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Abstract 

One of the main challenges facing tumor immunologists is to develop strategies that 

would effectively stimulate Type-1 anti-tumor T cell responses, which have been correlated with 

better clinical outcome and prolonged survival of cancer patients. As CD4+ T cells were shown 

to play a critical role in mediating these responses, it was of interest to examine novel ways of 

effectively stimulating and enhancing Type-1 CD4+ T cell responses. For these studies I used 

MAGE-A6, a tumor associated antigen (TAA) expressed by a broad range of human cancer 

types.  Two novel MAGE-A6 T-helper epitopes were identified and were shown to be 

recognized by CD4+ T cells isolated from the majority of normal donors or patients with 

melanoma, regardless of their HLA genotype (i.e. poly-DR presented epitopes). Furthermore, 

peptide-specific T cells also recognized autologous monocytes pulsed with recombinant MAGE-

A6 protein, supporting the natural processing and MHC presentation of these epitopes. 

Interestingly, one of the novel MAGE-A6 epitopes possesses a high-degree of homology with a 

microbial peptide. CD4+ T cells stimulated in vitro with this microbial peptide cross-reacted 

against the MAGE-A6 homologue peptide, and could recognize naturally-processed MAGE-A6 

epitopes more effectively than T cells stimulated with MAGE-A6 peptides. This study showed 

that it is possible to stimulate, and even enhance tumor-specific T cell responses using microbial 

epitopes that are homologous to TAA-derived peptides. In the final study, human dendritic cells 

(DC) were engineered to secrete high levels of IFN-γ-inducing cytokines IL-12p70 and IL-18 via 
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recombinant adenoviral infection to generate an in vitro stimulus capable of promoting 

previously deficient patient Th1-type responses.  DC engineered to secrete both of these 

cytokines simultaneously (DC.IL-12/18) were highly effective at stimulating MAGE-A6-specific 

Th1-type CD4+ T cell responses from patients with melanoma, particularly when loaded with 

MAGE-A6 protein. Poly-DR presented epitopes and MAGE-A6 protein defined in this thesis, if 

loaded onto DC.IL-12/18, could prove clinically useful as a vaccine modality capable of 

promoting the recovery and/or enhancement of tumor antigen-specific, Th1-type CD4+ T cell 

responses in the majority of patients harboring MAGE-A6+ cancers. 
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1. INTRODUCTION 

 

Previously it has been observed that some human tumors, especially melanoma and renal 

cell carcinoma (RCC), can occasionally undergo spontaneous regression (1, 2). These findings 

have inspired the imagination of clinicians and scientists, and have created hope that the immune 

system can specifically recognize and eliminate cancers. Since the first description of a 

molecularly-defined human tumor-associated antigen (TAA) recognized by cytotoxic T cells 15 

years ago (3), advances in understanding the nature of tumor-specific immune responses and 

mechanisms of tolerance induction have encouraged researchers and clinicians alike to develop a 

more refined approach to immune-mediated therapies.  Studies utilizing expression cloning of 

TAA cDNAs have been integrated with novel strategies such as reverse immunology, 

biochemical methods, genetic approaches, and serological analysis of recombination expression 

libraries (SEREX) to identify a number of TAAs. Reverse immunology refers to a strategy where 

epitopes are predicted on the basis of known HLA-binding motifs from an already identified 

TAA. Biochemical methods involve eluting and fractionating TAA peptides naturally expressed 

on tumor cells in the context of HLA molecules by reverse-phase high-performance liquid 

chromatography (HPLC) and mass spectrometry. Genetic approaches are used to identify tumor 

genes coding for the epitopes recognized by isolated patient cytotoxic T cell clones reactive 

against autologous tumors. SEREX is based on the recognition of tumor antigens by cancer 

patient’s autologous sera. All of these strategies have successfully been utilized to identify a 

number of TAA that can be presented by tumor cells or by antigen presenting cells (APCs) in the 

context of major histocompatibility complex (MHC) molecules on their cell surfaces (4-7).   
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1.1. Tumor Associated Antigen Classification 

 

According to the pattern of expression in neoplastic and normal tissues, TAAs can be 

classified into four major categories (Table 1).  The first category is cancer-testis antigens. These 

are proteins encoded by genes expressed in various tumors but not in normal tissues, except for 

testis and placenta. Antigens that belong to this group are MAGE, GAGE, and BAGE families, 

as well as NY-ESO-1 and its alternative ORF products LAGE and CAMEL.  The second group 

represents differentiation antigens that are shared between tumors and the normal tissue from 

which the tumor arose. Of the ones discovered so far, most are expressed in melanoma and 

normal melanocytes, such as tyrosinase, Melan-A/MART-1, gp100, TRP-1, and TRP-2.  The 

third category is tumor-specific antigens. These antigens are generated by point mutations (e.g. 

p53, Ras, CDK4, β-catenin) (5, 6) or tumor-specific splicing aberrations in genes that are 

ubiquitously expressed (e.g. TRP-2/INT2) (8), and are expressed only in tumors where they were 

identified (unlike cancer-testis antigens).  These molecular changes are associated with 

neoplastic transformation and/or progression. The fourth group of antigens is widely occurring, 

over-expressed TAA. These are proteins that have been detected in histologically different types 

of tumors (often with no preferential expression on a certain type of cancer) as well as in many 

normal tissues, generally with lower expression levels. Some of the antigens belonging to this 

group include survivin, MUC1/2 and EphA2, among others. 
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Table 1. Summary of tumor antigen categories 

 
TAA Categories Antigen Characteristic Genes 

   
Cancer-Testis Expressed in various tumors but not MAGE, GAGE,  

 normal tissues except in testis and placenta BAGE, NY-ESO-1 
   

Differentiation Antigens shared between tumors and  Tyrosinase, Melan-A/MART-1, 
 normal tissues from which they arose gp100, TRP-1, and TRP-2 
   

Tumor-Specific Antigens generated by point mutations p53, Ras, CDK4,  
 or splicing aberrations in ubiquitous genes β-catenin, TRP-2/INT2 
   

Widely 
Occurring Proteins over-expressed in histologically Survivin, MUC1/2 and EphA2 

Over-Expressed different types of tumors   

 

1.2. Melanoma Antigen Gene (MAGE) Family 

 

MAGE proteins are a family of closely-related molecules that were initially identified as 

TAA capable of being recognized by cytolytic T lymphocytes (CTL) isolated from the peripheral 

blood of cancer patients (3). MAGE genes are classified as either type I (MAGE-A, MAGE-B, 

and MAGE-C genes located on the X chromosome) or type II  (those that are located outside of 

the type I MAGE genomic cluster) (9, 10). Normally, type I MAGE proteins are selectively 

expressed in testicular cells among somatic tissues (11, 12), and in some instances placenta 

(MAGE-A3, MAGE-A4, and MAGE-A8 through –A11; ref. (13)). In fact, MAGE antigen 

expression has been demonstrated in spermatogonia as well as spermatocytes, as the only cell 

types regularly expressing MAGE antigens among normal tissues (12). However, MAGE 

proteins can also be expressed in both pre-malignant and malignant lesions in concert with DNA 
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hypomethylation (14, 15). As both testis and placenta are considered to represent 

immunologically privileged regions due to their lack of/deficiency in MHC class I expression, 

any potential vaccination strategies using these antigens would be expected to have only limited 

pathologic effects in patients, making these antigens acceptable targets for cancer vaccines.  

 

1.2.1. MAGE Function 

 

While most of the members of the MAGE family have been molecularly characterized, 

their cellular function remains a major mystery. This is particularly true for type I MAGE 

proteins. Most of the functional analyses reported have thus far been performed on necdin and 

MAGE-D1 (also known as NRAGE), growth suppressors expressed predominantly in post-

mitotic neurons that have been implicated in their terminal differentiation (reviewed in ref. (16)). 

Necdin is a cell cycle regulator necessary for the terminal differentiation and survival of primary 

dorsal root ganglion neurons. It serves as a growth suppressor that is functionally similar to the 

retinoblastoma (RB) tumor suppressor protein. Necdin is involved in the terminal differentiation 

and survival of nerve growth factor (NGF)-dependent dorsal root ganglion neurons. Suppression 

of necdin expression in neurons leads to caspase-3-dependent apoptosis (17). Necdin appears to 

interact with cell cycle promoting proteins such as simian virus 40 large T antigen, adenovirus 

E1A, and transcription factor E2F1. It represents a growth suppressor that targets and modulates 

the biological functions of p53 in post-mitotic neurons (18). Necdin markedly suppresses p53-

dependent activation of the p21/WAF promoter, and in doing so, inhibits p53-induced apoptosis 

of tumor cells. Furthermore, necdin and p53 inhibit cell growth in an additive manner. MAGE-

D1 was identified as a binding partner for the p75 neurotrophin receptor, the apoptosis inhibitory 
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protein XIAP, and the Dlx/MSX homeodomain proteins. It appears to block cell cycle 

progression, and unlike necdin, is involved in cellular pro-apoptotic pathways (16, 19). 

Limited data has been accumulated regarding the function of type I MAGE genes, 

particularly MAGE-A1 and MAGE-A4. Stable (enforced) expression of MAGE-A1 reduces the 

susceptibility of tumor cell lines to TNF-α-mediated cytotoxicity (20), suggesting that MAGE-

A1 is cyto-protective. Contrary to this paradigm, MAGE-A4 has been reported to bind to, and 

suppress, the oncoprotein gankyrin in hepatocellular carcinoma (21). MAGE-A4 also partially 

suppresses both anchorage-independent growth in vitro and tumor formation in athymic mice 

(21). MAGE-A4 appears to promote cellular apoptosis in both p53-dependent and p53-

independent manners. It stabilizes p53 protein levels, but decreases cellular expression of p21 by 

binding to Miz-1, in concert with down-regulating Bcl-xL expression during the process of 

apoptosis (22). These conflicting reports suggest that, while highly-homologous, MAGE family 

proteins may mediate disparate functions associated with cell cycling and death. 

 

1.2.2. MAGE-A Subfamily  

 

MAGE-A1 was one of the first TAA reported based on modern molecular cloning 

approaches (3). Subsequently, new members of this family have been isolated, largely based on 

homology searches predicated on a MAGE-A1 template. The MAGE-A gene family is currently 

composed of 12 members (i.e. MAGE-A1 through -A12), that are in aggregate expressed by 

more than half of all human cancers. The MAGE-A gene cluster is located on chromosome 

Xq28, and all open reading frames are contained within a single exon (23). These genes encode 

intracellular proteins that have most commonly been observed in the cytoplasm (24, 25), but in 
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some cases they have also been observed in the nuclei of well-differentiated tumors (25). 

MAGE-A expression is frequently observed in melanoma specimens (26, 27), but not in naevi 

(including Spitz, dysplastic naevi, junctional and compound naevi) (28). In fact, greater 

immunohistochemical staining of tumor cells with anti-MAGE antibody has been associated 

with an invasive phenotype and a decreased in the overall survival rate of cancer patients (29, 

30). 

MAGE-A antigens have been evaluated as targets for immunoreactivity in a number of 

published studies. A summary of MAGE-A-derived MHC class I- and class II-restricted epitopes 

that have been previously reported is provided in Tables 2 and 3 (7). What is unique about these 

proteins is that they are highly homologous, and immunogenic peptides identified within one 

MAGE-A protein are often shared or highly-homologous with epitopes encoded by other 

members of the MAGE-A family.  In vivo vaccination studies utilizing MAGE-A 

peptides/cDNAs showed that epitope-specific CD4+ (31) and CD8+ (32) T cell responses can be 

primed in immunized patients. In one particular study, vaccination of metastatic melanoma 

patients with cutaneous injections of a recombinant canary pox virus carrying a mini-gene 

coding for two HLA-A1-restricted peptides encoded by MAGE-A1 and MAGE-A3, resulted in 

the enhancement of anti-tumor CTL responses. Anti-tumor CTLs (i.e. specific for TAA other 

than MAGE-A1 and MAGE-A3 epitopes) were 10,000 times more frequent among tumor 

infiltrating lymphocytes (TILs) than vaccine-specific T cells, suggesting that treatment-induced 

CTLs were not likely to represent the effectors associated with therapeutic benefit in these 

patients. It suggests instead that through the process of epitope spreading, vaccine-associated T 

cells may enable large numbers of anti-tumor (although not necessarily MAGE-specific) CTLs to 

be effectively cross-primed in vivo, yielding a clinically-effective, tumoricidal T cell repertoire 
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(33, 34). These studies suggest that MAGE-A antigens likely possess potential therapeutic value 

as targets of vaccine intervention strategies. 
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Table 2. Class I HLA-Restricted MAGE-A Peptides 

Immunogenic MAGE-A-derived, class I HLA-restricted peptides defined in the literature are 
listed (7). Homologous MAGE-A epitope sequence is written in red.  
 

Gene Restricting Peptide epitope 
 HLA Allele  
MAGE-A1 A1 EADPTGHSY 
  A3 SLFRAVITK 
  A24 NYKHCFPEI 
  A28 EVYDGREHSA 
  B37 REPVTKAEML 
  B53 DPARYEFLW 
  Cw2 SAFPTTINF 
  Cw3 SAYGEPRKL 
  Cw16 SAYGEPRKL 
   
MAGE-A2 A2 KMVELVHFL 
  A2 YLQLVFGIEV 
  A24 EYLQLVFGI 
  B37 REPVTKAEML 
   
MAGE-A3 A1 EADPIGHLY 
  A2 FLWGPRALV 
  A24 TFPDLESEF 
  A24 IMPKAGLLI 
  B44 MEVDPIGHLY 
  B52 WQYFFPVIF 
  B37 REPVTKAEML 
  B*3501 EVDPIGHLY 
   
MAGE-A4 A2 GVYDGREHTV 
   
MAGE-A6 A34 MVKISGGPR 
  B37 REPVTKAEML 
  B*3501 EVDPIGHVY 
   
MAGE-A10 A2 GLYDGMEHL 
   
MAGE-A12 Cw7 VRIGHLYIL 
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Table 3. Class II HLA-Restricted MAGE-A Peptides 

Immunogenic MAGE-A-derived, class II HLA-restricted peptides defined in the literature are 
listed (7). Homologous MAGE-A epitope sequences are written in red. 
 

Gene HLA Allele Peptide epitope 
      
MAGE-A1 DRB1*1301, DRB1*1302 LLKYRAREPVTKAE 
      
MAGE-A2 DRB1*1301, DRB1*1302 LLKYRAREPVTKAE 
      
MAGE-A3 DRB1*1301, DRB1*1302 LLKYRAREPVTKAE 
  DRB1*1301, DRB1*1302 AELVHFLLLKYRAR 
  DR1, DR4, DR7, DR11 RKVAELVHFLLLKYR 
    GDNQIMPKAGLLIIV 
    TSYVKVLHHMVKISG 
  DR1, DR4, DR7, DR11 FFPVIFSKASSSLQL 
      
MAGE-A6 DRB1*1301, DRB1*1302 LLKYRAREPVTKAE 
  DRB1*0401 ESEFQAALSRKVAKL 
    LLKYRAREPVTKAEMLGSVVGNWQ 
    VGNWQYFFPVIFSKASDSLQLVFGIELMEVD 
    IFSKASDSLQLVFGIE 
    LTQYFVQENYLEYRQVPG 

 

 

1.2.3. MAGE-A6 

 

MAGE-A6 was originally isolated from the human melanoma cell line DM150, and was 

shown to be 98% homologous at the protein level with MAGE-A3 (35). Like MAGE-A3, it is 

expressed in testis, but unlike some other members of the MAGE family, is not expressed in the 

placenta (13). MAGE-A6 has been reported to be expressed in more than 60% of melanomas 

(27), 30% of renal cell carcinomas (36), and by many other cancer types, such as breast, 

esophageal, head and neck, bladder, and lung carcinomas (27, 37-40). CTL responses against 
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MAGE-A6 have been reported to occur naturally in the setting of spontaneously regressing 

human melanoma (41), suggesting that the immune targeting of this antigen may be linked with 

tumor regression in situ, bolstering its potential therapeutic value. It has been shown to react with 

sera extracted from breast cancer patients but not normal donors (42). The clinical relevance of 

the MAGE-A6 antigen has been further substantiated in a clinical study where MAGE-A6-

specific CD8+ T cell clones were detected in a metastatic melanoma patient that had complete 

tumor regression following adoptive transfer of autologous tumor-specific tumor-infiltrating 

lymphocytes (TILs) (43). This is compounded by its wide range of expression among cancer 

types, and its lack of expression by normal tissues, which theoretically limits concerns over 

autoimmune pathology resulting from MAGE-A6-based cancer vaccines and immunotherapies.  

 

1.3. Tumor Antigen Processing 

 

Endogenous and exogenous (usually internalized by APCs) TAAs are processed 

principally via the cytosolic and endo/lysosomal pathways, respectively.  They are presented as 

short protein fragments by MHC class I (endogenous peptides 8-9 amino acids long) and class II 

(exogenous peptides up to 35 amino acids in length) (44, 45).  Tumor peptides associate with 

MHC molecules in intracellular compartments [endoplasmic reticulum (ER) for MHC class I, 

and endolysosome for MHC class II], and once forming stable complexes, they are transported to 

the cell surface where they become accessible to T cell scrutiny (45, 46).  Most TAAs contain a 

number of sequences that have been predicted and/or documented to bind to MHC molecules 

(47).  Typically, only a few of the potential epitopes elicit a strong (immunodominant epitopes) 
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cytotoxic T cell responses, while the majority elicit weak or no responses (sub-dominant or 

cryptic epitopes) (48, 49).     

 

1.3.1. Classical MHC Class I/Peptide Presentation 

   

Classical MHC class I antigen presentation (Figure 1) starts with the degradation of 

endogenous (intracellularly synthesized) proteins by the proteasome. Peptides of the correct 

length and sequence (possessing the correct anchor residues) bind to class I with the slowest off-

rate (50, 51). Peptides that are longer, or do not have appropriate anchor residues bind with faster 

off-rates (52, 53). A small fraction of the peptide fragments that result from this degradation 

survive complete destruction and are transported into the ER and loaded onto the MHC by the 

peptide loading complex composed of one TAP1/TAP2 (transporter associated with antigen 

presentation) heterodimer associated with 4 tapasin, 4 calreticulin and 4 MHC class I heavy 

chain/beta-2 microglobulin (β2m) dimers (54). In the ER, the peptides are loaded onto newly 

synthesized MHC class I molecules, forming ternary complexes, each composed of MHC class I 

heavy chain, β2m and peptide. These stable complexes are then transported to the cell surface 

(55) where they are exposed to CD8+ T cell surveillance.  
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Figure 1. Conventional MHC class I 
and class II antigen processing and 
presentation pathways. 
Endogenous antigens are degraded by 
the proteasome into short peptides that 
are transported into the ER by TAP. 
Here they form a complex with a 
newly synthesized MHC class I/β2m 
that is transported to the cell surface 
for presentation to CD8+ T cells. MHC 
class II α- and β-chains assemble in 
the ER with Ii. This complex is 
transported to the MIIC, where Ii is 
degraded by cathepsins until only 
CLIP is left in the MHC class II 
binding groove. HLA-DM (or its 
mouse homologue H2-M) catalyzes 
the replacement of CLIP with peptides 
derived from exogenous antigens 
taken up by APCs. 

 

 

1.3.2. Cross-Presentation 

 

In vivo, APCs acquire exogenous antigens (extracellular but often derived from an 

intracellular source; e.g. tumor cells) in the periphery, and then migrate to the lymph nodes 

where they display antigenic peptides in association with MHC class I molecules and stimulate 

epitope-specific CD8+ T cells. In this case, the source of antigen(s) is distinct from that of 

classical MHC class I antigen presentation pathway, and therefore the mechanism of antigen 

degradation and delivery of the peptide to MHC class I molecules is also likely to be different. 

The mechanism by which cross-presentation occurs is still not fully understood (55-57). There 

are multiple theories as to how this process occurs (Figure 2).  
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Figure 2. Various models of cross-presentation. 
There are multiple theories as to how extracellular antigens enter MHC class I antigen-
processing pathway. One possibility is that gap junctions allow for direct transfer of peptides 
from infected cells into the cytosol of APCs. Proteins taken up through the endocytic pathway 

can enter the cytoplasm, 
from where they enter the 
classical MHC class I 
pathway. Another option is 
that MHC class I molecules 
from the cell surface are 
recycled along the endocytic 
pathway where they can 
exchange peptides. One of 
the more recent models for 
cross-presentation suggests 
that there may be direct 
fusion events involving 
phagosomes and ER 
membranes. Therefore, there 
would be a direct access for 
exogenous proteins to the 
enzymatic machinery 
required for MHC class I 
presentation. 
 

 

In one model, intracellular peptides may be “swapped” through gap junctions, small channels 

that connect the cytosolic compartments of adjacent cells (58).  This theory, however, does not 

explain how extracellular antigens, such as those used in vaccination studies, become cross-

presented. As TAP and the proteasome complex have been shown to be crucial to cross-

presentation (59), another possibility is that antigens somehow enter the cytosol of the APC, 

making them accessible to proteasomal degradation, transport into the ER, and presentation in 

MHC class I molecular complexes via the “classical pathway”. It is also possible that MHC class 

I molecules can be recycled from the cell surface along the endocytic MHC class II pathway and 

exchange endogenous for exogenous peptides while there (60).  One of the more recent models 
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for cross-presentation suggests that there may be direct fusion events involving phagosomes and 

ER membranes. Therefore, there would be a direct access to the enzymatic machinery required 

for MHC class I presentation (59).  However, this model is rather controversial and has recently 

been refuted (61). More studies are clearly needed to further dissect this phenomenon, for 

without this knowledge, it will be difficult to completely rationalize optimal vaccine 

development predicated on cross-presentation in vivo. 

