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 Design is functionality driven. All products and parts have some intended reason behind 

their existence. Although computer aided systems have made considerable advances in capturing 

and representing geometrical shape, not much progress has been made in capturing and modeling 

product functionality and its physical realization. This research proposes a methodology to assist 

designers during the first stages of design. This methodology provides a framework to help the 

designer translate functional specifications into conceptual forms. This research develops a 

translation tool to model functionality and to carry out conceptual design with the aid of the 

computer. This tool serves as a bridge between the conceptual design phase and the detailed 

design phase of a product.  

 The translation tool developed in this research supports the conceptual design phase by 

providing a functional data model, a function server model, and a conceptual product model. The 

functional model includes the use of operands and relations to define and capture product 

functionality. The function server model represents the physical realization of the specified 

functions. The conceptual product model organizes and documents the product information in 

both the functional and the physical domains. The knowledge base for the function servers is 

stored in a function driven database. This database allows the designer to view design 

possibilities that may never have occurred to them. 

 iii



 Models provided in this work have been implemented as a relational database system by 

using MySQL. A web-based graphic user interface is developed with PHP to provide an 

interactive environment for modeling and for searching the function driven database. 

Propagation of functional and physical information to downstream design activities has been 

enabled by the use of the XML data format. The models and concepts developed in this research 

are validated through a case study of a realistic mechanical device.  

 

DESCRIPTORS 

Composite Function Server Function-Oriented Design 

Conceptual Design Function-Oriented Design 

Conceptual Product Model MySQL 

Function Server Operand 

Function Server Model PHP 

Function Specifications Primitive Function Server 

Functional Data Model Translation Tool 

Functional Feature Web-Based Design 

Functionality Modeling XML 

 

 iv



 
 
 
 

TABLE OF CONTENTS 
 
 
ACKNOWLEDGMENTS ........................................................................................................... xiv 

1.0 INTRODUCTION .................................................................................................................. 1 

1.1 PROBLEM STATEMENT............................................................................................. 6
 

1.2 RESEARCH OBJECTIVES ........................................................................................... 8 
 

1.3 CONTRIBUTIONS ........................................................................................................ 9 
 

1.4 METHODOLOGY ....................................................................................................... 11 
 

1.5 RESEARCH ORGANIZATION .................................................................................. 13 
 
2.0 BACKGROUND AND LITERATURE REVIEW .............................................................. 15 

2.1 ENGINEERING DESIGN PROCESS ......................................................................... 15 
 

2.1.1 Design Process ...................................................................................................... 16 

2.1.2 Design Axioms...................................................................................................... 20 

2.2 FUNCTION-DRIVEN DESIGN .................................................................................. 21 
 

2.2.1 Types of Mechanical Function.............................................................................. 23 

2.2.2 Classification of Fundamental Mechanical Functions.......................................... 24 

2.2.3 The Function Analysis Method............................................................................. 25 

2.2.4 Functionality Modeling......................................................................................... 30 

2.2.5 Function-to-Form.................................................................................................. 36 

2.2.6 Computer-Aided Conceptual Design.................................................................... 44 

2.3 FEATURES .................................................................................................................. 46 
 

2.3.1 Definitions of Features.......................................................................................... 46 

 v



2.3.2 Feature-Based Design ........................................................................................... 48 

2.3.3 Features as Integrating Keys Linking Design and Manufacturing ....................... 49 

2.4 PRODUCT MODELING.............................................................................................. 50 
 

2.4.1 Types of Product Model........................................................................................ 50 

2.4.2 Model Standardization Using STEP ..................................................................... 53 

2.4.3 Product Modeling to Support the Design Process ................................................ 54 

2.5 PRODUCT DESIGN AND SPATIAL RELATIONSHIPS ......................................... 57 
 
3.0 OVERVIEW OF FUNCTION-TO-CONCEPTUAL FORM TRANSLATION MODEL... 59 

3.1 SCOPE OF WORK....................................................................................................... 60 
 

3.2 FUNCTIONALITY MODEL ....................................................................................... 61 
 

3.2.1 Functionality Operations....................................................................................... 61 

3.2.2 Generic Functionality Model ................................................................................ 64 

3.3 FUNCTION SERVER MODEL................................................................................... 66 
 

3.4 FUNCTION-TO-FUNCTION SERVER MAPPING................................................... 68 
 

3.5 CONCEPTUAL PRODUCT MODEL ......................................................................... 72 
 
4.0 FUNCTIONAL DATA MODEL.......................................................................................... 74 

4.1 FUNCTIONALITY OPERANDS ................................................................................ 74 
 

4.1.1 Solid material operand .......................................................................................... 76 

4.1.2 Mechanical energy operand .................................................................................. 79 

4.2 FUNCTIONALITY RELATIONS AND STATES...................................................... 82 
 

4.3 MECHANICAL FUNCTION CLASSIFICATION BASED ON OPERANDS 
INTERACTION........................................................................................................................ 85 

 
5.0 FUNCTION SERVER REPRESENTATION AND MDELING......................................... 88 

5.1 FUNCTION SERVER CLASSIFICATION................................................................. 88 

 vi



5.2 FUNCTION SERVER REPRESENTATION .............................................................. 91 
 
6.0 IMPLEMENATION AND CASE STUDY.......................................................................... 98 

6.1 DATA STRUCTURE OF THE TRANSLATION TOOL............................................ 98 
 

6.1.1 Functionality Object Model .................................................................................. 99 

6.1.1.1 Function Operation Class............................................................................ 101 

6.1.1.2 Operand Class ............................................................................................. 104 

6.1.1.3 Relation Class ............................................................................................. 104 

6.1.2 Function Server Object Model............................................................................ 104 

6.1.3 Conceptual Product Object Model...................................................................... 107 

6.2 TRANSLATION TOOL XML DATA FORMAT ..................................................... 108 
 

6.2.1 XML Syntax........................................................................................................ 108 

6.2.2 Functionality XML Data Format ........................................................................ 109 

6.2.3 Function Server XML Data Format.................................................................... 112 

6.3 ARCHITECTURE OF THE FUNCTION TO CONCEPTUAL FORM 
TRANSLATION TOOL......................................................................................................... 116 

 
6.4 WEB-BASED IMPLEMENTATION AND THE GRAPHIC USER INTERFACE . 118 

 
6.4.1 Screen Presentation and General Usage ............................................................. 119 

6.5 CASE STUDY AND VALIDATION ........................................................................ 139 
 

6.5.1 Procedure of Translating Function-to-Conceptual Form.................................... 139 

6.5.2 Case Study: Toggle Clamp ................................................................................. 142 

6.5.3 Experimental Test ............................................................................................... 168 

7.0 CONCLUSIONS AND FUTURE WORK ......................................................................... 171 

7.1 CONCLUSIONS......................................................................................................... 171 
 

7.2 FUTURE WORK........................................................................................................ 173 

 vii



APPENDIX A............................................................................................................................. 175 

ABSTRACT SHAPES OF FUNCTIONAL FEATURES...................................................... 175 
 
APPENDIX B ............................................................................................................................. 179 

LIST OF FUNCTIONS USED IN FUNCTION DRIVEN DATABASE .............................. 179 
 
APPENDIX C ............................................................................................................................. 180 

FUNCTIONS OF FUNCTIONAL FEATURES .................................................................... 180 
 
BIBLIOGRAPHY....................................................................................................................... 182 

 

 

 viii



 
 
 
 

LIST OF TABLES 
 
 
Table  2.1 Function representation (proposed by Roy et al. [18]) ................................................. 34 

Table  4.1 Classification of basic mechanical functions................................................................ 86 

Table  5.1 Classification of primitive function servers.................................................................. 90 

Table  6.1 Operand list for function operation 1.......................................................................... 149 

Table  6.2 Functionality attributes of solid material operand; solid A ........................................ 150 

Table  6.3 Functionality attributes of force energy operand; F1.................................................. 150 

Table  6.4 Functionality attributes of force energy operand; F2.................................................. 151 

Table  6.5 Functionality attributes of force energy operand; F3.................................................. 151 

Table  6.6 Functionality attributes of force energy operand; F4.................................................. 151 

Table  6.7 Functionality attributes of force energy operand; F5.................................................. 152 

Table  6.8 Functionality attributes of force energy operand; F6.................................................. 152 

Table  6.9 Relations in function operation 1................................................................................ 154 

Table  6.10 Description of the relation between solid A and F1 in function operation 1............ 154 

Table  6.11 Description of the relation between solid A and F2 in function operation 1............ 155 

Table  6.12 Description of the relation between solid A and F3 in function operation 1............ 155 

Table  6.13 Description of the relation between solid A and F4 in function operation 1............ 156 

Table  6.14 Description of the relation between solid A and F5 in function operation 1............ 156 

Table  6.15 Description of the relation between solid A and F6 in function operation 1............ 157 

Table  6.16 Equilibrium relation between force operands (F1, F2, F3, F4, F5, F6).................... 157 

Table  6.17 Sub-functions used to search with, and solutions ..................................................... 162 

 ix



Table  6.18 Description of Function server model for solution 1 (Rode-1) ................................ 165 

Table  6.19 The recorded design period times............................................................................. 169 

Table A. 7.1  Abstract shapes of functional features ................................................................... 175 

Table B.1 List of functions and synonyms ................................................................................. 179 

Table C.1 Functional features and their possible functions in generic domain .......................... 181 

 x



 
 
 
 

LIST OF FIGURES 
 
 
 
Figure  1.1 Opportunity in early design stage.................................................................................. 2 

Figure  1.2 Flow diagram of function specifications-to-conceptual form translation tool ............ 13 

Figure  2.1 Design process phases ................................................................................................. 18 

Figure  2.2 Design as the mapping from functional space to physical space ................................ 19 

Figure  2.3 The black box system model ....................................................................................... 26 

Figure  2.4 A transparent box model ............................................................................................. 28 

Figure  2.5 Overall function and sub-functions of a testing machine............................................ 29 

Figure  2.6 Process of generalized mapping .................................................................................. 40 

Figure  2.7 Functional feature “frictional connection” and its variation ....................................... 42 

Figure  2.8 Types of spatial relationships: (a) against, (b) parallel-offset, (c) include-angle, (d) 
parax-offset, (e) aligned, (f) incline-offset (adapted from Muogboh [29])........................... 58 

 
Figure  3.1 Function driven design cycle....................................................................................... 62 

Figure  3.2 Example of mechanical functionality (support of a shaft) .......................................... 63 

Figure  3.3 Function/function server decomposition structure ...................................................... 69 

Figure  3.4 Function-to-function server mapping process ............................................................. 70 

Figure  4.1 Components of a functionality operation (operands and relations)............................. 74 

Figure  4.2 Friction functionality operations showing the interaction between functionality ....... 75 

Figure  4.3 Force-to-torque transformation operation ................................................................... 75 

Figure  4.4 Material performance requirements ............................................................................ 79 

Figure  4.5 Example of hold functionality operation..................................................................... 83 

 xi



Figure  4.6 Example of unfasten a bolt .......................................................................................... 85 

Figure  5.1 Function server types................................................................................................... 88 

Figure  5.2 Example of compound feature..................................................................................... 91 

Figure  5.3 Example of abstract shapes of some functional features: (a) wall, (b) boss, (c) slot, (d) 
rod ......................................................................................................................................... 93 

 
Figure  5.4 Engineering materials.................................................................................................. 94 

Figure  5.5 Manufacturing processes ............................................................................................. 95 

Figure  6.1 Data structure of functional model ............................................................................ 100 

Figure  6.2 Example of function decomposition to illustrate the function address attribute ....... 103 

Figure  6.3 Data structure for function server.............................................................................. 105 

Figure  6.4 Data structure of the conceptual product model........................................................ 107 

Figure  6.5 The translation tool architecture................................................................................ 116 

Figure  6.6 Beginning Screen....................................................................................................... 121 

Figure  6.7 Login Screen.............................................................................................................. 122 

Figure  6.8 Main Screen............................................................................................................... 123 

Figure  6.9 Function list ............................................................................................................... 124 

Figure  6.10 Function driven database......................................................................................... 125 

Figure  6.11 Add/Modify products .............................................................................................. 127 

Figure  6.12 Choosing add/modify product functions or add/modify product function servers.. 128 

Figure  6.13 Add/Modify product functions (function decomposition) ...................................... 129 

Figure  6.14 Add/Modify functionality model components (operands, relations, constraints) ... 130 

Figure  6.15 Add function operands ............................................................................................ 131 

Figure  6.16 Operands attributes.................................................................................................. 132 

Figure  6.17 Add function relations ............................................................................................. 133 

 xii



Figure  6.18 Add function constraints.......................................................................................... 134 

Figure  6.19 Search results........................................................................................................... 135 

Figure  6.20 Product function servers (solutions)........................................................................ 136 

Figure  6.21 Components of product function server model (material, shape, manufacturing info, 
working condition, and interface) ....................................................................................... 137 

 
Figure  6.22 Material type for product function server................................................................ 138 

Figure  6.23 Translating function-to- conceptual form flow diagram ......................................... 141 

Figure  6.24 Function Decomposition for toggle clamp.............................................................. 144 

Figure  6.25 Topology structure of solid operand (solid A) in function operation 1................... 146 

Figure  6.26 Force operands (F1, F2, F3, F4, F5, F6) interaction with solid A: (a) initial state. (b) 
final state............................................................................................................................. 147 

 
Figure  6.27 Adding toggle clamp as a new product ................................................................... 158 

Figure  6.28 Function decomposition structure of the toggle clamp ........................................... 159 

Figure  6.29 Add/Modify function model components (operands, relations, and constraints) of the 
toggle clamp........................................................................................................................ 160 

 
Figure  6.30  Search process results............................................................................................. 161 

Figure  6.31 Interface of function server rod-1 with other function servers................................ 164 

Figure  6.32 User page to add/modify function server model ..................................................... 164 

Figure  6.33 Conceptual form of toggle clamp's handle .............................................................. 166 

Figure  6.34 Conceptual forms of toggle clamp components ...................................................... 167 

Figure  6.35 The conceptual form of the toggle clamp assembly................................................ 167 

Figure  6.36 Function server tree for toggle clamp...................................................................... 168 

 

 
 
 

 xiii



ACKNOWLEDGMENTS 

 

 First, all praises and glory are due to Allah (God) for all the bounty and guidance granted 

to me. I would like to thank him for giving me the strength, energy, and intellect to complete my 

doctoral journey. 

 I would like to express my sincere appreciation to my advisor Professor Bartholomew 

Nnaji for his invaluable contributions and direction during my time as a graduate student. I thank 

him for his excellent instruction, guidance, advice, friendship, and support throughout this 

dissertation. I also would like to extend my gratitude to my committee members, Dr. Mary 

Besterfield-Sacre, Dr. Michael Lovell, Dr. Meng-En Wang, and Professor Bopaya Bidanda for 

accepting to serve on my committee and for their valuable suggestions. 

  I would also like to express my appreciation to the wonderful faculty members and stuff 

of the Department of Industrial Engineering at the University of Pittsburgh, for their support, 

understanding, and kindness throughout the course of my doctoral studies. My special thanks and 

appreciation also go to all of the Automation and Robotics Laboratory members for their 

friendship and valuable comments. Invaluable technical advice and support was provided by my 

friend Sherif Khattab and I thank him for all his help. 

 I would like to express my thanks to my family members. My deep love and appreciation 

go to my parents for life long and endless love, support, prayers, and continues sacrifices. They 

taught me the value of education and determination. My warmest thanks go to my dear wife 

Suhad for her love, understanding, and continuous encouragement throughout my doctoral study. 

I would like to express my sincere love to my kids Obaidah and Sarah for making my life 

 xiv



beautiful. Special thanks go to my brothers and sisters for their love and encouragements. I 

dedicate this dissertation to my family. May Allah bless them all. 

 

 xv



 

 
 
 
 

1.0 INTRODUCTION 

 The technological advances of the last few years in the field of product development have 

lent a greater intensity to the pursuit of approaches that reduce the cost and time of product 

development, enhance the quality of the product, and help designers be more creative. 

Companies have to offer customers better and cheaper products with more functionality at 

shorter intervals than their competitors. This necessitates a decrease in development time that, in 

turn, creates a need to utilize resources more efficiently, be more flexible (both when it comes to 

work processes and products developed), and to create and communicate knowledge/experiences 

in a way that supports ongoing and future design activities. Currently, computer-aided systems 

and software have concentrated on the capture and representation of geometrical shape and 

technical information as opposed to providing support for the earlier stages of product design, 

such as capturing and modeling product functionality and its physical realization. This is because 

knowledge of the design requirements and constraints during this early phase of a product’s life 

cycle is usually imprecise and incomplete, making it difficult to utilize computer-based systems 

or prototypes.  

 In this research, a methodology is proposed to assist designers during the first stages of 

design. This methodology contains a framework to help the designer translate the function 

specifications into conceptual forms. The objective is not to construct automatically the shape 

but to automate a certain number of heavy and tiresome tasks and to assist designers during 

collaborative design. This framework supports the conceptual design phase by providing a 

conceptual product model, which represents and organizes product information in both the 
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functional and the physical domains in an object-oriented manner. This makes it possible to 

retain design intentions and allows designers from different backgrounds with various interests to 

access the design information and to communicate with one another easily. This framework also 

serves as a bridge between the conceptual design phase and the detailed design phase of a 

product. 

 Competitive time scale forces designers to make critical decisions without exploring 

alternative strategies in-depth. The negative impacts of decisions made in the early design stages 

may not be evident on downstream activities until a product model starts to get fairly complete. 

As shown in Figure 1.1, the impact of design decisions is initially very high and declines steeply 

as the design matures [1]. A great opportunity exists at the preliminary design stage to make a few 

reading decisions. The concept generated at this stage affects the basic shape generation and 

material selection of the product concerned. In the subsequent phase of detailed design, it 

becomes extremely difficult, or even impossible, to compensate for or to correct the 

shortcomings of a poor design concept formulated in the conceptual design phase [2,3]. 

 

 

Figure 1.1 Opportunity in early design stage 
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 It is now well recognized that a conceptual design model should incorporate more 

information than just a description of the physical structure of the desired product. A conceptual 

design model should include the product’s constituent components and relationships. Functions, 

as a description of the purpose of the physical structure, should be explicitly represented also [4]. 

Functions play a key role during the upstream stages of design, just as geometry does for the 

downstream stages. Hence, research in this area requires a comprehensive understanding of 

function and its effective representations [5]. 

 Functional modeling of a mechanical product during the conceptual design phase can be 

regarded as a process of establishing a functional model of a desired but physically indefinite 

product. This is different from the functional modeling of an existing physical device, because 

the object being modeled has not yet been physically defined. The major issue here is how to 

represent and manipulate functions so that they can be associated with physical models later on 

in the design process. A closely related issue is how to represent functions in a computer 

program so that they can be easily defined, retrieved, edited, and manipulated by a designer in a 

specific design situation. Clearly, any function representation scheme should directly represent a 

product’s functions and be amenable to computer implementation. 

 This research introduces a functional data model, which allows the functions of a product 

to be represented in a form that can be used by a number of engineering applications. The 

functional model is used to maintain information about functions and, at the same time, to 

initiate the search for solutions. 

 The functions of the product can be broken down into a number of sub-functions. Sub-

functions are the individual operations that a product performs. These sub-functions are usually 

expressed in schematic form to explain in greater detail how the product operates. This creates a 
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language for the product that is functionally driven. This, then, allows thinking and 

brainstorming to occur around each sub-function in order to determine how that function will be 

accomplished. Some of the functional elements of an inkjet printer are store papers, store ink, 

deliver ink to paper, increment paper, and process print information. Each of these functions says 

what the function must do, but not how it is to be accomplished. 

 During conceptual design, the decomposition of function reaches a stage where the 

designer begins to map the lower level of functions to physical elements. A physical element 

refers to a complete mechanical product, its components, or the component’s features, which 

implement the overall function and sub-functions of the product. These physical elements 

become more defined as the product is designed. Some physical elements depend upon the 

original product concept and some of the physical elements are not defined until the detailed 

design phase. Each physical element usually has at least one function associated with it, and 

sometimes there are multiple functions associated with each physical element. Some of the 

physical elements of a printer are chassis, the carriage, the printed circuit board, motors, and 

paper trays [6]. One example of a physical element that has multiple functions is the chassis. It 

not only supports the product but also defines the aesthetics of the product and helps direct 

airflow through the printer to cool the electronics. The decomposition of function and mapping 

to form is not a linear process. Functional decomposition may be modified, added, or deleted. 

The mapped form may also be modified, added, or deleted. Therefore, a tool to help the designer 

to choose and evaluate forms is very essential. 

 The ability to present a wide selection of design to the designer is of great importance. 

During the design process, the designer makes use of many different technologies. It is 

impossible for the designer engineer to be an expert in all the domain fields such as casting, 

4 



 

machining, sheet metal forming, and plastics, as well as in the usage of the variety of 

components that are found within the multitude of design catalogs. To be an expert in only one 

of these domain fields requires years of experience, therefore, a designer cannot be expected to 

know the details of domain fields outside their expertise. A solution library brings knowledge 

and information to the designer when needed. Part of this research project includes the 

development of the basic requirements for a function driven solution library, which will help the 

designer during the conceptual phase. The knowledge of the features, components, and 

assemblies will be contained within this function driven database, so that the designer need not 

be an expert in every domain field. This will allow designers to view design possibilities that 

may never have occurred to them.    

 Rapid product development and increasingly detailed documentation require more 

complete design development tools. No longer can the designer spend his or her time on a 

cumbersome CAD system, burdened with the many menus and time-consuming design 

development. The designer requires speed, reliability, consistency, and readily available 

solutions in product development. The designs that are created during the conceptual design 

phase need to be completely documented, along with the reasons why they were developed. This 

research develops a conceptual product model to document the product information in both the 

physical and the functional domains and to support the conceptual design phase. The information 

should be organized in a way that is easy for the users to access, which means that the 

information structure should bear close resemblance to the user’s thought patterns. 
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1.1 PROBLEM STATEMENT 

 Development in the area of computer-aided design (CAD) has mainly been focused on 

geometric modeling. Most commercial CAD systems are successful in dealing with geometric 

information rather than aspects of the design process, such as function analysis, concept 

generation, and exploration. However, a study conducted by Lotter [7] indicates that as much as 

75% of the cost of a product occurs during the design phase. The majority of design decisions are 

made during the conceptual design phase, where few representations and reasoning tools are 

available for support. More importantly, a poorly conceived design concept can never be 

compensated for by a high-quality detailed design. Consequently, current CAD systems cannot 

meet the requirements for complicated engineering design. 

 Most CAD systems lack the ability to advise or support designers at a functional level. 

Current CAD systems were developed to provide access to low-level geometry and topology, 

with some reasoning about the characteristics of the design provided. The technological hurdle 

that must be overcome in the development of a function-based CAD system is the modeling of 

the functions of associated features, components, and sub-assemblies. Function-oriented design 

aims at assisting the designer during the whole design process, from specifications to 

manufacturing. Usually, the designer only knows the need or the function of the product. 

Therefore, it is very important to utilize and record the functional data effectively and efficiently. 

This will help the designer to convey his or her intent and to translate these functional 

specifications into an acceptable concept design. Thus, this will also support the conceptual 

design phase. The representation of the design’s functionality has uses beyond the design 

process. Once the design has been developed, a functional data model can be used to provide 
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information during life cycle processes, such as analysis, manufacturing, and product support, 

which may be lost if only geometric representations are available.   

 One of the key stages of the function-oriented design is the function-to-shape translation. 

