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THREE ESSAYS ON ONLINE RATINGS AND AUCTION THEORY

Jonathan M. Lafky, PhD

University of Pittsburgh, 2010

This work includes three papers, focusing on online ratings and auction theory. The first

chapter, Why Do People Write Reviews? Theory and Evidence on Online Ratings examines

what motivates consumers to provide uncompensated ratings for products on the internet.

It finds that both a desire to inform other buyers and to punish or reward sellers are at play.

The second chapter Optimal Availability of Online Ratings looks at what role consumer

ratings have in determining market outcomes. It shows that more information for buyers

does not always lead to increased buyer welfare, and that in some cases it may be preferable

to keep some buyers uninformed of existing ratings.

The third chapter All Equilibria of the Multi-Unit Vickrey Auction characterizes all Nash

Equilibria for the Vickrey auction with three or more bidders and any number of units. It

shows that all equilibria fall into one of two basic families, and that there cannot be equilibria

of any other type.
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1.0 WHY DO PEOPLE WRITE REVIEWS? THEORY AND EVIDENCE

ON ONLINE RATINGS.

1.1 INTRODUCTION

1.1.1 OVERVIEW

Internet commerce is a large and rapidly growing component of the economy. Internet retail

is projected to be greater than $156.1 billion for 2009, up 11% from $141.3 billion in 2008

(Mulpuru, 2009). Typical growth over the past decade has been even higher, averaging

approximately 20% annually.

The rapid growth and popularity of internet retail is not surprising. Virtually any good

can be purchased on the internet, in every model, style, or color produced. The enormous

selection offered to consumers means that they must often choose between several goods

with similar observable characteristics but potentially different levels of quality. Without

firsthand experience, it may be difficult or impossible for consumers to tell which of several

similar-looking products is of the highest quality.

In an effort to alleviate this problem and to encourage sales, many internet retailers

provide customer-based rating and review systems for their products. In these systems,

consumers (sometimes restricted only to previous buyers) are allowed to leave written reviews

as well as numerical scores for products. These ratings are then made available to future

buyers to inform them of the product’s qualities, allowing them to make more informed

purchases.

The average review score can vary considerably for products that have otherwise similar

characteristics, and may be the only insight consumers have into a product’s unobservable
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qualities before they buy. As Chevalier and Mayzlin (2003) demonstrate, ratings can signif-

icantly influence buyers’ behavior, and as a result have a substantial impact on the success

or failure of a product. But why are ratings given in the first place? Are people taking time

to give these ratings in order to help their anonymous fellow shoppers, or are they writing

out of gratitude or anger that they feel towards online merchants? Are raters equally likely

to evaluate all products, or do they speak up only if they have a strong opinion? This paper

examines some possible motivations for the provision of ratings in a theoretical framework,

and then isolates those motivations in an experimental setting.

To preview the results, I find evidence that consumers are motivated by concern for both

buyers and sellers when they decide to rate products. Ratings given to affect buyers are

relative to the average quality found in the market, while ratings given to affect sellers are

relative to the what raters consider to be fair behavior. Making rating less attractive through

the introduction of a small cost has a large effect on the volume and distribution of ratings.

Ratings in the presence of a cost take on a U-shaped distribution, which can lead to average

ratings that are not representative of true quality. A possible solution to this problem is

to provide small discounts to consumers who provide ratings, thereby compensating for any

inconveniences or opportunity costs associated with rating products.

The remainder of the paper is organized as follows. Section 1.1.2 surveys relevant past

research. Section 1.1.3 provides motivating data and poses the basic questions to be ad-

dressed. Section 1.2 introduces a theoretical framework for analyzing rating behavior and

isolating concern for sellers from concern for buyers. Section 1.3 lays out the experimental

design and hypotheses. Section 2.3.1 presents results from the experiments while section 1.5

discusses implications of those findings. Section 1.6 concludes.

1.1.2 RELATED LITERATURE

There is a small but growing literature on online ratings, with most existing work focusing

on how consumers are influenced by ratings and how well those ratings can predict market

outcomes. The first paper to demonstrate that consumer-generated ratings significantly

impact consumer behavior is Chevalier and Mayzlin (2003), which examines how sales ranks

2



of books at amazon.com and bn.com vary based on customer ratings. They find that ratings

have a significant influence on sales, with the addition of just a few user-generated ratings

significantly improving the amazon.com sales rank of previously unrated books.

Duan et al. (2005) and Dellarocas et al. (2004) examine consumer-generated ratings on

movie review websites, showing that ratings given by consumers are significantly better than

expert reviews at predicting movies’ box office success. These papers also suggest that user

ratings can be seen as a gauge of underlying word-of-mouth communication. For the domain

of movies, their findings suggest that ratings are predictors rather than drivers of success

and failure.

A simple but elegant theoretical framework for examining reputation mechanisms is

introduced in Bolton et al. (2004). They consider an interaction in which a buyer must

pay a seller in advance, after which the seller may choose to fulfill their commitment, or to

cheat the buyer by not sending a product. They examine the environment with and without

feedback, and find that the presence of feedback significantly increases trustworthiness among

sellers.

The paper perhaps most similar to the current project is Li and Hitt (2007), who consider

possible distortions across time in ratings for newly released products on amazon.com. They

find that average ratings immediately after release begin high, drop rapidly, and then grad-

ually rise to an intermediate level. They attribute this phenomenon to “avid fans” who rush

to buy a product immediately after its release, and a later backlash by typical consumers

against unrealistically high initial ratings.

Chen et al. (2008) use social comparisons to encourage users of movieLens, a movie

recommendation website, to rate more movies. By providing users with a brief summary of

how their rating output compares to others, the authors are able to substantially increase

the volume of ratings. They also find some evidence that a user’s altruism, as determined in

a post-experimental survey, predicts their likelihood of rating movies that have few existing

ratings. This strongly suggests that at least some users are motivated by altruism when

providing ratings.

It is important to distinguish the current line of research from several papers that have

been written on two-sided reputation systems. Houser and Wooders (2005), for example,

3



examine the impact of reputations in eBay auctions, in which buyers and sellers rate one

another. As evidenced by eBay’s change in 2008 to a one-sided rating system (buyers may

rate sellers, sellers cannot rate buyers), two sided systems can introduce the undesirable

possibility of strategic rating behavior. In contrast, consumers in the one-sided system

considered in this paper need not worry about being punished or rewarded for their ratings,

and can rate products based solely on their own opinions.

1.1.3 MOTIVATING DATA

To give a picture of real-world ratings, data was taken from the amazon.com website in

November 2008. The distribution of ratings for more than 400 products were collected,

encompassing more than 17,500 separate ratings. The products evaluated were from the

“Home Improvement” section of the website, which includes products such as lawn mowers,

flashlights and electric chainsaws. The Home Improvement section was chosen in an effort

to find products which have relatively objective quality. Unlike previous research which has

looked primarily at books and music, the data is restricted to products with more objective

quality in an effort to simplify the task of interpreting ratings.

Figure 1 shows the distribution of individual ratings for products with different average

ratings. For reference, customers at amazon.com can give ratings from one star to five stars,

in one-star increments. Only one item (less than 0.25% of all products) had an average

rating of less than two stars, and thus is not included.

Looking at the distributions one feature is particularly striking: Middling ratings, espe-

cially ratings of two stars and three stars are uncommon, even among products with average

ratings of two or three stars. The reasons behind these distributions are not clear, however,

as several distinct mechanisms could generate the same pattern. The simplest explanation

would be that quality itself tends towards extremes, where products realize binary qualities

of “success” and “failure,” with little else in between. It is also possible, however, that the

pattern comes not from the underlying distribution of quality, but from the motivations that

drive consumers to provide ratings.

If people view the act of rating a product to be intrinsically burdensome but nonetheless

4
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Figure 1: Ratings distributions by average rating.

want to help other buyers, the same pattern could emerge. Acceptable but unremarkable

products would not be rated because the benefit to the rater from informing others would be

smaller than the cost of providing the rating. High or low quality products would be rated

because the rater could have a large impact on other buyers’ welfare.

Alternatively, raters may take the time to rate in an attempt to punish or reward sellers

for their quality. A buyer who receives a defective product may seek retribution against the

good’s seller by damaging their reputation with a negative rating. Likewise, a buyer who

is pleased with a recently purchased good may give the seller a positive rating as a reward

or encouragement for their high quality. In both cases the reaction elicited from the buyer

is intense enough to outweigh any costs of rating. Products of moderate quality, however,

would elicit neither reward nor punishment.
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1.2 THEORY

This section develops a theoretical model to formalize the insights described above. It

characterizes behavior for buyers and sellers interacting in a simple stylized market and

generates predictions that can be tested in the laboratory.

1.2.1 THE MODEL

In this model there are n buyers, B1, B2 . . . Bn, each deciding which of 2 sellers, S1 and S2 to

buy from.1 Buyer B1 will be referred to as the “first buyer” and B2, . . . Bn will be known as

“second buyers.” At the start of the game, each seller chooses a quality level, qi ∈ [0, qmax].2

The choice of qi is a seller’s private information. After sellers choose their qualities, buyer

B1 selects one of the sellers. Since B1 has no information to distinguish one seller from the

other, for ease of notation assume that B1 chooses S1. B1 learns S1’s quality, q1 and is then

given the opportunity to pay a cost of c in order to provide a rating r ∈ [r, r] ⊂ R for S1.
3

After B1 makes his rating decision, all other buyers learn what rating, if any, B1 gave. If B1

did not give a rating, the other buyers cannot tell which seller B1 selected. Finally, B2 . . . Bn

simultaneously each select one of the sellers.

Sellers’ payoffs are USi
(qi, ni) = ni · (u−aqi) where u is the utility from setting q = 0, a is

the marginal cost of quality, and ni is the number of buyers who selected Si. B1’s payoffs are

given by UB1(q) = bq − Irc, where b is the marginal benefit of quality and Ir is an indicator

function for whether B1 rated or not. The payoffs for all other buyers are simply UBi
(q) = bq.

Given this framework the unique equilibrium is for sellers to set the minimum quality of

q = 0, and for B1 to never provide a rating so long as c > 0. This model does not reflect

observed behavior, however, in that there are tens of millions of buyer-generated ratings on

the internet. In order to explain this discrepancy I extend the model to include regard for

1Two is the minimum number of sellers that prevents unrealistic signalling behavior. With a single seller,
not rating has the potential to convey as much information as rating.

2For simplicity prices are normalized to zero. This is done to remove the possibility that prices would
be used as a signal for quality, which would complicate the task of inferring rater’s motivations. One
interpretation of this model is an analysis of products at a given price, meaning that quality can be thought
of as value for money.

3This can be interpreted as both the opportunity cost of rating as well as any effort a consumer expends
from the act of rating.
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others.4 The timing of the game remains the same, however B1’s payoffs are rewritten as

UB1(q1) = bq1 + α · (q1 −R)US1(q1, n1) + β

n∑
i=2

UBi
(qj(i))− Irc (1.1)

α and β measure B1’s concern for sellers and buyers, respectively, R ∈ R+ is a quality

level that B1 considers to be fair treatment, and qj(i) is the quality corresponding to whichever

seller j is selected by buyer i. If q1 < R, S1 was selfish in choosing quality, we have q1−R < 0

and B1 has spiteful concern for his seller. When q1 > R, S1 was generous in choosing quality,

and B1 has altruistic concern for his seller. When q1 = R, then q1 − R = 0 and B1 is

unconcerned by S1’s utility. Note that the further S1’s choice is from B1’s opinion of fair

quality, the more intense becomes B1’s altruism or spite towards his seller.

Sellers’ preferences remain the same, and for simplicity do not include other-regarding

components. Introducing other-regarding preferences for sellers would alter the quality levels

provided, but would not qualitatively affect the analysis of first or second buyer behavior.

Buyer behavior is characterized below for the full range of possible qualities, and thus all

variations in quality levels are already accounted for.

The addition of other-regarding preferences to the model gives a reasonable starting

point for describing behavior, although it is not ideal for an experimental analysis. As was

the case with the motivating data, concern for sellers and second buyers still cannot be

separately identified from the first buyer’s actions. Isolating these motivations requires that

one additional feature be added to the model.

Prior to the beginning of the game nature randomly determines if it will be a buyer-fixed

or seller-fixed game. The type of game is known only to B1, although sellers and second

buyers know that it will be either buyer-fixed or seller-fixed with equal probability. A buyer-

fixed game has the same structure as the previously described model, except that B2, . . . , Bn

receive fixed payoffs of f ∈ R, independent of the actions taken by any player. Similarly, in

a seller-fixed game all buyers receive their normal payoffs, while the sellers receive payoffs of

f , independent of any player’s action. In this way it is possible to “deactivate” either sellers

or second buyers from B1’s decision to rate, as B1 is affected only by his concern for sellers

4An alternate explanation for voluntary rating, especially in the realm of non-durable goods, is a repeat-
customer motive. A consumer may rate to improve their own future interactions with a merchant. Such a
motivation may drive some online ratings, although it is outside the scope of this paper.
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or second buyers in each role’s respective game type. This means that in a buyer-fixed game

B1’s rating decision is determined entirely by his value of α and the quality he receives.

Likewise in a seller-fixed game B1’s rating decision is affected only by his value of β and his

received quality. Note that, because they cannot tell which type of game is being played, all

players other than B1 behave the same in both types of games.

