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WAVES AND OSCILLATIONS IN MODEL NEURONAL NETWORKS

Rodica Curtu, Ph.D.

University of Pittsburgh, 2003

In this thesis methods from nonlinear dynamical systems, pattern formation and bifurcation

theory, combined with numerical simulations, are applied to three models in neuroscience.

In Chapter 1 we analyze the Wilson-Cowan equations for a single self-excited population of cells

with absolute refractory period. We construct the normal form for a Hopf bifurcation, and prove

that by increasing the refractory period the network switches from a steady state to an oscillatory

behavior. Numerical simulations indicate that for large values of refractoriness the oscillation

converges to a relaxation-like pattern, the period of which we estimate.

Chapter 2 brings new results for the rate model introduced by Hansel and Sompolinsky who

study feature selectivity in local cortical circuits. We study their model with a more general,

nonlinear sigmoid gain function, and prove that the system can exhibit different kind of patterns

such as stationary states, traveling waves and standing waves.

Standing waves can be obtained only if the threshold is sufficiently high and only for intermediate

values of the strength of adaptation. A large adaptation strength destabilizes the pattern. Therefore

the localized activity starts to propagate along the network, resulting in a traveling wave.

We construct the normal form for Hopf and Takens-Bogdanov with O(2)-symmetry bifurcations

and study the interactions between spatial and spatio-temporal patterns in the neural network.

Numerical simulations are provided.

Chapter 3 addresses several questions with regard to the traveling wave propagation in a leaky-

integrate-and-fire model for a network with purely excitatory (exponentially decaying) synaptic
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coupling. We analyze the case when the neurons fire multiple spikes and derive a formula for the

voltage.

We compute in a certain parameter space, the curves that delineate the region where single-spike

traveling wave solutions exist, and show that there is a region of parameter space where neurons

can propagate a two-spike traveling wave.

v



To my husband Iulian, for his love and understanding

vi



Acknowledgments

I would like to thank the members of my committee, Prof. Carson Chow, Prof. Jon Rubin,

Prof. Simons and Prof. Troy for their guidance throughout the writing of this thesis. I would also

like to acknowledge Prof. Bryce McLeod for his advice and insightful comments.

I am especially grateful to my thesis advisor, Prof. Bard Ermentrout, for a wonderful interaction,

scientific and otherwise. I thank him for his constant support during my graduate studies, and for

giving me independence in pursuing research. You have shown me how effectively mathematics can

be used as a tool for investigating other fields.

Thanks go to my colleagues and friends. To Pranay Goel for interesting and endless discussions,
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Introduction

In this thesis methods from nonlinear dynamical systems, pattern formation and bifurcation

theory are applied to three models in neuroscience.

Despite the fact that models for the behavior of individual neurons are relatively well developed,

the question of how the brain, as a whole, processes and encodes the information received from

external stimuli remains open. The huge amount of data collected from experiments needs to be

interpreted, and as a first step computational models are used. Nevertheless most of the computa-

tional models are themselves complicated because of the large number of variables and parameters

they include, thus the necessity of construction of much simpler models becomes apparent. These

models try to capture the main characteristics of the phenomenon under scrutiny, and discard the

rest of the unknowns. They have the advantage that they can be analyzed with tools such as

dynamical systems and bifurcation theory in a framework proven already useful in other quanti-

tative fields. As a consequence, the theoretical approach allows for a better understanding of the

phenomenon, and may suggest new hypotheses to be tested in later experimental studies.

A dynamical system is a mathematical model of a deterministic process. Since real processes

depend on different parameters, a small change in one parameter value implies a change in the

system’s behavior and this change can be negligible or, in contrast, substantial. Bifurcation theory

helps at this point, allowing one to predict the critical regime of the parameters, that is, to find

those parameters associated with dramatic changes in the system. There are two main types of

bifurcations that we use in this thesis: the Hopf bifurcation and the Takens-Bogdanov bifurcation

with O(2)-symmetry. The Hopf bifurcation is a very useful tool to prove the existence of oscillations

in a system. When certain conditions are satisfied a constant state becomes unstable and it is

replaced by small amplitude oscillations with finite frequency. The Takens-Bogdanov bifurcation

provides us with an additional insight on how the system’s behavior changes from stationary to
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oscillatory (not necessary of small amplitude) solutions, and proves that bistable regimes exist.

