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A STUDY OF TREATMENT-BY-SITE INTERACTION IN MULTISITE

CLINICAL TRIALS

Kaleab Zenebe Abebe, PhD

University of Pittsburgh, June 25, 2009

Currently, there is little discussion about methods to explain treatment-by-site interaction

in multisite clinical trials, so investigators are left to explain these differences post-hoc with

no formal statistical tests in the literature. Using mediated moderation techniques, three

significance tests used to detect mediation are extended to the multisite setting. Explicit

power functions are derived and compared.

In the two-site case, the mediated moderation framework is utilized to test two

difference-in-coefficients and one product-of-coefficients type tests. The test in the latter

group is based on the product of two independent standard normal variables, which is a

modified Bessel function of the second kind. Because the alternative distribution does not

have a closed form expression, power is approximated using Gauss-Hermite quadrature. This

test suffers from an inflated type I error, so two modifications are proposed: a combination

of intersection-union and union-intersection tests; and one based on a variance stabilizing

transformation. In addition, a modification of one of the difference-in-coefficients tests is

proposed.

The tests are also extended to deal with multiple sites in the ANOVA and logistic regres-

sion models, and the groundwork has been laid to account for multiple mediators as well.

The contribution of this is a group of formal significance tests for explaining treatment-

by-site interaction in the multisite clinical trial setting. This will serve to inform the design of

future clinical trials by accounting for this site-level variability. The proposed methodology

is illustrated in the analysis of the Treatment of SSRI-Resistant Depression in Adolescents
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study conducted across six sites coordinated at the University of Pittsburgh.
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1.0 INTRODUCTION

1.1 STATEMENT OF THE PROBLEM

In power and sample size calculations for randomized clinical trials, the current process

is fairly straightforward. The investigators from different academic and/or industrial sites

come together and agree on a common treatment protocol. They identify an effect size of

the treatment of interest and specify type I and II errors (and therefore, power)a priori. The

investigators then turn to their favorite sample size calculator (or favorite statistician) to

obtain the overall sample size needed (N). Of interest is whether or not N can be obtained at

one particular site, or if several sites are needed. Usually institutional affiliations or previous

collaborations dictate how many sites can be recruited to participate, rather than explicit

methodological considerations. As more sites are involved in the clinical trial, the inherent

differences among them can build up and take a toll on the power to detect treatment effects.

As a result, a treatment-by-site interaction can appear in the analysis stage of the clinical

trial, which can temper the true effect of treatment. Investigators are left to discern the

differences post-hoc.

This issue was recently investigated by Vierron and Giraudeau who incorporated a pre-

specified intraclass correlation (ICC) into the typical sample size equation for a two-way

mixed ANOVA model without interaction [49] . They found that for a fixed overall sample

size, as the ICC and the number of sites varied, the estimated power did not deviate too

much from the nominal power of 0.80. Their recommendation was to avoid recruiting a large

number of sites relative to the overall sample size due to costs associated with more sites.

If the number of patients per site does not cause the power to decrease, then what does?

The intent of this dissertation is to identify those sources of site heterogeneity that do, as well
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as their impact on estimates of treatment effect. Among others, an example is a therapist at a

particular site delivering cognitive behavior therapy in a different manner than a therapist at

another site. By identifying sources at the design stage of a clinical trial, differences leading

to a treatment-by-site interaction can hopefully be minimized. Yet, in order to identify said

sources, one must have an idea of how to tackle the issue of treatment-by-site interaction at

the analysis stage. This will inform the designs of future multisite clinical trials.

1.2 MOTIVATION

The motivation behind this research proposal stems from the meta-analysis done by

Bridge et al. [8] that weighed the efficacy and risk of suicidal ideation in children and ado-

lescents taking antidepressants. The study synthesized the results from 27 placebo-controlled

trials of antidepressants in subjects suffering from major depressive disorder, obsessive com-

pulsive disorder, or non-OCD anxiety. Studies ranged in size from single-site trials of 40

subjects to multisite trials of 396 subjects, with the maximum number of sites being 59.

By using the DerSimonian-Laird random effects model, pooled risk differences in response

were obtained for each of the three disorders. Although there was an increased risk in

suicidal thoughts across all disorders, the risk differences within each disorder group were

not statistically significant. The conclusion was that the benefits outweighed the risks in

each of the three disorders.

Upon examination of the potential moderators of clinical response, the authors found

that the estimated effect size decreased as the number of sites in each study increased. This

finding tempers one of the principal advantages of a multisite clinical trial (as opposed to a

single site) which is that larger sample sizes result in higher power. Dr. David Brent, of the

Department of Psychiatry, posed the problem of understanding

“...the impact of increasing number of sites on power taking into account the increase in
‘noise’ due to differences in assessment and treatment procedure.”

This gave rise to the question of whether explicit sources of site heterogeneity could be identi-

fied at the design stage (such as outcome reliability, patient severity, patient characteristics)

2



as well as their quantitative impact on the degradation of treatment effect.

In the next chapter, we give a summary of multisite clinical trials, including commonly

used methods of analysis. Also, the two primary estimators of treatment effect, weighted

and unweighted, are compared and contrasted in the context of several scenarios that occur

in multisite trials: disparate sample sizes across sites and the presence of treatment-by-site

interaction. Finally, hierarchical linear models are introduced and their properties regarding

sources of site heterogeneity are discussed.

In Chapter 3, the relationship between treatment effect size and the number of sites is

investigated as well as the identification of potential sources of site heterogeneity from the

Treatment of SSRI-Resistant Depression in Adolescents (TORDIA) multisite clinical trial.

In Chapter 4, several statistical methods to identify sources in regression and ANOVA

models are shown using an idea called “mediated moderation” applied to the multisite clinical

trial setting. Three significance tests popular in investigating mediation were extended. For

each, their respective test statistics are described and power analyses are performed. In

addition, the tests are illustrated on the TORDIA dataset.

Multisite mediated moderation (MMM) is extended to the logistic regression models in

Chapter 5. A simulation study to estimate power is conducted, and the significance tests

are applied on the TORDIA dataset.

Finally, the last chapter presents a discussion and lays down the foundation for future

work.
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2.0 LITERATURE REVIEW

2.1 MULTISITE CLINICAL TRIALS

2.1.1 Introduction

Meinert defines a multi-center clinical trial as one that has at least two clinics (or cen-

ters), a common treatment protocol, and a centralized unit to receive and process the study

data [38]. Multisite trials are preferred to their single site counterparts for several reasons,

Kraemer suggests [27]. First, the multisite trial has the ability to recruit many more sub-

jects than the single site trial, resulting in higher power. The time it could take for a single

site trial to accrue the same amount of patients as a corresponding multisite trial could be

substantially longer.

The second advantage is generalizability. Several single site trials can be designed to

address the same question yet yield varying results. This may be due to different patient

characteristics in certain geographic regions or substantially different treatment protocols

between sites. On the other hand, bringing those different patient populations together in

one multisite trial makes it easier to study treatment effects on patients in general.

Finally, multisite trials have the ability to bring together experts with widely varying

viewpoints concerning the treatment protocol. In single site trials, centers that tend toward

a particular philosophy may have results that are affected by that philosophy. For example, if

a single-site psychiatric trial for treatment of depression is based at an academic center that

adheres to the use of selective serotonin re-uptake inhibitors (as opposed to cognitive behav-

ioral therapy), then the resulting effect of treatment may shortchange cognitive behavioral

therapy.
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2.1.2 Model / Analysis

Whereas single-site trials can focus on a single treatment effect, multisite trials have the

added difficulty of dealing with site effects. Despite the fact that the sites are expected to

follow a common protocol, their estimated treatment effects are not guaranteed to be similar.

This is due to site heterogeneity, as will be explained in detail in the next chapter.

The classic analytic approach in multisite studies analysis is to include in the model an

effect for site. For instance, a fixed effects model for comparing a response Yijk between two

treatments across J sites is

Yijk = µ+ τi + ςj + εijk (2.1)

where i = 1, 2, j = 1, ..., J , and k = 1, ..., nij. The usual model constraint is that
2∑
i=1

τi =

J∑
j=1

ςj = 0. The treatment, τi, and site main effects, ςj, are nonrandom and the replication

errors, εijk, are i.i.d. N(0, σ2) variates. The model assumes that the effect of treatment is

constant across sites [17]. Because each of the sites is expected to follow the common study

protocol and accrue patients independently, the assumption of no interaction is a desirable

one in multisite clinical trials. In fact, the International Conference on Harmonisation (ICH)

E9 guideline on statistical principles strongly recommends the non-interaction model, (2.1),

for analysis [23]. With regard to this, Gallo (2000) states: “Rarely is a trial undertaken with

a clear expectation regarding the nature of different effects expected in different centers.”

[17]

On the other hand, due to differences in underlying patient populations as well as subtle

protocol deviations, the treatment effects can easily differ across sites. Under this assump-

tion, the above model is modified in the following way:

Yijk = µij + εijk = µ+ τi + ςj + γij + εijk (2.2)

where γij is a fixed effect. The usual constraints in addition to that of (2.1) are
2∑
i=1

γij =

J∑
j=1

γij = 0.

5



2.1.3 Interaction

The presence of treatment-by-site interaction makes it difficult to interpret the main

effect of treatment. Even trying to detect the phenomenon is difficult because tests for

interaction typically have low power [27, 14, 33, 45, 17, 46, 51]. The reason for this is that

most trials have power only to detect main effects, such as treatment effect, but adequate

power to detect an interaction requires a much larger sample size [10]. Due to this lack

of power, falsely rejecting the hypothesis of no interaction, risks having biased estimates of

main effects [14]. A common approach used by statisticians, although not optimal, is to use

model (2.2) and remove the interaction term when a significance test for interaction results

in a p-value larger than .1 or .2 [45, 17, 51].

2.1.4 Treatment Effect

After choosing the type of model for multisite studies, the most important step is examin-

ing the true effect of treatment, since evaluating this effect is the main reason for conducting

the trial in the first place. For simplicity, suppose that each site has the same number of

subjects taking each of the two treatments (n1j = n2j = nj; n1 = ... = nj). The true treat-

ment effect (or treatment difference) at a particular site j is δj = µ1j − µ2j is estimated by

d̄j = Ȳ1j. − Ȳ2j. [48]. Then, δ =

∑J
j=1 δj

J
is the true average treatment effect across sites and

is estimated by d̄ =

∑J
j=1 d̄j

J
= Ȳ1..− Ȳ2... The interpretation of this is quite straightforward.

Although it is simple, the completely balanced case shown above is unrealistic. Since

randomization in multisite trials is done at the site level, it is not uncommon to have nearly

identical sample sizes across treatments, but not across sites. Having unequal number of

subjects per site is more typical in multisite trials [46].

In the case of unequal sample sizes, the use of the above estimator, d̄, raises the question

of whether larger sites add more to the effect of treatment despite being weighted the same as

much smaller sites. Also, in the presence of sample size disparities and/or treatment-by-site

interaction, what type of estimator is most easily interpretable?

Two estimators, introduced by Fleiss (1985), have led to much discussion about how

6



best to estimate the overall effect of treatment [14]. The weighted (or type II) estimator is

defined as follows:

d̄w =

J∑
j=1

wj d̄j

J∑
j=1

wj

, (2.3)

where d̄j is described above and wj =
n1jn2j

n1j+n2j
are the weights at each site j. Each weight

function is the harmonic mean of the sample sizes associated with a particular site j. Also,

the weights are inversely proportional to the variance of the response variable, so larger

sites get larger weights. The interpretability of d̄w is clear unless there is treatment-by-site

interaction. This is well illustrated by showing that the underlying parameter estimated by

d̄w differs under models (2.1) and (2.2). Under the full model (2.2),

E(d̄w) =

J∑
j=1

wjE(d̄w)

J∑
j=1

wj

=

J∑
j=1

wjE(Ȳ1j. − Ȳ2j.)

J∑
j=1

wj

. (2.4)

Since E(Ȳij.) = µij = µ.. + τi + ςj + γij, we have

E(d̄w) =

J∑
j=1

wj (τ1 + γ1j − τ2 − γ2j)

J∑
j=1

wj

= (τ1 − τ2) +

J∑
j=1

wj (γ1j − γ2j)

J∑
j=1

wj

. (2.5)

As evident from above, the estimate d̄w is unbiased for the true treatment difference when

the treatment-by-site interaction is absent, or when the sample size weights are identical at

each site.

The unweighted (or type III) estimator is:

d̄u =

J∑
j=1

d̄j

J
, (2.6)
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where d̄j is as before. In this case, all sites get equal weight, regardless of sample sizes. Since

d̄u is just the unweighted average across all sites, it is always interpretable – even in the

presence of interaction – because

E(d̄u) =

J∑
j=1

E(d̄u)

J
=

J∑
j=1

(τ1 + γ1j − τ2 − γ2j)

J
= τ1 − τ2, (2.7)

under the usual model restrictions that require
I∑
i=1

γij =
J∑
j=1

γij = 0.

Several authors have attempted to tackle the issue of which estimator to use in which

cases, namely disparate sample sizes across sites and treatment-by-site interaction. First,

for unequal sample sizes, the consensus is that the weighted estimator is superior to the

unweighted in the sense that the variance of d̄u is always at least as big as the variance of

d̄w [33, 45, 17, 46].

A commonly proposed solution to the problem of disparate sample sizes is to pool smaller

centers into a larger one (usually until a maximum sample size per center is reached), which

is explained in detail in Lin, Gallo, and Worthington [33, 17, 51]. This has been met with

criticism by some authors who argue that it results in loss of power as well as the potential

introduction of bias (especially in the unweighted case) [33, 17]. When combining small

centers, the assumption that they are similar to each other is not guaranteed.

Secondly, others say that treatment-by-site interaction eliminates d̄w as a possibility due

to the lack of interpretability described above [45, 46]. On the other hand, Gallo claimed

that as long as there was no systematic relationship between site sample size and within-site

effect, the parameters that d̄w and d̄u estimate are identical [17].

2.1.5 Fixed versus Random Sites

The issue of whether sites should be modeled as fixed or random effects is an intriguing

one that deserves discussion. According to the textbook definition [31], a factor should

be considered random if interest in its effect on the response variable extends beyond the

factor levels used in the analysis. On the other hand, if the factor levels are the only levels

of interest, then the factor is clearly fixed. Some factors, such as gender, are inherently
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fixed. However, there seems to be agreement that the effect of site should be considered

fixed [46, 51]. Among the reasons given are that sites are not usually chosen in a “random”

manner, but rather based on previous collaborations. For example, academic institutions

that have worked together on previous clinical trials usually develop good relationships which

facilitate finding sites for future studies.

In the case of random site effects, (2.1) and (2.2) are modified in the following way:

Yijk = µ+ τi + Sj + εijk (2.8)

and

Yijk = µ+ τi + Sj +Gij + εijk, (2.9)

where Sj ∼iid N(0, σ2
S) and mutually independent of Gij ∼iid N(0, σ2

G).

Senn (1998) gives a detailed overview of both sides of the random versus fixed argument

[46]. Some advantages of the fixed approach include the following. First, there is better

precision of the estimate of effect because the variance is smaller. Second, it is the only

realistic option in the presence of very few sites. An example of this would be studies of very

rare diseases, where it may be that only a handful of sites specialize in it. Third, to regard

sites as random is unrealistic due to the fact that actual random sampling rarely occurs.

In defense of the random approach, the purpose of developing treatments is to say some-

thing about their effects on patients in general. By adding the site variability, the scope

of prediction is broadened to include patients from different geographic regions. Second, if

interest is about a given site, the fixed approach leaves little alternative but to use the results

from that site only.