Shape is today the main representation of a product, even though the current trend is to move 

away from geometry in order to add high-level information. However, geometry constitutes the 

starting point of many activities, such as mechanical optimization and kinematics simulation [8]. 

The function-to-shape translation remains one of the most important activities of the design 

process and, up till now, it was done manually. This activity is very important both for the 

choices that are made and for the quantity of work that it represents. The functional description 

of a product is only sufficient at an abstract stage of design. At some point, the designer must 

choose the forms that will enact the functions chosen. At this point, a tool to help the designer 

choose forms and evaluate them would be very useful. 

 Although considerable advances have been made in the development of function-to-form 

mapping systems, there has been little progress on systems that really aid the designer in 

converting functional specifications to concept design. The creation of rough realizations of 

physical forms that are both completed and innovative, from loosely stated design goals and 

required functions, is still not possible. Moreover, the relation between form and function is not 

completely understood. One difficulty is that function can be a composite result of many 

interacting sub-functions. A second difficulty is that there is no unique mapping between 

function and form (i.e., the same function could be accomplished by several different forms and 

a given form could be used to perform different functions). Another problem is that the product 

function is context dependent. This means a physical element can perform different functions in 

different situations. A hole for example may be used for alignment, for assembly, for stress 
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relief, or for support. So the use of a physical element depends on the context in which the 

designer wishes to employ it. All of these issues require the concept of functionality to be tied 

more closely to the design object.  

 The designs that are created, after function-to-form mapping, need to be completely 

documented, which includes what was developed and the reasons why it was developed. This 

large volume of information about the complex inter-relationships of a new product needs to be 

efficiently managed and to represented clearly. As a result, when a feature, component, or 

assembly is modified the designer can then be aware of which functions and which parts of the 

specifications may be affected. Therefore, there is a need for a system that will adequately model 

and propagate product information during the conceptual design phase. There is also a need for a 

system that retains design intentions and allows designers from different backgrounds with 

various interests to access the design information at early stages and to communicate with one 

another easily. 

 

1.2 RESEARCH OBJECTIVES 

 The primary objective of this research is to develop, for mechanically engineered 

products, a framework for translating functional specifications into conceptual forms as 

automatically as possible. This translation tool bridges the gap between the functional and the 

physical realm and supports the conceptual design phase. The translation tool also provides a 

means for designers, who only know the function of the product, to access and extract the 

necessary solutions from a function driven database. The translation tool targets the functionality 

and the relationships possessed by an object (feature, component, or sub-assembly) as the 

primary search source in finding solution possibilities. This allows the designer to have access to 
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a great variety of design solutions and can enhance his or her productivity. Finally, the 

translation tool contains the ability to document the results of the translation process in a model, 

including what was developed and why. 

 The primary objectives of this project are realized through the development of the 

following research activities: 

• Functional data model: This model captures and maintains the function-related 

information during the conceptual design phase and helps the designer to search for 

possible physical solutions. 

• Function server model: This model represents and captures the information about the 

physical embodiments associated with the functional requirements. It also founds the 

basic structure of a function driven database. 

• Searching mechanism: This mechanism uses function-form relations to search the 

function driven database for solutions (i.e., function servers). 

• Conceptual product modeling: This model documents the searching results and can be 

used for the propagation of product information in a transparent manner. This model 

supports the conceptual design phase by representing and organizing product information 

in both the functional and the physical domains. 

 

1.3 CONTRIBUTIONS 

 A function-to-conceptual form translation methodology together with associated 

computer tools is developed in this work to support the linkage of design functions with the 

physical embodiments used to realize the functions. Therefore, the integration between function 
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specifications, conceptualization, and detailed design process can be promoted. The anticipated 

contributions of this work are listed in the following points: 

• Development of a function-to-conceptual form translation tool to support function driven 

design of mechanical products. 

• Provision of functionality modeling methodology that supports the definition and 

representation of product functionality, and helps to cross the boundary and enter the 

physical realm. 

• Introduction of a new classification scheme for the mechanical functions based on the 

interaction between functional elements (material and energy). 

• Development of a basic structure for function driven database that contains the design 

knowledge about possible physical embodiments to function specifications. This 

development is made possible by the provision of a function driven database prototype 

that contains the design knowledge for the most primitive physical embodiment- 

functional feature. The implementation utilizes the functionality a feature possesses to 

obtain solutions. 

• Provision of the function server model that supports the definition and representation of 

physical solutions, and introduces the conceptual realization of a product form. 

• Provision of the conceptual product model that enables the documentation and 

organization of the conceptual product information in both functional and physical 

domains.  

• Provision of a means for propagating and exchange conceptual product information with 

the detailed design stage. This provision is made possible by the description of functional 

and physical information as an extensible markup language (XML) data file. 
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• Provision of an interface between conceptual design and detailed design phase of a 

product. 

 

1.4 METHODOLOGY 

 During the conceptual design phase, the designer adds information to a design that has 

very low information content. At this very abstract stage, the design team has only a primary 

objective function and a handful of constraints and criteria. Information must be added to the 

design incrementally, slowly making it more concrete with each step. One typical approach is to 

decompose the objective function into sub-functions. Then, the design must cross the function-

form boundary and enter the embodiment stage. 

 In this research, a framework for translating function specifications into conceptual forms 

is developed as a support for the conceptual design phase. This translation tool translates the 

function specifications into conceptual form—first in a very imprecise format and then more and 

more precisely. It aims at transforming an abstract representation of a product into a more 

concrete representation. The flow diagram for this translation tool, which shows the workings of 

the system, is depicted in Figure 1.2. The initial information obtained during the conceptual 

design phase of product development is from the customer’s needs and preferences. These are in 

turn mapped into engineering specifications and functional requirements. The functions are then 

broken down by the designer but without developing the actual form of the product. The function 

structure takes the form of verb-noun pairs. The verb indicates the function of the object and the 

noun represents the physical effect that is manipulated by the verb: material or energy.  

 The function-oriented problem definition and detailed function decomposition are 

converted into a functionality-based data structure called a functional data model. This data 
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structure is used for maintaining the relationship elements between the function objects, as well 

as for initiating the search process for possible solutions in physical domain. The next step is to 

search for solutions. The sub-functions to be satisfied are passed, along with pertinent 

constraints, to a function driven database, which contains information about function servers in 

the physical domain. The function server can be any physical element such as assembly, 

component, or feature. Solutions are then searched for with the sub-function or sub-functions, 

and, if solutions are found, they will be presented to the designer for evaluation. Once the 

designer has decided on a solution, it is then passed with all related information to the product’s 

function server database (product tree). If no solution is found, the system will ask the designer 

to return to the engineering specifications and functional requirements and consider any possible 

modifications. After the designer has finished searching and building the product tree, the new 

product information in both the functional and the physical domain is represented and organized 

into a model known as a conceptual product model. 
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Figure 1.2 Flow diagram of function specifications-to-conceptual form translation tool 
 

 

1.5 RESEARCH ORGANIZATION 

 In this dissertation, chapter 2 presents the research background and literature review of 

relevant research areas and of important concepts related to this work. This includes previous 

work in functionality modeling, function-to-form mapping, and product modeling. Chapter 3 

provides an overview of the function-to-conceptual form translation model. It includes the 

representation and modeling approach for the translation tool components developed in this 

dissertation. Chapter 4 focuses on functionality data modeling and representation. It also 

introduces a new function classification scheme. Chapter 5 focuses on function server 

representation and modeling. Chapter 6 discusses the computer implementation and validation. 
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Here, the developed models and concepts are tested and validated using a case study. The data 

structures of the developed models are also discussed. Chapter 7 concludes this dissertation and 

recommends areas of future research.  
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2.0 BACKGROUND AND LITERATURE REVIEW 

2.1 ENGINEERING DESIGN PROCESS 

 Product design is the process of transforming relatively vague goals into specific 

information needed to manufacture the product, while meeting certain performance criteria and 

resource limitations. This information is in the form of drawings, computer-aided design (CAD) 

data, notes, instructions, and so forth. Design problems normally originate as some form of 

problem statement provided to the designer by someone else, the client, or the company 

management. These problem statements, normally called a “design brief,” can vary widely in 

their form and content. At the start of design process, the designer is usually faced with a very 

poorly defined problem, yet he or she has to come up with a well-defined solution. The 

designer’s difficulties are therefore two-fold: understanding the problem and finding a solution. 

These two complementary aspects of design (problem and solution) have to be developed side-

by-side. The designer makes a solution proposal and uses that to help understand what the 

problem really is and what appropriate solutions might be. The very first conceptualizations and 

representations of the problem and solutions are therefore critical to the kind of search and other 

procedures that follow, and so to the final solution that is designed.  

 CAD technology provides effective support for activities undertaken during the 

downstream stages of design. These activities include geometric modeling, parametric design, 

finite element analysis, as well as many other geometry-related applications. However, it 

provides little support for activities undertaken during the upstream stages of design (e.g., 

conceptual development in which the designer works with the functional requirements of parts 
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[5]. The main reasons for this little support for the conceptual design phase can be summarized in 

the following points [9]: 

1. CAD systems have concentrated on capturing and representing geometric shape, as 

opposed to providing support for conception. 

2. Systems that attempt to provide conceptual design support are based on little explicit 

relation to function. 

3. CAD systems require a detail of representation that is too restrictive for conceptual 

design. 

 In the future, more intelligent CAD systems will have to handle more than just geometric 

information. From the point of view of design, these systems have to process functional 

information as units together with geometrical data. Consequently, in order to develop future 

CAD systems, an extensive understanding of the relationship between function and shape is 

absolutely necessary [10]. The shape is still the main representation of a product, even though the 

current trend is to remove geometry from its central position in order to add high-level 

information. The function-to-shape translation appears to be one of the most important activities 

of the design process and up till now done manually. This activity is very important both for the 

choices that are made and for the quantity of work that it represents [8].  

 

2.1.1 Design Process 

 The design process can be original, adaptive, or variant [2]. In original design, new tasks 

and problems incorporate new solution principles. These can be realized either by selecting and 

combining known principles and technology or by inventing completely new technology. The 

term “original design” is also used when existing or slightly changed tasks are solved using new 
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solution principles. Original designs usually proceed through all design phases, depend on 

physical and process fundamentals, and require careful technical and economic analyses of the 

task. Original designs can involve the whole product or just assemblies or components. In 

adaptive design, one keeps to known and established solution principles and adapts the 

embodiment to changed requirements. It may be necessary to undertake original designs of 

individual assemblies or components. The geometrical, analytical (e.g., strength, stiffness), 

production, and material issues are very important in this type of design. Finally, in variant 

design the size and arrangements of parts and assemblies are varied within the limits set by 

previously designed product structures. Variant design requires an original design effort only 

once. It includes designs in which only the dimensions of individual parts are changed to meet a 

specific order. The boundaries between the three types of design cannot be defined precisely all 

the time, so they must be considered only as a broad classification. 

 The product design process is an iterative, complex, decision-making engineering 

process. It usually starts with the identification of a need, proceeds through a sequence of 

activities to seek an optimal solution to the problem, and ends with a detailed description of the 

product [3]. Generally, a design process consists of three phases (see Figure 2.1). The first phase 

is product design specification, in which information about the product and initial need is 

collected and defined in precise, yet neutral, terms. This phase possesses the problem statement 

consisting of: (a) a general statement of the design problem; (b) the limitations and constraints 

upon the solution (e.g., customer, engineering, government, design code requirements, 

completion dates); and (c) the creation of excellence toward which the designer is working [11]. 

These three elements are considered the “clarification of the task,” or the initial gathering of 
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information about the design requirements needed to describe the solution, pinpoint the known 

constraints, and describe the initial need of a product. 

 

Detailed design

Analysis &
evaluation

Analysis &
evaluation

Concept
development

Product
specification
(Task clarification)

 

Figure 2.1 Design process phases 

 

 The second phase is the concept development, in which the primary concern is the 

generation of a physical solution to meet the design specifications. The concept development 

comprises the conceptual design, which establishes the functional structure, investigates potential 

solution concepts, and combines them into possible design alternatives; and embodiment design, 

which determines the layout design and then analyzes, evaluates, refines, and develops the 

solutions from the conceptual stage. The final phase is the detailed design. In this phase, final 
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decisions about dimensions and about the arrangement and shapes of individual components and 

materials are made with due consideration given to the manufacturing function.  

 The model described above represents what is widely considered to be “good design 

practice.” It is based on a design process that moves from the establishment of design 

requirements to the generation of a solution. It recognizes that the sequence of requirement 

specification, candidate solution generation, analysis, and evaluation is a logical necessity. It 

further recognizes that design is necessarily a succession of stages (e.g., planning, conceptual 

design, embodiment design, detailed design) that must be carried out in an orderly sequence. The 

decision of a preceding stage is a more or less rigid constraint on the following process, with a 

substantial resource penalty for returning to a preceding stage.  

 The objective of the design is stated in the functional domain, whereas the physical 

solution is generated in the physical domain. Therefore, the design process involves relating the 

functional requirements (FR) of the functional domain to the design parameters (DP) of the 

physical domain. The DPs in the physical domain are chosen to satisfy the FRs in the functional 

domain (see Figure 2.2).  
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Figure 2.2 Design as the mapping from functional space to physical space 
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 This mapping process is non-unique; therefore, more than one design may ensue from the 

generation of the DPs that satisfies the FRs. The determination of a good set of FRs from diffuse 

and often poorly defined perceived needs requires skill, extensive market study, and many 

iterations. The mapping process is an important step in the design process; therefore, the FRs 

should be clearly and concisely defined to represent the correct design problem or need. At the 

same time, the function-form relations should be clearly represented in a well-constructed model.  

 

2.1.2 Design Axioms 

 Axiomatic design theory, introduced by Suh [12], put forward two axioms: the 

independence axiom and the information axiom. These are stated in declarative form as follows: 

• Axiom 1: The independence axiom: maintain the independence of FRs 

• Axiom 2: The information axiom: minimize the information content 

The axiomatic design may be characterized mathematically. Both FRs and DPs can be treated as 

vectors, with m and n components, respectively. The design process then involves choosing the 

right set of DPs to satisfy the given FRs, and may be expressed as:  

 {FR} = [A] {DP} 

 where, 

 {FR}: the functional requirement vector, 

 {DP}: the design parameter vector, and 

 [A]: the design matrix. 

So we can write any line in the vector above as: 

  j
j

ijj DPAFR ∑=
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The design matrix [A] is of the form: 
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Aij element relates a component of the FR vector with another one in the DP vector, and can be 

represented as: 

 Aij = ∂FRi / ∂DPj

The left-hand side of the design equation represents what we want in terms of design goals, and 

the right-hand side of the equation represents how we hope to satisfy the design parameters’ DPs. 

 

2.2 FUNCTION-DRIVEN DESIGN 

 The type of knowledge, its level of granularity, and the operations on the knowledge 

needed in engineering design vary throughout the design process [13]. However, some important 

information developed early in the design process (i.e., during conceptual design) needs to be 

maintained and accessible for the design engineer during the later stages of design. One of the 

more important types of information needed is the set of required functions for the design. 

 In engineering design, the end goal is the creation of an artifact, product, system, or 

process that performs a function or functions to fulfill customer needs [2,12,14,15,16]. Modeling a 

design at the functional level and mapping these functions to embodied solution concepts aid the 

designer throughout the design process in validating the design against the requirements. 

Moreover, direct mapping to form (i.e., geometric and topologic) may provide the structure for 

functional constraint satisfaction, propagation, and truth maintenance in the design.  
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 Function is a critical aspect of a design, but has no clear, uniform, objective, and widely 

accepted definition, as pointed out by Umeda et al. [17]. Pahl and Beitz [2] defined function as the 

general input/output relation of a system whose purpose is to perform a task, typically stated in 

verb-object form. Cole [18] stated that functions are the actions a system must perform in response 

to its environment in order to achieve the mission or goals given to it. Tomiyama et al. [19] 

defined function as a description of behavior abstracted by humans through recognition of that 

behavior in order to utilize it. Stone et al. [20] defined function as a description of an operation to 

be performed by a device or artifact, expressed as the active verb of the sub-function. 

The function definitions given in the design literature are diverse and even contradictory, but can 

be categorized according to three main viewpoints [5]:  

1. System viewpoint: In this case, a function is viewed as a relationship between the input, 

the output, and the stated variables of a system. When a system transforms inputs to 

outputs, it exhibits a particular function. 

2. Performance viewpoint: In this case, a function is viewed as an abstraction of physical 

behavior. For example, consider a mechanical product that performs a specified behavior 

in a specified situation (working conditions), and these achieve the same results. The set 

of behaviors defines a functional class, and the results are its function. 

3. Designer viewpoint: In this case, a function is viewed as a description of the design 

intention (i.e., the intended purpose of a product). 

 A good definition of function should include all these viewpoints. In this research, the 

focus is on the mechanical product functions that can be produced by the product or by some of 

its components. 
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2.2.1 Types of Mechanical Function 

 The formal functional specification of a product is a communication from a designer to 

someone else. A designer may specify different functions for the same product in order to 

convey functional information to different groups of people. Thus, the type of function that is 

considered in this research is what we refer to as “performance function” (or “design function”). 

Other types of function can be identified by taking a functional view of the concurrent 

engineering technique (e.g., Design-for-X) [5]: 

1. Assembly function defines the purpose of component features so they can be assembled 

easily and economically. For example, the function of a “chamfer” feature of a shaft 

might be “to facilitate mating contact between a shoulder on the shaft and bearing.”  

2. Manufacturing function defines the purpose of a feature so that it can be made 

economically and within tolerance-specification limits. For example, a hole may be 

machined in a component to locate it during manufacturing. 

3. Marketing function specifies the purpose of features to meet customer requirements that 

are not performance-related. These functions typically relate to the look and feel of a 

product; they are aesthetic in nature. 

4. Maintenance function specifies the purpose of features that facilitate maintenance 

activities, but excludes functions related to assembly and disassembly. A grease nipple is 

an example of a part designed for maintenance reasons only. It allows lubricant to be 

applied to a bearing without stripping the complete assembly. 

 Apart from the above distinctions between function types, functions can also be classified 

in terms of other criteria. Functions can be differentiated as primary or secondary by categorizing 

them in terms of their importance in a design.  
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2.2.2 Classification of Fundamental Mechanical Functions 

Few researchers have attempted classification of mechanical functions. Pahl and Beitz [2] 

suggested the elaboration of the function structure from generally valid sub-functions. The 

concept of generally valid sub-functions is, in effect, derived from a classification scheme in 

which five kinds of sub-functions are identified: “change” from type characteristics, “vary” from 

magnitude characteristic, “connect” from number characteristic, and “channel” from place 

characteristic, and “store” from time characteristic. Keuneke [21] classified general device 

functions into four types: “ToMake,” “ToMaintain,” “ToPrevent,” and “ToControl.” Other 

classification schemes have been described by a number of authors [20, 22, 23]. 

Deng et al. [5] classified fundamental mechanical functions depending on previous efforts 

into the following categories: 

1. Functions relating to supplying or storing energy or material (e.g., the functions of 

electric motor, spring, flying wheel, oil tank) 

2. Functions relating to transmitting energy or material; this category can be further 

classified as: 

 Transmitting motion (e.g., the functions of the shaft, gear, belt, chain) 

 Transmitting force or moment; these functions usually couple with the above 

functions 

 Transmitting material (e.g., the function of pipe) 

3. Functions relating to converging or branching energy or material (e.g., the functions of 

switch, valve, gear train) 
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4. Functions relating to changing the form or magnitude of energy or material, or physical 

quantities relating to energy; this category can be further classified as: 

 Changing form of energy, physical quantities relating to energy or material, such as 

the functions of an electric motor (changing electric energy to mechanical energy) or 

cam (changing rotational motion to linear motion) 

 Changing magnitude of physical quantities related to energy or flow of material, such 

as gear pair (changing magnitude of angular speed) or gate (changing flow of 

material) 

 

2.2.3 The Function Analysis Method 

 The aim of function analysis is to establish the functions required, decompose them into 

discrete tasks or sub-functions, and define the system boundary of a new design. The procedure 

is as follows [11]: 

1. Express the overall function for the design in terms of the conversion of inputs into 

outputs by a black box. 

2. Break down the overall function into a set of essential sub-functions. The sub-functions 

comprise all the tasks that have to be performed inside the black box. 

3. Draw a block diagram showing the interactions between sub-functions. The black box is 

made transparent so the sub-functions and their interconnections are clarified. 

4. Draw the system boundary. This boundary defines the functional limits for the product or 

device to be designed. 

5. Search for appropriate components to perform the sub-functions and their interactions. 

Many alternative components may be capable of performing the identified functions. 
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Express the overall function in terms of the conversion of inputs into outputs 

 The starting point for the analysis method is to concentrate on what has to be achieved by 

a new design, and not on how it is to be achieved. The simplest and most basic way of 

expressing this is to represent the product or device to be designed as simply a black box that 

converts certain inputs into desired outputs. The black box contains all the functions that are 

necessary for converting the inputs into the outputs (see Figure 2.3). 

 

                            

‘Black Box’

Inputs Function Outputs  

Figure 2.3 The black box system model 

 
 It is preferable to try to make this overall function as broad as possible at first; it can be 

narrowed down later if necessary. It would be wrong to start with an unnecessarily limited 

overall function that restricts the range of possible solutions. The designer can make distinct 

contribution at this stage of the design process by asking the clients or users for definitions of the 

fundamental purpose of the product and asking about the required inputs and outputs (e.g., from 

where the inputs come, what the outputs are for, what the next stage of conversion is). This kind 

of questioning is known as “widening the system boundary.” The system boundary is the 

conceptual boundary used to define the function of the product. Often this boundary is defined 

too narrowly, with the result that only minor design changes can be made, rather than a radical 

rethinking of the design. 
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 It is important to try to ensure that all the relevant inputs and outputs are listed. They can 

all usually be classified as flows of material, energy, or information, and these same 

classifications can be used to check if any input or output type has been omitted. 

 

Break down the overall function into a set of essential sub-functions  

 Usually the conversion of the set of inputs into the set of outputs is a complex task inside 

the black box and has to be broken down into sub-tasks or sub-functions. The goal of this step is 

to refine the overall function statements as much as possible. The three reasons for doing this 

decomposition are as follows [14]: 

1. The resulting decomposition controls the search for solutions to the design problem. 

Because concepts follow functions and products follow concepts, we must fully 

understand the function before wasting time generating products that solve the wrong 

problem. 

2. The division into finer functional detail leads to a better understanding of the design 

problem. Although all this detail work sounds counter to creativity, most good ideas 

come from fully understanding the functional needs of the design problem. 

3. Breaking down the functions may lead to the realization that components exist that can 

provide some of the functionality required. 

No truly objective, systematic way exists to do this; the analysis into sub-functions may depend 

on such factors as the kinds of components available for specific tasks, the necessary or preferred 

allocations of functions to the machine or to human operators, and the designer’s experience. 

 In specifying sub-functions, it is helpful to ensure that they are all expressed in the same 

way. Each one should be a statement with a verb plus a noun (e.g., amplify signal, count items, 
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separate waste, reduce volume). Each sub-function has its own input(s) and output(s), and 

compatibility between these should be checked. Some auxiliary sub-functions may need to be 

added (e.g., remove waste), but these do not contribute to the overall function. 

 

Draw a block diagram showing the interactions between sub-functions 

 A block diagram consists of all the sub-functions, separately identified by enclosing them 

in boxes and by linking them together by their inputs and outputs to satisfy the overall function 

of the product being designed. In other words, the original black box of the overall function is 

redrawn as a transparent box, in which the necessary sub-functions and their links can be seen 

(see Figure 2.4). 