1.2.2 SECOND BUYER BEHAVIOR

Before characterizing B1’s rating behavior it is first necessary to understand how second

buyers respond to B1’s ratings. Second buyers condition their decision upon it being a

seller-fixed game, as their decision in a buyer-fixed game is irrelevant to their payoffs. If B1

rates in a seller-fixed game his preferences are perfectly aligned with those of second buyers.5

Second buyers know that B1’s preferences are in line with their own and can rely upon the

first buyer to provide ratings in their best interest. Thus they will buy from the rated seller

when they observe a high rating and switch to the unrated seller when they observe a low

rating. Notice that because later buyers’ decisions are essentially binary (either choose the

rated seller or choose an unrated seller) there is no need for more than two ratings: high

(buy) and low (don’t buy). The exact choice of messages is irrelevant, so long as first and

second buyers share a common convention. It may be convenient to think of the “buy”

message as r and “don’t buy” as r. Although only two messages are necessary, this paper

allows, both theoretically and later experimentally, for a wider range of possible ratings for

consistency with commonly used online rating systems.

1.2.3 FIRST BUYER BEHAVIOR

To understand B1’s behavior in the buyer-fixed game, two cases must be considered: q < R

and q ≥ R. If q < R, meaning that the observed quality is less than B1’s threshold to trigger

spitefulness, then B1 will provide a negative rating if:

5Note that this implicitly assumes that B1 does not exhibit spite towards second buyers. Allowing for
the possibility of spiteful raters complicates the analysis significantly, as ratings can no longer be trusted by
second buyers.
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−c > α · (q −R)
(n− 1)

2
(u− aq)

Solving for q gives the cutoff value

q
S

=
α · (n− 1)(aR + u)−

√
α · (n− 1)(−8ac+ (n− 1)(a2R2α− 2aRαu+ αu2))

2α · (n− 1)
(1.2)

If S1 is generous with quality, and chooses q ≥ R, B1 provides a positive rating if:

α · (q −R)(n− 1)(u− aq)− c > α · (q −R)
(n− 1)

2
(u− aq)

Solving for q gives the cutoff value

qS =
α · (n− 1)(aR + u)−

√
α · (n− 1)(8ac+ (n− 1)(a2R2α− 2aRαu+ αu2))

2α · (n− 1)
(1.3)

B1 thus rates if:

q ∈ [0, q
S
) ∪ [qS, qmax]

Where B1 gives a negative rating in the first interval and a positive rating in the second

interval. This leads to the following proposition:

Proposition 1. In the buyer-fixed game, the first buyer employs a double-cutoff strategy for

rating. He gives a negative rating if q ∈ [0, q
S
), no rating if q ∈ [q

S
, qS), and a positive rating

if q ∈ [qS, qmax].

Figure 2 shows how the cutoff values vary with α, with parameters n = 3, c = .25, a =

.36, u = 6 and R = 5.5.

Note also that dqS

dc
> 0 and

dq
S

dc
< 0, meaning that the range of values that will be

unrated by first buyers is increasing in the cost of rating. This is a key insight in explaining

the U-shaped distribution of ratings. If c = 0, all quality levels will be rated, while if c > 0,

a “blind spot” of unrated qualities emerges centered around R.

Behavior in the seller-fixed game is similar, with one important difference. Because each

second buyer can potentially select any of the sellers, B1’s utility in a seller-fixed round can

9
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Figure 2: Cutoffs for buyer-fixed rating, as a function of alpha.

be influenced not only by S1’s quality, but also by the quality of sellers who have not yet

been selected. B1 thus needs to have beliefs about the quality buyers will receive if they

switch from S1 to another seller. Denote the average quality that B1 believes to be offered

by other sellers by q′. Note that no assumptions are made about the source of q′, allowing for

the possibility that it corresponds to the actual quality of the other seller, but not requiring

it to do so.

To understand B1’s decision in a seller-fixed round we have to consider the cases q < q′,

when the other seller is expected to be better, and q ≥ q′, when the other seller is expected

to be (weakly) worse. B1 will provide a negative rating when q < q′ if:

β(n− 1)bq′ − c > β(n− 1)
bq + bq′

2

Which gives a cutoff value of

q
B

= q′ − 2c

βb(n− 1)
(1.4)
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B1 will rate positively when q ≥ q′ if:

β(n− 1)bq − c > β(n− 1)
bq + bq′

2

Which gives a cutoff value of

qB = q′ +
2c

βb(n− 1)
(1.5)

Proposition 2. In the seller-fixed game, the first buyer employs a double-cutoff strategy for

rating. He gives a negative rating if q ∈ [0, q
B

), no rating if q ∈ [q
B
, qB), and a positive

rating if q ∈ [qB, qmax].

Figure 3 shows the cutoff values for different values of β, with parameters n = 3, c = .25,

b = .92 and q′ = 3.5.

qB

q'

q
B

0.0 0.2 0.4 0.6 0.8 1.0
Β0

2

4

6

8

10
q

Figure 3: Cutoff seller-fixed rating, as a function of beta.

As in the buyer-fixed game, dqB

dc
> 0 and

dq
B

dc
< 0, meaning that the range of unrated

qualities is again increasing in the cost of rating.
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1.2.4 SELLER BEHAVIOR

Similar to later buyers, sellers need to condition their behavior only on it being a buyer-fixed

game, and thus have three potentially payoff maximizing actions: q = 0, q = q
S

and q = qS.

Any other quality levels are dominated by one of these three. To simplify analysis, several

parameters will be held constant to allow for an investigation of the variables of interest.

Setting a = .36, R = 5, u = 6 and n = 3 permits a simple analysis of c and α. Behavior

is characterized for two values of c: c = 0 when rating is free and c = .25, when rating is

costly.6

When c = 0, there is no cost to rating and all qualities are rated, meaning that qS = q
S
.

Assuming that B1 rates when he is indifferent (e.g. when α = 0), sellers are always rated

when c = 0, regardless of B1’s level of α. In this case q = qS gives strictly higher payoffs

than q = 0 and the unique equilibrium is both sellers offering high quality by setting q = qS.

If c = .25 and α = 0, B1 never rates and the unique optimal action for both sellers is

setting q = 0. Comparing behavior when α = 0 at c = 0 and c = .25 gives an important

insight. When rating is costly sellers can get away with providing q = 0, knowing that they

will not be punished for selfish behavior. When rating is free, however, sellers know that

they will be rated poorly for low quality and respond by setting high quality of q = qS. An

increase in the cost of rating thus leads to a decrease in the quality offered by sellers.

If c = .25 and α > 0 the choice of quality level by both sellers can be described by the

following symmetric game matrix:

0 q
S

qS

0 US(0, 3
2
), US(0, 3

2
) US(0, 1), US(q

S
, 2) US(0, 1

2
), US(qS,

5
2
)

q
S

US(q
S
, 2), US(0, 1) US(q

S
, 3

2
), US(q

S
, 3

2
) US(q

S
, 1), US(qS, 2)

qS US(qS,
5
2
), US(0, 1

2
) US(qS, 2), US(q

S
, 1) US(qS,

3
2
), US(qS,

3
2
)

Figure 4: Game matrix for sellers.

6This parameterization is examined as it is used below in the laboratory experiment. Other parameteri-
zations yield similar predictions.
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The equilibria in this game depend on the value of α faced by the sellers.7 For a suffi-

ciently unconcerned first buyer, (α < .038), both sellers providing low quality, (q
S
, q

S
) is an

equilibrium. Alternatively, for a sufficiently concerned first buyer (α > .0287), both sellers

providing high quality, (qS, qS) is an equilibrium. Offering zero quality, (0, 0) is never an

equilibrium of this game since α = 0.

Thus when c = .25 there are four regions of behavior, depending on the value of α.

When α = 0 the unique equilibrium is (0,0). For 0 < α < .0287, the unique equilibrium

is (q
S
, q

S
). When .0287 < α < .038 either equilibrium is possible, and when α > .038 the

unique equilibrium is (qS, qS).

1.3 EXPERIMENTAL DESIGN

Despite having theoretical predictions for behavior, it is difficult to test these predications

against real online ratings. In analyzing data from ratings websites it is not possible to

control for product quality or cost of rating, two variables essential to identifying behavior.

These problems can be overcome by moving to the laboratory, where it is possible to perfectly

control for both quality and the cost of rating.

This paper uses a novel experimental design intended to isolate subjects’ motivations for

giving ratings. The experiment was conducted using Fischbacher’s (2007) z-Tree software

over networked computers in the Pittsburgh Experimental Economics Laboratory. A total of

200 subjects were recruited from the student populations of the University of Pittsburgh and

Carnegie Mellon University. Each session consisted of 20 subjects with no prior knowledge of

the experiment. Each session began with the distribution of written instructions which were

then read aloud to all subjects. A brief comprehension quiz was administered, subjects played

20 rounds of the experiment, and then completed a brief questionnaire. The experimental

materials are included at the end of the paper. The instructions used in the Costly and Free

treatments were identical, with a single additional sentence added to the Costly treatment.

7The equilibria depend on α since sellers’ payoffs depend on the cutoffs q and q, which are in turn
determined by α.
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Sessions lasted one hour or less and average earnings were approximately $11.00, includ-

ing a $5.00 show-up fee. At the beginning of each round subjects were randomly assigned

into four groups of five players. Within each group subjects were randomly assigned roles,

with two subjects taking the role of sellers, one subject in the role of first buyer and two

subjects in the role of second buyers. Sellers moved first by choosing an integer quality level

from 0 to 10, inclusive. Without knowing the qualities selected, the first buyer then chose

one of the sellers to “purchase” from. After making his choice, the first buyer learned the

quality of his seller and was given the option to provide that seller with a rating. The cost

of giving a rating varied by treatment, and was either $0.25 (Cost treatment) or $0.00 (Free

treatment). A rating consisted of an integer score from 1 to 5, inclusive. This score was

shown to sellers in buyer-fixed rounds and to second buyers in both types of rounds. Ratings

were not made visible to sellers in seller-fixed rounds to exclude the possibility that first

buyers would rate negatively to express their displeasure to sellers, as demonstrated in Xiao

and Houser (2008).8

Ratings did not persist between rounds. When subjects were randomly assigned to new

groups at the beginning of each round any ratings they received in previous rounds were not

visible to the new group. This is essential to understanding the experiment, as it means that

ratings were not accumulated throughout the course of each session, but existed only during

the round in which they were given. Additionally, because roles were switched between

rounds the incentive to rate to influence a future partner were minimized.

After the first buyer decided whether to give a rating, the second buyers were informed of

what, if any rating was given. If no rating was given the second buyers could not tell which

seller the first buyer picked. After seeing what, if any, rating was given the second buyers

each simultaneously selected a seller for themselves. Sellers with quality level q received

payoffs of $6.10− $0.34q each time a buyer picked them. First and second buyers who chose

a buyer with quality q received payoffs of $0.92q. To ensure that first buyers in the Costly

treatment would never lose money, each subject was also given a $1.00 “round completion

fee” at the end of each round.

8Xiao and Houser show that responders in an ultimatum game accept lower offers when they are provided
with the ability to send payoff-irrelevant messages after the proposers have made their offers. This suggests
that subjects may simply wish to express their displeasure, even if it is not relevant to their earnings.
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Each round was selected with equal probability by the computer to be either seller-fixed

or (second) buyer-fixed. In a seller-fixed round all sellers received $6.00, regardless of what

decisions were made. Likewise, in a second buyer-fixed round all second buyers received

$6.00 total, independent of all subjects’ decisions.

All subjects knew that each round would be either seller-fixed or second buyer-fixed,

but only the first buyer knew the round’s type while they made their decisions. Sellers and

second buyers learned the round type only at the end of the round, after their decisions had

been made. Sellers and second buyers were faced with the same decision and incentives in

each type of round, even though their actions would only affect their payoffs 50% of the time.

By implementing this payoff and information structure I have effectively “deactivated” either

sellers or second buyers as targets for the first buyer’s concern. For example, in a seller-fixed

round the first buyer cannot influence his seller’s payoffs in any way, since the seller will only

receive the fixed payment of $6.00.

1.3.1 EXPERIMENTAL HYPOTHESES

The first and most straightforward prediction to be tested is that a higher cost of rating will

decrease the number of ratings, regardless of round type.

Hypothesis 1 (Ratings Volume). The frequency of rating will be significantly higher when

rating is free than when it is costly.

Based on the theoretical predictions that dqB

dc
, dqS

dc
> 0 and

dq
B

dc
,

dq
S

dc
< 0 , first buyers

faced with a cost of rating should be more inclined to provide high and low ratings than

moderate ones.

Hypothesis 2 (Polarization of ratings). Ratings will be more polarized in the Costly treat-

ment than in the Free treatment. High and low quality sellers will receive a larger percentage

of all ratings when rating is costly than when it is free.

If first buyers provide ratings in buyer-fixed rounds their actions must be an attempt to

affect sellers in some way. This may be done either as a reward or a punishment for sellers,

leading to the next two hypotheses.
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Hypothesis 3 (Altruism toward sellers). In buyer-fixed rounds first buyers will give high

quality sellers positive ratings, even when it is costly to do so.

Hypothesis 4 (Spite toward sellers). In buyer-fixed rounds first buyers will give low quality

sellers negative ratings, even when it is costly to do so.

Similarly, if first buyers rate sellers in seller-fixed rounds they must be attempting to

affect second buyers. In this case a rating serves as an informative signal to second buyers,

and can be viewed as an altruistic act. 9

Hypothesis 5 (Altruism toward buyers). In seller-fixed rounds first buyers will provide

truthful ratings in order to aid other buyers, even when it is costly to do so.

1.4 RESULTS

Table 1 lists summary statistics for the experiment. Non-parametric tests show that quality,

ratings and the probability of rating are significantly higher in the Free treatment than in

the Costly one (p < .01, Mann-Whitney U-test).

Table 1: Summary statistics. Standard deviations in parentheses.

