparison of Model equation (2) to Model equation (1) 

 Model with Cell Loss Term Model without Cell Loss Term 

 R2 α R2 α 

Replicate 1 0.935 0.45 0.849 0.39 

Replicate 2 0.887 0.43 0.417 0.28 

Replicate 3 0.874 0.47 0.55 0.30 

Mean (p <0.05)  0.45  0.32 

3.3.3 Validation Of Growth Model With Differentiation 

 

Under low serum and high-density conditions, a significant amount of terminal differentiation 

could be induced while still permitting symmetric divisions to mitotically active cells. Stem cell 

differentiation into the myogenic lineage was morphologically recognized based on myotube 

formation (Figure 3.7). E.g., the black arrows in Figure 3.7 indicate 3 mononuclear cells which 

can be observed to fuse over a period of 12 hours to form 1 multinucleated myotubes cell.  

 

63 



 

 
Figure 3.7  Time-lapsed video demonstrating visualization and morphological 

recognition of cell fusion and myogenic differentiation of MDSC. 

 

 

The time-lapse recordings revealing cell fusion activity was subsequently confirmed by the 

myogenic differentiation marker, myosin heavy chain (gray multinucleated myotubes), and 

Hoechst immunostaining (Figure 3.8). Mononuclear proliferating cells (white nuclei) also were 

identifiable based on their BrdU-positive nuclei (Figure 3.8).  

 

 
Figure 3.8 Immunocytochemistry of co-stained proliferating cells, differentiated cells 

and nonproliferating cells. 

 

 

The time-lapsed video was used to enumerate the terminally differentiated cells (nuclei), 

NFusedNuclei, and the mononuclear cells, NMononuclear, at 12-hr time points, and these data than were 

fit to the growth model with differentiation [equation (3)]. The mitotic fraction was numerically 

estimated to be 0.60, and the coefficients of determination were 0.811, 0.816 and 0.939 

(p<0.001). (Table 3.2). Figure 3.9 displays the data prediction after model fitting and accounting 
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for differentiation [equation (3.1)] compared to data prediction of the model without a 

differentiation term [equation (1)]. In the latter case each myotube would be counted as only one 

cell. When cell differentiation is not included in the model, the coefficients of determination 

range from R2=0.598 to 0.648 and α parameter is estimated as 0.55 which is significantly 

different than the estimate from equation (3) (p< 0.05) (Table 3.2).  

 

 
Figure 3.9 Curve-fit data. Experimental data sets for MDSC growth with myogenic 

differentiation are fit to the model using nonlinear regression. 

 

One representative replicate is shown here (Figure 3.9). Accounting for cellular fusion results in 

a total cell count (NMononuclear + NFusedNuclei) which is higher than individual cell count alone (N). 

R2 values for NMononuclear + NFusedNuclei versus t (black curve) range from 0.81 to 0.94 (n=3), with 

mean α = 0.60, in comparison to R2 values for N versus t (gray curve) which range from 0.62 to 

0.65 (n=3), with mean α = 0.55. 
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Table 3.2 Comparison of Model equation (3) to Model equation (1) 

 Model with Differentiation 

Term 

Model without Differentiation Term 

 R2 α R2 α 

Replicate 1 0.939 0.55 0.648 0.46 

Replicate 2 0.816 0.63 0.598 0.58 

Replicate 3 0.811 0.66 0.615 0.63 

Mean(p <0.05)  0.61  0.56 

3.4  DISCUSSION 

The heterogeneity of stem cell populations is an issue that impacts all facets of stem cell 

research—from isolation to cell-cell signaling pathways to mathematical modeling. The simple, 

user-friendly models presented here can be utilized to assess parameters of heterogeneous cell 

population growth. In addition they may serve as a framework for more complex models 

incorporating terms to account for interactions among subpopulations. 

 

One key assumption of the mathematical model, which was tested here, was that DT is constant. 

It is widely recognized that cell density affects cell behavior and phenotype, a belief that has led 

researchers to use standard culturing ranges under which a specific cell type is grown. For 

MDSCs this confluency range is 10–50% [26]. It was observed that the DT remains relatively 

constant within this range. Although the appropriate statistical tests indicate that these 

parameters do not change significantly, the data do show that there is a tendency toward an 

increase in the cell cycle time as confluency increases to >50%. This trend explains, in part, the 

sigmoidal shape often observed in culture and generally attributed to space and nutrient 

depletion. It was also found no or minimal refractory periods between passages. After re-plating, 

the cells adhered and resumed division within 4-6 hours, and DT returned to previous values. 

This observation suggests that the model obtained with parameters within the 10-50% 

confluency range validly represents the expected long-term expansion of the cells.  
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It is also noteworthy that the model equation can be used in place of other BrdU equations 

(exponential-based equations) that traditionally have been used to estimate DT. Just as the 

experimental data were curve-fit to estimate α using known DT, equation 1 can be used to 

estimate DT when α is determined experimentally. Furthermore, the Sherley expansion equation 

may be re-written to obtain a nonexponential expression for the population doubling time, 

PDT—another parameter frequently used to describe population growth: 
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Here it is observed that population doubling time is now more accurately represented as a 

function of both α and DT. An α value equal to 1 yields the exponential expression of population 

doubling time (= ln2/k=DT). Under the conditions of this study, PDT is calculated to be 20 hrs 

for expansion growth, 50 hrs for growth with apoptosis and 39 hrs for growth with 

differentiation.  

 

When expansion is accompanied by significant cell loss, the growth model must account for this 

occurrence. The addition of a cell loss term makes the equation applicable for use in studies of 

cell populations in which apoptosis is a key event, such as anti-cancer agent or embryonic tissue 

developmental studies. Even clonal populations quickly become unsynchronized (due to 

individual variations in DT) such that the population will contain cells that have reached their 

divisional limit before others, enter senescence and undergo programmed cell death [174]. If the 

rate of cell death is high, a measurement of the population growth must account for this cell loss. 

Cells were treated with the transcription inhibitor actinomycin D to induce apoptosis, and then 

analyzed the fitness of the model. An increase in the correlation coefficient was observed as 

compared to the Sherley model or the exponential equation. Additionally, this system enabled 

assessment of other growth parameters, namely the division time and mitotic fraction, from 

which one can begin to understand the mechanism of action of given agents. For example, in the 

presence of AD the number of apoptotic cells increased as expected; however, it was also found 

that the remaining live cells had longer division time and decreased mitotic fraction. In the 

presence of 0.50ng/mL AD, 45% of the daughter cells continued to divide actively with a DT 
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equal to 21hrs; this population could recover when AD was removed. An even stronger model 

correlation was observed when examining the cell growth of primary stem cell populations in 

which “natural” cell death occurred following fresh isolation (R2 =0.967, α = 0.44, DT = 16 hrs, 

data not shown). Notably, in this case and under many other conditions the α and DT parameters 

may change over time—thus the concern for the time-scale on which the model is applied. After 

several weeks in culture, the primary muscle-derived stem cells appeared to undergo some type 

of activation, and the mitotic fraction increased to ~70% (DT continued to be approximately 16 

hrs). The nondividing fraction of the cell population at this point appeared to comprise fewer 

apoptotic or necrotic cells and perhaps more cells moving toward terminal differentiation as the 

population matured in culture.  

 

Indeed, one of the difficulties and focuses of stem cell research lies in controlling cell 

differentiation. While the promise of stem cell therapy is dependent upon the ability of these 

cells to undergo multilineage differentiation, actual therapies will require in vitro expansion of 

the undifferentiated phenotype. This model includes terms that account for both the 

differentiated phenotype as well as the self-renewing phenotype. Therefore the model can be 

used to assess the heterogeneity of a cell population and the growth kinetics resulting from the 

mixed sub-populations. In the case of MDSC, terminal differentiation means that the cells fuse to 

become multinucleated myotubes. An increase in the correlation coefficient was again detected 

resulting in an improved estimate of the mitotic fraction after incorporating a differentiation 

term. As compared to expansion conditions, it was found that the differentiation medium and 

conditions led to a longer division time and a decreased mitotic fraction. Although the self-

renewing population has not been defined phenotypically, an actively dividing, nondifferentiated 

population that is likely responsible for giving rise to both the undifferentiated and the terminally 

differentiated populations is identified. This model utilizes a mathematical approach to assess 

stem cell proliferation with attention to the various phenotypes resulting from alternative stem 

cell fates. While the model has been simplified to include the self-renewing and the terminally 

differentiated states, there are in reality several intermediate phenotypes that may have different 

rates of formation. While the estimate of the mitotic fraction is uniquely improved for the case of 

myogenic differentiation, the model could be applied in future studies to develop functions 

utilizing proliferation and differentiation rates based on the nonexponential model. Further, in the 
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design of bioreactor systems, it may be more practical to enumerate cells rather than nuclei. In 

this way, fusion could be modeled as increases in M. It can be seen that in the case of cell fusion, 

the event is similar to cell loss in that the cell or nuclei is no longer present in the population as a 

readily countable unit nor contributing progeny to the population. 

3.5  CONCLUSIONS 

 

The models presented in this chapter should facilitate the development of both a biological and 

mathematical understanding of stem cell dynamics. These tools allow us to quantitatively assess 

parameters of stem cell population growth subject to both intrinsic and extrinsic regulation. 

However, while the models may offer predictive value for cell numbers and kinetic parameters, 

their description of determination of cell fate is currently phenomenological.  An increased 

understanding of intercellular and microenvironmental determinants of stem cell fate should lead 

to growth models which describe the molecular mechanism of cell fate determination, which will 

ultimately allow for the development of bioreactor systems designed for the large-scale 

generation of phenotypically-defined stem cells to be used in cellular therapy strategies.   
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4.0 BIOINFORMATIC IMAGING SYSTEM PART II. AUTOMATED CELL 

BEHAVIOR QUANTITATION 

4.1 INTRODUCTION 

Defining the cellular characteristics that are most reliable in predicting the desired functional 

capacity of the stem cells remains a challenge of stem cell biologists. Currently, molecular 

markers that are exclusive to all stem cells have not been identified. The most thoroughly 

investigated stem cells, hematopoietic stem cells (HSCs), have markers which allow researchers 

and clinicians to identify the cells, although these markers often do not apply to stem cells 

derived from other sources. The primary criteria to define stem cells continue to be their 

behavior; i.e. the self-renewal and multipotential activities.  

 

Though limited, the molecular phenotype is currently used to secondarily characterize the 

MDSC. A full quantitative assessment of morphological, motile and growth kinetics of stem cell 

populations may add another dimension to cell phenotyping.  Stem cell biologists are often 

challenged to describe the morphological features of cell populations in part because of the 

tedious nature of obtaining the measurements. On the other hand, analysis of molecular marker 

expression, essentially binary data, is more straightforward. A number of programs are now 

available to provide computer-aided measurements of morphology and motility and can be found 

routinely in the literature. Methods that allow for a full quantitative analysis of MDSC may 

improve methods to identify and isolate the stem cells from within a mixed population. 