 

1.3.3. MHC Class II/Peptide Presentation 

 

The MHC class II processing pathway processes and presents exogenous, as well as 

self/intrinsic-antigens that are degraded in the endocytic pathway (Figure 1). MHC class II αβ 

dimers assemble in the ER with the chaperone invariant chain (Ii) and its class II-associated Ii 

peptide (CLIP) portion inserted within the MHC peptide-binding cleft, which stabilizes and 

protects this site from interacting with other peptides in the ER microenvironment. MHC−Ii 

complexes are transported to early endosomes, and then via late endosomes into lysosomal 

compartments, during which time, they may encounter antigenic peptides resulting from the 

degradation of endocytosed proteins (62).  Endocytosed antigens may be unfolded by thiol-

reductases and then efficiently degraded by cathepsins, with peptides formed as intermediates 

during late endosomal protein degradation loaded into MHC class II complexes in a reaction 

catalyzed by the chaperone protein HLA-DM in the MHC class II compartment (MIIC), before 

transport of mature class II/peptide complexes to the plasma membrane (63). In order for these 

peptides to bind within the MHC class II groove, this pocket must be vacated by the Ii-derived 

CLIP peptide. Displacement of CLIP is facilitated by acidic pH in endosomes which favors an 
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open conformation in the MHC class II molecule and hence peptide exchange, the activity of the 

HLA-DM which stabilizes the open conformation, and by proteolytic elimination of the regions 

of Ii that flank the CLIP peptide. The peptide-MHC class II complexes are then transported to 

the cell surface, where they may be surveyed by CD4+ T cells (62). A study done by Lazarski et 

al. has suggested that immunodominance of a given peptides is determined by the comparative 

stability of MHC class II:peptide complexes (64). In other words, immunodominant peptides 

typically possess long half-lives in class II complexes, while cryptic or poorly immunogenic 

peptides display significantly shorter half-lives in these complexes. 

1.4. General Overview of T Cell Selection 

 

The T cell repertoire is provided via a broad array of clonotypic T cells exhibiting 

heterogeneous usage of TCR Vα and Vβ chains. These T cells are capable of distinguishing 

foreign from self-antigens, and are normally capable of responding uniquely and appropriately to 

each of these stimuli. Thymic selection of T cells involves both positive (able to be “restricted” 

by self MHC) and negative selective (not pathologically reactive against self MHC) mechanisms 

based on the avidity of T cell interaction with antigen-MHC complexes. Apoptosis, or 

programmed cell death, plays a critical role in selecting the thymocyte pool, deleting cells 

expressing an unproductive T cell receptor (TCR), or exhibiting hyper-responsiveness upon 

encountering self MHC/self-peptide complexes. Thymocytes progress through well-defined steps 

during their maturation, exhibiting characteristic phenotypes at each stage. Immature thymocytes 

will survive if signals generated by TCR-MHC/peptide engagement are interpreted as 

appropriate (positive selection), but will be deleted by apoptosis if these generated signals are 

interpreted as either inappropriately weak (death by neglect/glucocorticoid-induced cell death) or 
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inappropriately strong (negative selection, therefore posing an autoimmune risk) (65, 66). A 

fraction of all T cells escapes thymic selection and ends up in the circulation, and these cells are 

subjected to additional peripheral selection criteria during systemic immune responses to 

antigenic challenge. It has been shown in mouse models that autoimmune T cells bearing high 

affinity TCR that escape thymic selection may be deleted as a result of immunizing animals with 

strongly immunogenic epitopes. However, if the animals were immunized with a weakly-

immunogenic analogue, high-affinity T cells expand (67). As TAAs are considered to be “self” 

antigens, stimulating and sustaining an immune response to these antigens is a difficult 

proposition. An antigen used for vaccination needs to be preferentially expressed on tumor cells, 

therefore limiting any damage to healthy tissues, and must be capable of inducing as high avidity 

T cell responders as possible, without consequently promoting their (apoptotic) deletion.  

 

1.5. CD4+ T Cell-Mediated Immunity 

 

Mature CD4+ are typically known as T-helper (Th) cells. CD4+ lymphocytes are believed 

to polarize the adaptive immune response by secreting a dominant panel of cytokines in response 

to specific antigen recognition. Based on these cytokine profiles, Th cells can be generally 

segregated into three major subsets: Th1, Th2, and Th3/T-regulatory (Treg) subsets (68). Th1 

cells provide help for cellular immunity and perform several major functions (Figure 3).  
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Figure 3. The role of CD4+ Th1 cells in modulating immune responses against cancer. 
DC present antigen to CD4+ T cells and induce the induction of Th1 cells via the production of 
IL-12 (A). Activated CD4+ T cells activate DCs via CD40/CD40L interaction (B). This provides 

help for the priming of 
CD8+ T cells (C). Th1 cells 
also provide help for the 
maintenance of the CTL 
function and their 
proliferation (D), as well as 
generation and maintenance 
of a functional CD8+ T cell 
memory (E). Activated 
CD8+ T cells can then 
recognize and kill tumor (F). 
Th1 cells can also directly 
inhibit tumor growth via 
IFN-γ and even kill MHC 
class II-presenting tumors 
via TNF family ligands (G). 

 

It is now clear that anti-tumor CD4+ T cells regulate the quality, magnitude and durability of 

CD8  CTL immunity in vivo (69-71), and that the Th1-type cytokine, IFN-γ, plays an essential 

role in this response. Th1-type CD4+ T cells secrete IFN-γ and IL-2, and may mediate delayed 

type hypersensitivity (DTH) responses that can lead to enhanced cross-presentation of tumor 

antigens by host APCs (72), and consequent epitope spreading in the evolving anti-tumor T cell 

repertoire (73, 74). Th1 cells play a major role in the initiation of a primary immune response by 

providing help to CTLs. DC presenting antigen to CD4  T cells induce the induction of Th1 cells 

via the production of IL-12. Activated Th1 cells upregulate CD40 ligand (CD40L) on their cell 

surface, which engages CD40 expressed on DC and in turn activates DCs, enabling them to 

effectively prime CD8  T cells. IL-2 secreted by Th1 cells provides help for the maintenance of 

CTL function and their proliferation, as well as generation and maintenance of a functional CD8  

T cell memory. Once activated, TAA-specific CD8  T cells can recognize and kill tumor cells 

+

+

+

+

+

17 



 

(75). Furthermore, Th1-type CD4+ T cells may mediate direct tumoricidal activity via TNF 

family ligand members and can inhibit tumor angiogenesis via locoregional production of IFN-γ 

(76-79). Th2 cells and their associated cytokines are often linked to strong antibody (humoral) 

responses, and they tend to inhibit Th1 responses.   

The typical Th2-type cytokine profile includes the production of IL-4, IL-5 and IL-13 

(68). T

1.6. Immunoregulatory Function of IFN-γ 

 

Anti-tumor CD4+ T cells regulate the quality, magnitude and durability of CD8+ CTL 

immun

hese cytokines are best known for supporting B cell growth and differentiation, leading to 

the enhanced ability of B/plasma cells to secrete antibodies. Furthermore, they have been shown 

to protect tumor cells in vivo by suppressing Th1-type anti-tumor immune responses, and their 

presence in serum is usually correlated with poor prognosis and the reduced overall survival of 

cancer patients (80). Th3/Treg cells generally produce IL-10 and/or TGF-β, with both cytokines 

capable of strongly suppressing the proliferative and effector functions of Th1- and Th2-type 

CD4+ T cells.  As a consequence, these Th3/Treg cells are also known as T suppressor cells (68, 

81, 82).  

 

ity in vivo (69-71), and IFN-γ, a Type-1 cytokine, plays an essential role in this response. 

The production and secretion of IFN-γ is promoted by IL-12 family members (i.e, IL-12p70, IL-

23 and IL-27), and by IL-18 (83-87). Type-1 CD4+ T cells (Th1), CD8+ T cells (Tc1) and natural 

killer (NK) cells secrete IFN-γ and may mediate DTH responses, leading to cross-presentation of 

tumor antigens by host APCs (72), and resulting in anti-tumor epitope spreading (73, 74). 
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Furthermore, CD4+ T cells were shown to inhibit tumor angiogenesis via locoregional 

production of IFN-γ (76-79).    

IFN-γ plays an important role in regulating key components involved in the MHC class I 

and II processing and presentation machinery.  Previous studies have shown that IFN-γ induces 

MHC class I and II synthesis and expression (88-90), regulates peptide processing, 

compartmentalization, MHC loading and MHC/peptide complex delivery to the cell surface (91-

93), and qualitatively influences presentation of cryptic MHC class I T cell epitopes (94). IFN-γ 

induces the exchange of the three catalytic subunits (LMP2, LMP7, and MECL-1) of the 

proteasome complex, thus forming the so-called “immunoproteasome” (95), which allows for 

processing and presentation of otherwise cryptic epitopes.  Furthermore, IFN-γ induces the 

expression of PA-28, a proteasome activator, that is able to increase the proteolytic efficiency of 

the 20S proteasome subunit (96). 

Anti-tumor Th1-type CD4+ T cells, however, appear inhibited in many cancer patients 

(71, 97, 98), as reflected by decreased proliferation and T cell receptor (TCR) signaling (99), as 

well as, by increased frequencies and activity of regulatory T cells (100, 101). While Th1-type 

responses have been associated with spontaneous or therapy-induced regression of tumor lesions 

(98, 102), tumor infiltrating lymphocytes isolated from patients with progressive lesions have 

been generally reported to exhibit dominant Th2-type (secreting IL-4, IL-5) or regulatory (Th3)-

type (secreting IL-10, TGF-β1) responses (97, 98, 102).  
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1.7. CD8+ T Cell-Mediated Immunity 

 

Past studies have shown that in order for tumors to be rejected by the immune system, a 

tumor-specific CD8+ T lymphocyte response must be stimulated and sustained in cancer patients. 

Since tumor cells are considered to be poor APCs due to their inhibitory properties and lack of 

co-stimulatory molecules such as B7.1 and B7.2 [27], naïve CD8+ T lymphocytes need to be 

activated by mature DCs presenting TAA-derived epitopes. Upon recognition of their specific 

peptide, anti-tumor CD8+ T cells undergo a proliferative burst and consequently differentiate into 

effector/memory cells.  Naïve CD8+ T cells are efficient producers of IFN-γ and TNF-α at early 

time-points after their initial priming. Furthermore, they efficiently synergize with CD40L-

expressing naïve Th cells in the optimal activation of DCs in association with enhanced APC 

secretion of IL-12p70, the key Th1-inducing cytokine (103).  Following the interaction with 

DCs, responding T cells undergo a developmental transformation to become effector cytotoxic T 

lymphocytes (CTL) and acquire the ability to kill their target cells after specific antigen 

recognition (104).  Once activated, CTLs become “serial” killers (i.e. able to kill multiple targets; 

ref. (105)).  Perforin, granulysin, and granzymes stored in pre-formed lytic granules within CTLs 

are secreted within the T cell/target cell interface, with perforin and granulysin forming pores in 

the target cell membrane, resulting in the sensitization of target cells to granzymes (106-108). 

Granzyme B, that is also secreted, induces apoptosis by directly activating target cell caspase-3 

(109) and/or by destabilizing the mitochondrial membrane (110), while Granzyme A causes 

single-strand DNA breaks and apoptosis via a slower lytic pathway (111).  

Another way CTLs induce cell death is by engaging tumor necrosis factor receptors 

(TNFR) on target cells. While TNFR family members vary in their primary sequence, all of them 
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contain a homologous intracellular death domain (112). The best-known receptor/ligand pair in 

this family is Fas and FasL (CD95/CD178). When the CTL TCR are engaged and activated by 

MHC class I complexes, T cells upregulate FasL expression (113). Just like the rest of the TNF 

family members, FasL is a homotrimeric protein that binds to 3 Fas receptors on CTL target cells 

(114). Once bound, the death domains of the 3 Fas receptors are clustered, allowing for the 

recruitment of pro-apoptotic adaptor proteins (e.g. FADD) via interactions with the death 

domains on the adaptor proteins. The secondary adaptor proteins then induce apoptosis in a 

caspase-8 dependent manner (115). 

  

1.8. Regulatory T Cells 

 

In humans, Treg cells represent approximately 1-3% of circulating CD4+ T cells (116), 

and are concentrated within the CD4+CD25hi (CD25: IL-2 receptor α-chain) subset of CD4+ T 

lymphocytes (117) that express FoxP3, a gene that encodes a transcription factor required for 

Treg development and function (118). These cells were initially described as a subpopulation of 

suppressor T cells that mediate immune tolerance by suppressing autoreactive T cells (119). 

Their physiological role in healthy individuals is to protect the host against the development of 

autoimmunity by regulating immune responses against antigens expressed in normal tissues. 

Indeed, Treg cells have been shown to recognize self-antigens more efficiently than other T cell 

subsets (120).  This has been further substantiated by observations that animals deficient in Treg 

cells developed severe autoimmune diseases (116, 121). CD4+ Treg can be grouped into two 

major subsets: 1) naturally-occurring Treg (nTreg) produced in the thymus and that exert 
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immunosuppressive effect by cell-to-cell contact, and 2) Th3 or Tr1 cells which are induced 

peripherally and suppress immune responses via secretion of IL-10 and TGFβ (122).  

nTreg cells serve the important role of maintaining peripheral immune tolerance, and are 

largely composed of CD25+CD62L+ T cells and natural killer T (NKT) cells. Cell-to-cell 

contacts mediated through membrane-associated receptors, such as CTLA4, appear critical for 

their suppressive capacity. Expression of this receptor is increased on Treg, and CTLA4-specific 

antibody was shown to inhibit the Treg-induced immunosuppression in autoimmunity animal 

models (123). Another possible receptor involved in this process is glucocorticoid-induced tumor 

necrosis factor receptor family-related protein (GITR; TNFRSF18). However, there is still 

insufficient evidence to support a causal linkage of this receptor with nTreg function (123). 

Previous studies have shown that elevated numbers of Treg cells can be found in the tissues 

of advanced cancer patients (124) and that high Treg frequencies are associated with reduced 

overall patient survival (125). Treg cells require TCR ligation and IL-2 to become activated, after 

which, they can mediate immune suppression in an antigen-independent manner (126, 127). 

Normally, Treg cells are anergic (i.e. incapable of proliferation and cytokine production in 

response to conventional T cell stimulation) in vitro, however this anergy can be broken by the 

addition of high doses of exogenous IL-2. Recombinant IL-2 (rIL-2), which is commonly used as 

an immunotherapeutic agent in cancer patients, has been implicated as playing a major role in the 

generation and maintenance of Treg cells. Patients with pediatric sarcoma that had been treated 

with cyclophosphamide (CY)-based chemotherapy followed by a peptide-based tumor vaccine in 

conjunction with systemically-administered rIL-2 had a marked increase in the number of Treg 

in their circulation as compared to patients that had not been treated with rIL-2. These cells were 

not regenerated in the thymus, but were enriched by amplification of circulating CD4+CD25hi T 
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lymphocytes that survived chemotherapy-induced lymphopenia (128).  A number of murine 

studies have also shown that depletion of Treg cells using anti-CD25 antibodies leads to a more 

effective anti-tumor immune response, culminating in the prolonged survival of tumor-bearing 

animals (129-131). Furthermore, deletion of CD4+CD25hi circulating T lymphocytes using a rIL-

2 diphtheria toxin conjugate DAB389IL-2 (also known as ONTAK) allowed for the significantly 

improved stimulation of tumor-specific T cell responses in renal cell carcinoma (RCC) patients 

following immunization with RNA-transfected DCs, when compared with vaccination alone 

(132). 

In human and mouse neoplasia, Treg cells accumulate in tumors, draining lymph nodes, 

and the blood stream (133, 134). The mechanisms that lead to Treg cell accumulation in tumor-

bearing hosts are still largely unknown. Most current evidence suggests that during tumor 

progression, DC exposed to the tumor microenvironment acquire the capacity to secrete TGF-β 

and to stimulate the expansion of nTreg cells through signals mediated through the TGF-β-

receptor II (135). These DCs appear to be of an immature, myeloid phenotype that lack 

expression of co-stimulatory molecules that are needed for promoting antigen-specific T cell 

responses.  

Antigen presentation by immature DCs in vivo is considered to be an important pathway 

by which tolerance to “self” antigens is maintained. This occurs by inhibition of T cell 

proliferation, the induction of anergy within a cohort of antigen-specific T cells, as well as, the 

induction of immunosuppressive Treg cells (136). Immature DC have been shown to induce both 

CD4+ and CD8+ IL-10-producing Treg (123, 137). Interestingly, CD40 expression by DC has 

been implicated as a key factor in Treg induction, since antigen-loaded DCs which lack CD40 
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prevent T cell priming, suppress previously primed immune responses and induce IL-10-

secreting CD4+ Treg cells (138).  

1.9. Dendritic Cells (DCs) 

 

TAAs have been utilized as active immunogens in numerous anti-tumor vaccine studies 

(6, 7).  Various vaccine strategies have been developed to maximize the therapeutic effect of 

these antigens.  One of the most effective methods utilized so far involves the use of DCs pulsed 

with tumor peptides or proteins, or transfected with TAA cDNA to induce anti-tumor immunity 

(139-143).  DCs are considered to be the most effective APCs for the priming and maintenance 

of anti-tumor immunity (144-146) and are considered to be the only APCs capable of 

productively activating naïve T cells (147).  They take up antigens within their 

microenvironment in the periphery and process them through the endogenous and/or exogenous 

pathways (45, 49, 146).  Soluble or particulate antigens are typically captured by “immature” 

DCs through phagocytosis, pinocytosis and receptor-mediated endocytosis (e.g. Fc receptors, 

integrins, C-type lectins, and “scavenger receptors” LOX-1 and CD91) (137). Immature DC also 

express low surface levels of HLA molecules, CD80, CD86, and CD40 (137), and commonly 

express the chemokine receptor CCR6 (148). Once they take up antigen (and receive 

maturational or environmental “danger” signals), DCs migrate to draining lymph nodes where 

they may efficiently prime and expand anti-tumor T cells.  During this time, DCs decrease their 

ability to uptake antigen and increase their capacity to (cross)present antigens to T cells via their 

MHC class I and II complexes.  These DCs are typically “mature” DCs.  Such DCs express 

increased levels of MHC class I and II complexes as well as co-stimulatory molecules such as 

CD80, CD86, and CD40 (49, 137), upregulated levels of CD83 (149), downregulated levels of 
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CCR6 and upregulated levels of CCR7 (150). These phenotypic changes allow mature DC, as 

compared to immature cells, to not only productively activate naïve T lymphocytes, but to form 

long-lasting “synaptic” interactions with these responder T cells, even in the immediate absence 

of antigens (151).  This allows the interacting lymphocytes sufficient time to “scan” DC-

presented antigens, allowing for consequent cognate signaling into the specific T cell.  

 

1.9.1. Lymphocyte Polarization Depends on the Subtype of Stimulating DC 

 

The fate of naïve T cells upon exposure to Ag is determined by three signals that are 

provided by DCs: 1) ligation of TCRs by DC-expressed MHC-peptide complexes, 2) 

engagement of DC-expressed co-stimulatory molecules, without which lymphocytes may 

become anergic, and 3) DC secretion of polarizing cytokines. The secreted cytokine profile of 

the stimulating DC determines the type of responder T lymphocyte functional polarization. IL-

12, IL-18, IL-23 and IL-27 polarize toward Type-1 responses, while chemokine ligands CCL2, 

CCL17, CCL22 or the absence of IL-12p70 skews the response towards a Type-2 result (137, 

145). The DC cytokine secretion profile depends on many factors including: the DC subtype, the 

local environment and anatomic location of the DC and the type of maturation stimulus received 

by DCs (152).  

Conditions under which DCs are primed are important for their cytokine profiles, and 

therefore the resulting class of immune responses resulting from their stimulation. DC1 

(myeloid) and DC2 (plasmacytoid) subtypes stimulate Type-1 and Type-2 cells, respectively 

(153).  DC1 are commonly associated with monocyte-derived DCs that typically promote Th1 

differentiation, in part due to their secretion of IL-12p70 (153).  DC2 are represented by 
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CD4+CD3-CD11c- plasmacytoid cells that induce Th2 differentiation of CD4+ T cells via 

mechanisms that do not appear to involve IL-4 or IL-12 (153, 154).  DC2 precursors are natural 

IFN-producing (NIP) cells that are the primary producers of IFN-α and IFN-β in vivo (155). 

Furthermore, a TGF-β-secreting subset of DCs (DC3) has been defined in the tumor 

microenvironment. DCs that are exposed to tumor cells can acquire the capacity to secrete TGF-

β and to stimulate the expansion of nTreg cells through TGF-β-receptor II (135). 