Free Free Costly Costly

Buyer-Fixed Seller-Fixed Buyer-Fixed Seller-Fixed

Rating 3.24 3.28 2.23 2.55

(1.23) (1.15) (1.60) (1.59)

Prob. Rate .88 .90 .37 .35

(.28) (.24) (.38) (.39)

Quality 5.35 5.22 3.29 3.42

(2.07) (2.03) (2.45) (2.57)

9It is possible that first buyers could provide intentionally misleading ratings specifically to harm second
buyers. Indeed, there are a handful (< 1%) of observations in the data that appear to be spiteful behavior
toward second buyers.
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As indicated in Figure 5 below, there is no significant difference in the accuracy of ratings

between buyer-fixed and seller-fixed rounds within each of the Costly and Free treatments.

This means that, contingent upon giving a rating, subjects provide the same rating for

the same quality in both round types. However, there is a significant difference in ratings

between the Costly and Free treatments. Notice in Figure 5 that there is a substantial jump

in average ratings as quality increases from the 3-4 bin to the 5-6 bin in the Costly treatment,

but a much smaller difference in the Free treatment. In the costly treatment first buyers

are essentially giving binary recommendations, whereas in the free treatment we can see a

broader range of ratings.
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Figure 5: Average rating per quality bin, by cost and round type.

Behavior is even more interesting when we examine the frequency of rating, rather than

the ratings themselves. Pooling both types of rounds in Figure 6 shows that the probability

of rating in the Free treatment (88.9%) is more than twice that of the Costly treatment

(35.9%), and the difference is significant at the 1-percent level (Mann-Whitney).

Finding 1. The volume of ratings is significantly higher in the Free treatment than in the

Costly treatment.
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Figure 6: Probability first buyer rated, by quality and cost.

While it is not surprising that fewer ratings are given in the Costly treatment, the

magnitude of the difference is striking. Removing a cost of only $0.25, or approximately

2.3% of the average subject payment, leads to a 248% increase in the volume of ratings.

Additionally, the decrease in ratings is not uniform across qualities (p < .01, Kruskal-Wallis

test). Regressing rating choice on quality and quality2 shows that there is a positive and

significant correlation with the quadratic term in both treatments, although much more so

in the costly case. The quadratic coefficient is .018 (p < .01) when rating is costly but only

.005 (p < .05) when it is free. Introducing a cost of rating clearly causes subjects to decrease

the probability with which they rate middling qualities, relative to extreme ones.

Finding 2. The ratio of ratings for extreme qualities to ratings for moderate qualities is

significantly greater in the Costly treatment than in the Free treatment.

Finding 2 gives support to the polarization hypothesis, and provides a first glimpse into

what may be causing the U-shaped distributions observed in online rating data. It shows
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that, in the face of a small cost of rating, people are more willing to rate when they have

either a very positive or very negative experience relative to a more moderate one.

The next question is whether subjects are more likely to rate in either buyer-fixed or

seller-fixed rounds. Figure 7 shows the probabilities of rating different qualities for each

round type.
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Figure 7: Probability first buyer rated, by quality, cost and round type.

Ratings are given for high and low quality sellers in all instances. This gives support to

hypotheses 3-5, showing that raters are motivated by both buyers and sellers. Since ratings

are given for both high and low quality sellers in each round type, this means that raters

are driven to rate by altruism toward buyers and sellers, as well as spite toward sellers. This

finding is a simple but powerful insight into the workings of rating systems, shedding some

light on the basic motives that drive people to give ratings.

Notice that there is no significant difference between buyer-fixed and seller-fixed rounds

in the Free treatment. In both round types the rating probabilities are approximately 90%.

Probabilities vary slightly by quality, though none of the differences are statistically signifi-

cant.
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Looking at the Costly treatment shows a different picture. As already noted, rating

probabilities are much lower across the board than in the Free treatment, and probabilities

in the Costly treatment exhibit a U-shaped distribution. The U-shape is more pronounced

in buyer-fixed rounds than in seller-fixed ones. The minimum of the distribution is also

different between rounds, with the 5-to-6 bin being least likely to be rated in buyer-fixed

rounds and the 3-to-4 bin least likely in seller-fixed rounds. This behavior can be explained

theoretically by values of q′ = 3.36 and R = 5.14, as discussed below.

Finding 3. When ratings are costly, the least frequently rated quality is lower in seller-fixed

rounds than buyer-fixed rounds.

This difference is important, as it shows support for the prediction that seller-centric

and buyer-centric ratings are made relative to different reference points. The theory predicts

that ratings in a buyer-fixed round should be based on deviations from what first buyers

perceive to be fair treatment, while in seller-fixed rounds they should be based on deviations

from what the first buyer believes to be the quality of the untried seller.

Choosing a quality of 5 gives the smallest difference between seller and buyer payoffs

and thus provides the most equitable division of earnings. Post-experimental questionnaires

also showed the mean quality subjects believed to be “fair” was 5.14, due to the equitable

payoffs generated for buyers and sellers. Finding 3 thus supports the theoretical prediction

that in seller-fixed rounds, first buyers are rating based on the seller’s deviation from a fair

quality level.

The average quality offered by sellers in the Costly treatment is 3.36, which lies squarely

in the 3-4 bin. If first buyers’ beliefs about sellers’ quality equaled the observed average

quality, the theory predicts that first buyers would be least likely to rate qualities in the 3-4

bin, exactly as observed in the data. Finding 3 thus supports the theoretical prediction that

first buyers are rating relative to their expectation of sellers’ quality.

The data on the probability of rating also describes the level of concern first buyers show

for sellers and second buyers. For example, if a first buyer rates a seller with quality q < R

in a second buyer-fixed round, we can infer that q < q
S
. Finding the α corresponding to

that cutoff then gives a lower bound on the first buyer’s α.
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Figure 8: Probability second buyer chooses the rated seller, by rating

Using the corresponding cutoff values from the theory on costly second buyer-fixed

rounds, 4% of subjects exhibit behavior implying an α of at least .425, meaning that they

rate sellers regardless of their quality. An additional 42.3% have an α between .425 and .008,

indicating that their decision to rate depends upon the quality they receive. A majority of

first buyers, 53.7%, have an α of less than .008, showing very little concern for sellers. These

first buyers never rate, regardless of quality. In costly seller-fixed rounds, behavior implies

that 6.7% of first buyers always rate, having a β of at least .425. A majority of first buyers

(66%), are sensitive to the quality they observe, having β between .425 and .041. Just over

a quarter (27.3%) never rate in seller-fixed rounds, implying a β less than .041. All of these

numbers are summarized in Table 2.

In addition to examining why ratings are given, it is also important to know the effect

of ratings on market outcomes. Since ratings are assumed to be provided in an attempt

to affect sellers and second buyers, it is important to check what impact ratings have on

behavior for each of those roles.

Figure 11 shows that second buyers are heavily affected by the recommendations of
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Table 2: Types of Raters.

Never Rate Sometimes Rate Always Rate

Buyer-Fixed 4% 42.3% 53.7%

Seller-Fixed 6.7% 66% 27.3%

first buyers. More than 95.2% stay away from sellers with ratings of 1 or 2, and a similar

percentage (93.4%) choose sellers with ratings of 4 or 5. Slightly less than half (44%) of second

buyers choose a seller with a rating of 3, suggesting that buyers are essentially indifferent

when faced with a middling rating. There is no significant difference in behavior between

the Costly and Free treatments.

What impact does the cost of rating have on seller behavior? Figure 9 shows the distri-

bution of qualities offered by sellers in the Costly and Free treatments.

0
5

10
15

20
25

30
P

er
ce

nt

0 1 2 3 4 5 6 7 8 9 10
Quality

Free

0
5

10
15

20
25

30
P

er
ce

nt

0 1 2 3 4 5 6 7 8 9 10
Quality

Costly

By cost of rating
Distribution of Quality

Figure 9: Distribution of qualities offered in the Free and Costly treatments.

Finding 4. Sellers offer significantly higher quality levels in the Free treatment than in the
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Costly treatment.

Finding 4 indicates that the cost of rating is a significant factor in a seller’s decision

of what quality to provide to their buyers. There is a large and significant difference in

the quality levels offered by sellers between the Free and Costly treatments. In the Free

treatment the average quality level is 5.21, 65% higher than the average of 3.16 for the

Costly treatment (p < 0.01, Mann-Whitney). This difference is especially striking when

comparing the distributions of quality in each of the treatments. While 34.3% of sellers offer

a quality of 0 in the Costly treatment, about one third as many (12.4%) do so in the Free

treatment.

This difference can be explained by sellers correctly anticipating the frequency of rating

in the Costly and Free treatments. When rating is free, sellers anticipate that they are

relatively likely to be rated when they offer low qualities and offer higher qualities to avoid

a negative rating. When rating is costly they know that it is relatively more likely that they

will be able to offer very low qualities and escape without a rating. Higher cost of rating

thus results in lower quality being offered by sellers.

It is important to understand how the cost of rating affects the welfare of buyers and

sellers. Figure 10 shows the adjusted average earnings for each type of subject in free

and costly rounds.10 Sellers earnings decrease by 11.8% in the Free treatment, while first

and second buyers’ earnings increase by 49.1% and 39.3%, respectively (p < .01 for each

difference, Mann-Whitney). As would be expected, sellers’ earnings are lower in the more

heavily rated Free environment, while first and second buyers’ earnings are increased. Even

if we exclude the direct benefit of not having to pay for ratings, both types of buyers are

significantly better off when ratings are free.

10Earnings reported are based on amounts subject would receive if neither side of the market was fixed.
Including the actual fixed payments skews the average earnings of sellers and second buyers towards the
fixed earnings of $6.00.
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Figure 10: Average earnings in the Free and Costly treatments.

1.5 DISCUSSION

What can we learn from these findings, and how can they be applied? First, understanding

why people write reviews may help to improve the design of future rating systems. Encour-

aging customers to rate products, especially those which have not yet been rated, is in the

best interests of merchants and consumers.

Second, different systems may affect ratings’ ability to accurately reflect product quality.

For example, consider a product which is of acceptable quality, but has some small probability

of failure. In the face of even a small cost, consumers who receive a functional, though

unremarkable product would be unlikely to provide a rating online. However, the small

number of consumers who do have a negative experience would be very likely to provide

negative ratings for the product. This can lead the product to have inaccurately negative

ratings.

As a simple example, consider a product which is generally of moderate quality, but
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occasionally fails utterly. If 80% of consumers receive a product of quality 5 and 20% receive

quality 0, the average rating in the presence of cost will be 3.07, compared with 3.6 when

rating is free. Designers of rating systems should pay special attention to minimizing any

costs which might discourage consumers from providing ratings. Given that the very act of

providing a rating may be burdensome, designers may want to provide small incentives to

buyers for rating products. A small discount off future purchases, for example, could be all

that is necessary to offset the cost of rating11.

Designers should also be mindful of how they frame their requests for users to give ratings.

They may receive different ratings if they focus consumers’ attention on the seller or on future

buyers. Requests that emphasize helping other buyers can be expected to produce ratings

driven more by comparisons with other products or sellers, whereas requests that focus on

the sellers will have a greater focus on fairness. It is not clear if a rating based on perceived

fairness or relative quality is more desirable in general, as there are likely scenarios in which

each bias is preferred.

1.6 CONCLUSION

This paper examines the factors that influence consumers’ decisions to rate products online.

Using a laboratory experiment I show that consumers are motivated to rate both by a concern

for punishing or rewarding sellers and by a desire to inform future buyers. Introducing even a

small cost of rating has a large effect on rating behavior, leading to fewer and more polarized

ratings. One implication of this finding is that any cost of rating, even a small, and implicit

one, may cause a “blind spot” for moderate quality products. This can cause inaccurate

average ratings for products of variable quality, especially those whose quality distributions

are asymmetric.

There is some evidence that raters rate relative to different reference points when moti-

vated by sellers than when they are motivated by buyers. When concern for sellers is driving

11Note that this approach has the potential to create new incentive problems, as consumers may be
motivated solely by the reward, which could decrease the accuracy of ratings.
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ratings, raters evaluate sellers relative to what they perceive to be fair behavior. That is,

they punish sellers offering quality too far below fair and reward sellers whose quality is

significantly greater than fair.

When concern for other buyers is the motivation, raters evaluate their sellers relative

to the alternative they expect to be available from other sellers. If their seller’s quality is

substantially below the alternative, they warn other buyers away with a negative rating. If

the seller’s quality is substantially above the alternative, they signal the high quality of their

seller with a positive rating.

Sellers are responsive to buyers’ cost of providing ratings, and adjust their quality ac-

cordingly. A small decrease in the cost of rating causes a large and statistically significant

increase in the level of quality offered by sellers. This contributes to existing evidence, such

as Bolton et al. (2004) that suggests consumer generated ratings systems may significantly

increase consumer welfare. This finding further demonstrates that the cost of rating should

be a major concern for designers of rating systems.

This paper suggests several directions for future research. One important feature of

online ratings that has been intentionally removed from this setting is the accumulation of

ratings over time. Since only one person can be the first rater for each product, most ratings

are given in the shadow of many previous buyers’ opinions. Given a series of pre-existing

ratings by other raters, do consumers provide their honest opinion of a product, or do they

attempt to adjust the mean rating toward what they feel is the correct value?

It would also be valuable to see portions of this experiment replicated in a more nat-

uralistic environment. While the laboratory gives us unrivaled control over experimental

conditions, it would be useful to document behavior described in this paper “in the wild.”

In particular, it would be interesting to see how the distribution of ratings for a real product

varies with the cost of rating.
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2.0 OPTIMAL AVAILABILITY OF ONLINE RATINGS

2.1 INTRODUCTION

How do online ratings affect market outcomes? It may seem that so long as ratings are

accurate, greater access to ratings and more informed buyers will enhance market efficiency.