 

Time-lapsed microscopic imaging of cells has been in use for more than 50 years [175-179], 

although only in the past 15 years have automated image processing routines begun to be 

developed for the quantitative analysis of viable, growing cells [180-184]. In Chapter 2, a 

microscopic cell culture system capable of capturing time-lapsed images of growing cell 

populations was utilized to describe MDSC expansion.  Here advanced technology of the system 

provides a means to generate a comprehensive characteristic kinetic and behavioral profile of 
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MDSC. More than 65 different parameters measuring proliferative and differentiative 

characteristics are automatically acquired by the advanced system (Automated Cell’s 

CytoWorks, ACCW) at both the cellular level and population level. Measurements on 

morphology or ultrastructure include the cell area, length and breadth distances which are 

converted to elongation as the ratio of the major axis to the minor axis, roundness, perimeter, and 

proximity. Motility can be assessed by the object/ cell velocity, either straight-line velocity or 

curvilinear velocity.  Total cell numbers, colony formation, apoptotic frequency, proliferation 

rates and viability can also be assessed in the digital images.  

 

The ACCW system can be used to image over 350 fields in a given experiment and up to 30 

images per second. The high throughput technology is attractive but requires a means of filtering 

through the data to identify candidate parameters that may be of interest to improving current 

methods for the identification and isolation of MDSC. In this analysis, the processing and data 

mining software available with the ACCW system can be used to generate a phenoprint (Figure 

4.1) or a behavioral profile which will indicate significant deviations in a given population from 

the control or target MDSC profile. As shown in Figure 4.1, the ACI Phenoprint is similar to 

gene chip expression arrays both in presentation and in analysis. The data presented in the 

display is the result of a subtractive-like analysis, where indicated increases or decreases are 

relative for the test population versus a control population. 
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Figure 4.1 Automated Data Mining and Graphical Data Display 

 

 

It is clear that in order to take these MDSC or other stem cell populations to a clinical setting, the 

cellular phenotype, which predicts in vivo functional capacity, must be identified. In the 

muscular dystrophy model, the desired outcome is enhanced regenerative capacity of MDSCs. 

Several lines of emerging evidence suggest that phenotypic behavior may be the best forecaster 

of muscle regenerative capacity, particularly when evaluating muscle stem cells. The goal of this 

chapter was to determine the feasibility of automated image analysis for assessing characteristics 

of MDSC populations and to elucidate any behavioral markers that may be present in cells with 

enhanced regenerative capacity. 
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4.2  METHODS 

4.2.1 Imaging  

To obtain a characteristic kinetic and behavioral profile of effective stem cells, MDSC were 

imaged using the microscopic cell culture system as previously described (Automated Cell, Inc., 

ACI)). Several populations were compared using the system, 5 populations of MDSC that had 

demonstrated high efficiency at dystrophin delivery when transplanted to skeletal muscle of 

murine mdx animals (MDSC-15, MDSC-45, MDSC-70, MDSC-125 and MDSC-170 PDs). 

These populations differed in their in vitro doubling age, and will be described in more detail in 

Chapter 5), but they did not differ in their ability to regenerate muscle. We compared these 

populations to MDSC-300, which were inefficient at dystrophin delivery. Cells were plated at 

225 cells/cm2 in 24-well plates with 20% normal growth serum. For each cell type, 3 separated 

wells were plated. Within each well, 3-4 viewfields were selected. Each experiment was 

performed in triplicate. Images were acquired at 10-minute intervals for a period of 3 days, using 

100x magnification and phase microscopy. 

4.2.2 Data Acquisition and Analysis 

Automated image analysis was performed using Data Collector (version 2.0.0, Automated Cell 

Inc).  Settings for image analysis were varied for each sequence to enhance contrast and enhance 

object recognition. In addition, the algorithms for object/cell recognition and automated cell 

count used a pre-set, user-defined minimal cell size and average cell size respectively. To 

determine these values, 10 cells were chosen randomly and measured. Image sequences were 

subsequently processed for all cell and population measurements that were available from the 

software on cell numbers, morphology and motility. In addition, measurements on division time, 

mitotic fraction and population doubling time were performed as described earlier in Chapters 2 

and 3.  Results are imported to a SQL database that can be queried for various parameters to be 

examined using Phenoware ™ (ACI’s bioinformatic platform which includes statistical and 

graphical software). To visualize potential parameters of interest, the statistical differences 

between measurements for the efficient MDSC population (the control) and the inefficient 

MDSC population (the test population) can be displayed as a Phenoprint ™ (ACI).  
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4.2.3 Statistical Analysis 

Statistical differences on the mean measurements of division time, mitotic fraction and 

population doubling time of the two MDSC populations were tested using Student’s t-test. 

Analysis of other parameters which were obtained via Data Collector and measured over time 

was performed using Phenoware ™ . This analysis involved establishing time slices or time 

intervals where measurements over the interval were assumed to be constant with variation 

within a normal standard deviation of the true measurements. E.g., for the interval t=0 to t= 4 

hours, it was assumed that cell area should not vary over this amount of time and measurements 

in this interval were grouped. Measurements for all objects in all viewfields are then combined to 

generate a mean measurement, e.g. mean cell area for all objects/cells present during the time 

interval.  To test for differences between the two populations the, the mean measurements 

between the two groups are compared using Students t-test and scaled statistical differences are 

presented as color-coded bars on the Phenoprint™ display. 

4.3   RESULTS 

Automated image processing showed cells could be readily identified as objects (Figure 4.2). 

Shown in black outline are MDSC from a population, which efficiently engrafts to muscle, at 

three timepoints during a 72-hour expansion. Limits on cell size were set to 150 minimum pixel 

count and 10^4 maximum pixel count, to exclude small and large debris. In this figure, small 

debris is visible and shows the selectivity of the processing. Gradients in microscope light can be 

seen in these images, especially at the time 0 point. In this panel, several cells in the bright 

corner were not automatically detected. Optimization of the processing setting would be 

improved with more uniform images. 

 

 
Figure 4.2   Automated Image Analysis. 
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Manual counts were compared to automated counts in Figure 5.3. Each curve is the composite of 

4 images sequences. Curves were normalized for the number of cells in the initial viewfield. 

Standard error bars for the mean are shown for the manual counts only. Counts were compared 

by t-test at 12, 24, 36, 48, 60 and 70 hours. Although there appears to be separation of the curves 

at the later timepoints, no significant differences were detected at p-value = 0.05. At 1 timepoint, 

12 hours, a significant difference was detected for the manual count (20 ≤ 2 ) versus the 

automated count (16 ≤ 1).  

 
Figure 4.3 Comparison of Automated count and Manual Count 

 

Processing settings needed to be varied with each cell type. For some populations of MDSC, 

such as MDSC-45 PDs, shown in Figure 4.3, cells maintained a fairly dispersed configuration 

throughout the 72 hour expansion period. Very few cells were undetected in the processing, as 

also supported by the statistical analysis. However, it was observed that other populations of 

cells, e.g., but not limited to,  MDSC-300 PDs, the cells appeared to grow in closer proximity to 

each other. In these cases difficulties were encountered in the processing. Cell clustering 

required a larger maximal object pixel threshold to enable more objects to be segmented. 

However, even beyond 10^6 pixel area, the processing failed to detect additional clusters (white 
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arrows) (Figure 4.4). Objects or clusters that are shown by the black arrows in Figure 4.4, will 

account for the pre-set average cell size when estimating the number of cells within the cluster. 

 

 
Figure 4.4 Limits Of Automated Analysis 

 

Images from this same series appear to have good agreement with manual analysis up until 

approximately 60 hours of expansion. 
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Figure 4.5  Large Quantitative Data Sets Result From Automated Image Analysis 

 

 

Examination of several parameters verified the feasibility of measurements of morphology and 

motility.  The measurements for six parameters, for the 6 populations, is presented in Figure 4.5. 

While the grayscale image makes recognition of the curves for individual cell types difficult this 

figure is meant to illustrate the magnitude of the data collected and the need for database 

handling to be able to manipulate the various data sets. A simplified version for 2 populations is 

shown in Figure 4.6. Also in Figure 4.6 is further illustration of the failings of the image 

processing at later timepoints, or more specifically with increasing density.  
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Figure 4.6 Comparison of behavioral parameters of 2 MDSC populations. 

 

A drop in cell number for MDSC-300 PDs was observed at later timepoints although there is no 

drop detected by manual analysis (Figure 4.6). It was believed that the reduced detection of 

objects and lower cell counts was due to the large cell clustering which occurred at high 

densities. Automated measurements of object area showed MDSC-15 PDs had a much smaller 

values with smaller variability as compared to MDSC-300 PDs which again did not agree with 

manual analysis.  
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4.4 DISCUSSION 

 

The feasibility of performing live cell tracking and image analysis was shown here. High-

throughput features of the system demonstrated the several treatment groups could be analyzed 

within one experiment, thus providing the benefit of fewer experimenter manipulations while the 

automated image processing reduced the subjectivity and labor-intensiveness of the data analysis 

of the experiments.  

 

In this proof-of concept examination of an automated imaging system, it was found that density 

played a major role in the efficiency of image analysis and would need to be considered in 

design of future analysis. It had previously been considered that density is always a variable in 

expansion studies as populations which expand at a different rates could have a confounding 

influence of differential endogenous cytokine production which could further affect growth. In 

this study, density was shown as a complicating factor in cell recognition. By limiting the 

analysis to the first 60 hours of expansion, the efficiency of the analysis could be greatly 

increased. Further, this study was conducted at 100x magnification; high magnification studies 

will likely improve object recognition.  

 

At the same time the characteristic clustering that causes this behavior may reveal important 

features of the stem cell phenotype. While it would be beneficial to design experiments such that 

automated image analysis would be maximized, it would need to retain the natural behavior of 

the cells. This is of course analogous to research that removes cells from the in vivo environment 

in order to visualize the biological processes in vitro.  Further analysis of these populations will 

focus on measurements related to cell clustering in particular cell size, spreading and cell-cell 

contact. While all parameter measurements that the program was capable of quantitating were 

not presented in this survey, it is expected that the accuracy of these measurements will follow 

that of the sample presented here. Indeed the key requirement is that the cells be recognized and 

the cell border or outline be accurate. Most other measurements are made on the shape of the 

outlined cell and the subsequent movement of the defined object. 
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The system analysis shown here established the feasibility of automated analysis and identified 

the limits of the system, thereby paving the way for obtaining a thorough behavioral phenotypic 

profile of MDSC. 