Toll-like receptors (TLRs) have been implicated as playing important roles in the process 

of DC polarization. An original belief held that TLR triggering always resulted in the 

development of DC1, however it has now been shown that ligation of TLRs may also promote 

the development of non-Type-1 DCs.  In particular, signals mediated through Toll-like receptor 2 

(TLR2), which is expressed on most CD11c+ (myeloid) DCs, may induce DC secretion of either 

IL-23 or IL-10 depending on the specific TLR ligands evaluated. TLR2 forms heterodimers with 

TLR1 when triggered by bacterial lipoproteins, but when engaged by mycoplasma-derived 

lipoproteins, they form heterodimers with TLR6 (145).  Unlike activation via  TLR4 (by LPS) 

leading to DC production of IL-12, TLR2 ligation by bacterial lipoproteins induces DC 

expression of messenger RNA encoding the p40 and p19 subunits of the Type-1-polarizing 

cytokine IL-23, but not the p35 subunit of IL-12 (156).  On the other hand, mycoplasma-derived 

lipopeptide 2 induces DC production of IL-10, but not IL-12, and these resulting DCs, induce 

unpolarized T-cell (i.e. Th0-type) responses (157).  These observations suggest that TLR2 

signaling may dictate distinct cytokine profiles secreted by DCs, resulting in differential 

polarizing effects on T cells primed by these APCs. 
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1.9.1.1. Role of Interleukin-12 in Promoting Therapeutic Immunity 
 

 

Interleukin-12 (IL-12) is one of five heterodimeric cytokines that belong to the IL-12 

family (others include IL-23, IL-27, CLC-sCNTFR, and CLC-CLF-1). It was originally 

identified as cytotoxic lymphocyte maturation factor, and is composed of two covalently linked 

protein chains, p35 and p40, that form the p70 heterodimer that is produced in a restricted 

manner by antigen presenting cells (DCs, monocytes, macrophages, neutrophils). It binds to the 

IL-12 receptor (IL-12R) complex that is composed of two chains, IL-12Rβ1 and IL-12Rβ2. IL-

12Rβ1 binds IL-12 p40 and is associated with Tyk2, while IL-12Rβ2 recognizes the p70 

heterodimer or the p35 and is associated with Jak2 (158).  Most of the biological responses to IL-

12 are mediated through the STAT4 signaling pathway, and optimal Th1 polarization is only 

achieved in the continuous presence of IL-12 (158, 159).  

IL-12 p70 effectively stimulates IFN-γ production by T, NK, and other cell types, and is a 

potent inducer of Th1 cell differentiation (158). It is also capable of irreversibly repolarizing Th2 

CD4+ T cells towards the Th0/Th1 phenotype, and this change is accompanied by suppression of 

GATA-3 (Th2-specific transcription factor) and induction of T-bet (Th1-specific transcription 

factor) (160).  While effective at inducing expansion and optimal activation of Th1 CD4+ T cells, 

its role in CD8+ T cell generation is somewhat less studied. In vitro priming of T cells in the 

presence of IL-12p70 increases the generation and improved survival of memory CD8+ T cells in 

mice after adoptive transfer of activated cells (161). However, IL-12 p40- and IL-12Rβ1-

deficient mice showed similar levels of primary and memory CD8+ T cell responses, when  

compared to wild-type mice, implying that endogenous IL-12p70 is not critical for the generation 
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of IFN-γ-secreting, CD8+ cytotoxic T lymphocytes in vivo (161, 162). Together, these results 

suggest that IL-12p70 can serve as an important, but non-essential regulatory factor for the 

development of CD8+ T cells. 

 

1.9.1.2. Role of Interleukin-18 in Promoting Therapeutic Immunity 
 

 

Interleukin-18 (IL-18) is a member of the IL-1 cytokine superfamily that plays an important 

role in regulating immune responses. IL-18 is produced by antigen presenting cells (DCs, 

monocytes), as well as Kupffer cells (phagocytes lining the hepatic sinusoids), keratinocytes, 

osteoblasts, pituitary gland, adrenal cortical cells, and intestinal epithelial cells (163). It is 

initially synthesized as a biologically inactive precursor, pro-IL-18. This precursor is then 

cleaved by caspase-1 (IL-1β-coverting enzyme) to form the biologically active mature cytokine 

that can be secreted. Furthermore, IL-18 can be cleaved by caspase-3 yielding an inactive 

product. While these proteases are also involved in apoptosis, there is no apparent relationship 

between apoptosis and IL-18 production (163). 

While it was initially characterized as IFN-γ-inducing factor (83), later studies have shown 

that IL-18 is a unique cytokine capable of inducing either Th1 or Th2 polarization, depending on 

the type and context of stimuli, the ambient cytokine priming milieu, and underlying genetic 

influences (164).  IL-18 synergizes with IL-12p70 to promote IFN-γ secretion from, and 

proliferation of, CD4+ T effector and NK cells (165, 166).  IL-12p70 induces T cell surface 

expression of the IL-18 receptor (IL-18R) by naïve T cells (167); while IL-18 potentiates the 

differentiation of Th1 cells (Figure 4) instigated by IL-12 (168).  
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Figure 4. Synergistic action of IL-12 and IL-18 in IFN-γ production from Th1 cells. 
IL-12 stimulation induces IL-18R expression by naïve T cells. Once IL-18R is induced, IL-12 
and IL-18 induce the reciprocal upregulation of their receptors. Upon binding to its receptor, IL-

12 induces activation of 
STAT4, which translocates 
to the nucleus and binds to 
the IFN-γ promoter. IL-18 
directly activates NF-kB 
and AP-1, which bind to 
and activate the IFN-γ 
promoter. For IL-12-
dependent INF-γ promoter 
activation, the AP-1 site is 
also required. Synergistic 
action of IL-12 and IL-18 
may occur via simultaneous 
activation of STAT4, NF-
kB and AP-1(transcription 
factors). 
 

 

Paradoxically, when cultured alone or in combination with IL-2 or IL-4, IL-18 induces IgE 

expression and Th2 differentiation (169). Indeed, Th2 polarization of CD4+ T cells after IL-18 

administration appears to involve the activation of NK T cells, that have been previously shown 

to be a major source of IL-4 (170). Furthermore, IL-18 has been shown to be a chemoattractant 

for both myeloid DC1 and plasmacytoid DC2 (171, 172). 

The IL-18R is a heterodimeric cytokine composed of an IL-18-binding α chain, and a non-

binding, signal transducing β chain. Once IL-18 binds to the IL-18Rα chain, the IL-18Rβ chain 

is recruited and induces one of several possible intracellular signaling pathways. Most 

commonly, IL-18R-mediated signaling induces the nuclear factor κB (NF-κB) activation cascade 

in a manner similar to that mediated by the IL-1R. However, studies in specific mouse knockout 

strains have also shown that like IL-12, IL-18 can signal via STAT-4. In fact, IL-12-induced 
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STAT-4 signaling is synergistically enhanced in combination with IL-18 (Figure 4) via NF-κB 

and AP-1 transcription factors (164).      

 

1.10. Cancer Vaccines and Therapies 

 

The three traditional therapies for the clinical management of cancer are surgery, radiation, 

and chemotherapy. Surgery, the process of physically removing the existing tumor from the 

body, is usually the first step in treating the disease. If lesions are not easily accessible for 

surgical resection, tumors are typically treated with locoregional radiation therapy. Radiotherapy 

involves exposing cancerous tissues and its supportive vascular bed to various forms of radiation 

in order to cause DNA damage, forcing these tissues to undergo differential apoptosis. If there is 

a possibility that the disease has metastasized (spread to other tissues) or if the disease affects 

leukocytes, chemotherapy is commonly applied as a systemic therapy. This generally involves 

the administration of chemicals that inhibit the ability of cancer cells to survive and replicate. 

While these three methods have showed some degree of clinical success, their long-term 

benefits, particularly in the cases of radiotherapy and chemotherapy, are generally perceived as 

limited. These treatments are often very destructive not only to tumor cells, but to normal tissues 

as well. Furthermore, recurrence of disease is very common and is frequently found to be 

resistant to the original treatment modality. For these reasons, it is necessary to establish novel 

therapy methods for tumors that will provide more specific treatment, and long-term protection 

from recurrence. Various immunotherapy strategies have the potential to provide these benefits. 

Immunotherapeutic strategies utilize various components of the immune system to promote 

immune responses against a specific disease, such as cancer. There are three lines of evidence 
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that suggest that cancer immunotherapy can be beneficial in humans: 1) immunosuppressed 

transplant recipients display higher incidences of non-viral tumors, such as melanomas, colon, 

lung, pancreas, bladder, kidney, and endocrine system cancers than immunocompetent control 

populations (173); 2) the presence of lymphocytes within the tumor is often a positive prognostic 

indicator of patient survival (174), and  3) a minority of cancer patients (< 5%) are able to 

develop spontaneous innate and acquired immune responses to the tumors they bear (7, 175, 

176). One of the first pieces of clinical evidence suggesting that the manipulation of the immune 

system could be beneficial as a cancer therapy involved the administration of interleukin-2 (IL-2, 

which is a lymphocyte proliferation-inducing cytokine produced by T cells that has the ability to 

induce proliferation of T cells that have recognized their specific antigen) (177). In that study, 

IL-2 treatment of patients with metastatic renal carcinoma or metastatic melanoma induced 

tumor regression in 15-20% of treated patients. Since then, great progress has been made in 

understanding the immune response to tumors, and based on this knowledge a number of 

different immunization strategies designed to further augment the tumor-specific T cell immune 

response in patients have been developed and tested. 

 

1.10.1. Pre-clinical experience of DC-based cancer vaccines and therapies 

 

Over the past several decades, tumor immunology has increasingly focused on approaches 

to define, accentuate and sustain T cell-mediated immunity as a means to effectively prevent or 

regulate tumor development and progression. With the discovery of TAAs and their derivative 

MHC-presented epitopes, the molecular targets of immune reactivity have begun to be resolved. 

Multiple active specific immunotherapy (i.e. immunization with specific TAA) strategies have 
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been employed, and utilizing the innate adjuvant properties (antigen uptaking, processing, and 

presenting ability) of autologous (i.e. derived from the same donor) DCs emerged as the most 

effective one for priming and maintenance of TAA-specific responses (144-146).  

 A number of DC-based approaches tested in vitro and in animal models have been 

evaluated as the basis of understanding the potential clinical value of DCs. These strategies differ 

in the type of tumor, source of DCs (directly sorted out of blood or solid tumor; monocyte-

derived, bone-marrow-derived, CD34+ hematopoietic precursor-derived) type of TAA used, 

method of loading DCs with antigen (TAA-derived peptide, whole protein, TAA gene 

expression, tumor cell lysate, tumor apoptotic bodies, DC-tumor cell fusion hybrid), method of 

gene introduction (recombinant retroviral or adenoviral vectors, plasmid transfection, gene gun) 

and/or DC maturation stimuli (cytokines, CpG motifs, microbial membrane motifs). These 

strategies have shown promise for treating or preventing cancer, and several important 

conclusions have been reached as a consequence of these studies. 

Tumors are not homogenous tissues that can be treated with a single vaccination tactic. 

They vary in TAA repertoire, as well as immuno-evasive properties. These variations are 

observed between patients, tissues affected and at different time points in the malignant process 

(178, 179). Such differences require strategies that are “tailor”-made for the specific tumor and a 

specific patient. Since the expression of TAA is not uniform between tumors, it seems preferable 

to co-administer several antigens rather than only one, to avoid the possibility that the single 

TAA will prove non-immunogenic or that its epitopes may have been  downregulated on the 

tumor cell membrane in situ. 

There are three criteria that are believed to be required in an effective anti-tumor therapy: 1) 

the ability to promote a sufficient number of high-avidity effector T cells that are capable of 
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recognizing tumor cells; 2) the ability to support the effective trafficking and penetrance of 

immune cells into tumor lesions;  and 3) the ability to maintain anti-tumor effector cells in a 

functional manner within the tumor lesion for an extended period of time. As Th1-type responses 

have been associated with spontaneous or therapy-induced regression of tumor lesions (98, 102), 

DC-based therapies should stimulate high-avidity, Th1-type T cell responders capable of 

penetrating the tumor microenvironment and appropriately responding to the disease. To achieve 

this, DCs need to be of a mature phenotype, and they should secrete a dominant balance of Th1-

polarizing cytokines in order to override the inhibitory effects of the tumor microenvironment 

(137, 145).  

Another important factor in inducing TAA-specific immunity is the format of antigen used. 

The antigen format used in vaccination impacts which T cell subset may be preferentially 

stimulated. Synthetic peptides can be used to stimulate either CD4+ or CD8+ T cell populations. 

If DCs are loaded with whole TAA protein, the antigen is introduced to the endosomal, MHC 

class II processing pathway and peptides derived from it will primarily stimulate CD4+T cell 

responses. On the other hand, if DCs are infected/transfected with TAA cDNA, the protein may 

be preferentially expressed in the cytosol where it enters the classical MHC class I antigen 

processing pathway, and peptides derived from it may prompt primarily CD8+ T cell responses 

(59, 62, 146).  

 

1.10.2. IL-12-based therapy of cancer: recombinant protein vs. engineered DC 

 

One strategy tested to enhance Th1-type responses in vitro and in vivo has been the 

administration of various forms of IL-12p70. Furthermore, IL-12 combined with other 
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immunotherapy approaches, particularly co-administration of IL-18, has been shown to achieve 

even better immuno-stimulatory results. While IL-12 has demonstrated significant efficacy in 

inducing effective anti-tumor T cell responses in experimental models, clinical trials with 

systemic recombinant IL-12 (rIL-12) have displayed unacceptable toxicities. Common toxicities 

included fever/chills, fatigue, nausea, vomiting, headache, anemia, neutropenia, lymphopenia, 

hyperglycemia, thrombocytopenia, hypoalbuminemia, and even death in humans (180-185). 

Mouse studies have shown that these toxicities are largely mediated by IFN-γ overproduction by 

NK cells (186). IL-12-mediated toxicity was particularly exacerbated with co-administration of 

recombinant IL-18 (rIL-18). Mouse studies have also shown that simultaneous administration of 

rIL-12 and rIL-18 causes, in a STAT4-dependent manner, severe systemic inflammation due to 

NK cell-secreted IFN-γ and 100% mortality (187).  

One possible way to eliminate these toxic effects is to utilize gene transfer methods to 

confine IL-12 production within the tumor environment, thereby preventing systemic toxicity. 

Tumor cells, dendritic cells, or autologous fibroblasts have been transfected with recombinant 

adenoviruses or retroviruses encoding IL-12 cDNA, the injected intratumorally/perilesionally in 

order to focus cytokine production.  These approaches have demonstrated increased efficacy and 

acceptable safety profiles (188-190). Indeed, my group has previously shown in murine models 

that DC engineered to secrete both IL-12p70 and IL-18 ex vivo, and subsequently injected 

intratumorally, promote acute tumor rejection in concert with enhanced Th1-type immunity and 

determinant spreading in the curative anti-tumor CTL repertoire (191). 
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1.10.3. Enhancement of TAA-Specific T Cell Responses Using Epitope Analogues 

 

In the past it was believed that individual T cell clones were capable of distinguishing and 

responding to a unique epitope sequence presented in the context of an autologous MHC 

complex. Recent studies have instead suggested that a fair degree of T cell cross-reactivity exists 

and is in fact necessary to maintain an immune system with sufficient flexibility to adapt to a 

continuously changing antigenic environment. Indeed, T cell clones thought to be specific for an 

antigen have been shown to recognize peptides differing considerably in their amino acid 

sequences (192-194). “Analogue” or “heteroclitic” peptides refer to those peptides that share a 

high degree of homology with naturally-occurring, wild-type tumor epitopes, and induce cross-

reactive T cells to their homologues. Most of these studies examined CD8+ T cell responses 

against 9-mer peptides. While the anchor residues at positions 2 and 9 of HLA class I-presented 

epitopes have been shown to be highly restricted, the other amino acids of reactive peptides 

differed at as many as six or seven of the remaining positions. Importantly, a large proportion 

(one-third to one-half) of analogue peptides stimulated T cells to produce IFN-γ at concentrations 

far lower than that of the naturally-occurring peptide, suggesting the higher functional avidity of 

clonal TCR for analogue peptides presented by MHC class I molecules. In fact, analogue 

epitopes have been shown to be more effective at breaking immunological tolerance than 

cognate wild-type epitopes (195). In vivo studies further substantiated these observations. One 

study showed that immunization with a gp100209-217 (210M) heteroclitic melanoma antigen 

peptide promoted the development of circulating effector-memory T cells that were reactive 

against the wild type gp100209-217 epitope (196). Individual amino acid substitutions have also 

been associated with differential cytokine responses by MART-126-35-specific CD8+ T 
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lymphocytes. Substitution of the N-terminal amino acid of this 10-mer dictated whether the T 

cell response would be Type-1 or Type-0 (both Type-1 and Type-2 cytokines secreted) (197). 

Analogue peptides have also been observed in nature, and these cross-reactive epitopes 

have been coined “epitope mimics”.  Epitope mimicry has been described as a potential 

mechanism underlying the induction of autoimmune diseases due to pathologic T cells primed 

against infectious microorganisms that cross-react against host proteins in susceptible 

individuals. Diseases such as viral myocarditis, lyme disease, rheumatoid arthritis (198), multiple 

sclerosis (199), and virus-induced autoimmune diabetes (200, 201) have long been considered to 

be initiated or exacerbated by microbial pathogens. From this observation came an idea that 

immunotolerance to TAA could be broken by employing mimicking epitopes to stimulate TAA-

specific lymphocytes. A study performed by Loftus, et al. showed that the HLA-A2-presented 

MART-127-35 epitope bears sufficient sequence or conformational homology to peptides derived 

from microbial proteins to which many individuals may have become naturally primed against, 

allowing for functional T cell-mediated cross-reactivity (202). Therefore, one may hypothesize 

that there is a limited flexibility of TCR antigenic specificity that could potentially be exploited 

in order to stimulate TAA-specific lymphocyte responses in patients who may have become 

functionally tolerant to their progressive TAA. 

 

1.10.4. Poor clinical results for DC-based vaccines: limited by lack of Type-1 Th 

responses? 

 

In 2004, Rosenberg and colleagues published a “watershed” article on the state of active 

specific immunotherapy cancer trials (203).  They analyzed 9 years worth of their own data, as 
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well as data from 35 reports of vaccine trials performed outside of NCI. Overall, they reviewed 

1,306 solid tumor patients using the modified Response Evaluation Criteria in Solid Tumors 

(RECIST; clinical response is defined as at least 50% reduction in the sum of the products of the 

perpendicular diameters of all lesions without the 25% growth of any lesion or the appearance of 

new lesions). The picture they portrayed was very grim, with an overall therapy-induced tumor 

regression rate of only 3.3% (in patients vaccinated with either synthetic peptides, “naked” DNA, 

peptide-pulsed dendritic cells, recombinant vaccinia viruses, recombinant fowlpox viruses and 

recombinant adenoviruses expressing various TAAs). Of these immunization methods, peptide-

pulsed DCs seemed to be the most effective strategy, with 7.1% of treated patients exhibiting 

tumor regression. While this frequency of response was higher than those frequencies found for 

other vaccination strategies, the response was still very low. Furthermore, the overall vaccine 

treatments of metastatic melanoma patients, when successful, were predominantly effective in 

patients with disease at cutaneous or lymphatic sites, but not those with disseminated, visceral 

disease.  

Unlike chemotherapy, immunological vaccines do not follow linear dose-effect kinetics. 

Instead, these strategies depend on the complex interplay of a number of variables, including the 

administration method, minimum effective dose, vaccination schedule, type of immunological 

adjuvant and the existing state of host immunological competence. The slightest discrepancy in 

any of these variables can affect the patient outcome following therapeutic immunization. The 

majority of patients treated in theses studies were late-stage metastatic patients that were heavily 

pre-treated with conventional chemotherapeutic reagents prior to immunizations. Not only do 

such tumors have potent immuno-inhibitory functions, but the implemented chemotherapies have 

also been shown to non-specifically decrease the number of leukocytes in recipients, making 
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metastatic patients severely immuno-compromised. It was reported that pediatric sarcoma 

patients treated with chemotherapy followed by a peptide-based tumor vaccine in conjunction 

with recombinant IL-2 had a marked increase in the number of Treg in the circulation, as 

compared to patients that were treated without IL-2 (128).  These observations suggest that the 

conditions under which patients were immunized was most likely sub-optimal for the priming of 

clinically-meaningful tumor-specific Th1-type T cell responses.  