Buyers will know which sellers are of high quality, and the best sellers will be the most

popular. However, this paper shows that providing buyers with more ratings information

does not necessarily improve market outcomes. In fact, increasing the number of informed

buyers can actually lead to worse sellers dominating the market, and lower buyer welfare.

The basic intuition behind this result is that uninformed buyers carry out an essential role

experimenting with new sellers. Even though it is in each buyer’s interest to be as informed

as possible, social welfare is maximized when some buyers are forced to buy without knowing

what experiences previous buyers have had in the market. This leads to a tradeoff between

informing buyers, which allows them to choose the best known seller, or not informing them,

leading to a richer set of options for later buyers.

Previous literature has shown that online ratings are used extensively by consumers, and

that they significantly influence product sales (Chevalier and Mayzlin, 2006). While it is

has been established that ratings influence market behavior, it is not clear how much they

improve it.

Existing work in the literature on herding and information cascades has studied how

consumers aggregate information from those who have moved before them to make more

informed decisions. A common thread throughout this extensive literature is the focus on

the tension for buyers between following private and public information. Individuals can

rationally ignore their own valuable private information in the face of sufficiently many
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other people taking actions that suggest that information is incorrect. The canonical model

of information cascades that first captured these insights was simultaneously introduced in

Banerjee (1992) and Bikhchandani et al. (1992).

The classic information cascade model describes agents with private, noisy signals of the

state of the world. Each agent in turn makes a decision based on their signal. An agent’s

action is visible to all subsequent agents, although their signal itself is never observed. It is

possible for a string of misleading signals to cause a sequence of suboptimal decisions to be

made. Later agents observe that all previous agents have chosen the same action, and even

if their own information suggests that they take a different action, they rationally ignore

their signal and follow the behavior of those who came before.

There are two important factors in the cascade model. First, each agent has some

private information that is never publicly observed. Second, and more crucially, later agents

are influenced by previous ones because they know that earlier agents likely had access to

more information than they do. In other words, they are trusting that the collective decision

making of previous agents contains better information than their own single, noisy signal.

The information cascade model is used to explain inefficient herding, in which groups of

people crowd into a single suboptimal choice, despite a better option being available. This

paper presents a simple complimentary explanation for suboptimal herding. I show that

when there is no private information among agents similar inefficient herding can occur. For

some contexts this is a significant a step towards a more realistic model. More generally, it

is a simplification of the traditional information cascade model while still yielding similar

results.

There are also several lines of research outside of the information cascade literature that

are relevant to the current paper. The literature on optimal experimentation examines the

tradeoff between experimentation and exploitation when choosing between a known safe

option, and an unknown option. The most relevant paper is Bolton and Harris (1999) who

study the classic “n-armed bandit” problem, extended to many agents. In their paper each

agent may choose the amount and timing of their experimentation, and all information

they acquire is visible to all others. This leads to a strategic interaction in which there is

an incentive for each agent to free-ride on other’s experimentation. They find that agents
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exhibit a small amount of initial experimentation that gradually increases before rapidly

dropping to zero, as the optimal action is discovered.

Bergemann and Välimäki (2000) examine the issue of consumers performing searches to

determine whether a company newly entered into the market is of higher quality than an

incumbent of known quality. They find excess experimentation among consumers, driven

by the firms ability to change prices in response to consumers observed outcomes, thereby

extracting some of the benefit from the consumers experiments. The firms ability to benefit

from consumers experimentation modifies the quantity and efficiency of consumer search,

distorting the view of its effectiveness. This is an especially important result, as many

papers examining consumer experimentation ignore prices.

Another work showing the potential for ratings to have undesirable effects on markets is

Satterthwaite (1979). He explores perverse price effects from reputations and the supply of

doctors in local markets, finding that an increase in the supply of doctors may lead to an

increase in the cost of medical care. This counterintuitive result stems from the reduction in

consumer information sharing about doctor quality due to fewer patients frequenting each

doctor. This is a product of the fixed number of consumers and increased number of doctors.

Since there are fewer patients per doctor, the probability of a new patient meeting one of

the doctors current patients shrinks as the number of doctors grows.

King (1995) addresses free-riding in a model with publicly observable search. He finds

equilibrium behavior characterized by a single individual conducting extensive search while

all others follow along after the search is completed. He finds there to be serious inefficiency

in both the collection and distribution of information among consumers. Like Bergemann

and Välimäki, King’s model focuses on the role of prices in consumer search.

This paper’s main contribution is showing that market outcomes vary non-monotonically

in the amount of information available to consumers. This paper also illustrates the potential

for suboptimal outcomes with consumer search in the absence of many of the assumptions

made in previous works. The environment has been simplified in several ways. First, I

assume that each agent has no private knowledge about the state of nature. Second, I

assume that the outcome resulting from a given action is revealed as soon as an agent has

experienced it. This means that the usual information-cascade story no longer holds, as
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there are no inferences to be made about other’s information or behavior. Third, I make no

assumptions on the number of sellers in the market, nor do I require a known outside option

or “incumbent” seller.

The remainder of the paper is organized as follows. Section 2.2 address the model

with deterministic quality. Sections 2.2.1 and 2.2.2 examine the cases with perfect, and

imperfect usage of rating, respectively. Section 2.3 examines the model when quality varies

stochastically. Section 2.4 looks at the potential for suppressing some buyers’ access to

ratings to improve market outcomes. Section 2.5 concludes.

2.2 DETERMINISTIC QUALITY

The first and simplest environment I study assumes that each of a number of sellers offers an

ex-ante identical experience good. A sequence of buyers select sellers, each trying to select a

seller of the highest possible quality. Each buyer rates the seller she interacts with, informing

future buyers of that seller’s quality.

I first consider a model with perfect rating, in which buyers always learn the ratings that

have been given by other consumers. I then examine a model with imperfect rating, when

buyers are only probabilistically informed.

2.2.1 PERFECTLY INFORMED BUYERS

There are m sellers, called S1, . . . , Sm and n buyers, B1, . . . , Bn. Each seller i has a quality

qi that is an i.i.d. draw from the uniform distribution over the unit interval [0, 1], and is

not known to buyers. Beginning with B1, buyers move sequentially, each choosing a seller

and receiving a payoff equal to that seller’s quality. After choosing a seller the buyer “rates”

that seller and reveals their quality to all other buyers. Subsequent buyers thus observe the

outcomes of all earlier buyers’ purchases prior to selecting a seller of their own.

As a simple example, consider the case with three buyers and three sellers. Without loss

of generality, assume that B1 chooses S1. If q1 > 1/2 then both the second and third buyers
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will also select S1. B2 will select S1 since q1 > E(q2) and q1 > E(q3). B2 will not reveal

any new information, since she chose the same seller as B1, and thus B3 will face the same

decision as B2 and also select S1. Notice that while all buyers will choose the same seller if

that seller’s quality is greater than 1/2, the expectation of the highest quality among S2 and

S3 is 2/3. Thus if 1/2 < q1 < 2/3, the buyers most likely chose seller of suboptimal quality.

This simple example can easily be extended to any number of buyers and sellers. Re-

gardless of how large the market is, once a seller with q > 1/2 is found all subsequent buyers

will rationally choose that seller rather than trying a new seller with expected quality equal

to 1/2. Since the first seller with q > 1/2 will receive all later sales, the most popular seller

will have expected quality E(q|q > 1/2) = 3/4. With four sellers the expected quality of

the best seller is 3/4, and the optimal seller is just as likely to be selected as one of the

suboptimal ones. In general, as the number of sellers grows large the probability that the

selected seller is of optimal quality goes to zero.

While this situation is undoubtedly an improvement over a market without ratings, it is

surprising that providing buyers with the complete history of transactions does not lead to

a fully efficient market.

2.2.2 IMPERFECTLY INFORMED BUYERS

Consider now an environment in which consumers are not always informed of previously

sampled sellers. This can be modeled by consumers being informed, or “reading” previous

ratings with probability r. When a consumer has read ratings (with probability r) she knows

the quality of all sellers who have been sampled before her. When she has not read (with

probability 1− r) she is totally uninformed of seller quality.

For ease of analysis I consider the case with a continuum of sellers available, when m→

∞. This assumption avoids having to account for the possibility that an uninformed buyer

will choose a previously sampled seller. Reducing the number of sellers and allowing for this

complication leads to a qualitatively similar result, but with a lower rate of experimentation,

since some uninformed buyers will “waste” their choice on a previously tried seller.

Since the probability of a buyer having q > 1/2 is itself 1/2, the expected number of
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sellers tried before such a high quality seller is found is 2. The expected number of sellers

who have been tried after k buyers have purchased is thus (1− r)(k − 2) + 2. The expected

best known quality is the highest order statistic for the number of sellers sampled, which is1

(1− r)(k − 2) + 2

(1− r)(k − 2) + 3
=

k + 2r − kr
1 + k + 2r − kr

and the expected utility of the k + 1th buyer is

E(uk+1) = r
k + 2r − kr

1 + k + 2r − kr
+ (1− r)1

2
=

1 + k + r + 2r2 − kr2

2 + 2k + 4r − 2kr
.

Figure 11 shows the best observed quality for varying numbers of buyers. The best

observed quality is decreasing in the probability of reading and increasing in the number of

buyers.

n=1000
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Best Observed Quality

Figure 11: Expected best quality observed after k sellers have been sampled, for k =

50, 150, 250, 500, 1000.

The average welfare for all buyers can then be calculated as

1

n

n∑
k=1

1 + k + r + 2r2 − kr2

2 + 2k + 4r − 2kr
=

(1 + n)(r2 − 1) + 2r ·Ψ(2+n+r−nr
1−r

)− 2r ·Ψ(1+2r
1−r

)

2n(r − 1)

1It may be helpful to remember that the nth order statistic for n draws from the uniform distribution is
n/(n+ 1)
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Where Ψ(z) is the digamma function defined as

Ψ(z) =

∫ ∞
0

e−t

t
− e−zt

1− e−t
dt

Unfortunately, due to the presence of the digamma function the expression for average

welfare cannot be solved analytically for an optimal r. Since an analytical solution for r is not

possible, I instead report here numerical solutions for several values of n. The welfare maxi-

mizing value of r increases from .83 with 50 buyers to .89 with 250 buyers and .93 with 1, 000

buyers. The average utility over the range of r and for a variety of n is shown in Figure 12 be-

low. While the optimal r is increasing in the number of buyers, even with n = 1, 000, a large

number in real-world terms, it remains optimal to have a significant fraction (7%) of buyers

uninformed. As the number of buyers grows the benefit of added information also grows,

necessitating additional uninformed buyers to provide information through experimentation.
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Figure 12: Average utility for n total buyers, n = 50, 150, 250, 500, 1000

It is possible to obtain an analytical solution for average welfare if we assume an infinite

sequence of buyers. As the number of buyers tends to infinity we have
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lim
n→∞

1

n

n∑
k=1

1 + k + r + 2r2 − kr2

2 + 2k + 4r − 2kr
=

1 + r

2

meaning that with sufficiently many buyers, average payoffs are strictly increasing in r

and full reading is optimal.

It should be noted that while this paper focuses on how well-informed buyers should be,

it is equally natural to ask what effect the frequency of rating has on market outcomes. The

problem of encouraging more consumers to leave ratings has been studied before (Chen et

al. 2008) since more information about sellers and products is generally considered to be

beneficial for consumers. This paper’s model shares that prediction, however for this model

the dynamics of a change in the probability of rating are straightforward.

The effect of changing the rating frequency is simple: If each consumer rates with proba-

bility s, the market behaves as if the number of buyers is decreased by (1− s)m. Each buyer

who does not rate has no impact on future buyers, since he does not reveal the quality of

his seller. One way to think of this is that each buyer has a probability 1− s of leaving the

market exactly as he found it, leading the next buyer to be faced with an identical decision.

It is easy to imagine alternative models of buyer behavior in which a change in the

probability of rating has a more complex effect on buyer behavior. For example, if buyers

choose whether or not to participate in the market an increase in the number of ratings

may lead to more buyers participating. More buyers participating would in turn lead to an

increase in the number of ratings, thus making it attractive for even more buyers to enter

the market. This is an interesting and appealing model although it greatly complicates the

focus of this paper: the analysis of how reading probabilities affect the market.

2.3 STOCHASTIC QUALITY

In practice, product quality tends not to be deterministic. Quality may be objectively

variable due to manufacturing inconsistencies introducing defects into products, or it may

vary subjectively due to consumers having heterogeneous tastes. Both cases can be captured

by allowing quality to vary stochastically.
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Allowing for stochastic quality is an important step to increase the validity and robustness

of the model’s predictions. In the deterministic model, a seller’s quality is perfectly and

permanently revealed after it is sampled. In the stochastic case a seller’s quality is never

known perfectly, and learning about that quality is a gradual process involving multiple

buyers. Because of this randomness, the exact sequence of outcomes observed from a seller

of a given quality is also random. This means that a high-quality seller could generate a bad

outcome the first time he is selected by a buyer. This would cause future buyers’ expectation

of that seller’s quality to be below that of untried sellers, leading him to have no further

sales. This added source of uncertainty means that even sampling all sellers is not enough

to identify the highest quality seller.

Because of the difficulty in solving the environment with stochastic quality analytically, I

use a small computational simulation of buyer behavior to examine the market with stochas-

tic quality. This model is similar to before, except that each buyer’s payoff is no longer equal

to her seller’s quality, but is randomly determined by it. Qualities are still drawn from the

uniform distribution over [0, 1], but a seller with quality q now provides a buyer with a good

outcome with probability q and a bad outcome with probability 1 − q. Buyers receive a

payoff of one from a good outcome and zero from a bad outcome. The expected payoff to a

buyer from choosing a seller i is just qi, as in the deterministic case.