4.5 CONCLUSION 

In sum, development of a standard behavioral stem cell phenotype via the systematic and highly 

quantitative characterization of a well-established murine MDSC clone is feasible and efficient 

via automated image analysis. This phenotypic profile will comprise a multitude of parameters, 

and as such will provide the most comprehensive behavioral characterization of stem cells 

obtained to date. However, extended studies will need to be performed to determine the 

applicability of the behavioral fingerprint to identify MDSCs and predict their in vivo 

regenerative capacity. 
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5.0 EFFECTS OF LONG-TERM EXPANSION 

5.1 INTRODUCTION  

Cell expansion is a critical step towards advance cell therapy regenerative medicine that involves 

attempts to stimulate self-renewal and delay differentiation. The purpose of the study in this 

chapter was to test the basic biological assumption of unlimited replication of stem cells. We 

established that muscle-derived stem cells (MDSC) could be expanded for more than 300 

population doublings with no indications of replicative senescence. To determine the long-term 

functionality of the population of stem cells as these populations were expanded, the molecular 

and behavioral stem cell phenotype, including the regenerative capacity, was examined for 

changes over time. It was found that the MDSCs are capable of participating in muscle 

regeneration in the mdx muscular dystrophy model up to 200 population doublings (PDs), further 

supporting their extended self-renewal lifetime. However, expansion beyond 200 PDs resulted in 

a subsequent decline in regeneration efficiency. Several observed phenotypic changes highlight 

the inevitable aging of cells that results from cell expansion and suggest possible transformation 

of MDSC.  These results bring into question the notion of an unlimited lifetime for stem cells, 

and also question whether transformation is a result of cell culture artifact or related to the idea 

of cancer stem cells.  

 

In 1961, Hayflick first reported that normal human fibroblasts undergo a limited number of 

divisions in vitro [144], and it was concluded that the number of population doublings was ~50. 

Since then many investigators have similarly reported a finite number of population doublings 

for euploid cells in culture. On the other hand, the current thinking is that stem cells possess a 

unique proliferation potential that is several times greater than this number or possibly an 

unlimited replicative potential [146-149]. Indeed long-term proliferation potential is often used 

to characterize stem cells. Expansion studies designed to determine the replicative potential and 

characteristics of various stem cell populations have reported the medium-dependant expansion 

of stem cells. Pluripotency and normal karyotype have been reported for human embryonic stem 
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cells expanded to 250 PDs [185] or 130 PDs [186]. Stem cell populations deriving from bone 

marrow have different kinetics. Nonembryonic stem cells such as human hematopoietic stem 

cells appear to have a slower doubling rate though have been expanded 2 x 106 –fold over a 6-

month period corresponding to 20 PDs [187] and ~1400-fold over a 3-month period (10PDs) 

[187, 188]. Mesenchymal stem cells (MSC), bone marrow stromal cells (BMSC), and 

multipotent adult progenitor cells (MAPC), all deriving from bone marrow and yet to be 

confirmed as the same population, have been expanded 109-fold or to 30 PDs [189], to 50-70 

PDs [190],  and to 120 PDs [191, 192], respectively.  Differences in expansion potentials appear 

to be both species-specific for a particular stem cell type and also specific to the culturing 

environments.  

 

It would appear that large numbers of cells could be generated by expansion of the stem cells. 

However, numerous studies in the field of cellular aging have shown that cells with a high 

replicative age, often have chromosomal abnormalities. Incomplete DNA replication at the 

telomeres (G-rich repeat units at the ends of chromosomes) leads to telomere shortening with 

each cell cycle. Once the telomeres reach a critical length, cellular senescence is reached. A 

number of other cellular degenerative changes are associated with serial propagation or aging of 

cells in culture including abnormal structures in the cytoplasm, changes in metabolism, loss of 

methyl groups and reiterated sequences from DNA, and reduction in replicative efficiency and 

growth rate [148]. In addition to the concern that such expanded and aged populations have 

reduced functional capabilities, accumulation of damage over the cell lifetime leads to increased 

probability of genetic instability leading to apoptosis or tumorogenic behavior. 

 

Extensively expanded stem cells may become targets of transformation due to the damage. On 

another level, there is an association between stem cells and cancer cells which may exist even 

prior to long-term expansion. The self-renewal pathway, which is a defining characteristic of 

stem cells, may share some signals associated with oncogenesis. Recently, the notch, sonic 

hedgehog and wnt signaling pathways have been implicated in self-renewal of hematopoeitic 

stem cells [150-153] and interestingly, it has been suggested that hematopoietic stem cells are 

more likely than committed progenitors to undergo transformation [150]. Taken together, the use 

of expanded stem cells demands examination into the quality of the cells. 
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In summary, the promise of stem cells in cell therapy and functional tissue engineering is quite 

clear. Expansion methods need to consider regulation of extrinsic and intrinsic biostimuli that 

lead to self-renewal and differentiation, or symmetric and asymmetric divisions. In addition to 

control of these pathways, it is necessary to design practical scalable culture systems with 

mathematical models for prediction of output numbers. Another layer of complexity results when 

we consider, how the quality of the cells changes with extensive expansion or more generally 

with cellular aging.  

 

In an effort to test the long-term self-renewal potential and identify what the limits are for 

expansion of a population of muscle-derived stem cells (MDSCs), both in vitro and in vivo 

phenotypic alterations, myogenic differentiation capabilities as well as signs of aging and 

transformation in muscle stem cells extensively expanded under normal culture conditions were 

examined. 

5.2 METHODS 

5.2.1 Muscle-Derived Stem Cell Culture Expansion and Proliferation Kinetics 

MDSC were obtained as previously described from normal C57BL/6J 3-week old mice [26]. 

Cells were cultured in Dulbecco’s Modified Eagle’s Medium (containing 10% fetal bovine 

serum, 10% horse serum, 1% penicillin/streptomyocin, and 0.5% chick embryo extract; Gibco-

BRL) at an initial seeding density of 225cells/cm2. After 2-3 days of growth (confluency < 50%), 

cells were trypsinized, counted and replated at 225cells/cm2. This continued for a 6-month 

period. The cell counts and cellular dilution factor was recorded and used to calculate the 

expansion potential, number of population doublings and the doubling time. Cellular division 

time is measured directly from time-lapsed images acquired at 10-minute intervals for 4-days for 

cells initially plated at 225/cm2. Population doubling time is calculated as described in Appendix 

C. Mitotic fraction, or the fraction of daughter cells which are dividing FD, or α is calculated 

using the Sherley model as previously described [170, 193]. 
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5.2.2 Morphological Analysis 

Phase contrast light microscopy images were acquired every 2 weeks using a Nikon microscope 

and Optima digital camera. 100x and 200x images were acquired for 3 different, random 

positions in each flask. Morphometric data was collected using the Northern eclipse software 

package. 

 

5.2.3 Sca-1/CD34 Expression by Flow Cytometry  

MDSC cells were collected then labeled with rat anti-mouse Sca-1 (R-phycoerythrin) and CD34 

(biotin) monoclonal antibodies at 2-week intervals.  A separate cell portion received equivalent 

amounts of isotype control antibodies.  Both fractions were then washed and labeled with 

streptavidin-allophycocyanin (APC).  7-amino-actinomycin D (7-AAD) was added to exclude 

non-viable cells from this analysis.  A protein profile was also obtained from a non-sorted 

fraction of the MDSC suspension.  All antibodies, streptavidin-APC, and 7-AAD were obtained 

from Pharmingen.  For flow analysis, appropriate gating was performed determine Sca-1/CD34 

phenotype using a FACStar Plus® or FACSVantage SE® (Becton Dickinson, San Jose, CA) flow 

cytometry. One-way ANOVA was performed to test for significant differences in protein levels 

among the various timepoints or doubling levels. Following ANOVA, pairwise multiple 

comparisons for differences in CD34 expression were performed using Tukey test with alpha = 

0.05, power =0.997. 

 

5.2.4 Myogenic Marker Expression by Immunocytochemistry 

At two-week intervals, the expression of the myogenic marker desmin was examined via 

immunocytochemistry. In brief, following cold methanol fixation, cells were blocked in 5% 

horse serum (HS), then incubated with antibodies for desmin (mouse monoclonal desmin, 

1:250), secondary biotinylated IgG (Vector, 1:250) and streptavidin-Cy3 (1:500) to fluorescently 

label the antigenic binding and to determine the percent myogenic cells within the population. 

Following ANOVA, pairwise multiple comparisons for differences in desmin expression were 

performed using Tukey test with alpha = 0.05, power =0.87. 
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5.2.5 In Vitro Myogenic Differentiation 

To induce myogenic differentiation, MDSC were plated at 1000 cells/cm2 in normal 20% serum 

DMEM for 3 days and then switch to 2% serum DMEM for an additional 4 days. On day 7, 

immunocytochemical staining was performed to reveal fast myosin heavy chain (MyHC) 

expression. Briefly, methanol-fixed cultures were blocked with 5% HS, incubated with 

monoclonal mouse anti-MyHC (1:250, Sigma), biotinylated IgG (Vector, 1:250) and 

streptavidin-Cy3 (1:500).  Differentiation efficiency was quantitated as the ratio of myogenic 

nuclei to total nuclei. Following ANOVA, pairwise multiple comparisons for differences in 

differentiation were performed using Tukey test with alpha = 0.05, power =0.848, and linear 

regression analysis reveals significant trend with a Pearson product moment correlation 

coefficient, R = 0.974, p< 0.01 (power=0.963). 

 

5.2.6 In vivo self-renewal 

The classical test for self-renewal which is used for study of hematopoietic stem cells HSC is 

serial transplantation. To test the MDSC in a similar fashion, cells were isolated from a normal 

C57BL/ 6J donor using the preplate technique as described in section 5.2.1. MDSC were then 

transfected with separate plasmids with genes encoding for green fluorescent protein (GFP) and 

for neomycin resistance (NEO). Following selection, the GFP/NEO resistant cells (105 cells) 

were transplanted to the gastrocnemius muscle a murine mdx animal. Two weeks following 

implantation, gastrocnemius muscles were harvested and MDSC were re-isolated using the pre-

plate technique. Generally, pp1 and pp2 cells were discarded as fibroblasts. However it was 

recognized that a small percentage were GFP positive, and these populations were treated with 

G418 sulfate to remove cells which did not have the neomycin resistant gene. The purified 

populations were combined with later preplates which were similarly purified. MDSC were then 

transplanted to a secondary recipient, which was sacrificed at the two-week timepoint, and 

MDSC were again re-isolated. 

5.2.7 In vivo Muscle Regeneration 

Regeneration efficiency was examined as a function of cell age by transplantation of 1E5 –3E5 

cells/muscle into the gastrocnemius muscle of 5-8-week old mdx/SCID mice as in Jankowski et 

85 



 

al  [106]. Two weeks following transplantation, the mice were sacrificed and muscles were 

cryostat sectioned (10um). Immuohistochemistry was performed to identify dystrophin-positive 

myofibers. Briefly, tissues sections are fixed with cold methanol, and immunostaining is 

performed using the mouse-on-mouse (M.O.M.) kit (Vector) with DYS2 antibody (1:50, 

Novocastra). Populations of various doubling levels were grouped into 6 categories (0-50 

doublings, 51-100 doublings, 101-150 doublings, 151-200 doublings, 201-300 doublings, and 

>300 doublings) and  compared using ANOVA. Pairwise multiple comparisons for differences in 

regeneration index were performed using Tukey test with alpha = 0.05, power =1.0. 

5.2.8 Transformation Analysis 

Soft Agar Growth was examined by plating 2000 cells per 9.6 cm2 well in 0.35% low melting 

point agar as a top layer. The bottom layer consisted of 0.7% agar in 20% serum medium. 