The O(2)-symmetry means that the system we analyze does not change with respect to rotations

and reflection. In addition to the above mentioned methods, in Chapter 2 we apply results from

the general theory of pattern formation.

Many experimental studies report spatial and spatio-temporal patterns in the brain. As an

example, patients under drug induced hallucinations describe a series of simple geometric pat-

terns such as spirals, tunnels, cones or grating honeycombs [77]. Based on experiments with LSD

when even blind subjects report visual hallucinations, the hypothesis that this phenomenon is

independent of external stimuli, and the patterns are generated in the visual cortex, was for-

mulated. Motivated by this question, neural models [37, 39, 12] were constructed and analyzed

with the goal of reproducing the patterns, and making predictions about the structure and or-

ganization of the visual cortex. On the other hand, patterns in the form of sustained oscillations

[1, 22, 24, 31, 42, 49, 93, 101], or propagating waves [17, 18, 43, 52, 66, 67, 76, 98, 105], are frequently

reported in experimental studies.

In this thesis we discuss two types of models that are commonly used in computational and

mathematical neuroscience. They are rate models and the leaky-integrate-and-fire (LIF) spiking

model. Both rate models and spiking models present advantages and disadvantages, depending on

the context in which they are used.

A rate model accounts for a population activity and works with variables that correspond to

an averaged firing rate measured usually through local field potential recordings. Essentially, rate

models rely on the hypothesis that a large number of neurons are involved in different functions

of the brain, such as sensory information processing, and so an approach at the level of averaged

activity is better suited than one at the single cell level.

Obviously, rate models do not include individual spikes and as a result, the temporal details of

neuronal activity cannot be considered. The advantage of the spiking models such as the LIF is

that, in contrast, they do include the temporal details.

Thesis description

The thesis is structured in three chapters. We analyze two different rate models in Chapters 1

and 2, and study traveling wave propagation in the LIF spiking model in Chapter 3.
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Chapter 1 is dedicated to the analysis of the Wilson-Cowan model [104] in its original form

that includes an absolute refractory period. This model was introduced in 1972, and since then was

used in a simplified form (by assuming that the refractory period is zero or very small) in many

theoretical and computational studies.

The neurons in the population are assumed to be in close spatial proximity with random,

but dense enough interconnections, so that any two neurons within the population are connected

through a direct or indirect path. Therefore spatial interactions may be neglected and only the

temporal dynamics of the network are considered. Usually two population of neurons, one excitatory

and one inhibitory, are included. The rate variable in the Wilson-Cowan model represents the

proportion of neurons in the population which become active per unit of time. Therefore the

relevant aspect of a single cell activity is considered to be the spike frequency rather than the single

spike.

We investigate the consequences of keeping the original form of the Wilson-Cowan equations for

a single self-excited population of cells with absolute refractory period. We prove that by increasing

the refractory period, the network switches from a randomly firing activity, that mathematically

corresponds to a steady state (or fixed point) to a synchronized activity translated into an oscillatory

behavior. Moreover the period of the oscillation scales linearly with the absolute refractory period

for large values of the latter.

The work presented in this chapter resulted in a paper [25].

Chapter 2 brings new results for the rate model introduced by Hansel and Sompolinsky [58]

who study feature selectivity in local cortical circuits. Since the spatial connectivity plays an

important role in this case, it was included in the equations.

There is still a debate [7] about the role of the local cortical interactions in shaping the response

properties of cortical neurons to sensory stimuli. One hypothesis is that the receptive field properties

of simple cells in primary visual cortex are a reflection of the feedforward afferents from the lateral

geniculate nucleus (LGN). In contrast, the other hypothesis is that recurrent cortical circuitry plays

an important role in shaping the orientation tuning in cortex.

The Hansel-Sompolinsky model belongs to the group of models [7, 8, 59, 91] constructed to

test if the second hypothesis holds. Their analysis shows that a stationary profile, called a tuning

curve, can be obtained. Thus in their model, the local cortical connections are indeed capable of

3



playing a central role in generating the sharp selectivity of cortical neurons to the orientation of

visual stimuli.