The simulations were programmed in Python and run with 50 sellers and between 50

and 1, 000 buyers, in 50 buyer increments. The probability of reading was varied between

zero and one in increments of 1/60. Each combination of reading probability and number of

buyers was then run for 2, 000 iterations, leading to a total of 2, 400, 000 observations.

2.3.1 SIMULATION RESULTS

The behavior observed in the stochastic case is very similar to the analytical results in the

deterministic case. As shown in Figure 13, the best discovered quality is decreasing in the

probability of reading, with more buyers leading to a higher quality seller being found. Even

for relatively large numbers of buyers (1,000), the quality of the best seller is significantly

lower when all buyers read (r = 1) than for any other value (p < .01 Mann-Whitney). With
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full reading the best observed quality is .822 (95% confidence interval [.821, .823]) for any

number of buyers. This is substantially higher than the prediction for the deterministic case,

in which full reading leads to values between .66 and .68, depending on the number of buyers.

This difference in best discovered quality is likely due to the fact that above average

sellers with quality near the mean are relatively likely to have a bad initial outcome and be

passed over by future buyers. These are sellers, who, by virtue of their above-average quality,

would continue to be chosen in the deterministic case. The reverse situation, a below average

seller having an initially good outcome, is more likely to be corrected since additional buyers

are likely to reveal the sellers true, below-average quality. The combination of these two

effects leads to more experimentation, and an increase in the best observed quality.

Average welfare also shows a similar pattern to the deterministic case. As Figure 14

shows, welfare is strictly increasing across much of the range of r, peaks at a high value

of r, and then decreases as r approaches one. Sequential Mann-Whitney tests show the

welfare maximizing level of r varies based on the number of buyers, ranging from .93 with

100 buyers to .95 with 1, 000 buyers (p < .01 in each case). Average welfare is also in-

creasing in the number of buyers, resulting both from the improved quality found and from

fact that the worse-informed early buyers are a smaller fraction of the total number of buyers.

A significant difference between the stochastic and deterministic cases is the outcome

for a given number of buyers. With stochastic quality more buyers are necessary to obtain

similar results to the deterministic model. This is not surprising, considering that a seller’s

true quality is known immediately after selection in the deterministic case, but is only learned

gradually in the stochastic case. Since real-world products often have variable or subjective

quality, this suggests that the deterministic case may give overly conservative estimates of

the optimal reading level for a given number of buyers.
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Figure 13: Best observed quality, n = 50, 150, 250, 500, 1000.
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Figure 14: Average buyer welfare, n = 50, 150, 250, 500, 1000.
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2.4 SUPPRESSED RATINGS

Despite the differences between the deterministic and stochastic cases, the first best outcome

in both instances is still significantly worse than optimal. Even using the ideal reading

frequency leads to a seller of significantly less then maximal quality becoming most popular,

meaning that the market remains inefficient.

To improve this situation we can allow for the frequency of reading to change across

time. Rather than setting a single reading frequency once and for all, there are instead two

stages to informing buyers. In the first stage, early buyers are kept uninformed, leading to

high levels of experimentation and a rapid improvement in the best known quality. In the

second stage, the remaining buyers are perfectly informed of previous outcomes, allowing

them to fully exploit all existing information. This suppression of early ratings eliminates

the long-term inefficiency of always having some fraction of buyers uninformed, while still

allowing for the experimentation necessary to find high-quality sellers.

Consider again the deterministic case, where buyers’ payoffs are equal to their seller’s

quality. If r = 0, meaning that buyers are completely uninformed, the best expected quality

observed after k buyers have purchased is k
k+1

. Thus a relatively small number of uninformed

buyers leads to a high quality seller being discovered. For example, if the first 10 buyers are

uninformed, the expected best seller has quality of 10/11 = .91. This is the same quality

discovered by 50 buyers with a reading probability of .85. For the case with 50 buyers

however, the exploration is a very gradual process, since 85% of the time buyers will choose

a previously selected seller.2 Early buyers will have lower quality sellers available to them

than later buyers.

While keeping all buyers uninformed does lead to much more rapid experimentation, is

also comes with the obvious downside that buyers are never able to exploit the improved

information. Suppressing reading in the first stage, then allowing full reading in the second

stage attempts to take the best from both approaches.

The social welfare from having t uninformed buyers and n− t informed buyers is

2This assumes a seller with q > 1/2 has been found. Early buyers will perform more experimentation,
since they are more likely to not know of an acceptable seller. This is a minor concern, however, since on
average an acceptable seller will be found after only 2 buyers have moved
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t · 1

2
+ (n− t) t

t+ 1
=
t(1 + 2n− t)

2(1 + t)

and the optimal number of informed buyers is thus

−1 +
√

2
√

1 + n

As Figure 15 shows, for n = 50 buyers it is optimal to have 9 (18%) uninformed buyers,

and the remainder fully informed. For n = 500 the number of uninformed only increases to

27 (5.4%).

Compared to the standard rating system with r = 1, suppressed ratings provide a large

improvement in average welfare, especially as the number of buyers increases. As Figure 16

illustrates, the welfare from the suppressed system goes from being equal to the standard

system with 14 buyers, to being 40% greater with with 500 buyers.
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Figure 15: Optimal percentage of uninformed buyers.

Suppressing ratings does harm the earliest buyers by withholding information from them.

However given the increase in average buyer welfare, these early buyers could be compensated

by either a market-making retailer or directly from later buyers.
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Figure 16: Average welfare comparison with standard and suppressed ratings.

A system with suppressed ratings has already been implemented by eBay.com, although

for different reasons. Rather than encouraging experimentation, eBay delays the release of

the first several ratings in order to encourage ratings. By waiting until several ratings have

been given they make it difficult for sellers to connect ratings to buyers, thereby preventing

retribution by buyers giving negative feedback. The observation that suppressing early

ratings may aid buyers in finding the best seller recommends use and perhaps expansion of

this existing system.

2.5 CONCLUSION

This paper examines a model of consumer search with a variable supply of information to

buyers. This is simple alternative to the canonical information cascade model of herding,

presented in the context of online ratings. It shows that individually rational but socially

suboptimal herding can occur without any private signals guiding agents.

Findings do not differ significantly between the simplest model, with deterministic qual-
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ity, and the richer, stochastic model. The highest quality that is found by any buyer is

decreasing in the probability that buyers read ratings. This is driven by higher reading

probabilities meaning that fewer buyers make uninformed purchases. Informed buyers will

generally buy from a seller that was already selected by a previous buyer, whereas unin-

formed buyers may choose a new seller, increasing the number of rated sellers for future

buyers. Having more sellers to choose from increases the expected quality of the best of

those sellers, leading to higher qualities from lower reading probabilities.

A policy implication of these findings is that online retailers may actually benefit from

showing ratings to few buyers, at least initially. This requires some additional incentive

to uninformed buyers to offset the loss of information, but can ultimately lead to better

information for consumers and thus to higher sales for retailers.

There are many possible extensions to this work. Studying the effect of alternative

models of stochastic quality is a very natural next step. The model in this paper describes

stochastic quality as being binary, either “good” or “bad.” Obviously quality can be more

nuanced, taking on many different levels and even multiple dimensions.

It would greatly enrich the model to endogenize the number of buyers entering the market

based on observed ratings. This means that buyers could be drawn into the market by more

and better ratings, or that the market could potentially collapse with enough poor ratings.

Related to the idea of endogenizing entry to the market, it is reasonable to endogenize

a buyer’s decision to rate, depending on the outcome they have observed. As Lafky (2010)

has shown, buyers are more likely to rate products of extreme quality, leading to a U-

shaped distribution of ratings. Including this behavior in the model could actually lead

to an improved market, as good though sub-optimal sellers may remain unrated even after

being selected. This would decrease the likelihood that buyers would get stuck in the type

of undesirable outcome described in this paper.
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3.1 INTRODUCTION

This paper completely characterizes the set of Bayesian Nash equilibria of the Vickrey auction

for multiple identical units when buyers have non-increasing marginal valuations and there

are at least three potential buyers. Equilibria fall into two classes:1 In the first class, there

is positive probability that there are positive bids below the maximum valuation. In this

class, there is a threshold for valuations such that all bidders bid truthfully on any unit for

which they have a valuation exceeding the threshold. Furthermore, there is a distinct bidder

who bids the threshold value on any unit for which his valuation is below the threshold.

The remaining bidders bid zero on any unit for which their valuation is below the threshold.

In the second class of equilibria, there is zero probability of positive bids below the highest

valuation. In this class, each bidder bids at or above the highest valuation on some number

of units and bids zero on the remaining units in such a manner that the total number

of positive bids across all bidders equals the number of units that are for sale. In any

equilibrium, except the conventional equilibrium in dominant strategies, there is positive

probability that a bidder wins a unit at a price of zero. In this sense all of these equilibria

are collusive.

We also observe that all equilibria of the Vickrey auction are ex-post equilibria, i.e.

bidders have no incentive to change their behavior even after all private information is

revealed and therefore suffer no regret. Indeed, the entire set of equilibria within the first

class remain equilibria for any change of the distribution function of bidders’ valuations,

including changes that affect the support of the distribution of bidders’ valuations.

With any positive reserve price equilibrium becomes unique: Bidders bid truthfully on all

units for which their valuation exceeds the reserve price. From this perspective, our result can

be interpreted as providing an alternative foundation for the focus on the truthful-bidding

equilibrium. Finally, we establish that only the truthful-bidding equilibrium ensures that

the final allocation is in the core for all realizations of valuations.

We are interested in a full characterization of the equilibrium set of the Vickrey auction

1In the introduction we ignore inessential variations of behavior on measure zero sets of valuations. These
are explicitly taken into account in Section 4.
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for the following reasons: First, it is often argued that the single- or multi-unit Vickrey

auction is susceptible to collusion. We show that a continuum of collusive equilibria exists,

thereby providing some support for this view. (Although as noted above, we also estab-

lish that with any effective reserve price and at least three bidders, equilibrium is unique.)

Second, for many distributions of valuations, there is a tension between selecting weakly un-

dominated and payoff dominant equilibria in the multi-unit Vickrey auction. The truthful-

bidding equilibrium results in comparatively high prices. In contrast, in the second class of

equilibria the bidders obtain the units for free. In this class of equilibria, however, the units

are allocated inefficiently across bidders, which reduces the bidders’ total expected payoffs.

Nevertheless, for many distribution functions bidders prefer equilibria in the second class to

truthful bidding.2 Furthermore, for some distributions of valuations, equilibria in the first

class with a strictly positive threshold payoff dominate both truthful bidding and equilibria

in the second class. Such equilibria improve the allocation relative to equilibria in the sec-

ond class while still suppressing prices relative to truthful bidding (see Blume and Heidhues

(2001) for an example in the single-unit case).3 Third, if the auction is repeated (with an

arbitrarily small positive probability), the one-shot equilibria can be used to construct collu-

sive equilibria in which no players uses a weakly dominated strategy for any arbitrarily small

positive discount factor. Fourth, if collusion is the result of a non-binding agreement, then

it seems reasonable to assume that such communication has a small effect on the preferences

in the subsequent auction. Any arbitrarily small (psychological) cost of breaking one’s word

and deviating from the informal agreement, however, transforms all collusive equilibria into

strict equilibria.4 Finally, the issue arouses our intellectual curiosity: We think it is inter-

esting to know the implication of the most fundamental solution concept in game theory for

2Proposition 2 in Blume and Heidhues (2008) shows for the single-unit case that the equilibria in class two
payoff dominate the truthful equilibrium for the uniform distribution and any distribution that first-order
stochastically dominates it.

3Collusion via equilibria in the first class may also be more difficult to detect than collusion via equilibria
in the second class because prices vary in this class of equilibria, which provides another reason to study
these equilibria.

4Think of the dinners held by Judge Gary, chairman of U.S. Steel’s board of directors, at the beginning
of the 20th century that according to him lead to such mutual respect among steel industry leaders that all
industry leaders found the obligation to cooperate “more binding [...] than any written or verbal contract”.
For a brief discussion of this case and, more generally, the role of “gentlemen agreements” in collusive
arrangements see Scherer and Ross (1990, p. 235-236).
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the multi-unit Vickrey auction—especially, given the simple structure of the set of Bayesian

Nash equilibria.

Vickrey (1961) introduced the second-price sealed-bid auction for both the single- and

the multi-object case. With private values, there is a unique equilibrium in undominated

strategies: Bidders bid their valuations. Milgrom (1981) notes the existence of other (asym-

metric) equilibria in the single-unit case. For two bidders, Plum (1992) describes yet more

equilibria in the single-unit case. Blume and Heidhues (2004) characterize all equilibria of

the single-unit Vickrey auction with independent private values and three or more bidders.

Blume and Heidhues (2001) also cover the two-bidder case. Tan and Yilankaya (2006) show

the existence of asymmetric equilibria with participation costs that are undominated. In

contrast to these papers, here we consider the more complex multi-unit case.

3.2 SETUP

There are n bidders indexed by i = 1, . . . , n, and m identical units j = 1, . . . ,m. Bidder i’s

vector of valuations is denoted vi = (vi
1, . . . , v

i
m), where vi

j represents the marginal valuation

of the j-th unit. Thus the value of obtaining j units is
∑j

k=1 v
i
k. We assume marginal

valuations to be non-increasing, i.e. vi
j ≥ vi

j+1, for all j = 1, . . . ,m − 1. Each bidder i’s

valuation vector is independently drawn from some distribution Fi that has positive density

everywhere on the set V := {vi ∈ [0, vh]m|vi
j ≥ vi

j+1, ∀j = 1, . . . ,m− 1} and no mass points.