 

Sub-function Sub-function

Sub-function Sub-function

‘Transparent Box’

FunctionInputs  

Figure 2.4 A transparent box model 
 

 In drawing this diagram, it is necessary to decide how the internal inputs and outputs of 

the sub-functions should be linked together to make a feasible, working system. It may be 

necessary to juggle inputs and outputs, and perhaps redefine some sub-functions, so everything is 

connected together. It is useful to employ different conventions (i.e., different types of lines) to 

show the different types of input and output (i.e., flows of materials, energy, or information). An 
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example of functions and sub-functions as represented in a function converter black box model 

for a testing machine is provided in Figure 2.5. This illustrates the decomposition from the top-

level function to lower levels for the refinement of energy, signal, and material [2]. 
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(b) 

Figure 2.5 Overall function and sub-functions of a testing machine 

 

Draw the system boundary 

 In drawing the block diagram, it is necessary to make decisions about the precise extent 

and location of the system boundary. For example, the diagram can have no loose inputs or 

outputs, except those that come from or go outside the system boundary. It may be that the 
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boundary has to be narrowed again, following its earlier broadening during the consideration of 

inputs, outputs, and overall function. In order to define a feasible product, the boundary has to be 

drawn around a subset of the functions that have been identified. The designer may not have 

complete freedom in drawing the system boundary; it probably will be decided on the basis of 

management policy or client requirements. Usually, many different system boundaries can be 

drawn to define different products or solution types.   

 

Search for appropriate components to perform the sub-functions and their interactions  

 If the sub-functions have been defined adequately and at an appropriate level, it should be 

possible to identify a suitable component for each sub-function. This identification of 

components depends on the nature of the product or device or more general system being 

designed.  

 

2.2.4 Functionality Modeling  

 Technical system representations exist for different levels of abstraction. An engineering 

drawing represents the geometric aspects of a system; for increasingly complex systems, more 

abstract representations are needed (e.g., circuit diagrams, bond graphs, block diagrams, 

mathematical, or mechanical models). Models are useful tools to analyze, discuss, or design 

systems. Models are simplified abstract constructs used to predict the behavior of a system and to 

get a quantitative understanding of its operations and find possible critical points before the 

actual system is built [24]. Models can be catalogued into functional (mathematical) or structural 

(physical). Functional models try to represent how a system works, while structural models 

represent how the system is built. Both types of models have something in common: they only 
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reflect certain features of a real system—only those aspects intended to be relevant to the 

characteristic under study. What to include in a model must be considered carefully; including 

irrelevant details may make models complex, while oversimplified models may disregard 

important effects. 

 Functionality modeling provides an abstract, yet direct, method for understanding and 

representing an overall product or artifact function. Functionality modeling also strategically 

guides design activities (e.g., problem decomposition, physical modeling, product architecting, 

concept generation, and team organization). 

 A common starting application in functionality modeling is hierarchical decomposition. 

In this step, the overall function is decomposed into sub-functions that will be satisfied by 

function carriers in the product [2,18,25]. The hierarchical structure is a graph technique used to 

visually keep track of the evolving design and the parent-child relations. Schmekel [25] used both 

the composition and decomposition of functional objects in his functional model. In the 

decomposition step (top-down design), the designer starts with a functional model and 

decomposes functions into sub-functions that will be satisfied by parts in the product. In the 

composition step (bottom-up design), a function in functional model is satisfied by composing 

parts of a product into assemblies such that the assembly satisfies the specified functional 

requirements.  

 Pahl and Beitz [2] described how a function structure could be established by breaking 

down an overall function requirement into sub-functions. The design process proceeds by 

establishing the sub-systems and components that together will perform the overall function. 

Cole [18] employed the hierarchical structure in his functional analysis methodology. He used 
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functional identification diagrams (FID) to define the structure, components, and functions of the 

system. The FIDs portray the system as a hierarchical structuring of the system’s functions. 

 Functionality representation and modeling during the conceptual design phase have long 

constituted a challenging research area. Function plays a central role during conceptual design, 

just as geometry does in a detail design [4]. Many researchers spend much effort developing 

acceptable function ontology and function representation. Schmekel [25] described a 

representation of functional models in terms of functional objects. A functional object is a 

symbolic representation of a functional description. It describes the functional requirements of a 

product such that a structure of functional objects describes a functional model of that product. A 

functional object is given by a three-tuple < Qset, Tset, Constraints> where: 

 Qset: is a set of parameters characterizing input and output quantities in a function. 

 Tset: is a set of parameters characterizing the transformation. 

 Constraints: is a set of constraints between parameters in Qset and Tset. 

 A structure of a functional object is defined in terms of primitive functional objects; that 

is, a four-tuple < Fset, Types, Functions, Connections> where: 

 Fset: is a set of functional objects. 

 Types: is a set of type relations between members of Fset, such that a generic taxonomy of 

 functional objects is defined. A type of objects consists of sub-types and instance of type. 

 Functions: is a set of function relations among members in Fset, such that a component 

 structure of functional objects is defined whereby a compound functional object is 

 composed of primitive functional objects. 

 Connections: is a set of relations between members of Fset that connects corresponding 

 parameters in different functional objects, such that networks of parameters are defined. 
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 In developing a standard taxonomy for function, Szykman et al. [26] identified three 

benefits: reduction of ambiguity between function definitions, clarification of uniqueness from 

minimal vocabulary, and uniformity of information exchange between systems. They developed 

their representation based on a minimalist description of function and flow. Examples of 

functions include usage, combination, and transformation. Similar to the flow types proposed by 

Pahl and Beitz, [2] examples of flow described by Szykman et al. include material, signal, and 

energy.  

 Stone et al. [20] introduced a design language called “functional basis,” according to 

which product function is characterized in a verb-object (function-flow) format. The set of 

functions and flows is intended to comprehensively describe the mechanical design space. Eight 

basic types of functions are introduced: branch, channel, connect, control magnitude, convert, 

provision, signal, and support. The functional basis offers greater consistency than did previous 

systems. The basic flows proposed by Pahl and Beitz [2], and later refined by Hundal [22], are 

broken down into more specific terms to form a taxonomy. 

 Tomiyama et al. [19] developed a methodology to deal with functions called function-

behavior-state (FBS) modeling. In this model, a function is represented by two concepts (i.e., its 

symbol is represented by the relationship between function and behavior). The researchers 

assumed that the representation of function included human intention, whereas the representation 

of the behavior of an entity could be determined objectively by its attributes and its relations to 

other entities, based on physical principles. The state of an entity is the attributes and relations of 

that entity. 

 Cole [18] described several tools that designers can use in functional analysis. Function 

identification diagrams are used to hierarchically define the functions of the design problem. 
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Function lists are similar to diagrams, yet not structured. The design functions are described in a 

narrative list. Function flow diagrams show the interrelations of the functions identified. A 

functional interface dictionary is a collection of known functions and their flow elements that 

may be used to assemble function diagrams. Functional allocation databases integrate the 

function, performance, interface, activity, and organizational requirements imposed on the 

design. State transition diagrams are used to determine and define the capability to control the 

system of functions. 

 Roy et al. [27] introduced a definition of function that captures some of the basic features 

at an abstract level as well as a detailed design level. Functions defined by Roy et al. also have a 

mechanism to incorporate functional equivalence classes associated with a function. This means 

that a function will have references to other functions that can collectively be considered 

equivalent to the function. The collective equivalence could be of a combination of functions 

connected be “AND” or “OR” or combinations thereof. Their functional representation is shown 

in Table 2.1. 

 

Table 2.1 Function representation (proposed by Roy et al. [18]) 

Name String 

Input {[Input}] 

Output {[Output}] 

Function_of_Artifact Reference to Artifact through which 
functional requirements are achieved 

Relations {Constraint} defined over the inputs, 
outputs, and internal attributes of the 
function 

Sub_Function_Of {[Function}] 
Sub_Functions {[Function}] 
Optimality_Measure {[Constraint}] Goal 
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 Mukherjee [28] represented function as follows: 

  [<v><n><m><d><o>]locn <Keywords>, where: 

  v: set of verbs, 

  n: set of names, 

  m: set of magnitude attributes, 

  o: another set of nouns representing objects to which the functions applies, 

  locn: distinguishes between more than one similar functions, 

  Keywords: an additional set of specialized words asked to enhance the functional  

  representation. 

 Deng et al. [5] used object-oriented technology to come up with a functional 

representation scheme. They proposed a multiple-attribute object-oriented representation scheme 

that explicitly incorporates the functional environment. The most generic function can be 

represented as the top-most functional object. The class of these objects is defined as follows:  

  Class function { 

   Name:              Act + Target 

   Complement:   Additional information 

   Type:                Performance/ Assembly/ Manufacturing/ 

                                                             Marketing/ Maintenance/ Others 

   Level:               Overall/ Embodiment/ Geometric 

   } 

 The Name attribute is expressed by the Act and Target variables. Act is used to describe 

the action relating to the function (e.g., transmit, change), which is normally a verb. Target is 

used to describe the target of the Action. Complementary attribute is used to provide additional 

35 



 

information for the Name attribute. Type attribute refers to the mechanical function type that can 

be identified by taking a functional view of the concurrent engineering technique Design-for-X. 

Level attribute represents the levels of mechanical function. Overall functions describe the 

overall functionality of the mechanical system or mechanical assembly. Embodiment functions 

describe the functionality of the components of an assembled product. They are individually 

necessary and collectively sufficient to achieve a specified overall function. Geometric functions 

describe the functionality of specific geometric features, forms, or parts. 

 Muogboh [29] developed a functionality model to support computer-aided conceptual 

design (CACD). The functionality model provides a description of the product in the form of 

functionality relations and constraints imposed on the physical resources used in the realization 

of the given task. New modeling concepts in the form of operands and coupling bonds are 

introduced in the modeling of product functionality. The resources required to accomplish a 

function (material and energy) are described in the form of functionality operands. The relations 

and constraints are defined in terms of coupling bonds. A generic model of product functionality 

was developed to describe functionality in a mathematical form. Muogboh’s functionality model 

(especially the functionality operand concept) is adapted in this research with some 

modifications. 

 

2.2.5 Function-to-Form 

 The central task of the product design process is to decompose overall functional 

requirements into appropriate sub-functions and to synthesize reliable components to achieve 

those sub-functions. The next task is to embody these components in a workable economical and 

manufacturable design [23]. While some researchers studied functionality representation and 
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modeling, others developed methods that map function to appropriate form or appropriate 

physical element [8,9,27,28,30,31,32]. Roy et al. [27] proposed a design synthesis process for the 

evolution of a product from its product specification. This method is mainly a mapping process 

from functional requirements to artifacts, with multi-stage, constrained optimization during the 

stages of design evolution. Physical and structural details of an artifact are captured as abstract 

sketches. The design of an artifact is represented as: 

 D = {<PS><Art_Tree>}, where: 

 <PS>: product specification, 

 <Art_Tree>: the artifact tree (a tree structured list of artifacts). 

 Initially the artifact tree is empty. Subsequently, when suitable artifacts are mapped to 

perform a desired functionality, these artifacts are added to the artifact tree. This iterative design 

process generates stages of partial solutions. At each stage, the attributes in the product 

specification and the constraints that have not been fully satisfied are transformed to the next 

stage, until a feasible design solution has been devised. 

 Mukherjee et al. [28] used data structures called “function-form matrices” to connect 

functionality with relating geometry. The decomposition of a function into sub-functions reaches 

a stage at which the designer begins to map the lower level functions with part geometry. The 

geometry at this point is not the entire geometry of the part; it is the functionally critical parts of 

the entire part geometry. The remaining geometry is abstracted using a set of linkages to create 

the sketching abstraction. The concept of sketching abstraction is to represent functional features 

using wireframe geometry located in partially defined planar regions and connect these 

functionality critical pieces of geometry with a linkage mechanism. 
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 Gorti et al. [9] developed a symbolic evolution approach called “symbol-form mapping,” 

in which an evolving symbolic description of a design is mapped into a geometric description. 

The symbolic evolution of a design is guided by a considerable amount of knowledge: 

knowledge about the components used during the design, the process knowledge used in a 

particular task, the current context conditions, and user decisions and preferences. They called 

this part of design “function-symbol mapping.” At this stage, the specific functional 

requirements coupled with the design context lead to: (a) a selection of components, (b) 

establishment of functional relationships between components, and (c) establishment of 

important parametric constraints. On the other hand, in symbol-form mapping, the symbolic 

aspects must somehow be mapped into a geometric description in order to physically realize the 

design. Gorti et al. used an object-oriented paradigm in geometry representation to provide a 

solution that allows both the natural hierarchical decomposition of domain shape knowledge and 

the procedural computations necessitated by geometric algorithms.  

 Gardan et al. [8] introduced three methods to translate function specifications to shape. 

The first is an expert system method founded on the expert’s knowledge. All the mathematical 

and empirical rules used by the expert are implemented to arrive at a single correct solution. For 

the foundry mould, they used mechanical and metallurgical rules, which cannot be modified, and 

know-how based rules that can be brought into question with new experimentation. They pointed 

out that this method carries some drawbacks. The suggested solution is perhaps a good one, but 

is certainly not the best one. Moreover, the system only imitates the expert and is not innovative. 

 The second method proposed by Gardan et al. is a theoretical method. In this method, 

they assumed that the product’s various components can be identified after the functional 

decomposition. Each component is described by a set of constraints on physical parameters, 
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called “intermediate specifications.” Parameters used in the intermediate specifications are called 

“intermediate parameters.” In this method, they focused on translating the constraints on the 

intermediate parameters, not the functions, into shapes. Intermediate parameters are defined as 

quantifiable and measurable entities referring to the physical world. A component is produced 

from its own parameters. Each component is a rigid, finite, and homogenous solid. A set of 

shapes, called “solution space,” is generated for a component from primitive shapes. They 

supposed that a library of primitive shapes is known by the system. Each of primitive shapes is 

defined by a set of parameters called “terminal parameters.” For example, a sphere is defined by 

a radius, a box is defined by three lengths, and so on. Translating the intermediate constraints 

into constraints on terminal parameters creates the solution space. Due to the huge solution space 

of that will be produced by this method, Gardan et al. introduced a third mixed method. This 

consisted of applying the theoretical method and integrating some expert knowledge in order to 

automatically obtain a reasonably wide solution space. 

 Xu et al. [30] introduced a function-oriented, axiom-based generalized mapping scheme, 

including generalized mapping among requirements domain, function domain, and form domain 

to support product life-cycle design. Their mapping scheme has the characteristics of many-to-

many and multilevel, bestriding characters (see Figure 2.6). The aim of this strategy is to 

transform the traditional, highly random design practice into an axiomatic, rationalized way. This 

generalized mapping strategy falls into four main modules: 

1. A functional element library is based on the mechanism transmission rules, theories, and 

conventions; the mechanical element is dragged from the library and dropped on different 

3-D orientation planes to construct a conceptual mechanism layout. 
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2. A function-to-function carrier-to-form mapping paradigm is used to finish the conceptual 

embodiment design, wherein each functional element is mapped to a certain abstract 

feature of the functional requirement. 

3. The assembly model is represented as a network, wherein each node is an information 

unit called a “functional carrier,” and the arc is a constraint. 

4. The function carrier is stored in each part in a random order. 

 

Then Product is
reconstituted to
be 3D realistic

form

A: Requirement
Domain

B: Function
Domain

C: Behavior
Domain

D: Design Properties
Domain (product form)

RA1

RA2

FRS1

FRSn

BS1

BSn

DPs1

DPs2

Dpsn

 

Figure 2.6 Process of generalized mapping 

 

 The information generated from the above mapping process is usually provisional and 

inconsistent, and the geometric information is always in a high degree of uncertainty. To cope 

with this problem, data structure and algorithm of conceptual geometric reconstitution were 

explored. They represented each functional carrier by a new data structure called “Zero solid.” 

This Zero solid contains three parts: container feature and inner and outer features. Then they 
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represented the conceptual part by a network of Zero solids. They used a default geometric 

reasoning (DGR) scheme for the recognition and reconstitution of product geometric and 

topologic information. The DGR means that, when any of geometric elements in a solid (e.g., 

vertex, edge, face) are incomplete or indefinite, the missing geometric elements must be 

supplemented and the relationship of the geometric elements must be reconstituted to construct 

unambiguous information that is consistent with the object under default logic.  

 Schulte et al. [31] used functional features that describe sets of primary functional faces 

(active surfaces) to help in functional reasoning, not only on the logic level of the design process, 

but also on the geometric level. They considered the physical effects and their primary functional 

faces as the basis for the definition of functional features, which makes it possible to document 

the fundamental ideas of the designer in terms of geometry. A physical effect is laid down with 

regard to a specific function or sub-function, and at the same time is usually characterized by 

plotting a certain arrangement and interrelationship of primary functional faces. According to 

their point of view, this offers the first direct relation between the functional and the geometric 

characteristics of a technical product. To obtain the required preliminary layout of the product, 

further surfaces have to be added. They called these surfaces “filling faces,” which do not have a 

functional meaning and may be modified without changing the product’s behavior. 

 Figure 2.7 shows an example of a simple functional feature, called “frictional 

connection,” that is related to a design function, “input or output of torque/speed.” As the 

underlying physical effect, “dry friction” can only by realized by at least one pair of functional 

faces, and the functional feature consists of two or four functional faces. The necessary 

separation of functional faces, indicated in the figure by material vectors, will automatically 

result in separate modules and separate assembly units at later design stages. The three different 
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types of the functional features “frictional connection,” shown in the figure, could lead to some 

kind of a flat belt drive, vee-belt drive, or disk-type clutch. 

 

(a) (b) (c)  

Figure 2.7 Functional feature “frictional connection” and its variation 
 

 Feng et al. [32] used graph theory and matrices to represent the function-feature relations, 

as well as their interrelations. Three basic types of feature-related functions were defined: 

performance-related functions, process-related functions, and ergonomics-related functions. The 

performance-related functions are obtained directly or indirectly from the functional 

requirements. The functional requirements of a mechanical product can be divided into 

mechanical, structural, thermal, fluid, and tribological functions. Further decomposition for each 

one is possible.  

 A n-ary tree was employed by Feng’s group to store the functional information in a 

hierarchical way. The root of the tree corresponds to a very abstract representation, whereas the 

leaves correspond to a more concrete representation. The correspondence between the functions 

and the shape is made on the level of the leaves of this structure, which are directly associated 

with geometric entities (e.g., form features). 
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 Shapiro et al. [33] introduced a new view for modeling mechanical functions in terms of 

energy exchanges. A mechanical system interacts with its environment by exchanging energy 

through its physical boundary. The subsets of the physical boundary over which such exchanges 

occur are called “energy ports.” Energy ports are the key portions of geometry on a mechanical 

part and exist at contact surfaces (e.g., the internal surface of a bearing bore). Their shape is 

usually directed by the nature of the contact (e.g., once a specific bearing has been selected, the 

dimensions of the bore are implied). Thus, the geometries of the energy ports are fully specified 

and can be considered to be the functional features of the part to be designed. 

 Rosenman [34] employed genetic algorithms to automatically generate 2-D plans for house 

designs. The idea of a genetic algorithm consists of simulating the model of biologic organism 

evolution. The shape of biologic organism (the phenotype) is represented by genetic information 

called the “genotype,” which contains both the rules of development for the organism and the 

development process itself. A genotype algorithm is characterized by an initial population on 

which different mechanisms of evolution are applied, such as the crossing (mixture of two 

genotypes), the mutation (randomly modification of a genotypes), and so on. The phenotype in 

Rosenman’s work is a surface composed of square elements. It is represented by a sequence of 

horizontal or vertical unit vectors. The obtained shapes are automatically valued with objective 

fitness functions (e.g., the ratio perimeter of the area or the number of angles) and are manually 

valued with subjective functions (e.g., aesthetics). 

 Some researchers have focused on evaluating different design alternatives based on 

functionality representation [35, 36]. Iyengar et al. [35] developed a generic method of evaluating or 

comparing different systems or designs that perform the same function. “Different” refers to 

physical domain, size, connectivity, components, complexity, and so on. First, a functional 
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technique is used to come up with a common representation of different kinds of components 

and systems. Second, quantifying evaluation criteria (e.g., performance, reliability, 

serviceability) are defined. Finally, an upward recombination technique is used to collapse the 

expanded functional network representing the design, based on the evaluation criteria. The 

general method involves retracing the path followed in the functional decomposition process.  

Gardan et al. [36] proposed a way to automatically check whether a shape satisfies the function 

specifications by using a weighted average formula called the “satisfaction degree.”  

 Huang et al. [37] used a morphological evaluation chart to develop their “concept 

assessor,” which is responsible for concept evaluation or assessment in the conceptual design 

phase. The input to this concept assessor is the list of solution alternatives obtained from the 

concept generator, and the output is a rank order of the input solution alternatives to be 

forwarded for further development. The conversion from the input to the output is based on the 

set of criteria against which alternative solutions are evaluated. 

 

2.2.6 Computer-Aided Conceptual Design 

 Computer tools have been used extensively in the detailed design phase, but relatively 

few applications exist for the conceptual phase. This is because knowledge of the design 

requirements and constraints during this early phase of the product life cycle is usually imprecise 

and incomplete, making it difficult to utilize computer-based systems or prototypes [38]. 

 Current research on CACD has produced several prototype systems. Wallace et al. [39] 

developed an experimental conceptual design tool for industrial designers that is capable of 

generating alternative design suggestions based on user input. The purpose of the tool is to 

provide a means for designers to quickly generate and adapt alternate design concepts. Anthony 
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et al. [40] described a 3-D modeling tool for conceptual understanding and prototyping (CUP). 

CUP allows a user to specify a spatial layout of components and sub-assemblies, as well as 

structural, behavioral, and functional (SBF) information about components and sub-assemblies. 

Also, CUP possesses mechanisms for capturing textural information about the designer’s intent 

and preferences. 

 To support design activities adequately, Al-Hakim at al. [41] proposed the incorporation of 

reliability with functional perspectives at the conceptual design stage. They used graph theory to 

represent a product and the relationships between its components. With this representation, it is 

easy to visualize energy flow between components, and thus trace any loss of functionality. 

Brunetti et al. [42] proposed the use of features to model the relationships between the 

requirements, functional descriptions, and physical solutions of a product. These features serve 

as information carriers to the downstream applications. In particular, the researchers focused on 

the support for early feature-based prototyping of different views to the overall product model. 

 Qin et al. [43] developed a fuzzy knowledge-based system that can capture the user’s 

sketching intentions and automatically generate the corresponding geometric primitives. Most 

designers still prefer to express their creative design ideas through 2-D sketches; therefore, it is 

important for CACD systems to allow sketched input. Qin et al. built a prototype system that 

allows 2-D sketched input, interprets the input sketch into more geometrically exact 2-D vision 

objects, and when needed, projects the 2-D objects into 3-D models. 

 Conceptual design activity is not complete unless the design concepts are verified and 

satisfy the functional requirements. Deng et al. [44] investigated in automatic design verification 

through the use of a constraint-based approach. Design verification is typically done either by 

calculating the attributes of interest directly or by simulating the behavior of a system. Deng et 
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al. developed an extension to the first method through the use of constraint propagation and 

dynamic design verification, based on graphs. The input is the functional information. Based on 

the input, they developed a framework that allows for backward reasoning to the causes of the 

system behavior. Design verification is performed by identifying input and output design 

variables, developing a variable dependency graph, propagating constraints over the graph, and 

checking the values of the design variables against these constraints. 