There are several other possibilities to explain why the clinical response to these vaccines 

was so poor. The immune system, while potentially effective, is limited by the frequency of 

responders that can be stimulated by vaccinations. Even if TAA-specific responses were 

stimulated by immunization, it is possible that the bulk tumor mass was too large at the time of 

the treatment for the available effector T cell population to eliminate it efficiently. It is also 

possible that while the vaccine-targeted antigens are expressed by the tumors, their derivative 

peptides are not presenting on the cell surface in the context of MHC class I molecules, making 

the tumor cells effectively invisible to CD8+ T cell recognition. Another possibility is that TAA 

used for vaccinations were not expressed by targeted tumors and/or that TAA-derived peptides 

used were not effective at eliciting high avidity T cell responders. Therefore, instead of tailoring 

the vaccine to the individual patient’s TAA repertoire, these individuals may have been treated 

with arguably irrelevant or weakly-immunogenic antigens that yield a clinically-meaningless 

immune response.  Due to the potential limitations under which these clinical trials have been 

performed to date, novel vaccine strategies need to be developed that have the potential to 

improve therapeutic outcome. 
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1.11. Basis for This Project 

 

The breaking of immunological tolerance to TAA epitopes has been a central interest of 

tumor immunologists in the last decade. As previously discussed, there are two main problems 

when it comes to breaking immunological tolerance. Firstly, most TAA are considered to be 

“self”-antigens that are commonly found in many healthy tissues, and the immune system 

regards these as potential autoimmune targets. Most of the lymphocytes specific for these 

antigens either undergo thymic and peripheral deletion or acquire a regulatory phenotype. That 

means that in most cases only low-avidity and/or regulatory T lymphocytes specific for these 

antigens remain in the circulation, limiting the sensitivity, magnitude, and appropriate functional 

polarization of T cell immune responses to tumors. Secondly, tumors exhibit immunosuppressive 

capacity that may protect them from immunosurveillance. Lymphocytes that are recruited into 

the tumor site may be neutralized, ablated or acquire a regulatory phenotype.   Multiple strategies 

used to rescue and enhance tumor-specific T lymphocyte responses have been contemplated over 

the past decade, with a number of these predicated on the antigen uptaking, processing, and 

presenting capabilities of DCs.  Two DC-based strategies that we evaluated were founded on 

previous observations that antigen-specific responses can be enhanced by utilizing T cell epitope 

analogues, and that the IFN-γ-inducing cytokines, IL-12 and IL-18, can synergize in the 

enhancement of Type-1 epitope-specific responses.    
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1.12. Summary 

 

Due to its wide range of expression among cancer types, its innate immunogenicity, and its 

restricted expression in normal tissues, MAGE-A6 is an attractive target on which to base cancer 

vaccines and immunotherapies. While MHC class II-restricted peptide epitopes have been 

previously reported for MAGE-A6, their clinical monitoring and immunotherapeutic value is 

limited due to the fact that the relevant HLA-DR alleles that present these epitopes to T cells are 

expressed by only a minority of patients. Given these limitations, we sought to define MAGE-A6 

T-helper epitopes that would be immunogenic to a high frequency of responders regardless of 

their HLA-DR phenotype. I used MAGE-A6 peptide-pulsed DC as in vitro stimulators to 

ascertain to whether these novel MAGE-A6 epitopes could elicit specific T cell responses. To 

test for the natural-processing and MHC-presentation of these epitopes, I used autologous donor 

monocytes loaded with newly constructed recombinant MAGE-A6 (rMAGE). Two of the 

peptides investigated elicited epitope-specific, physiologically relevant CD4+ T cell responses in 

a large cohort of randomly-selected melanoma patient and normal blood donors. Given 

particularly strong primary in vitro sensitization of normal donor CD4+ T cells by these epitopes, 

and theorizing that this could represent cross-reactivity against environmental stimuli, I 

identified homologous peptides of microbial origin for each of these immunogenic peptides. 

CD4+ T cells stimulated in vitro with one of these microbial peptides cross-reacted against 

autologous monocytes pulsed with the MAGE-A6 homologue peptide or rMAGE, as well as, 

HLA-matched MAGE-A6+ melanoma cell lines.  These CD4+ T cells responses appeared 

heteroclitic in nature and at a higher functional avidity than those primed with the MAGE-A6 
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peptide itself. This is a significant discovery because these results suggest that tolerance to tumor 

self-antigens can potentially be broken using mimicking microbial epitopes. 

   The observation that anti-tumor Th1-type CD4+ T cells are inhibited in many cancer 

patients strongly suggests that the future immune-based therapies must overcome existing 

deficiencies in Type-1 anti-tumor CD4+ T cell responses in cancer patients with active disease in 

order to be clinically effective.  In my second study, I generated and applied novel recombinant 

adenoviral vectors encoding Th1-polarizing human IL-12p70 (Ad.IL-12) and the mature form of 

human IL-18 (Ad.IL-18) to engineer human DC in vitro, and subsequently evaluated the ability 

of these gene-modified antigen presenting cells to promote Th1-type CD4+ T cell responses 

against the MAGE-A6 tumor antigen in HLA-DR4+ normal donors and patients with melanoma.  

My results indicate that DC co-infected with both Ad.IL-12 and Ad.IL-18 that are consequently 

loaded with tumor peptides or recombinant tumor antigen effectively promoted in vitro epitope-

specific Type-1 CD4+ T cell immunity in patients with cancer who may display existing immune 

dysfunction.    

My studies are innovative for the following reasons: firstly, two novel Th epitopes 

derived from a common tumor antigen have been defined that will dramatically expand the range 

of cancer patients and types of cancer that may be treated with peptide-based vaccines; secondly, 

this is the first study that shows that tumor-specific CD4+ T cells can be stimulated using 

heteroclitic microbial peptides, that may circumvent limitations associated with tolerance 

mechanisms linked to self tumor antigens. Thirdly, we are the first group to describe an 

adenoviral vector encoding the mature form of human IL-18, which in conjunction with IL-12, 

appears to define a combinational cytokine gene therapy that overcomes tumor-associated 

inhibition of Type-1 T cell responses in patients. These results can serve as the basis for the 
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development of novel prospective immunotherapy protocols designed to elicit, enhance and 

sustain the in vivo efficacy of therapeutic MAGE-A6-specific T cells.  
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Scope of This Thesis 
 
MAGE-A6 was previously characterized as a TAA in the setting of melanomas (Mel), as well as 

renal cell carcinomas (RCC). I sought to define MAGE-A6 T-helper (Th) epitopes that would be 

immunogenic to a high frequency of responders regardless of their HLA-DR phenotype. Based 

on a computer algorithm analysis designed to identify peptides likely to have “promiscuous” 

HLA-DR-binding tendencies (poly-DR), I defined two novel MHC class II-restricted MAGE-A6 

epitopes and confirmed that a previously-defined peptide was immunogenic in a high frequency 

of normal donors and patients with melanoma that were evaluated.  Each of these epitopes was 

naturally processed and cross-presented by monocytes after these APCs were pulsed with 

recombinant, full-length MAGE-A6 protein. The most immunogenic peptides tested shared 

significant homologies with multiple microbial sequences according to GenBank homology 

search.  CD4+ T cells stimulated in vitro with one of the microbial homologues exhibited a 

higher functional avidity for target cells presenting the MAGE-A6 epitope than T cells evoked 

against the MAGE-A6 peptide itself. Furthermore, they recognized MAGE-A6 protein-loaded, 

autologous monocytes as well as MAGE-A6+, HLA-DR-matched melanoma cell lines. I then 

sought to enhance Th1-stimulating ability of DCs by engineering them to secrete high levels of 

the IFN-γ-inducing cytokines IL-12p70 and IL-18 via recombinant adenoviral infection to 

generate an in vitro stimulus capable of promoting previously-deficient patient Th1-type 

responses.  DC co-infected with IL-12 and IL-18 vectors were more effective at stimulating 

MAGE-A6-specific Th1-type CD4+ T cell responses than DC infected with either of the cytokine 

vectors alone, control empty virus or uninfected DC.  Furthermore, I show that IL-12 and IL-18 

co-infected DCs loaded with recombinant MAGE-A6 protein (rMAGE) and used as in vitro 

stimulators, promote Th1-type immunity that is frequently directed against multiple MAGE-A6-
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derived epitopes. Based on these results, I believe that the MAGE-A6 and microbial Th epitopes 

described here may prove useful in the development of cancer vaccines or immunomonitoring 

strategies for patients harboring MAGE-A6+ tumor lesions, without limiting patient accrual due 

to a requirement for expression of specific HLA haplotypes. Furthermore, I believe this Th1-

enhancing modality may prove clinically useful as a vaccine platform to promote the recovery of 

tumor antigen-specific, Th1-type CD4+ T cell responses in patients with cancer.  
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Preface Chapter 2 
 

Using DC1-based in vitro vaccinations as a model system, my goal was to define MAGE-

A6-derived epitopes recognized by CD4+ T-lymphocytes. I analyzed T cell responses to 4 

putative epitopes that were hypothesized to be immunogenic to a high frequency of responders 

regardless of their HLA-DR phenotype. Two novel (MAGE-A6172-187 and MAGE-A6280-302) 

epitopes and a previously-defined (MAGE-6140-170) epitope were recognized by CD4+ T cells 

isolated from most normal donors and patients with melanoma that were evaluated. Peptide-

specific CD4+ T cells also recognized autologous monocytes pulsed with full length MAGE-A6 

protein, supporting the natural-processing and MHC-presentation of these epitopes. Interestingly, 

I identified a peptide within the Mycoplasma penetrans HF-2 permease protein (MPHF2) 

sequence that is highly-homologous to the MAGE-A6172-187 epitope. CD4+ T cells primed with 

the MPHF2 peptide cross-reacted against autologous monocytes pulsed with the MAGE-A6172-

187 peptide or MAGE-A6 protein, and recognized HLA-matched MAGE-A6+ melanoma cell 

lines. These responses appeared heteroclitic in nature since the functional avidity of MPHF2 

peptide-primed CD4+ T cells for the MAGE-A6172-189 peptide was approximately 1000 times 

greater than for CD4+ T cells primed with the MAGE-A6 peptide itself.   

The studies in Chapter 2 support the immunogenicity of three poly-DR MAGE-A6 

epitopes and that these may have broad clinical utility in cancer vaccines or immunomonitoring 

strategies, without having to limit patient accrual due to a requirement for expression of specific 

HLA haplotypes. Furthermore, this study shows that it could be possible to effectively stimulate 

TAA-specific T cell responses using microbial peptide homologues. 

45 



 

2. MAGE-A6 Encodes Multiple Naturally-Processed, Promiscuous Th Epitopes, One 
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All the results reported in this study were obtained by Lazar Vujanovic. Functional avidity 

assays were repeated by Maja Mandic, M.D.. A portion of ELISPOT plate analyses were 

performed by Walter C. Olson, Ph.D.  
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2.1. ABSTRACT 

While T-helper (Th) epitopes have been previously reported for tumor antigen MAGE-A6, the 

relevant HLA-DR alleles that present these peptides are expressed by only a minority of patients, 

serving to limit their potential clinical utility. Given these limitations, I sought to define poly-DR 

presented MAGE-A6 Th epitopes that would be immunogenic in a high frequency of responders. 

I identified two novel (MAGE-A6172-187 and MAGE-A6280-302) epitopes and confirmed that a 

previously-defined (MAGE-6140-170) epitope can be recognized by CD4+ T cells isolated from 

most normal donors and patients with melanoma that were evaluated. Peptide-specific CD4+ T 

cells also recognized autologous monocytes pulsed with recombinant MAGE-A6 (rMAGE) 

protein, supporting the natural-processing and MHC-presentation of these epitopes. Given strong 

primary in vitro sensitization of normal donor CD4+ T cells by the MAGE-A6172-187 epitope, and 

theorizing that this could represent cross-reactivity against an environmental stimulus, I 

identified a highly-homologous peptide within the Mycoplasma penetrans HF-2 permease 

protein (MPHF2) sequence. MPHF2 peptide-primed CD4+ T cells cross-reacted against 

autologous monocytes pulsed with the MAGE-A6172-187 peptide or rMAGE protein, and 

recognized HLA-matched MAGE-A6+ melanoma cell lines. These responses appeared 

heteroclitic in nature since the functional avidity of MPHF2 peptide-primed CD4+ T cells for the 

MAGE-A6172-189 peptide was approximately 1000 times greater than for CD4+ T cells primed 

with the MAGE-A6 peptide itself.  I believe that these epitopes may have broad clinical utility in 

cancer vaccines or immunomonitoring strategies, without having to limit patient accrual due to a 

requirement for expression of specific HLA haplotypes. (246 words) 
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2.2. INTRODUCTION 

 

Melanoma antigen gene (MAGE) proteins are a family of closely-related molecules that 

were initially identified as tumor associated antigens (TAA) capable of being recognized by 

cytolytic T lymphocytes (CTL) isolated from the peripheral blood of cancer patients (204). 

MAGE genes are classified as either type I (MAGE-A, MAGE-B, and MAGE-C genes located 

on the X chromosome) or type II  (those that are located outside of the type I MAGE genomic 

cluster) (9, 10). Normally, type I MAGE proteins are selectively expressed in testicular cells 

among somatic tissues (11). However, they can also be expressed in both pre-malignant and 

malignant lesions in concert with DNA hypomethylation (205). The MAGE-A proteins, 

composed of 12 members (i.e. MAGE-A1 through -A12), are expressed by more than half of all 

human cancers (26). For instance, MAGE-A6 is expressed in more than 60% of melanomas (27), 

30% of renal cell carcinomas (36), and by many other cancer types, such as breast, esophageal, 

head and neck, bladder, and lung carcinomas (27, 37-40). This wide range of expression among 

cancer types, as well as the limited/lack of expression by normal tissues, has made MAGE 

family members (including MAGE-A6) attractive targets on which to base cancer vaccines and 

immunotherapies.  

Previous studies have shown that melanoma is among the most responsive cancers to 

immunotherapy (98, 206), making it a prototype for the development of anti-tumor vaccine 

models. While most vaccine studies have focused on the effector CD8+ T cell compartment of 

the anti-melanoma immune response as being most important for objective clinical responses, it 

is clear that anti-tumor CD4+ T cell responses regulate the quality, magnitude and durability of 

CD8+ CTL immunity in vivo (70, 207). CD4+ T cells have been shown to play a crucial role in 
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the induction of effective cellular anti-tumor immune responses (69, 207). They mediate IFN-γ-

mediated delayed type hypersensitivity (DTH)-like responses that can lead to enhanced cross-

presentation of tumor antigens by host APCs, and consequent epitope-spreading in the anti-

tumor T cell repertoire (74).  Furthermore, CD4+ T cells may mediate direct tumoricidal activity 

and inhibit tumor angiogenesis (76-79).    

In the current study I analyzed three novel (MAGE-A6172-187, MAGE-A6192-214, and 

MAGE-A6280-302), and one previously described (i.e. MAGE-A6140-170; ref. (36)), MAGE-A6-

derived peptide(s) as candidate poly-HLA-DR presented epitopes in vitro. I observed that the 

MAGE-A6172-187 and MAGE-A6280-302 epitopes appeared to be the most effective at eliciting 

Th1-type (i.e. IFN-γ) responses in both normal donors and patients with melanoma. Each of 

these epitopes was naturally-processed and cross-presented by monocytes after these APCs were 

pulsed with recombinant, full-length MAGE-A6 protein.   

I also discerned that the MAGE-A6172-187 epitope was highly homologous to, and 

immunologically cross-reactive with, a peptide derived from the Mycoplasma penetrans HF-2 

permease protein (MPHF2). Exposure to this ubiquitous environmental pathogen could explain 

the common CD4+ T cell responsiveness against the MAGE-A6 peptide I detected among 

normal donors after primary in vitro sensitization. Notably, CD4+ T cells stimulated in vitro with 

this microbial homologue recognized MAGE-A6 protein-loaded, autologous monocytes as well 

as MAGE-A6+, HLA-DR-matched melanoma cell lines. Indeed, MPHF2 peptide-based 

stimulation yielded CD4+ T cells exhibiting a higher functional avidity for target cells presenting 

the MAGE-A6172-187 epitope than T cells evoked against the MAGE-A6172-187 itself.  I believe 

that the MAGE-A6 and MPHF2 Th epitopes described here may prove useful in the development 

of cancer vaccines or immunomonitoring strategies for patients harboring MAGE-A6+ tumor 
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lesions, without limiting patient accrual due to a requirement for expression of specific HLA 

haplotypes. 
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2.3. MATERIALS AND METHODS 

 

2.3.1. Cell lines 

Cell lines used included the melanoma cell lines Mel526 and SLM2, the SLR20 renal carcinoma 

cell line (208), and T2.DR4, a human B x T cell hybrid cell line expressing HLA-DR4 class II 

molecules (8).  Cell lines were cultured in T75 culture flasks (COSTAR, Cambridge, MA), in 

RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS), 1% penicillin-

streptomycin, 1% HEPES, 1% L-glutamate and 1% non-essential amino acids (all reagents from 

Invitrogen, Carlsbad, CA), in a humidified 37oC incubator under 5% CO2 tension.  

 

2.3.2. Isolation of Patient and Normal Donor PBMC  

Peripheral blood was obtained from normal donors or melanoma patients by venipuncture with 

written consent, under an IRB-approved protocol.  Blood was diluted 1:2 with PBS, applied to 

ficoll-hypaque gradients (Cellgro; Mediatech, Inc., Herndon, VA), and centrifuged at 550 x g for 

25 min at room temperature. Peripheral blood mononuclear cells (PBMC) were recovered from 

the buoyant interface and washed three times with PBS in order to remove residual platelets and 

ficoll-hypaque. 

 

2.3.3. HLA-DR Typing 

To test for donor HLA-DR alleles, genotyping was performed. DNA was extracted from PBMC 

using the DNeasy Tissue Kit (Qiagen), according to the manufacturer’s protocol, with 

consequent HLA-DR genotyping performed using the Dynal Allset+ SSP DR “low resolution” 

Kit (Dynal Inc., Lake Success, NY) with extracted DNA samples. HLA-DR4+ phenotype of 
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PBMC or tumor cell lines was also corroborated by flow cytometric analysis using the 359-F10 

mAb (36, 208). 

 

2.3.4. DC1 Preparations  

Type-1 polarized dendritic cells (DC1) were generated from CD14+ MACs (MACS; Miltenyi 

Biotech, Auburn, CA)-isolated human monocyte precursors, as previously described (24). 

Additional CD14+ monocytes were cryopreserved at -80oC and used as antigen presenting cells 

in ELISPOT assays. 

 

2.3.5. CD4+ T cell isolation from PBMC and in vitro stimulation (IVS) 

Following monocyte separation, CD4+ T cells were isolated from CD14- PBMC by magnetic cell 

sorting (MACS; Miltenyi Biotech), according to manufacturer’s protocol, and then 

cryopreserved until needed.  To establish DC-T cell cultures, CD4+ T cells were thawed at 37oC 

and washed in AIM-V medium (GIBCO-Invitrogen, Carlsbad, CA), then resuspended in T cell 

media [AIM-V supplemented with 5% human serum (GIBCO)].  DC1s were incubated for 1-3 

hours in 1ml of T cell media with or without MAGE-A6 peptides (10 μg/ml) at 37oC. 

Afterwards, DC1s were co-cultured with autologous CD4+ lymphocytes at a 1:10 DC1:T cell 

ratio in T cell media for 11 days.  

 

2.3.6. ELISPOT  

On day 11 of IVS, the frequencies of peptide-specific CD4+ T cell responders were measured 

using anti-human IFN-γ ELISPOT assays, as previously described (36, 208).  Tumor cells used 

in ELISPOT assays were pre-treated with IFN-γ (1000 U/ml) for 24 hours in order to upregulate 
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MHC class II expression and then irradiated (100 Gy) to prevent their proliferation. CD4+ T 

cells, along with autologous CD14+ cells or HLA-DR-matched tumor cell lines were added to 

ELISPOT wells at a 5:1 T cell:antigen presenting cell ratio. In antibody blocking tests, antigen-

presenting cells were pre-incubated with 20 μg/ml of L243 HLA-DR blocking antibody (ATCC, 

Gaithersburg, MD) for 1h at 37oC prior to loading in ELISPOT wells. Peptides or rMAGE-A6 

were added at 10 μg/ml, except in titration experiments where peptide concentrations were 

varied between 0 and 30 μM. ELISPOT plates were incubated at 37oC for 24h (peptide and 

tumor recognition), or 48h (protein responses), developed and evaluated using an ImmunoSpot 

automatic plate reader (Cellular Technology Ltd., Cleveland, OH), as previously reported (36, 

208). The number of peptide-specific CD4+ T cell responders was always statistically compared 

to the background number of IFN-γ spots produced by T cells in response to APCs pulsed with 

the malarial circumsporozooite CS326-345 peptide (for peptide-based assays) or with the TOP10 

processed bacterial lysate (for protein-based assays).  Positive control wells contained T cells and 

10 μg/ml phytohemagglutinin (PHA; Sigma-Aldrich). 

 

2.3.7. Peptides  

The MAGE-A6 (GenBank accession no. AAA68875) and Mycoplasma penetrans HF-2 

permease protein (GenBank accession no. NP_757962) proteins were analyzed using the ProPred 

HLA-DR peptide-binding algorithm (http://www.imtech.res.in/raghava/propred/index.html). 

MAGE-A6 peptide sequences were selected based on their predicted ability to bind the broadest 

HLA-DR repertoire (Table 4). Subsequently, microbial peptides were selected based on a 

homology search of GenBank sequences similar to that performed for the MAGE-A6 peptides 

(Table 6). All peptides were synthesized using 9-fluorenylmethoxycarbonyl (FMOC) chemistry 
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by the University of Pittsburgh Cancer Institute’s (UPCI) Peptide Synthesis Facility (Shared 

Resource). Peptides were >95% pure based on high-performance liquid chromatography (HPLC) 

and tandem mass spectrometry analyses performed by the UPCI Protein Sequencing Facility 

(Shared Resource). 

 

Table 4. Predicted and synthesized poly-DR binding epitopes derived from MAGE-A6. 

The MAGE-A6 protein (GenBank accession no. AAA68875) was analyzed using the ProPred 
HLA-DR peptide-binding algorithm. Peptides were defined/selected according to their ability to 
theoretically bind the broadest HLA-DR repertoire. The most “promiscuous” HLA-DR binding 
peptide sequences predicted by the algorithm are underlined, and the predicted anchor residues 
for HLA-DR binding bolded.  In the rightmost column, the HLA-DR alleles to which the 
peptides are predicted to bind are indicated. 