The auction rules are as follows: Each bidder i submits a bid vector bi = (bi1, . . . , b
i
m) ∈

B := {bi ∈ Rm
+ |bij ≥ bij+1,∀j = 1, . . . ,m−1} independently from and simultaneously with the

other bidders. Restricting bid vectors to belong to the set B is without loss of generality. It

simply expresses that bids in any bid vector are automatically ranked from highest to lowest,

and permits us to talk about “a bidder’s bid on his first, second, . . . unit.” The auctioneer

collects all bidders’ bids and ranks them from the highest to the lowest bid, breaking ties by

choosing with equal probability among all possible rankings among tying bids. Each bidder

receives a unit for each of his bids that is among the m highest ranked bids. If bidder i wins

ki units, then he pays the ki highest losing bids among his rivals. Formally, define c−i as the
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vector consisting of the m highest bids submitted by bidders other than bidder i, ordered so

that c−i
1 ≥ . . . ≥ c−i

m . A bidder who gains ki units pays
∑ki

k=1 c
−i
m−ki+k

.

We are interested in the Bayesian Nash equilibria of this game. Define B as the collection

of Borel subsets of B. Then, a (behaviorally) mixed strategy for bidder i is a function

βi : B × V → [0, 1] that satisfies (1) for all W ∈ B, the function βi(W, ·) : V → [0, 1] is

measurable, and (2) for every vi, the function βi(·,vi) : B → [0, 1] is a probability measure.5

A profile of mixed strategies for all bidders has the form β = (β1, . . . , βn) = (βi, β−i). Let

Ui(β,v
i) denote the expected payoff of type vi of bidder i from the mixed strategy profile

β. Then the profile β̂ is a Bayesian Nash equilibrium, henceforth simply equilibrium, if

Ui(β̂,v
i) ≥ Ui(β

i, β̂−i,vi) ∀i, ∀vi,∀βi.

We say that the strategy βi is pure if there exists a bid function bi : V → B such

that βi({bi(vi)},vi) = 1 for all vi. For simplicity, we refer to the bid function bi as a pure

strategy below. We denote a profile of bid functions by b(·).

3.3 EXAMPLES

In order to illustrate the panoply of equilibria that are possible with only two bidders, to

understand the role of limiting attention to the case with three or more bidders, and to get

intuition for the proof of our characterization result, here we briefly discuss a few simple

examples.

In Figure 1, we represent the essential aspects of one (type of) equilibrium in an auction

with two bidders and two items for sale. Some features of this example survive when we

restrict attention to three or more bidders, others do not. The two panels on top represent

bidder one’s bid function. Bidder two’s bid function is shown in the bottom two panels. In

this equilibrium bidder i’s bid on his first (second) unit depends only on the higher (lower)

of his two valuations. This feature, that a bidder’s bid on his jth unit is independent of his

5See Milgrom and Weber (1985).
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valuation for his other units will be a general characteristic of all equilibria in which there

is a positive probability of positive bids below the maximum valuation.
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Figure 1

Bidder 1 bids b∗1 on his first unit provided his high valuation satisfies v1
1 ≤ b∗1. Otherwise,

he bids truthfully on his first unit. Since bidder 1 bids above his valuation on his first unit

whenever he does not bid truthfully on that unit, we refer to him as a high bidder on his

first unit. Bidder 1 bids zero on his second unit whenever his low valuation satisfies v1
2 ≤ b∗2.

Otherwise, he bids truthfully on his second unit. Since bidder 1 bids below his valuation on

his second unit whenever he does not bid truthfully on that unit, we refer to him as a low

bidder on his second unit.

In the example, each bidder is a high bidder on his first unit and a low bidder on his

second unit. We will find that having multiple high bidders is possible with more than two

bidders only if the probability of positive bids below the maximum valuation is zero.

Observe also that in the example the critical value b∗i at which bidder i switches from

bidding above his valuation to bidding truthfully on his first unit, differs across the two
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bidders. Again, this cannot occur with three or more bidders. With three or more bidders,

if there is positive probability of positive bids below the maximum valuation, an equilibrium

with distinct threshold values (b∗1 and b∗2) as in Figure 1 is ruled out. To understand this,

notice that a third bidder facing bidding behavior by the other two bidders as in Figure 1

would want to bid truthfully on his first unit for valuations above b∗2. But with two bidders

bidding truthfully on their first unit above b∗2, it is no longer optimal for bidder 1 to maintain

his postulated bidding strategy on the first unit.

This, in a nutshell, is the contagion effect that drives much of our result: If some bidder

in a putative equilibrium puts in positive bids below the maximum valuation on some unit,

e.g. bidder 1 bids near b∗2 on his second unit, then for any other bidder, say bidder 2, who

competes for that unit, those bids become potential prices. This disciplines this bidder’s

bidding behavior on that unit (viz. bidder 2 does not overbid on his first unit for valuations

above b∗2). With three or more bidders in the auction, this discipline extends to at least two

bidders. As a consequence the discipline extends to other units. In the example, with three

bidders, it is no longer optimal for bidder 1 to overbid on his first unit for valuations for that

unit in [b∗2, b∗1].

A further possibility for equilibria in the two-bidder case, which generalizes the example

of Figure 1, is that bidders have multiple gaps in their bid function, bidding truthfully

outside the gaps, and adopting complementary roles of high and low bidders over the gaps.

Here bidder one’s gaps in his bid function for his first unit match bidder two’s gaps in his

bid function for his second unit, and vice versa. Any number and (matching) placement

of gaps is possible. With three or more bidders all equilibria of this form disappear. The

reason is that if two bidders have bid functions with gaps of this form, the third bidder has

an incentive to bid inside these gaps. As a consequence, the bid functions with gaps are no

longer optimal.
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3.4 RESULTS

We have two principal results that jointly characterize the entire set of equilibria of the multi-

unit Vickrey auction with three or more bidders. Our first result describes all equilibria in

which there is positive probability of positive bids below the maximum valuation; i.e., there

exists at least one bidder i for whom bij ∈ (0, vh) with positive probability for at least one

item j. We show that for each equilibrium in this class, there is a critical value b∗ such that

every bidder i bids truthfully on any unit j for which vi
j ≥ b∗. Furthermore, there is a single

high bidder ı̂ who bids b∗ on any unit j for which v ı̂
j ≤ b∗. The remaining bidders will be

referred to as low bidders. Any low bidder i bids zero on any unit j for which vi
j ≤ b∗. It

is important to emphasize that in each equilibrium the high bidder is unique and that the

critical value b∗ is the same for all units. All proofs are in the Appendix.

Proposition 3. Let the number of bidders satisfy n ≥ 3. Consider the class S1 of profiles

of bid functions b (·) for which there is a bidder ı̂ and some b∗ ∈
[
0, vh

)
such that

bı̂j
(
vı̂
)

=

 v ı̂
j if v ı̂

j ≥ b∗

b∗ otherwise

for all j = 1, ...,m and

bij
(
vi
)

=

 vi
j if vi

j > b∗

0 otherwise

for all i 6= ı̂ and all j = 1, ...,m. Any profile in the class S1 forms an equilibrium. Conversely

for any equilibrium β in which bij ∈
(
0, vh

)
with positive probability for some bidder i and

unit j, there is a profile of bid functions in the class S1 that describes the behavior of each

bidder for almost all valuations.

To check that these strategies are equilibria it suffices to verify that no bidder can gain by

deviating and playing his dominant strategy. First, consider the low bidders. For valuations

above b∗, these bidders bid their valuation anyhow. In case the valuation for some unit j is

below b∗, these bidders bid zero for this unit and do not obtain it. Raising such bids to their

true valuation vi
j < b∗, does not increase the probability of obtaining the unit, since the mth

highest bid is at b∗ or above. Thus low bidders are playing a best response to the strategy of
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the high bidder. Similarly, suppose the high bidder has a valuation for unit j below b∗. In

equilibrium, with probability one, he only obtains the unit if the m− j + 1-th highest rival

bid is zero, and thus pays a price of zero. Thus, lowering his bid to his valuation neither

affects the probability with which he obtains the unit nor the price. Again therefore, he

plays a best response.

The converse statement of Proposition 1 requires that we allow for variants on sets of

measure zero of valuations. To see why, observe, for example, that if a bidder i bids above

vh— say 2vh—for unit j whenever his valuation for that unit, vi
j, equals vh, then the resulting

strategy profile is still an equilibrium. Similarly, the high bidder can bid in the interval (0, b∗)

on a given unit for a set of valuations that has measure zero without affecting the equilibrium

payoffs and incentives of his rivals or her own payoff. The converse statement proves that all

differences from the strategy profiles in S1 are inessential in the sense that they are restricted

to sets of measure zero of valuations.

For the converse result, the key observation is that if a bidder bids at or near some

interior value b∗ with positive probability, this induces a contagion process with the result

that all bidders bid their true value above b∗ for all units. Suppose bidder 1 bids at or

near b∗. Then this bid must sometimes win as otherwise there would be a bidder who would

obtain the unit at a price weakly above b∗ also when he has valuations below b∗ for all units.

This bidder would gain by switching to bidding his valuation on all units. Now consider

bidder 2 and hold the behavior of all bidders other than bidder 1 and 2 fixed. Since the bid

b∗ sometimes wins, there exists at least one unit for which bidder 2 competes directly with

bidder 1’s bid b∗—in the sense that by bidding slightly above b∗ rather than below, bidder 2

increases the probability of obtaining that unit. As this is true for all bidders other than 1,

all bidders sometimes bid at or above b∗. Hence, with n ≥ 3, there are both potentially many

bids above as well as below b∗, which induces bidder 1 to bid at or above b∗ for many units,

which in turn induces other bidders to bid at or above b∗ for many units. This contagion

process continues until all bidders bid with positive probability at or above b∗ for all units.

Furthermore, as argued in Section 3, there can be no gap in the bid functions above b∗ with

n ≥ 3 bidders as otherwise some bidder has an incentive to bid in the gap. Hence, for any

unit all bidders bid their valuation above b∗. Finally, it is impossible for two bidders to have
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a mass point at b∗.

We are left to consider the case in which no bidder bids in the interval (0, vh). In an

equilibrium for this case, there are exactly m high bids at or above vh and all other bids

are zero. Each high bid wins a unit at a price of zero. The allocation of units to bidders is

arbitrary but independent of the realized valuations.

Proposition 4. Let the number of bidders satisfy n ≥ 3. Consider the class S2 of strategy

profiles β in which for each bidder i there exists a ki ∈ {0, . . . ,m} such that for all vi,

βi([vh,∞)ki×{0}m−ki
,vi) = 1 and

∑n
i=1 k

i = m. Any strategy profile in the class S2 forms an

equilibrium. Conversely, suppose that β is an equilibrium strategy profile in which bij ∈
(
0, vh

)
with probability zero for all bidders i and units j. Then β prescribes the same behavior as

one of the equilibrium profiles in S2 for all i and almost all vi.

To see that the above strategy profiles are equilibria, observe that any bidder who submits

a positive bid for some unit, obtains that unit for free. Thus, submitting any positive bid on

these units is part of a best response. Furthermore, the only way a bidder could increase the

number of units he obtains with positive probability is to bid at or above the highest possible

valuation for some additional unit(s). For each unit he would obtain over and above the ones

he gets in equilibrium, his payment increases by at least the highest possible valuation vh.

Thus deviating is unprofitable. The converse statement is established in the Appendix.

Again note that—similar to Proposition 1—the converse statement of Proposition 2

requires that we allow for variants on sets of measure zero of valuations. For example, if a

bidder who is meant to bid zero for unit j for all of her valuations bids instead in the interior

(0, vh) for a set of measure zero of her valuations then this effects neither her nor her rivals’

payoffs and is consistent with equilibrium.

Next we consider the robustness of the equilibria of the Vickrey auction. Four types

of robustness are considered, robustness against varying the type distribution on a fixed

payoff-type space, robustness against removing bidders, robustness against adding bidders

with a larger set of payoff types, and robustness against introducing a positive reserve price.

We find that the last of the four tests is the most stringent.
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Remark 1 All equilibria in S1 ∪ S2 are ex-post equilibria.

A Bayesian Nash equilibrium in a Bayesian game is an ex-post equilibrium if players’

strategies remain optimal even if all private information is made public. This condition

clearly holds for all equilibria in S1 ∪S2. In an ex-post equilibrium agents will never have to

face regret. Furthermore, these equilibria are robust in the sense that they are invariant to

changes of the distribution of players’ private information (on a given type space).

The asymmetric equilibria are not, however, ex post in the sense of Holzman and Mon-

derer (2004). They require what they refer to as “ex-post equilibria in Vickrey-Clarke Groves

mechanisms” to remain equilibria when an arbitrary subset of players is excluded from play-

ing. In the asymmetric equilibria of Proposition 1, if the high bidder is excluded, the re-

maining low bidders who bid zero would have a positive probability of obtaining the unit

when bidding zero. Thus, once the high bidder is taken out, low bidders gain from bidding

their true valuations. As Holzman and Monderer show, their notion of “ex post equilibria

in Vickrey-Clarke Groves mechanisms” requires players to use symmetric strategies. Since

the equilibria of Proposition 2 also do not satisfy their requirement, their notion selects the

unique weakly dominant strategy profile. If, however, the high bidder is known to be active,

our asymmetric equilibria of Proposition 1 are robust to adding or excluding low bidders.

Remark 2 All equilibria in S1 are robust to enlarging the type space by including bidders

with higher valuations than vh.

The equilibria of Proposition 1 are not only robust to changing the distribution over a

given payoff-type space but also allow arbitrary extensions of the type space to bidders with

possibly higher valuations.6 This is not the case with the equilibria of Proposition 2. Indeed,

only if there is a single high bidder who always submits the same bid b∗ at or above vh for all

units is it possible to prescribe equilibrium bidding behavior for the new types (i.e. bid their

valuation above b∗ and behave as before below b∗) without changing the bidding behavior of

existing types.