 

2.3 FEATURES 

 The use of features is a recent approach to the old problem of attempting to link CAD 

with computer-aided manufacturing (CAM). The features approach constrains the 

designer/process planner to work with a set of features that have significance for design, 

analysis, or manufacturing. Instead of using a model consisting of graphic primitives (e.g., lines, 

circles, and points), the designer is asked to use a set of features (e.g., holes, pockets, slots) from 

which manufacturing operations can be derived. When both the designer and the process planner 

have finished the design and process plan, more information has been entered on a traditional 

CAD system. However, the designer and planner have entered information not at the geometric 

level, but at a higher level [45]. 

 

2.3.1 Definitions of Features 

 Features do not have a formal mathematical or generic definition. A feature is usually 

defined with respect to its significance for a particular application (e.g., design, engineering 

analysis, or manufacturing) for which it captures accumulated experience-based knowledge. 
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Each researcher working in the features arena has his or her own definition of features, and these 

definitions differ. 

 In the work of Shah and Rogers [46], the term “feature” was defined as a set of 

information related to an object’s description. The description could be for design, 

manufacturing, or even administration purposes. Thus, the nature of the information sets can be 

different. These researchers classified features into sets related to product engineering as follows: 

 Form features (nominal geometry): functional, aesthetic, and assembly aids 

 Material features (material composition and condition): properties/specifications and 

treatment applied to the material and surfaces 

 Precision features (allowable deviations from nominal geometry): tolerances and surface 

finishes 

 Technological features (information related to the object performance and operation): 

performance parameters, operating variables, and design constraints 

 Shah [47,48] later redefined features as geometric forms that engineers associate with 

certain properties or attributes and with useful knowledge for reasoning processes related to the 

product; in other words, the features can be seen as primitive forms of engineering. McGinnis 

and Ulman [49] defined a feature as any particular or specific characteristic of a design object that 

contain related information about that object. A feature is verbally represented in the form of a 

noun or noun clause. Brunetti and Golob [42] defined a feature as an information unit representing 

a region of interest within a product. It is described as an aggregation of properties of a product 

and the description contains the relevant properties, including their values and relations (i.e., 

structure and constraints). Furthermore, it is defined as the scope of a specific view of the 

product, with respect to the classes of properties and phases of the product life cycle. According 

47 



 

to Salomons [50], features can be treated as design objects, belonging to a general class that 

inherits properties of other classes. Liu and Nnaji [51] defined features as a set of geometric 

entities (i.e., surfaces, edges, and vertices) with specifications for the bounding relationship 

between them, which implies an engineering function for the object. Rembold, Nnaji, and Storr 

[52] classified features according to three levels: generic, application, and product. Their 

classification scheme is hierarchical and the result from any high level classification applies to 

the lower levels. 

 

2.3.2 Feature-Based Design 

 Because form features can represent the design intent and functionality of a part, form-

feature methodologies have recently been employed in the development of mechanical design 

environments. This approach is known as “feature-based design” or “design with features.” 

 In applications of feature technology to CAM and computer-aided process planning 

(CAPP), design features are defined as primary features, while feature of downstream activities 

(e.g., manufacturing, process planning) are considered application features. Currently, three 

primary approaches exist with respect to how to obtain application features from a product model 

[50]. One approach involves a design with features, or a feature-based design. A product model 

can be built using design features. Features are functional elements for designers. However, 

design features often differ from application features. The second approach is feature 

recognition. In this approach, features are automatically or interactively recognized from a model 

of the object under consideration. The third approach is interactive feature definition. In this 

approach, features are defined by human assistance or interactively.  
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 In comparison with the other two approaches, feature-based design has the advantage of 

offering relevant information for applications during the design process, as well as the possibility 

of considering manufacturing and assembly concerns early in the design process. This would not 

be possible using either feature-recognition or interactive feature definition alone. Thus, feature-

based design is a promising means of achieving better CAD/CAPP integration [50]. 

 Research in the area of features has resulted in many promising techniques for combining 

engineering data and design knowledge with geometric information. Almost all the research on 

features has been in the domain of mechanical design. This is because the primary goal of 

mechanical CAD systems has been to provide concise, accurate representations of mechanical 

parts, along with their corresponding manufacturing processes. In feature-based design, part 

geometries are constructed, edited, and manipulated with form features (e.g., holes, slots, ribs, 

webs). These are high-level geometric entities with attributes that identify functionality and 

information related to design and to manufacturing knowledge. Furthermore, the need for 

integrated design environments and for automated information processing techniques for 

complex mechanical designs has prompted extensive research for better representations of the 

geometry and topology of both completed and in-progress designed objects [53]. 

 

2.3.3 Features as Integrating Keys Linking Design and Manufacturing 

 The automation of process planning requires that product data be automatically extracted 

from the product model. However, CAD product representations for product modelers usually 

differ from the type of information required for CAPP (e.g., manufacturing features). Although 

most of this information is generated during the design process, it is lost because only the results 

of the design process are stored in the CAD model. Feature-based design could, at least partly, 
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overcome this problem. Recently, designers have become more aware of the necessity of 

considering not only the design function and form of a design object, but also manufacturability.  

 As discussed above, features can be viewed as information sets that refer to aspects of 

form or other attributes of a product, so that these sets can be used in reasoning about the design, 

in performance, or in the manufacture of the part or its assemblies. Two primary benefits are 

associated with feature-based design [54]. First, it provides users with high-level, specialized 

modeling primitives that facilitate a top-down approach in the design process. Second, they 

contain a various forms of design information that enable application programs to reason about 

the characteristics of a design object. 

 

2.4 PRODUCT MODELING 

 A product model is a computer representation of the data that describe a product 

throughout its life cycle [55]. A product model should contain sufficient detail to allow 

engineering applications to have access to the data they use and to be a repository for the data 

they create. Therefore, a product model must have a structure so that originators of applications 

know where to find and deposit data. This structure is provided by a product data model that 

describes the form and content of the data being represented. 

 

2.4.1 Types of Product Model 

 Product models have been used over the past 20 years, sometimes without explicit 

naming of a product model. After the introduction of geometric models for various CAD/CAM 

applications, engineers and researchers quickly realized it was necessary to store additional 

information and to extend the modeling capability to capture such information. They also 
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recognized the need to cope with large-scale and complicated products (e.g., automobiles, ships, 

and engineering plants), to integrate different kinds of product-related information, and to have a 

structured representation for these products. In the following sections, different types of product 

models are explained [56]. 

 

Structure-oriented product models 

 The product structure refers to a description of the product’s breakdown and is the kernel 

of structure-oriented product models. To represent the structure of products, several types of 

structures (e.g., different bill-of-material structure types, classification structures, structures to 

describe versions and variants of a product) can be used. 

 

Geometry-oriented product models 

 Geometry-oriented product models (e.g., wire frame, surface, solid, and hybrid models) 

can be defined as computer internal models, with the primary purpose of representing the shape 

of a specific product. This type of product model is typically used as part of basic CAD systems 

and provides the basis for such applications as FEM or NC programming. Since the data 

structures for geometrical models are especially designed to represent geometry, their extension 

to non-geometric data is limited. For supporting-product geometric design, it is necessary not 

only to represent final shapes, but also to represent some auxiliary shapes (i.e., auxiliary 

geometry) and attach a symbolic description for other attributes or relations. More generally, 

product-related information needs to be associated with geometry. 
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Feature-oriented product models 

 As an extension of geometry-oriented product models, feature-oriented product models 

provide the ability to represent frequently used shape patterns as coherent geometric items, called 

“form features.” Form features are application independent because they do not carry any 

specific non-geometric semantics. Most form features represent shape patterns and have a 

specific semantic meaning related to the design or manufacturing process. To better support 

design and manufacturing tasks, it is necessary to extend the concept of form features by the 

explicit representation of their semantics. As a result, features represent the integration of form 

features and application-dependent semantics. In product modeling, two main classes of features 

can be distinguished: design and manufacturing features.  

 Design features support the designer in communicating with a design system easily and 

according to their design intent. During conceptual design, features related to the primitive 

geometric elements or symbols can be used to describe the functions of the desired product. 

Manufacturing features are defined as the interpretation and, most importantly, the combination 

of form features from the viewpoint of manufacturing, assembly, and inspection. Like design 

features, they are constructed by combining shapes, depending on their position in the piece of 

work. 

 

Knowledge-oriented product models  

 Knowledge-oriented product models are characterized by the use of artificial intelligence 

(AI) techniques (e.g., object-oriented programming, rule-based reasoning, constraints and truth 

maintenance systems). Through the employment of these AI techniques, it becomes possible to 

store human expertise as well as experience concerning products, processes, and factory 
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environments. One important characteristic of knowledge-oriented models is their ability to build 

abstract taxonomies of products or processes as objects and to store knowledge about former 

designs, possible alternative parts in an assembly, and the abilities and validity of processes used 

for a specific class of products.  

 

Integrated product models 

 An integrated product model incorporates the abilities of geometry-, feature-, structure-, 

and knowledge-oriented models. All types of product information can be stored in the integrated 

product model. Generic product knowledge comprises the product history, development 

principles, model of customers, technological requirements, and failure models. The 

representation of generic product knowledge takes into consideration the different stages of the 

product life cycle. In this way, integrated product models provide integrated support for product 

development over the whole product life cycle. 

 

2.4.2 Model Standardization Using STEP 

 One of the most significant approaches toward the implementation of integrated product 

models is the development of the ISO Standard 10303 “Standard for the Exchange of Product 

Model Data” (STEP). STEP is an international standard that provides an unambiguous 

representation and exchange mechanism for computer-interpretable product information 

throughout the life cycle of a product. In addition, it provides a consistent data exchange format 

and application interfaces between different application systems (e.g., CAD/ CAM software). 

The present implementation methods for information transfer include file exchange, an 

application programming interface, and database sharing [57]. 
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2.4.3 Product Modeling to Support the Design Process 

 Product models, which are required to store and communicate the ideas of the designer, 

are an essential tool for supporting the drive toward concurrent engineering and improvement of 

the product development process [58]. Product modeling has been regarded as a key technique to 

develop conceptual and detailed design support systems. Therefore, product modeling has 

received attention from many researchers.  

 Bradley et al. [58] proposed a relation-based product model for computer-supported early 

design assessments. It is an aggregate product model in which the concept of relations between 

features is used to allow the extension of the model from the conceptual to detailed design 

stages. The approach the major difference between this model and most feature-based models to 

is the definition of feature geometry. The feature’s primitive classes are not defined with a fixed 

and limited set of geometry information and must be specified in order to store the feature within 

the model. Instead, the system seeks to allow the user as much flexibility as possible in the 

definition of geometry. 

 Arai et al. [59] dealt with the development of a product modeling system in the conceptual 

design phase. They divided the conceptual design phase into two steps: the design specifications 

processing step and the initial geometric modeling step. Product modeling is executed through 

these two steps. In the design specifications processing step, the requirements are developed into 

the design specification by utilizing a database in which the designers’ experiences are stored. In 

the next step, non-manifold geometric modeling is developed and combined with a solid 

modeling system and technological information/attribute modeling system. At the same time, the 

designers’ intention, which is the most important information generated in the conceptual design 
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phase, is documented with the developed design process description language (DPDL) and 

connected with the geometric model in the developed product modeling system. 

 Tay et al. [60] described a function-based product model for conceptual design support. 

Their model represents and organizes product information in both the functional and physical 

domains in a multilevel and object-oriented manner. They used function-form relations to map 

the two domains. All basic product information (e.g., function requirements and mechanical 

drawings) are stored and managed by a relational database system that provides the facilities for 

tasks such as data consistency and integrity control. Different object instances that represent 

different views of the actual products are then constructed. These objects contain pointers that 

refer to the corresponding data in the relational database instead of the actual data, thus avoiding 

data redundancy and improving data integrity. Multiple layers of objects can be defined so that 

an object can be expressed in terms of other objects and can be shared by other objects. 

 Al-Hakim et al. [41] employed graph theory to represent a product and define the 

relationships between its parts. They used the graph theory concepts of the tree and forest to 

represent a functional design artifact and idle conditions, respectively. In this approach, the 

nodes of the graph are the connections that allow the flow of energy, and the edges are the 

components. By examining the flow of energy during the idle and operating conditions of the 

product, we can determine the redundant components of a product at its early design stage. Also, 

the approach improves visualization of the energy flow between the components and enables the 

designer to identify and examine various components’ configurations. 

 Baxter et al. [55] proposed a functional data model that allows the functions of a product to 

be represented in a form that can be used by a number of engineering applications. This 

functional model is built based on the structure of the product data model defined using 
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EXPRESS-G. In this model, the product representation is combined with function representation. 

A product is represented as a set of parts. A part can be a component or an assembly. An 

assembly is a set of two or more parts, and a component is an object that cannot be subdivided 

further. Components are defined in terms of combinations of features. Also, a three-stage life 

cycle is represented: specification, definition, and actuals. Specification represents what is 

required, definition represents the design that shows how the specification is to be met, and; 

actuals represents the details of how the definition was actually realized. At the same time, 

functions have five attributes: named, inputs, outputs, has-need-of, and performed-by. Through 

functional decomposition, this strategy may be used to validate whether a product model fully 

satisfies its functional requirements. 

 Brunetti et al. [42] introduced an approach to a feature-based integrated product model that 

incorporates a feature-based representation scheme for capturing product semantics handled in 

the conceptual design phase. They claimed their model would improve concurrent engineering 

and top-down design by supporting early feature-based prototyping of the different views of the 

overall product model. Their model structures data into four levels: an assembly model, a part 

model, a feature model, and a generic model. Starting with the assemblies, every representation 

level is mapped on a model of the subsequent level (i.e., elements of a higher level are modeled 

by elements of the lower levels). A feature model is built on top of the generic representation, 

which stores application-independent product properties within a generic model. The data in this 

generic model specifies the form and parameters of the parts, as well as the geometric and 

topological constraints defined by them. 
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2.5 PRODUCT DESIGN AND SPATIAL RELATIONSHIPS 

 Spatial relationships were proposed by Ambler and Popplestone [61] to describe the 

relative positions of product components in their final state by specifying the feature 

relationships among them. The spatial relationships are: against, coplanar, fits, parax, lin, rot, and 

fix. These spatial relationships were firstly used for the configuration of a product. Liu and Nnaji 

[51] introduced a revised form of the spatial relationships that not only can be generally applied to 

assembly, but is also capable of accepting the design specifications and the designer’s intent. 

They introduced six types of spatial relationships (see Figure 2.8): 

 Against: The mating faces touch at some point. It is the most basic relationship and 

applies to any parts assembly. 

 Parallel-offset: The parallel relation holds between planar faces and cylindrical and 

spherical features. In two parallel planar faces, the two outward normals are pointing in 

the same direction. Two features with an offset distance have no physical contact. 

 Parax-offset: This relationship is similar to that of parallel-offset, but the outward 

normals of the parallel planar faces are in the opposite direction. 

 Aligned: This relationship exists if the center lines of the two features are collinear. 

 Incline-offset: The inclination relation holds for an angle between two planar faces. The 

offset describes the distance from a planar face of a part to the intersection line of the two 

faces, which makes the inclined angle. 

 Include-angle:  This relationship is similar to that of incline-offset. An include angle 

between two planar faces is in the positive normal direction. The rotation is clockwise to 

a normal of a picking faces. The rotational axis has to be parallel to the normals above 

two planar faces.  
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 A spatial relationship can be interpreted as a constraint imposed on the degrees of 

freedom between relative mating and interfacing features. Any allowable motions for parts have 

to follow a path along the directions specified by the degrees of freedom to maintain their spatial 

relationship.  

 

 

 

Figure 2.8 Types of spatial relationships: (a) against, (b) parallel-offset, (c) include-angle, 
(d) parax-offset, (e) aligned, (f) incline-offset (adapted from Muogboh [29]) 
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3.0 OVERVIEW OF FUNCTION-TO-CONCEPTUAL FORM TRANSLATION 
MODEL 

 

 From the literature review chapter, we can see that many researchers have identified the 

importance and relevance of function modeling and function-to-form mapping to engineering 

design. At the same time, however, a well defined and widely accepted function-to-form 

translation method does not yet exist. In this research, a model for translating function 

specifications into conceptual forms is developed. The concepts of functionality operation, 

operand, relationship, function server, and conceptual product model are utilized to aid 

functionality-based design and to realize a product’s conceptual form. The approach of this 

research allows for both the functional and the conceptual physical description of a mechanical 

device. 

 The function specifications-to-conceptual form translation tool (hereafter, simply 

“translation tool”) developed in this research aims at translating an abstract representation of a 

product into a more concrete representation. During the conceptual design phase, the designer 

adds information to a design that has very low information content. At this very abstract stage, 

the design team has only a primary objective function and a handful of constraints and criteria. 

Information must be added to the design incrementally, making it more concrete with each step. 

One typical approach is to decompose the objective function into sub-functions. Then, the design 

must cross the function-form boundary and enter the embodiment stage.  
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 In order to achieve the above objectives, the following tasks were identified as essential: 

• Functionality modeling to capture and maintain the designer’s intent during the 

conceptual design phase and to help in searching for possible physical solutions. 

• Function server modeling to represent and capture the information about the physical 

solutions. This founds the basic structure of the function driven database. 

• Function-to-function server mapping to develop the set of relationships and mapping 

operations between the functional and the physical domains. 

• Conceptual product model to document the mapping results and to represent and organize 

product information in both the functional and the physical domains. 

• Data structure development to allow for the description of product functionality and 

product form in a transparent manner. 

• Computational tools to implement the above concepts. This includes a functionality 

object model, a function server object model, data representation in XML, and a web-

based user interface. 

 This chapter introduces the scope of and the assumptions related to this work. In addition, 

the components of the translation tool model are described. 

 

3.1 SCOPE OF WORK 

 

 The scope of this work is limited to mechanical devices governed by the well defined 

laws of physics. A mechanical device is a piece of equipment designed to serve a special purpose 

or perform a special function [72]. It generally consists of mechanical members connected by 

joints. These members transmit motions by moving upon each other as mechanisms or transmit 
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force without motion as structures. This limitation will increase the chance of producing a 

practical design. It is hoped that this work will be able to be extended to other classes of 

engineering systems. 

 Another limitation of this project is that the materials are restricted to only rigid bodies 

(solid material). A rigid body can be considered as a combination of a large number of particles, 

in which all the particles remain at a fixed distance from one another both before and after 

applying a load [73]. Deformable bodies and fluids are not considered in the functionality model. 

Moreover, energy is restricted to mechanical energies comprised of force and torque. The 

extension to all classes of material and energy can be done in future work. 

 

3.2 FUNCTIONALITY MODEL 

 

 The functionality modeling of a mechanical product can be regarded as a process of 

establishing the functionality operations of a desired but physically indefinite product. This is 

different from the functional modeling of an existing physical device, because the object being 

modeled has not yet been physically defined. The major issues are how to represent and 

manipulate functions, so that they can be mapped into a description of a realizable physical 

structure. The functional data model developed in this research was built on the functionality 

model proposed by Muogboh [29]. 

 

3.2.1 Functionality Operations 

 The functionality of an entity (or a product) is the general task it performs. The entity 

may be either a physical artifact, such as the drive shaft of a car, or an invisible object, such as 
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the electro-magnetic forces used to relocate a ferro-magnetic object. The existence of an 

identifiable task that needs to be achieved is the essence of the functionality. This task should be 

independent of any predefined solutions. 

 Design is function driven. In the usual design practice, a designer starts with an objective, 

which is a functional description of a product. This primary functional objective (overall 

function) is then decomposed into several sub-functions. Sub-solutions are then selected to 

perform the specified sub-functions. Finally, the overall solution (product) is constructed from a 

related set of sub-solutions. Figure 3.1 illustrates the function driven design cycle.  

 

 

Overall function Overall solution (Product) 
Evaluation 

Decomposition Composition 

Sub-solutions  Sub-functions 

Mapping  

Figure 3.1 Function driven design cycle 

 
 A functionality operation is defined as the realization of a given task, where the task is 

the desired functionality of the entity. A functionality operation defines relationships and 

constraints on functional elements (i.e., operands and attributes). For example, if the task of 

supporting a shaft is considered, as shown in Figure 3.2, the functionality is the support of the 
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shaft. The functionality operation is the representation of the act of providing support to the 

shaft. 

 

 

 

 

Operand A
Operand B1Operand B2

 

Figure 3.2 Example of mechanical functionality (support of a shaft) 

 
 
 The mechanical functionality is composed of two components: the operand and the 

relation. These two entities are defined as follows: 

• An operand is a distinct element involved in the realization of a given functionality. 

Operands are the building blocks that come together to accomplish any mechanical 

functionality. In the example of supporting a shaft, the operands are the load exerted by 

the shaft (operand A) and the two objects that support the shaft (operand B1 and B2). If 

the shaft transmits torque, the operands will be the shaft, the torque, and the component 

that the torque transmitted to. 

• A relation is the established relationship between operands in the performance of 

functionality operations. 

 Many researchers [2,20,27] have used the term “flow” to model functionality. The definition 

of functional flow assumes causality, which is a cause and effect relationship (i.e., between 

inputs and outputs). This assumption limits functionality modeling to the class of functions with 

identifiable inputs and outputs. In addition, the flow definition includes signals, which can be 
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derived from a combination of other basic functional elements. The basic functional elements are 

modeled in this work by excluding signals and the flow restriction on the nature of mechanical 

elements. Muogboh [29] borrowed the term operand from computer engineering, where it is used 

to represent the data component of a computer instruction code. 

 

3.2.2 Generic Functionality Model 

 A functional model is composed of an aggregate of functionality operations. The 

functionality operation is defined by a set of operands with their corresponding attributes and the 

relations between these operands. 

 Given a set of functionality operands (Oij), with their corresponding attributes (aijk), we 

define the generic functionality model, F, of a functionality operation as: 

 

 Fi = {(o,r,s) | o ∈  Oi, r ∈  Ri, s ∈Si } 

 Where, 

 i = functionality operation index. 

 Oi = a set of functionality operands corresponding to operation i.  

 Ri = a functionality relation, which defines a set of relationships between functionality 

 operands. 

Si = a set of functionality states, which defines the state each operand (or operand 

attributes) can assume. 
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 The functionality relation defines the relationship between the functionality operands. A 

relation can have one of three forms: spatial, physical aspect, or constraints. More details about 

functionality relations are presented in chapter 4. 

 The functionality relation, Ri, is defined mathematically as:  

 Ri = { rijk (oi j, oik) | oij | oij ∈Oi, and oik ∈Oi } 

 Where, 

 Oiq = { aiqs | aiqs∈  Aiq }  ;operand q in functionality operation i. 

 Aiq = attribute set for functionality operand Oiq. 

 rijk = relation, between operands j and k. 

 j, k, q = functionality operand indices. 

 i = functionality operation index.  

 

 The state of the functionality operand represents the various possible values its time-

varying attributes might assume. The state of functional operand q can be represented 

mathematically by a state set, Si, as: 

 Si = {siq | siq ∈  Si } 

 Where, 

 Siq = the state of operand q in functionality operation i. 

 Si = {aiqs , viqs | aiqs ∈  Aiq , viqs ∈  Va[iqs] } 

  Where, 

 Aiq  = attribute set of functionality object Oiq. 

 Va[iqs] = set of possible values (range) of attribute aiqs. 