Hansel and Sompolinsky added an adaptation current to the rate model and proved that in

this case, for sufficiently strong (or slow) adaptation, the stationary profile (steady state) tends

to destabilize, and intrinsic moving profiles (traveling waves) occur. They also assumed that the

stable state of the network is such that all the neurons are far from their saturation level. As a

consequence they used a semilinear gain function.

We considered the Hansel-Sompolinsky model with a more general, nonlinear sigmoid gain

function, and proved that the system can exhibit different kind of patterns than those previously

reported. These are standing waves and are characterized by an oscillatory behavior in time at a

fixed position in space, and an oscillatory behavior in space for any given moment of time.

The standing wave pattern can be obtained only if the threshold is sufficiently high and only

for intermediate values of the strength of adaptation. When the adaptation strength increases the

pattern is destabilized, and the localized activity starts to travel along the network, resulting in a

traveling wave pattern.

The interactions between stationary and spatio-temporal patterns in the neural network are

analyzed by considering a Takens-Bogdanov bifurcation with O(2)-symmetry.

Our theoretical approach is completely different from that followed in [58]. The tools we used

to prove the existence and stability of the patterns come from those of pattern formation and

bifurcation theory.

Chapter 3 addresses several questions with regard to the traveling wave propagation in a

leaky-integrate-and-fire model for a network with purely excitatory synaptic coupling.

Previous theoretical studies [10, 33, 45, 44] developed methods for studying the existence of

traveling waves of activity in networks of LIF cells, sometimes incorporating additional features

such as synaptic delays. This work was motivated by experiments in which a wave of activity that

propagates across the network was observed in slices of cortical tissue subjected to a local shock

stimulus, and with all inhibition blocked [17, 18, 43, 66, 98]. However, these theoretical studies,

with few exceptions, required each neuron to fire exactly once during wave propagation.

We considered the LIF model with exponential coupling and analyzed the case when the neurons

were allowed to fire multiple spikes. We proved two equivalent formulas for general traveling wave
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solutions and used them to prove that in a certain parameter space, there are curves that delineate

the region on which single-spike traveling wave solutions exist.

We have also proved that in another region of parameter space, neurons can propagate a two-

spike traveling wave. It remains open to determine where such solutions actually exist, by rigorously

specifying the set of parameter values for which neurons stop spiking after exactly two spikes.

The general traveling wave formula provides a relationship that can, in theory, be used in an

iterative way to solve for as many spike-times as desired in a traveling wave with any countable

number of spikes, for fixed parameter values and a fixed wave speed. The iterative scheme is

provided.

This work was part of a group research effort, and a more complete analysis including a dis-

persion relationship for periodic solutions, the effect of absolute refractory period, the connection

between infinitely-countable multiple-spike waves and period wave, and numerical simulations are

presented in [78].
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Chapter 1

Oscillations in a refractory neural network

1.1 Introduction

Wilson and Cowan [104] introduced a class of neural network equations modeling the excitatory

and inhibitory interactions between two populations of cells. Each population obeys a functional-

differential equation of the form

τ
du(t)

dt
= −u(t) + (1−

∫ t

t−R
u(s) ds)f(I(t))

where τ is the time constant, I(t) represents inputs to the population, f is the firing rate curve,

and R is the absolute refractory period of the neurons. The function u(t) is the fraction of the

population of neurons which is firing. It can also be regarded as the actual firing rate of the

population. The refractory term premultiplying the firing rate was approximated (by assuming

that R is small) as

1−
∫ t

t−R
u(s) ds ≈ 1−Ru(t).

All subsequent analyses of these equations either make this assumption or set R = 0.

Assumptions and derivation of equations for Wilson-Cowan model. The model assumes

two population of neurons, one excitatory and one inhibitory, and it is described by two variables,

E(t) and I(t), the proportion of excitatory, respectively inhibitory, cells firing per unit time at t.

The resting state E(t) = I(t) = 0 is taken to be a state of low-level background activity.