6With free disposal, zero is a natural lower bound on possible types.
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Suppose the auctioneer sets a positive reserve price r > 0, such that for any unit a

bidder obtains, his bid has to be at least as high as the reserve price and the reserve price is

the minimum price for any unit. Without loss of generality, we can identify bids below the

reserve price, or not bidding, with bidding zero. If m′ is the number of bids at or above r,

the auctioneer hands out µ = min{m′,m} units to the bidders with the µ highest bids. A

bidder who gains ki units pays
∑ki

k=1 max
{
c−i
m−ki+k

, r
}

.

A positive reserve price below the maximum valuation has the same contagious effect

as having bids with positive probability in that range. Bidders with valuations below the

reserve price will refrain from bidding above the reserve price, for fear of winning a unit

at a price above their valuation for that unit. As a consequence, any bidder will put in a

bid above the reserve price for any unit for which his valuation exceeds the reserve price.

Bidders with valuations between those bids and the reserve price will want to bid in that

range. With three or more bidders, this eliminates any potential gaps in the bid function

above the reserve price, and therefore bidders bid truthfully for any unit with a valuation

above the reserve price. The details of the proof are virtually identical to that of Proposition

1 and are therefore omitted.

Corollary 1. With a positive reserve price r > 0, equilibrium is (essentially) unique: Bidders

refrain from bidding on any unit for which their valuation is less than the reserve price.

Otherwise they bid their valuation for each unit (except possibly at r or vh).

We conclude by analyzing the relationship between the equilibria of the Vickrey auction

and the core since it is often argued that the desirability of a trading institution requires

that its equilibria are in the core. Let ki be the number of units that bidder i obtains and

k = (k1, ..., kn). The set of feasible allocations of the units is

X =

{
k ∈ Zn

+ :
n∑

i=1

ki ≤ m

}
.

Following Ausubel and Milgrom (2002), the coalitional game associated with the Vickrey

auction consists of the set of players N = {0, 1, ..., n}, where 0 denotes the seller, and the

coalitional value function

w (C) =

 maxk∈X

∑
i∈C

(∑ki

j=1 v
i
j

)
, if 0 ∈ C

0, if 0 6∈ C
, ∀C ⊆ N.
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Denote the payoff of bidder i when paying pi for ki units by πi =
(∑ki

j=1 v
i
j

)
− pi and the

payoff of the seller by π0 =
∑n

i=1 p
i. The set of core payoffs is given by (e.g. Milgrom (2004,

p. 303))

Core (w,N) =

{
(π0, . . . , πn)

∣∣∣∣∣∑
i∈N

πi = w (N) and w (C) ≤
∑
i∈C

πi for all C ⊂ N

}
.

The following three remarks relate the equilibria of the multi-unit Vickrey auction to the

core.

Remark 3 For any profile of valuations, the profile of payoffs resulting from the truthful

equilibrium is in the core.

Consider any coalition including the seller, which does not obtain all units in the truthful

equilibrium. If the members of this coalition trade only among themselves, they obtain all

units, but lose the payments from the bidders who are not part of the coalition. Since each

bidder pays the externality he imposes, these payments are at least as high as the value of the

additional units for the coalition. Therefore, no coalition can block the truthful equilibrium

allocation.7

Remark 4 For any equilibrium that differs from the truthful equilibrium (except possibly at

vh), there is a positive measure set of valuation profiles such that the equilibrium payoffs are

not in the core.

For any equilibrium except the truthful equilibrium, there is positive probability that all

units are sold at a price of zero and there is a bidder who has a positive willingness to pay

for an additional unit. Similarly, if there is a positive reserve price, with positive probability

not all units are sold even though bidders have positive valuations for all units. In this case

the outcome is obviously inefficient and, thus, not in the core.

7A simple proof based on the above argument is contained in the appendix. The result also follows from
the fact that the units are substitutes in the sense of Ausubel and Milgrom (2002) and Theorem 8.5 in
Milgrom (2004).
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Remark 5 If there is a positive reserve price, there is a positive measure set of valuation

profiles such that the equilibrium payoffs are not in the core.

3.5 PROOFS

Lemma 1 establishes the contagion property that is central to the proof of Proposition 1.

According to Lemma 1, if one bidder, say bidder i, submits a bid c in the interior of the

support of the valuation distribution for any unit, then all bidders bid truthfully for every

valuation of every unit that is above c. The (somewhat lengthy) proof is broken down into

steps, for which we first briefly sketch the intuition:

1. In step 1, we show that whenever bidder i bids c on his jth unit, then he wins at least

j units with positive probability. The reason is that otherwise at least one other bidder

with positive probability would win at least one unit at a price above the valuation for

that unit.

2. In step 2 we conclude from step 1 that bidders other than i have an incentive to bid

above c on m− j + 1 units if they have that many or more valuations above c.

3. In step 3 we show that with positive probability all bidders bid below vh on their first

unit, and therefore with positive probability all bidders bid above zero on their last unit.

Intuitively, by step 2, bidder i bidding at c leads to a contagion process that leads other

bidders to put in increasingly high bids. As a consequence, bids above vh would win with

positive probability at prices near vh. Bidders with low enough valuations would want to

avoid such bids.

4. In step 4, we first strengthen the conclusion from step 3 to infer that indeed the proba-

bility of anyone ever bidding at or above vh is zero. Hence, there are bids below vh that

win all units and for high enough valuations a bidder will want to make such bids. This

implies that every bidder bids with positive probability in the interval (0, vh) on all of

his units.
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5. In step 5, using step 4, and iterating on bidders, it is not hard to see that for high enough

valuations all bidders must bid near vh.

6. Step 6 is central to the argument and establishes that there are no gaps in first-unit bids

above c : in every interval there is some bidder who, with positive probability, bids on

his first unit in this interval. Essentially, if there were a gap any bidder whose lowest

valuation falls into the gap would want to have his lowest bid in the gap. But this would

induce other bidders to bid in the gap on their first unit, where their first-unit bid is

kept below the upper bound of the putative gap because of step 5.

7. Step 7 strengthens the conclusion from step 6 by first showing that there is no bidder

who has gaps in his first-unit bid function above c. This implies that every bidder bids

truthfully on his last unit above c. Hence every bidder bids truthfully on his first unit

for valuations above c.

8. Step 8 uses step 7 to argue that for any unit and for any valuation on that unit there is

positive probability that all rival bids are either in a small interval immediately above

or below that valuation. Therefore it is uniquely optimal to bid truthfully on that unit.

Lemma 1. Suppose that β is an equilibrium in which for some bidder i, some unit j, some

c ∈ (0, vh) and all ε > 0 there is positive probability that bij ∈ [c, c + ε), i.e. that
∫

V
βi({bi ∈

B|bij ∈ [c, c + ε)},vi)dFi(v
i) > 0. Then βl({bl ∈ B|blk = vl

k},vl) = 1 for all vl with vl
k ∈

(c, vh), all l = 1, . . . , n, and all k = 1, . . . ,m; i.e., every bidder bids truthfully on every unit

for which his valuation belongs to the interval (c, vh).

Proof. Since the argument is somewhat lengthy and for readability the proof will be presented

in a series of steps. The property that is established in each step will be highlighted by italics.

Step 1. Whenever bij ≥ c, bidder i wins at least j units with positive probability. Otherwise,

there is probability one that at least m−j+1 bids made by bidders other than i are above c.

But this cannot be because then one of these bidders, say bidder l, with positive probability

would win kl > 0 units and pay more than his value for his klth unit.

Step 2. If bidder l1 6= i has m−j+1 or more valuations above c, then he has at least one bid

56



above c, by Step 1. In the case of m = j this means that he has m− j+ 1 bids above c. The

remainder of the argument in this step generalizes this observation to the case where m > j.

If conditional on bidder l1 having one bid above c there is positive probability that all bids

bij ≥ c remain winning bids, and bidder l1 has m − j + 1 or more valuations above c, then

bidder l1 has at least two bids above c. If on the other hand conditional on bidder l1 having

one bid above c, for some η > 0 all bids bij ∈ [c, c + η) become losing bids with probability

one, then there is probability one that there are at least m− j other bids above c. Suppose

these m− j bids are made by bidders other than l1. This cannot be because then one bidder

other than bidder l1, say bidder l, with positive probability would win kl units and pay more

than his value for his klth unit. Thus, again if bidder l1 has m − j + 1 or more valuations

above c, he will have at least two bids above c. Iterating this argument, we conclude that

if bidder l1 has m − j + 1 or more valuations above c, he will have at least m − j + 1 bids

above c. Furthermore, from Step 1 it follows that if a bidder l1 6= i has less than m − j + 1

valuations above c, he will have no more than m− j bids above c.

Step 3. One implication of Step 2 is that there is positive probability that there are at least

m+ 1 bids at or above c made by bidders i and l1.

A bidder l2 6= i, l1 cannot bid with probability one at or above vh for his first unit. If

such a bid wins in the event of m + 1 or more positive bids by i and l1, then with positive

probability l2 pays more than his value for his first unit. If such a bid loses, then a bidder

other than bidder l2 would pay more than his value for at least one of his units.

Exchanging the roles of bidders in the above argument, it follows that with positive

probability all bidders other than bidder i bid below vh on their first unit. Hence, with

positive probability bidder i’s bid on his last unit exceeds the highest bid of bidders other

than i on their first unit.

The probability of bidder i’s bid on his mth unit being equal to or exceeding vh, however,

equals zero. Otherwise the support of the distribution of bids of bidders other than bidder

i on their first unit has to be bounded away from vh. In that case, denote the supremum

of this support by b. Note (using Step 2) that vh > b > c > 0, and hence it follows from

Step 1 that a bid at or above b wins at least one unit with positive probability. Then, if
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there is a bidder l1 6= i whose distribution of first-unit bids has a mass point at b, the other

bidders have an incentive to bid above b on their first unit with positive probability. If there

is no such bidder, and wlog b is the supremum of the support of the distribution first-unit

bids by bidder l1 6= i, then there is a bidder l2 6= i, l1 who with positive probability has

an incentive to bid in the interval [b, vh), where we use the requirement that his first-unit

bids are bounded away from vh. If such bids are in the interior of this interval with positive

probability, we have a contradiction because this violates the definition of b. Otherwise, we

must have a mass point at b, which would take us back to the earlier case.

Since bidder i’s bid on his mth unit is less than vh with positive probability, there is a

bidder other than bidder i who bids with positive probability in the interval (0, vh). Thus,

from the foregoing argument, with the role of bidders exchanged, it follows that with positive

probability all bidders bid below vh on their first unit. Hence, with positive probability all

bidders bid above zero on their last unit.

Step 4. Consider three distinct bidders l1, l2 and l3. Suppose bidder l1 bids with positive

probability at or above vh on his first unit. Then the support of the distribution of bids of

bidder l2 on his last unit must be bounded away from vh because otherwise bidder l1 with

positive probability would win a unit at a price above his valuation for that unit. Denote

the supremum of this support by bm. From Step 3, we know that bm ∈ (0, vh). Then bidder l3

has an incentive to bid with positive probability at or above bm on his first unit. If such bids

with positive probability are below vh, we have a contradiction because then bidder l2 would

have an incentive to bid with positive probability above bm on his last unit in violation of

the definition of bm. Continue then with the case where both bidders l1 and l3 with positive

probability bid at or above vh on their first unit. Then the support of the distribution of bids

of bidder l2 on his m−1th unit must be bounded away from vh. Denote the supremum of this

support by bm−1 and note that bm−1 ∈ [bm, v
h). Then bidder l3 has an incentive to bid with

positive probability at or above bm−1 on his first two units. If in this case bidder l3’s bids on

his second unit are below vh with positive probability, we have a contradiction because then

bidder l2 would have an incentive to bid above bm−1 on his m − 1th unit. Continue then

with the case where bidder l1 bids with positive probability at or above vh on his first unit
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and bidder l3 bids with positive probability at or above vh on his first two units. Iterating

this argument, we find that the support of the distribution of bidder l2’s bids on his first

unit must be bounded away from vh. Denote the supremum of this support by b1 and note

that 0 < bm ≤ bm−1 ≤ . . . ≤ b1 < vh. Then bidder l3 has an incentive to bid with positive

probability at or above b1 on all of his units. If in this case bidder l3’s bids on his mth unit

are below vh with positive probability, we have a contradiction because then bidder l2 would

have an incentive to bid above b1 on his first unit in violation of the definition of b1. But at

the same time, it is impossible for bidder l3 to bid with positive probability at or above vh

on all of his units because then with positive probability there would be m + 1 bids at or

above vh and therefore at least one bidder with positive probability would win an item at a

price above his valuation for that item. Since the choice of the three bidders was arbitrary,

it follows that the probability that any bidder bids at or above vh on any of his units is zero.

Combined with the earlier observation that all bidders bid with positive probability in (0, vh)

on their last unit, this implies that all bidders bid with positive probability in (0, vh) on all

of their units.

Step 5. Pick an arbitrary pair of distinct bidders l1 and l2. Suppose that the support of

the distribution of bidder l1’s bids on his last unit is bounded away from vh. Denote the

supremum of this support by h. From Step 4, 0 < h < vh and from Step 1, bids at or above

h win at least one unit with positive probability. Hence bidder l2 must bid with positive

probability in [h, vh) on his first unit, as he cannot be bidding at or above vh by Step 4.

This in turn implies that bidder l1 has an incentive to bid with positive probability in (h, vh)

on his last unit, contrary to the definition of h. Since the choice of bidders was arbitrary, it

follows that for all ε > 0, there is positive probability that all bids of all bidders are in the

interval (vh − ε, vh).