Another interesting point is whether it is appropriate to assume that random effects follow

a normal distribution. If the underlying distribution of the effect is highly skewed, then bias

may occur in the estimation of the effect [2]. Ways to remedy this include assuming a skew-

normal or skew-t distribution, which is beyond the scope of this proposal but is discussed in

Azzalini and Capitanio [4, 5].
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2.1.6 Hierarchical Linear Models

There are a number of data structures that are naturally hierarchical in their organiza-

tion. In educational studies, students may be nested within a class with the same teacher,

the teachers in turn nested in particular schools, and so on. In longitudinal studies, a sub-

ject’s measurements over time are nested within that subject. Multisite clinical trials are no

exception to this. Because randomization is conducted at the level of the individual sites,

patients are expected to be more closely related to those within their site.

Raudenbush and Bryk give an account of the theory and applications of hierarchical

linear models (HLMs) [41]. which are able to model at the level of the study sites as well

as the level of the subjects within them. Three main features of HLMs that the authors

emphasize are as follows. First, hierarchical linear models allow improved estimation of the

effects at the subject-level. This is due, in part, to the fact that individual sites have their own

separate regression equations that “borrow strength” from other sites with similar estimates.

Second, besides investigating effects at a particular level, HLMs allow the examination of

effects across levels. In multisite trials, this can be likened to the effect of treatment across

sites, or treatment-by-site interaction. Third, the use of variance-covariance components

facilitates estimation in unbalanced designs.

Examples of HLMs are one-way random effects AN(C)OVA, means-as-outcomes regres-

sion, random coefficients regression, and coefficients-as-outcomes regression. The rest of this

section will restrict its attention to the latter two.

The random coefficients model is set up as follows [42]. The subject-level model is

Yjk = β0j + β1jXjk + rjk (2.10)

where j = 1, ..., J , k = 1, ..., nj, and rjk are i.i.d. N(0, σ2). Notice that the subscript i has

been suppressed. Xjk is a treatment contrast for subject k in site j taking a value of 1 for

treatment and -1 for control subjects. The intercept β0j represents the mean response for

site j, while the slope β1j is the effect due to a subject’s particular treatment. The site-level

model is

β0j = α00 + α0j (2.11)
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β1j = α10 + α1j (2.12)

where α00 and α10 are the grand mean and average treatment effect, respectively. α0j and

α1j are random effects, independent of rjk, that are distributed as α0j

α1j

 ∼iid N
 0

0

 ,

 η00 η01

η01 η11

 .

As can be seen above, both the intercept and slope have their own respective random effects

which account for the variability in the mean response and mean treatment effect across sites.

In addition, the parameter η01 denotes the covariance between the mean and the treatment

effect at a particular site. When (2.10), (2.11), and (2.12) are combined, the resulting full

model is

Yjk = α00 + α10Xjk + α0j + α1jXjk + rjk. (2.13)

The variance of a particular observation is

Var(Yjk) = σ2
Y = η00 + η11 + 2Xjkη01 + σ2, (2.14)

which depends on the treatment. The covariance between two different observations in the

same site and taking the same treatment is denoted by

Cov(Yjk, Yjk′) = σkk′ = η00 +XjkXjk′η11 = η00 + η11. (2.15)

For two different observations that also differ in treatment (denoted by the missing subscript

i), (2.15) becomes

Cov(Yjk, Yjk′) = σii′ = η00 − η11. (2.16)

Finally, the covariance between two observations neither from the same site nor taking the

same treatment is

Cov(Yj′k, Yjk′) = 0. (2.17)

By adding a subscript for treatment (i = 1, 2), (2.13) is nearly identical to the full

mixed-effects model, (2.9).

Yijk = α00 + α10i + α0j + α1ij + rijk. (2.18)
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The main difference between the two models is that in (2.18), α0j and α1ij are independent

of each other for a particular treatment, i.

The coefficients-as-outcomes model takes one step further and adds site-level predictors,

Wj, to model said variability. The site-level equations become

β0j = α00 + α01Wj + α0j (2.19)

β1j = α10 + α11Wj + α1j. (2.20)

One important thing to notice is the fact that the predictor is used in both the intercept and

slope models. Raudenbush and Liu point out that due to the correlated nature of the errors,

α0j and α1j, failure to specify the errors in the intercept model may lead to an inaccurate

estimate of the predictor’s contribution to the treatment effect. The authors also note that

large treatment-by-site variance, η2
11, signals the need to add site-level predictors to model

the extra variation [42].

There are three main issues in multilevel analysis that HLMs deal with: 1) aggregation

bias, 2) misestimation of standard errors, and 3) heterogeneity of regression [41]. The first

issue occurs when the relationship between variables takes on different meanings at different

levels. For example, two variables may be highly correlated in one direction among an

unnested group of subjects. When nesting occurs and mean values of the variables are

computed, the correlation could be in the opposite direction or diminished entirely. This is

also known as the ecological fallacy [44]. Hierarchical models address this by decomposing

the full model to show relationships within and across all levels.

Another common problem in multilevel analysis is not taking into account the correlated

(dependent) nature of the grouped observations. By including a random effect for each site,

HLMs use this added information when estimating the standard errors [42].

The third problem, heterogeneity of regression, exists when relationships between pre-

dictors and outcomes vary across sites. This is dealt with by estimating separate sets of

regression coefficients for each site. The variability at the second level can then be accounted

for by other predictors [42].
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3.0 SOURCES OF SITE HETEROGENEITY

The previous chapter outlined some of the common methods of analyzing a multisite

clinical trial as well as the issues statisticians are likely to face while doing so. The purpose

of Chapter 3 is to investigate the effect that the number of sites chosen has on the effect of

treatment. If there is no relationship, then there are other sources at work that need to be

identified.

3.1 RELATIONSHIP BETWEEN TREATMENT EFFECT SIZE AND THE

NUMBER OF SITES

In investigating the relationship between effect size of treatment and the number of sites,

4 different clinical trials were simulated with 200 participants each. The trials varied from

one another by the number of sites each had, ranging from 2 sites of 100 each to 10 sites of

20 participants. Within each site, the number of treatment and control subjects were equal,

making the trials completely balanced (n1j = n2j = n for all sites, j = 1, ..., J).

In the initial simulation, we considered a continuous outcome variable, Yijk, coming from

the following distribution

Yijk ∼ N(µ.. + τi + ςj, σ
2), (3.1)

where µ, τi, and σ2 denote the overall mean, treatment effect, and error variance respectively.

While µ was arbitrarily chosen to be 0, the values of τ and σ were chosen such that they

would yield a treatment effect size of 0.4, which was close to the weighted average of effect

sizes in the Bridge et al. meta-analysis [8]. The site effects ς1, ..., ςJ were generated from
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a N(0, 0.5) distribution subject to the constraint
J∑
j=1

ςj = 0. This was accomplished by

obtaining ς1, ..., ςJ−1 and then setting ςJ =
J−1∑
j=1

−ςj. The 0.5 variance was arbitrarily chosen

to represent noise.

The simulated data were then fit using the following one-way ANOVA comparing treat-

ment and placebo:

Yik = µ.. + τi + εik. (3.2)

For each site number iteration, the mean of 1000 effect sizes was computed using Hedges’s

g:

ĝ =
Ȳ1.. − Ȳ2..√

(MSE)
, (3.3)

where the pooled standard deviation is the square root of the mean square error obtained

from the above model:

MSE =

2∑
i=1

J∑
j=1

n∑
k=1

(Yijk − Ȳi..)2

2Jn− 2
=

2∑
i=1

(Jn− 1)s2
i

2Jn− 2
. (3.4)

Because the sample sizes for each treatment-site combination are equal, (3.4) reduces to

MSE =
s2

1 + s2
2

2
, (3.5)

which is nothing more than the average variance across treatment and placebo.

Regarding the MSE, Kraemer et al. states that the power to detect treatment effects

is inversely related to the number of sites, for a fixed sample size N [29]. This is only the

case when the MSE from a two-way ANOVA with treatment and site (and possibly, their

interaction) is used. This would be a misspecification because the standard deviation should

be that of the raw outcome scores [37, 19]. For instance McGaw and Glass give an example

of a study comparing treatment and control conditions (factor A) across gender (factor B)

[37]. The model is a two-way ANOVA with both main effects as well as their interaction
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(factor AB). To calculate the appropriate effect size in this example, the denominator should

be

σ̂ =

√
SSB + SSAB + SSE

dfB + dfAB + dfE
. (3.6)

Because SSB + SSAB + SSE and dfB + dfAB + dfE are equivalent to the SSE and dfE,

respectively, from a balanced one-way ANOVA with only an effect for treatment suggests

that the denominator used in (3.3) is correct.

Returning to the simulation, the mean effect size was then plotted against the number of

sites, which did not reveal any relationship between the two. Since the MSE is distributed

as
σ2

2Jn− 2
χ2

2Jn−2 and Ȳ1.. − Ȳ2.. is independent of
√
MSE, (3.3) can be rewritten as

E(ĝ) = E

(
Ȳ1.. − Ȳ2..

σ

√
σ2

MSE

)
=
µ1 − µ2

σ
E

(√
df

χ2
df

)
, (3.7)

with degrees of freedom df = 2Jn− 2. It can be shown that the expectation of the random

variable is equivalent to C(p), where

C(p) =

√
pΓ
(
p−1

2

)
√

2Γ
(
p
2

) . (3.8)

In fact, Hedges and Olkin showed that the estimator for Hedges’s g was upwardly biased

without the correction factor C(p) [20, 11]. So, (3.7) reduces to

E(ĝ) =
µ1 − µ2

σ
C(df). (3.9)

While this is indeed a function of the degrees of freedom (and hence, the number of sites

J), it is a constant because the error degrees of freedom do not change because the overall

sample size is N = 2Jn = 200. Returning to Kraemer’s statement in the previous paragraph,

using the MSE from the two-way ANOVA changes df from N −2 to N −2J . So in this case,

C(df) is in fact a decreasing function of the number of sites, although the decrease is very

slow.

This analytical result suggests that there is nothing inherently heterogeneous about the

number of sites chosen. Rather, specific sources of site heterogeneity are solely responsible

for the degradation of treatment effect.
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3.2 TREATMENT OF SSRI-RESISTANT DEPRESSION IN

ADOLESCENTS

As was shown in the previous section, there is nothing inherently heterogeneous about

the number of sites chosen in multisite clinical trial. Therefore, there are other sources to

blame. A motivating example is the following study.

The Treatment of SSRI-Resistant Depression In Adolescents (TORDIA) clinical trial

was an NIMH funded multisite study that sought to evaluate the efficacy of four treatment

strategies in depressed youths [7]. A sample of 334 patients, across 6 sites, with major

depressive disorder who were not responding to an initial 2-month selective serotonin re-

uptake inhibitor (SSRI) treatment were randomized to one of the following regimens

1. switch to a second, different SSRI (paroxetine, citalopram, or fluoxetine),

2. switch to a different SSRI plus cognitive behavior therapy (CBT),

3. switch to venlafaxine, or

4. switch to venlafaxine plus CBT.

The primary dichotomous outcome, clinical response, was defined as the combination of

the Clinical Global Impressions score ≤ 2 and a change in the Children’s Depression Rating

Scale-Revised of ≥ 50%. CBT plus medication (CBT-MED) showed a higher rate of response

than medication (MED) alone (54.8% vs. 40.5%, p=0.009). On the other hand, there

were no differences between medication response rates regardless of CBT use (48.2% vs.

47.0%, p=0.83). In addition, the effect of CBT-MED treatment versus MED alone was

heterogeneous across the sites, ranging from a 35.3% difference favoring MED to a 45.0%

difference favoring CBT-MED.

This finding led to a subsequent paper by Spirito et al. which investigated potential

causes for this treatment-by-site interaction [47]. The paper discussed two potential causes

of site heterogeneity: participant clinical characteristics, and treatment protocol consistency.

The process of identifying these causes was straightforward. The authors first examined

whether particular variables were related to site. If found to be significant, those variables

were examined to see if they were significant predictors of the response variable.
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In the case of clinical characteristics, the stratification variable that measured suicidality

(BDI item 9) differed across sites as well as being significantly related to outcome. In addi-

tion, three of the variables measured at baseline that were significant across sites were also

related to outcome: duration of depression, hopelessness, and family conflict. This implies

that baseline clinical characteristics are a potential source of site heterogeneity. A recursive

partitioning method was then used to determine optimal subgroups where site variability

was minimal [26]. Subjects with low hopelessness and low family conflict comprised the

optimal subgroup, which had a clinical response rate of 67.8% compared with 47.6% from

the original 334 subjects. In addition, the treatment-by-site interaction from above didn’t

exist in this subgroup. Conversely, subjects with high family conflict and high hopelessness

scores had a clinical response rate of 37.0%. Finally, there was a significant imbalance of the

number of subjects from the optimal subgroup across the six sites in the MED-only group.

This imbalance was not present in the CBT-MED group.

With regard to treatment protocol consistency, several of the variables included fidelity

to treatment, ancillary pharmacotherapy and protocol attrition. Treatment fidelity refers

to either fidelity to therapy or fidelity to medication. The former was measured by the

Cognitive Therapy Rating Scale (CTRS), which differed across sites but was not related to

outcome. The same held for the Pharmacotherapy Rating Scale (PTRS), which measured

medication therapy.
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4.0 IDENTIFYING SOURCES OF SITE HETEROGENEITY

4.1 BACKGROUND

As was mentioned in the introduction, when the effect of treatment differs across sites

(i.e. treatment-by-site interaction), the investigators are left to explain the differences post-

hoc. Currently, there is little discussion of the impact of these differences on clinical trials

[47]. In addition, the only publication to date that attempts to explain the methodology of

identifying sources of site heterogeneity is Spirito et al [47].

The process of identification of site differences involves two phenomena: moderation

and mediation (see Kraemer et al. [28], Aiken & West [3], and Baron and Kenny [6]). A

moderator is a baseline variable, uncorrelated with treatment, that identifies subgroups of

patients who have different effect sizes [30]. In the case of a continuous moderator, the effect

size of a particular treatment is a function of the moderator variable. For example, consider

the following equation where there are two levels of treatment, τ = ±1; an outcome, y; and

a moderator variable, mo:

y = β0 + β1τ + β2mo+ β3(τ ∗mo) + ε. (4.1)

Showing that the coefficient for the interaction term is significant is sufficient to demonstrate

moderation. On the other hand, there are a set of causal relationships that must be shown in

order to demonstrate mediation. First, the treatment must significantly predict the outcome.

Second, a mediator must be significantly predicted by treatment. Third, it must significantly

predict outcome after accounting for treatment. The result is a change in the relationship

between the treatment and outcome [6]. Consider the basic case where there are two levels
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of treatment, τ = ±1; an outcome, y; and a mediator, m. There are 3 equations involved in

the testing of mediation in this scenario:

y = β00 + β01τ + ε0 (4.2)

m = β10 + β11τ + ε1 (4.3)

y = α00 + α01τ + α12m+ ε2 (4.4)

where the εi are Gaussian with mean 0, and variance σ2
i . Equation 4.2 shows the direct

effect of the treatment on the response (β01). Equation 4.3 shows the relationship between

the mediator and treatment (β11). Finally, the residual effect of treatment on response, after

accounting for the effect of the mediator, is shown in equation (α01) 4.4. This is shown

graphically in Figure 1 as a path diagram.