Colonies were allowed to grow for 21 days at 37C, at which time the colonies were scored for 

both number and size using Northern Eclipse imaging software. Following ANOVA, pairwise 

multiple comparisons for differences in number of colonies were performed using Tukey test 

with alpha = 0.05, power =1.0. 

 

DNA content was analyzed by flow cytometry by fixing cells in ethanol for 2 hours and then 

resuspending cells in Ipecal and propidium iodide solution. DNA content was examined using 

flow cytometry and ModFitLT (v2.0). Three replicate experiments were performed and 

averaged. Differences among the timepoints or doubling levels were compared for the 2N, 4N 

and greater than 4N peaks using one-way ANOVA. 

5.2.9 Statistical Analysis 

For all of the above experiments a minimum of three replicates were performed, or as indicated. 

For all measurements, the Kolmogorov-Smirnov test was used to test the normality of the data. 

In cases where the data failed this test and indicated that the data varied significantly from the 

pattern expected if the data was drawn from a population with a normal distribution, 

nonparametric tests were used. This was the case for measurements of division time. This data is 

often skewed to the right, therefore median measurements, and nonparametric tests on ranks, the 

Mann-Whitney rank sum test, were used. However when multiple measurements of the same 
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population were made, e.g. 3 experiments to measure DT of MDSC population of X PDs, the 

median measurements were assumed themselves to be normally distributed and were reported as 

the median DT and standard deviation.  

 

Outlier data was also considered. The criteria used here to determine if a data point is possibly an 

outlier is 1) the measurement was more than 2 standard deviations from the mean and 2) there 

was sufficient reason to believe the measurement was not accurate. In the case of the skewed 

distribution of DT measurements, several data points were greater than 2 standard deviations 

from the mean however there was no reason to believe the measurements were not accurate and 

not data were removed as outliers.  

 

One-way ANOVA was performed to test for significant differences in the given characteristic or 

parameter among the various timepoints or doubling levels. Following ANOVA, pairwise 

multiple comparisons for differences in the measurements were performed using Tukey test with 

alpha = 0.05, and power as reported in each subsection. 

 

All statistical testing and regression analyses were performed using SigmaStat for Windows 

Version 2.0 (Copyright 1992-1995 Jandel Corporation). 

 

5.3 RESULTS 

To examine the effects of long-term expansion on muscle-derived stem cells, a highly purified 

population of cells was isolated via the preplate technique as previously described [26] from 3-

week normal C576J mice and maintained the cells in continuous culture for a period of 6 

months. Throughout the expansion, MDSCs were maintained at a density previously observed to 

maintain the stem cell phenotype (Figure 5.1). Periodically, stem cell characteristics of cell 

populations were analyzed at different doubling levels.  
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Figure 5.1 MDSC Expansion Scheme 

 

Figure 5.1 provides a schematic representation of cell expansion scheme. Low growth 

density was maintained by routine passaging every 2-3 days.  

5.3.1 MDSCs Expansion Potential 

MDSCs could be expanded to over 300 population doublings (n=3) (Figure 5.2). This expansion 

occurred over a 6-month period and resulted in a theoretical yield on the order of 10100.  Four 

different populations, which were isolated by the preplate technique, were expanded to high 

doubling number (population mdsc1 (300 PDs, n=3), population mdsc2 (300 PDs, n=2), 

population mdsc3 (200PDs, n=1) population mdsc4 (200PDs, n=2). However because these 

populations do not engraft well and because they have high desmin expression (>95%), it was 

considered that these cells might not be optimal MDSC for muscle engraftment. Rather, further 

experiments in this report were focused on the mdsc1 population, hereforth referred to as MDSC, 

which shows a high level of engraftment. 
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Figure 5.2 Theoretical Expansion of MDSC  

 

 

 

MDSC could be expanded to more than 300 population doublings (gray squares) over a 6- month 

period in culture to yield approximately 10100 cells (black squares).    

 

Very long doubling times are observed immediately following biopsy, and essentially during the 

isolation process. This is due to significant cell death which often occurs in the population after 

isolation through the preplate technique such that population size is not increasing rather it is 

decreasing and there is no population doubling. As a result of this, freshly isolated MDSCs may 

remain in the same isolation flask for up to 3 weeks before workable numbers are obtained. 

Measurements of doubling rate during the isolation period are based on visual counts rather than 

hematocytomer counts.  Figure 5.3 illustrates the lag in population growth observed during the 

first 4-6 weeks following biopsy.  
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Figure 5.3 Lag growth of MDSC following isolation 

 

 

 

Closer examination of initial culture period shows very slow growth. After ~3 weeks without an 

increase in population size, cell death appears to subside and the average population doubling 

time (PDT) during the first 6 weeks is 30 hours. Initially, the population doubling time is 

infinitely long, however by 4 weeks the doubling rate drops sharply to ~52 hours, which is 

concurrent with an increase in the number of population doublings (Figure 5.3). Once workable 

numbers were obtained (~ 3weeks following isolation) 225 cells/cm2 or 5600 cells were plated in 

25-cm2 collagen-coated flasks and routine cell passing was performed every 2 or 3 days. There 

was no significant difference (p =0.11) in the growth rate for cells in culture for 2-days as 

compared to 3-days in culture. Two-day growth periods resulted in an average of 3 population 

doublings (PDs), or 1.5±0.35 PDs/day, while the 3-day growth periods resulted in an average of 

5 PDs or 1.6±0.39 PDs/day.  

 

After 6 months in continuous culture, population kinetics indicate MDSC are capable of an 

extended replicative lifetime (Figures 5.2 and 5.4). Following the lag phase, the population 

doubling time, PDT, drops sharply to ~14-16 hrs where it remains relatively constant for the 

remainder of the culture expansion. no indication of replicative senescence were found (Fig 5.4).  
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Figure 5.4  Population Doubling Time, PDT, throughout the expansion. 

 

 

PDT becomes faster as cells are expanded and more cells are actively dividing. Shown in Figure 

4.4 is the moving average PDT (▲, smoothed line) and the daily or 2 and 3 day  PDT (♦) 

measurements.  

 

Interestingly, cellular division time (DT) did not change significantly throughout the expansion. 

Median division time, directly observed and measured using time-lapsed images, was similar for 

cells at 15 PDs (12 hours), 25 PDs (12 hours), 75 PDs (12 hours), 125 PDs (14 hours), 170 PDs 

(13 hours) and 300 PDs (12.5 hours) (Figure 5.5). Mitotic fraction or the fraction of daughter 

cells which are actively dividing is calculated using the Sherley model [170], and found to 

increase from 0.37 following isolation (15 PDs) to 0.75 –0.98 after 75 PDs (Figure 5.5) .   

 

91 



 

 
Figure 5.5 Cell Division Time and Mitotic Fraction Throughout Expansion 

 

 

Cellular division time (DT) did not change significantly throughout the expansion (Kruskal-

Wallis analysis on ranks). Median division time (g) are shown for MDSCs at 15 PDs (13 

hours), 25 PDs (12 hours), 75 PDs (14 hours), 125 PDs (14 hours), 170 PDs (14 hours) and 300 

PDs (14 hours). Mitotic fraction or the fraction of daughter cells which are actively dividing (n) 

is calculated using the Sherley equation, for MDSC at 15 PDs (0.37), 25 PDs (0.46), 75 PDs 

(0.75), 125 PDs (0.98), 170 PDs (0.88) and 300 PDs (0.83).  

 

5.3.2 Morphological Analysis 

Qualitative examination of the cell morphology show that the populations from early passages 

appear similar to cells at late passages. The range of cell density at which these cells are grown 

during the 2-3 day periods, roughly 25% confluence, and their heterogeneous morphology, is 

illustrated in Figure 5.6. The majority of the cells maintain a small round shape although there 

are clear subpopulations; there is a group of cells, which have a more spindle shaped appearance, 

and there is a small subpopulation that is fibroblastic in appearance.  
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Figure 5.6  Morphological Analysis Throughout Expansion 
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5.3.3 Stem Cell Marker Analysis 

Analysis of putative muscle-derived stem cell markers, CD34 and Sca-1, via flow cytometry 

shows that MDSCs do maintain the same general profile, for the first 200 population doublings. 

MDSC populations between 0-50 population doublings are 90.0 % ± 13% positive for CD34 

expression and 78% ± 15% positive for Sca-1 expression. Following expansion, there is no 

significant difference in the total Sca-1 positive expression among the timepoints for the 300-PD 

expansion (p=0.10, one-way ANOVA). However, a significant decrease in CD34 expression 

after 200 PDs (65 ± 22%, p<0.05, vs. 150-200 PDs (94 ± 7%) and after 300 PDs (36 ± 22%, 

p<0.05, versus all other timepoints) was observed (Figure 5.7).  

 

 

 
Figure 5.7 Stem Cell Markers, CD34 and Sca-1, Expression. 

 

 

Immunophenotyping following expansion showed total CD34: 0 –50 PDs (85% ± 18%, n=9), 

51-100 (81 %± 22%, n=12), 101-150 (78% ± 21, n=11), 151 – 200 (94 %± 7, n=8), 201-300 

(65% ± 22%, n=10) >300 (37 ± 22, n=5). Total Sca1: 0 –50 PDs (78% ± 15%, n=9), 51-100 (84 

%± 12%, n=12), 101-150 (83% ± 9, n=11), 151 – 200 (71 %± 17, n=8), 201-300 (71% ± 23%, 

n=10) >300 (76 ± 18, n=5). 

 

 Shifts in CD34 expression are recognized in the flow cytometry dot plots, whereas Sca-1 

expression stays constant (Figure 5.8).  
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Figure 5.8 Flow Cytometry Dot Plots From 1 Representative Expansion. 

 

For each individual plot in Figure 4.8, CD34 expression is on the x-axis and Sca-1 expression is 

on the y-axis. Dot plots are shown for 12 different timepoints, or population doubling levels, 

throughout the expansion. 
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5.3.4 Myogenic Behavior 

Myogenic Markers 

Desmin expression was assayed by immunocytochemistry at confluency level 450 – 1800 

cells/cm2, or 24-48 hours following replating. The percent desmin positive cells within the 

population was determined by quantitating three to four randomly selected fields within each 

well. Less than 20% of the MDSC population expresses the myogenic marker desmin following 

isolation (20 PDs). In addition, the early MDSC population is negative for Pax-7 and m-cadherin 

expression. After serial cultivation, a slight increase was found in desmin expression associated 

with MDSC after 200 PDs (19 ± 9%) in comparison to populations between 61 –200 PDs (range 

4.5 –7%, p<0.05) however this was not a significant increase as compared to lower passage 

populations below 60 PDs (7 ± 5%) (Figure 5.9).  

 

 

 
Figure 5.9  Desmin expression of MDSC at various population doublings.  