 

Peptide Position Peptide Sequence HLA-DR Alleles Predicted to 
Bind 

MAGE-A6140-170 VGNWQYFFPVIFSKASDSLQLVFGIELMEVD DRB*01, 03, 04, 07, 13, 15, and 
DRB5*01 

MAGE-A6172-187 IGHVYIFATCLGLSYD DRB1*01, 04, 07, 08, 11, 13, 15, 
and DRB5*01 

MAGE-A6192-214 DNQIMPKTGFLIIILAIIAKEGD DRB1*01, 03, 04, 07, 08, 11, 13, 
15, and DRB5*01  

MAGE-A6280-302 ETSYVKVLHHMVKISGGPRISYP DRB1*01, 03, 07, 08, 11, 13, 15, 
and DRB5*01 
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2.3.8. PCR 

Cell lines were screened for MAGE-A6 expression by reverse transcription (RT)-PCR, while 

Mycoplasma penetrans HF-2 contamination was tested by PCR. For MAGE-A6 analysis, RNA 

was isolated from the cell lines using the RNeasy Tissue Kit (Qiagen, Valencia, CA) and cDNA 

prepared using the GeneAmpR RNA PCR Kit (Applied Biosystems, Foster City, CA). MAGE-

A6 transcripts were analyzed, as previously described (36), using the following primer set; 

forward: TGGAGGACCAGAGGCCCCC; reverse: CAGGATGATTATCAGGAAGCCTGT. 

Mycoplasma penetrans HF-2 DNA contamination of cell lines was tested by PCR, as previously 

described (209) using the primers; forward: CATGCAAGTCGGAC; reverse: 

AGCATTTCCTCTTC. Mycoplasma penetrans HF-2 bacteria (ATCC# 55252; Gaithersberg, 

MD) were used as positive DNA control, as was assessment for β-actin DNA using the primer 

set; forward: GGCATCGTGATGGACTCCG; reverse: GCTGGAAGGTGGACAGCGA. The 

PCR reaction parameters consisted of an initial 3 min denaturation step at 94°C followed by 32 

amplification cycles that consisted of denaturation at 94°C for 45 sec, annealing at 68°C for 45 

sec, and extension at 72°C for 1 min. The final cycle was followed by an additional extension 

step at 72°C for 10 min.  

 

2.3.9. rMAGE-A6 generation and Western Blot analysis  

Full-length MAGE-A6 cDNA was generated by RT-PCR using the primer set; forward: 

TGGAGGACCAGAGGCCCCC; reverse: AGGATGATTATCAGGAAGCCTGTC. cDNA was 

isolated from the MAGE-A6+ SLR20 renal carcinoma cell line (208) and inserted into the pBAD 

TOPO TA (Invitrogen) cloning vector, then amplified in TOP10 (Invitrogen) bacteria, according 

55 



 

to the manufacturer’s protocol.  The sequence was confirmed using the sequencing primers 

provided in the pBAD TOPO TA Cloning Kit. Bacterial extracted poly-His-tagged recombinant 

MAGE-A6 (rMAGE) was purified using the BD Talon Purification Kit (BD Biosciences, San 

Jose, CA), according to the manufacturer’s protocol.  Non-transformed TOP10 bacteria were 

grown and processed in an identical manner as for rMAGE purification, with the processed 

elution fractions (TOP10) used as a negative control in ELISPOT readouts for immune response 

to rMAGE. LPS levels for rMAGE and TOP10 control protein were tested using the QCL-1000 

Kit (BioWhittaker, Walkersville, MD), and determined to be < 3 ng/ml (data not shown). For 

Western Blotting, proteins were transferred onto Immobilon-P transfer membranes 

(polyvinylidene fluoride microporous membrane; Millipore, Billerica, MA) and stained using the 

anti-MAGE antibody, 57B (kindly provided by Dr. G. C. Spagnoli, University Hospital of Basel, 

Basel, Switzerland; ref. 26) or isotype matched control Ab (Sigma-Aldrich, St. Louis, MO). Goat 

anti-mouse HRP conjugated antibody (Sigma-Aldrich) was used as a detection antibody.  After 

extensive washing with PBS supplemented with 0.05% Tween, Western Lightning 

Chemoluminescence Reagent Plus (PerkinElmer Life Sciences, Boston, MA) was added and the 

blot developed by ECL chemiluminescence radiography  (Kodak, Rochester, NY).  

 

2.3.10. Statistical Analysis  

Statistical comparisons were made using a two-tailed Student’s T-test, with a p value < 0.05 

considered significant. 
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2.4. RESULTS 

 

2.4.1. Selection and testing of poly-DR binding peptides derived from MAGE-A6.   

 

I subjected the MAGE-A6 protein sequence to a computer algorithm screen designed to 

identify peptides likely to have “promiscuous” HLA-DR-binding tendencies.  Four such peptides 

were identified (Table 4). While three of these peptides represent novel sequences (MAGE-

A6172-187, MAGE-A6192-214, and MAGE-A6280-302), I have previously defined the MAGE-A6140-

170 peptide as containing an HLA-DR4-restricted epitope (208).   

These 4 peptides were evaluated for their immunogenicity in vitro using normal donor 

and melanoma patient CD4+ T cells as responders and autologous Type-1 polarized DCs (i.e. 

DC1; ref. (210, 211) as stimulator cells.  A single round of in vitro stimulation was employed in 

order to amplify recall Th responses to these epitopes and to limit the priming of naïve CD4+ T 

cells, with IFN-γ ELISPOT assays performed to enumerate the resultant peptide-specific CD4+ T 

cell responses in an initial assessment of 14 melanoma patients and 7 normal donors.  A 

summary of donor characteristics and their T cell responses to MAGE-A6 peptides are provided 

in Table 5 and Fig. 5, respectively.   
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Table 5. Normal Donor and Patient Characteristics. 

 
Peripheral blood was obtained from normal donors or melanoma patients with written consent, 
under an IRB-approved protocol. DNA was isolated from PBMC and tested for HLA-DR 
genotype as described in Materials and Methods. Abbreviations: C, chemotherapy; I, 
immunotherapy;  Mel, melanoma patient; Met, metastatic disease; N.D., normal donor; NED, no 
evidence of disease at time of blood draw; N.T., not tested; R, radiotherapy; S, surgery.  
 
 Donor Age Sex HLA-DR Genotype Stage Status Treatment 

Received 
N.D.01 49 M 07, 13 - - - 
N.D.02 64 M 07, 16 - - - 
N.D.03 35 M 11, 13 - - -  
N.D.04 17 F 03, 15 - - -  
N.D.05 30 F 13 - - -  
N.D.06 44 M 07, 13 - - -  
N.D.07 41 F 07, 15 - - -  
N.D.08 42 F 15, 16 - - -  
N.D.09 48 M 07 - - - 
Mel01 42 M 01, 11 II Met S, I 
Mel02 62 M 03, 07 IV Met S, C, I 
Mel03 80 M 01, 04 I NED S 
Mel04 69 M 03, 13 III Met S, I 
Mel05 37 F 01, 07 III Met S, R, I 
Mel06 75 M 13, 14 II NED S 
Mel07 69 M 03, 07 II NED S 
Mel08 75 M 01, 07 I NED S 
Mel09 75 F 04, 15 IV NED S, R 
Mel10 58 F 07 III NED S 
Mel11 30 M N.T. IV Met S, C 
Mel12 34 F 13, 15 IV Met S, I, R 
Mel13 63 M 07, 13 IV Met S, I, C 
Mel14 32 F 01, 11 IV Met S 
Mel15 67 F 03, 09 IV Met S 
Mel16 45 M 15, 17 IV Met S 
Mel17 54 F 01, 103 IV NED S 
Mel18 31 M 01, 04 IV Met S 
Mel19 52 F 11, 13 II Met S, C 
Mel20 38 F 11, 13 IV Met S, R 
Mel21 45 F 04 I NED S 
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Figure 5. Type-1 CD4+ T cell responses against MAGE-A6-derived poly-DR peptides and 
naturally-processed rMAGE epitopes. 

 
CD4+ T cells were isolated from the indicated (A) 14 melanoma patients and (B) 7 normal 
donors and tested for their ability to be stimulated by, and react against, the indicated MAGE-A6 
peptides. CD4+ T cells were stimulated once in vitro using autologous DC1 pulsed with 10 μg/ml 
MAGE-A6 peptide for 11 days.  Responder T cells were assessed for their functional reactivity 
in IFN-γ ELISPOT assays against autologous monocytes pulsed with 10 μg/ml of control (CS326-

345) or relevant (M6.140, MAGE-6140-170; M6.172, MAGE-A6172-187; M6.192, MAGE-A6192-214, 
M6.280, MAGE-A6280-302) peptides. (C) Western Blotting was performed using the anti-MAGE 
mAb 57B against rMAGE, or the following controls: normal donor PBMC (MAGE-A6-) lysate; 
SLR20 renal carcinoma cell line (MAGE-A6+) lysate and TOP10 (MAGE-A6-) bacterial lysate. 
(D) IFN-γ ELISPOT assays were performed on IVS (peptide)-primed CD4+ T cells isolated from 
seven melanoma patients to assess their functional reactivity against rMAGE-pulsed autologous 
monocytes (a representative experiment for patient Mel13 is shown). Controls included 
monocytes pulsed with the indicated relevant (MAGE-A6) or irrelevant (CS) peptides, and the 
TOP10 protein (negative control for rMAGE). (*) indicates significant responses (p < 0.05 for 
rMAGE vs. TOP10 or MAGE-A6 peptide vs. CS peptide, data not shown). Abbreviations used: 
N.D. = normal donor; Mel = melanoma patient. 
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Peptide-specific responses were observed in both melanoma patients and, at typically lower 

frequencies, in normal donors. Melanoma patients displayed variable reactivity against each of 

the four peptides tested. The MAGE-A6280-302 peptide was associated with the most frequent 

CD4+ T cell responses among the patients evaluated, with 9/14 patients evaluated reacting 

against this sequence (mean response [MR] = 50 specific spots/105 CD4+ T cell evaluated).  

MAGE-A6140-170 (5/13 patients reactive; MR = 58.4 specific spots/105 CD4+ T cell evaluated) and 

MAGE-A6172-187 (7/13 patients reactive; MR = 67 specific spots/105 CD4+ T cell evaluated) were 

also commonly immunostimulatory, while the MAGE-A6192-214 (2/14 patients reactive; MR = 22 

specific spots/105 CD4+ T cell evaluated) epitope exhibited the poorest overall immunogenicity 

(Fig. 5A). Similarly, in normal donors (Fig. 5B), the MAGE-A6280-302 peptide yielded the 

strongest and most frequent responses (5/7 normal donors reactive; MR = 147 specific spots/105 

CD4+ T cell evaluated), while the MAGE-A6172-187 peptide was the second most stimulatory 

peptide (3/7 normal donors reactive; MR = 108 specific spots/105 CD4+ T cell evaluated) among 

the donors evaluated.  The MAGE-A6140-170 (1/7 normal donors reactive; MR = 50 specific 

spots/105 CD4+ T cell evaluated) and MAGE-A6192-214 (1/7 normal donors reactive; MR = 53 

specific spots/105 CD4+ T cell evaluated) epitopes were less effective in promoting specific 

immune responses. Overall, 11/14 melanoma patients (i.e. with the exception of patients Mel01, 

Mel06, and Mel14) and 5/7 normal donors (except for N.D.02 and N.D.04) evaluated were 

responsive against at least one of these epitopes following a single round of IVS.   
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2.4.2. Recognition of naturally-processed MAGE-A6 epitopes by peptide-stimulated 

CD4+ T cells. 

 

While my preliminary data suggest that the selected MAGE-A6 epitopes can stimulate 

specific CD4+ T cell responses in vitro from the majority of randomly-selected donors evaluated, 

this does not prove that these peptides are naturally-processed and HLA-presented.  Hence, to 

provide support for the physiological relevance for these epitopes, I analyzed the capacity of 

peptide-stimulated T effector cells to react against autologous monocytes pulsed with 

recombinant MAGE-A6 protein in vitro.  I first constructed, produced and purified recombinant 

MAGE-A6 as outlined in the Materials and Methods (rMAGE; Fig. 5C). I then analyzed whether 

MAGE-A6 peptide-stimulated T cells could recognize autologous CD14+ monocytes loaded in 

vitro with rMAGE using IFN-γ ELISPOT assays as a readout system (Fig. 5D). As controls, T 

cells were assessed for reactivity against monocytes loaded with either the relevant MAGE-A6 

or irrelevant CS peptides, or the TOP10 processed bacterial lysate as negative control for 

rMAGE protein.  An evaluation of peptide-primed CD4+ T cells generated from melanoma 

patients supported the conclusion that each of the peptide epitopes tested was naturally-processed 

and -presented by autologous monocytes. A representative experiment is shown in Fig. 5D, 

where after one round of stimulation with individual peptides, CD4+ responder T cells isolated 

from patient Mel13 recognized the relevant MAGE-A6 peptide, as well as, rMAGE-pulsed 

autologous monocytes.    
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2.4.3. Recognition of poly-DR presented MAGE-A6 epitopes by normal donors and 

potential cross-reactivity against environmental pathogens.    

 

It was interesting to note that several normal donors were able to mount detectable Th1-

type responses against the MAGE-A6172-187 and MAGE-A6280-302 peptides after a single round of 

IVS. One possible explanation for this finding is that some normal donors harbor pre-malignant 

MAGE-A6+ lesions, since MAGE antigens can be expressed in such tissues (212, 213).  

However, I believe it highly unlikely that such a large frequency of donors would be impacted in 

this manner. An alternate possibility is that the MAGE-A6 peptides evaluated bear sufficient 

sequence or conformational homologies to environmentally expressed proteins to which many 

individuals may have become naturally primed against, allowing for functional cross-reactivity 

to be detected in my assays.  This type of phenomenon has been previously suggested for the 

HLA-A2-presented MART-127-35 epitope (202).  

While conformational epitope mimics are not easily evaluated, I was able to perform 

sequence homology searches of the GenBank database for potential sources of cross-reactive 

linear epitopes. These screens suggested that the MAGE-A6172-187 and MAGE-A6280-302 (but not 

the MAGE-A6140-170 or MAGE-A6192-214) epitopes exhibited significant homologies to known 

microbial sequences (Table 6). The MAGE-A6172-187 VYIFATCL octamer was similar to a 

peptide (i.e. the HF-2219-226; MPHF2) derived from the HF-2 permease protein of Mycoplasma 

penetrans [a common opportunistic human pathogen (214)]. The MAGE-A6 peptide contains 

conservative V1I and A5T positional amino acid substitutions when compared to the pathogen 

homologue. Similarly, the MAGE-A6280-302 VLHHMVKI octamer was highly homologous to a 

Chlamydia muridarum Nigg [a strain of rodent origin (215)] encoded, conserved hypothetical 
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protein TC0097 (CHP). When these pathogen-derived core peptides were expanded to include 

three native (from the protein of origin) amino-acids on each flank (Table 6), and then analyzed 

using the ProPred HLA-DR peptide-binding algorithm, they were predicted to bind a wide range 

of HLA-DR alleles, similar to their MAGE-A6 homologues. Subsequently, both peptides were 

synthesized. Due to its high hydrophobicity index, the MPHF2 peptide flanking regions were 

additionally modified to include diaminopropionic acid (Z) groups (that are very similar to 

Lysine but less bulky), in order to improve peptide solubility.  

 

Table 6. Sequence homology of MAGE-A6 epitopes with pathogen-associated proteins. 

 
The MAGE-A6 Th epitopes were analyzed using a GeneBank homology program and microbial 
homologues identified. Underlined sequences represent areas of homology between matched 
sequences. Diaminopropionic acid (Z) groups were added to MPHF2 flanking regions in order to 
enhance its solubility. Sequences were analyzed as described in the Materials and Methods 
section. Symbols: +, Conserved amino-acid family; -, Non-conserved amino-acids. 
 
Protein  Homologous sequences Conserved sequence 

    

MAGE-A6172-187  IGHVYIFATCLGLSYD  

   +YIFA-CL 

Permease   (ZZZ)AIYIYIFAACLLLI(ZZZ)  

[Mycoplasma penetrans HF-2]    

    

MAGE-A6280-302  ETSYVKVLHHMVKISGGPRISYP  

   VLH-MVKI 

Conserved hypothetical protein TC0097   

[Chlamydia muridarum Nigg] KRRVLHEMVKIYSL  
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2.4.4. CD4+ T cell responses to the MAGE-A6172-187 and the MPHF2 homologue peptide 

are immunologically-related.   

I next evaluated the ability of these 2 pathogenic sequences to be recognized by MAGE-A6 

peptide-primed CD4+ T cells, as well as, to serve as immunogens capable of priming CD4+ T 

cells capable of cross-reacting against the homologous MAGE-A6 epitopes in vitro (Fig. 6). The 

resulting IVS responder T cells were assessed for their reactivity against autologous monocytes 

pulsed with the priming peptide, its homologue peptide or rMAGE in IFN-γ ELISPOT assays. 

MAGE-A6172-187 peptide-primed CD4+ T cells derived from 2/6 patients recognized the 

stimulating peptide and also cross-reacted against the MPHF2 homologue peptide in a 

statistically-significant manner (Fig. 6A). Similarly, CD4+ T cells generated from 4/6 patients 

after stimulation with the MPHF2 peptide recognized the stimulating peptide, with half of these 

responders cross-reacting against the MAGE-A6172-187 homologue peptide. Interestingly, while 

CD4+ T cells generated from patients stimulated with the MAGE-A6172-187 epitope only modestly 

recognized naturally-processed rMAGE protein (Fig. 6B), MPFH2-primed CD4+ T cells from all 

6 patients recognized autologous monocytes pulsed with rMAGE.  In contrast, in the MAGE-

A6280-302/CHP peptide analyses that were performed in parallel, I observed no evidence for 

peptide cross-recognition by CD4+ T cells after peptide-based in vitro stimulation (Fig. 6A).   

Similar results were observed for CD4+ T cells isolated from three normal donors, with data from 

a representative experiment depicted in Fig. 6C. In this donor (N.D.08), MAGE-A6172-187 peptide 

priming did not promote a specific CD4+ T cell response in vitro, while MPHF2-stimulated 

CD4+ T cells cross-reacted against both target peptides and naturally-processed and presented 
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rMAGE-derived epitope(s) in the ELISPOT readout assay. This donor also responded to the 

MAGE-A6280-302, but not the CHP peptide (Fig. 6C).  

 
 
 

Figure 6. Normal donor and melanoma patient CD4+ T cell responses against MPHF2 and 
CHP peptides: cross-reactivity against MAGE-A6 epitopes? 
(A) CD4+ T cells isolated from melanoma patients were tested for their ability to be stimulated 
by, and react against, MAGE-A6172-187 and MAGE-A6280-302, and their homologues MPHF2 and 
CHP, respectively. CD4+ T cells were stimulated as described in the Fig. 5 legend, with 
responder T cells analyzed in IFN-γ ELISPOT assays for reactivity against autologous 
monocytes pulsed with 10 μg/ml of stimulating peptide (A, top panel), the corresponding 
homologue peptide (A, bottom panel) or rMAGE (B). Negative controls included the CS326-345 
peptide and TOP10 bacterial proteins.  (C). CD4+ T cells isolated from normal donors were 
stimulated as above using the individual MAGE-A6, MPHF2 and CHP peptides, then analyzed 
for their reactivity against autologous monocytes pulsed with the indicated peptides or proteins 
(insert) in IFN-γ ELISPOT assays.  The data displayed in panel C are representative of 3 normal 
donors analyzed in this manner. 
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2.4.5. MPHF2-stimulated CD4+ T cells recognize HLA-DR matched, MAGE-A6+ 

melanoma cell lines in vitro.   

 

To further evaluate the potential physiological relevance of CD4+ T cell priming against 

the MPH2 epitope, I compared MAGE-A6172-187 and MPHF2-stimulated CD4+ T cells for their 

ability to recognize HLA-DR-matched, MAGE-A6+ melanoma cell lines in vitro. In these 

experiments, CD4+ T cells isolated from an HLA-DR4+ melanoma patient blood were stimulated 

twice at weekly intervals with autologous DC1 pulsed with either the MAGE-A6172-187 or 

MPHF2 peptides. Two HLA-DR4+ (Fig. 7A)/MAGE-A6+ (Fig 7B) melanoma cell lines, SLM2 

and Mel526.DR4, were then used as targets for responder T cells in IFN-γ ELISPOT assays (Fig. 

7C). Pan-DR mAb (L243) was also added to replicate wells, as indicated, to demonstrate the 

MHC class II-restricted nature of T cell responses.  I observed that both populations of peptide-

primed CD4+ T cells recognized the two tumor cell lines in a manner that was partially blocked 

by addition of mAb L243, with the MPHF2-stimulated CD4+ T cells exhibiting a greater 

magnitude of response to tumor cell lines than T cells primed with the MAGE-A6172-187 epitope 

(Fig. 7C). To rule out the possibility that T cell recognition was due to specific mycoplasma 

infection of the target cell lines, both melanoma cell lines were shown to be negative for 

Mycoplasma penetrans HF-2 contamination using a sensitive PCR method (Fig. 7D).  
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Figure 7. MPHF2-primed CD4+ T cells more effectively recognize HLA-matched, MAGE-
A6+ tumor cells than T cells primed in vitro against the homologous MAGE-A6172-187 
peptide. 

In (A), flow cytometry was used to assess the target cell lines used in these experiments 
(Mel526.DR4, SLM2), as well as the MHC class II negative Mel526 cells, for expression of pan-
MHC class II (L243) and HLA-DR4 molecules [thin line: IgG control; thick line: MHC class II 
or HLA-DR4 antibody].  While SLM2 cells spontaneously expressed HLA-DR4, the 
Mel526.DR4 cell line is HLA-DR4+ as a consequence of infection with a retrovirus encoding the 
HLA-DRα/-DRβ1*0401 cDNAs (33).   Tumor cell lines were also evaluated by: (B) RT-PCR 
for expression of MAGE-A6 mRNA expression and (D) by PCR for contamination by 
Mycoplasma penetrans HF-2.   In (C), CD4+ T cells were isolated from an HLA-DR4+ 
melanoma patient (Mel21) and stimulated with autologous DC1 pulsed with the MAGE-A6172-187 
or MPHF2 peptides as described in the Fig. 5 legend, with responder T cells were evaluated for 
functional reactivity against the Mel526.DR4 (panel C, top) and SLM2 (panel C, bottom) tumor 
cell lines in IFN-γ ELISPOT assays.  L243 (anti-pan-class II mAb; 20 μg/ml; gray filled 
histograms)) or no mAb (open histograms) were added to wells to confirm the class II-restricted 
nature of IFN-γ secretion by responder CD4+ T cells.  All data for L243 vs. no mAb are 
significant, with p < 0.05. Data are representative of 3 independent assays performed. 
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2.4.6. MPHF2-stimulated CD4+ T cells exhibit a higher functional avidity for MAGE-

A6172-187 loaded target cells than T cells primed against the MAGE-A6 peptide itself.   