These relationships can be written in terms of the joint distributions of y and m. y

m

 ∼ N


 β00 + β01τ

β10 + β11τ

 ,

 σ2
0 σ01

σ01 σ2
1


The final equation is based on the conditional distribution of y given τ and m:

(y|m, τ) ∼ N

(
β00 + β01τ +

σ01

σ2
1

(m− β10 − β11τ) , σ2
0 −

σ2
01

σ2
1

)
,

and the conditional mean can be rewritten as

E(y|m, τ) =

(
β00 −

σ01

σ2
1

β10

)
+

(
β01 −

σ01

σ2
1

β11

)
τ +

σ01

σ2
1

m

= α00 + α01τ + α12m. (4.5)

Of course there are redundancies, so the parameters are constrained. For instance,

β01 − α01 =
σ01

σ2
1

β11 = α12β11. (4.6)

In the context of the path diagram, (4.6) says that the difference between the direct and

residual effect of treatment on response is equivalent to the product of the two indirect

paths. The significance test for mediation, according to Baron & Kenny [6] is made up of

three separate tests conducted in succession:
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Figure 1: Mediation Path Diagram
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• H0 : β01 = 0 with test statistic t∗ =
b01

σ̂b01
∼ tn−2,

• H0 : β11 = 0 with test statistic t∗ =
b11

σ̂b11
∼ tn−2,

• H0 : α12 = 0 with test statistic t∗ =
a12

σ̂a12

∼ tn−3,

where n is the sample size. So, if each of the above hypothesis tests result in significance,

then mediation exists. [6].

While the testing of moderation is relatively straightforward [28], there has been much

discussion on how best to test mediation. MacKinnon et al. used simulation to compare

14 different significance tests (including Baron and Kenny’s approach above) for mediation

grouped into three types: causal steps, difference-in-coefficients, and product-of-coefficients

[35]. The authors concluded that widely used causal methods, such as those proposed by

Judd and Kenny [25] and Baron and Kenny [6], had low power. The best causal steps test

was the following significance tests proposed by MacKinnon et al.:

• H0 : β11 = 0 with test statistic t∗b =
b11

σ̂b11
∼ tn−2,

• H0 : α12 = 0 with test statistics t∗a =
a12

σ̂a12

∼ tn−3,

where n is the sample size. In the difference-in-coefficients group, the following test proposed

by Freedman and Schatzkin had the greatest power and most accurate type I error: [16]

• H0 : β01 − α01 = 0 with test statistic

t∗ =
b01 − a01√

σ̂2
b01

+ σ̂2
a01
− 2σ̂b01σ̂a01

√
1− ρ̂2

τm

∼ tn−2

where ρ̂2
τm is the correlation between the mediator and treatment. In the last group of tests,

product-of-coefficients, a test introduced by MacKinnon et al. [35] was superior with regard

to power:

• H0 : β11α12 = 0 with test statistic w∗ =
b11

σ̂b11

a12

σ̂a12

, a product of two standard normals

under H0.

While the aforementioned gives good insight into how best to deal with moderation and

mediation separately, site heterogeneity in multisite clinical trials involves dealing with both

simultaneously. For instance, moderation involves differing treatment effects across sites. In

other words, the effect of treatment differs as you move across the levels of site. Moreover,
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site moderating treatment is equivalent to treatment moderating site (i.e. site effects differ

by treatment regimen), so the two concepts are interchangeable.

On the other hand, mediation involves an outside variable influencing the relationship

between an independent variable and the response. For example, exercise has been shown to

be a significant predictor of glucose level in women who are at risk for diabetes [50]. However,

after adjusting for BMI, the association is still significant yet reduced. The obvious reason

is that women who exercise more tend to have a lower BMI, which is also related to glucose

level. Here, BMI is mediating the relationship between glucose level and exercise. Therefore,

returning to the context of multisite clinical trials, the main objective in identifying sources

of site heterogeneity is to pinpoint particular variables that mediate the moderation of site.

Muller et al. [39] describes the methodology of “moderated mediation” and “mediated

moderation”, with the latter being of interest here. Mediated moderation occurs when an

underlying mediation process is responsible for the overall moderation that exists; and by

accounting for that process, the magnitude of moderation is reduced [39]. The previous basic

mediation equations ((4.2), (4.3), and (4.4)) can be extended to a two-site scenario in the

following way:

y = β00 + β01τ + β02s+ β03(τ ∗ s) + ε0 (4.7)

m = β10 + β11τ + β12s+ β13(τ ∗ s) + ε1 (4.8)

y = α00 + α01τ + α02s+ α03(τ ∗ s) + α12m+ ε2, (4.9)

where s = ±1 is the effect of site. In terms of joint and conditional distributions,

 y

m

 ∼ N


 β00 + β01τ + β02s+ β03(τ ∗ s)

β10 + β11τ + β12s+ β13(τ ∗ s)

 ,

 σ2
0 σ01

σ01 σ2
1

 ,

and

(y|m, τ, s) ∼ N

(
µy|m,τ,s, σ

2
0 −

σ2
01

σ2
1

)
,
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where the conditional mean is

µy|m,τ,s = β00 + β01τ + β02s+ β03(τ ∗ s) +
σ01

σ2
1

(m− β10 − β11τ − β12s− β13(τ ∗ s))

=

[
β00 −

σ01

σ2
1

β10 + β01τ −
σ01

σ2
1

β11τ

]
+

[
β02 −

σ01

σ2
1

β12 + β03τ −
σ01

σ2
1

β13τ

]
s

+
σ01

σ2
1

m

= (α00 + α01τ) + (α02 + α03τ)s+ α12m (4.10)

One thing to note is that Muller et al. allowed the partial effect of the mediator to be

moderated, which added another term to (4.9) [39]. This is not a necessary condition for

mediated moderation to hold, and we will assume that this partial effect is not moderated

(see Appendix A for details). The direct effect of site, which is a function of treatment, is

β02 + β03τ , and the residual effect is α02 + α03τ . Just as in the basic mediator setup, the

following identities hold:

(β02 + β03τ)− (α02 + α03τ) = (β12 + β13τ) ∗ (α12) (4.11)

β03 − α03 = β13α12. (4.12)

According to Muller et al., mediated moderation can only occur when 1) overall moder-

ation exists (β03 6= 0), 2) both paths are statistically significant, and 3) there a decrease in

moderation after adjusting for the mediator [39]. In the context of multisite clinical trials

where a treatment-by-site interaction is detected, the first criteria is already met. Also, the

decrease in moderation can be measured by the magnitude of the interaction parameter(s).

We will refer to the extension of mediated moderation to multisite clinical trials as “multisite

mediated moderation” (MMM) from here on.
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Figure 2: Multisite Mediated Moderation Path Diagram: 1 Mediator
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4.2 MMM IN THE 2-SITE CASE

4.2.1 Significance Testing with 1 Mediator

Three significance tests were selected from MacKinnon et al. in order to see how the MMM

idea could be applied. From the difference-in-coefficients group, the Freedman & Schatzkin

and Olkin & Finn tests were chosen, while the Product of Standardized Coefficients test

was chosen from the product-of-coefficients group. For each of the significance tests, their

test statistics were extended to the multisite case and their power functions were derived.

All significance tests throughout this dissertation were two-sided as well as based on large

sample approximations.

4.2.1.1 Freedman & Schatzkin Test For the first test, by Freedman and Schatzkin,

the null hypothesis, test statistic, and power function are as follows: H0 : β03−α03 = 0 with

test statistic t∗ =
b03 − a03√

σ̂2
∼ tn−4 where

σ̂2 = σ̂2
b03

+ σ̂2
a03
− 2σ̂b03σ̂a03

√
1−R2

=
MSE0

n
+

MSE2

(1−R2)n
− 2

√
MSE0

√
MSE2

n
. (4.13)

Above MSEi are the estimates of the corresponding errors in equations (4.7), (4.8), and

(4.9), and R2 is the multiple correlation squared when the interaction τs is regressed on τ ,

s, m, and mτ . The power function is

power = P
(
|t∗| > tn−4,1−α/2‖H1

)
= P

(
|tn−4,ψ| > tn−4,1−α/2

)
(4.14)

where tn−4,ψ is a non-central t distribution with non-centrality parameter ψ =
∆√
σ2

for the

alternative value ∆ = β03 − α03.
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4.2.1.2 Olkin & Finn Test The Olkin and Finn test is based on the difference between

ρys(τ), the point-biserial correlation between outcome and site at a particular level of treat-

ment, and ρys.m(τ), the partial point-biserial correlation between the two after accounting

for the effect of the mediator. H0 : {ρys(τ) − ρys.m(τ) = 0; τ = T,C} with joint test statis-

tics z∗T =
fT (r)√
σ̂2
T

and z∗C =
fC(r)√
σ̂2
C

, where fi(r) = rysi −
rysi − rymirsmi√

1− r2
ymi

√
1− r2

smi

for treatment

and control, respectively. We assumed large samples and the multivariate delta method to

obtain σ̂i
2 = aiΦia

′
i, where ai =

(
∂fi(r)

∂rysi
,
∂fi(r)

∂rymi
,
∂fi(r)

∂rsmi

)
and Φi is the covariance

matrix of the zero-order correlations described in Olkin and Siotani [40]. By definition, this

is a union-intersection test, so the null hypothesis is that there is no difference between cor-

relations in both the treatment and control groups. The alternative hypothesis states that

there is a significant difference between correlations in at least one of the groups [9]. On

the other hand, the hypotheses of a intersection-union test would be defined as follows. The

null hypothesis is that there is no difference between correlations in at least one of the two

treatment groups, while the alternative states that there is a significant difference in both

groups [9].

The critical values, u1 and u2, are chosen with type I error such that

α = PH0 (|z∗T | > u1) + PH0 (|z∗C | > u2)− PH0 (|z∗T | > u1)PH0 (|z∗C | > u2) . (4.15)

If u1 and u2 are both chosen to be z1−α0/2 where α0 = 0.0253, this yields a test of size 0.05.

So, the power is

power = P

|z| > z.98735 −
∆T√
σ̂2
T

+ P

|z| > z.98735 −
∆C√
σ̂2
C


−P

|z| > z.98735 −
∆T√
σ̂2
T

P

|z| > z.98735 −
∆C√
σ̂2
C

 . (4.16)
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4.2.1.3 Product of Standardized Coefficients Test Finally, the details of the prod-

uct of standardized coefficients (PSC) test by MacKinnon et al are: H0 : {β(τ)α = 0; τ =

T,C} where β(τ) = β12 + β13τ and α = α12 are independent with respective test statistics

w∗T =
bT
σ̂bT

a

σ̂a
and w∗C =

bC
σ̂bC

a

σ̂a
. The standard errors, σ̂bi and σ̂a, can be explicitly written as√

2MSE1

n
and

√√√√ MSE2

(n− 1)s2
m

(
1−R2

(m)

) , respectively, where R2
(m) is the multiple correlation

from (4.8). Craig showed that the product of two standard normals has pdf π−1K0(|x|),

where K0(|x|) is a modified Bessel function of the second kind with order zero, and provided

tables for critical values [12]. Therefore critical values, u1 and u2, are chosen with type I

error such that

α = PH0 (|w∗T | > u1) + PH0 (|w∗C | > u2)− PH0 (|w∗T | > u1)PH0 (|w∗C | > u2) . (4.17)

The power function follows

power = PH1

(
|w∗T | > d1−α0/2

)
+ PH1

(
|w∗C | > d1−α0/2

)
−PH1

(
|w∗T | > d1−α0/2

)
PH1

(
|w∗C | > d1−α0/2

)
, (4.18)

where d1−α0/2 is the appropriate critical value and α0 is the significance level chosen to

achieve an overall size α test. Under the alternative hypothesis, |w∗i | is distributed as the

product of two independent normal random variables with non-null means and unit variance.

Closed form expressions are not available for this distribution, so we used Gauss-Hermite

quadrature with 32 knots to approximate the probability function (see Appendix B) [1].

A difficulty arises such that the test statistics are distributed as modified Bessel functions

under the null hypothesis only when both α and β are zero. As a consequence, the true type I

error will be inflated. Craig derived the mean and variance of the product of two independent

normal variables divided by their respective standard deviations [12]:

E

(
ba

σβσα

)
=

βα

σβσα
(4.19)

Var

(
ba

σβσα

)
=

β2

σ2
β

+
α2

σ2
α

+ 1. (4.20)
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It should be evident from the above central moments that as one of the means grows, the

variability of the product also grows. While the sample mean is still symmetric around the

origin, the tails become fatter thus increasing the type I error [12]. The simulation study of

the product of standardized coefficients in MacKinnon et al. validated this [35].

4.2.1.4 Combination Test One remedy is to rewrite the product of coefficients hypoth-

esis as a combination of intersection-union and union-intersection tests (referred to from now

on as the combo test). The null hypothesis would be that at least one of the indirect paths

is non-significant in both treatment and control. The alternative is that both indirect paths

are significant in at least one of the treatment groups. H0 : {β(τ) = 0 or α = 0; τ = T,C}

with test statistics t∗bi =
bi
σ̂bi

and t∗a =
a

σ̂a
for i = T,C, and where σ̂bi and σ̂a are described

previously. Then, critical values, ui, with an overall type I error can be chosen such that

α = PH0 (|t∗bT | > u1)PH0 (|t∗a| > u2) + PH0 (|t∗bC | > u3)PH0 (|t∗a| > u4)

−PH0 (|t∗bT | > u1)PH0 (|t∗a| > u2)PH0 (|t∗bC | > u3)PH0 (|t∗a| > u4) . (4.21)

In the worst case scenario that two of the parameters, say βT and βC , have non-null means,

then the overall type I error rate is still determined by the choice of u2 and u4 [9]. Therefore,

all critical values should be chosen to be tdf,0.98735 in order to achieve an overall type I error

rate of 0.05, where df = n− 5 for u2 and u4 and df = n− 4 for u1 and u3.

4.2.1.5 Variance Stabilizing Transformation Test Another modification of the

product of standardized coefficients test is to use a variance stabilizing transformation [32].

Since we know

√
n

(
bi
σ1

− βi
σ1

)
=⇒ N(0, 1) and

√
n

(
a

σ2

− α

σ2

)
=⇒ N(0, 1),

where σ1 = 2σ and σ2 =

√√√√ nσ2

(n− 1)s2
m

(
1−R2

(m)

) , then by the multivariate delta method

[32]

√
n

(
bia

σ1σ2

− βiα

σ1σ2

)
=⇒ N

(
0,
α2

σ2
2

+
β2
i

σ2
1

)
.

28



So, a variance stabilizing transformation is a function, f(θ), that satisfies

f ′(θ) =
c√
τ 2(θ)

, (4.22)

where τ 2(θ) is the variance as a function of θ. If we let θ =
βiα

σ1σ2

, then we can reparametrize

and let
θ

w
=

βi
σ1

and w =
α

σ2

. Now, τ 2(θ) =
θ2

w2
+ w2 and it is evident that the variance

is proportional to the square of the mean. At first glance, this would suggest a logarithmic

transformation [21]. If we set w = 1 and integrate both sides of equation 4.22 with c = 1,

we get the variance stabilizing function to be

f(θ) = sinh−1(θ) = ln
(
θ +
√

1 + θ2
)
. (4.23)

Therefore,

√
n
(
f(θ̂)− f(θ)

)
=⇒ N(0, 1), (4.24)

where θ̂ =
bia

σ̂1σ̂2

. Since we parametrized w = 1, then we can fix α = σ2 and the hypothesis

test becomes H0 : {θ(τ) = 0; τ = T,C} with test statistics z∗i =
√
n

{
f
(
θ̂
)
− f (θ)

}
where

i = T,C is defined above.