 

Expansion levels were grouped into six categories: 0 –30 PDs (6.5% ± 2%, n=3), 31-60 (7.4 %± 

7%, n=4), 61-100 (4.5% ± 7, n=8), 101 – 150 (4.8 %± 5, n=5), 151- 200 (6.8 ±4, n=6), 201-300 

(19.2% ± 9%, n=6), mean ± standard deviation.   
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Immunocytochemical staining, which was used to obtain the data, illustrates that few highly 

desmin positive cells were found among the majority of non-desmin cells (Figure 5.10). Pax-7 

and m-cadherin expression remained negative throughout the expansion (images not shown).  

 
Figure 5.10 Immunochemical staining of MDSC at the different expansion levels. 

 

Representative images are shown (200x). Desmin expression in this grayscale image is visible as 

bright white cells, while Hoechst nuclei are gray. 
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Myogenic Differentiation 

Differentiation levels declined with the increased passaging of MDSCs. Cells from low 

doublings, <30 PDs, underwent a high degree of differentiation, as recognized by multinuclear 

myotube formation, with 65% of the nuclei being positive for myosin heavy chain (fast MyHC) 

after 7 days in myogenic-inducing conditions (Figure 5.11). Generally these populations would 

initiate fusion on day 3-4 under such conditions, and often did not reach 100% confluency in 

culture. Following extensive expansion the percentage of cells which did not undergo cellular 

fusion to myotubes was greatly increased. A significantly smaller percentage of MDSC were 

fusing, or differentiating, to become myotubes on day 7 at the 200 PD level (24 ± 15%, p<0.05) 

and at the 300 PD level (15 ± 8%, p<0.05) (Figure 5.11). 

 
Figure 5.11 In vitro myogenic differentiation 

 

Differentiation was quantified as percentage of cells which were fused as myosin heavy chain 

positive myotubes: 0 –50 PDs (65% ± 4%, n=4), 51-100 (44% ± 26, n=5), 101 – 150 (40 %± 20, 

n=5), 151- 200 (40 ±7, n=5), 201-300 (24% ± 15%, n=4) >300 (15 ± 8, n=4). 

 

By day 7 of the myogenic differentiation assay, cells from populations at high doubling level 

have grown past confluency and demonstrate that they were no longer contact inhibited. Small 
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colony aggregates of 8-12 cells could also be found growing on top of the lower adherent cells in 

these cultures (Figure 5.12, arrows).   

 

 
Figure 5.12 Immunocytochemical staining of myogenic differentiation MDSC. 
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Immunocytochemical staining of MDSC populations after 7-day in differentiation inducing 

conditions shows myosin heavy chain as white myotubes and Hoechst nuclei as gray nuclei 

(200x). 

5.3.5 In vivo Self-renewal 

To examine in vivo self-renewal ability of MDSC, cells were isolated from a normal animal then 

transfected with genes encoding for GFP and neomycin resistance. Labeled cells were delivered 

to skeletal muscles of dystrophic animals and were visible by green fluorescence to engraft to 

host fibers. Contralateral muscles were used to re-harvest donor MDSC which were subsequently 

transplanted to a second recipient. Donor cells could be re-isolated from second recipient and 

again found to fuse with host fibers (Figure 5.13). 
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Figure 5.13 In vivo Self Renewal 

5.3.6 Myofiber Regeneration 

Populations of cells from low doublings were able to efficiently deliver the therapeutic protein 

dystrophin to murine mdx skeletal muscle when transplanted to the gastrocnemius muscle of 4-

10 week old animals. Two weeks following transplantation, the average regeneration index for 

MDSC between 0 -50 PDs was 829 ± 337 dystrophin positive fibers/ 105 cells. (Regeneration 

Index = number of dystrophin positive fibers per 10 5 donor MDSCs.). MDSC were able to 

continue this high level of regeneration for up to 195 PDs (RI= 799 ± 170 dystrophin positive 

fibers/ 105 cells)  (Figure 5.14).  Dystrophin delivery to murine mdx skeletal tissue was imaged 

by immunostaining for dystrophin presence in the plasma membrane of myofibers (white in 
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images) for MDSC at various levels of expansion. Representative dystrophin engraftments are 

shown in Figure 5.14 for cells at 45, 60, 140 and 195 PDs  (50x background, 200x foreground).  

 
Figure 5.14 In Vivo Regeneration And Dystrophin Delivery. 
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After 200 PDs, the engraftment efficiency decreases significantly and the number of dystrophin-

positive fibers which were observed was at the level of background revertant fibers (200 -300 

PD; RI= 32 ± 47 and >300 PDs; RI=3 ± 3 p<0.001).  Histological examination shows a large 

area of mononuclear cells present at 14-days post-transplantation. Small numbers of dystrophin 

positive fibers could be found near the graft (Figure 5.15).  

 

 
Figure 5.15 Mononuclear cells within muscle have low level of dystrophin delivery at 230 

PDs 

 

H&E staining, left panel of Figure 4.15, reveals histology of cellular mass in host mdx muscle 

transplanted with cells at 240 PDs, 14 days post transplantation. Serial sections show few 

dystrophin positive fibers within a cell mass 14 days post cell delivery (200x). 

 

To confirm delivery of the MDSC and to recognize the injection site, MDSCs at PD 310 were 

retrovirally labeled with Lac-Z gene or with microsphere beads. The site of cell delivery was 

verified and it was observed that the number of dystrophin positive fibers in these regions is < 25 

fibers (Figure 5.17) (LacZ indicated by arrows, engraftments with beads not shown).  
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Figure 5.16 Labeled MDSC within site of Cell Delivery 

 

Lac-Z positive cells (arrows) confirm cell injection site, which is negative for dystrophin  

(Hoechst nuclei in gray) as shown by immunocytochemistry. Image contrast to reveal fibers was 

created by overlaying brightfield image as positive fluorescent image (400x) and is 

distinguishable in grayscale images from positive dystrophin staining by location in connective 

tissue region between fibers (Compare to Figure 5.14 ) 

 

 
Figure 5.17 MDSC Regeneration Efficient Following Expansion 

 

Dystrophin delivery following cell transplantation is scored as the regeneration index (=number 

of dystrophin positive fibers per 100,000 donor cells) by enumeration of immunostained images 

for the total number of fibers. Total cross-sectional area of engraftment can be further estimated 
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by use of the average fiber diameter, total number of fibers and assuming a circular fiber area. 

Newly isolated cells yield an engraftment of ~1000 fibers/ 100,000 MDSCs; 0 –50 PDs (829 ± 

336, n=4), 51-100 (610± 380, n=3), 101-150 (457 ± 272, n=6), 151 – 200 (799± 170, n=4), 201-

300 (32 ± 47, n=4) >300 (3 ± 3, n=8).  

  

5.3.7 Transformation Analysis 

MDSCs demonstrated an increased ability for anchorage-independent growth related to an 

increase in population doublings (Figure 5.18). Cells were plated at 2000 cells per 9.6 cm2 well 

and scored after 21 days in soft agar. It was observed that ~2.3% of MDSCs at PD= 25 initiated 

colonies which did not progress past the 4- or 8- cell stage (~ 30 microns) and fewer than 1% of 

the plated cells formed colonies greater than 60 microns in diameter (Figure 5.19). Above 100 

PDs, 12% of the plated cells were forming colonies larger than 30 microns. Interestingly, at 140 

PDs, several large colonies, >100 microns, and comparable to mutant positive control, were 

detected (Figure 5.19). No significant differences were detected among the timepoints below 200 

PDs in terms of number of colonies formed on soft agar (p>0.05). However, a significant 

increase in number of colonies is detected for MDSC expanded to 295 PDs (59% or 590 ± 93 

colonies per 1000 plated cells p<0.001, average diameter of 60 microns). Positive control was rat 

1A 412 c-myc mutant cell line. Representative images of detected colonies using phase 

microscopy are shown (Figure 5.19, 100x).   
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Figure 5.18 Colony growth on soft agar for MDSC following expansion  

 

Number of colonies formed per 1000 plated cells 0 –50 PDs (23 ± 10, n=3), 51-100 (82± 24, 

n=6), 101-150 (61 ± 13, n=6), 151 – 200 (125±116, n=5), 201-300 (122± 88, n=5) >300 (590 ± 

93, n=5). Quantitation was performed by scoring both large (> 60 micron diameter) and small 

(<60 microns) colonies using Northern eclipse software package. 

 

 

 
Figure 5.19 Anchorage independent growth of colonies on soft agar 

 

 

Images were acquired 21-days post seeding. Positive control is also shown. Representative 

images of colony growth, 100x phase microscopy. 

 

The DNA content by flow cytometry was also examined to detect polyploidy. No difference was 

observed in the distribution of cells in the different phases of the cell cycle (Figure 5.20), with 
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the single exception of the percentage of cells in G2/M at 45 PDs (29 ± 2.5%, and at 300 PDs 

(21 ± 0.6%).  These results supported the finding that there was no significant difference in the 

cell cycle time (Figure 5.5). Importantly, polyploidy or a population with > 4N number of cells 

was not detected (Figure 5.20). These results (Figure 5.20 and Figure 5.5) suggested that both 

DNA content and cell cycle kinetics were similar for freshly isolated stem cells and cells that 

were present after extensive expansion.   
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Figure 5.20 DNA content and cell cycle analysis by flow cytometry 

 

DNA content analysis by flow cytometry revealed a cell cycle distribution in that was not 

significantly different among the various doubling levels; 25 PDs (G0/G1 or 2N: 53 ± 7%, G2/M 

or 4N: 25 ± 4%, > 4N: 6 ± 3%), 45 PDs (2N: 40 ± 7%, 4N: 29 ± 2.5%, > 4N: 14 ± 7%), 70 PDs 

(2N: 46 ± 4%, 4N: 24 ± 2%, > 4N: 12 ± 9%), 125 PDs (2N: 49 ± 2%, 4N: 26 ± 3%, > 4N: 6 ± 

1%), 170 PDs (2N: 46 ± 4%, 4N: 23 ± 2%, > 4N: 9 ± 2%), 310 PDs (2N: 50.0 ± 15%, 4N: 21 ± 

0.6%, > 4N: 8 ± 8%). 

5.4 DISCUSSION 

Although researchers have theorized that several types of stem cells have extended replicative 

lifespans, few studies have demonstrated high population doubling. The MDSC is a novel stem 

cell that researchers have investigated during the last 10 years and begun to thoroughly 

distinguish from committed satellite cells [11, 19, 25, 26, 37]. The origin of MDSCs isolated 
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from skeletal tissue and their relationship to blood-derived stem cells remain unclear, but basic 

characterization studies have revealed many features of stem cell behavior. This study 

demonstrates for the first time that MDSCs have an extended replicative lifetime. Despite no 

indications of replicative senescence, the ability of the cells to maintain their stem cell phenotype 

was investigated. 

 

Freshly isolated MDSCs exhibit high expression of CD34 and Sca1 and low expression of the 

myogenic marker desmin. By culturing MDSCs at a low density (225-2000 cells/cm2), MDSC 

were able to maintain this molecular profile for at least 200 PDs. After 200 PDs, even when 

cultured at the same plating density, the MDSCs showed decreased CD34 expression that 

corresponded with the cells’ decreased ability to engraft. This finding is consistent with previous 

reports indicating that sorted CD34-positive populations exhibit significant improvements in 

dystrophin restoration when compared to CD34-negative populations [106]. 