 The components of the functionality model are discussed in more detail in chapter 4. 
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3.3 FUNCTION SERVER MODEL 

 

 Defining a functionality model facilitates the discovery of solution principles, because it 

simplifies the general search for them and also because solutions to sub-functions can be 

elaborated separately. Individual sub-functions must then be replaced with more concrete 

statements (i.e., concepts). A concept is an idea that can be represented in a rough sketch or with 

notes, in other words, an abstraction of what might be a product or a component in a product. 

The generation of concepts from functions is, of course, an essential aspect of design. This 

dissertation develops the concept of a function server to aid in the conceptual form realization 

process. The functionality model represents the description of a product in the functional realm, 

while the function server model represents the description of a product in the physical realm. 

 A function server is defined as the conceptual physical element that is used in a product 

to serve or to satisfy a sub-function or sub-functions. Therefore, function servers are sub-

solutions of the functionality requirements, which form, when arranged and combined, the 

conceptual form of the product (i.e., the overall solution). The primitive function servers are 

classified into three groups: 

• Functional features: The elements that comprise a component (functional form feature) 

and possess functionality, such as holes or bosses. 

• Functional standard parts: The parts manufactured in quantity for use in a number of 

products, such as bolts or springs. 

• Functional module parts: The standard sub-assemblies or products, such as motors or 

pumps. 
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 Each function server has its functional details, structured details, and the working 

conditional details, along with links to other function servers. The function server representation 

consists of information about: primary and secondary functions, abstract shape, material type and 

properties, manufacturing process and properties, interface with other function servers, and 

working conditions. According to this description, a function server is modeled as: 

 

  FS: {FD, SH, M, MI, IN, WC} 

 Where, 

 FD: The function description, which includes the primary and secondary functions that 

 the function server can serve. 

 SH: The shape description, which includes the abstract shape and the base shape. 

 M: The material model, which includes the material type and material properties. 

 MI: Manufacturing information, which includes manufacturing process, surface 

 properties, and alternative materials. 

 IN: Description of interface with other function servers. It includes interface type, degree

 of freedom, and spatial relationship. 

 WC: Working conditions, such as physical laws, energy type, loading nature, and failure 

 modes. 

 

 However, some of this information may not be known at the beginning of the design 

process. The model is however defined, and, as design progress, these attributes are defined. 

More details about function server representation and modeling are presented in chapter 5. The 

function server model is implemented in an object-oriented environment using Unified Modeling 
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Language (UML). The implementation details are presented in chapter 6. The information about 

function servers constructs a function driven database that is accessed to search for possible 

solutions. This database is comprised of a comprehensive information structure for maintaining 

detailed data information about function servers. A prototype function driven database is 

developed and implemented in this research project in order to demonstrate the use of the 

translation tool. More details about this aspect of the project are presented in chapter 6, which 

includes the implementation and the case study. 

 

3.4 FUNCTION-TO-FUNCTION SERVER MAPPING 

 

 The functional decomposition model and the interaction with potential function servers, 

which satisfy the functions, are illustrated in Figure 3.3. This model expresses how functions are 

broken into sub-functions and into sub-sub-functions until the functional decomposition is fully 

defined. A complete function breakdown would consist of all functions, first without forms (i.e., 

function servers) and then with the corresponding form. Many iterations on the function structure 

are made from the initial functional breakdown, before any function server is applied to the final 

structure with all the levels developed. The function/function server model represents the product 

structure at a conceptual stage. 
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Overall  
Function 

Functions 

 

Figure 3.3 Function/function server decomposition structure 

 

 The mapping process between functions and function servers is not straight forward. The 

same function could be performed by several different function servers and a given function 

server could be used to perform different functions. The relationship between function and 

function servers has the nature of many-to-many, as shown in Figure 3.4. Therefore, the selection 

process should be based on an evolution of each solution to some criteria. The criteria can 

consist of any of the following: usage of function server, type of application, boundary 
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conditions, initial constraints on the system, introduced constraints due to the relationships with 

adjacent objects, or the actual functional problem under investigation. All of these criteria come 

under a product context that captures the application environment of that product. The following 

presents a formal definition of the function-to-function server mapping process that is adapted, 

with modifications, from Wang and Nnaji [74]. 

 

 

 

Figure 3.4 Function-to-function server mapping process 

 

 Formally F is defined as the set of functions to be satisfied, where f is an element of F 

( ). Also, FS is defined as the set of function servers, where fs is an element of FSFf ∈  

( ). The mapping process from function-to-function servers, which is the process of 

function server retrieval, is defined as:  

FSfs∈
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 P: F  FS 

The mapping from function servers to functions, which is the process of function retrieval, is 

defined as: 

 P`: FS   F 

Also, C is defined as the set of contexts, which captures the application environment, where c is 

an element of C .  Then a restricted mapping that reduces the search space is: )( Cc ∈

 PC: F x C    FS 

Similarly, 

 P`C: FS    F x C  

 

 Function level is used also to reduce the search space. A function can be at an 

assembly/subassembly level, a part level, or a geometric level. Assembly level functions target 

functional module parts. Part level functions target functional standard parts. Geometric level 

functions target functional features. Formally, L is defined as the set of function levels, where l is 

an element of L . A more restricted mapping is then defined as:  )( Ll∈

 PCL: F x C x L   FS 

Similarly, 

 P`CL: FS    F x C x L 

 

 The function-function server relations are represented by the relation matrix R = [rij], 

where: 

jfunctionandiserverbetweenrelationaisthere
otherwise

if
rij

⎩
⎨
⎧

=
0
1
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In a full matrix notation, R is given by:  
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Where, 

Fi (i=1, 2,…,n) are the functions 

FSj (j=1,2,…,m) are the function servers. 

 

 

3.5 CONCEPTUAL PRODUCT MODEL 

 

 Primitive product information, which includes functional data and physical parts (i.e., 

function servers) information, are organized and represented by a data structure called 

Conceptual Product Model (CPM). CPM is developed in this work to document the product 

information in both the functional and the physical domains and to support the conceptual design 

phase. This model provides the tools for managing the huge amount of design information and 

for allowing the designer to access design information from different views. The representation 

of the conceptual product consists of information from both the functional data model and the 
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function server model, as well as the relationship between them. According to this description, 

CPM is defined as: 

 

 CPM = {F, FS, P} 

 Where,  

 F: functionality model. 

 FS: function server model. 

 P: mapping process between functions and function servers. 

 

 The CPM is implemented in an object-oriented environment using the Unified Modeling 

Language (UML). The implementation details are presented in chapter 6. 
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4.0 FUNCTIONAL DATA MODEL 

 

4.1 FUNCTIONALITY OPERANDS 

 

 An operand is a distinct element involved in the realization of a given functionality. 

Operands are the building blocks that come together to accomplish any mechanical functionality. 

They can be classified into two broad categories: material and energy operands. A material 

operand is any tangible physical entity that has some mass and volume. An energy operand, on 

the other hand, is the functionality component that affects some work outcome [29]. However, the 

realization of any functionality must contain, in addition to the operands, a description of the 

relation between the operands. The existence of an operand alone will not yield any meaningful 

functionality. Hence, operands are the active factors brought together by a relation for the 

actualization of a given task. Figure 4.1 illustrates the components of a functionality operation. 

 

Functionality Operation

 

Figure 4.1 Components of a functionality operation (operands and relations) 
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Operand 1 Relation
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 To illustrate the interaction between functionality operands, consider the functionality 

operation shown in Figure 4.2, friction on the lower surface of a block by a wedge. Operands A, 

B, and C interact to realize the given functionality operation. Operands A and B are solid 

material operands, while operand C is a force operand. 

Fs

W

Operand A

Operand B

Operand C

 

Figure 4.2 Friction functionality operations showing the interaction between functionality 

 

 The functionality operation—transform force to torque—is illustrated in Figure 4.3. In 

this operation, three operands interact: force, torque, and the medium (solid material).  

 

 

Figure 4.3 Force-to-torque transformation operation 
 

Solid Material 

Force 

Torque 
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4.1.1 Solid material operand  

 A material operand is any tangible physical entity that has some mass and volume. There 

are three classes of materials: solids, liquids, and gases. In this research, only solid material 

operands are considered. The principal components of solid material operands are: functional 

markers, physical properties, degree of freedom, mass property, material type, and operand role. 

In accordance with this, solid material operands are modeled as:  

 SM: {FM, PyC, DoF, MP, MT, OR} 

 Where, 

 FM: the set of functional position markers. 

 PyC: the set of physical characteristics of the operands. 

 DoF: the required degree of freedom of the operands. 

 MP: the set of mass properties on the operands. 

 MT: the material type. 

 OR: operand role. 

The following paragraphs explore these solid material attributes. 

 

Functional position marker 

 Functional position markers are the regions/points of contact between solid operands. 

They are geometric points, locations, or regions on solid operands. Each functional position 

marker is described by two types of characteristics:  

• Intra-functional marker characteristics: This describes the geometric shape and size, 

location, orientation, tolerance, and dimension. 
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• Inter-functional marker characteristics: This describes the dependences between the 

functional markers within a solid operand, such as position of functional point, 

orientation, feature adjacency, etc. 

 

Physical characteristics  

 Physical characteristics define the physical composition of the solid operand. This set of 

attributes includes material strength, elasticity, ductility, density, surface characteristics, thermal 

conductivity, thermal expansion, specific heat capacity, and electrical resistance. Surface 

characteristics are surface friction, surface roughness, and wear rate. The strength attribute 

measures the stress (load per unit area) the operand is able to withstand under operation 

conditions. The types of stress include tensile, compressive, torsion and bending stress.  

 

Degree of freedom  

 The degree of freedom of a solid operand defines the motion the operand may undertake 

during the functionality operation. The relative position of one solid operand to another is 

defined by spatial relationships. Therefore, each spatial relationship can be interpreted as a 

constraint imposed on the degrees of freedom between relative mating or interacting features. 

The types of degrees of freedom are classified as follows [51, 75]: 

• Lin-n: linear translation along n axis. 

• rot-n: rotation about n axis. 

• cir-n: translation along a circle with n axis. 

• Plan-n, syl-n, sph: translating along a planar, cylindrical, and spherical, respectively.  

• rol-lin-n: rolling along a corner. 
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 The degrees of freedom of a solid material operand are expressed as: {degrees of freedom 

of moving along the functional feature of relative coupling operand: degrees of freedom of 

moving the operand with respect to itself}, where the relative coupling operand is fixed. More 

details about degree of freedom can be found in Liu [51]. 

 

Material type  

  Engineering materials can be broadly classified into five groups: metals, plastics 

(polymers), ceramics, composites, and wood. The material performance requirements of a solid 

operand are essential for choosing a potential material type. Material performance requirements 

include: functional requirements, processability requirements, cost, and reliability. Figure 4.4 

illustrates these requirements. 

 Functional requirements are the characteristics of the product required to do its expected 

work. The processability requirement is the material’s ability to be worked and shaped by 

different manufacturing processes. The reliability requirement is the probability that the new 

product will work without failure during its expected life. 

 

Mass properties  

 Mass properties of a solid material include its volume, mass, area, and moment of inertia.  

 

Role  

 A solid operand can be a function performer, which introduces the effect of the function, 

or a function receiver, which receives the effect of the function. In our friction example above, 

the wedge is the function performer and the block (operand A) is the function receiver. 
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Figure 4.4 Material performance requirements 
 
 

4.1.2 Mechanical energy operand 

 Energy is the functionality operand that affects some work outcome. Energy can be in 

different forms: mechanical, thermal, electrical, magnetic, acoustic, radioactive, chemical, 

biological, optical, hydraulic, or pneumatic. In this dissertation, only the mechanical energy form 

is considered. Mechanical energy is always associated with the displacement of a material 

operand or with strain energy associated with loading. Two forms of energy operands, force and 

torque operands, represent the mechanical energy in the operation of mechanical systems. The 
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force operand is the primary mechanical energy source in a mechanical system. The torque 

operand, on the other hand, is secondary, as it is derived from the force operand.  

 In mechanical systems, a variety of forces are always acting on material operands. 

Interaction forces are the individual forces acting on an object, when other objects are involved 

in this interaction. In this research, the net force on an object (i.e., the sum of all interacting 

forces) is computed for modeling purposes. The modeling of a force operand requires 

information about the force source, nature, kind, magnitude, and point of application. The force 

operand is defined as [29]:  

 

FORCE :{ < source | kind > < mag, angle, point > < nature >} 

 

Kind of force 

 Kind of a force defines the contact between the object exerting the force and the object 

receiving it. Therefore, force is classified into two kinds: contact and action-at-a-distance (or 

non-contact) force. Contact force applies when there is direct contact between the objects—for 

example, the force of a man’s hand on a box when he pushes it. Non-contact (or action-at-a-

distance) force applies when the object exerts a force without appearing to contact the other 

object. This includes the use of gravitational, electrical, and magnetic force. 

 

Magnitude, angle, and point of application  

 Magnitude, angle, and point of application define the quantitative composition of the 

force operand. They introduce the effect of the force of other operands involved in a given 

functionality. Magnitude represents the quantitative resultant of all interacting forces. Angle 
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represents the direction of the force. Point of application represents the exact spatial relationship 

between the force operand and the solid material operand. 

 

Nature   

 Nature represents the force form with respect to time. According to nature, forces are 

classified as:   

• Static force: Force is gradually applied and equilibrium is reached in relatively short time. 

• Sustained force: Force is constant over a long time. 

• Impact force: Force is applied and removed rapidly.  

• Cyclical force: Force changes in magnitude or direction with time.  

 

 Torque energy is the energy that results from the rotation or torsion of a solid material 

operand. Torque, which is a force analogy for rotational motion, is the effectiveness of a force in 

bringing about changes in rotational motion. Torque depends on the applied force and how far it 

is applied from the rotation axis. The representation of the torque operand is similar to that of the 

force operand. The torque operand is modeled as [29]: 

 

 TORQUE: {<source | kind> < mag, angle, axis > < nature >} 

 

 Source attributes define the source of the force that produces this torque. Kind attribute 

specifies whether the source force is contact or non-contact. The angle attribute is the rotation 

from the Cartesian axis, and the axis is the axis of rotation.  
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4.2 FUNCTIONALITY RELATIONS AND STATES 

 

 The functionality relation defines the relationship between functionality operands in the 

performance of the functionality operation. Defining functionality operands alone will not realize 

the functionality operation. Both operands and relations are required to accomplish and 

completely realize a functionality operation. After each operand has been defined with its 

associated attributes, relations are built between those attributes. As a result, the functionality 

relation defines how the attributes of functionality operands are related. 

 For example, consider the following functionality operation: hold a block (solid material) 

between two jaws (solid materials) of a machine’s vise. The frictional coefficient, stress, and 

surface wear rate are some of the relations that relate the attributes of the three solid operands in 

this example. The solid operands are the block and the two jaws (operands A and B, if we 

consider the jaws as one piece), as shown in figure 4.5. The force operand is the applied holding 

force (operand C) and the friction force (operand D). The functional regions of interest are the 

contact surfaces. The other attributes that are relevant in this interaction are the surface 

characteristics (which determine the coefficient of friction, µ), the magnitude and nature of the 

applied force C, and the physical characteristics of the block A (such as strength, elasticity, and 

ductility). The friction force D is given by:  

  FD= µ.FC

Where µ is the coefficient of surface friction and FC the magnitude of applied force C, which 

represents the normal force of the contact surface. The relative position of the surfaces in contact 

is controlled by the spatial relationship. The two surfaces of the block must maintain a 
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relationship with the two surfaces of the vise. Hence, both solid operands A and B are fixed with 

no degree of freedom. 

 

 

Operand A 

 

Figure 4.5 Example of hold functionality operation 

 
 
 Relations in a functionality operation are defined by the following components: the 

coupling operands that have a relationship and their attributes, functional relations, constraints, 

and the degree of freedom. Therefore, relations can be modeled as:  

 

 Relation: {<coupling operands, attributes> <functional relation> <constrains> <DoF>} 

  

 In this model, functional relations capture the relation between operands (or attributes of 

operands) according to physical laws or spatial relationships. These relations must be maintained 

between attributes of the interacting operands to satisfy the given functionality. Newton’s law, 

wear rate, stress, and strain, are examples of physical laws that govern the relation between 

Operand B 
Operand C .

Operand D 

mg 
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operands.  A spatial relationship represents the relative location of objects in space. Six types of 

spatial relationships are introduced by Liu [51]: against, parallel-offset, include-angle, parax-

offset, aligned, and incline-offset. 

 Constraints are the limits imposed on the operand attributes or on the relations between 

operands. For example, the maximum stress applied on a solid operand could be required to be 

less than 3000 N/m2. The desired degree of freedom to be maintained by the involved operand 

can be one of the following types: lin-n, rot-n, cir-n, plan-n, cyl-n, sph, and rol-lin-n. 

 During any functionality operation, functionality operands can move from one state to 

another. The transition can be determined by computing the change in the operand’s attributes. 

Therefore, a state can be defined as an instant manifestation of the functionality operands’ 

condition during the satisfaction of a functionality task. The transition may be either continuous 

or discrete. In this work, discrete approximation is assumed to reduce the complexity of some 

continuous systems. As a result, only the upper and lower values for each operands’ attributes 

are considered.  

For an example of the functionality states in a functionality operation, take the unfasten 

operation shown in Figure 4.6. Here, the torque applied by a wrench on a bolt changes from 

Max-Torsion condition at the beginning of the operation to Min-Torsion or No-Torsion condition 

at the end of the operation. Hence, the torque magnitude is defined by two states: Max-value 

state and Min-value state. In addition, the bolt position is transmitted from initial-position state to 

final-position state.  
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Torque 

 

Figure 4.6 Example of unfasten a bolt 
 
 

4.3 MECHANICAL FUNCTION CLASSIFICATION BASED ON OPERANDS 
INTERACTION  

 

 The classification of mechanical functions has been attempted by some researchers [2, 5, 22, 

23]. In their work, the categorization of mechanical functions was constructed in an inductive 

fashion. These researchers tried to comprehensively describe all functions used in designed space 

by grouping them into classes and sub-classes. Each class or sub-class contained functions with 

some similarities in their effects. However, this inductive method makes it difficult to argue that 

the list is complete. Moreover, it is impossible to count a priori all possible functions in design 

space. As a result, this dissertation introduces a new classification scheme for mechanical 

functions. This classification scheme is based on the interaction of the functionality operands 

(i.e. material and energy). As stated before, the functionality operands in any functionality 

operation interact with each other to achieve the desired task.  This interaction of functionality 

operands leads to a small yet complete taxonomy of basic mechanical functions. Table 4.1 shows 

the basic function classes and the corresponding functions of each class based on the interaction 
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between solid material, force, and torque. This classification scheme can be extended to include 

all possible interactions between other types of material and energy operands. The corresponding 

functions list can be extended too. 

 

Table 4.1 Classification of basic mechanical functions 

Function class Examples 

Class I : [Solid materials interaction] Position, enclose, contain, block, space, align, 
seal, strengthen, mate. 

Class II: [Solid material & Force interaction] 
Support, transmit force, transmit material, 
store, control, friction, eject, hold, join, allow 
passage, guide, mount. 

Class III: [Solid material & Torque interaction] Support, transmit torque, transmit material, 
store, control, hold. 

Class IV: [Solid material, Force & Torque interaction] Transform, friction. 

 

 

 Class I includes the functions that arise when solid materials operands interact. The solid 

materials in this interaction are assumed to have negligible weight. For instance, the function of 

container, cover, and housing is to contain and enclosed other solid materials. The function of 

key, pin, slot, and hole is to locate and position other solid materials. 

 Class II includes the functions that arise when solid materials and forces interact. Most 

mechanical functions come under this class. Forces can have many types of effects on solid 

materials, such as transmit, hold, join, friction, or guide. On the other hand, solid materials can 

support, transmit, or store forces. For example, if a claw hummer is used to pull nail out of a 

piece of wood, the human force is first transmitted though the hammer (solid material) to the 

head of the nail. This force will then cause the nail to move outward. Bearing, roller, wheel, wall, 

rod, and pin are example of solid materials that support force. Beam, rod, and cable are examples 
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of solid materials that transmit force. In addition, forces can be stored in a spring, which, if 

released, can be transferred to other solid materials.  

 Class III includes the functions that arise when solid materials and torques interact. 

Similar to class II, torque can transmit, control, or hold solid materials. On the other hand, solid 

materials can support, transmit, or store torque. For example, the torsion of a wrench causes a 

bolt to move outward and the pipe to rotate. Pump spindle transmits torque, while a fly wheel 

stores torque. Single journal bearing, single thrust bearing, single smooth pin, and single hinge 

all support torque. 

 Class V includes the functions that arise when there is an interaction between solid 

materials, force, and torque. Wrenches, gears, and shafts are examples of solid materials in 

which force is transformed into torque. In addition, the rotation of a cylinder on a flat solid 

material can cause a friction force on both surfaces. 

 The advantage of this classification scheme is that it offers the designer a convenient 

guide for constructing the function composition and for determining the stopping point during 

decomposition. Also, the result of the function decomposition will effectively reflect the 

functionality operations that compose the overall function of the mechanical product. 

Furthermore, basic functions may have a list of associated function servers that can help the 

designer create the mapping between them.  
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5.0 FUNCTION SERVER REPRESENTATION AND MDELING 

 

5.1 FUNCTION SERVER CLASSIFICATION  

 

 Function servers are the conceptual physical elements that possess functionality. 

Functional specifications can be satisfied by individual or by combined function servers. 

Function servers are then the sub-solutions of the considered sub-functions, which, when 

arranged and combined, form the conceptual form of the product (i.e., the overall solution). 

Function servers are classified into two groups: primitive function servers and composite 

function servers. Figure 5.1 illustrates this classification. 

 

Function Server 

Primitive Function Server Composite Function Server 

Functional Features Compound features 

Functional Standard Parts Custom Parts 

Functional Standard 
Modules 

Custom Modules 

 

Figure 5.1 Function server types 
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 Primitive function servers are the basic physical elements located at the lowest level of 

abstraction in the hierarchical composition of the product’s conceptual form. Each primitive 

function server can perform one or more functions that contribute directly or indirectly to the 

achievement of the overall product function. The composite function servers are those physical 

elements that are constructed by the combination of two or more primitive function servers and 

that possess functionality. Their functionality derives from the contribution of the primitives.  

 The primitive function servers are classified into three groups as shown in Table 5.1. 

These groups are as follows: 

• Functional features: The most primitive design structure that can comprise a component 

(i.e., functional form features). They can possess a variety of functionalities. They are 

classified to five sub-classes: walls, additives, subtractive, beside-walls, and solid 

elements. A wall is an area or surface of a pre-existing shape and can be of various kinds, 

such as flat or curve. An additive feature is a feature that extends outward from the shape; 

examples are bosses, rips, tabs, and flanges. A subtractive feature is a feature that extends 

inward from the shape or that goes through the shape; examples are holes, slots, grooves, 

pockets, and steps. A beside-wall feature is a feature that connects two elements of a pre-

existing shape; examples are chamfers, fillets, rips, undercuts, and bridges. A solid 

element is a solid feature; examples are blocks, cylinders, spheres, and disks.  

• Functional standard parts: The parts manufactured in quantity for use in a number of 

products. These possess some specific functionality. Examples are screws, bolts, nuts, 

springs, rackets, beams, and shafts. 

89 



 

• Functional modules parts: The assemblies or sub-assemblies that are manufactured in 

quantity for use in a number of products and possess some specific functionality. 

Examples include motors, pumps, and clutches. 