Step 6. Suppose there is an interval (e, e′) ⊆ (c, vh) in which no bidder bids on his first unit

with positive probability. Then there is a maximal such interval (e, e) ⊆ (c, vh) by exactly

the same argument as in Lemma A3 of Blume and Heidhues (2004). From Step 5, we know

that e < vh and that with positive probability every bidder bids in (e, vh) on all of his units.
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Denote the infimum of the support of the distribution of bids on any bidder’s last unit

in the interval [e, vh] by bm. Suppose that e < bm. Without loss of generality, suppose that e

is the infimum of the support of the distribution of bidder l1’s first unit bids in the interval

[e, vh] and that bm is the infimum of the support of the distribution of bidder l2’s mth-unit

bids in the same interval. Then, if bidder l3 has all of his valuations in the interval (e, bm),

he will have all of his bids in the interval (e, bm]; this follows from Step 2. If in this case he

bids with positive probability in (e, bm) on his mth unit, we have the desired contradiction.

Otherwise, bidder l3 with positive probability bids at bm on his last unit. But then, if bidder

l2 has all of his valuations in the interval (e, bm) he will have all of his bids in the same

interval, and we have again reached a contradiction. We conclude that we must have e = bm.

Then take a bidder all of whose valuations are in (e, e) to derive a contradiction to the

assumption that no one bids with positive probability in (e, e) on his first unit. Distinguish

the cases where e = c and e > c :

Step 6A. Consider the case where e = c. Without loss of generality, suppose that e is

the infimum of the support of the distribution of bidder i1’s mth-unit bids in the interval

[e, vh]. Then by Step 2 a bidder i2 other than i and i1 who has all of his valuations in the

interval (c, e) has an incentive to bid on his first unit in the interval (c, e]. If such bids are in

the interval (c, e), we have the desired contradiction. Therefore, suppose the distribution of

bidder i2’s bids on his first unit when all of his valuations are in the interval (c, e) has a mass

point at e. Step 1 implies that the distribution of bidder i1’s bids on his mth unit cannot

have a mass point at e; otherwise bidder i2 with positive probability would win a unit at a

price above his valuation for that unit.

Continuing with the condition that the distribution of bidder i2’s bids on his first unit

has a mass point at e, there are two subcases of the case e = c to consider:

Step 6Ai. First, if i1 = i, then, as we just saw, for all bidders other than bidder i their

distributions of first-unit bids must have mass points at e.

Step 6Aii. Second, if i1 6= i, then since i1’s distribution of bids on his mth unit does not

have a mass point at e, for any ε > 0, there is positive probability that bidder i bids in the

interval (e, e+ ε) on all of his units. But this implies that e is the infimum of the support of

the distribution of bidder i’s bids on his last unit in the interval [e, vh].
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Thus, in either case all bidders other than bidder i all of whose valuations belong to the

interval (c, e) must have a mass point at e in their distributions of first-unit bids. But then,

consider the situation where bidder i has m − 1 valuations above e and his mth valuation

below e. Since with positive probability all of his rivals bid at e on their first unit and there

are at least two such rivals, i has to bid for m − 1 units above e to ensure that he receives

those units whenever their prices are below his values for those units. At the same time,

Step 2 implies that he will bid below e for his last unit. Let the remaining bidders all have

valuations in (c, e) such that they bid at e on their first unit. Then there is a bidder with

valuation on his first unit below e, who wins one unit and pays e. Since this case has positive

probability, this gives the desired contradiction.

Step 6B. Consider the case where e > c. Without loss of generality, suppose that e is

the supremum of the support of the distribution of bidder i1’s 1st-unit bids in the interval

[c, e]. Similarly, without loss of generality suppose that e is the infimum of the support of

the distribution of bidder i2’s mth-unit bids in the interval [e, vh]. Then a bidder i3 other

than i1 and i2 who has all of his valuations in the interval (e, e) has an incentive to bid on

his first unit in the interval [e, e]. If such bids are in the interval (e, e), we have the desired

contradiction. This leaves us with the possibility there is a mass point for such bids at either

e or at e.

Step 6Bi. Therefore, suppose the distribution of bidder i3’s bids on his first unit has a

mass point at e. Note that the distribution of bidder i2’s bids on his mth unit cannot have

a mass point at e; otherwise bidder i3 with positive probability would win a unit at a price

above his valuation for that unit. There are two cases to consider:

Step 6Bi(a). First, consider i2 = i1. Then for all bidders other than bidder i1, their

distributions of first-unit bids must have mass points at either e and/or e. If there is no mass

point at e, the argument for the case e = c applies. If on the other hand, there is a bidder

i4 other than i1 whose distribution of first-unit bids has a mass point at e, then there is a

bidder (other than i4 and i1) who with positive probability prefers to bid in (e, e) on his

last unit. But this implies that bidder i4 sometimes wants to outbid this bidder with his

first unit bid when all his valuations are in the interval (e, e). Since, by assumption he is

not bidding in the interior of this interval, his distribution of first-unit bids must also have
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a mass point at e. Hence, all bidders other than i1 must have distributions of first-unit bids

with mass points at e.

Step 6Bi(b). Second, if i2 6= i1, then since i2’s distribution of bids on his mth unit does

not have a mass point at e, for any ε > 0, there is positive probability that bidder i1 bids in

the interval (e, e+ ε) on all of his units. But this implies that e is the infimum of the support

of bidder i1’s bids on his last unit in the interval [e, vh], which takes us back to Step 6Bi(a).

Thus, in either case all bidders other than bidder i1 must have a mass point at e in their

distributions of first-unit bids, and therefore the discussion for the case e = c applies, which

rules out this possibility.

Step 6Bii. Now suppose there is no bidder, like i3 above, whose distribution of first-unit

bids has a mass-point at e. From the foregoing argument, it is without loss of generality to

focus on the case where i2 = i1. Then, for all bidders other than i1, their distribution of

first-unit bids must have a mass point at e. Then there are at least two bidders, which are

different from i1, who for a positive-probability set of values prefers to bid in the interval

(e, e] on their mth unit. If such bids with positive probability are in (e, e), then we get a

contradiction because at least one bidder other than i1 would have to have a mass point at e

in his distribution of first-unit bids. Hence, both bidders’ distribution of mth-unit bids must

have a mass point at e, which is impossible because then there would be positive probability

that a bidder wins a unit at a price above his valuation for this unit.

Hence, we may conclude that in every open interval above c there is some bidder who

bids in this interval with positive probability on his first unit.

Step 7. Suppose there is an interval (d, d′) ⊂ (c, vh) and a bidder l1 who does not bid with

positive probability in (d, d′) on his first unit. Then by Step 6 for every open subinterval

of (d, d′) there is a bidder other than bidder l1 who bids with positive probability in this

subinterval on his first unit. Hence, by Step 2, bidder l1 must bid truthfully on his mth unit

over this interval. Then, using Step 2 once more, any bidder l2 6= l1 must bid truthfully on

his first unit over the same interval. Hence, any bidder l3 6= l1, l2 must bid truthfully on

both his first and his mth unit over (d, d′). But then bidder l1 must bid truthfully on his first

unit over the interval (d, d′), which leads to a contradiction. Therefore every bidder bids with
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positive probability in every interval (d, d′) ⊂ (c, vh) on his first unit. Hence, every bidder

bids truthfully on his mth unit over the interval (c, vh). This implies that every bidder bids

truthfully on his first unit over the interval (c, vh).

Step 8. Suppose that for some bidder l and unit k, we have vl
k ∈ (c, vh). Consider two bidders

l1 and l2 different from bidder l. From Step 7, for any ε > 0, there is positive probability

that all of bidder l1’s bids are in the interval (vl
k − ε, vl

k) and that all of bidder l2’s bids are

in the interval (vl
k, v

l
k + ε). Thus, if bidder l were to bid below vl

k − ε, he would run the risk

of not winning his kth unit when it is available at a price below his valuation for that unit.

Similarly, if bidder l were to bid above vl
k + ε, he would run the risk of winning a kth unit

at a price exceeding his valuation for that unit. Therefore, for any valuation vl
k ∈ (c, vh), it

is uniquely optimal for bidder l to bid truthfully on his kth unit.

We are ready to prove Proposition 1.

Proof of Proposition 1: We have established that all strategy profiles in the class S1 are

equilibria in the text. It remains to show that any equilibrium in which bij ∈
(
0, vh

)
with

positive probability for some bidder i and unit j corresponds to a profile of bid functions in

the class S1 that describes the behavior of each bidder for almost all valuations.

Suppose that bij ∈
(
0, vh

)
with positive probability for some bidder i and unit j. Let

b∗ := inf
{
b ∈ (0, vh)|∃i, j s.t. ∀ε > 0,Pr

{
bij ∈ [b, b+ ε)

}
> 0
}
.

For all vi
j ∈ (b∗, vh), bidders bid truthfully by Lemma 1, i.e. βi({bi ∈ B|bij = vi

j},vi) = 1 for

all vi with vi
j ∈ (b∗, vh). If b∗ = 0, we are done.

Thus consider the case where b∗ > 0. Whenever a bidder has his valuation for a unit in

(0, b∗) , then he bids in [0, b∗] for this unit; otherwise, by Lemma 1 there would be positive

probability of this bidder winning a unit at a price above his valuation for that unit. Trivially,

such bids cannot be in (0, b∗) with positive probability.

Suppose there are two distinct bidders l1 and l2 (and possibly others) who with positive

probability submit a bid b∗ on their first unit. Then there exists a bidder l3 6= l1, l2 who
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bids, with positive probability, for exactly m − 1 units above b∗ and for his last unit below

b∗. This implies that with positive probability l1 wins exactly one unit for a price b∗ when

his valuation for this unit is in (0, b∗) . Thus, there is at most one bidder who bids on his

first unit at b∗ with positive probability.

If no bidder were to bid with positive probability at b∗ on his first unit, then all bidders

would bid with positive probability at zero on their first unit. Hence, such bids would win

with positive probability. But in that case, bidders can gain from deviating to bidding their

valuation. Thus, there is exactly one bidder, say bidder i, who bids on his first unit at b∗

with positive probability.

The remaining bidders must bid zero on all of the units for which their valuation is less

than b∗, for otherwise they run the risk of winning those units at prices above their valuations

for those units. As a consequence bidder i bids b∗ on all units for which his valuation is in

the set (0, b∗). �

Proof of Proposition 2: We have shown in the main text that all strategies in the class

S2 are equilibria. It remains to show that for any equilibrium β in which no bidder bids in

(0, vh) with positive probability, there is a strategy in S2 that agrees with β for all i and

almost all vi.

Suppose that, with positive probability, the number of bids at or above vh is smaller

than m. Then there is a bidder who bids zero for some unit and wins this unit with positive

probability less than one. This bidder can raise his payoff by switching to always bidding

his value.

Suppose that, with positive probability, the number of bids at or above vh is greater than

m. Then there exist a bidder who, with positive probability, wins one unit for a price greater

or equal vh. This bidder can raise his payoff by switching to always bidding his value.

This implies that the number of bids at or above vh is equal to m with probability one.

Since bids are independent across bidders, it follows that if bidder i bids at or above vh for

his j - th unit with positive probability, he must bid at or above vh for his j - th unit with

probability one. �
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Proof of Remark 3: Select any truthful equilibrium allocation of all units among the grand

coalition N, and let ki (N) be the number of units player i gets in this allocation. Next, for

every coalition C ⊂ N, select an efficient allocation of all units among the members of the

coalition C, and let ki (C) be the number of units player i gets in this allocation. Then for

any coalition C including the seller (i.e. in which 0 ∈ C),

w (C) =
∑

i∈C\{0}

ki(C)∑
j=1

vi
j.

If there are multiple efficient allocations for a given coalition C, the value of the coalition

w (C) is the same for all chosen efficient allocations. In such a case, we select an efficient

allocaction in which bidder i receives ki (C) ≥ ki (N) units.

Let (π0, . . . , πn) be the profile of payoffs resulting from the truthful equilibrium. Since

the truthful equilibrium is efficient,
∑

i∈N π
i = w (N) . Let pi denote the payment of bidder i

in the selected truthful equilibrium allocation. For any C including the seller, the coalition’s

payoff in the truthful equilibrium is

∑
i∈C

πi =
∑

i∈C\{0}

ki(N)∑
j=1

vi
j

− pi

+
∑

i∈N\{0}

pi

=
∑

i∈C\{0}

ki(N)∑
j=1

vi
j

+
∑

i∈N\C

pi.

Thus,

∑
i∈C

πi − w (C) =
∑

i∈C\{0}

ki(N)∑
j=1

vi
j +

∑
i∈N\C

pi −
∑

i∈C\{0}

ki(C)∑
j=1

vi
j

=
∑

i∈N\C

pi −
∑

i∈C\{0}

ki(C)∑
j=ki(N)+1

vi
j,

where the second equality uses ki (C) ≥ ki (N) .

In the truthful equilibrium
∑

i∈C\{0}
∑ki(C)

j=ki(N)+1
vi

j is the sum of the m −
∑

i∈C k
i (N)

highest losing bids from coalition C, which are outbid by bidders belonging to N\C. Because

in the truthful equilibrium i obtains ki(N) units, his payment pi is the sum of the ki (N)
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highest losing bids from N\ {i} . Suppose that i ∈ N\C. Then pi is weakly higher than the

sum of the ki (N) highest losing bids from C. Therefore,
∑

i∈N\C p
i is weakly higher than the

highest
∑

i∈N\C k
i (N) losing bids from C. Since

∑
i∈N\C k

i (N) = m −
∑

i∈C k
i (N) , this

implies that ∑
i∈N\C

pi ≥
∑

i∈C\{0}

ki(C)∑
j=ki(N)+1

vi
j.

Thus,
∑

i∈C π
i ≥ w (C) . �
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