In order to check the type I error and power of the VST test, we conducted a simulation

study with the following steps.

• One million replicates of the following random variables were drawn: a ∼ N

(
α,
σ2

2

n

)
and bi ∼ N

(
βi,

σ2
1

n

)
where α = σ2 is set.

• For each replicate, θ̂ =
bia

σ̂1σ̂2

and z∗ =
√
n

{
f
(
θ̂
)
− f (θ)

}
are calculated.

• The true type I error and power are estimated as the number of |z|’s that exceed the

critical value under the null or alternative, respectively.
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4.2.1.6 d Test A fundamental issue regarding the tests that fall into the difference-in-

coefficients category is the assumption of normality in the estimates of the coefficients. If we

take a look at the basic mediator setup, we can see that β01 and α01 are estimated by

b01 =

∑n
i=1 yiτi
n

(4.25)

a01 =
1

n

n∑
i=1

yiτi −
b11

∑n
i=1(yi − ȳ)(mi − m̄)

(n− 1)σ̂2
1

. (4.26)

If we call the difference d̂ = b01 − a01, then conditional on m and τ , the distribution of d̂ is

Gaussian with the following mean and variance

E(d̂|m, τ) =
b11

∑n
i=1 E(yi − ȳ)(mi − m̄)

(n− 1)σ̂2
1

=
b11β01

∑n
i=1miτi

(n− 1)σ̂2
1

(4.27)

Var(d̂|m, τ) =

[
b11

(n− 1)σ̂2
1

]2 n∑
i=1

Var(yi − ȳ)(mi − m̄)2 =
b2

11σ
2
0s

2
m

(n− 1)(σ̂2
1)2

. (4.28)

Due to the equality (4.6), a significance test of H0 : d = 0 should be equivalent (or nearly

equivalent) to the Freedman-Schatzkin test.

Since m is random, our interest should be on the unconditional distribution of d̂. The

reason for this is that the unconditional variance is always larger than the conditional.

Therefore, many of the analyses that treat the mediator as a fixed quantity when it is indeed

random can severely underestimate the variance, which can overestimate the power.

The unconditional mean and variance of d̂ are

E(d̂) = E
[
E(d̂|m, τ)

]
=

β01

n− 1
E

[
(
∑n

i=1miτi)
2

σ̂2
1

]
(4.29)

Var(d̂) = Var
[
E(d̂|m, τ)

]
+ E

[
Var(d̂|m, τ)

]
=

σ2
0

(n− 1)2
E

[
s2
m (
∑n

i=1 miτi)
2

(σ̂2
1)2

]
+
β2

01

n2
Var

[
(
∑n

i=1 miτi)
2

σ̂2
1

]
,

(4.30)

30



but the distribution is complicated. We intend to investigate this further in the future with

the hope of modifying the current difference-in-coefficients tests, but the remainder of this

dissertation will focus on the conditional case.

As was mentioned previously, both the Freedman-Schatzkin test and the significance test

of d should be equivalent with respect to their test statistics and standard errors. In the

two-site case, d̂ = b03 − a03 = b13a12 is normally distributed with the following conditional

mean and variance:

E(d̂|m, τ, s) = b13α12 (4.31)

Var(d̂|m, τ, s) = b2
13Var(a12) =

b2
13σ

2
2

(1−R2
(m))

∑N
i=1(mi − m̄)

, (4.32)

where σ2
2 = σ2

0 −
σ2

01

σ2
1

= σ2
0(1− ρ2

ym) and R2
(m) is the multiple squared correlation from (4.8).

So, a t-test can be constructed with the following standard error: σ̂2
d =

b2
13MSE2

(N − 1)s2
m(1−R2

(m))
,

where MSE2 is the estimate of the error variance in the conditional distribution of y.

The explicit power function of the d significance test is as follows:

power = P
(
|t∗| > tn−5,1−α/2‖H1

)
= P

(
|tn−5,ψ| > tn−5,1−α/2

)
, (4.33)

where tn−5,ψ is a non-central t distribution with non-centrality parameter ψ =
∆√
σ2
d

for the

alternative value ∆ = β03 − α03.

4.2.2 Power Analysis with 1 Mediator

Power analyses of each of the aforementioned 6 hypotheses were conducted using their explicit

power functions and the following assumptions. First, the overall design was assumed to have

two sites with two treatments at each site as well as equal sample sizes at each treatment-site

combination. Second, each of the mediated moderation equations were assumed to have the

same error variance of 1. As a consequence, (4.13) was simplified to

σ̂2 =
MSE

n

[
R2

1−R2

]
. (4.34)
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For each of the power analyses, partial correlation effect sizes were chosen to correspond to

small (.14), medium (.36), and large (.51). The sample sizes were chosen to be 50, 100, 200,

400, 500, and 1000. The overall type I error rate was chosen to be 0.05 for all hypothesis

tests. For the Freedman-Schatzkin test, the term
R2

1−R2
in the standard error is similar to

an f 2 effect size with 0.02, 0.15, and 0.35 values for small, medium, and large, respectively

[10]. The large effect of f 2, which corresponds to an R2 of 0.51, was chosen to give a lower

bound to power calculations. Similarly for the PSC test, R2
(m) was chosen to be 0.51 for the

same reason. Since the true error variance for the d-test, σ2
2, involves the correlation between

the outcome and mediator variable (ρ2
ym), this was set to 0.142 to exhibit a type of lower

bound for the power.

4.2.2.1 Results The results of the two difference-in-coefficients tests –

Freedman-Schatzkin and Olkin-Finn – were first examined (Table 1). Regarding the type

I error, both tests achieved alpha levels of approximately 0.05 regardless of sample size.

Nevertheless, it was the Freedman-Schatzkin test that attained greater power for a given

effect size and sample size, which mimicked the results obtained by MacKinnon et al. in the

basic mediation case [35].

Turning to the product-of-coefficients tests, we looked at the cases where both hy-

pothesized parameters were identical (α = β) as well as when they were not. In the first case,

when the product of standardized coefficients test was examined, both tests seemed to do

well in achieving an overall type I error of 0.05 although the combo test well underestimated

it at 0.001. In the case where one of the parameters varies, the issue of the inflated type I

error mentioned above appears (Table 2). For example as β increased for a given sample size,

the type I error rate of the combo test tended to 0.05 while the type I error of the product of

standardized coefficients test increased rapidly to 1. Despite the extremely low type I error

rate for the combo test, the size of the test is still 0.05. In order to clearly see this, consider

the first term of equation 4.21. Casella and Berger [9] showed that if one of probabilities is

sent to 1 (say, the right one), then the probability of the product is determined by the values

u1 and u3. So, in order to have an overall size of 0.05, u1 and u3 must be set to critical values

corresponding with 0.053 probability.
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Table 1: Type I error & power for MMM with 1 mediator

Sample Size

ES Method 50 100 200 400 500 1000

0

Freedman-Schatzkin 0.050 0.050 0.050 0.050 0.050 0.050

Olkin-Finn 0.050 0.050 0.050 0.050 0.050 0.050

d 0.050 0.050 0.050 0.050 0.050 0.050

0.14

Freedman-Schatzkin 0.373 0.647 0.914 0.997 >0.999 >0.999

Olkin-Finn 0.203 0.363 0.639 0.918 0.966 >0.999

d 0.133 0.224 0.400 0.679 0.774 0.970

0.36

Freedman-Schatzkin 0.988 >0.999 >0.999 >0.999 >0.999 >0.999

Olkin-Finn 0.857 0.993 >0.999 >0.999 >0.999 >0.999

d 0.572 0.869 0.993 >0.999 >0.999 >0.999

0.51

Freedman-Schatzkin >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

Olkin-Finn 0.993 >0.999 >0.999 >0.999 >0.999 >0.999

d 0.859 0.992 >0.999 >0.999 >0.999 >0.999
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As can be seen in Table 3, the variance stabilizing transformation (VST) method has

more accurate type I error as well as greater power than the combo method. Despite the fact

that as either α or β grow large the combo test tends to a 0.05 size test, there could be many

cases were neither one is large. As a consequence, the type I error will be underestimated

making the null hypothesis difficult to reject. On the other hand, the VST will always have

size 0.05 regardless of the value of the non-null parameter.

From the results of the power analysis, it is clear that both difference-in-coefficients tests

(Freedman-Schatzkin and Olkin-Finn) performed well in terms of high power and accurate

type I error. While the power of the product of standardized coefficients test was also large,

it suffered from an inflated type I error. The combo test, a result of the modification of the

product-of-coefficient’s hypotheses, resulted in high power with the caveat of the type I error

being underestimated.

Table 2: Type I error for MMM with 1 mediator and only one non-zero parameter

Sample Size

β Method 50 100 200 400 500 1000

0
Prod Stand Coef 0.050 0.050 0.050 0.050 0.050 0.050

Combo 0.001 0.001 0.001 0.001 0.001 0.001

0.14
Prod Stand Coef 0.107 0.162 0.264 0.428 0.491 0.687

Combo 0.003 0.005 0.010 0.020 0.025 0.041

0.36
Prod Stand Coef 0.377 0.571 0.764 0.895 0.905 0.907

Combo 0.016 0.031 0.046 0.050 0.050 0.050

0.51
Prod Stand Coef 0.572 0.765 0.895 0.907 0.907 0.963

Combo 0.030 0.046 0.050 0.050 0.050 0.050

MacKinnon et al. gives a thorough overview of the best methods for testing basic

mediation, while the goal of this dissertation is to extend those ideas to the multisite clinical

trial setting. The Freedman-Schatzkin test, the Olkin-Finn test, and MacKinnon’s product of

standardized coefficients test were chosen not only due to their uniqueness, but also because

they each had shown considerable power in the basic mediator setup. While the first two
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tests performed well in terms of both type I error and power, the last test suffered from the

same issue as in the basic mediator setup, inflated type I error. As a result, we rewrote the

hypothesis in terms of a combination of an intersection-union and a union-intersection test.

As the results showed, the level of the test was invariant to either of the parameters having

a true non-zero mean.

Table 3: Type I error & power for MMM with 1 mediator

Sample Size

ES Method 50 100 200 400 500 1000

0

Prod Stand Coef 0.050 0.050 0.050 0.050 0.050 0.050

VST 0.054 0.052 0.051 0.051 0.050 0.050

Combo 0.001 0.001 0.001 0.001 0.001 0.001

0.14

Prod Stand Coef 0.170 0.318 0.603 0.912 0.964 >0.999

VST 0.103 0.159 0.279 0.505 0.605 0.896

Combo 0.010 0.031 0.113 0.380 0.550 0.945

0.36

Prod Stand Coef 0.844 0.993 >0.999 >0.999 >0.999 >0.999

VST 0.432 0.736 0.963 >0.999 >0.999 >0.999

Combo 0.264 0.731 0.988 >0.999 >0.999 >0.999

0.51

Prod Stand Coef 0.993 >0.999 >0.999 >0.999 >0.999 >0.999

VST 0.741 0.964 >0.999 >0.999 >0.999 >0.999

Combo 0.712 0.988 >0.999 >0.999 >0.999 >0.999

We compared the power of the d significance test to that of the other two tests in the

difference-in-coefficients group with the results in Table 1. While the power of the d test is

clearly lower than the Freedman-Schatzkin and Olkin-Finn tests, an increase in ρ2
ym to 0.512

increases the power by a factor 0.1511.
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4.2.3 Significance Testing with K Mediators

It is plausible that more than one variable could be responsible for the mediation of

treatment-by-site interaction. In this case, the mediated moderation setup as well as the

three significance tests can be extended. The three necessary equations – (4.2), (4.3), and

(4.4) – can be modified to reflect multiple mediators:

y = β00 + β01τ + β02s+ β03(τ ∗ s) + ε0 (4.35)

m1 = β10 + β11τ + β12s+ β13(τ ∗ s) + ε1 (4.36)

...

mK = βK0 + βK1τ + βK2s+ βK3(τ ∗ s) + εK (4.37)

y = α00 + α01τ + α02s+ α03(τ ∗ s) + α12m1 + · · ·+ αK2mK + εK+1. (4.38)

Based on the joint distribution of the outcome variable, y, and the mediators, we have

the following:
y

m1

...

mK

 ∼ N




β00 + β01τ + β02s+ β03(τ ∗ s)

β10 + β11τ + β12s+ β13(τ ∗ s)
...

βK0 + βK1τ + βK2s+ βK3(τ ∗ s)

 ,


σ2

0 σ01 . . . σ0K

σ10 σ2
1 . . . σ1K

...
...

. . .
...

σK0 σK1 . . . σ2
K




.

If we partition y from the mediator variables such that the variance-covariance matrix is

Σym =

 σ2
0 Σ0m

Σm0 Σmm

 ,
then the conditional distribution of y is

(y|m1, . . . ,mK , τ, s) ∼ N
(
µy + Σ0mΣ−1

mm(m− µm), σ2
0 − Σ0mΣ−1

mmΣm0

)
.

In the case of two mediators, it’s straightforward to show (see Appendix C) that the condi-

tional mean of y is

µy|m1,m2,τ,s = (β00 − α12β10 − α22β20) + (β01 − α12β11 − α22β21)τ

+(β02 − α12β12 − α22β22)s+ (β03τ − α12β13 − α22β23)(τ ∗ s)

+α12m1 + α22m2

= α00 + α01τ + α02s+ α03(τ ∗ s) + α12m1 + α22m2. (4.39)

38



S
β02 + β03τ

- Y

S
α02 + α03τ

- Y

β12 + β13τ

@
@
@
@
@
@
@
@
@
@
@@R

M1

α12

�
�
�
�
�
�
�
�
�
�
���

βK2 + βK3τ

@
@
@
@
@
@
@
@
@
@
@@R

...

MK

αK2

�
�
�
�
�
�
�
�
�
�
���

Figure 5: MMM Path Diagram: K Mediators
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4.2.3.1 Freedman & Schatzkin Test The three original tests are modified in the fol-

lowing ways: H0 : β03 − α03 = 0 with test statistic t∗ =
b03 − a03√

σ̂2
∼ tn−4 where

σ̂2 = σ̂2
b03

+ σ̂2
a03
− 2σ̂b03σ̂a03

√
1−R2

=
MSE0

n
+
MSEK+1

(1−R2)n
− 2

√
MSE0

√
MSEK+1

n
, (4.40)

where R2 is the multiple correlation squared when τs is regressed on τ , s, and the mediators

m1,. . .,mK . Expressions for power are the same as in the single mediator case:

power = P
(
|t∗| > tn−4,1−α/2‖H1

)
= P

(
|tn−4,ψ| > tn−4,1−α/2

)
(4.41)

where tn−4,ψ is a non-central t distribution with non-centrality parameter ψ =
∆√
σ2

for the

alternative value ∆ = β03 − α03.