 

Table 5.1 Classification of primitive function servers 

Primitive Function Servers 
Class Sub-class Examples 

Walls Flat , curve, surface 
Additives Boss, web, gusset, rib, protrusion, tab, flange. 

Subtractives Hole, slot, pocket, groove, indent, depression, step, 
corner. 

Beside walls Chamfer, fillet, groove, undercut, rib, web, bridge. 

Functional Features 

Solid elements Block, cylinder, rod, tube, sphere, disk, ring. 

Functional Standard Parts  Screws, bolts, nuts, springs, brackets, beams, shafts. 

Functional Module Parts  Motors, clutches, switches, pumps, bearings. 

 

 

 Composite function servers are also classified into three groups:  

• Compound features: A union of one or more features to create a more complex feature 

definition. For example, a compound feature can be defined by the combination of a 

counter bore hole and a counter sink hole as illustrated in Figure 5.2. 

• Custom parts: Parts that are designed and manufactured especially for use in a particular 

product. They are built from the combination of one or more functional features. 

• Custom modules: Assemblies or sub-assemblies that are designed and manufactured 

especially for use in a particular product or to serve some new functionality description. 
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Counter sink

Counter bore

 

Figure 5.2 Example of compound feature 
 

 

5.2 FUNCTION SERVER REPRESENTATION 

 

 The function server representation model consists of six basic components: functional 

description, shape description, material model, manufacturing information model, interface 

representation, and working conditions model. The function server model possesses a 

comprehensive information structure for maintaining detailed data information about function 

server attributes for use in the conceptual design phase and in the detailed design phase. Each 

function server maintains information as to type, functionality, abstract shape, application 

domain, and manufacturing process domain. In addition to this information, a description or 

analysis of the designer’s reasoning and intent through the satisfied functionality operation can 

be added and preserved. This information can include the considered functionality operation, 

interfaces with other function servers, material type, manufacturing process by which it should 

be made, working environment, and constraints imposed on it. As stated earlier in chapter 3, the 

Function Server (FS) is modeled as:  

 

91 



 

FS: {FD, SH, M, MI, IN, WC}  

Where, 

FD: functionality description. 

SH: shape description. 

M: material model. 

MI: manufacturing information. 

IN: interface description. 

WC: working condition.  

 

Functionality description 

 A function description includes a listing of all primary and secondary functions that a 

function server can satisfy. For example, the function of a motor is to convert electrical energy to 

rotating mechanical energy. A gear’s function is to change speed of rotation and transmit torque. 

A wall can block a motion, support a load, or position an object.  

 Beside the primary and secondary functions, the functionality description includes a 

listing of all function server participants, which are the other function servers that are required 

for the function server to successfully complete its task. For example, a bolt’s participant list 

includes a hole, a nut, and a washer.  

 

Shape description 

 Shape description includes the base shape and the abstract shape of the function server. 

The base shape is the initial shape of the material before machining. It represents the general 

shape form.  This base shape can assume any of the following representations:  
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• Block-base-shape: Initial shape of the material is a rectangular cross section. 

• Cylindrical-base-shape: Initial shape of the material is circular cross section. 

• N-polygon-base-shape: Initial shape of the material is a polygon with n number of sides. 

 The abstract shape is the conceptual schematic representation of the actual shape of the 

function server. Abstract shapes help the designer to build the conceptual form of the product. 

Detailed shape representation that includes dimensions and tolerances is completed in the 

detailed design stage. Figure 5.3 shows the abstract shapes of some functional features. 

Appendix A contains the abstract shapes of all the functional features considered in this study. 

 

 

(c) (d) (a) (b) 
 

Figure 5.3 Example of abstract shapes of some functional features: (a) wall, (b) boss, (c) 
slot, (d) rod 

 

 

Material model 

 The material model includes information about material class or sub-class and the 

material properties for the function server. Materials are broadly classified into five groups: 

metals, plastics (polymers), ceramics, composites, and wood. Figure 5.4 shows this 

classification. Material properties are divided to mechanical properties, physical properties, and 
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chemical properties. Mechanical properties include: strength, ductility, elasticity, fatigue 

resistance, creep resistance, corrosion resistance, hardness, toughness, and fracture. Physical and 

chemical properties include: density, specific heat, melting point, thermal conductivity, thermal 

expansion, oxidation, and magnetic properties.  

 

 

Engineering Material 

 

Figure 5.4 Engineering materials 
 

 

Manufacturing Information 

 The manufacturing information module includes information about manufacturing 

processes, surface properties, material properties, and alternate materials. Manufacturing 

processes are the operations for manufacturing or changing the function server. Manufacturing 

processes are divided into three types: mechanical removing, thermal removing, and forming 

(see Figure 5.5). Surface properties are the characteristics of the function server surface 
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94 



 

including roughness, flatness, texture, and surface finish. Alternate materials are allowable 

secondary materials that may be used if the primary material is not available. 

 

 

 

Figure 5.5 Manufacturing processes 
 
 
 
 
Interface Description 

 The interface description includes information about the type of interface, special 

relationships, and the degree of freedom. The type of interface can be rigid or flexible. A rigid 

interface implies that the interacting function servers are fixed relative to each other with zero 

degrees of freedom. A rigid interface can be permanent, such as a riveted joint, or temporary, 

such as two pieces of sheet metal connected with a bolt and nut. A flexible interface allows one 

Forming Thermal Removing Mechanical Removing 
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or more degrees of freedom for at least one of the interacting function servers. For example, 

simple contact is a flexible interface.  

 Spatial relationships represent the relative location and orientation of objects in space. 

Six types of spatial relationships are introduced by Liu [51]: against, parallel-offset, include-angle, 

parax-offset, aligned, and incline-offset. These relationships can be interpreted as constraints 

imposed on the degree of freedom between interacting function servers. The degree of freedom 

can assume any of the following types: lin-n, rot-n, cir-n, plan-n, cyl-n, sph, or roll-lin-n. A 

function server’s degree(s) of freedom are expressed as: {Degrees of freedom of moving along 

the functional feature of relative coupling function server: degrees of freedom of moving the 

function server with respect to itself}, where the relative coupling of function server is fixed. 

 

Working conditions 

 Working conditions represents the service environment and the working requirements 

that enable the function server to achieve its intended function. The working conditions include 

physical phenomena, energy type, load nature, and failure modes. The physical phenomena 

represent the physical effect or the physical law that manifests the required function. These 

physical laws include Newton’s laws and conservation laws, such as conservation of mass or 

conservation of energy. Examples of physical effects include friction, stress-strain, creep, 

fatigue, thermal expansion, absorption, diffusion, and buoyancy effects. More information about 

physical laws and effects can be found in Hix [76]. 

 Energy type represents the energy domain by which the function sever is able to affect 

some work outcome. The energy type can be mechanical (rotation or translation), electrical, 

thermal, magnetic, acoustic, radioactive, chemical, biological, optical, hydraulic, or pneumatic. 
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In this research, only the mechanical energy type is considered. Load nature represents the nature 

of the force applied to the function server. The load nature can be a static, sustain, impact, or 

cyclic force.  

 Failure modes are the physical processes that produce a function server failure during its 

operation. This information is commonly collected from past experiences and previous designs. 

Mechanical failures may be defined as any change in the size, shape, or material properties of a 

structure, machine, or machine component that renders it incapable of performing its function 

[77]. The main failure mode set includes, in part, elastic deformation, yielding, fatigue, corrosion, 

and wear. The complete list can be found in Collins [77]. 
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6.0 IMPLEMENATION AND CASE STUDY 

 

 The implementation of the function specifications-to-conceptual form translation tool 

consists of a number of computer models, data structures, and computer tools. These items are 

developed to validate and demonstrate the concepts proposed in this work. The implementation 

must support all of the activities included in the translation tool. This includes functionality 

modeling, function server modeling, a function driven database structure, a searching 

mechanism, and conceptual product modeling. Furthermore, the implementation should 

ultimately guide and help the designer to manage and display the information needed to translate 

function specifications into conceptual form. This requires an advanced graphical user interface 

to facilitate information displaying and manipulating. 

 For testing and validation, the implemented computer tools are applied to the design of a 

real world product, a toggle clamp. This case study illustrates how the designer would interact 

with the system when engaged in function driven design. The following sections clarify the 

implementation details. 

 

6.1 DATA STRUCTURE OF THE TRANSLATION TOOL 

 The structure of the translation tool’s components is based in an object-oriented 

approach. Object-oriented programming is a rapidly maturing technology that possesses a 

number of advantages over traditional programming. An object-oriented system attempts to 
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model the real world [78]. This type of system uses a natural model, concurrent processes, and 

multiple controls. In addition, it presents many new techniques and algorithms for the 

development and implementation of current mechanical design methodology. The data in object-

oriented programming is quantized into discrete, distinguishable entities called objects. Each 

object has its own inherent identity. Objects with the same data structure (attributes) and 

behavior (operation) are grouped into a class. Each class describes a possibly infinite set of 

individual objects. Each object is said to be an instance of a class. Each instance of a class has its 

own values for each attribute, but they share attribute names and operations with the other 

instances of the class. 

 This dissertation employs the object-oriented Unified Modeling Language (UML) to 

construct object models. These models are used to describe the static structure of the translation 

tool objects and their relationships. This includes the functionality object model, the function 

server object model, and the conceptual product object model. Each object model is graphically 

represented with an object diagram. An object diagram is a graph whose nodes are object classes 

and whose arcs are relationships among classes. 

 

6.1.1 Functionality Object Model 

 The class diagram of the functionality object model developed in this work is shown in 

Figure 6.1. The components of this functionality object model are: function operation, operand, 

relation, state, and constraint. These components are described below. 
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-operand_set
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Figure 6.1 Data structure of functional model 
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6.1.1.1 Function Operation Class 

The function operation class defines the function to be realized. It acts as a header that 

provides a reference point for other objects. The attributes of this class are: name, id, parent-id, 

type, address, and level. 

 

ID and Name 

 The attribute id is a unique identifier for function operation. It is used to reference an 

operation by other objects. The name attribute is the name of the function to be satisfied. It could 

be user assigned based on some naming convention in an application domain. Previous 

researchers [19] proposed verb/noun pairs for the function name. This research follows this 

convention: the verb is the function name and the noun is the operand that is manipulated by the 

function. For instance, consider the function operation: guide the shaft motion. The function 

name is guide, and the operand is the shaft. This method of naming gives the designer more 

flexibility in using function names to build the required function operation. 

 

Parent-ID  

 The parent id attribute is the unique identifier for the function parent in the function 

breakdown. It is used to capture and track the parent-child relation in the function breakdown 

structure. 

 

Type  

 The type attribute represents the kind of task needed by this function operation. The types 

are divided into performance (design), assembly, manufacturing, safety, or aesthetic. 
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Level 

 Mechanical functions can be performed by all the components of the product, by some of 

its components, or by certain geometric features of components. Therefore, the function level 

attribute denotes the level of the function according to the targeted function server. The function 

can belong to one of the following levels: 

• Overall functions: These represent the overall functionality of a mechanical product. For 

example, the overall function of a car is to transport people from one place to another. 

Overall functions are defined at the most general level. 

• Elementary functions: These represent the decomposition of overall functions (sub-

functions) such that no direct mapping to physical elements can be done. As a result, 

further decomposition has to be undertaken. Some of the functions at this level can move 

to the embodiment level if a direct relationship to a physical element is found. 

• Embodiment functions: These represent the lower level of the function decomposition. 

They are mapped to some physical embodiment. This level is divided to three sub-levels: 

 Assembly level functions: They target the function servers that can be standard 

modules or custom sub-assemblies. 

 Part level functions: They target the function servers that can be standard parts, 

custom parts, or solid elements. 

 Geometric level functions: They target the function servers at the geometric level 

(i.e., functional features). 
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Address 

 The address attribute specifies the exact location of the function operation in the function 

decomposition structure. The address of a specific function is expressed as: 

 Address = (i,j)   

 Where, 

 i = level number 0, 1, 2… n 

 j = position in that level 

 n = total number of levels 

For example, the address of the function denoted by X (Sub-F4) in Figure 6.2 is: (2,4). 

 

 

 

Overall  
Level 0 Function 

Sub_F1 Sub_Fn 

 

 

Figure 6.2 Example of function decomposition to illustrate the function address attribute 
 

 

 

Level 1 Sub_F2 Sub_F3

Level 2 Sub_F1 Sub_F4 Sub_F5 Sub_F6 Sub_F7 
X 

Sub_F2 Sub_F3
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6.1.1.2 Operand Class 

The operand class represents all of the functionality operands that interact to achieve the 

function operation. In this dissertation, operands are grouped into two categories: solid material 

and energy (force and torque). Each operand has its own id, name, and role description. The role 

attributes indicate if the operand is a function performer or a function receiver. Solid material, 

force, and torque operands have their own attributes. These attributes are explained in detail in 

chapter 4. 

 

6.1.1.3 Relation Class 

 The relation class represents all of the relationships and the constraints imposed on the 

functionality operands in order to realize the functionality operation. It includes information 

about the coupling operands, functional relation, constraints, and degree of freedom. 

 

6.1.2 Function Server Object Model 

 The class diagram of the function server object model developed in this work is shown in 

Figure 6.3. The components of this model are: function server, material, manufacturing 

information, shape, working condition, function, and interface. 
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Figure 6.3 Data structure for function server 
 
 
 

 Function server class defines function server characteristics and functionality. It acts as a 

header that provides a reference point for other classes. The attributes of this class are: name, id, 

parent-id, address, knowledge domain, and type.  

 The id attribute is a unique identifier for the function server. The name attribute can be a 

predefined generic name or a user assigned name. The parent-id attribute denotes the unique 

identifier for the function server parent. This attribute helps to capture and track the parent-child 

relationship in the function server tree structure. The address attribute is used to specify the exact 

location of the function server in the tree structure (i.e., function server composition). The 
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address attribute is expressed as: Address = (i,j), where i is the tree level and j is the position in 

that level. 

 The type attribute defines the category or class that the function server belongs to. 

Function servers are divided into two classes: primitive function servers and composite function 

servers. Primitive function servers are divided into three sub-classes: functional features, 

functional standard parts, and functional module parts. Composite function servers are also 

divided into three sub-classes: compound features, custom parts, and custom sub-assemblies. The 

knowledge domain attribute gives the manufacturing domain that the function server information 

or knowledge base belongs to. This can be machining, casting, inject molding, sheet metal, or 

generic. 

 Material class describes the material used in the manufacturing of this function server. 

This includes the type of material and the material properties. Manufacturing information class 

describes the manufacturing process and the manufacturing properties for the operation to 

produce the function server. Manufacturing properties include: surface properties, material 

properties, and alternative materials. 

 Shape class defines the base shape and the abstract shape of the function server. The base 

shape can be block, cylinder, or n-polygon. Abstract shape is the schematic representation of the 

actual conceptual shape of the function server. A link to the abstract shape is preserved in the 

shape class. Working condition class defines the working environment for the function server. 

This includes physical phenomena, energy type, load nature, and failure mode. Function class 

defines the list of functions that this function server can perform. Interface class defines all of the 

interfaces with other function servers. The attributes of the interface class are: id, name, 

description, nature, type, spatial relation, and degree of freedom. The function server model 
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represents the basic structure of the function driven database developed in this research. A more 

in depth description of function server components and attributes is presented in chapter 5.  

 

6.1.3 Conceptual Product Object Model 

 The class diagram of the conceptual product model developed in this work is shown in 

Figure 6.4. This object diagram represents the information at the product level. The components 

of this model are the functional object model and the function server object model. The 

functional object model represents all the function operations that belong to the product under 

consideration with their sub-classes and attributes. The function server object model represents 

all the function servers that constitute the product under consideration with their sub-classes and 

attributes. 
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Figure 6.4 Data structure of the conceptual product model 
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6.2 TRANSLATION TOOL XML DATA FORMAT 

 

 This research  uses Extensible Markup Language (XML) to structure, store, and exchange 

the translation tool information. XML was designed to carry data. It uses a self-descriptive 

Document Type Definition (DTD) to describe data as a plain text format. It is a cross-platform 

software and hardware independent tool for transmitting information. This makes it applicable to 

represent the translation tool information and means that it can be exchanged between different 

systems. Tags enclosed in “<” or “>” are used to define the structure and data elements of an 

XML text or string. In any new implementation, these tags must be defined, because they are not 

predefined in XML. 

 

6.2.1 XML Syntax 

 XML documents use a self-describing and simple syntax. The first line is the XML 

declaration, which defines the XML version and the character encoding used in the document. 

For example, an XML description of a function server type is as follows: 

 

 <? xml version= "1.0” encoding= “ISO-8859-1”?> 
 <function-server> 
  <info> 
   <type>functional feature</type> 
   . 
   . 
  </info>  
 </function-server> 
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In this example, the document conforms to the 1.0 specification of XML and uses the ISO-8859-

1 (Latin-1/West European) character set. The first tag in an XML document is the root tag. This 

defines the root or the head element of the document. All elements can have sub-elements that 

should be correctly nested within their parent element. All XML documents must contain a 

single tag pair to define the root element and must have a closing tag </>.  

 

6.2.2 Functionality XML Data Format 

 The XML schema for the functional data model follows: 

 

<?xml version= "1.0" ?> 
<!-- Functional Data Definition !--> 
<functionality-operation> 
 <functionality-info></functionality-info> 
 <functionality-operand-set></functionality-operand-set> 
 <relations-set></relations-set> 
 <state></state> 
</functionality-operation> 
 

 

 The first line in the document (<? xml version = “1.0”?>) is the XML declaration. It 

defines the XML version used in the document. The root tag (<functionality-operation>) 

describes the root element of the document. The definition of an instance of the functional data 

model starts by this root tag. The end of the instance is defined by the last line, which shows the 

end of the root element: </functionality-operation>. The functionality operation data must be 

within the opening and closing tags. 
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The XML schema for functionality information, functionality operand set, relations set, and state 

are given in the following: 

 

The info tag 

 Functionality information XML schema: 

<functionality-info> 
 <function-id></function-id> 
 <function-name></function-name> 
 <function-type></function-type> 
 <function-level></function-level> 
 <parent-id></ parent-id > 
 <address> 
  <tree-level></tree-level> 
  <position></position> 
 </address> 
 </auxi-function-set> 
  <auxi-function> 

 <id></id> 
   <name></name> 
  </auxi-function> 
  ….. 
 <auxi-function-set> 
 <description></description> 
</Functionality-info> 
 

The operand set tag 

 Functionality operand set XML schema: 

<functionality-operand-set> 
 <operand> 
  <operand-id></operand-id> 
  <operand-name></operand-name> 
  <operand-type></operand-type> 
  <operand-role></operand-role> 
  <operand-description></operand-description> 
  <attrib-set> 
   <attrib-name></attrib-name> 
   <attrib-value></attrib-value> 
  </attrib-set> 
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 </operand> 
 ...... 
 <operand> 
 </operand>   
</functionality-operand-set> 
 

Relations set tag 

 Relations set XML schema: 

<relations-set> 
 <relation> 
  <id></id> 
  <name></name> 
  <description></description> 
  <coupling-operands> 
   <opand-1>  
    <id></id> 
    <name></name> 
    <coupling-attrib-set> 
     <attrib-name></attrib-name> 
    </coupling-attrib-set> 
   </opand-1> 
   <opand-2>  
    <id></id> 
    <name></name> 
    <coupling-attrib-set> 
     <attrib-name></attrib-name> 
    </coupling-attrib-set> 
   </opand-2> 
  </coupling-operands> 
  <f-rel-set> 

<f-relation> 
<id></id> 
<factor-1></factor-1> 
<rel></rel> 
<factor-2></factor-2> 

 </f-relation> 
 </f-rel-set> 
<f-constr-set> 

<f-constr> 
<id></id> 
<factor></factor> 
<rel></rel> 
<const></const> 
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 </f-constr> 
 </f-constr-set> 

   <dof-set> 
    <dof> 
     <id></id> 

<type></type> 
     <ref-frame></ref-frame> 
    </dof> 
   </dof-set> 
 </relation> 
</relations-set> 
 

State tag 

 State XML schema:  

<state> 
 <operand-attrib> 
  <operand-id></operand-id> 

 <value-set>  
  <lower> </lower> 
  <upper> </upper> 
 </value-set> 
 </operand-attrib> 

</state> 
 

 

6.2.3 Function Server XML Data Format 

 The XML schema for the function server model is as follows: 

<?xml version= "1.0" ?> 
<!-- Function Server Definition !--> 
<function-server> 
 <info></info> 
 <function></function> 
 <shape></shape> 
 <material></material> 
 <manufac-info></manufac-info> 
 <working-info></working-info> 
 <interface-set></interface-set> 
 <constraint-set></constraint-set> 
</function-server> 
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 The XML schema for the function server information, function, shape, material, 

manufacturing information, working conditions, interface, and constraints are given in the 

following. 

The info tag 

 Function server information XML schema: 

<info> 
 <id></id> 
 <name></name> 
 <type></type> 
 <domain></domain> 
 <parent-id></parent-id> 
 <participants></participants> 
 <address> 
  <tree-level></tree-level> 
  <position></position> 
 </address> 
 <description></description> 
</info> 
 

Function tag 

 Function server-function XML schema: 

<function> 
 <primary-function></primary-function> 
 <secondary-function1></secondary-function1> 
 <secondary-function2></secondary-function2> 
 <secondary-function3></secondary-function3> 
</function> 
 

Shape tag 

 Function server shape XML schema: 

<shape> 
 <base-shape></base-shape> 
 <abstract-shape-index></abstract-shape-idex>   
   
</shape> 
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Material tag 

 Function server material XML schema: 

<material> 
 <type></type> 
 <property-set> 
  <property-name></property-name> 
  <property-type></property-type> 
  <property-value></property-value> 
 </property-set> 
</material> 
 

 

Manufacturing info tag 

 Manufacturing information XML schema 

<manufac-info> 
 <manufac-process></manufac-process> 
 <property-set> 
  <property-name></property-name> 
  <property-type></property-type> 
  <property-value></property-value> 
 </property-set> 
 <alternate-material></alternate-material> 
</manufac-info> 
 

 

Working condition tag 

 Working condition XML schema: 

<working-info> 
 <physical-phenom></physical-phenom> 
 <energy-type></energy-type> 
 <load-nature></load-nature> 
 <failure-mode></failure-mode> 
</working-info> 
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Interface tag 

 Interface XML schema: 

<Interface-set> 
 <interface> 
  <id></id> 
  <name></name> 
  <description></description> 
  <interface-with> 
   <object-id></object-id> 
   <object-name></object-name> 
  </interface-with> 
  <interface-type></interface-type> 
  <spatial-rel></spatial-rel> 
  <dof> 
   <type></type> 
   <ref-frame></ref-frame> 
  </dof> 
 </interface> 
</Interface-set> 
 

 

Constraint tag 

 Constraint XML schema: 

<constraint-set> 
 <constraint> 
  <id></id> 
  <type></type> 
  <factor></factor> 
  <rel></rel> 
  <constant></constant> 
 </constraint> 
</constraint-set> 
 

 

 

 

115 



 

6.3 ARCHITECTURE OF THE FUNCTION TO CONCEPTUAL FORM 
TRANSLATION TOOL 

 

 The flow diagram for translating function specifications into conceptual form in a 

function driven design system is given in Figure 6.4. The inputs to the system include the design 

task and needs, given in the form of problem statements, preferences, and constraints. All the 

tasks and needs should be fully described at this stage, because anything neglected here cannot 

be captured later on in the functionality modeling stage. The design problem can be about either 

a new product (i.e., an original design) or about a task within a specific product (i.e., a variant 

design). 