By assumption, the value of E and I at time t + τ is equal to the proportion of cells which

are sensitive (not refractory), and which receive at least threshold excitation at time t. If the

probability that a cell is sensitive is independent of the probability that it is currently excited

above its threshold, then the expression for E and I is obtained as a product between ’sensitivity’

and ’excitation’.
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If the absolute refractory period is of R msec, then
∫ t
t−R E(s) ds represents the proportion of

excitatory cells which are refractory, and so
[
1− ∫ t

t−R E(s) ds
]

gives the proportion of excitatory

cells which are sensitive. A similar expression is obtained for inhibitory cells, i.e.
[
1− ∫ t

t−R I(s) ds
]
.

The ’excitation factor’ is given by a response function Se(x), respectively Si(x), that describes

the expected proportion of cells in a subpopulation which would respond to a given level of ex-

citation if none of them were initially in absolute refractory period [104]. Therefore, E(t + τ) =
[
1− ∫ t

t−R E(s) ds
]

Se(x) and I(t + τ) =
[
1− ∫ t

t−R I(s) ds
]

Si(y).

The form of the response functions Se and Si results from the following assumptions: (1)

the total number of afferents reaching a neuron is sufficiently large, (2) there is a distribution of

individual neural thresholds within subpopulation characterized by the distribution function D(θ)

which is unimodal (that is, it has only one maximum), and (3) on the average, all cells are subjected

to the same excitation x(t). Therefore the response function, defined as S(x) =
∫ x(t)
0 D(θ) dθ, takes

a sigmoid form and can be described by S(x) = 1
1+e−a(x−θ) . A similar result is obtained in the

hypotheses that all cells within a subpopulation have the same threshold θ and there is a (unimodal)

distribution C(w) of the number of afferent synapses per cell, and x(t) is the average excitation per

synapse. In this case S(x) =
∫∞
θ/x(t) C(w) dw and still takes a sigmoid form.

An additional assumption is that individual cells sum their inputs and the effect of stimulation

decays with a time course α(t), so the average level of excitation generated in an excitatory cell

(similar for inhibitory cell) is describes by the integral term
∫ t
−∞ α(t− s)[c1E(s)− c2I(s)+P (s)] ds

where c1, c2 (positive constants) represent the average number of excitatory and inhibitory synapses

per cell, and P (t) is the external input to the subpopulation.Then we obtain

E(t + τ) =
[
1−

∫ t

t−R
E(s) ds

]
· Se

(∫ t

−∞
α(t− s)[c1E(s)− c2I(s) + P (s)] ds

)
,

I(t + τ) =
[
1−

∫ t

t−R
I(s) ds

]
· Si

(∫ t

−∞
α(t− s)[c3E(s)− c4I(s) + Q(s)] ds

)
.

If α(t) is close to 1 for 0 ≤ t ≤ R and drops rapidly to 0 for t > R, then the term
∫ t
−∞ α(t −

s)E(s) ds can be replaced by kE(t) where k is a constant and E is an average value of E over time.

In addition E(t + τ) is written as E(t + τ) ≈ E(t) + τ dE
dt .
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Therefore, the resulting Wilson-Cowan equations are

τ
dE

dt
= −E(t) +

[
1−

∫ t

t−R
E(s) ds

]
· Se

(
kc1E − kc2I + kP (t)

)
,

τ ′
dI

dt
= −I(t) +

[
1−

∫ t

t−R
I(s) ds

]
· Si

(
k′c3E − k′c4I + k′Q(t)

)
.

Wilson-Cowan model for a self-excited population of neurons with absolute refractory

period. There have been numerous analyses of neural networks with delays. Castelfranco and

Stech [16] prove the existence of oscillatory solutions to a two-dimensional model due to Plant

which has delayed negative feedback. Similar results are described by Campbell et.al in a model

for pupillary control [14]. Marcus and Westervelt [74] linearize a Hopfield symmetrically coupled

network and show that the fixed points are asymptotically stable. Ye et.al [106] improve on this

result by rigorously showing global stability of fixed points for the Hopfield network with delay.

In this chapter we will explore the consequences of keeping the original form of the Wilson-

Cowan equations. In particular, we will look at a self-excited population of cells.