4.2.3.2 Olkin & Finn Test H0 : ρys(τ) − ρys.1···K(τ) = 0 with the same test statistics

as before except that the functions fi now become:

fi(r) = rys − rys.1···K (4.42)

where the second term is the correlation between outcome and site at a particular treatment

level after accounting for the effects of the K mediators (denoted 1 · · ·K). Despite the fact

that higher order partial correlations can be decomposed into functions of zero-order partial

correlations, depending on K, fi(r) can be very complicated to compute. Raveh (1985)

showed that high-order partial correlations can be computed from the inverse correlation

matrix of all zero-order correlations involved [43]. For example with inverse correlation

P = R−1, the partial correlation of two variables i and j holding a set of variables ∆

constant is

rij.∆ =
−pij√
piipjj

. (4.43)

As was done in the single mediator case, the standard error of fi(r), aiΦia
′
i, is computed

where a is the vector of partial derivatives of fi(r) with respect to each pairwise correlation

of zero-order correlations. In the case of K mediators, the dimensions of a and Φ are

1-by-(K + 2) and (K + 2)-by-(K + 2).
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4.2.3.3 Product of Standardized Coefficients Test In the presence of K mediators,

the third test is now: H0 :
K∑
q=1

βq(τ)αq = 0 where βq(τ) = βq2 + βq3τ and αq = αq2

are independent, and test statistics L∗T =
K∑
q=1

(
bqT
σ̂bqT

aq
σ̂aq

)
and L∗C =

K∑
q=1

(
bqC
σ̂bqC

aq
σ̂aq

)
. The

main interest is on the pdf of L∗T and L∗C under the null hypothesis, which is the sum of

modified Bessel functions. Instead, each of the terms in the summation can be thought of

as normal scale mixtures. If we let Wq =
bq
σ̂bq

aq
σ̂aq

= µbqµaq (regardless of treatment), then

Wq = (Zbq + µbq)(Zaq + µaq) where Zbq and Zaq are independent standard normal variables.

After rearranging the terms, we get Wq = ZaqZbq + Xq where Xq ∼ N(µaqµbq , µ
2
aq + µ2

bq
).

This is equivalent in distribution to Wq = |Zaq |Zbq + Xs, where |Zaq |Zbq is a gaussian scale

mixture. The following is a theorem and corresponding proof.

Theorem 1. If Y = Z0Z1 and W = |Z0|Z1, where Z0 and Z1 are independent standard

normal variables, then Y and W are equal in distribution. In this case, W is distributed as

a scale mixture of a normal distribution with a chi-square mixing density.

Proof. Assume that W = |Z0|Z1. Because |Z0| is a special case of the folded normal dis-

tribution [13], |Z0| can be written as W = χ1Z1, where χ1 is a chi random variate with 1

degree of freedom. High order moments of W are given by the following:

E(W 2n) = E(χ2n
1 )E(Z2n

1 ) =

[
2nΓ(n+ 1/2)√

π

] [
(2n)!

2nn!

]
=

[
(2n− 1)!!

√
π√

π2n

] [
(2n)!

n!

]
, (4.44)

where (2n − 1)!! denotes the double factorial of 2n − 1. This is equivalent to
(2n)!

2nn!
, so the

above equation simplifies to:

E(W 2n) =

[
(2n)!

2nn!

]2

, (4.45)

which produces the exact same moments as the product of two standard normal variables.

By Carleman’s Condition (Chung 1974), if we can show that

∞∑
n=1

1

[E(W 2n)]1/(2n)
= +∞,

41



then the sequence of moments produced by E(W 2n) is unique. So, using Stirling’s approxi-

mation we get

E(W 2n) ≈

[√
4πn

(
2n
e

)2n

2n
√

2πn
(
n
e

)n
]2

=
21+4n−2nn2n

e2n
≈
(

2n

e

)2n

, (4.46)

and subsequently,
∞∑
n=1

1

[E(W 2n)]1/(2n)
=
e

2

∞∑
n=1

1

n
= +∞.

Therefore, since the distribution of W is uniquely defined by a sequence of moments shared

by Y , then both Y and W must come from the same distribution. Hence Y and W are equal

in distribution. Alternatively, this can be proven by showing the equivalence of characteristic

functions.

In addition, the covariance between any two Gaussian variates, Zbq and Zbq′ , will be

assumed to be σqq′ . Conditioning on Zaq , Vq = Wq|Zaq ∼ N(µbqµaq , z
2
aq + µ2

aq + µ2
bq

) with the

following covariance:

Cov(Vq, Vq′) = Cov(|zaq |Zbq +Xq, |zaq′ |Zbq′ +Xq′)

= |zaqzaq′ |Cov(Zbq , Zbq′ ) + |zaq |Cov(Zbq , Xq′) + |zaq′ |Cov(Zbq′ , Xq) + Cov(Xq, Xq′)

= |zaqzaq′ |σqq′ + |zaq |µaq′σqq′ + |zaq′ |µaqσqq′

= σqq′
(
|zaqzaq′ |+ |zaq |µaq′ + |zaq′ |µaq

)
(4.47)

Therefore, Li =
∑K

q=1 Vq is normally distributed with mean and variance:

E(Li) = E

(
K∑
q=1

Vq

)
=

K∑
q=1

µbqµaq (4.48)

Var(Li) = Var

(
K∑
q=1

Vq

)
=

K∑
q=1

Var(Vq) + 2
K∑
q 6=q′

Cov(Vq, Vq′)

=
K∑
q=1

(z2
aq + µ2

aq + µ2
bq) + 2

K∑
q 6=q′

[
σqq′

(
|zaqzaq′ |+ |zaq |µaq′ + |zaq′ |µaq

)]
,

(4.49)

where |zaq | and |zaq′ | are folded normal random variables and z2
aq is a chi squared random

variable.
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4.2.3.4 d Test Finally, the d significance test is extended to the K mediator case using

the distribution of y conditional on the mediator variables shown in Appendix C. H0 : d =

β03−α03 = 0 with estimate d̂ = b03− a03 =
∑K

q=1 bq3aq2. The conditional variance is derived

as follows:

Var(b03 − a03|m1, . . . ,mK , τ, s) =
K∑
q=1

b2
q3Var(aq2) + 2

K∑
q 6=q′

bq3bq′3Cov(aq2, aq′2)

=
K∑
q=1

b2
q3Var(aq2) + 2

K∑
q 6=q′

bq3bq′3

√
Var(aq2)

√
Var(aq′2)ρqq′

=
K∑
q=1

b2
q3

MSEK+1

(N − 1)s2
mq(1−R2

(mq)
)

+2
K∑
q 6=q′

bq3bq′3
MSEK+1ρqq′

(N − 1)smqsmq′
√

(1−R2
(mq)

)
√

(1−R2
(mq′ )

)

=
MSEK+1

N − 1

[
K∑
q=1

b2
q3

1

s2
mq(1−R2

(mq)
)

+2
K∑
q 6=q′

bq3bq′3
ρqq′

smqsmq′
√

(1−R2
(mq)

)
√

(1−R2
(mq′ )

)

 ,
(4.50)

where MSEK+1 is the estimate of the conditional variance of y, R2
(mq)

is the multiple cor-

relation squared when the mediator mq is regressed on τ , s, τs, and the remaining K − 1

mediators, and ρqq′ is the correlation between aq2 and aq′2.

The power function for the d-test is

power = P
(
|t∗| > tn−4−K),1−α/2‖H1

)
= P

(
|tn−4−K,ψ| > tn−4−K,1−α/2

)
, (4.51)

where tn−4−K,ψ is a non-central t distribution with non-centrality parameter ψ =
∆√
σ2

for

the alternative value ∆ = β03 − α03 and above conditional variance σ̂2.
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4.2.3.5 Limitations As with many significance tests, there are some limitations of ex-

tending the MMM tests to the K mediator case. With regard to the Olkin-Finn test, the

standard error of the test statistic involves a vector of partial derivatives of (4.42) with re-

spect to the outcome, the site, and each of the K mediator variables. It’s evident that even

with a modest number of mediators, (4.42) as a function of zero-order correlations can get

very complicated.

Another limitation involves the covariance parameters in the PSC and d tests. It’s

reasonable to assume that they are non-zero since the K mediators are correlated, but it

is not clear just how correlated they are. This will be investigated along with other future

work.

4.2.4 Illustration on TORDIA data

Each of the significance tests described so far all deal with the situation where the outcome

variable is continuous. In the TORDIA clinical trial, the outcome was dichotomous where

clinical response was defined as the combination of the Clinical Global Impressions (CGI)

score ≤ 2 and a change in the Children’s Depression Rating Scale-Revised (CDRS-R) of

≥ 50%. For the purposes of illustrating our six tests on this data, the change in the CDRS-

R was used as the outcome variable. In addition, since TORDIA involved six sites, the three

sites that were most similar in terms of their CBT-MED effect were combined into one. As

can be seen in Table 5, sites 1, 3, and 4 were combined into one site due to the similar direction

of their respective treatment effects. The three regression equations involved in mediated

Table 4: Treatment effect across sites for TORDIA data

Sites

TX 1 2 3 4 5 6 ALL

MED 0.503 0.446 0.465 0.511 0.342 0.312 0.435

CBT-MED 0.351 0.600 0.368 0.485 0.520 0.480 0.485

∆ 0.152 -0.154 0.097 0.026 -0.178 -0.168 -0.050
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moderation ((4.7), (4.8), and (4.9)) were each conducted with 20 variables measured at

baseline as potential mediators. First, there was overall site moderation of treatment effect

in (4.7) (b03 = −6.1478; p = 0.001) at the α = 0.10 significance level. Second, the conflict

behavior questionnaire score (CBQA) was the only variable in which there was a significant

treatment-by-site interaction in (4.8) (b13 = 0.6651; p = 0.053). Finally, overall moderation

was reduced after adjusting for CBQA (a03 = −5.6542; p = 0.002). Therefore, according to

Muller et al., the criteria for mediated moderation have been met.

We then applied the three difference-in-coefficients and three product-of-coefficients tests

to this data to see if the treatment-by-site interaction was significantly reduced. In the first

group, both the Freedman-Schatzkin and d significance tests concluded significant decreases

(pFS = 0.0108; pd = 0.0095), while the Olkin-Finn test did not (p = 0.4886). In the second

group, both MacKinnon’s product of standardized coefficients and the Combo test rejected

the null hypothesis (pPSC = 0.0249; pC = 0.0036), while the significance test based on the

variance stabilizing transformation did not (p = 0.9763).

One thing to note from this illustration is that while overall moderation was significantly

reduced after accounting for the CBQA mediator, it was not eliminated. So, CBQA explains

only part of the treatment-by-site interaction, and it could be the case that there are other

mediator variables involved in the explanation. Another issue in this illustration is that

while there were 20 variables checked for significant treatment-by-site interaction, there was

no adjustment for multiple comparisons. This is clearly a limitation to this procedure.

4.3 MMM IN THE J-SITE CASE

4.3.1 Significance Testing with 1 Mediator

The extension of the two-site mediated moderation model to the J-site case is straightfor-

ward. The three necessary equations are shown below:

yijl = µ0... + τ0i + s0j + γ0ij + ε0ijl (4.52)
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mijl = µ1... + τ1i + s1j + γ1ij + ε1ijl (4.53)

yijl = µ2... + τ2i + s2j + γ2ij + α1mijl + ε2ijl (4.54)

where τ , s, γ, and m are the effect of treatment, site, their interaction, and the mediator

variable, respectively. As was the case in the two-site case, the equations above are based

on the joint distribution of y and m as well as the conditional distribution of y given m, τ ,

and s.  yijl

mijl

 ∼ N


 µ0... + τ0i + s0j + γ0ij + ε0ijl

µ1... + τ1i + s1j + γ1ij + ε1ijl

 ,

 σ2
0 σ01

σ01 σ2
1

 ,

and

(yijl|mijl, τ, s) ∼ N

(
µ0... + τ0i + s0j + γ0ij +

σ01

σ2
1

(mijl − µ1... − τ1i − s1j − γ1ij) , σ
2
0 −

σ2
01

σ2
1

)
,

and the conditional mean can be rewritten as

E(yijl|mijl, τ, s) =

(
µ0... −

σ01

σ2
1

µ1...

)
+

(
τ0i −

σ01

σ2
1

τ1i

)
+

(
s0j −

σ01

σ2
1

s1j

)
+

(
γ0ij −

σ01

σ2
1

γ1ij

)
+
σ01

σ2
1

mijl

= µ2... + τ2i + s2j + γ2ij + α1mijl, (4.55)

where i = 1, ..., I, j = 1, ...J , l = 1, ..., nij, and N =
∑2

i=1

∑J
j=1 nij. Equation (4.12) can

easily be extended to the GLM case such that

γ0ij − γ2ij =
σ01

σ2
1

γ1ij = α1γ1ij. (4.56)

For (4.11), reparametrizing the marginal means of yijl and mijl so that µgi = µg... + τgi and

sgij = sgj + γgij for g = 0, 1, 2 gives the following equality:

s0ij − s2ij =
σ01

σ2
1

s1ij = α1s1ij. (4.57)

The remainder of this work will revolve around the equality in (4.56) rather than (4.57)

because the primary goal is to investigate the change in site moderation rather than the

effect of site as a function of treatment.
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4.3.1.1 d Test The d significance test can be extended to the GLM framework as fol-

lows: H0 : dij = γ0ij − γ2ij = 0 for i = T,C with test statistics t∗ij =
d̂ij
σ̂dij

. Because there

are (I − 1)(J − 1) interaction parameters to estimate, one could imagine how monotonous

the union-intersection test could get when there are a modest number of sites. On the

other hand, the estimates of the interaction coefficients are correlated and have a unique

covariance structure. Consider a 2-treatment, J-site ANOVA model with the following pa-

rameter constraint:
2∑
i=1

τi =
J∑
j=1

sj =
2∑
i=1

γij =
J∑
j=1

γij = 0. Then conditional on m, τ and

s, d̂ij = γ̂0ij − γ̂2ij = a1γ̂1ij is normally distributed with the following conditional mean and

variance:

E(d̂ij|m, τ, s) = E(a1γ̂1ij) = γ̂1ijα1 (4.58)

Var(d̂ij|m, τ, s) = Var(a1γ̂1ij) = γ̂2
1ij

σ2
2

(N − 1)s2
m(1−R2

(m))
. (4.59)

In addition, the conditional covariance between any two d̂ij’s from differing sites, j and j′, is

Cov(d̂ij, d̂ij′ |m, τ, s) = Cov (a1γ̂1ij, a1γ̂1ij′) = γ̂1ij γ̂1ij′
σ2

2

(N − 1)s2
m(1−R2

(m))
. (4.60)

In matrix form, this is
d̂11

d̂12

...

d̂1J−1

 ∼ N




µd̂11

µd̂12
...

µd̂1J−1

 ,


σ2
d̂11

σd̂11d̂12 . . . σd̂11d̂1J−1

σd̂11d̂12 σ2
d̂12

. . . σd̂12d̂1J−1

...
...

. . .
...

σd̂11d̂1J−1
σd̂12d̂1J−1

. . . σ2
d̂1J−1




,

where µd̂ij , σ
2
d̂ij

, and σd̂ij d̂ij′ represent the conditional means, variances, and covariances from

above. Under the assumption that µd̂ = 0, d̂ ∼ NJ−1(0,Σ).

A simplification of the distribution of d̂ is to use the equality in (4.56). So,

E(d̂|m, τ, s) = E(γ̂1a1|m, τ, s)

= γ̂1α1 (4.61)
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and

Var(d̂|m, τ, s) = Var(γ̂1a1|m, τ, s)

= γ̂1

σ2
2

(N − 1)s2
m(1−R2

(m))
γ̂1
′

=
σ2

2

(N − 1)s2
m(1−R2

(m))
γ̂1γ̂1

′, (4.62)

where R2
(m) is the multiple correlation of the mediator variables regressed on τ , s, and γ.