 

 

 

 

Figure 6.5 The translation tool architecture 
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 Functional analysis includes identifying the functional requirements that the design 

product must have in order to perform successfully. The design tasks and needs are mapped onto 

functional requirements that include the function decomposition, the required functionality 

operands and their corresponding attributes, the relations and interactions between operands, and 

the functional constraints. 

 At the functionality modeling stage, the functional requirements are translated into object 

instances in the functionality model. This includes, for each function operation, the modeling 

operands and their attributes, the relations between operands, and the corresponding attributes 

and constraints. The functional data model captures and maintains the functional information of 

the design problem in the computer data structure (object model and XML schema). At the same 

time, it is used to search for potential solutions. The function information available in the 

functionality model is passed to the function server search engine. This engine searches the 

function driven database for matches and presents the function servers that may potentially 

satisfy the required function. The solution is then saved with all the related information, 

including the function information, in a new data structure, known as the function server object 

model. If the designer is not satisfied with the solution, or if there is no solution, the system will 

ask him or her to consider possible modifications to the functional requirements. The key point 

to note is that the solutions are accessed through their functionality rather than by their name. 

The advantage to this is that the designer does not need to know the solution before searching for 

a function server to satisfy the problem. 

 The function server object model captures information about the function servers that 

have already been chosen as potential solutions for the functional requirements. This information 

includes: shape, material manufacturing information, interface, working conditions, and 
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constraints. The function server model represents the realization of the conceptual form. This 

knowledge can be passed back to the function driven database and saved for reuse in the future. 

 The function driven database possesses a comprehensive information structure for 

maintaining function server data. Initially, only knowledge of primitive function servers, 

functional features, functional standard parts, and functional standard modules are available for 

the designer to use. However, when the designer starts to use the translation tool, the solutions he 

or she finds can be saved in the function driven database for reuse in later projects. In this 

dissertation, a prototype function driven database is built to demonstrate and validate the 

working of the translation tool. This database contains information on functional features only. 

However, the database could easily be extended to include other function server types. 

 Function data and function server information are then stored and organized by a data 

structure: the conceptual product object model. This model will provide the facilities for 

managing the huge amount of design information and for allowing the designer to access design 

information from different views, such as function decomposition, product tree, and constraints. 

The conceptual product model will be passed to the detailed design stage to complete the design 

process by providing a detailed description of function servers that can satisfy the predefined 

functions.  

 

6.4 WEB-BASED IMPLEMENTATION AND THE GRAPHIC USER INTERFACE 

 

 The function-to-conceptual form translation tool is implemented in a client-server 

architecture with a web-based user-friendly graphical interface. Other services are implemented 

as dynamic web pages. In the dynamic web pages, the published contents are created “on the fly” 
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after a specific request. This system requires two layers. The first is the database layer, which 

will manage the search for solutions, and the second is a scripting layer, which allows the 

database and the web server to communicate. MySQL is used for the first layer and PHP for the 

second. Apache software is employed as the web server. This popular open software solution is 

very flexible, safe, and provides a lot of excellent online documentation.  

 The database of the translation tool is realized using MySQL, which is a relational 

database management system that is particularly suited for web-based applications on high-

traffic sites that generate content on the fly. MySQL is widely regarded as faster than other 

databases. It is distributed in a relatively small package, not in hundreds of megabytes like some 

other database products. Moreover, MySQL understands Structured Query Language (SQL), the 

most common database language in use today. [79]

 PHP, Hypertext Preprocessor, is a popular open-source programming language used 

primarily for developing server-side applications and dynamic web content. There are several 

advantages in using PHP. First, PHP has cross-platform operability and is suitable for today’s 

heterogeneous network environments. As a result, PHP runs on almost any computer platform 

with only minor modifications to the code. Second, PHP is very fast and has a small memory 

footprint. Third, it is simple, easy-to-learn, and its intuitive interface allows programmers to 

embed PHP commands right into the HTML page. Finally, PHP offers many advanced features 

for the professional programmer [80].  

 

6.4.1 Screen Presentation and General Usage 

 A windows-type graphical user interface, designed using Microsoft Front Page, provides 

the designer with several menu and button options. Information in the database can be easily 
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accessed, viewed, modified, added, or deleted. An overview of the run-time screens and general 

usage is presented in the following. 

 When a designer connects to the web server, he or she is first presented with the 

Beginning Screen, shown in Figure 6.6. Clicking on the Enter button brings up the Login screen, 

shown in Figure 6.7. Administrative personnel can login separately from regular users. Logging 

in as a regular user takes the designer to the Main Screen, as shown in Figure 6.8. This screen 

presents three options to the designer. The first option is to start a new project or to check/modify 

the available projects. This option can be selected by clicking on “Products” in the left frame. 

The second option is to view/modify the function listing that is currently contained within the 

database. This option can be selected by clicking on “Functions List” in the left frame. Figure 6.9 

shows the screen after choosing this option. Appendix B shows the complete function listing and 

the corresponding synonyms.  The third option is to view/modify the function server listing that 

constitutes the function driven database. A view after choosing this option is presented in Figure 

6.10. Appendix C shows the function servers used, in this dissertation, as a knowledge base with 

their possible functions. This knowledge base was built based on data collected from surveys, 

literature, and handbooks. 
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Figure 6.6 Beginning Screen 
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Figure 6.7 Login Screen 
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Figure 6.8 Main Screen 
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Figure 6.9 Function list 
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Figure 6.10 Function driven database 
 

 

 If the designer chooses to start a new project (or product) or to check/modify the 

available projects, a new screen will be presented, as shown in Figure 6.11. At this web page, the 

designer can add a new product by specifying its name, serial number, application, and 

description. In addition, he or she can update the information of old products. After 

adding/updating the information about a product, the designer can then proceed to build the 

function structure for this product. By clicking on the product in the list, the screen, shown in 

Figure 6.12, will be presented to the designer. At this screen, the designer can choose between 
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adding/modifying product functions or adding/modifying product function servers. By clicking 

on Add/Modify functions, the designer is taken to the screen shown in Figure 6.13. On this page, 

the function decomposition information for the product can be added. 

 To build the functionality model for each function in the list, the designer can choose any 

function in the function decomposition list. Clicking on it brings up a new screen, as shown in 

Figure 6.14. The Add/Modify operands button opens the screen shown in Figure 6.15. In this 

screen, the designer can add operands and attributes (see Figure 6.16). The Add/Modify relations 

button opens a new screen as shown in Figure 6.17. Here the designer can add relations between 

operands. The Add/Modify constraints button opens the screen shown in Figure 6.18 in which 

the designer can add the functionality constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

126 



 

 

 

 

 

Figure 6.11 Add/Modify products 
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Figure 6.12 Choosing add/modify product functions or add/modify product function 
servers 
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Figure 6.13 Add/Modify product functions (function decomposition) 
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Figure 6.14 Add/Modify functionality model components (operands, relations, constraints) 
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Figure 6.15 Add function operands 
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Figure 6.16 Operands attributes 
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Figure 6.17 Add function relations 
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Figure 6.18 Add function constraints 
 
  

 Returning to the function decomposition screen (see Figure 6.12), the checkbox to the 

right of each function allows the designer to use this function to search the database. Multiple 

functions also can be used to search the database for a solution to satisfy these functions. For 

example, searching for solutions for the functions support and align gives the list of results seen 

in Figure 6.19. The designer can then choose any one of these solutions by clicking the select 

button. This will save the selected function server in the product function server list as shown in 

Figure 6.20. 
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 Building the function server model for any product function server in the list (see Figure 

6.20) can be done by clicking on that physical element. Information about product function 

server materials, manufacturing information, shape, working conditions, and interface can be 

added simply by clicking (see Figure 6.21). For example, if the material button is chosen, the 

information about material type can be added, as shown in Figure 6.22. 

 

 

 

 

 

Figure 6.19 Search results 
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Figure 6.20 Product function servers (solutions) 
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Figure 6.21 Components of product function server model (material, shape, manufacturing 
info, working condition, and interface) 
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Figure 6.22 Material type for product function server 
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6.5  CASE STUDY AND VALIDATION 

 

 The translation tool developed in this work was tested and validated using the case study 

of a toggle clamp. By evaluating how efficiently the models capture and translate the functional 

requirements of the product into conceptual forms, the models developed in this work can be 

validated. The procedure of translating function-to-conceptual form is presented first. The toggle 

clamp example is then used to demonstrate and validate the methodology.  

 

6.5.1 Procedure of Translating Function-to-Conceptual Form 

 The following steps illustrate the specific design actions that are involved when 

translating function-to-conceptual form. The process flow associated with these steps is given in 

Figure 6.23. 

1. Clarify the needs and tasks by defining the design problem. 

2. Analyze the functional requirements to identify:  

• Functional decomposition structure. 

• Individual functional operations. 

• Functionality operands and their corresponding attributes for each function 

operation. 

• Functionality relations and constraints for each function operation. 

3. Connect to the translation tool website. 

4. Define a new product with the corresponding attributes: name, serial number, application 

domain, and description. 

5. Define function level attributes: name, type, level, and address. 
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6. Define new operands: 

• Specify known attributes. 

• Specify attribute value set if known. 

7.  Define relations between operands: 

• Select coupling operand pair. 

• Define functional relations and constraints. 

• Define DoF. 

8. Search function driven database for solutions: 

• Specify functions for search. 

9. If more solutions are needed, search again: 

• Repeat STEP 8. 

10. Else, if the search result is not accepted: 

• Go to STEP 2. 

11. Else, save the solution (function server) in the product function server model.  

12. Define function server-level attributes: name, type, base shape, and level. 

13. Define attributes of function server components: 

• Define material type and attributes. 

• Define manufacturing process and attributes. 

• Define working conditions. 

• Define interface and attributes. 

14. Save function server information and functionality information in conceptual product 

model. 
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Figure 6.23 Translating function-to- conceptual form flow diagram 

141 



 

6.5.2 Case Study: Toggle Clamp 

 The case study used to evaluate the models developed in this work was a toggle clamp. A 

toggle clamp is a device used to hold or secure an object against a fixed surface to prevent it 

from moving. In this device, hand force is magnified and directed in order to plunge a spindle 

into an object so as to firmly hold it. The length and cross section of the spindle (plunger) 

depends on the holding capacity required. 

STEP I: 

 The first step in the design process is to identify the product’s needs and to develop the 

functional specifications and constraints. The objective function of the device is: clamp solid 

object against fixed surface. The other requirements and constraints might include:  

• Not heavy (total weight less than 5 Kg). 

• Can be used in different places (portable). 

• Can magnify hand force. 

• Holding capacity = 1600 Kg. 

STEP II: 

 The first step in functional analysis is to decompose the objective function into sub-

functions. This decomposition is based on the possible interactions between energy types and 

materials. In this example, the objective function (clamp solid object against fixed surface) is 

broken down into five sub-functions: supply force, magnify force, change force direction, plunge 

into the object, and support components and reaction force. The sub-functions list fully describes 

the tasks required to achieve the overall objective function. However, they are still very general 

and require another level of decomposition. The final form of function decomposition is shown 

in Figure 6.24. The sub-functions at the lower level are embodiment functions, which means that 
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they can be mapped to physical elements. At the same time, it is not necessary for each 

individual sub-function in the lower level to have its own physical embodiment. Several sub-

functions can be mapped onto one or more physical elements. 
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Figure 6.24 Function Decomposition for toggle clamp 
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 The next step in the functionality analysis is to identify the operands and relations. Given 

the nature of the task that needs to be performed, the function decomposition, and the context of 

the operation, the identifiable operands in this example are solid material and force energy. The 

solid operand consists of the actual physical components that will make up the product. The 

force is the set of external forces. To define the full set of operands and relations for this product, 

function operations must be investigated individually. A function operation can represent one or 

more sub-functions in the decomposition structure. To define a function operation, the designer 

must examine the function decomposition structure and try to figure out the interactions between 

material and energy. In our example, the sub-functions supply force and magnify force are 

considered first. In supply force function, a solid material (solid A) is required to receive hand 

force (input) and to transmit this force to another place. In magnify force function, the 

transmitted hand force is magnified by rotating the same solid material (solid A) around a pivot. 

Therefore, the combined function supply and magnify force can be considered as a function 

operation (function operation 1), in which a solid material operand (solid A) interacts with 

several force operands. The lower level sub-functions that constitute function operation 1 are: 

input hand force, transmit hand force, transmit force, transmit solid material, and connect to 

pivot. 

 

Material operands for function operation 1 (supply and magnify force) 

 The context of operation of solid A, which performs function operation 1, requires this 

solid to be a slender component similar to that shown in Figure 6.25. This topology is dictated by 

the fact that the hand force applied at point A is magnified and transmitted to another component 
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at point B. This is achieved by the rotation of solid A, as a result of the hand force, around point 

O (lever effect). The distance AB must be at least three times greater than the distance BO, in 

order to magnify the hand force. Therefore, as can be seen in Figure 6.25, there are three key 

points that are functionally needed as the points of interaction with the other components of the 

toggle clamp. These points, A, B, and O, are fixed distances apart and are required to maintain 

this spatial relation. Since solid A rotates during the operation, the locations of points A, B, and 

O change from the initial coordinates (Xi, Yi, Zi) to the final coordinates (Xf, Yf, Zf). 

 

 

Figure 6.25 Topology structure of solid operand (solid A) in function operation 1 
 

 

Energy operands for function operation 1 (supply and magnify force) 

 The second type of operand that is required for this operation is the force energy operand. 

The solid operand (solid A) is subjected to an external hand force at point A. In addition, there 

are reaction forces at points B and O (see Figure 6.26). The magnitude of forces, at points B and 
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O (F3, F4, F5, F6), change during the operation from Min-load to Max-load. The magnitude of 

hand force at (F1, F2) is assumed to be constant during operation. Moreover, the point of 

application of the forces (F1, F2, F3, F4) changes due to the rotation of solid A around point O. 

 

(a) 

 

 

(b) 

Figure 6.26 Force operands (F1, F2, F3, F4, F5, F6) interaction with solid A: (a) initial 
state. (b) final state 
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Stability and strength 

 Stability requirements ensure that the design yields a product that is stable during 

operation. This means that the forces acting on the product must be balanced. As a result, the 

strength of solid A must be sufficiently high to withstand the external forces. Also, the effect of 

all external forces must cancel out as a necessary condition for equilibrium. 

 

STEP III: 

Functionality modeling for operation 1 

 In the functionality model, operands and relations are instantiated as design objects with 

their corresponding attributes. The generic functional model of the function operation 1 is 

defined as:  

 Fi = {(o,r,s) | o ∈  Oi, r ∈  Ri and s ∈  Si} 

 Where, 

 i : functionality operating index. 

 Oi: a set of functionality operands. 

 Ri: a set of functionality relations. 

 Si: a set of functionality states. 

 

Operands and attributes 

 For a set of operand Oi in the functionality operation with an index i, each member of this 

operand set is given by: 

 Oiq = { aiqs | aiqs ∈  Aiq} 

 Where, 
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 i:  functionality operation index. 

 q:  functionality operand index. 

 Aiq: attribute set for functionality operand Oiq. 

 

 The functionality operands for function operation 1 are listed below in Table 6.1. A 

detailed description of these operands and their corresponding attributes is presented in Tables 

6.2-6.8. In these tables, if the operand attribute is not defined at this stage, the word “Unknown” 

is displayed.   

 

Table 6.1 Operand list for function operation 1 

j Operand name Operand type 
1 Solid A Solid material 
2 F1 Force 
3 F2 Force 
4 F3 Force 
5 F4 Force 
6 F5 Force 
7 F6 Force 

 

 

 The strength of a solid operand depends on material type and geometry (cross-sectional 

area), as well as on the type of loading. In this example, uniform cross-sectional area is assumed 

for solid A. Therefore, the stress is given by F/A, where F is the applied force and A is the cross-

sectional area. This stress (normal or shear) must not exceed the allowable stress limit for a given 

material. The allowable stress must be less than the yield stress (Sy) by a safety factor. In 

general, the allowable stress is bounded by the following constraints: 

• Allowable normal stress (N/m2): 0.45 Sy ≤ SN ≤ 0.6 Sy 
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• Allowable shear stress (N/m2): 0.4 Sy ≤ Ss 

 

Table 6.2 Functionality attributes of solid material operand; solid A 

Value Attribute Description Initial state Final state 
Point A (xA1,yA1, zA1) (xA2,yA2, zA2) 
Point B (xB1,yB1, zB1) (xB2,yB2, zB2) 
Point O (xO, yO, zO) Same as initial 
dist(A, O, d1) 200 mm Same as initial 
dist(B, O, d2) 50 mm Same as initial 

Functional Markers 

Angle of line(AO) 
(from negative x direction) Ө1 (30o )  Ө2 (2o ) 

Length dist(A, O, d1) 200 mm Same as initial 
Normal (tensile or 
compression) 0.6 Sy Same as initial 

Strength 
Shear 0.4 Sy Same as initial 

Material Type High strength metal STEEL Same as initial 
Mass Unknown Unknown 
Area Unknown Unknown Mass Properties 
Volume Unknown Unknown 

DoF Degree of Freedom rot-z Same as initial 
Role Perform the function Performer Same as initial 

 

 

Table 6.3 Functionality attributes of force energy operand; F1 

Value 
Attribute Description 

Initial state Final state 
Magnitude | F1| 116 N 116 N 
Direction Negative y direction  y-axis Same as initial 
Point of application Point A (xA1,yA1, zA1) (xA2,yA2, zA2) 
Source External hand force External force Same as initial 
Kind Contact force Contact Same as initial 
Nature  Steady Same as initial 
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Table 6.4 Functionality attributes of force energy operand; F2 

Value 
Attribute Description 

Initial state Final state 
Magnitude | F2| 67 N 67 N 
Direction Negative x direction  x-axis Same as initial 
Point of application Point A (xA1,yA1, zA1) (xA2,yA2, zA2) 
Source External hand force External force Same as initial 
Kind Contact force Contact Same as initial 
Nature  Steady Same as initial 

 

 

Table 6.5 Functionality attributes of force energy operand; F3 

Value 
Attribute Description 

Initial state Final state 
Magnitude | F3| 308.2 N 266.7 N 
Direction Positive y direction  y-axis Same as initial 
Point of application Point B (xB1,yB1, zB1) (xB2,yB2, zB2) 
Source External reaction force External force Same as initial 
Kind Contact force Contact Same as initial 
Nature  Steady Same as initial 

 

 

Table 6.6 Functionality attributes of force energy operand; F4 

Value 
Attribute Description 

Initial state Final state 
Magnitude | F4| 534 N 7,646 N 
Direction Positive x direction  x-axis Same as initial 
Point of application Point  (xB1,yB1, zB1) (xB2,yB2, zB2) 
Source External reaction force External force Same as initial 
Kind Contact force Contact Same as initial 
Nature  Steady Same as initial 
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Table 6.7 Functionality attributes of force energy operand; F5 

Value 
Attribute Description 

Initial state Final state 
Magnitude | F5| 192.6 N 151.3 N 
Direction Negative y direction  y-axis Same as initial 
Point of application Point O (xO, yO, zO) Same as initial 
Source External reaction force External force Same as initial 
Kind Contact force Contact Same as initial 
Nature  Steady Same as initial 

 

 

Table 6.8 Functionality attributes of force energy operand; F6 

Value 
Attribute Description 

Initial state Final state 
Magnitude | F6| 467 N 7,579 N 
Direction Negative x direction  x-axis Same as initial 
Point of application Point O (xO, yO, zO) Same as initial 
Source External reaction force External force Same as initial 
Kind Contact force Contact Same as initial 
Nature  Steady Same as initial 

 

 

Relations 

 For the operand set Oi, the functionality relation Ri is defined as: 

 Ri = { rijk (oij, oik) | oij ∈ Oi and oik ∈ Oi } 

 Where, 

 Oi = set of operands in functionality operation i. 

 rijk = relation between operands j and k. 

 j, k = functionality operand indices. 
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 The relations in this functionality operation are listed below in Table 6.9. A detailed 

description of these relations is presented in Tables 6.10-6.16. The most important constraint is 

to ensure the satisfaction of the stress requirements. The instantaneous internal forces (as a result 

of the stress) along the solid operand must be greater than the applied load. For a given material 

of known yield stress (Sy), the allowable normal stress σallow = 0.65 Sy, and the allowable shear 

stress τallow = 0.4 Sy. Consequently, the maximum allowable internal force (FSy) in the solid 

operand must be greater than the applied external loading (Fapplied), as shown in the following 

relations: 

FSy = A x σallow  ≥Fapplied      ,(in normal stress case) 

FSy = A x τallow  ≥Fapplied        ,(in shear stress case) 

 

 Another important constraint is to ensure the stability and equilibrium. The equilibrium 

of the forces shall be maintained at all points in the product structure. The equilibrium conditions 

for the forces Fk in the coordinate directions and the moments Mk acting about these coordinates 

give: 

0=∑
∀x

kF ; ; ;  0=∑
∀y

kF 0=∑
∀x

kM 0=∑
∀y

kM

Where, 

 k (=1,2,3) are the nodal points corresponding to A, B, and O functional markers. 
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Table 6.9 Relations in function operation 1 

Relation # Interaction operands Type of Operands  
1 Solid A – F1 SOLID-FORCE Table 6.10 
2 Solid A – F2 SOLID-FORCE Table 6.11 
3 Solid A – F3 SOLID-FORCE Table 6.12 
4 Solid A – F4 SOLID-FORCE Table 6.13 
5 Solid A – F5 SOLID-FORCE Table 6.14 
6 Solid A – F6 SOLID-FORCE Table 6.15 
7 F1, F2, F3, F4, F5, F6 FORCE-FORCE Table 6.16 

 

 

Table 6.10 Description of the relation between solid A and F1 in function operation 1 

Coupling 
operands Attributes Relations 

SOLID: 
solid A 

a111 = <length> 
a112 = <normal strength> 
a113 = <shear strength> 
a114 = FM: <point A> 
a115 = angle of solid A  
with negative x direction 
: Ө  

FORCE: 
F1 

a121 = |F1| 
a122 = dir(F1) 
a123 = <nature> 
a124 = <application 
point> 
 

Functional Relations: 
R1 = { |FSy| Normal = A x σallow }  
R2 = { |FSy| Shear = A x τallow },  
A: cross-sectional area, Sy : yield strength 
σallow = 0.65 Sy , τallow = 0.4 Sy 
R3 = { <application point> coincident point A } 
 
Constraints: 
C1 = { |FSy| Normal ≥ |F1| . sinӨ  } 
C2 = { |FSy| Shear ≥ |F1| . cosӨ  } 
 
DoF: 
D1 = {solid A: rot-z} 
D2 = {dir(F1): fix} 
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Table 6.11 Description of the relation between solid A and F2 in function operation 1 

Coupling 
operands Attributes Relations 

SOLID: 
solid A 

a111 = <length> 
a112 = <normal strength> 
a113 = <shear strength> 
a114 = FM: <point A> 
a115 = angle of solid A  
with negative x direction 
: Ө  

FORCE: 
F2 

a131 = |F2| 
a132 = dir(F2) 
a133 = <nature> 
a134 = <application 
point> 
 

Functional Relations: 
R1 = { |FSy| Normal = A x σallow }  
R2 = { |FSy| Shear = A x τallow },  
A: cross-sectional area, Sy : yield strength 
σallow = 0.65 Sy , τallow = 0.4 Sy 
R3 = { <application point> coincident point A } 
 