 

To determine whether the superior capacity of MPHF2 (vs. MAGE-A6172-187) peptide-

primed CD4+ T cells to recognize autologous APC pulsed with rMAGE-A6 protein as well as 

HLA-matched, MAGE-A6+ tumor cells could be attributed to differences in T cell functional 

avidity, I compared the abilities of peptide-primed CD4+ T cells generated from an HLA-DR4+ 

normal donor to recognize titrated doses of the MAGE-A6 peptide pulsed onto T2.DR4 

presenting cells in IFN-γ ELISPOT assays.  CD4+ T cells generated using the MAGE-A6 peptide 

recognized T2.DR4 cells only when pulsed with relatively high concentrations peptide (with a 

half-maximal response associated with a peptide dose of 3-10 μM; Fig. 8A), while MPHF2-

stimulated cells recognized target cells pulsed with far (approximately 1000-fold) lower 

concentrations of peptide (Fig. 8B). 
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Figure 8. MPHF2-primed CD4+ T cells exhibit a higher functional avidity for the MAGE-
A6172-187 epitope than T cell primed against the MAGE-A6 peptide itself. 

To test the functional avidity 
of (A) MAGE-A6172-187-
primed and (B) MPHF2-
primed CD4+ T cells (as 
outlined in the Fig. 7 
legend), lymphocytes were 
evaluated for their ability to 
recognize titrated doses of 
MAGE-A6172-187 (diamonds) 
or MPHF2 (squares) peptide 
pulsed onto the HLA-DR4+ 
T2.DR4 cell line in IFN-γ 
ELISPOT assays, as 
described in Materials and 
Methods. All data are 
reflective of 3 independent 
assays performed. MAGE-
A6172-187 MW = 1728 g/mol 
[e.g. 10 μM = 17.3 μg/ml]; 
MPHF2 MW = 2115 g/mol 
[e.g. 10 μM = 21.2 μg/ml]. 
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2.5. DISCUSSION 

 

Previous studies of peptide-specific, CD4+ T cell responses against tumor antigens, 

including MAGE-A6 have been traditionally skewed towards an analysis of a single (i.e. HLA-

DR4) or very limited set of HLA-DR restriction elements (208, 216, 217).  Given the extreme 

polymorphism among HLA-DR alleles, the translational utility of the epitopes defined to date 

would be limited to a modest cohort of 20-30% of patients (23).  In the current study I have 

attempted to circumvent this limitation by identifying peptides that are likely to bind to, and be 

presented by, as broad a range of HLA-DR alleles (i.e. poly-DR) as possible, thereby expanding 

the range of patients to which MAGE-A6-based therapies might be applied clinically.  

Peripheral blood CD4+ T cells were harvested from normal donors and patients with 

melanoma, stimulated with a single round of peptide-based IVS, and evaluated for their ability to 

recognize MAGE-A6 peptides (selected to be promiscuously presented by HLA class II) in IFN-

γ ELISPOT assays. My data support the identification of 3 novel MAGE-A6 peptide epitopes 

recognized by Type-1 Th cells and substantiate the ability of these epitopes, along with the 

previously-defined MAGE-A6140-170 peptide, to be recognized by a large proportion of 

individuals (who overall exhibited a diverse array of HLA-DR haplotypes). Of the four peptides 

analyzed, the MAGE-A6172-187 and MAGE-A6280-302 peptides were recognized at the highest 

frequencies in peptide ELISPOT readouts by CD4+ T cells.   In contrast, the MAGE-A6192-214 

appeared comparatively non-immunogenic, and the MAGE-A6140-170 peptide was moderately 

effective in this capacity. Based on the ability of peptide-primed CD4+ T cells to recognize 

autologous monocytes pulsed with rMAGE protein, each of the peptides evaluated appear to 

contain naturally-processed and -presented Th epitopes. 
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These MAGE-A6 poly-DR epitopes displayed a high degree of homology with sequences 

contained in other MAGE-A family members, especially MAGE-A3. MAGE-A6140-170, MAGE-

A6172-187, and MAGE-A6280-302 differed from their MAGE-A3 counterparts by only a single 

amino acid in each case. For MAGE-A6140-170 this difference is at position 156, where a D > S 

substitution occurs in the MAGE-A3 protein. The MAGE-A6172-187 peptide differs from its 

MAGE-A3 counterpart based on a conservative V175L substitution, and the MAGE-A6280-302 to 

MAGE-A3 difference reflects an R298H substitution.   Hence, while it remains to be formally 

evaluated, I believe that in many cases, the selected MAGE-A6 epitopes will likely elicit CD4+ T 

cell responses in a high frequency of patients that are capable of cross-reacting against their 

MAGE-A3 homologues when presented by autologous APCs. As a result, these peptides could 

represent promising candidates for inclusion in peptide-based vaccines designed to treat the 

majority of patients harboring tumors that exhibit MAGE-A6+ and/or MAGE-A3+ phenotypes in 

situ.   

It was also noted in this study that CD4+ T cells isolated from several normal donors were 

able to effectively recognize the MAGE-A6172-187 and MAGE-A6280-302 epitopes after a single 

round of IVS.  This observation could be attributed to epitope mimicry.  Epitope mimicry has 

been described as a potential mechanism underlying the induction of autoimmune diseases due to 

pathologic T cells primed against infectious microorganisms that cross-react against host 

proteins in susceptible individuals. Diseases such as viral myocarditis, lyme disease, rheumatoid 

arthritis (198), multiple sclerosis (199), and virus-induced autoimmune diabetes (200, 201) have 

long been considered to be initiated or exacerbated by microbial pathogens.  As was previously 

noted for the HLA-A2-presented, melanoma-associated MART-127-35 epitope (202), I 

hypothesized that the high degree of normal donor response against the MAGE-A6 Th peptides 
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might be due to the cross-reactivity of T cells initially primed in vivo against highly-homologous 

peptides within environmentally-encountered proteins. After performing a homology search of 

the GenBank database, I selected the MPHF2 and CHP peptides as two likely candidate 

homologues of the MAGE-A6172-187 and MAGE-A6280-302 peptides, respectively. The MPHF2 

peptide derives from Mycoplasma penetrans HF-2, a ubiquitous species of Mycoplasmataceae, 

which infects humans in the urogenital and respiratory tracts. A typical feature of this 

microorganism is penetration into human cells and long-term intracellular replication and 

persistence. In human disease, M. penetrans is clinically observed in cases of HIV-1 infection, 

but has also been suggested to represent a primary cause of non-HIV-related urethritis and 

respiratory disease (214). Importantly, while many strains of mycoplasma can commonly infect 

laboratory cultures and affect derivative assay results, M. penetrans has not been reported to do 

so, and I did not detected this agent in my cell lines.  The CHP peptide derives from Chlamydia 

muridarum strain Nigg, a mouse-tropic strain capable of causing respiratory disorders in mice. 

This strain of Chlamydia diverges significantly from human-tropic strains (215). Given the low 

degree of likelihood that humans would encounter this microbe, it was perhaps not surprising 

that I did not observe any evidence for the cross-reactivity of these peptides by T cells in my 

studies. This does not rule out a pathogenic homologue for the MAGE-A6280-302 peptide being 

responsible for my common observation of IVS responses against this MAGE-A6 peptide among 

normal donors, but suggests that additional studies will need to be performed to illuminate its 

identity.   

My results suggest that the MPHF2 peptide is immunogenic and capable of promoting 

Type-1 effector CD4+ T cells in a majority of melanoma patients and normal donors.  Responder 

T cells were typically able to cross-react against the MPHF2 and MAGE-A6172-187 peptides and 
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to recognize the naturally-processed rMAGE epitope when presented by autologous monocytes.  

Notably, anti-MPHF2 CD4+ T cells also appeared preferentially able (in contrast to MAGE-A6 

peptide induced T cells) to recognize HLA-DR matched melanoma cell lines that constitutively 

express the MAGE-A6 gene product. The ability of the MPHF2 peptide to promote “heteroclitic” 

immunity against the MAGE-A6 (and presumably MAGE-A3) protein(s) may make this epitope 

extremely attractive as a vaccine candidate in patients bearing tumor histotypes in which MAGE-

A3/MAGE-A6 expression is commonly observed (such as melanoma, renal cell carcinoma and 

others).  
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Preface Chapter 3 
 

Given that patients with cancer exhibit dysfunctional Th1-type responses against epitopes 

derived from tumor antigens, such as MAGE-A6, I next investigated whether human DCs 

engineered to secrete high levels of the IFN-γ-inducing cytokines IL-12p70 and IL-18 via 

recombinant adenoviral infection could effectively generate Th1-type responses in vitro. I 

showed that DC co-infected with Ad.IL-12 and Ad.IL-18 (DC.IL-12/18) and pulsed with HLA-

DR4-restricted MAGE-A6 peptides were more effective at stimulating MAGE-A6-specific Th1-

type CD4+ T cell responses than DC infected with either of the cytokine vectors alone, control 

Ad.Ψ5 virus or uninfected DC.  Furthermore, DC.IL-12/18 loaded with recombinant MAGE-A6 

protein effectively promote Th1-type immunity that is frequently directed against multiple 

MAGE-A6-derived epitopes.  

The studies in Chapter 3 demonstrate the immuno-stimulatory properties of DC.IL-12/18, 

particularly when loaded with the whole TAA. Based on these results, I believe this modality 

may prove clinically useful as a vaccine platform to promote the recovery of tumor antigen-

specific, Th1-type CD4+ T cell responses in patients with cancer. This data has just been reported 

in Cancer Gene Therapy in 2006. 
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This data has just been reported in Cancer Gene Therapy in 2006. All the results reported in this 

study were obtained by Lazar Vujanovic. Evaluation of recombinant adenoviruses was repeated 

by Elena Ranieri, Ph.D. ELISPOT plate analyses were performed by Walter C. Olson, Ph.D. 
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3.1. Abstract 

 

While CD4+ Type-1 T helper (Th1) cells secreting interferon-γ (IFN-γ) appear to play an 

essential role in promoting durable anti-tumor immunity, I have previously shown that patients 

with cancer exhibit dysfunctional Th1-type responses against epitopes derived from tumor 

antigens, such as MAGE-A6.  Here, I engineered human dendritic cells (DC) to secrete high 

levels of the IFN-γ-inducing cytokines IL-12p70 and IL-18 via recombinant adenoviral infection 

to generate an in vitro stimulus capable of promoting previously-deficient patient Th1-type 

responses.  DC co-infected with Ad.IL-12 and Ad.IL-18 (DC.IL-12/18) were more effective at 

stimulating MAGE-A6-specific Th1-type CD4+ T cell responses than DC infected with either of 

the cytokine vectors alone, control Ad.Ψ5 virus or uninfected DC.  Furthermore, I show that 

DC.IL-12/18 loaded with recombinant MAGE-A6 protein (rMAGE) and used as in vitro 

stimulators, promote Th1-type immunity that is frequently directed against multiple MAGE-A6-

derived epitopes. The superiority of DC.IL-12/18-based stimulations in melanoma patients was 

independent of disease stage or current disease-status. Based on these results, I believe this 

modality may prove clinically useful as a vaccine platform to promote the recovery of tumor 

antigen-specific, Th1-type CD4+ T cell responses in patients with cancer. 
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3.2. Introduction 

 

Previous studies have shown that melanoma represents a prototype for neoplasia responsive to 

immunotherapy, and serves as a suitable model system for the development of anti-tumor 

vaccines (206, 218). While most vaccine studies have focused solely on effector CD8+ T cell 

responses as surrogates for clinical cancer responses, it is now clear that anti-tumor CD4+ T cells 

regulate the quality, magnitude and durability of CD8+ CTL immunity in vivo (69-71), and that 

the Th1-type cytokine, IFN-γ, plays an essential role in this response. Th1-type CD4+ T cells 

secrete IFN-γ and may mediate delayed type hypersensitivity (DTH) responses that can lead to 

enhanced cross-presentation of tumor antigens by host APCs (72), and consequent epitope 

spreading in the evolving anti-tumor T cell repertoire (73, 74). Furthermore, CD4+ T cells may 

mediate direct tumoricidal activity via TNF family ligand members and can inhibit tumor 

angiogenesis via locoregional production of IFN-γ (76-79).    

 Anti-tumor Th1-type CD4+ T cells, however, appear inhibited in many cancer patients 

(71, 97, 98), as reflected by decreased proliferation and T cell receptor (TCR) signaling (99), as 

well as, by increased frequencies and activity of regulatory T cells (100, 101). While Th1-type 

responses have been associated with spontaneous or therapy-induced regression of tumor lesions 

(98, 102), tumor infiltrating lymphocytes isolated from patients with progressive lesions have 

been generally reported to exhibit dominant Th2-type (secreting IL-4, IL-5) or regulatory (Th3)-

type (secreting IL-10, TGF-β1) responses (97, 98, 102). Our group has previously shown that 

peripheral blood CD4+ T cells isolated from melanoma or renal cell carcinoma (RCC) patients 

with active disease exhibit highly-skewed, non-Type-1 CD4+ T cell reactivity against epitopes 

derived from tumor antigens, such as MAGE-A6 (36). These findings contrast noticeably with 
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normal donors and cancer patients who exhibit no current evidence of disease as a consequence 

of therapeutic intervention, in whom either mixed Th1/Th2-type or strongly Th1-polarized 

responses to MAGE-A6 peptides occur, respectively (208). These results strongly suggest that 

the future immune-based therapies must overcome existing deficiencies in Type-1 anti-tumor 

CD4+ T cell responses in cancer patients with active disease in order to be clinically effective.   

 IL-12p70 and IL-18 are crucial Th1-type cytokines that synergize in promoting IFN-γ 

secretion from, and proliferation of, CD4+ T effector cells (165, 166).  IL-12p70 induces T cell 

surface expression of the IL-18 receptor (IL-18R) by naïve T cells (167); while IL-18, an IL-1 

family member, potentiates the differentiation of Th1 cells instigated by IL-12p70 (168). I 

hypothesized that dysfunctional anti-tumor Th1-type responses in cancer patients with active 

disease might be recovered/enhanced by in vitro stimulation of patient CD4+ T cells using 

vaccines containing autologous dendritic cells (DC) engineered to secrete IL-12p70 and/or IL-

18. This gene therapy approach could not only prove capable of supporting Type-1 immunity, 

but would have the potential to obviate toxicities previously observed for systemic application 

IL-12p70 alone (184, 186, 190) or IL-12p70 combined with IL-18 (187).  Indeed, our group has 

previously shown in murine models that DC engineered to secrete both IL-12p70 and IL-18 ex 

vivo, and subsequently injected intratumorally, promote acute tumor rejection in concert with 

enhanced Th1-type immunity and determinant spreading in the curative anti-tumor CTL 

repertoire (191).     

 In the current study, I generated and applied novel recombinant adenoviral vectors 

encoding human IL-12p70 (Ad.IL-12) and the mature form of human IL-18 (Ad.IL-18) to 

engineer human DC in vitro, and subsequently evaluated the ability of these gene-modified 

antigen presenting cells to promote Th1-type CD4+ T cell responses against the MAGE-A6 
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tumor antigen (36, 208) in HLA-DR4+ normal donors and patients with melanoma.  To my 

knowledge, this is the first study to describe a recombinant adenoviral vector encoding for a 

mature, physiologically active form of human IL-18.  Furthermore, I am the first to describe the 

effects of Ad.IL-12 and Ad.IL-18 co-infection of DC on the induction of effective polarization 

and enhancement of Th1-type CD4+ T cell responses in cancer patients. My results show that 

DC.IL-12/18 loaded with tumor peptides or recombinant tumor antigens may represent an 

effective vaccine capable of selectively promoting Type-1 specific immunity in patients with 

cancer who may display existing immune dysfunction.    

 

3.3. Materials and Methods 

 

3.3.1. Recombinant Adenoviral Vectors  

The Ad.ψ5, Ad.IL-12 and Ad.IL-18. E1- and E3-deleted adenoviral vector encoding the human 

interleukin-12 (hIL-12) p70 and interleukin-18 (hIL-18) cDNAs were constructed through Cre-

lox recombination with reagents generously provided by Dr. S. Hardy (Somatix, Alameda, CA). 

The prepro leader sequence of human GM-CSF was fused to the 5’ end of the mature human IL-

18 cDNA in order to facilitate secretion of bioactive IL-18 by infected cells. Sal I-Not I 

fragments containing p40-IRES-p35 or modified mature form of hIL18 cDNAs were inserted 

into the shuttle vector, pAdlox. Recombinant adenoviruses were generated by co-transfection of 

Sfi I-digested pAdlox-hIL-12 or pAdlox-hIL-18 and ψ5 helper virus DNA into the adenoviral 

packaging cell line CRE8 that expresses Cre recombinase, as previously described (219). 

Recombinant adenoviruses were propagated on CRE8 cells, purified by cesium chloride density 

gradient centrifugation and subsequent dialysis, prior to storage in 3% threalose at –80o C.  
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3.3.2. Cytokine ELISAs  

Adenoviral function and cytokine bioactivity were evaluated using ELISA assays for hIL-12p70 

(Pharmingen), hIL-18 (R&D Systems) and hIFN-γ (antibody pairs from Mabtech; Mariemont, 

OH), per the manufacturer’s protocols.  The lower limits of detection for these assays were 4.0 

pg/ml, 12.5 pg/ml  and 4.0 pg/ml, respectively.   

 

3.3.3. MAGE-A6 Protein and Peptides  

Recombinant MAGE-A6 protein (rMAGE)1 and MAGE-A6 peptides (MAGE-A6121-144 (36), 

MAGE-A6140-170 (36), MAGE-A6246-263 (36), and MAGE-A6280-302
1 were pulsed onto DC to 

generate stimulator cells for in vitro sensitization of T cells.  Non-transformed TOP10 

(Invitrogen, Carlsbad, CA) bacteria were grown and processed in an identical manner as for 

rMAGE purification, with the processed/eluted material (TOP10)1 later used as a negative 

control in ELISPOT readouts. 

 

3.3.4. Isolation of Patient and Normal Donor PBMC 

Peripheral blood was obtained by venipuncture from normal donors or melanoma patients a 

single time with consent, under an IRB-approved protocol.  Peripheral blood was diluted 1:2 

with PBS, applied to Ficoll-Hypaque gradients (Cellgro; Mediatech, Inc., Herndon, VA), and 

centrifuged at 550 x g for 25 min at RT. Peripheral blood mononuclear cells (PBMC) were 

recovered from the buoyant interface and washed at least three times with PBS in order to 

remove residual platelets as well as Ficoll-Hypaque. Donor HLA-DR4 status was determined 

using a specific anti-HLA-DR4 mAb 359-F10 and FACS analysis, as previously described (36, 
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208). Only PBMC determined to be HLA-DR4+ were used in these experiments.  The 8 

melanoma patients analyzed were between 31 and 83 years of age. Six of the eight patients 

(except Mel4 and Mel 6) tested were male, with all but Mel4 and Mel5 having active disease 

status at the time of blood draw. Blood was obtained at least 1 month after patient treatment with 

surgery alone (all), surgery + chemotherapy (Mel1, Mel2) or surgery + radiotherapy (Mel 1). 

Disease stage at the time of initial diagnosis for each patient is listed in Table 7. 

 

3.3.5. DC Generation 

Following Ficoll density separation, PBMC were plated in T75 culture flasks (COSTAR, 

Cambridge, MA) flasks in AIM-V (GIBCO-BRL, Gaithersburg, MD) medium for 60 minutes at 

37o C. Following incubation, non-adherent (NA) cells were removed from flasks by gentle 

washing with PBS, and cryo-preserved in freezing media [10% DMSO (Sigma-Aldrich), 90% 

fetal bovine serum (FBS; Invitrogen)] using controlled-rate freezing technique in a -80o C 

freezer.  Adherent monocytes were cultured at 37o C and 5% CO2 in DC medium [AIM-V 

supplemented with 500 U/ml GM-CSF (Sargramostim; Amgen, Thousand Oaks, CA) and 1000 

U/ml IL-4 (Schering Plough; Kenilworth, NJ)] for 5-7 days, as previously described (36).   

 

3.3.6. CD4+ T cell isolation 

On the day of establishing DC-T cell cultures, NA cells were thawed at 37o C and washed in 

AIM-V medium. CD4+ T cells were isolated from the NA cells by magnetic cell sorting (MACS; 

Miltenyi Biotech, Auburn, CA) according to the manufacturer’s protocol.  