 

In this study, MDSC populations were not defined by markers alone. The behavior of the MDSC 

populations was examined as they differentiated in vitro and as regenerated skeletal tissue in 

vivo. Changes in their molecular marker expression were accompanied by decreases in the 

percentage of cells participating in differentiation. One of the key advantages of MDSCs over 

satellite cells or other stem cells is the ability of MDSCs to engraft in diseased dystrophic muscle 

and participate in skeletal muscle regeneration [26, 106]. Remarkably, MDSCs expanded 

through 195 PDs and subsequently transplanted into mdx mice demonstrated a high level of 

engraftment similar to that exhibited by freshly isolated MDSCs, and significantly higher than 

that shown by fresh satellite cells [26, 106].  

 

Few other adult stem cell populations have been observed to undergo such extensive expansion 

[192, 194]. Interestingly, the doubling level here is most similar to the doubling level reported 

for embryonic stem cells (ES) cells [185, 186, 195, 196]. The MDSCs’ extended expansion 

potential, coupled with their retainment of regeneration capacity and functionality, provides 

evidence that these cells are uniquely capable of long-term self-renewal of the undifferentiated 

phenotype. However, the failure of MDSCs to engraft after expansion through 300 PDs clearly 

indicates that this potential is, in fact, not unlimited. Several other groups have reported the loss 
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of multipotency of expanded populations of postnatal stem cells. In comparison to unexpanded 

hematopoietic stem cells (HSCs) isolated from mice, the same cells after only 2–7 days of 

expansion exhibited a decreased ability to perform hematopoietic reconstitution [197-199]. 

Researchers also have reported a loss of multipotentiality in expanded MSC populations [200, 

201]. 

 

It was also investigated whether the extended expansion process resulted in transformation of 

cells within the MDSC populations or selected for a specific phenotype associated with increased 

replicative activity. In comparison with earlier populations of MDSCs, the highly expanded 

MDSC population showed a heightened ability to grow on soft agar, a decreased ability to exit 

the cell cycle, and a loss of contact inhibition. After 200 PDs, a large fraction of the cells 

continued to proliferate even in a reduced serum/cytokine environment at high confluency, 

conditions that normally stimulate cell fusion to form terminally differentiated multinucleated 

myotubes.  

 

To determine if there may have been a crisis period reflective of the transformation during the 

expansion, we examined the proliferation kinetics more closely. The evaluation revealed no 

crisis within the range of 200 PDs; the cells continued to have a doubling rate between 14 and 16 

hours at this point of the expansion process. Although a marked drop in the population doubling 

time of the cells at around 50 to 70 PDs was observed, this drop occurred not because population 

growth was slowing, as one would expect in the case of senescing cells, but because more cells 

were becoming mitotically active during this period (Figure 5.5). Before reaching 50 PDs, the 

cells’ average doubling time was 32 hours (excluding the 28-day isolation process); Beyond 50 

PDs, the doubling time was 16 hours. These data could indicate one of two events: 1) positive 

selection for cells that exhibit high proliferation activity or 2) expiration of cells obeying 

Hayflick’s limit of 50 PDs, resulting in an expanding population containing only stem cells. The 

latter event appears more likely given the results indicating that the MDSC population continued 

to exhibit stem cell properties well beyond 50 PDs.  

 

The first signs of the loss of regeneration efficiency by the MDSC population appeared at 240 

PDs, but we observed other phenotypic changes at earlier points. The evaluation of populations 
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between 0 and 50 PDs revealed a very small percentage of cells (approximately 2.3%) that 

exhibited minimal growth (4–16 cell colonies) on soft agar but engrafted efficiently. Loss of 

engraftment efficiency corresponded with high expansion, decreased CD34 expression, slightly 

increased desmin expression, and loss of in vitro differentiation capacity. The assessment of 

MDSCs after 250 PDs revealed dramatic increases in terms of cell growth, with 59% of the cells 

able to grow on soft agar and form colonies 60 microns in diameter. However, a mass of 

mononuclear cells showing minimal to no cell fusion was visible two weeks after the 

transplantation of these populations into mdx mice. This finding clearly demonstrates that the 

MDSC phenotype was not maintained during expansion under the conditions used for our study. 

It was hypothesized that the MDSCs may have acquired chromosomal abnormalities as a result 

of excessive cell culturing, and thus did not maintain the stem cell phenotype required for 

unlimited self-renewal. (Figure 5.21).  

 

These results are particularly intriguing in light of recent studies conducted to examine stem cells 

that appear to share certain characteristics with cancer cells and to explore the possible existence 

of cancer stem cells. Several recent studies have investigated the hypothesis that cancer may be 

driven by cancer stem cells. Small populations of stem cells that share properties with normal 

cells but also have the ability to form cancer have been found in leukemia [202-204], breast 

cancer [205, 206], and brain tumors [207, 208]. The obvious similarity between cancer cells and 

stem cells is their shared capacity for self-renewal. It is demonstrated here the ability of the 

MDSC population to expand by giving rise to similar progeny in vitro, and our serial 

transplantation experiments show that the resultant cells have the ability to regenerate muscle in 

vivo. The finding that stem cell properties and in vivo engraftment efficiency are retained for up 

to 200 PDs suggests that MDSC transformations do not occur without extensive replication. The 

strong similarities between the growth kinetics of MDSCs at low doublings and those of MDSCs 

at high doublings also may model the similarities between stem cell self-renewal and the 

replication of transformed or cancerous cell populations. If the model is accurate, the fact that the 

cells divide at the same rate would make detection of a crisis stage at around 200 PDs difficult. It 

can also be hypothesized that if cancer stem cells are present in the MDSC populations, those 

cells would continue to grow throughout extensive expansion even after the MDSCs, which are 

efficient at regeneration, are lost or exhausted due to either senescence or differentiation; this 
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suggests that the MDSC may indeed have an extended, but limited replicative lifetime (Figure 

5.21). 

 

 

 

 
 

Figure 5.21 Proposed hypothesis to explain presence of transformed-like cells within 

MDSC population at high doubling level 

5.5 CONCLUSIONS 

Taken together, the decrease in CD34 expression, slight increase in desmin expression, loss of in 

vitro differentiation capacity, and, importantly, the loss of in vivo regeneration efficiency suggest 

that the MDSC populations lost the stem cell phenotype after 200 PDs. It remains to be 

determined whether this loss of stem cell phenotype and apparent transformation are due to 
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chromosomal abnormalities resulting from cell culturing or to the selection of a small fraction of 

cancer-like stem cells within the MDSC population. This study highlights the need to conduct 

more intensive investigations into basic stem cell behavior before translating cell therapies to 

clinical settings. 
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6.0 DISCUSSION 

 

In this study, 4 major objectives were carried out to provide a comprehensive investigation of 

MDSC expansion. A thorough discussion of potential cell therapy applications for MDSC was 

presented earlier along with a review of the significance of such studies[31, 209]. First, an 

imaging system was established as an efficient, reliable method to assess cell expansion. 

Cytokine-induced expansion was used to test this system [171]. Next, a growth model was 

presented which could describe cell growth in the presence of particular groups of nondividing 

cells [193]. Lastly, the effects of in vitro cellular aging on the stem cell phenotype were used to 

study the natural progression and limits of MDSC expansion. 

 

This project began as a study to identify growth factors to stimulate stem cell expansion. Within 

the laboratory setting, large numbers of cells are required to perform basic investigations on the 

stem cells. However, only small numbers of MDSC are derived from a skeletal muscle biopsy. 

The primary goal was to expand the stem cells in order to carry out basic characterization 

investigations. While, it was shown readily that several cytokines could increase overall cell 

numbers, new questions arose regarding the suitability of the manipulated cells. In addition, 

effort was put towards identifying appropriate growth models both to describe MDSC kinetic 

behavior (as a way of characterizing the cells) and also to predict output numbers. As is often the 

case, the initial investigation led to new studies that would actually provide a better foundation 

onto which the original question could be addressed.  

 

It was shown in these studies that a microscopic imaging system could be used to monitor cell 

growth. Several benefits were apparent with this non-destructive system. The most basic 

information, the cell growth curve could be readily obtained. Enumeration of cell numbers did 

not require enzymatic treatment or manipulation of different culture flasks for each different 

timepoint. In the system presented here, obtaining a growth became very routine. It should be 

emphasized that the growth curve constitutes basic knowledge that an investigator should have 
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for study of any cell population of interest. In studies presented here, the growth curves were 

obtained using only the cell counts at 12-hour intervals, although in fact the video record 

consisted of images at 10-minute intervals (when curves were obtained at 6-hour intervals there 

was no improvement of the growth curve). This illustrates and implies that in the absence of an 

automated imaging system, researchers could still avoid destructive assays of chemical and 

mechanical cell disruption, by adopting the efficient method of simply acquiring images at 12-hr 

intervals using a standard microscope and CCD camera. In this way, the basic kinetic 

information on cell growth is still available at minimum to investigators working with cells. As 

the system used in this study did have the capacity to obtain more or less continuous images, 

additional information was available. First, the division rate was measurable and could be 

distinguished from the population doubling time. It is common to find in the literature the 

interchange of the words ‘doubling time’ and ‘division time’. But what is more concerning is the 

lack of understanding of why these two terms are different. Because this issue is a frequent 

source of confusion, a brief discussion was included in Appendix A. Another important 

motivation to highlight the difference between cell division time and population doubling time 

was because it emphasizes the heterogeneity that exists within cell populations, in particular the 

MDSCs that were studied here.  

 

Presented in the introduction were issues relating to the heterogeneity of stem cell populations 

and how the presence of distinct subpopulations confounds attempts to identify and isolate the 

functional stem cell phenotype. One particular subpopulation which was incorporated into the 

growth model is the nondividing fraction. In theory, this group might further be categorized to 

subpopulations of cells that are quiescent, senescent, post-mitotically terminally differentiated or 

apoptotic or dying. For the purposes of predicting population growth, the nondividing fraction 

was considered as a whole. The Sherley equation offered a simple way of modeling cell growth 

based the fraction of daughter cells that are dividing, α, and the cellular division time, DT.   This 

equation is user-friendly for stem cell biologists and provides useful information on the 

population. It was shown in the cytokine–stimulated populations that expansion might be 

stimulated by 2 different mechanisms. In the first expansion mechanism, the cell cycle length 

may be shortened, i.e. the cells were dividing faster. While it was not tested in this study, a 

shortening of the cell cycle length would most likely occur at the G0/G1 phase of the cycle. The 
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second expansion mechanism would occur by increasing the mitotic fraction. It was shown that 

as α approaches 1.0, the growth curve approaches the ideal exponential equation. A cytokine-

induced increase in the mitotic fraction may occur by either recruiting quiescent cells into the 

cell cycle, by preventing mitotically active cells from exiting the cell cycle, or by rescuing dying 

and apoptotic cells from undergoing cell death.  The analysis performed here showed 1) that the 

Sherley equation could be applied to MDSC expansion using the microscopic imaging system 

and 2) different behavioral mechanisms for MDSC expansion varied with the different growth 

factors screened and also with the degree of culturing of the MDSC. 