Constraints: 
C1 = { |FSy| Normal ≥ |F2| . cosӨ  } 
C2 = { |FSy| Shear ≥ |F2| . sinӨ  } 
 
DoF: 
D1 = {solid A: rot-z} 
D2 = {dir(F2): fix} 

 
 

 

 

Table 6.12 Description of the relation between solid A and F3 in function operation 1 

Coupling 
operands Attributes Relations 

SOLID: 
solid A 

a111 = <length> 
a112 = <normal strength> 
a113 = <shear strength> 
a114 = FM: <point B> 
a115 = angle of solid A  
with negative x direction 
: Ө  

FORCE: 
F3 

a141 = |F3| 
a142 = dir(F3) 
a143 = <nature> 
a144 = <application 
point> 
 

Functional Relations: 
R1 = { |FSy| Normal = A x σallow }  
R2 = { |FSy| Shear = A x τallow },  
A: cross-sectional area, Sy : yield strength 
σallow = 0.65 Sy , τallow = 0.4 Sy 
R3 = {<application point> coincident  point B} 
 
Constraints: 
C1 = { |FSy| Normal ≥ |F3| . sinӨ  } 
C2 = { |FSy| Shear ≥ |F3| . cosӨ  } 
 
DoF: 
D1 = {solid A: rot-z} 
D2 = {dir(F3): fix} 
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Table 6.13 Description of the relation between solid A and F4 in function operation 1 

Coupling 
operands Attributes Relations 

SOLID: 
solid A 

a111 = <length> 
a112 = <normal strength> 
a113 = <shear strength> 
a114 = FM: <point B> 
a115 = angle of solid A  
with negative x direction 
: Ө  

FORCE: 
F4 

a151 = |F4| 
a152 = dir(F4) 
a153 = <nature> 
a154 = <application 
point> 
 

Functional Relations: 
R1 = { |FSy| Normal = A x σallow }  
R2 = { |FSy| Shear = A x τallow },  
A: cross-sectional area, Sy : yield strength 
σallow = 0.65 Sy , τallow = 0.4 Sy 
R3 = {<application point> coincident  point B} 
 
Constraints: 
C1 = { |FSy| Normal ≥ |F4| . cosӨ  } 
C2 = { |FSy| Shear ≥ |F4| . sinӨ  } 
 
DoF: 
D1 = {solid A: rot-z} 
D2 = {dir(F4): fix} 

 
 
 
 
 

Table 6.14 Description of the relation between solid A and F5 in function operation 1 

Coupling 
operands Attributes Relations 

SOLID: 
solid A 

a111 = <length> 
a112 = <normal strength> 
a113 = <shear strength> 
a114 = FM: <point O> 
a115 = angle of solid A  
with negative x direction 
: Ө  

FORCE: 
F5 

a161 = |F5| 
a162 = dir(F5) 
a163 = <nature> 
a164 = <application 
point> 
 

Functional Relations: 
R1 = { |FSy| Normal = A x σallow }  
R2 = { |FSy| Shear = A x τallow },  
A: cross-sectional area, Sy : yield strength 
σallow = 0.65 Sy , τallow = 0.4 Sy 
R3 = { <application point> coincident point O} 
 
Constraints: 
C1 = { |FSy| Normal ≥ |F5| . sinӨ  } 
C2 = { |FSy| Shear ≥ |F5| . sinӨ  } 
 
DoF: 
D1 = {solid A: rot-z} 
D2 = {dir(F5): fix} 
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Table 6.15 Description of the relation between solid A and F6 in function operation 1 

Coupling 
operands Attributes Relations 

SOLID: 
solid A 

a111 = <length> 
a112 = <normal strength> 
a113 = <shear strength> 
a114 = FM: <point O> 
a115 = angle of solid A  
with negative x direction 
: Ө  

FORCE: 
F6 

a171 = |F6| 
a172 = dir(F6) 
a173 = <nature> 
a174 = <application 
point> 
 

Functional Relations: 
R1 = { |FSy| Normal = A x σallow }  
R2 = { |FSy| Shear = A x τallow },  
A: cross-sectional area, Sy : yield strength 
σallow = 0.65 Sy , τallow = 0.4 Sy 
R3 = { <application point> coincident point O } 
 
Constraints: 
C1 = { |FSy| Normal ≥ |F6| . cosӨ  } 
C2 = { |FSy| Shear ≥ |F6| . sinӨ  } 
 
DoF: 
D1 = {solid A: rot-z} 
D2 = {dir(F6): fix} 

 
 
 
 

Table 6.16 Equilibrium relation between force operands (F1, F2, F3, F4, F5, F6) 

Coupling operands Attributes Relations 

FORCE Operands: 
F1, F2, F3, F4, F5, 

F6 

a1i1 = |Fi| 
a1i2 = dir(Fi) 
a1i3 = <nature> 
a1i4 = <application 
point> 
 

Force Contraints: 
C1 = { 0|0 642 =++=∑ FFFFx } 

C2 = { 0|0 531 =++=∑ FFFFy } 
Moment Contraints: 
C3 = { ∑ =

OBA
M

,,
0 } 

 
 
 
 

STEP IV: Search function driven database for solutions 

 In this step, the function driven database is accessed by the designer to search for 

potential solutions. The translation tool website is first opened. Then, the information about 

product name, serial number, application domain, and description are entered. After that, the 
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functions and sub-functions from the toggle clamp decomposition are entered and saved in the 

system. The operands, relations, and their attributes are also entered in the system. Screen 

captures of these steps are shown in Figures 6.27-6.29.   

 

 

 

Figure 6.27 Adding toggle clamp as a new product 
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Figure 6.28 Function decomposition structure of the toggle clamp 
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Figure 6.29 Add/Modify function model components (operands, relations, and constraints) 
of the toggle clamp 

 

 

 To conduct a search, the designer must first define the functions, individual and 

combined, to be used in the search. To do this, the designer should go over the function 

decomposition and try to figure out the interactions between material and energy. In addition, the 

designer should try to distinguish and specify part-level functions and geometric-level functions. 

For example, the lower level sub-functions, input hand force, transmit hand force, transmit force, 

and transmit material by rotation, can be used as one combined function for conducting a search. 

These functions are chosen by checking the checkbox to the right of each of them. The Search 
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button is then pressed. Function servers are searched for and the following solutions, as shown in 

Figure 6.30, are found: boss, hole, slot, rod, block, cylinder, and sphere. Of these, the rod is 

chosen as the solution by pressing the Select button. This solution is then automatically saved, 

with its related functions, in the product function server list (i.e., database). Table 6.17 presents 

the functions used for the search and the chosen solution for each group in this example. 

 

 

 

Figure 6.30  Search process results 
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Table 6.17 Sub-functions used to search with, and solutions 

Group 
# Function(s) Solution 

 (function server) Abstract shape 

1 
Input hand force 
Transmit force 
Transmit material 

Rod 

 

2 Connect to pivot Hole 

 

3 Support force Cylinder 

 

4 Connect to linkage Hole 

 

5 Transmit force 
Transmit material Rod 

 

6 
Allow passage 
Support 
Guide 

Hole 

 

7 Transmit force 
Transmit material Cylinder 

 

8 Hold the object 
Transmit material Block 

 

9 Support components Block 

 

10 Fasten with fixed surface Hole 
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STEP V: Function server modeling 

 In the function server model, function servers are instantiated as design objects with their 

corresponding attributes. The function server model is defined as: 

 FS: {FD, SH, M, MI, IN, WC} 

 Where, 

 FD: function description. 

 SH: shape description.  

 M: material model. 

 MI: manufacturing information.  

 IN: interface description. 

 WC: working conditions. 

 A detailed description of the function server model for solution 1 (rod-1) is presented in 

Table 6.18. Rod-1 interfaces with six other function servers: hole-1, hole-2, cylinder-1, cylinder-

2, rod-2, and block-1. Figure 6.31 illustrates this interaction. Information concerning the function 

servers is also saved in the product function server list (i.e., database). The screen capture of 

Figure 6.32 illustrates this process. 
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Cylinder-1 

Cylinder-2 
Hole-1 

Rod-2 
Hole-2 

Block-1 

Rod-1 

 
Figure 6.31 Interface of function server rod-1 with other function servers 

 
 
 

 
 
 

Figure 6.32 User page to add/modify function server model 
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Table 6.18 Description of Function server model for solution 1 (Rode-1) 

Function Server Name Rod-1 

Function 
Function(s) served: 
Input hand force ,Transmit force, Transmit material 

Shape 

Base shape: block        Abstract shape:  

                                                                 

Material 
Material type: steel 
Known material properties: strength 

Manufacturing 
Manufacturing process: forming (extruding) 
Surface Properties: Unknown 
Alternate material: Unknown 

Working Condition 

Energy type: mechanical energy 
Load nature: steady 
Physical phenomena: stress, lever effect 
Failure modes: stress rupture, yielding 

Interface 

Interface 1: Interface with hole-1 
                   Interface type: permanent (part_of) 
                   Interface location: point B 
Interface 2: Interface with hole-2 
                   Interface type: permanent (part_of) 
                   Interface location: point O 
Interface 3: Interface with cylinder-1 
                   Interface type: permanent (flexible) 
                   Spatial relationship: 
                   align ( centerlines of hole-1 and cylinder-1) 
                   DoF: {rod-1: rot-z, cylinder-1:cir-z} 
Interface 4: Interface with cylinder-2 
                   Interface type: permanent (flexible) 
                   Spatial relationship: 
                   align ( centerlines of hole-2 and cylinder-2) 
                   DoF: {rod-1: rot-z, cylinder-2: fix} 
Interface 5: Interface with rod-2 
                   Interface type: permanent (flexible) 
                   Spatial relationship: against (contact surfaces) 
                   DoF: {rod-1: rot-z, rod-2: plane-xy} 
Interface 6: Interface with block-1 
                   Interface type: permanent (flexible) 
                   Spatial relationship: against (contact surfaces) 
                   DoF: {rod-1: rot-z, block-1: fix} 
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STEP VI: Construct the conceptual form of toggle clamp 

 Going back to table 6.18, the solutions rod, hole (with function: connect to pivot), and 

hole (with function: connect to linkage) can be combined into one part, as shown in Figure 6.33. 

This part is given the name, “handle”. The cylinder solution (with function: support force) can be 

a pin. The other rod solution (with functions: transmit force and transmit material) can be a 

component used to change the direction of the magnified force from vertical to horizontal. This 

component is given the name “linkage”.  

 The cylinder solution (with functions: transmit force and transmit material) and the block 

solution (with functions: hold the object and transmit reaction force) can be collapsed into a 

single component. This component is given the name “plunger”. The hole solution (with 

functions: allow passage, support, and guide) can be one component with a cylindrical base 

shape. This component is given the name “guider”. Finally, the block solution (with function: 

support components) can be the base that supports the reaction force and the other components. 

The conceptual form of the toggle clamp components is shown in Figure 6.34. 

 

 

Figure 6.33 Conceptual form of toggle clamp's handle 
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Handle 

Guider 

 

Figure 6.34 Conceptual forms of toggle clamp components 
  

 The base should have a hole to connect with the handle and a pattern of holes to fasten to 

the fixed surface. In addition, the guider can be combined into the base to form one component. 

The final conceptual form of the toggle clamp is shown in Figure 6.35. A complete function 

server tree is shown in Figure 6.36. 

 

Figure 6.35 The conceptual form of the toggle clamp assembly 

Pin

Linkage Plunger 
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Figure 6.36 Function server tree for toggle clamp 

 
 
 
6.5.3 Experimental Test 

 An experiment had been designed to test and evaluate the efficiency and effectiveness of 

the translation tool. In this experiment the evolution of toggle clamp conceptual design was 

traced and recorded for four separate designers.   Two designers had performed the conceptual 

design of toggle clamp by using traditional design methods. The other two designers had used 

the translation tool developed in this research to come up with the required conceptual design. In 

Toggle clamp Plunger 
Block-2

Guider

Base 

Pin 1 

Pin 3 

Pin 2 

Hole-pattern

Hole-5

Hole-6

Cylinder-1

Cylinder-2

Cylinder-3 

Block-1

168 



 

both cases the designers were given only the objective function with some requirements and 

constraints without knowing the name of the product. The period times for finishing the 

conceptual design steps were recorded over several separate design sessions on subsequent days 

for each individual designer. These period records are shown in table 6.19. 

 

Table 6.19 The recorded design period times 

Period time (min) 
Step Name 

Traditional Design Methods  Tool Translation
Preliminar 30 30 y meeting 
Planning & defining the problem 67.5 65 
Constructing function structure 42.5 20 
Concept & physical embodiment 58 12.5 
Conceptual form sketching  75 57.5 

Total Time period 273 
(4 hr 33min) (3 h

185 
r 5min) 

   

As we can see in table 6.19, the traditional conceptual design group encompassed a total 

we can achieve a significant save in time. 

 

 

design period of 4 hours and 33 minutes, while the group who used the translation tool 

encompassed a total design period of 3 hours and 5 minutes. This reduction in designing time is 

achieved because the translation tool helps speed up the process of finding physical 

embodiments for the specified function requirements. Also, it is easier and faster to sketch the 

conceptual shape of the product when the primitive function servers are available to the designer. 

The function driven database also helps expand the designer’s thinking by offering options that 

he or she might not have thought of. The difference in period times between the two cases will 

extend more as the complexity and the number of the components in the product increase. Hence 
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 Another important issue to compare is the design documentation. The group who used the 

translation tool had utilized the available models to completely document and organize the 

product’s functional and physical information. This includes what was developed and the reasons 

why it was developed. In this case the conceptual product information was efficiently and clearly 

managed and represented. As a result, when a feature, component, or assembly is modified the 

designer can then be aware of which functions and which parts of the specification may be 

affected. On the other hand, the design documentation of the traditional design group lacked this 

organized documentation of information, which in turn reduced the opportunity to reuse the 

current design data.  
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7.0 CONCLUSIONS AND FUTURE WORK 

7.1 CONCLUSIONS 

 This research provides a framework to support translating function specifications to 

conceptual forms during the conceptual design phase. It provides a tool for transforming an 

abstract representation of a product into a more concrete representation. This tool helps to map 

product needs, given in the form of a problem statement and preferences, via functional 

specification analysis into a functional data model describing all the functional aspects of the 

product’s design. This research project has developed a functional data model to provide a 

complete description of the product by means of functionality relations and constraints imposed 

on the physical resources used in a given task. The physical resources required to accomplish a 

function have been described in the form of functionality operands (solid material and energy). 

In addition, a new function classification scheme based on operand interaction has been 

introduced. This classification helps the designer to create the function decomposition and to 

identify the function operations in the functionality model.  

 The translation tool developed in this research assists in translating the function 

specifications into physical embodiments by accessing and extracting solutions from a function 

driven database. The translation tool targets the functionality and relations possessed by a 

physical element (i.e., feature, component, or sub-assembly) as the primary solution search 

source. These solutions and all related information, including functionality, are represented and 

captured in a data structure known as a function server model. The function server model was 

171 



 

developed to provide a conceptual physical description of the product as regards material, shape, 

manufacturing information, working conditions, and interface with other objects. 

 The models and concepts developed in this work have been implemented and tested in a 

computer system. The object-oriented Unified Modeling Language (UML) was used to construct 

the object models. The demonstration was accomplished by building a web-based function-to-

conceptual form translation tool using MySQL, PHP, and Apache server technology. 

Specifically, the following computer tools were developed to realize this research project and to 

support function-oriented design: 

• The functional data model, function server model, function driven database, and 

conceptual product model have been implemented as a relational dataset system using 

MySQL. 

• A dynamic web-based graphic user interface was developed using PHP to provide an 

interactive environment for the modeling of conceptual product information and for the 

searching of possible solutions. 

• Data structures for the developed models were created using the object modeling 

approach. This data modeling approach provides an easy and flexible means for 

managing functionality and function server information. 

• Propagation and exchange of conceptual product information to downstream design 

activates was realized using the XML data representation schema.  

  

 The translation tool developed in this dissertation speeds up the process of moving from 

objective function to the realization of conceptual form. It supports and facilitates conceptual 

design for both experienced and novice designers. With this program, the designer can try out a 
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greater number of iterations in less time. The function driven database helps expand the 

designer’s thinking by offering options that he or she might not have thought of. The conceptual 

product model documents the search results and organizes the product’s functional and physical 

information, which, in turn, makes it easy for designers from different backgrounds to access and 

use the design information. The fact that the system is Internet based reduces the communication 

expense, allows for remote collaborative work, and makes the system platform-independent. 

 The proposed function-to-conceptual form translation tool provides a framework that 

allows a designer to carry out conceptual design with the aid of a computer. It also serves as a 

bridge between the conceptual design phase and the detailed design phase of a product.  

 

7.2 FUTURE WORK 

The opportunities that could be pursued further for extending this work are listed below: 

1. The set of operands covered in this work includes solid materials and mechanical energy. 

Future work would extend this set of operands to include all material and energy 

operands. 

2. The results of this work have been restricted to the design of mechanical devices. Future 

work could extend the results to include the design of other engineering products. 

3. The function driven database developed in this work includes knowledge base about only 

functional features. This database could be extended to encompass other classes of 

primitive function servers (i.e. functional standard parts and functional modules). 

4. A possible extension of this work is to integrate a decision-making tool with the system 

to help the designer in the selection of competing function servers. The future work in 

this part should investigate the possible classes of criteria and metrics that could be used 
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to rank and compare the solutions. This could be also extended to include overall 

conceptual forms. 

5. In the implementation, the constraints have not been used during the search for possible 

solutions. An extension to include constraints in the search process could be implemented 

in future versions of this translation tool. 

6. A future work could be conducted to extend the shape representation in function server 

model to include dimension and tolerance representation 

7. For practical use of the function server knowledge base (i.e. the list of functions for each 

function server that are introduced in this work), extensive data needs to be collected 

from industry, and should cover different manufacturing domains to improve this 

knowledge base. 

8. Converting the natural languages of customers to structured function specifications is an 

open issue that could be considered in future work. 

9. Exploring the integration of the translation tool into commercial CAD systems to give the 

designer a more flexible design environment and reduce the gap with detailed design 

stage could be an opportunity to improve this work further.  
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APPENDIX A 
 
 
 

ABSTRACT SHAPES OF FUNCTIONAL FEATURES 
 
 

Table A.1  Abstract shapes of functional features 

 

Functional 
Feature 

Class 

 
Functional 

Feature 
Subclass 

 

Abstract Shapes 

Walls  

 

 
 

Boss 

              
              Rotational                                                  Prismatic 

Rib/gusset 
/web 

 

 
 

Additives 

Tab/flange 
/protrusion 
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                                Table A.1 (continued) 
 

Functional 
Feature 

Class 

 
Functional 

Feature 
Subclass 

 

Abstract Shapes 

Hole 

 

                
                 Regular hole                                   Countersink 
             ( Blind or through )                        ( Blind or through )                       
       (Threaded or not threaded )             (Threaded or not threaded ) 

Slot 

 

                
           Through slot                                   Blind slot (keyway) 

Groove 

 

Pocket/indent 
/depression 

 

              

Window 
/ cut-out 

 

                     
 

Subtractives 

Step/corner 
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                            Table A.1  (continued) 
 

Functional 
Feature 

Class 

 
Functional 

Feature 
Subclass 

 

Abstract Shapes 

Chamfer/fillet 

 

                
 

Groove 
/undercut 

 

 
 

Rib/web 

 

            
 

Beside walls 

Bridge 
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                            Table A.1 (continued)  
 

Functional 
Feature 

Class 

 
Functional 

Feature 
Subclass 

 

Abstract Shapes 

Block 

 

 
 

Cylinder 

 

Sphere 

 

Rod 

 
 

Tube 

 

Disk 

 

Solid 
elements 

Ring 
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APPENDIX B 
 
 

LIST OF FUNCTIONS USED IN FUNCTION DRIVEN DATABASE 
 

Table B.1 List of functions and synonyms 

Function Synonyms 
access Pass, enter, input. 
align Straighten, adjust, line up, follow. 
allow Permit, let, approve, grant. 
assemble Fabricate, combine, bring together, gather, unite.  
assist Help, aid, work for, work with. 
balance Stabilize, steady, equal, adjust, level. 
block Obstruct, bar, stop. 
connect Attach, join, couple, link, fasten, mate, engage, mesh. 
control Regulate, limit, constrain, adjust, modify, restrict. 
eject Dispose, remove, discharge, export, bump. 
enclose Cover, contain, shield, protect, surround, include, guard, hide, wrap, insulate. 
fit Agree, conform, match, meet, go together. 
friction Rub, resist. 
guide Direct, straighten, steer, control, regulate, lead. 
hold Stop, lock, remain, stay, secure. 
mount Secure, lock, fasten, hold, attach, fix. 
position Orient, locate, place, put, set, settle, stand, occupy. 
prevent Avoid, hinder, prohibit, restrict, inhibit. 
protect Guard, cover, care for, keep, insulate, keep safe. 
reduce Decrease, step down. 
reflect Bend back, mirror, reverse, throw back, return. 
rigidify Increase rigidity, provide rigidity. 
seal Close, fasten, secure, shut, stop. 
space Separate, provide gap, offset. 
strengthen Add, confirm, harden, mount, increase strength.  
support Load bear, base, carry, hold, sustain, offset. 
transform Convert, change, alter 
transmit Convey, conduct, transport, move, lift, transfer, translate, rotate, conduct. 
view Look, see, watch, check out, inspect. 
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APPENDIX C 
 
 

FUNCTIONS OF FUNCTIONAL FEATURES 
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Table C.1 Functional features and their possible functions in generic domain 

 

 

Functional 
Feature 

Class 

 
Functional 

Feature 
Subclass 

 

Functions 

Walls  Block, reflect, cover, enclose, protect, support, strengthen, hold, position, 
friction, connect. 

Boss Position, guide, support, transmit, connect, eject, mount, assist, strengthen, 
offset. 

Rib/gusset 
/web Strengthen, support, guide, hold, position, connect, assist, rigidify. Additives 

Tab/flange 
/protrusion 

Hold, position, align, support, connect, stop, assemble, block, rigidify, fit, 
balance. 

Hole Align, connect, position, mount, access, limit, assemble, support, transmit, 
guide, assist, allow rotation, allow passage, enclose. 

Slot Guide, support, align, connect, stop, prevent, hold, access, transmit, assist, 
allow passage. 

Groove Assist, position, limit, connect, guide, mount, space, reduce. 
Pocket/indent 
/depression Position, fit, assemble, connect, guide, reduce. 

Window 
/ cut-out Access, align, view, position, guide, join, reduce, transmit, allow. 

Subtractives 

Step/corner Position, support, stop, fit, guide, reduce, allow. 

Chamfer/fillet Reduce, guide, assemble, assist, strengthen, align, protect, prevent. 
Groove 
/undercut Strengthen, reduce, guide, limit, position, support, access. 

Rib/web Strengthen, support, guide, hold, position, connect, access. 
Beside walls 

Bridge Connect, strengthen, rigidify, support, reduce, allow. 

Block Support, friction, block, hold, position, transmit. 

Cylinder Support, align, connect, assemble, mount, fit, transmit, allow rotation. 

Sphere Support, transmit, fit, reduce. 

Rod Connect, strengthen, rigidify, support, transmit. 

Tube Transmit, guide, connect, limit, enclose. 

Disk Strengthen, support, align, space, reduce, friction. 

Solid 
elements 

Ring Strengthen, support, align, space, reduce, seal. 
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