 

3.3.7. In Vitro Stimulation (IVS) 
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DC were used as stimulators of autologous T cells and were either not infected or infected with 

recombinant adenoviral vectors (rAd): Ad.Ψ5 (empty vector; MOI 250); Ad.IL-12 (MOI 100); 

and Ad.IL-18 (MOI 250), using a previously-described protocol (220). The impact of viral 

infection on DC viability (Annexin-V) and maturation status (upregulation of CD83, MHC class 

I and II, CD80, CD86) was assessed by FACS analyses, as previously described (220). After 

infections, DC were incubated for 3 hours in 1 ml of T cell media along with peptides (10 μg/ml) 

or rMAGE (5 μg/ml). Once pulsed with antigen, DC were co-cultured with autologous CD4+ T 

lymphocytes at a 1:10 (DC:T cell) ratio in T cell media.  

 

3.3.8. ELISPOT 

On day 11 of T cell cultures, the frequencies of peptide-specific CD4+ T cell responders were 

measured using T2.DR4 cells as antigen-presenting cells in commercial human IFN-γ ELISPOT 

assays, as previously described (36, 208).  The number of peptide-specific CD4+ T cell 

responders was always compared to the background number of IFN-γ spots produced against 

APCs pulsed with the malarial circumsporozooite CS326-345 peptide (for peptide-based assays) or 

with the TOP10 processed bacterial lysate in the analyses of the natural processing and 

presentation of rMAGE protein-derived peptides. Positive control wells contained T cells 

cultured in the presence of 10 μg/ml phytohemagglutinin (PHA; Sigma-Aldrich). 

 

3.3.9. Statistical Analyses 

The statistical significance of differenced between T cell responses was determined using a 

Student’s T test, with differences with an associated p < 0.05 considered significant.  
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3.4. Results 

 

3.4.1. Recombinant adenoviral (Ad) vectors encoding IL-12p70 and mature IL-18 

efficiently transduce DC resulting in the secretion of bioactive cytokines 

Adenoviral vectors were initially evaluated for their ability to infect tumor cells, as well as 

immature DCs. Viral load used for infections was optimized for protein production and cell 

survival (data not shown). It was determined that a multiplicity of infection (MOI) of 100 for 

Ad.IL-12, and an MOI of 250 for Ad.IL-18 were optimal for efficient DC gene transduction. As 

previously described (220), adenoviral infection at these MOI did not induce terminal DC 

maturation (as determined by alterations in cell surface expression of maturation markers), nor 

did  infections alter the capacity of these cells to subsequently mature in response to a cocktail of 

stimuli including IL-1, IL-6 and TNF-α (data not shown).  

The secretion of transgene-encoded IL-12p70 and IL-18 protein was confirmed using 

specific ELISAs applied to supernatant samples harvested from cells infected in vitro. After 

infection of 106 DC with Ad.IL-12 or Ad.IL-18, and subsequent incubation for 48h at 37o C, cell 

supernatants contained approximately 10-20 ng/ml of IL-12p70 and 200-300 pg/ml of IL-18, on 

average. Representative data are depicted in Fig. 9. Interestingly, although DC and tumor cells 

displayed comparable infection efficiencies, the amount of IL-18 produced by gene-modified 

tumor cells was approximately ten-fold higher than that observed for infected DC (despite 

comparable efficiencies of transduction, data not shown), suggesting differential post-

translational regulation of IL-18 protein secretion may occur in these two cell types.  
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Figure 9. Recombinant adenoviruses (Ad) engineering of human DC to secrete bioactive 
IL-12p70 and IL-18. 

One million DC were infected with Ad.Ψ5 (DC.Ψ5; MOI 250), Ad.IL-12 (DC.IL-12; MOI 100) 
or Ad.IL-18 (DC.IL-18; MOI 250) or were left uninfected (DC). After 48h of incubation, 
supernatants were collected from cultures and tested for (a) IL-12 p70 or (b) IL-18 protein levels 
using specific ELISAs.  To test for cytokine bioactivity, 1 x 106 murine CMS4 cells were 
infected, as described above, and after 48h incubation, supernatants were collected, measured for 
transgene expression (231 ng/ml IL-12 p70; 3.5 ng/ml IL-18) and added into PBMC cultures at 
titrated doses (1:2, 1:16, 1:32, 1:64 dilution ratios of CMS4 supernatant to T cell media). After 
48h, supernatants from 1 x 107 PBMC stimulated with (c) Ad.IL-12 infected (CMS4.IL-12) or 
(d) Ad.IL-18 infected (CMS4.IL-18) CMS4 supernatants were collected and analyzed for IFN-γ 
levels by ELISA. The results represent mean cytokine concentrations (pg/ml) +/- SD. Data are 
representative of 3 independent experiments performed for each virus. NI, not infected. 
*asterisks indicate statistically significant differences vs. all other cohorts (p < 0.05). 
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The bioactivity of these transgene products was determined indirectly by assessing the 

ability of infected cell supernatant samples to subsequently induce IFN-γ secretion from 

responder human PBMC. To minimize the impact of additional non-virus-induced factors on my 

assay results (i.e. other than IL-12p70 or IL-18), I analyzed supernatants from infected murine 

CMS4 tumor cells (191), to stimulate IFN-γ secretion from freshly-isolated PBMC. CMS4 

supernatants were titrated on responder cells in order to discern any dose-dependent induction of 

IFN-γ secretion. Both the IL-12p70 (Fig. 9c) and IL-18 (Fig. 9d) transgene products were 

observed to induce IFN-γ secretion from PBMC in a dose-dependent manner, while control Ad-

infected CMS4 supernatants did not. 

 

3.4.2. DC co-infected with Ad.IL-12 and Ad.IL-18 exhibit enhanced Th1-type CD4+ T 

cell immunostimulatory capacity when compared to control DC.   

DC derived from two normal HLA-DR4+ donors (ND) were infected with either Ad.Ψ5 control 

vector (DC.Ψ5), Ad.IL-12 (DC.IL-12) or Ad.IL-18 (DC.IL-18) alone, or co-infected with both 

Ad.IL-12 and Ad.IL-18 (DC.IL-12/18) at the previously determined, optimized MOIs.  

Following infection, DC were pulsed with MAGE-A6121-144, MAGE-A6140-170 and MAGE-A6246-

263 peptides for 3h, and then added to culture wells containing autologous CD4+ T cells. A single 

round of in vitro stimulation was employed in order to most directly discern the ability of DC 

stimulations to amplify Th1-type responses against these epitopes (i.e. by avoiding extended in 

vitro cultures where the impact on existent immunity would be less interpretable).  Eleven days 

after the initiation of the IVS protocol, IFN-γ ELISPOT assays were performed to enumerate 

peptide-specific Th1-type CD4+ T cell responses (Fig. 10). While individual adenoviral 

infections had little effect on the induction of responses (except for ND1, where Ad.IL-12 
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infection of DC led to enhanced Th1-type responsiveness to a single MAGE-A6121-144 peptide), 

co-infection of DC with both Ad.IL-12 and Ad.IL-18 led to enhanced stimulation of Type-1 

CD4+ T cell reactivity against the MAGE-A6246-263 peptide in both donors, as well as against the 

MAGE-A6121-144 peptide in ND2.  Based on the reproducible superiority of DC.IL-12/18 vs. all 

other DC cohorts in promoting specific Type-1 anti-MAGE-A6 CD4+ T cell responses in vitro 

among 6 normal donors analyzed (Fig. 10 and data not shown), this modality was systematically 

adopted for all consequent analyses involving patient materials. 

 

Figure 10. DC.IL-12/IL18 elicit superior Type-1 anti-MAGE-A6 CD4+ T cell responses 
from normal HLA-DR4+ normal donors. 

CD4+ T cells isolated from 
two HLA-DR4+ normal 
donors were evaluated for 
their ability to be 
stimulated by, and react 
against, MAGE-A6121-144 
(M6.121), MAGE-A6140-

170 (M6.140), and MAGE-
A6246-263 (M6.246) 
peptides. A single 
stimulation using 
autologous DCs pulsed 
with 10 μg/ml of each of 
the individual MAGE-A6 
peptides was used in each 
case. Prior to being pulsed 
with peptides, DCs were 
infected with Ad.Ψ5 
(DC.Ψ5; MOI 250), 
Ad.IL-12 (DC.IL-12; MOI 
100), Ad.IL-18 (DC.IL-

18; MOI 250) or both Ad.IL-12 and Ad.IL-18 (DC.IL-12/18; MOI 100 for IL-12, and MOI 250 
for IL-18). Responder T cells were assessed in IFN-γ ELISPOT assays for their functional 
reactivity on day 11 post-initial stimulation.  Tests were performed in triplicate wells, using 
100,000 CD4+ T cells per well, along with 20,000 T2.DR4 cells and 10 μg/ml of the peptide 
being evaluated. Specific mean spot numbers per 105 CD4+ T cells +/- SD values are reported.  
*asterisks indicate statistically significant differences vs. Ad.ψ5 controls (p < 0.05). 
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3.4.3. DC.IL-12/18 loaded with MAGE-A6 peptides/protein effectively stimulate 

epitope-specific Th1-type responses in melanoma patients following IVS 

In these experiments, I evaluated CD4+ T cell responses to cytokine gene-engineered DC-based 

stimulations in 8 HLA-DR4+ patients with melanoma (Table 7).  DC derived from patient 

PBMC were either not treated or co-infected with Ad.IL-12 and Ad.IL-18 (DC.IL-12/18).  Both 

groups of DCs were either pulsed with a peptide mix (including MAGE-A6121-144, MAGE-A6140-

170, MAGE-A6246-263, and in some indicated cases, MAGE-A6280-302) or with recombinant 

MAGE-A6 (rMAGE), then added to cultures of autologous CD4+ T cells. Eleven days after the 

initiation of the IVS protocol, IFN-γ ELISPOT assays were performed in order to enumerate the 

frequencies of peptide-specific Th1-type CD4+ T cell responders. Peptide-pulsed DC.IL-12/18 

enhanced the number/frequency of responder T cells as well as the magnitude of mean 

responses, especially against the MAGE-A6121-144 and MAGE-A6280-302 epitopes, while peptide 

stimulations with control, uninfected DC were ineffective in modulating specific CD4+ T 

responses (Table 7). Similarly, rMAGE-pulsed DC.IL-12/18 were more effective than protein-

pulsed, uninfected DC in stimulating epitope-specific CD4+ T cell responses in vitro. Anti-

MAGE-A6121-144, -MAGE-A6280-302, as well as -MAGE-A6246-263 mean CD4+ T cell responses 

were significantly enhanced following stimulation with rMAGE-pulsed DC.IL-12/18 (Table 7).  

Indeed, all of the donors evaluated responded to at least one MAGE-A6 epitope in the ELISPOT 

assay following stimulation with rMAGE protein-loaded DC.IL-12/18.  In the majority of cases, 

protein-pulsed uninfected DC appeared more effective than peptide-pulsed, uninfected DC in 

promoting Type-1 responses (Table 7). Overall, these results suggest the superior 

immunostimulatory effectiveness of DC.IL-12/18 (vs. control DC) loaded with either synthetic 
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MAGE-A6 peptides or in particular, rMAGE protein, in stimulating specific Th1-type CD4+ T 

cell responses from patients with melanoma in vitro. 

Table 7. CD4+ T cell responses by HLA-DR4+ melanoma patients against MAGE-6 peptide 
epitopes elicited by DC-based in vitro stimulation. 

 
CD4+ T cells isolated from the peripheral blood of eight melanoma patients were tested for their 
ability to be stimulated by, and react against, the indicated MAGE-A6 peptide epitopes. Patient 
disease stage is cited, with (*) indicating patients who had no evidence of disease at the time of 
blood donation.  CD4+ T cells were stimulated a single time in vitro using autologous DC pulsed 
with a mixture of 10 μg/ml of each MAGE-A6 peptide (Peptide Mix), rMAGE protein or control 
peptide/protein. Prior to being pulsed with antigen, DCs were infected with Ad.Ψ5 (MOI 250) or 
Ad.IL-12 and Ad.IL-18 (DC.IL-12/18; MOI 100 for IL-12, and MOI 250 for IL-18), or were left 
uninfected. Responder T cells were assessed in IFN-γ ELISPOT assays as described in the Fig. 8 
legend. Individual patient Th1-type responses against specific MAGE-A6 peptide epitopes and 
their cumulative responses against all 4 epitopes are listed.  In addition, I provide the (**) mean  
values for all patients’ peptide-specific and cumulative responses against all 4 peptides analyzed.  
Mean IFN-γ spots/105 CD4+ T cells are reported; with Abolded values representing significant (p 
< 0.05) increases in response to the DC.IL-12/18- vs. control DC-based stimulations and 
Bunderlined values representing significant (p < 0.05) increases in rMAGE protein- vs. peptide-
based stimulations. Abbreviations: NT, not tested. 
 

IFN-γ Spots/105 CD4+ T Cells EvaluatedA,B: 
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3.5. Discussion 

 

In this study, I generated a novel, functional adenoviral vector encoding the mature form 

of human IL-18 protein, as well as a functional adenoviral vector encoding for human IL-12p70 

protein, and analyzed their ability to infect human DC, thereby yielding a superior in vitro 

“vaccine” capable of promoting tumor-specific Type-1 CD4+ T cell responses.  Consistent with 

previous reports by our group and others evaluating adenoviral infection of DC (191, 220, 221), 

neither vector induced terminal DC maturation following infection (based on phenotypic 

criteria), resulting in engineered DC that were functionally competent to uptake and process 

soluble antigens (such as rMAGE).    

To directly assess the Th1-stimulating properties associated with Ad.IL-12 and Ad.IL-18 

infection on DC, and not alternate stimuli, engineered DC were not concomitantly or 

consequently matured using cytokine/prostanoid cocktails. Given the desire to interpret the acute 

effects of DC-based stimulations on a perceived Type-1 dysfunctional T cell repertoire in cancer 

patients (208, 222), I analyzed peripheral blood CD4+ T cells isolated from HLA-DR4+ normal 

donors activated after a single-round of in vitro sensitization.  I evaluated normal donor and 

patient CD4+ T cells stimulated with uninfected DC or Ad-engineered DC loaded with MAGE-

A6 peptides or protein for their ability to secrete IFN-γ when restimulated (in ELISPOT assays) 

with three known HLA-DR4-restricted MAGE-A6-derived (MAGE-A6121-144, MAGE-A6140-170, 

MAGE-A6246-263 epitopes (208, 222); and a novel poly-DR-presented MAGE-A6280-302
1) 

epitopes. My results suggest that DC.IL-12/18 were the most effective antigen presenting cells 

for the promotion of Th1-type responses (that may be associated with tumor regression in situ; 

ref. (191)) among those tested in this study. In contrast, DC infected with either Ad.IL-12 
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(DC.IL-12) or Ad.IL-18 (DC.IL-18) exhibited immunostimulatory capacities that were no 

greater than those noted for DC infected with Ad.Ψ5 (DC.Ψ5).  The improved efficacy 

associated with DC.IL-12/18 stimulator cells may reflect the knowledge that IL-12p70 is 

required to induce T cell surface expression of the IL-18 receptor (IL-18R) on naïve T cells 

(167), while the IL-1 family member, IL-18, potentiates the differentiation of Th1 cells instigated 

by IL-12p70 (168), and that IL-12 and IL-18 synergize in the activation of T cells and induction 

of IFN-γ secretion from T cell responders (165, 166).  

To evaluate the efficacy of this approach in the cancer setting, monocyte-derived DC 

were generated from eight HLA-DR4+ melanoma patients and used to stimulate autologous 

CD4+ T cells in vitro.  Uninfected DC were compared to DC.IL-12/18 for their ability to 

stimulate Th1-type responses after being pulsed with synthetic peptides or rMAGE protein.  I 

observed that DC.IL-12/18 were more effective in stimulating peptide-specific Th1-type 

responses than uninfected DC, especially when loaded with rMAGE protein, in which case, 

every patient (regardless of clinical staging and the presence/absence of disease at the time of 

analysis) evaluated responded to at least one of the previously-defined, naturally-

processed/presented MAGE-A6-derived epitopes evaluated following in vitro sensitization. This 

suggests that DC.IL-12/18 may be suitable for use in vaccines designed to override the general 

Type-1 dysfunction in CD4+ T cell responses to tumor antigens observed in many cancer patients 

with advanced stage disease (100, 101, 208, 222), in support of therapeutic immunity in the 

clinical setting.  

In conjunction with the knowledge that IL-18 is a chemoattractant for myeloid and 

plasmacytoid DC (171, 172), one could also hypothesize that protein-pulsed DC.IL-12/18, if 

injected s.c. or intratumorally, might not only induce Th1-type responses, but also attract 
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additional host DCs into the vaccine/tumor microenvironment. Within this microenvironment, 

such a paradigm could enhance consequent tumor cell apoptosis, tumor antigen uptake and the 

cross-priming of anti-tumor T cells in vivo (191).   

 

In summary, I have generated a novel Ad.hIL-18, and have shown that when used in 

conjunction with Ad.hIL-12 to co-infect human DC, a vaccine platform (DC.IL-12/18) is 

produced that may be loaded with a recombinant tumor antigen or its derivative peptides in order 

to effectively induce specific Th1-type CD4+ T cell responses in vitro from normal donors and 

patients with melanoma. Further investigation is warranted to determine whether this strategy 

can be translated into the clinic as a therapeutic vaccine, either as a stand-alone modality, or 

when administered in combination with agents that ablate or neutralize functional regulatory T 

cell activity in situ (223-225), in order to optimally potentiate therapeutic Type-1 anti-tumor 

immunity in vivo. 
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GENERAL DISCUSSION 
 

 While sustained CD8+ T lymphocyte responses are required for effective clearance of 

tumors, anti-tumor CD4+ T cells are at least equally important due to their ability to regulate the 

quality, magnitude and durability of CD8+ CTL-mediated immunity in vivo. Previous studies of 

peptide-specific, CD4+ T cell responses against tumor antigens, including MAGE-A6, have been 

traditionally focused on an analysis of a single or very limited set of HLA-DR restriction 

elements.  Given the extreme polymorphism among HLA-DR alleles, the potential utility of the 

previously defined epitopes is limited to only a minority of patients. Optimally, TAA-derived 

peptides should be promiscuously binding (i.e. presented by multiple HLA-DR alleles; poly-

DR), which would increase their clinical applicability by making them immunogenic in a high 

frequency of responders. Furthermore, any potential clinical modality implementing these 

peptides needs to circumvent immuno-inhibitory properties of tumors, and stimulate Th1-type 

responses. In these studies I sought to define poly-DR presented MAGE-A6 Th epitopes that 

would clinically be broadly applicable. Also, I wanted to know whether I could stimulate Type-1 

responses in vitro by engineering antigen-presenting DCs to secrete high levels of the IFN-γ-

inducing cytokines IL-12p70 and IL-18. I defined two highly-immunogenic poly-DR-binding, 

MAGE-A6-derived epitopes, one of which shares immunogenicity with a Mycoplasma penetrans 

HF-2 permease-derived epitope (MPHF2). Interestingly, the microbial epitope was more 

effective at stimulating MAGE-A6-specific responses in vitro than its MAGE-A6 counterpart, 

capable of promoting previously deficient patient Th1-type responses. Furthermore, I showed 

that human DCs engineered with recombinant adenoviral vectors encoding IL-12p70 and IL-18 

represent  an efficient in vitro stimulus capable of effectively promoting specific Th1-type 

responses. 
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First, using DC1-based in vitro vaccinations as a model system, I wanted to define poly-

DR-binding MAGE-A6-derived epitopes that would be recognized by CD4+ T-lymphocytes in a 

high frequency of responders regardless of their HLA-DR phenotype. The MAGE-A6 protein 

sequence was analyzed using the ProPred HLA-DR peptide-binding algorithm, and MAGE-A6 

peptide sequences were selected based on their predicted ability to bind the broadest HLA-DR 

repertoire. I synthesized 4 putative poly-DR peptides, and analyzed Th1 cell responses against 

them. Two novel (MAGE-A6172-187 and MAGE-A6280-302) epitopes and a previously-defined 

(MAGE-6140-170) HLA-DR4-restricted epitope were recognized by CD4+ T cells isolated from 

most normal donors and patients with melanoma that were evaluated, with MAGE-A6172-187 and 

MAGE-A6280-302 being the most immunogenic. These epitopes appear to be naturally-processed 

and presented in the context of MHC class II molecules, as peptide-specific CD4+ T cells also 

recognized autologous monocytes pulsed with full length MAGE-A6 protein.  

Interestingly, normal donors mounted detectable Th1-type responses against the MAGE-

A6172-187 and MAGE-A6280-302 peptides after only a single-round of IVS. I hypothesized that the 

MAGE-A6 peptides evaluated shared sufficient sequence homologies to microbial proteins to 

which many individuals may have become naturally primed against, allowing for functional 

cross-reactivity to be detected in my assays. I performed sequence homology searches of the 

GenBank database for potential sources of cross-reactive epitopes. These analyses suggested that 

the most immunogenic MAGE-A6172-187 and MAGE-A6280-302 epitopes exhibited significant 

homologies to a number of known microbial sequences, of which the most likely encountered 

candidates are Mycoplasma penetrans HF-2 permease-derived (MPHF2) and Chlamydia 

muridarum Nigg conserved hypothetical protein TC0097-derived (CHP) epitopes respectively. 

Unlike MAGE-A6172-187 and MAGE-A6280-302, MAGE-A6140-170 (moderately immunogenic) and 
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MAGE-A6192-214 (poorly immunogenic) epitopes did not share any identified microbial 

homologies according to the GenBank database search. 