We consider the functional-differential equation

τ
du

dt
= −u +

(
1− 1

R

∫ t

t−R
u(s) ds

)
f(u)

where f is a smooth monotonically increasing function ( f ′ > 0 ) which takes values between 0 and

1. We have normalized the integral term in order to study the temporal effects of altering this

absolute refractory period.

By rescaling the time t 7→ t/R and letting r = R/τ denote the ratio of the absolute refractory

period to the time constant of the network, the equation becomes

du

dt
= r

[
−u +

(
1−

∫ t

t−1
u(s) ds

)
f(u)

]
. (1.1)

Remark 1.1. We can alternatively rescale time as t 7→ t/τ . Then instead of equation (1.1) we

obtain du
dt = −u +

(
1− 1

r

∫ t
t−r u(s) ds

)
f(u). In this rescaling, it is clear that this is a “delayed

negative-feedback” system and that in the limit as r → 0 we obtain the original Wilson-Cowan

equations du
dt = −u+(1−u)f(u). Because the calculations are simpler, we will use the first rescaling,
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(1.1) in the remainder of the chapter.

Remark 1.2. Figure 1.1 shows a simulation of (1.1) for a variety of values of the parameter r. The

horizontal line corresponds to a fixed point. For the choice of parameters in the figure, solutions

converge to the fixed point for r < 4.7 and for r > 4.8 all solutions numerically converge to a

periodic orbit. Thus, it appears that as the refractoriness r increases, the constant solution loses

stability through a Hopf bifurcation. For all larger values of r, solutions converge to a family of

periodic orbits whose amplitude increases. Our goal in the subsequent sections is to show that

this is in fact the correct picture. Section 1.2.1 is devoted to the analysis of fixed points and their

stability. In Section 1.2.2 , we find the normal form for the Hopf bifurcation and show that the

bifurcation is supercritical. We then look at the limit as r gets large. We show that the resulting

equation behaves like a relaxation oscillator and compute the period for this system. We close with

some simulations of waves and related phenomena in a locally connected network.

1.2 Oscillations in the refractory neural network obtained

through a Hopf bifurcation

1.2.1 Fixed points and stability

The fixed points for (1.1) are u = ū for all t and ū satisfies

−ū + (1− ū)f(ū) = 0 (1.2)

It is easy to check that because 0 < f < 1 there is no equilibrium point in (−∞, 0] ∪ [12 ,∞), but

there is at least one in (0, 1
2), say ū.

For such an equilibrium we can rewrite equation (1.1), by defining u := ū + y and using the

Taylor expansion for the function f about ū, as

dy

dt
= r

[
−y + y (1− ū) f ′(ū)− f(ū)

∫ t

t−1
y(s) ds

]
+ r

[
−y f ′(ū)

∫ t

t−1
y(s) ds + y2(1− ū)

f ′′(ū)
2

]

+ r

[
−y2 f ′′(ū)

2

∫ t

t−1
y(s) ds + y3 (1− ū)

f ′′′(ū)
6

]
+ O(y4) . (1.3)
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Remark 1.3. We define the coefficients A = 1− (1− ū) f ′(ū) < 1 and b = f(ū) ∈ (0, 1). Then as

a first step in our analysis we consider only the linearized part of the equation (1.3), i.e.

dy

dt
= r

(
−Ay − b

∫ t

t−1
y(s) ds

)
.

The stability of this equation is determined by studying the roots of the characteristic equation

obtained by substituting y(t) = expλt into the linearized equation. This results in

λ + Ar + b r
1− e−λ

λ
= 0. (1.4)

A very similar equation to this is studied in Diekmann et. al, Chapter XI.4.3. We summarize the

main points as they apply to the present equations. First, λ = 0 if and only if A + b = 0 and

furthermore as long as b 6= 0, λ = 0 is a simple root. All roots with positive real part are bounded

by the following inequality:

|λ| < r(|A|+ |b|).

Thus, the only way that roots can enter the right-half plane is to go through the imaginary axis.