The estimate of the above variance is
1

(N − 1)s2
m(1−R2

(m))

SSE2

N − 2J − 1
γ̂1γ̂1

′, which is a

scaled chi-squared random variable divided by degrees of freedom N −2J−1 and multiplied

by a vector of constants [24]. The null hypothesis can now be written as

H0 : d = 0 with test statistic

T 2 = d̂′Σ̂−1d̂

= (γ̂1a1)′

(
MSE2

(N − 1)s2
m(1−R2

(m))
γ̂1γ̂1

′

)−1

(γ̂1a1)

= a2
1

(
MSE2

(N − 1)s2
m(1−R2

(m))

)−1

γ̂1
′(γ̂1γ̂1

′)−γ̂1

= a2
1

(
MSE2

(N − 1)s2
m(1−R2

(m))

)−1

, (4.63)

where ()− denotes the generalized inverse of the singular matrix γ̂1γ̂1
′. It is easy to show

that γ̂1
′(γ̂1γ̂1

′)−γ̂1 reduces to one (see Appendix E). The test statistic is distributed as

F1,N−2J−1. The critical values are chosen such that

α = PH0

(
T 2 > F1,N−2J−1,1−α

)
. (4.64)

Under the alternative hypothesis, T 2 is distributed as a non-central F random variable with

non-centrality parameter, ψ =
∆2

σ2
where ∆ = α1 and σ2 = Var(a1). Therefore, the power is

calculated as follows:

power = P (F1,N−2J−1,ψ > F1,N−2J−1,1−α) . (4.65)
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4.3.1.2 Product of Standardized Coefficients Test In the GLM framework, MacK-

innon’s PSC test can be extended to the multivariate case, but it is difficult because a

multivariate Bessel distribution has not been studied yet. Since there are J − 1 estimates

of the treatment-by-site interactions, there will be just as many product-of-coefficients es-

timates. Marginally, each of the estimates is the product of normal random variables each

with unit variance:



a1

σa

γ̂111

σγ̂
a1

σa

γ̂112

σγ̂
...

a1

σa

γ̂11J−1

σγ̂


∼





α1

σα

γ111

σγ
α1

σα

γ112

σγ
...

α1

σα

γ11J−1

σγ


,
[

Σαγ

]

,

where Σαγ is the variance-covariance matrix with

Var

(
a1

σa

γ̂11j

σγ̂

)
=

(
γ11j

σγ

)2

+

(
α1

σα

)2

+ 1 (4.66)

on the diagonals and

Cov

(
a1

σa

γ̂11j

σγ̂
,
a1

σa

γ̂11j′

σγ̂

)
= (MSE1)

(
σ̂01

σ̂2
1

)2
[

1

4J2

2∑
i=1

J∑
j=1

(
1

nij

)
− 1

4J

2∑
i=1

(
1

nij
+

1

nij′

)]

+

(
γ11j

σγ

γ11j′

σγ

)(
1−

(
α1

σα

)2
)

(4.67)

on the off-diagonals. While the variance was derived by Craig [12], the derivation of covari-

ance of any two estimates can be shown in the following example.
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Assume that X1, Xj, and Xj′ are all random variables with unit variance and respective

means µ1, µj, and µj′ . Also, X1 ⊥ Xj, X1 ⊥ Xj′ , and Cov(Xj, Xj′) = σjj′ . Then

Cov(X1Xj, X1Xj′) = E(X2
1XjXj′)− E(X1Xj)E(X1Xj′)

= E
[
E(X2

1XjXj′|X1)
]
− µ2

1µjµj′

= E
[
X2

1 E(XjXj′)
]
− µ2

1µjµj′

= E
[
X2

1 (σjj′ + µjµj′)
]
− µ2

1µjµj′

= (σjj′ + µjµj′)− µ2
1µjµj′ = σjj′ + µjµj′(1− µ2

1).

(4.68)

The difficulty arises in the multivariate distribution of the above vector of estimates. To

simplify this problem, let us go back to the two-site case. In this case,
a1

σa

γ̂111

σγ̂
is distributed

as the product of two normal random variables each with unit variance. Under the null

hypothesis assumed by MacKinnon (α1 = γ = 0), this is distributed as the product of two

standard normal variables, denoted by Y = Z0Z1, which has the density function π−1K0(|Y |).

The following theorem shows that a vector of correlated Bessel functions, Y, can instead be

denoted as a multivariate normal scale mixture.

Theorem 2. Let Y = Z0Z and W = |Z0|Z, where Z0 is a standard normal random variable

independent of Z, which is a p-dimensional vector coming from a multivariate normal distri-

bution with zero mean vector and covariance matrix Σ. Then Yis equivalent in distribution

to W. In this case, W is distributed as a scale mixture of a multivariate normal distribution

with a chi-square mixing density.

Proof. The simplest way to prove this is by showing the equivalence of the characteristic

functions of Y and W. So,

φY(t) = E (exp{it′Z0Z}) = E [E (exp{it′Z0Z}|Z0)]

= E

(
exp

{
−Z2

0t′Σt

2

})
= (1 + t′Σt)−1/2

= φW(t). (4.69)
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Theorem 3. Let Y = (Z0 + µ0)(Z + µ) and W = |Z0|Z + X where X ∼ MVN(µ0µ, µ
2
0Σ +

µµ′), and Z0 and Z are independent of each other and defined in the previous theorem. Then

Y and W are equal in distribution.

Proof. We can rewrite Y so that it is the sum of independent components:

Y = Z0Z + µ0Z + µZ0 + µ0µ. (4.70)

If we denote the sum of the last three terms as X, it’s easy to show that this is the sum of

two multivariate normal random variables and a vector of scalars. So,

(µ0Z) ∼ MVN(0, µ2
0Σ)

and

(µZ0) ∼ MVN(0,µµ′)

and are independent of each other. Therefore, X ∼ MVN(µ0µ, µ
2
0Σ + µµ′). The character-

istic function is as follows:

φY(t) = φZ0Z(t)φX(t) = φ|Z0|Z(t)φX(t), (4.71)

where the second equality comes from Theorem 2.

φY(t) = φ|Z0|Z(t)φX(t)

= (1 + t′Σt)−1/2exp

{
it′µ0µ−

1

2
t′
(
µ2

0Σ + µµ′
)

t

}
= φW(t). (4.72)

Since both Y and W have the same characteristic functions, they’re equal in distribution.
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Now that an appropriate multivariate distribution has been identified, we can now con-

tinue with the details of the PSC significance test. H0 : α1γ1 = 0 where γ is a J − 1

dimensional vector of the interaction parameters. Following MacKinnon et al., the test

statistic is W =
a1

σa

γ̂

σγ̂
and is distributed under the alternative hypothesis as a scale mix-

ture of multivariate normal random variables with the following conditional and marginal

densities:

(W|z0) ∼ MVN

(
α1

σα

γ

σγ
,

(
z2

0 +

(
α1

σα

)2
)

Σγ +
γ

σγ

γ

σγ

′
)

where

z2
0 ∼ χ2

1

and Σγ is the variance-covariance matrix of the standardized interaction estimates (see Ap-

pendix D). A Hotelling’s T 2 test can be conducted with test statistic

T 2 = W′(z2
0Σ̂γ)

−1W. Under the null hypothesis, (T 2|z2
0) ∼ (N−2J)(J−1)

N−3J+2
FJ−1,N−3J+2, so the

critical values are chosen such that

α = PH0

(
T 2 >

(N − 2J)(J − 1)

N − 3J + 2
FJ−1,N−3J+2,1−α

)
= PH0

(
N − 3J + 2

(N − 2J)(J − 1)
T 2 > FJ−1,N−3J+2,1−α

)
. (4.73)

Under the alternative hypothesis, N−3J+2
(N−2J)(J−1)

T 2 is distributed as a non-central F random

variable with non-centrality parameter,

ψ =
(
α1

σα

γ
σγ

)′((
z2

0 +
(
α1

σα

)2
)

Σγ + γ
σγ

γ
σγ

′
)−1 (

α1

σα

γ
σγ

)
[18]. Therefore, the power is calculated

as follows:

power = P (FJ−1,N−3J+2,ψ > FJ−1,N−3J+2,1−α) . (4.74)

As in the two-site case, the null hypothesis described by MacKinnon can only arise when

both parameters, α1 and γ, are zero. The only requirement for the general null hypothesis

is that either of the two parameters is zero, so the inflated type I error issues described in

the two-site case apply here as well.
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4.3.2 Power Analysis with 1 Mediator

Power analyses of each of the above significance tests were conducted using their explicit

power functions and the following assumptions. First, the overall design was assumed to

have two treatments at each of J sites as well as as equal sample sizes at each treatment-

site combination. Second, σ2
0 and σ2

1 were assumed to be 1. Finally, each of the γ̂1ij, the

interactive effects of treatment and site on the mediator variable, were identically chosen to

be 1. For each of the power analyses, effect sizes were chosen to correspond to small (.20),

medium (.50), and large (.80) according to Cohen [10]. The sample sizes were chosen to be

100, 200, 400, 500, and 1000. In addition, the number of sites were chosen to be 5, 10, and

20. The overall type I error rate was chosen to be 0.05 for all hypothesis tests.

For the PSC test, the non-centrality parameter involves σα =
1√

1−R2
(m)

, where R2
(m)

is the multiple correlation of the mediator variables regressed on τ , s, and γ. Just as in the

two-site, two-treatment case, R2
(m) was chosen to be 0.51. Also, the test statistic T 2 contains

a chi-squared random variable, z2
0 . Therefore, the first, second, and third quartiles of χ2

1

were chosen for values of z2
0 .

4.3.2.1 Results The results of the d and PSC tests are displayed in the following three

tables. When the values of z2
0 were varied, the differences in the resulting power were

negligible. Therefore, only the first quartile of χ2
1 was used. Unlike in the two-site case, the

PSC test is much more powerful than the d test regardless of the number of sites. Also, the

power of the d test did not decrease with the number of sites as rapidly as the PSC test did.

As in the two-site case, the issue of inflated type I error in the PSC test may occur. The

degree to which this effects the significance test will be investigated in future work. Similar to

the variance stabilizing transformation used previously, a logarithmic transformation could

be used on the test statistic, W, as a remedy for the inflated type I error.

4.3.3 Illustration on TORDIA data

As in the two-site case, each of the significance tests was conducted on the TORDIA clinical

trial dataset with the outcome being the change in the CDRS-R variable. Since this is a
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Table 5: Type I error & power for MMM with 1 mediator and j = 5 sites

Sample Size

ES Method 100 200 400 500 1000

0
d 0.050 0.050 0.050 0.050 0.050

Prod Stand Coef 0.050 0.050 0.050 0.050 0.050

0.20
d 0.395 0.675 0.929 0.970 >0.999

Prod Stand Coef 0.898 0.998 >0.999 >0.999 >0.999

0.50
d 0.989 0.999 >0.999 >0.999 >0.999

Prod Stand Coef >0.999 >0.999 >0.999 >0.999 >0.999

0.80
d >0.999 >0.999 >0.999 >0.999 >0.999

Prod Stand Coef >0.999 >0.999 >0.999 >0.999 >0.999

Table 6: Type I error & power for MMM with 1 mediator and j = 10 sites

Sample Size

ES Method 100 200 400 500 1000

0
d 0.050 0.050 0.050 0.050 0.050

Prod Stand Coef 0.050 0.050 0.050 0.050 0.050

0.20
d 0.394 0.675 0.929 0.970 >0.999

Prod Stand Coef 0.785 0.992 >0.999 >0.999 >0.999

0.50
d 0.988 >0.999 >0.999 >0.999 >0.999

Prod Stand Coef 0.998 >0.999 >0.999 >0.999 >0.999

0.80
d >0.999 >0.999 >0.999 >0.999 >0.999

Prod Stand Coef >0.999 >0.999 >0.999 >0.999 >0.999
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Table 7: Type I error & power for MMM with 1 mediator and j = 20 sites

Sample Size

ES Method 100 200 400 500 1000

0
d 0.050 0.050 0.050 0.050 0.050

Prod Stand Coef 0.050 0.050 0.050 0.050 0.050

0.20
d 0.391 0.674 0.929 0.970 >0.999

Prod Stand Coef 0.526 0.956 >0.999 >0.999 >0.999

0.50
d 0.988 >0.999 >0.999 >0.999 >0.999

Prod Stand Coef 0.958 >0.999 >0.999 >0.999 >0.999

0.80
d >0.999 >0.999 >0.999 >0.999 >0.999

Prod Stand Coef 0.999 >0.999 >0.999 >0.999 >0.999

multisite example, the original six sites and their respective data were preserved.

The three models in the multisite mediated moderation case ((4.52), (4.53), and (4.54))

were conducted with 20 variables measured at baseline as potential mediators. There was

overall site moderation of treatment effect in (4.52) (p = 0.025) at the α = 0.05 significance

level. There were two variables in which significant treatment-by-site interaction persisted:

1) the CBQA variable mentioned in the previous section (p = 0.044), and 2) the TOTALD

variable (p = 0.004), which is a measure of the Drug Use Screening Inventory (DUSI).

After adjusting for the CBQA score, the magnitude of site moderation was reduced

(p = 0.066), which is a criterion for mediated moderation. Moreover, the interaction was non-

significant after the adjustment. Both tests were applied to the data to see if the reductions in

magnitudes were significant. Since the PSC test involves a χ2
1 random variable, the expected

value of 1 was chosen. The d test concluded that subject’s CBQA score significantly explained

the differing effect of CBT-MED therapy across the six sites (p = 0.0153). The Product of

Standardized Coefficients test concluded that the magnitude of interaction was significantly

reduced (p < 0.001). This agrees with the conclusions of the paper by Spirito et al.
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As was the case with the CBQA variable, the magnitude of site moderation due to the

adjustment for the TOTALD variable was reduced (p = 0.041). Both of the aforementioned

tests were applied to the data and only the PSC test concluded a significant reduction

(pd = 0.193; pPSC < 0.001). In other words, there were conflicting results as to whether the

TOTALD score alone explained the differing effects of CBT-MED therapy across sites.
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5.0 MMM IN GENERALIZED LINEAR MODELS

5.1 LOGISTIC REGRESSION

There has not been much in the literature with regards to mediation in logistic regression

models. Huang et al. used structural equation models (SEM) to give a causal interpretation

of the meditational effect in the logistic model setting [22]. More recently, MacKinnon et al.

presented a comprehensive overview of the difference-in-coefficients, product-of-coefficients,

and the proportion mediated effect methods in the case of a binary independent variable

[34]. As in the regression and ANOVA cases, no one to this author’s knowledge has extended

logistic mediation models to the multisite clinical trial setting.