CHP homologue peptide did not exhibit any significant cross-stimulatory ability to 

MAGE-A6280-302, which was perhaps not surprising as it is derived from a mouse-tropic strain of 

Chlamydia and is rarely encountered by humans. Contrary to this, CD4+ T cells primed with the 

MPHF2 peptide cross-reacted against autologous monocytes pulsed with the MAGE-A6172-187 

peptide or rMAGE protein, and recognized HLA-matched MAGE-A6+ melanoma cell lines in an 

MHC class II-restricted fashion. CD4+ T cells generated using the MAGE-A6 peptide recognized 

APCs only when pulsed with relatively high concentrations of peptide (with a half-maximal 

response associated with a peptide dose of 3-10 μM), while MPHF2-stimulated cells recognized 

target cells pulsed with approximately 1000-fold lower concentrations of peptide. Furthermore, 

stimulations with MPHF2 were capable of promoting previously deficient patient Th1-type 

responses to MAGE-A6, further supporting the potential clinical relevance for this peptide. 

Mycoplasma infections have been shown to stimulate Th1, Th2, and Treg responses. 

However, in a manner similarly to that of tumors, their effective clearance is associated with 

Th1-type responses (226). As stimulations with MPHF2 yielded rapid, heteroclitic MAGE-A6 

Th1 responses, it will be of interest to examine whether this is prompted from a resident pool of 

memory CD4+ T cells in patients, or from an as yet antigen-inexperienced population of T cells 

that could potentially be primed in vivo and provide therapeutic benefit to patients with MAGE-

A6+ lesions. My preliminary studies show that both Th1 and Th2 responses could be observed in 

freshly-isolated CD4+ T cells against the MPHF2, but not the CS326-345 or MAGE-A6172-187 

peptides (Figure 11). While these results suggest the likelihood of a memory response, this 

observation requires further investigation of MPHF2 responsiveness (in ELISPOT assays and/or 
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by HLA-DR-restricted MPHF2 tetramer staining assays) by CD45RO+ CD4+ memory T cells 

sorted from patient peripheral blood.  

 

Figure 11. Evaluation of Freshly Isolated CD4+ MPHF2 
Recall T Cell Responses in a Normal Donor.  
CD4+ T cells isolated from two normal donors were 
directly plated onto pre-coated IFN-γ and IL-5 ELISPOT 
plates, along with autologous monocytes at a 1:5 ratio. 
HLA-DR blocking was performed in appropriate wells for 
3 h with L243 antibody (20 μg/ml). 10 μg/ml of CS326-345, 
MAGE-A6172-187, and MPHF2 peptides were subsequently 
added, and cells were incubated for 72 h, when the 
ELISPOT plates were developed. A representative 
experiment is shown. 
 

 

 

 

If these results confirm the existence of a resident memory CD4+ T cell population that is 

specific for MPHF2 in a large cohort of cancer patients, this would elicit several important 

questions regarding the tumor immunity and patient survival. Optimally, the cross-reactive 

memory cells would provide protective immunity against the TAA. Nevertheless, the available 

data suggests that tumor immunogenicity can be modified by the selective pressure of the 

immune system, resulting in the growth of tumors that are poorly immunogenic, and capable of 

escaping immune detection, and/or to actively inhibit immune effectors (227). Hence, in the 

MAGE-A6 system, this would suggest that if heteroclitic memory responses exist, the selective 

pressure of the immune system could potentially delete MAGE-A6+ tumor cells, leaving behind 

MAGE-A6- lesions. However, as greater expression of MAGE proteins has been associated with 
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an invasive phenotype and a decreased survival of cancer patients, it could be hypothesized that 

in a majority of patients there is not a sufficient stimulus to active MAGE-A6 cross-reactive T 

cells, and to therefore provide clinical benefit to the affected patients. As a result, one would 

need to analyze whether potential memory responses to MPHF2 could be exploited in order to 

effectively stimulate cross-reactive, long-term protective responses to MAGE-A6 in vivo. 

Furthermore, it would be of interest to determine whether an active Mycoplasma penetrans HF-2 

(M. penetrans) infection provides beneficial immunity to tumor patients with MAGE-A6+ 

lesions. 

To study potential tumor-preventive or -therapeutic benefits of MPHF2 peptide 

immunization, a next step could be to develop an immunization system in animals. Using the 

“humanized” HLA-DR4 transgenic mouse model (228), one can stimulate MPHF2-specific 

responses by immunizing mice with DCs conditioned to stimulate Type-1 responses and loaded 

with MPHF2 peptide or engineered to express full length MPHF2. Subsequent CD4+ T cell 

memory responses can be tracked by tetramer and/or ELISPOT analyses. Immunized mice can 

further be challenged with a MAGE-A6+ HLA-DR4+ tumor cell line (possibly a murine tumor 

cell line engineered to express MAGE-A6 and HLA-DR4), and the therapeutic/preventing 

relevance of MPHF2 can be measured in terms of animal survival, tumor growth, CD4+ T cell 

recall responses, as well as the phenotype and function of TILs. If the results were to show that 

this modality had protective value, this would provide strong support for to the potential clinical 

utility of  this epitope. 

To study potential immuno-protective effects of M. penetrans infection against MAGE-

A6+ lesions, I would have to perform an epidemiological evaluation of cancer patients with a 

simultaneous M. penetrans infection.  The most likely candidates for this study would be patients 
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with spontaneously-regressing melanoma lesions since the majority of them are MAGE-A6+ and 

easily accessible for tumor evaluation. As M. penetrans has been suggested to be a primary cause 

of non-HIV-related urethritis and respiratory disease, I would need to correlate spontaneously-

regressing melanomas to an active or recently concluded M. penetrans infection. Frequencies of 

circulating MPHF2-specific CD4+ T cells can be measured by tetramer analysis and, upon 

surgical removal, melanoma lesions could be analyzed for MAGE-A6 expression by RT-PCR. 

These results would provide indirect correlation between M. penetrans infection and its possible 

protective properties against MAGE-A6. 

As patients with malignant tumors exhibit dysfunctional Th1-type responses against 

TAA-derived epitopes, it is imperative to re-establish the Th1 functionality in order to enhance 

their chances of survival. I hypothesized that patient anti-tumor Th1-type responses might be 

recovered/enhanced by in vitro stimulation of CD4+ T cells using vaccines containing autologous 

DCs engineered to secrete high levels of the IFN-γ-inducing cytokines, IL-12p70 and/or IL-18. 

In the second study, I investigated whether human DCs engineered to secrete IL-12p70 and IL-

18 by recombinant adenoviral infection can promote and enhance Th1-type, MAGE-A6-specific 

responses in vitro. I chose this modality as it could not only prove capable of supporting Type-1 

immunity, but also would have the potential to limit toxicities previously observed for systemic 

application IL-12p70 alone or IL-12p70 combined with IL-18. Initial results showed that DC 

infected with both Ad.IL-12 and Ad.IL-18 (DC.IL-12/18) were more effective at stimulating 

MAGE-A6-specific Th1-type CD4+ T cell responses than DCs infected with either of the 

cytokine vectors alone, Ad.Ψ5 virus (control vector) or uninfected DC.  Further tests of this 

vaccine strategy showed that DC.IL-12/18 loaded with MAGE-A6 peptides or rMAGE 

effectively stimulated epitope-specific Th1-type CD4+ T cell responses in melanoma patients 
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following a single round of IVS regardless of their disease stage or current disease status. In 

particular, DC.IL-12/18 loaded with rMAGE were the most effective stimulators of Th1-type 

immunity in vitro, with responses frequently being directed against multiple MAGE-A6-derived 

epitopes. My results show that DC.IL-12/18 loaded with tumor peptides or recombinant tumor 

antigens may represent an effective vaccine capable of selectively promoting Th1-type CD4+ T 

cell immunity in patients with cancer who may display existing immune dysfunction. 

Using the same modality, I compared the ability of DC.IL-12/18 loaded with MAGE-A6-

derived HLA-A2 peptides or rMAGE to stimulate Type-1 CD8+ T cell responses. My initial 

results suggested that DC.IL-12/18 could potentially enhance Type-1 CD8+ T cell responses 

when compared to DCs infected with either of the cytokine vectors alone, Ad.Ψ5 virus (control 

vector) or uninfected DC (Figure 12).  

Figure 12. DC.IL-12/IL18 enhance Type-1 anti-MAGE-A6 CD8+ T cell responses from 
normal HLA-A2+ normal donors. 

CD8+ T cells isolated from two HLA-
A2+ normal donors were evaluated for 
their ability to be stimulated by, and 
react against, MAGE-A6112-120 
(M6.112), and MAGE-A6271-279 
(M6.271) peptides. Stimulation was 
performed as described in Figure 12. 
Responder T cells were assessed in 
IFN-γ ELISPOT assays for their 
functional reactivity on day 11 post-
initial stimulation.  Tests were 
performed in triplicate wells, using 
100,000 CD8+ T cells per well, along 
with 20,000 T2.DR4 cells and 10 
μg/ml of the peptide being evaluated. 
Specific mean spot numbers per 105 
CD8+ T cells +/- SD values are 
reported.  *asterisks indicate 
statistically significant differences vs. 
Ad.Ψ5 controls (p < 0.05). 
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However, after evaluating the ability of DC.IL-12/18 to stimulate melanoma patient 

Type-1 CD8+ T cell responses, it was clear that the strategy was not as effective as it was for 

stimulating Th1 CD4+ T cell responses (Figure 13). While DC.IL-12/18-based IVS enhanced the 

number of CD8+ T cell responders when compared to uninfected DCs, particularly when used in 

conjunction with rMAGE, actual frequencies of peptide-specific Type-1 CD8+ T cells stimulated 

were low (Figure 13).  

 

 

 

Figure 13. CD8+ T cell responses by 
HLA-A2+ melanoma patients against 
MAGE-6 peptide epitopes elicited by 
DC-based in vitro stimulation. 

CD8+ T cells isolated from the peripheral 
blood of eight melanoma patients were 
tested for their ability to be stimulated by, 
and react against, the indicated MAGE-A6 
peptide epitopes. CD8+ T cells were 
stimulated as described in Table 6.  
Responder T cells were assessed in IFN-γ 
ELISPOT assays as described in the Fig. 
12 legend. Individual patient Type-1 
responses against specific MAGE-A6 
peptide epitopes and their cumulative 
responses against 3 HLA-A2 epitopes are 
listed.   

 

 

 

 

There are several potential reasons for these observations. DCs used in this study were of 

immature phenotype, therefore they were not efficient at presenting antigens due to their low 
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expression of co-stimulatory molecules that are needed for optimal activation of CD8+ T cells. 

While it appears that IL-12 and IL-18 cytokines secreted by DC.IL-12/18 provided enough 

stimuli for Th1 CD4+ T cells to get activated, this was not the case when it came to stimulating 

Type-1 CD8+ T cell responses. Another possibility is that the antigen format used for CD8+ T 

cell stimulation was not adequate for properly stimulating MAGE-A6-specific responses. For 

that reason, I constructed a recombinant adenoviral vector encoding MAGE-A6 (Ad.MAGE), 

and capable of efficiently infecting DCs (Figure 14).  

 

Figure 14. Recombinant adenovirus engineering of human DCs to express MAGE-A6. 

DCs were either infected using 
the Ad.Ψ5 (empty adenoviral 
vector; MOI 250) or using the 
recombinant MAGE-A6 
adenoviral virus (Ad.MAGE-
A6; MOI 250). Following the 
48 h incubation, DCs were 
collected and lysed using the 
freeze-thaw method. Western 
Blotting was performed on the 
collected lysates, as well as the 
rMAGE-A6 (positive control), 
using the anti-MAGE mAb 
57B against rMAGE, or the 
anti-β-actin mAb. 

 

Mature DC1s infected with Ad.MAGE efficiently stimulated Type-1 CD8+ T cell 

responders but not CD4+ T cells (Figure 15). I hypothesize that DC.IL-12/18 infected with 

Ad.MAGE and subsequently matured would be an efficient APC for stimulating Type-1 CD8+ T 

cells.  
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Figure 15. DCs engineered to express 
MAGE-A6 effectively stimulate Type-
1 CD8+ T cell responses to MAGE-A6-
derived HLA-A2 epitope. 
 
DC1s (described in Chapter 2) infected 
with the Ad.Ψ5 (empty adenoviral 
vector; MOI 250) or with the 
recombinant MAGE-A6 adenoviral 
virus (Ad.MAGE-A6; MOI 250) were 
used to stimulate CD8+ T cells in vitro 
for one round of stimulation. Responder 
T cells were assessed in IFN-γ ELISPOT 
assays as described in the Fig. 12 
legend. Individual patient Type-1 
responses against specific MAGE-A6 
peptide epitopes and their cumulative 
responses against 3 HLA-A2 epitopes 
are listed. 
 

 

 

My analysis of DC.IL-12/18 stimulated and activated T cells did not include the analysis 

of expression of chemokine receptors (CCR) and cell-adhesion molecules. While resting T cells 

do not express any CCRs, in activated and memory T lymphocytes chemokines serve to activate 

T cell integrins and allow them to mediate strong binding to vascular adhesion molecules such as 

VCAM-1 and ICAM-1. CCRs characteristic for CD4+ Th1 cells are CCR5 and CXCR3, and they 

have been implicated in their recruitment to inflammatory sites. IL-12p70 was implicated as a 

central cytokine required for induction of CCR5 on TCR/CD28-stimulated CD4+ and CD8+ T 
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cells. It was also shown in a mouse tumor model that IL-12p70 induces enhanced intratumoral T 

cell migration that is dependent on the interaction between LFA-1 and VLA-4 adhesion 

molecules with their ligands (ICAM-1 and VCAM-1 respectively) on tumor-associated 

vasculature (229). Therefore it will be of interest to see whether T cells stimulated with DC.IL-

12/18 would stimulate expression of CCR5 that would allow for their potential trafficking into 

tumor sites. 

Multiple vaccination strategies utilizing the innate immunostimulatory ability of DCs 

have been developed, however the ideal vaccination protocol with these cells has not yet been 

described. Previous clinical trials implementing various DC-based vaccination strategies did not 

yield completely satisfactory results, but did show potential that supported their further 

development.  Effective immunostimulatory strategies described in these studies could provide 

potentially novel vaccination modalities that could circumvent immunoinhibitory properties of 

certain tumors and enhance Type-1 responses in cancer patients. I have described here three 

different MAGE-A6 antigen formats that in a clinical setting could be used alone or in 

conjunction with DCs to preferentially stimulate CD4+ or CD8+ T cell responses in patients with 

MAGE-A6+ lesions.  

An optimal immunization strategy would simultaneously stimulate both of these T cell 

subsets in a Type-1 manner. One clinical strategy would require direct immunization of patients 

with the rMAGE or MAGE-A6- and/or MPHF2-derived peptides in conjunction with an 

immunological adjuvant such as SBAS-2 [the mix of the QS21 saponin and of monophosphoryl 

lipid A (MPL)] (230), relying on patient’s immune system to process antigens and stimulate T 

cell responses. This strategy would not be labor-intensive, however its clinical benefits, based on 

previous studies, would most likely be less than satisfactory (203).  
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As DC-based immunizations were shown to be one of the better vaccination strategies, it 

could be hypothesized that antigen-loaded, Type-1-polarizing DC.IL-12/18 modality tested in 

these studies has the potential to be implemented in a clinical setting. These cells can be pulsed 

with MHC class I and II-restricted peptides, engineered to express MAGE-A6 using Ad.MAGE-

A6, or loaded with rMAGE. The translational utility of most of the peptides defined is clinically 

limited to a modest group of patients due to a requirement for expression of specific HLA 

haplotypes. While poly-DR-binding MAGE-A6 and MPHF2 Th epitopes described here could be 

applicable in an extended cohort of patients to stimulate MAGE-A6-restricted Th1 responses, 

previously-described MHC class I-binding peptides were shown to have a greater level of HLA 

haplotype restriction. rMAGE-loaded and/or Ad.MAGE-A6-infected DC.IL-12/18 could provide 

a way to stimulate CD4+ and CD8+ T cell responses respectively in cancer patients without HLA 

haplotype restrictions. Combinational therapy with both rMAGE and Ad.MAGE-A6, that 

primarily stimulate CD4+ and CD8+ T cell subsets respectively, could provide for an effective 

immunization strategy.  Furthermore, as mature DCs were shown to be superior at inducing T-

cell responses than immature DCs in a clinical setting (231), it could be theorized that an optimal 

DC.IL-12/18-based immunization strategy should utilize matured, antigen-loaded DC.IL-12/18 

capable of migrating to a lymph node and effectively stimulating both T cell subsets. Ultimately 

the goal of these vaccinations would be to not only stimulate MAGE-A6-specific responses, but 

also promote vaccine-induced epitope spreading, leading to enhanced, clinically-effective T cell 

repertoire against other TAAs. 

The effectiveness of a DC-based vaccine depends not only on the choice of TAA and its 

format (i.e. peptide, recombinant protein or gene transfection), but on the vaccination schedule in 

terms of dose (i.e. number of autologous DCs), frequency, number and site of immunization. 
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Reported doses range from 3-20 x 106 DCs per immunization, with an average dose of 10 x 106 

cells, with multiple vaccination schedules ranging from 1-6 week intervals. Patents are 

immunized either by intratumoral (i.t.), subcutaneous (s.c.) in the leg or arm closest to intact 

lymph nodes, or ultrasound-guided intranodal (i.n.) injections (231-233). One thing that is 

common in these studies is that patients have to be repeatedly vaccinated in order to stimulate 

high enough frequencies of effective Type-1 T cells. While there are no studies that specifically 

correlate TAA-specifc T cell numbers to effective tumor rejection, an increase in frequency of 

TAA-specific lymphocytes following immunizations is generally correlated to a better survival 

of patients (234). Based on these reports, a potential antigen-loaded DC.IL-12/18 strategy could 

require a s.c. or i.n. bi-weekly  immunizations. Due to high levels of IL-12 and IL-18 being 

secreted by DC.IL-12/18, the number of cells used for immunization would have to be 

subsequently determined based on any toxicities that could arise as a result of vaccinations. An 

additional concern is whether adenovirally-engineered DCs can persist long enough in situ to 

stimulate effective T cell responses as most people have developed immune responses to 

naturally-encountered adenoviruses that could eliminate adenovirally-infected cells. Due to this 

concern, multiple strains of recombinant adenoviral vectors have been developed that, if 

engineered to encode for IL-12p70 and IL-18, could allow for multiple vaccinations. 

Any potential DC.IL-12/18-based vaccination should also encompass a strategy to 

antagonize Treg numbers and function, as it was shown that this subset of cells has a profound 

ability to suppress anti-tumor immune responses in cancer patients. While there are no agents 

that would affect Treg specifically, there are strategies that could eliminate these cells at a 

greater frequency than other T lymphocyte subsets. DC.IL-12/18 could be administered in 

combination with agents that ablate or neutralize functional regulatory T cell activity in situ, 
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such as cyclophosphamide, anti-CD25 antibody, GITR ligand (235, 236), or rIL-2 diphtheria 

toxin conjugate DAB389IL-2/ONTAK (132). These potential combinational therapies could prove 

to be more effective at providing clinical benefit than any of these modalities alone. 

As an alternative to maturing antigen-loaded DC ex vivo, immature DC.IL-12/18 without 

the antigen load could be injected directly into a tumor pre-treated with chemotherapy or locally 

treated with radiotherapy, exploiting the local TAA repertoire to stimulate tumor-specific 

lymphocyte responses. These conventional treatments could enhance the efficacy of subsequent 

immunotherapy as they induce apoptosis, and apoptotic cells were shown to be a good source of 

cross-presented antigens under inflammatory conditions (237, 238). IL-12 and IL-18 generated 

by DC.IL-12/18, as well as, proinflammatory mediators such as heat shock proteins and IL-6 that 

are released due to chemotherapy-induced apoptosis (237), would provide enough inflammatory 

signal for DCs to effectively uptake and cross-present tumor antigens. Similarly, destruction by 

radiofrequency ablation creates massive tissue apoptosis/necrosis which the immune system is 

unable to completely clear. Because of the failure to clear apoptotic cells, post-apoptotic, 

secondary necrosis occurs (238). Necrotic cells are a good source of antigens while 

simultaneously providing strong maturation signals (self DNA and RNA, uric acid) to DCs. 

Therefore, immature DC.IL-12/18 exposed to necrotic tumor cells could undergo maturation 

after antigen uptake, and become effective antigen presenting cells. As the result, DC.IL-12/18 

with or without the antigen load could be an effective immunization strategy if used in 

combination with conventional cancer therapies. 

The work performed in this thesis has defined two novel poly-DR-binding, MAGE-A6-

derived Th epitopes, as well as a mimicking peptide cross-reactive to a MAGE-A6 Th epitope, 

that are immunogenic in a high frequency of responders. Furthermore, I have generated  rMAGE 
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and Ad.MAGE-A6 that can be effectively used for stimulating CD4+ and CD8+ T cell subsets 

respectively. Combined with my findings that DC.IL-12/18 could effectively generate Th1-type 

responses in vitro, this thesis introduces the possibility of a novel DC-based therapeutic approach 

for the treatment and possibly even prevention of MAGE-A6+ tumors. I hypothesize that DC.IL-

12/18 could be an effective platform for stimulating anti-tumor Th1 responses, particularly if 

used in combination with conventional cancer treatments as well as agents that antagonize Treg 

numbers and function. They could be used as an immunization modality by themselves, or they 

could be loaded with a variety of antigen formats, including the ones described in this 

dissertation. This type of therapy could be effective against a wide range of tumor types, and 

would not be restricted to a patients HLA types particularly if used in combination with rMAGE 

and/or Ad.MAGE-A6. Furthermore, if evidence gives further support to a residing MPHF2 

memory CD4+ T cells in a large portion of the population, it could be hypothesized that this 

epitope could be potentially employed as a preventive and/or therapeutic agent.  
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