 

It was found that cytokine-stimulated expansion of primary MDSC populations occurred in the 

presence of EGF, IGF-1, FGF-2 and SCF. The response of freshly isolated MDSC to EGF, IGF-

1 and SCF was an increase in the number of cells, which were mitotic. Different responses to 

these same growth factors were observed for MDSC which had be passaged more than 30 times. 

Here it was found that the cultured MDSC could be expanded in the presence of the same growth 

factors however in this case the increase in cell numbers was due to a decrease in the division 

time, while the mitotic fraction remained unchanged. These results illustrated important 

differences in the response of different cell populations to the same growth factors and 

demonstrated the importance of examining multiple growth parameters.  

 

Time-lapsed images of the stimulated MDSC populations also revealed two situations or events 

which were not addressed by the simple Sherley growth model; cell death and cell fusion. As 

stated, the nondividing fraction (1- α) included live cells which may be apoptotic or necrotic. 

These cells were live cells, which were present within the population. Cells that were lost to cell 

death, and were removed from the live cell count, were not enumerated in the Sherley equation. 

Therefore when estimating parameters by using this equation, the unaccounted loss of cells due 

to cell death resulted in an underestimation of the number of cells which are being ‘born” into 

the population. The degree to which the α  value is underestimated varied with the degree of cell 

loss. In an analogous fashion, cell fusion removed cells from the live cell count and resulted in 

underestimations of the fraction of daughter cells that were dividing. In the case of myogenic 

differentiation, several cells fuse together to form the terminally differentiated state, the 

multinucleated myotubes. It was again shown that by accounting for all the cells, i.e. those which 
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had assembled to form the fused state, the model would provide an improved estimate of the 

mitotic fraction.  

 

While these modified equations were useful for describing stem cell populations with various 

subpopulations, they were simplified versions of the stem cell dynamics. It can be expected that 

there are several subpopulations present that represent transient states of differentiation. The 

myogenic lineage is known to involve several steps characterized by expression of different 

molecular markers at each step. The growth rates of cells along this pathway may change as cells 

progress through differentiation. More sophisticated growth models could be developed to 

compartmentalize these stages and their respective growth rates as well as differences in the 

probabilities that these cells would undergo cell death or differentiation. For example, satellite 

cells which are distinguished from MDSC by expression of several markers including m-

cadherin and desmin, both of which are largely negative in the MDSC population, have been 

observed to divide at a much faster rate as compared to the MDSC cells. The model utilized in 

the differentiation or fusion studies did not account for differences in division rates of the 

mononuclear, BrdU-positive, cells that were undifferentiated MDSC and those which were 

satellite cells. Rather the median DT of all dividing cells was used.  Refining the model in such a 

way could be expected to improve estimates of various parameters. Nevertheless, the practical 

models presented here offer stem cell biologists a straightforward approach to assess basic 

kinetic parameters of the population and have predictive value for cell numbers.   

 

In addition to kinetic measurements, the bioinformatic system was utilized to generate a 

comprehensive behavioral profile of MDSC. Molecular markers are not sufficiently reliable to 

identify the effective MDSC within a mixed skeletal muscle biopsy. Currently, MDSC are 

isolated based on adhesive characteristics on collagen-coated flasks. Therefore, it would be 

beneficial to the understanding of MDSC if additional characteristics, such as behavior, could be 

measured to broaden the description of the MDSC phenotype. New features of the microscopic 

imaging system, along with image processing techniques, allowed for a assessment of a range of 

measurements on morphology, motility and growth, as the cells were expanded. To demonstrate 

the feasibility and the sensitivity of this new system to detect differences in different cell 

populations, experiments were designed to compare a population of MDSC which were efficient 
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in regeneration and another population which were not capable to regenerate skeletal muscle in 

vivo. 

 

It was found the system could efficiently detect cells and measure a number of morphological 

and movement parameters. There was good agreement between manual and automated counts; 

however, the density of the cells in the image affects the limits of automatic processing. Careful 

experimental design and threshold settings will make obtaining the phenotypic profile possible. 

 

To return to the focus on stem cell expansion, as mentioned the key to expansion would be to 

stimulate the self-renewal pathway and block the differentiation pathway. In terms of 

maximizing output numbers, this would mean stimulating symmetric divisions of self-renewal or 

increasing αto 1.0, decreasing µ to 0, and minimizing the DT.  However, there was still a gap in 

the current understanding of stem cell fate determination. Increased knowledge of intercellular 

and microenvironmental determinants of stem cell fate would ideally allow for a controlled 

system where investigators and clinicians could apply defined conditions to reach a desired 

outcome. In addition, the limits of expansion should be known. It has yet to be confirmed 

whether stimulated expansion by recruiting cells into the cycle depletes a subpopulation of 

highly potent quiescent cells, or whether increasing cell cycling, brings the cells closer to 

transformation.  

 

In order to understand the natural progression of stem cell expansion and to test the long term 

proliferative potential, MDSC were expanded for over 300 PDs. It has been proposed that normal 

euploid cells undergo a finite number of population doublings in culture, estimated to be between 

50-70 PDs, and has been termed Hayflick’s limit. On the other hand, it has been proposed that 

stem cells may be capable of an unlimited replicative potential. This belief is generally based on 

observations that embryonic stem cells, from several species, are able to undergo a high number 

of doublings when cultured under appropriate conditions in vitro. Although, embryonic stem 

cells, derived from the inner cell mass of blastocysts, are capable of pluripotent differentiation 

and extensive self-renewal, their utility in vivo is limited by their tendency to form teratomas and 

other ethical concerns. Low passage MDSC, derived from the postnatal skeletal muscle, have not 

been previously observed to form tumors either in vitro on in vivo.  However, examination into 
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the behavior after expansion had not been studied prior to these investigations. After determining 

that these cells were indeed capable of long-term expansion, well beyond the Hayflick limit, the 

behavioral and molecular phenotypes of expanded MDSC were examined. 

 

Several markers of stem cells were analyzed by flow cytometry. Both stem cell antigen 1 (Sca-

1), and cluster differentiation 34 (CD34) are markers of mouse HSC; Sca-1 is a member of the 

Ly-6 surface protein family involved in T-cell activity and CD34 is a transmembrane 

glycoprotein which is proposed to have a role in adhesion and perhaps compartmentalization in 

marrow stromal layers. These markers have been used routinely to characterize MDSC. 

Interestingly, the cells were able to maintain the expression of these markers after extended 

cultivation. Up to 200 PDs, the expression of these markers did not change significantly, 

supporting the finding that these cells were capable of performing to regenerate muscle in the in 

vivo analysis even after extensive expansion. Several other characteristics which were studied 

showed similarly that MDSC appear to be able to maintain their phenotype after extended 

culture. The low level of myogenic positive cells, i.e. cells expressing desmin, Pax-7 or m-

cadherin, which were found within the population, was also maintained throughout the 

expansion. In vitro differentiation capability of MDSC did not change significantly up to 200 

PDs. Importantly these findings show that the MDSC do have unique stem cell characteristics as 

displayed by their proliferation kinetics, and ability to apparently undergo self-renewal for more 

than 200 PDs. The finding also shows that following the isolation process, albeit 4-6 weeks, the 

MDSC population doubling rate allows for generation of large numbers of cells which would be 

sufficient for in vitro investigations. Importantly, however, these results are limited to the density 

at which the studies were conducted. A low density of even 10,000 cells per cm2 translates to 

large surface areas when experiments call for cell numbers on the order of 106. In addition if low 

density is required to maintain the stem cell phenotype, expansion to obtain clinically relevant 

numbers will need practical systems to maintain such a low density. For MDSC and for other 

stem cell candidates of cell therapy, in vivo expansion may provide a practical solution. Indeed, 

the long-term persistence and ability to maintain tissue homeostasis in vivo is one stem cell 

feature that will benefit the long-term engraftment. 
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The demonstration of long-term expansion is balanced by the recognition that the extended 

potential is not unlimited. MDSC expanded beyond 200 PDs failed to regenerate skeletal muscle. 

The functional change was accompanied by a number of phenotypic changes. First, expression of 

the stem cell marker CD34 declined. Previous reports have shown that among FACS sorted 

populations; the CD34[-] fraction has a significantly lower capacity to regenerate muscle as 

compared to the CD34[+] fraction. In addition other putative MDSC populations isolated by the 

preplate technique and low or negative for CD34 expression, also show minimal ability to 

regenerate skeletal tissue. In terms of myogenesis, differentiation capacity of MDSC is 

significantly diminished as the cells are expanded. After more that 200 PDs, fewer MDSC fuse 

to form the multinucleated state; the decreased capacity in vitro paralleled the decreased 

regeneration observed in vivo.  

 

The evident question was whether or not these cells had become transformed. Standard soft agar 

assays for anchorage-independent growth showed that the highly expanded populations were 

capable of forming colonies on agar. It was also found in the differentiation assays that the cells 

appeared to have a reduced capacity to respond to cell cycle exit cues, for example the conditions 

of high confluency and low serum, would normally be expected to induce cells to stop dividing 

and in the case of MDSC to subsequently fuse to myotubes. In the highly expanded populations, 

MDSC were found to continue growing post confluency and form small colonies on top of lower 

cell layers. Although direct karyotyping analysis is the focus of future investigations, DNA 

content was examined indirectly by flow cytometry for signs of aneuploidy. No significant 

differences were observed in the percentage of cells having greater than 4N DNA content. 

Proliferation kinetics were often examined to determine if transformed cells have enhanced cell 

cycle rates. Using the microscopic imaging system, a rare comparison of division times could be 

made for cells at low passages and those at high passages. Importantly, the division time, rather 

than the population doubling time, could be measured. It was found that DT was approximately 

12 hours for both low passage and high passage MDSC. By comparison if one were to compare 

the PDT at low passage (> 32 hours) and at high passage (14 PDT), it could be erroneously 

concluded that the cells are cycling faster. In light of the extended expansion that shares 

similarities to embryonic stem cells in terms of growth rate and degree of expansion, stage 

specific embryonic antigen 1 (SSEA-1) expression was examined by flow cytometry. This 
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analysis showed that MDSC did not express SSEA-1 at either low of high passage. While there 

are several characteristics that are retained by MDSC after expansion, there are also numerous 

indications, as discussed, that the cells have become transformed. Additional experimentation 

would be needed to confirm the ability or inability of the cells to form tumors in vivo.  