In the logistic regression case, the three necessary equations described in the previous

chapter can be extended without difficulty. Instead of being written in regression form, they

are presented in terms of the expected values of the outcome y and mediator m, respectively.

logit[E(yijl)] = µ0... + τ0i + s0j + γ0ij (5.1)

E(mijl) = µ1... + τ1i + s1j + γ1ij (5.2)

logit[E(yijl)] = µ2... + τ2i + s2j + γ2ij + α1mijl (5.3)

where τ , s, γ, and m are the effect of treatment, site, their interaction, and the mediator

variable, respectively. The subscript ijl represents the l-th person in the j-th site taking the

i-th treatment. Unlike in the regression and ANOVA cases, the necessary equations in the

logistic case cannot be derived from the bivariate normal distribution. Instead, the equations
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are derived from the marginal distribution of m and the conditional distribution of y:

(mijl|τ, s) ∼ N
(
µm, σ

2
1

)
where µm is (5.2) and

(yijl|m, τ, s) ∼ Bernoulli(pij)

where pij =
1

1 + e−µ2...−τ2i−s2j−γ2ij−α1mijl
. Therefore the marginal distribution of y is

f(yijl|τ, s) =

∫ ∞
−∞

f(y|mijl, τ, s)f(mijl|τ, s)dm

=

∫ ∞
−∞

p
yijl
ij (1− pij)1−yijl 1√

2πσ2
1

exp

(
−(mijl − µm)2

2σ2
1

)
dm,

(5.4)

and the marginal expectation of y is

E(yijl|τ, s) = E [E(yijl|mijl, τ, s)] = E(pij|τ, s)

=

∫ ∞
−∞

1

1 + e−w
1√

2πσ2
w

exp

(
−(w − µw)2

2σ2
w

)
dw, (5.5)

where w = µ2...+τ2i+s2j+γ2ij+α1mijl is a normal random variable with mean and variance:

µw = µ2... + τ2i + s2j + γ2ij + α1µ1... + α1τ1i + α1s1j + α1γ1ij

= (µ2... + α1µ1...) + (τ2i + α1τ1i) + (s2j + α1s1j) + (γ2ij + α1γ1ij)

= µ0... + τ0i + s0j + γ0ij

σ2
w = α2

1σ
2
1.

Frederic & Lad [15] showed that p comes from a logitnormal distribution with density

f(pij|τ, s) =
1√

2πσ2
wpij(1− pij)

exp

(
− (logit(pij)− µw)2

2σ2
w

)
, (5.6)

where the logit function is defined as logit(x) = log
(

x
1−x

)
. With regard to the moments of

a logitnormal random variable, unless µw is 0, the expected value and variance cannot be

obtained in closed form [15].
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In order to obtain (5.1), the logit function of (5.5) needs to be linear with respect to

the marginal expectation of the mediator variable, µm. To investigate the above assertion,

we conducted a simulation study that computed the integral in (5.5), using Gauss-Legendre

quadrature with 100 knots [1], for varying values of µw ∈ [−10, 10] and σw ∈ [1, 3, 5]. For

each combination of µw and σw parameter values, E(p) and logit[E(p)] were computed. Below

are separate plots of the expectation and logit versus µw.

It’s evident from Figure 6 that E(p), and hence the marginal expectation of y, is sigmoidal

regardless of the value of σw. Also, all three curves intersect at µw = 0 which represents

the only closed form for E(p), which is 0.5. Taking the logit of each of the curves helps to

linearize them with the most pronounced effect when σw = 1.

This simulation study shows that the logit of the marginal expectation of y is approxi-

mately linear with respect to the marginal expectation of m. In other words:

logit[E(yijk|τ, s)] ≈ µ0... + τ0i + s0j + γ0ij.

Similar to the MMM case with a continuous outcome, there is a useful equality that arises

although it is now an approximation:

γ0 − γ2 ≈ γ2 + α1γ1 − γ2 = α1γ1. (5.7)

An estimate of d = γ0 − γ2 is d̂ = γ̂0 − γ̂2 ≈ a1γ̂1 with the following mean and variance:

E(d̂|τ, s,m) = γ̂1α1 (5.8)

Var(d̂|τ, s,m) = γ̂1Var(a1|τ, s,m)γ̂ ′1. (5.9)

To get the conditional variance of the estimate, a1, one has to go back to parameter estimation

in generalized linear models. A standard result is:

θ̂ ∼ AN
(
θ, I−1(θ)

)
,

where θ̂ is the vector of parameter estimates and I(θ) is the respective Fisher Information

[36]. In the logistic regression case,

I(θ) = −E

(
∂2logL

∂θ2

)
= X′WX,
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Figure 6: E(p) versus µw
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where W is a diagonal matrix with pij(1− pij) as the entries. Since

θ̂
′

=
[
µ̂... τ̂1 ŝ1 . . . ŝJ−1 γ̂11 . . . γ̂1J−1

]
, then the large sample multivariate distri-

bution of the parameter estimates is asymptotically

θ̂ ∼ N
(
θ, (X′WX)

−1
)
.

5.1.1 Significance Testing with 1 Mediator

We now extend the d-test and PSC test to the logistic regression case. The first test is as

follows:

5.1.1.1 d Test H0 : d = γ0 − γ2 = 0 with test statistic

T 2 = (γ̂1a1)′
[
γ̂1(X′WX)

−1
a γ̂1

′
]−1

(γ̂1a1)

= a2
1

[
(X′WX)

−1
a

]−1 [
γ̂1
′(γ̂1γ̂1

′)−γ̂1

]
=

a2
1

(X′WX)−1
a

, (5.10)

where subscript a denotes the matrix entry corresponding to the parameter estimate of the

mediator. Under the null hypothesis, T 2 is distributed as a χ2
1, so the critical values are

chosen such that

α = PH0

(
T 2 > χ2

1,1−α
)
. (5.11)

This is also known as a Wald test [36].
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5.1.1.2 Product of Standardized Coefficients Test The PSC significance test in

the logistic case is similar to that of the ANOVA case: H0 : α1γ1 = 0, where γ is a J − 1

dimensional vector of the interaction parameters. The product α1γ1 is estimated by a1γ̂1,

where

a1 ∼ N
(
α1, (X

′WX)
−1
a

)

and

γ̂1 ∼MVN
(
γ1, (X

′WX)
−1
γ

)
.

Following MacKinnon et al, the test statistic is W =
a1

σa

γ̂

σγ̂
, which is distributed under the

alternative hypothesis as a scale mixture of multivariate normal random variables with the

following conditional and marginal densities:

(W|z0) ∼MVN

(
α1

σα

γ

σγ
,

(
z2

0 +

(
α1

σα

)2
)

Σγ +
γ

σγ

γ

σγ

′
)

where

z2
0 ∼ χ2

1

and Σγ is the variance-covariance matrix of the standardized interaction estimates with a

diagonal entry of ones and off-diagonal entries:

(Σγ)ij =
(X ′WX)−1

ij√
(X ′WX)−1

ii

√
(X ′WX)−1

jj

.

A Wald test can be conducted with test statistic T 2 = W′(z2
0Σ̂γ)

−1W, and under the null

hypothesis (T 2|z2
0) is distributed as χ2

J−1. Critical values are chosen such that

α = PH0

(
T 2 > χ2

J−1,1−α
)
. (5.12)
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5.1.2 Simulation Study with 1 Mediator

To estimate power, a simulation study was conducted for each of the above significance

tests. First, the mediator and outcome variables were drawn according to the following

distributions:

(mijl|τ, s) ∼ N
(
µ1... + τ1i + s1j + γ1ij, σ

2
1

)
and

(yijl|m, τ, s) ∼ Bernoulli(pij),

where pij = (1 + exp[−(µ2... + τ2i + s2j + γ2ij + α1mijl)])
−1.

We used the TORDIA clinical trial as a basis for selecting the parameter values in our

simulation study. The grand means and treatment effects were µ1... = 1.48, µ2... = 1.01,

τ11 = 0.57, and τ21 = −1.24, respectively. The values for the site parameters in both

distributions were s1j = {0.38,−0.10,−0.04, 0.04} and s2j = {−0.79,−1.06,−0.30,−1.66}.

The interaction values for the distribution of the response variable were

γ21j = {2.47, 1.62, 1.09, 3.07, 2.95}.

Regarding the effect size, we used the approximation from (5.7). The coefficient of

the mediator α1 was set to equal
√

es, the square root of the effect size. In addition, the

interaction parameter values, γ11, γ12, . . . , γ1,J−1, were generated from the same distribution

above with the exception that the mean was
√

es. Effect size values of zero, small (0.20),

medium (0.50), and large (0.80) were chosen according to Cohen [10]. The sample sizes were

chosen to be 100, 200, 400, 500, and 1000. In addition, the number of sites were chosen to

be 2 and 5. In the former case, only the first value was chosen from s1j, s2j, and γ21j, while

all the values were chosen in the latter case. Also, the test statistic for the PSC test, T 2,

contains a chi-squared random variable, z2
0 . Therefore, the first, and third quartiles as well

as the expected value of χ2
1 were chosen for values of z2

0 .

For each of the effect size/sample size/site number combinations, the three necessary

equations ((5.1), (5.2), (5.3)) were fit and the two significance tests were conducted 10,000

times. The number of times the null hypothesis was rejected gave an estimate of the type I

error and power.
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5.1.2.1 Results The results of the simulation study for the d test are presented in Tables

8 & 9. With only 2 sites, both the d and PSC tests seem fairly close with regards to power,

although it appears the type I error of the PSC is consistently overestimating the true value of

0.05. This phenomenon is similar to the what was happening in the regression and ANOVA

cases, although the reason behind it is not the same. One of the things that MacKinnon et

al showed was that the useful equality (in the logistic MMM case: γ0 − γ2 = α1γ1) does

not hold at times [34]. When the number of sites increases to 5, this issue is even more

pronounced – namely in the n = 100 and n = 200 cases.

Table 8: Type I error & power for logistic MMM with 1 mediator and j = 2 sites

Sample Size

ES Method 100 200 400 500 1000

0
d 0.052 0.046 0.048 0.046 0.048

PSC 0.073 0.065 0.070 0.069 0.076

0.20
d 0.481 0.680 0.928 0.970 >0.999

PSC 0.465 0.692 0.939 0.968 0.998

0.50
d 0.768 0.930 0.997 0.999 >0.999

PSC 0.757 0.963 0.999 0.999 >0.999

0.80
d 0.872 0.979 >0.999 >0.999 >0.999

PSC 0.905 0.998 >0.999 >0.999 >0.999

To investigate this, I conducted a simulation study with the same setup as the preceding

one, but only with j = 2 sites. For each of the 10,000 iterations, I computed the estimates

γ̂0 − γ̂2 and a1γ̂1 as well as their squared difference from the true value. The mean, stan-

dard deviation, and mean square error were then calculated for each sample size/effect size

combination.

As can be seen in Table 10, the product of coefficients does a better job than the difference

in coefficients in estimating the true effect. The difference is stark with smaller sample sizes.

The fact that γ̂0− γ̂2 severely overestimates the truth (especially in the case of a large effect

size and small sample size) can lead to an exaggerated estimate of power. In the j = 5 case,
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Table 9: Type I error & power for logistic MMM with 1 mediator and j = 5 sites

Sample Size

ES Method 100 200 400 500 1000

0
d 0.252 0.068 0.048 0.050 0.052

PSC 0.337 0.157 0.128 0.155 0.131

0.20
d 0.874 0.818 0.950 0.979 >0.999

PSC 0.917 0.867 0.969 0.990 >0.999

0.50
d 0.981 0.983 0.999 >0.999 >0.999

PSC 0.987 0.989 >0.999 >0.999 >0.999

0.80
d 0.993 0.999 >0.999 >0.999 >0.999

PSC 0.993 0.998 >0.999 >0.999 >0.999

there is an added issue of cell size. When n = 100, there are only 10 samples in each of

the 10 treatment-by-site cells. As a result, complete separation can occur when all of the

responses in a particular cell are identical. Since the PSC test involves a χ2 random variable,

type I error and power were re-estimated with the lower and upper quartiles of χ2
1 and χ2

4,

respectively. As can be seen in tables 11 & 12, as the χ2 value decreases, so do the type I

error and power.
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Table 10: Comparison of estimators in logistic MMM with 1 mediator and j = 2 sites

Sample Size

ES Method 100 200 400 500 1000

0

γ̂0 − γ̂2

Mean -0.026 -0.013 -0.007 -0.005 -0.003

SD 0.129 0.048 0.025 0.020 0.010

MSE 0.017 0.003 0.001 <0.001 <0.001

a1γ̂1

Mean >-0.001 >-0.001 >-0.001 >-0.001 >-0.001

SD 0.097 0.045 0.023 0.018 0.010

MSE 0.010 0.002 0.001 <0.001 <0.001

0.20

γ̂0 − γ̂2

Mean 0.336 0.151 0.123 0.117 0.102

SD 0.728 0.340 0.110 0.088 0.059

MSE 0.558 0.117 0.018 0.014 0.010

a1γ̂1

Mean 0.181 0.194 0.201 0.199 0.181

SD 0.255 0.166 0.113 0.100 0.068

MSE 0.065 0.028 0.013 0.010 0.005

0.50

γ̂0 − γ̂2

Mean 1.178 0.800 0.470 0.360 0.340

SD 1.468 1.040 0.529 0.352 0.116

MSE 2.772 1.178 0.282 0.136 0.035

a1γ̂1

Mean 0.430 0.517 0.531 0.476 0.492

SD 0.408 0.279 0.191 0.162 0.116

MSE 0.168 0.079 0.037 0.026 0.013

0.80

γ̂0 − γ̂2

Mean 2.421 1.997 1.325 0.891 0.646

SD 2.247 1.682 1.317 0.994 0.438

MSE 8.001 4.085 1.916 1.002 0.215

a1γ̂1

Mean 0.796 0.930 0.922 0.788 0.807

SD 0.576 0.393 0.266 0.222 0.157

MSE 0.341 0.157 0.071 0.050 0.025
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Table 11: Type I error & power for logistic PSC test with varying χ2 and j = 2 sites

Sample Size

ES χ2
1,α 100 200 400 500 1000

0
α = 0.25 0.355 0.338 0.353 0.356 0.373

α = 0.75 0.052 0.046 0.049 0.050 0.056

0.20
α = 0.25 0.764 0.899 0.987 0.994 >0.999

α = 0.75 0.419 0.645 0.928 0.960 0.998

0.50
α = 0.25 0.919 0.992 >0.999 >0.999 >0.999

α = 0.75 0.720 0.950 0.999 0.999 >0.999

0.80
α = 0.25 0.978 >0.999 >0.999 >0.999 >0.999

α = 0.75 0.885 0.997 >0.999 >0.999 >0.999

Table 12: Type I error & power for logistic PSC test with varying χ2 and j = 5 sites

Sample Size

ES χ2
4,α 100 200 400 500 1000

0
α = 0.25 0.691 0.593 0.578 0.603 0.582

α = 0.75 0.302 0.117 0.090 0.108 0.089

0.20
α = 0.25 0.985 0.985 0.999 >0.999 >0.999

α = 0.75 0.900 0.829 0.952 0.982 >0.999

0.50
α = 0.25 0.999 0.999 >0.999 >0.999 >0.999

α = 0.75 0.979 0.983 >0.999 >0.999 >0.999

0.80
α = 0.25 0.999 >0.999 >0.999 >0.999 >0.999

α = 0.75 0.991 0.997 >0.999 >0.999 >0.999
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5.1.3 Significance Testing with K Mediators

The necessary equations from (5.1), (5.2), and (5.3) can be extended to the K mediator case

in the following way:

logit[E(yijl)] = µ0... + τ0i + s0j + γ0ij (5.13)

E(m1ijl) = µ1... + τ1i + s1j + γ1ij (5.14)

...

E(mKijl) = µK... + τKi + sKj + γKij (5.15)

logit[E(yijl)] = µK+1... + τK+1,i + sK+1,j + γK+1,ij + α1m1ijl + · · ·+ αK+1mK+1,ijl.

(5.16)

In terms of the multivariate distribution of the mediators, m1, · · · ,mK , and the conditional

distribution of the outcome variable, we have


m1

...

mk

 ∼ N




µ1... + τ1i + s1j + γ1ij

...

µK... + τKi + sKj + γKij

 ,


σ2

1 σ12 . . . σ1K

σ21 σ2
2 . . . σ2K

...
...

. . .
...