 

The greatest concern of is whether the MDSC transformation represents the natural progression 

of in vitro MDSC aging or whether this is culture induced. The safety of stem cells as reagents in 

cell therapy is at issue. It is a requirement that sufficient numbers of cells be generated but also 

that the expanded cells are not functionally damaged in this process. It could be hypothesized 

that chromosomal aberrations were acquired in MDSC from the harsh mechanical and chemical 

disruption that the cells were subjected to 3 times per week. It is commonly accepted among cell 

biologists that cells of high doubling level are not as reliable, in terms predicting a biological 

response, as are cells of lower doubling level. If it is shown that expansion induces 

transformation, then it will be necessary, to identify this point, as accurately as possible and limit 

expansion to some point before its expected onset. Nevertheless, the identification that this event 

is possible has serious and obvious implications to the limits of stem cell use. A second 

hypothesis could be proposed to account for a transformed state. Recent studies have shown the 

similarities between stem cell self-renewal and cancer cell divisions. In particular, studies of 

hematologic disorders have found in leukemia a small population of stem cells that have the 

ability to form cancer. These processes share a number of signaling pathways, including those 

involving sonic hedgehog, wnt and bm1 factors. The ability of the MDSC population to expand 

by giving rise to similar progeny in vitro, and the serial transplantation experiments showed 

clearly the self-renewal behavior of MDSC. The strong similarities between the growth kinetics 

of MDSCs at low doublings and those of MDSCs at high doublings also may model the 

similarities between stem cell self-renewal and the replication of transformed or cancerous cell 

populations. If the model is accurate, the fact that the cells divide at the same rate would make 

detection of a crisis stage at around 200 PDs difficult. If cancer stem cells are present in the 

MDSC populations, those cells would continue to grow throughout extensive expansion even 

after the MDSCs, which are efficient at regeneration, are lost or exhausted due to either 

senescence or differentiation; this would further demonstrate that the MDSC may indeed have an 

extended, but limited replicative lifetime.  
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In summary, this study demonstrates that expansion of MDSC can be performed and measured 

efficiently. A novel imaging system can help to standardize and quantitate cell culture conditions 

and allow for a more accurate assessment of MDSC characteristics and behavior. MDSC could 

be expanded to clinically sufficient numbers, either in the presence or absence of cytokines, 

although the expansion time could be a clinical concern. MDSC from fresh biopsy will require 

several weeks for expansion, and this brings with it the concern of phenotype stability. An 

increased understanding of mechanisms to control self-renewal and differentiation may reduce 

the heterogeneity within stem cell populations, and aid efforts to control the stem cell phenotype 

during expansion.  
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APPENDIX A 

DIVISION TIME IS NOT EQUAL TO DOUBLING TIME 

The phrases ‘division time’ and ‘doubling time’ are often incorrectly used interchangeably. 

Simply, division time is a property of an individual cell and doubling time, or more correctly 

population doubling time, is a property of the cell population.  Cell division time is the time is 

takes for a cell to complete it cell cycle, or the time between cytokinetic events. Population 

doubling time is defined as the time it takes for a population to increase from N0 to 2N0, where 

N0 is the number of cells at time t0.  

 

From Figure A.1 and Table A.1, it is recognized that if all cells in a given population are 

mitotically active, the PDT=DT, and the dividing fraction is alpha or a=1.0. However if there are 

non-mitotic cells present within the population then PDT∫ DT. E.g. in the sample data set, 

cellular division time is 12 hours. When all cells are dividing cells, the population doubles as the 

cells divide (this data would also suggest cells are synchronized). When non-dividing cells are 

present (e.g. a=0.80), the population doubling rate is necessarily slower than the division rate. 
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Table A.1 Sample Growth Data for Cell Growth in the Presence and Absence of 

Nonmitotic Cells 

 Ideal exponential growth Non-exponential growth 

Time, 

hours 

Mitotic 

cells 

Non-

mitotic 

cells 

Total # 

of cells 
Mitotic cells 

Non-

mitotic 

cells 

Total # of 

cells 

0 10 0 10 8 2 10 

12 20 0 20 12.8 5.2 18 

24 40 0 40 20.5 10.3 30.8 

36 80 0 80 32.8 19.5 52.3 

48 160 0 160 52.4 31.6 84 
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Figure A.1  Growth In The Presence Of Non-Mitotic Cells 
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APPENDIX B 

ALTERNATE DERIVATION FOR CELL GROWTH WITH NONDIVIDING CELL 
FRACTION 

 
In chapter 3, cell growth was modeled to include a subpopulation of cells which are mitotically 

active and also a subpopulation which are not mitotically active. In the derivation we assumed 

that non-dividing cells do not re-enter the cell cycle during the observed period. Here, an 

alternate derivation is presented for cell growth where it is assumed that non-dividing cells, such 

as quiescent cells, may re-enter the cell cycle. We define alpha, α, as the fraction of cells that are 

dividing or the probability of a cell to enter the cell cycle. Therefore 1-α is the fraction which are 

not dividing or the probability that a cell does not divide. After some time interval =1, the 

number of live cells, N1, is equal to the number of cells in the initial population, N0, which did 

not divide plus two times the number which did divide (assuming cells split to 2 daughter cells): 

001 21 N )N ( N  αα +−=  

At time interval = 2, we have 

112 21 N )N ( N  αα +−=  

or 

0002 221221)1(1 N )N( N) ( N) ( N αααααααα +−+−+−−=  

 

000

00003

222122212)1(12
22)1(12)1(21)1()1)(1(1

N )N( N)(  N)(
N )N( N)(  N) ( N

αααααααααααα
αααααααααααα

+−+−+−−

+−+−−+−−+−−−=  

 

Recognizing this sequence as a step-wise progression of polynomials such that 

   1
001 ]21[)]2()1[( a ) -(Na a  N N +=+−= α

2
0

22
02 ]21[])2(2121[ a ) -(N a -a)(  )-( N N +=++= ααα  

 
3

0
22

03 ]21[])2()2(132131[ a ) -(N a-a)(a -a)(  )-( N N ii +=+++= ααα  

gives 
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 )( N N i
i α+= 10  

Setting the interval i= t / DT, we have 

 

 )( NN DT
t

α+= 10  

 

When α=1, the equation again becomes ideal exponential growth with base 2. When α=0, there 

is no growth and N remains at the initial size. For all α, 0 < α < 1, growth would be basically 

exponential. Therefore, in this case, in the absence of a term to remove cells from the population, 

either by assuming that cells do not re-enter the cell cycle as in the Sherley equation or simply by 

including a rate of cell death, the model always predicts an exponential increase for α >0. 
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APPENDIX C 

MEASUREMENTS OF NUMBER OF POPULATION DOUBLINGS AND 
POPULATION DOUBLING TIME 

 
The equation to use to estimate PDT and the number of doublings is 

 

( )PDTt i NiN /2
0

=  

 

where Ni is the number of cells at time ti, N0 is the initial number of cells and PDT is the 

population doubling time. 

 

Number Of Population Doublings 

To calculate the number of population doublings, # of PDs, it is first recognized that  

 

PDT
t PDs of # i=  

 

We solve equation ( )PDTt i NiN /2
0

=   for t/PDT: 
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Therefore, 

0

i
2 N 

N
logPDs of# = . 

Population Doubling Time 

PDT may be estimated using several different methods, which certainly plays a part in 

differences reported by different investigators. All methods derive from the general exponential 

equation as presented above, but differ in the choice of experimental measurements of Ni which 

are used in the calculation. The 2 methods shown below were used in this study. 

 

1. Daily PDT. For this estimate, “daily’ measurements, or measurements taken at 2- and 3- 

day intervals, for cell numbers, Ni , were used along with N0, from the previous cell 

plating. E.g. if at time t0, the initial cell count was N0, then the immediately next cell 

count, N0+1, which occurred 2 days later at time t0+1 would be used. By the exponential 

equation as before,  

0
2log

t 
doublings population of#

tPDT

N
N i

==  

 

2. Local moving average PDT. In this method, an exponential trendline was fit to several 

measurements of N over a 1-week period. The regression method provides a fitted curve 

of the form  
kt

0 e NN = .  

Since PDT is defined as the time, ti , such Ni=2N0, then 
kPDT

00 e N2N =  

kPDT

0

0 e ln
N

2N
ln =  

elnPDTkln2 =  

PDTkln2 =  

 
PDT
ln2k =  

Therefore 
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k
ln2PDT = . 

 

The sampling group of cell counts used for the curve-fitting was shifted in daily steps over the 

entire 180 days of measurements in order to provide an average estimate of PDT based on 

several measurements. 

 

3. PDT based on mitotic fraction, α, and DT. When DT and α are known, the Sherley 

equation may be used to obtain PDT by again setting PDT as the time, ti , where Ni=2N0 and 

solving for PDT: 









−= 1

)ln(2
 DT PDT

α
α 2)-ln(6 . 
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APPENDIX D 

ACRONYM, ABBREVIATION, AND SYMBOL DEFINITIONS 

AAV Adenoassociated virus 

AD Actinomycin D 

ACCW Automated Cell’s CytoWorks™ 

bFGF Basic fibroblast growth factor or FGF-2 

BMP-2 Bone morphogenetic protein-2 

BMT Bone marrow transplantation 

BrdU Bromodeoxyuridine 

CD34 Cluster differentiation 34 

CNPase 2’,3’-Cyclic-nucleotide 3’-phosphodiesterase 

DMD Duchenne muscular dystrophy 

DMEM Dulbecco’s modified Eagle’s medium 

DT Divison time (cellular division time or cell cycle time) 

EGF Endothelial growth factor 

ELISA Enzyme-linked immunosorbent assay 

EP cells Early preplate cells 

FACS Fluorescence activated cell sorting 

FGF-2 Basic fibroblast growth factor or FGF-2 

FISH Fluorescent in situ hybridization 

FITC Fluorescein isothiocyanate 

GFAP Glial fibrillary acidic protein 

GFP Green fluorescence protein 

HSC Hematopoetic stem cell 

HBSS Hanks’ balanced salt solution 

HGF Hepatocyte growth factor 

HSV-1 Herpes simplex virus type 1 
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IGF-1 Insulin-like growth factor-1 

KDR Kinase insert domain-containing receptor 

LP cells Late preplate cells 

LTP cells Long-term proliferating cells 

MAPC Multipotent adult progenitor cells 

MC13 Monoclonal 13, an MDSC clone 

MDSC Muscle-derived stem cells 

MDSCs-E Early-passage MDSCs (<10 passages) 

MDSCs-L Late-passage MDSCs (>35 passages) 

MHC-1 Major histocompatibility complex class-1 

MSC Mesenchymal stem cells 

MSMR Medical Surveillance Monthly Report 

MyHC Myosin heavy chain 

NF Neurofilament  

NGF Nerve growth factor 

Pax-7 Paired box transcription factor 7 

PBS Phosphate buffered saline 

PDs Population doublings 

PDT Population doubling time 

PE Phycoerythrin 

PM Proliferation medium 

PP Preplate 

RI Regeneration index 

RT-PCR Reverse transcriptase-polymerase chain reaction 

RV Retrovirus 

Sca-1 Stem cell antigen-1 

SCF Stem cell factor 

SCID Severe combined immunodefficiency 

SP cells Side population cells 

SSEA-1 Stage specific embryonic antigen-1 

TA Tibialis anterior 
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UCB Umbilical cord blood 

VEGF Vascular endothelial growth factor 

vWF von Willebrand factor 

α Mitotic fraction or fraction of daughter cells which are 

dividing 

β-gal a nuclear localizing β-galactosidase gene 
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