σK1 σK2 . . . σ2
K




,

and

(yijl|m1, · · · ,mK , τ, s) ∼ Bernoulli(pij),

where pij =
1

1 + e−(µK+1...+τK+1,i+sK+1,j+γK+1,ij+α1m1ijl+···+αK+1mK+1,ijl)
. As in the single medi-

ator case, the density of the marginal distribution of y is

f(y|τ, s) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(y|m, τ, s)f(m|τ, s)dm

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

py(1− p)1−y(2π)−K/2|Σm|−1/2exp

(
−1

2
(m− µm)′Σ−1

m (m− µm)

)
dm.

(5.17)

From above, we can obtain the marginal expectation of the outcome:

E(y|τ, s) = E [E(y|m, τ, s)] = E(p|τ, s)

=

∫ ∞
−∞

1

1 + e−w
1√

2πσ2
w

exp

(
−(w − µw)2

2σ2
w

)
dw, (5.18)
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where w = µK+1... + τK+1,i + sK+1,j + γK+1,ij +
∑K

q=1 αqmqijl is a normal random variable

with mean and variance:

µw = µK+1... + τK+1,i + sK+1,j + γK+1,ij +
K∑
q=1

αqµq... +
K∑
q=1

αqτqi +
K∑
q=1

αqsqj +
K∑
q=1

αqγqij

= (µK+1... +
K∑
q=1

αqµq...) + (τK+1,i +
K∑
q=1

αqτqi) + (sK+1,j +
K∑
q=1

αqsqj) + (γK+1,ij +
K∑
q=1

αqγqij)

= µ0... + τ0i + s0j + γ0ij

σ2
w =

K∑
q=1

α2
qσ

2
q + 2

K∑
q 6=q′

αqαq′σqq′ .

If we adhere to the linearity assumption between the marginal expectation of y and the

marginal expectation of m that was shown in the single mediator case, the following approx-

imation arises:

γ0 − γK+1 ≈
K∑
q=1

αqγq. (5.19)

An estimate of d = γ0 − γK+1 is d̂ = γ̂0 − γ̂K+1 ≈
∑K

q=1 aqγ̂q with the following mean and

variance:

E(d̂|τ, s,m) =
K∑
q=1

γ̂qαq (5.20)

Var(d̂|τ, s,m) =
K∑
q=1

γ̂q(X
′WX)aq γ̂

′
q + 2

K∑
q 6=q′

γ̂q(X
′WX)aq ,aq′ γ̂

′
q′ . (5.21)

5.1.3.1 d Test The null hypothesis is H0 : d = γ0 − γK+1 = 0 with test statistic

T 2 =

(
K∑
q=1

aqγ̂q

)′ [ K∑
q=1

γ̂q(X
′WX)aq γ̂

′
q + 2

K∑
q 6=q′

γ̂q(X
′WX)aq ,aq′ γ̂

′
q′

]−1( K∑
q=1

aqγ̂q

)
,

(5.22)

where subscript aq denotes the matrix entry corresponding to the parameter estimate of the

q-th mediator, and aq, aq′ denotes the off-diagonal entry corresponding to the estimates of

the mediators, mq and mq′ . Under the null hypothesis, T 2 is distributed as a χ2
1, so the

critical values are chosen such that

α = PH0

(
T 2 > χ2

1,1−α
)
. (5.23)
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5.1.3.2 Product of Standardized Coefficients Test The null hypothesis for the PSC

significance test is H0 =
∑K

q=1 αqγq = 0 with test statistic
K∑
q=1

Vq =
K∑
q=1

(
aq
σaq

γ̂q
σγ̂q

)
. Using

the normal scale mixture theory from the previous chapter, we get that
K∑
q=1

Vq is distributed

according to a multivariate normal distribution with mean and variance:

E

(
K∑
q=1

Vq

)
=

K∑
q=1

(
αq
σαq

γq
σγq

)
(5.24)

(5.25)

Var

(
K∑
q=1

Vq

)
=

K∑
q=1

Var(Vq) + 2
K∑
q 6=q′

Cov(Vq,Vq′)

=
K∑
q=1

[(
z2
aq +

(
αq
σαq

)2
)

Σγq +
γq
σγq

γq
σγq

′
]

+2
K∑
q 6=q′

[
Cov

(
γ̂q
σγ̂q

,
γ̂q′

σγ̂q′

)(
|zaqzaq′ |+ |zaq |

(
αq′

σαq′

)
+ |zaq′ |

(
αq
σαq

))]
,

(5.26)

where |zaq | and |zaq′ | are folded normal random variables and z2
aq is a chi squared random

variable.

5.1.4 Illustration on TORDIA data

The two significance tests – the d and PSC – were conducted on the TORDIA clinical trial

dataset with the original binary outcome of clinical response. As mentioned before, the

primary outcome was defined as the combination of the Clinical Global Impressions score

≤ 2 and a change in the Children’s Depression Rating Scale-Revised of ≥ 50%.

The three models in the multisite mediated moderation case ((5.1), (5.2), and (5.3)) were

conducted with 20 variables measured at baseline as potential mediators. There was overall

site moderation of treatment effect in (4.52) (p = 0.001) at the α = 0.05 significance level.

Since the second necessary equation did not change going from the continuous outcome to
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the binary outcome case, treatment-by-site interaction persisted in the same two variables:

CBQA (p = 0.044) and TOTALD (p = 0.004).

After adjusting for the CBQA score, the magnitude of site moderation was reduced

(p = 0.006), which is a criteria for mediated moderation. Both tests were applied to the

data to see if the reductions in magnitudes were significant. Since the PSC test involves a

χ2
1 random variable, the expected value of 1 was chosen. The d test concluded that subject’s

CBQA score significantly explained the differing effect of CBT-MED therapy across the

six sites (p = 0.002). The Product of Standardized Coefficients test concluded that the

magnitude of interaction was significantly reduced (p < 0.001).

The magnitude of site moderation due to the adjustment for the TOTALD variable was

reduced, but not eliminated (p = 0.003). Both of the aforementioned tests were applied to

the data and only the PSC test concluded a significant reduction (pd = 0.173; pPSC < 0.001).
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6.0 DISCUSSION & FUTURE WORK

6.1 DISCUSSION

In summary, this dissertation has focused on the issue of site heterogeneity in both the

design and analysis stages of multisite clinical trials. While it is ideal to account for potential

sources at the design stage of a trial, this is only possible if there is statistical methodology

to identify them at the analysis end. The contribution of this dissertation is exactly that.

Using the concept of mediated moderation described by Muller et al. [39], three tests

popular in the mediation literature were extended to the multiple regression, ANOVA, and

logistic regression models used to analyze multisite clinical trials. The result is a battery

of significance tests to help explain treatment-by-site interaction. Each of the test were

developed in the two-treatment, two-site case and were extended to the J-site case.

The significance tests in the multiple regression and logistic regression cases were also

broadened to include K meditators. While the groundwork has already been laid, some care

is needed in the details of the PSC tests. This will be the focus of an upcoming paper.

Finally, once potential sources of site heterogeneity are chosen by the above tests, they

can inform the design for future clinical trials. Instead of basing sample size and power off

of a t-test or an ANOVA model, one can use the hierarchical linear models – (2.19) and

(2.20) – described in Chapter 2 with the potential sources as site-level covariates. One of the

conclusions mentioned in Spirito et al. was that multisite clinical trials should be powered

to detect site differences [47]. While the author agrees with this, it should be used if site

variability cannot be accounted for by methods such as HLMs mentioned above.
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6.2 FUTURE WORK

The author plans to investigate the following:

1. Study the details of the PSC and d tests (multiple regression and logistic regression)

with K mediators. Conduct simulation studies and apply to the TORDIA dataset.

2. A generalization of MMM to models in the generalized linear model framework.

3. Multisite clinical trials are not just limited to two treatments, so the extension of the

proposed MMM to a model with three or more treatments is needed.

4. All of the difference in coefficients test that have been outlined have treated the media-

tor(s) variable as fixed, whereas in the clinical trial setting the mediators vary. Account-

ing for this added variability will provide more accurate estimates of power.

5. Extend the MMM to the case where site is a random effect; explore different possi-

bilities for the random distribution such as the skew-t distribution as well as Bayesian

nonparametric approaches.

6. As in the two-site case, investigate the type I error inflation issue in the PSC tests.
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APPENDIX A

DERIVATION OF THE EQUALITY IN MMM

It is straightforward to show that (4.8) and (4.9) lead to (4.7) in the two-site, two-treatment

case. This leads to the useful equality seen in mediated moderation.

m = β10 + β11τ + β12s+ β13(τ ∗ s) + ε1 (A.1)

y = α00 + α01τ + α02s+ α03(τ ∗ s) + α12m+ α13(m ∗ τ) + ε2

= (α00 + α01τ) + (α02 + α03τ)s+ (α12 + α13τ)(β10 + β11τ)

+(α12 + α13τ)(β12 + β13τ)s+ (α12 + α13τ)ε1 + ε2

= [(α00 + α01τ) + (α12 + α13τ)(β10 + β11τ)]

+ [(α02 + α03τ) + (α12 + α13τ)(β12 + β13τ)] s+ [(α12 + α13τ)ε1 + ε2]

= [β00 + β01τ ] + [β02 + β03τ ] s+ ε0. (A.2)

From this, we get

(β02 + β03τ) = (α02 + α03τ) + (α12 + α13τ)(β12 + β13τ)

(β02 + β03τ)− (α02 + α03τ) = (α12 + α13τ)(β12 + β13τ) (A.3)

which implies

β03 − α03 = α13β12 + α12β13. (A.4)

Muller et al. requires that at least one of the products on the right hand side of (A.4) be

non-zero [39]. So, by allowing the partial effect to not be moderated, no assumptions of

mediated moderation are violated.
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APPENDIX B

GAUSS-HERMITE QUADRATURE

If x ∼ N(µx, 1) and y ∼ N(µy, 1), then the pdf of p = xy is

f(p) = (2π)−1

∫ ∞
−∞

1

y
e
−1
2 ( py−µx)

2

e
−1
2

(y−µy)2dy. (B.1)

When µx = µy = 0, the above integral is approximated by a modified Bessel function of the

second kind [12]. Otherwise, Gauss-Hermite quadrature is one way of approximating the

integral such that ∫ ∞
−∞

e−x
2

f(x) ≈
n∑
i=1

w(xi)f(xi), (B.2)

where w(xi) is a weight function evaluated at the i-th root of a Hermite polynomial. The

total number of nodes, n = 32, was chosen based on how well the quadrature approximated

the modified Bessel function in the case where both parameters are null.
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APPENDIX C

CONDITIONAL MEAN OF Y IN THE K-MEDIATOR CASE

Let the joint distribution of the outcome variable, y, and the mediator variables, m1,. . .,mk,

be


y

m1

...

mk

 ∼ N




β00 + β01τ + β02s+ β03(τ ∗ s)

β10 + β11τ + β12s+ β13(τ ∗ s)
...

βk0 + βk1τ + βk2s+ βk3(τ ∗ s)

 ,


σ2

0 σ01 . . . σ0k

σ10 σ2
1 . . . σ1k

...
...

. . .
...

σk0 σk1 . . . σ2
k




.

If we partition y from the mediator variables such that the variance-covariance matrix is

Σym =

 σ2
0 Σ0m

Σm0 Σmm

 ,

then the conditional distribution of y is

(y|m1, . . . ,mk, τ, s) ∼ N
(
µy + Σ0mΣ−1

mm(m− µm), σ2
0 − Σ0mΣ−1

mmΣm0

)
.
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The term Σ0mΣ−1
mm is referred to as the matrix of regression coefficients [24]. Then, we can

write the conditional mean as

µy|m1,...,mk,τ,s = µy +
[
α12 α22 . . . αk2

]

m1 − µm1

m2 − µm2

...

mk − µmk


= (β00 + β01τ + β02s+ β03(τ ∗ s)) +

k∑
i=1

αi2 (mi − βi0 + βi1τ + βi2s+ βi3(τ ∗ s))

=

(
β00 −

k∑
i=1

βi0αi2

)
+

(
β01 −

k∑
i=1

βi1αi2

)
τ +

(
β02 −

k∑
i=1

βi2αi2

)
s

+

(
β03 −

k∑
i=1

βi3αi2

)
(τ ∗ s).

(C.1)
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APPENDIX D

DERIVATION OF COVARIANCE OF INTERACTION EFFECT

ESTIMATES

In a 2-treatment, J-site, unbalanced ANOVA design with the following model, the J − 1

interaction effect estimates γ̂ij = ȳij. − ȳi.. − ȳ.j. + ȳ... are correlated with each other.

Yijk = µ+ τi + sj + γij + εijk (D.1)

Let γ̂ij and γ̂ij′ be two estimates from the same treatment, but different sites. Then, the

covariance is as follows:

Cov(γ̂ij, γ̂ij′) = Cov(ȳij. − ȳi.. − ȳ.j. + ȳ..., ȳij′. − ȳi.. − ȳ.j′. + ȳ...)

= −Cov(ȳij., ȳi..) + Cov(ȳij., ȳ...)− Cov(ȳi.., ȳij′.) + Cov(ȳi.., ȳi..) + Cov(ȳi.., ȳ.j′.)

−Cov(ȳi.., ȳ...) + Cov(ȳ.j., ȳi..)− Cov(ȳ.j., ȳ...) + Cov(ȳ..., ȳij′.)− Cov(ȳ..., ȳi..)

−Cov(ȳ..., ȳ.j′.) + Cov(ȳ..., ȳ...)

= − σ2

Jnij
+

σ2

IJnij
− σ2

Jnij′
+
σ2

J2

J∑
j=1

(
1

nij

)
+

σ2

IJnij′
− σ2

IJ2

J∑
j=1

(
1

nij

)

+
σ2

IJnij
− σ2

I2J

I∑
i=1

(
1

nij

)
+

σ2

IJnij′
− σ2

IJ2

J∑
j=1

(
1

nij

)
− σ2

I2J

I∑
i=1

(
1

nij′

)

+
σ2

I2J2

I∑
i=1

J∑
j=1

(
1

nij

)

= σ2

[
1

4J2

2∑
i=1

J∑
j=1

(
1

nij

)
− 1

4J

2∑
i=1

(
1

nij
+

1

nij′

)]
. (D.2)
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The variance of a particular interaction effect estimate is

Var(γ̂ij) = Var(ȳij. − ȳi.. − ȳ.j. + ȳ...)

=
σ2

nij
+
σ2

J2

J∑
j=1

(
1

nij

)
+
σ2

I2

I∑
i=1

(
1

nij

)
+

σ2

I2J2

I∑
i=1

J∑
j=1

(
1

nij

)

+2

[
− σ2

Jnij
− σ2

Inij
+

σ2

IJnij
+

σ2

IJnij
− σ2

IJ2

J∑
j=1

(
1

nij

)
− σ2

I2J

I∑
i=1

(
1

nij

)]
.

= σ2

[
J − 2

4J

2∑
i=1

(
1

nij

)
+

1

4J2

2∑
i=1

J∑
j=1

(
1

nij

)]
. (D.3)
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APPENDIX E

GENERALIZED INVERSE

Theorem 4. Let A be a p-by-1 dimensional vector, and let (AA′) be a square singular matrix

with generalized inverse (AA′)− defined in McCulloch & Searle [36]. Then, A′(AA′)−A = 1.

Proof. We know that

A′(AA′)−A = c, (E.1)

where c is a scalar. If we pre- and post-multiply by A and A′, respectively, we get

(AA′)(AA′)−(AA′) = AcA′. (E.2)

Because (AA′)− is a generalized inverse, then c = 1 must be true.
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