Clearly if b = 0 and A > 0, then all roots have negative real parts. Furthermore, as we just noted,

roots can cross 0 only if A + b = 0. Thus, we are interested in when there are roots of the form

λ = iω. Substituting this into (1.4) we see that

Ar = − ω sinω

1− cosω
, (1.5)

br =
ω2

1− cosω
. (1.6)

Since there are singularities at ω = 2kπ, these equations define a series of parametric curves defined

in the regions ω ∈ (2kπ, 2(k + 1)π) for k an integer. The first two of these curves are plotted in

Figure 1.2. Crossing these curves results in new complex eigenvalues with positive real parts. To

study stability as a function of the parameter r, we note that (Ar, br) defines a line through the

origin with slope b/A as r varies in the the (Ar, br) plane shown in the figure. If this line crosses the

lower emphasized curve then stability is lost through a pair of complex eigenvalues as the parameter
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r increases. Taking the ratio of the two above equations, we see that there will be such a root if

and only if
A

b
= −sinω

ω
. (1.7)

The minimum of this function is -1 and the maximum is M = − sin(ξ)/ξ where ξ is the smallest

root of tan(x) = x greater than π. Thus, the slope of the line b/A must lie between 1/M ≈ 4.60334

and -1. These two lines are illustrated in Figure 1.2. If b/A lies between -1 and 4.6033 . . ., then

starting at small values of r as r increases, it pierces the lower stability curve and a pair of complex

conjugate eigenvalues cross the imaginary axis resulting in a loss of stability. Clearly, if b/A is

within these bounds, then we can solve (1.7) for a value of ω between 0 and 2π. Then we can use

(1.6) to find r̃0 = 1
b

ω2

1−cos ω the critical value of r (which is always positive). If b/A is positive and

less than 1/M then no increases in r can ever lead to a loss of stability. If the slope b/A is negative

and shallower than -1, then for all positive values of r there is a real positive root to (1.4). To see

this, note that we can rewrite (1.4) as

br
1− e−λ

λ
= −(λ + Ar).

The left-hand side is monotonically decreasing, positive, and starts at br at λ = 0. Suppose that

−Ar > br. Then −(λ + Ar) is larger than br at λ = 0 and crosses the x-axis when λ = −Ar > 0.

Thus, there is an intersection of the two for a positive value of λ between 0 and −Ar.

We summarize these calculations in the following theorem.

Theorem 1.1. Suppose ū is a fixed point of equation (1.1). Let A = 1−(1− ū) f ′(ū) and b = f(ū).

(i) Suppose that −b < A < bM where M = − sin(ξ)/ξ ≈ 1/4.60334 = 0.2172336 with ξ the

smallest root greater than π to tan(x) = x. Then for r small enough, the fixed point is stable. As r

increases, stability is lost when r crosses r̃0 where

r̃0 =
1
b

ω2
0

1− cosω0

and ω0 is the unique root to
A

b
= −sinω

ω
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between 0 and 2π.

(ii) If A > Mb then the fixed point is stable for all values of r.

(iii) If A < −b then the fixed point is unstable for all positive r.

1.2.2 Normal form

The numerical simulations in Figure 1.1 indicate that there exist oscillatory solutions for large

enough r. Because of the above stability analysis we suspect the presence of an Andronov-Hopf

bifurcation point for certain values of the parameter r. The next reasonable step would be the

construction of the corresponding normal form and this is exactly what we do in this section.

Remark 1.4. The Hopf bifurcation theorem has been rigorously proven for (1.1) and related

equations in Diekmann, et.al.[30]. Indeed, the authors compute the normal form for a related

equation in Chapter XI4.3. Faria and Magalhães [41] describe a method to compute normal forms

using the adjoint for equations of the form

dz

dt
= L(p)zt + F (zt, p)

where p represents parameters. Our approach is similar to theirs. With minor modifications, we

could apply the formula in Theorem 3.9 Diekmann, et.al.[30] (page 298), but for completeness, we

derive the coefficients for the normal form here.

Let us consider equation (1.3) and define the linear operators

Ly :=
dy

dt
+ A r̃0 y + b r̃0

∫ t

t−1
y(s) ds , Λy := −Ay − b

∫ t

t−1
y(s) ds

as well as the quadratic and cubic forms

B(y1, y2) := r̃0

[
(1− ū)f ′′(ū)

2
y1 y2 − f ′(ū)

2
y1

∫ t

t−1
y2(s) ds− f ′(ū)

2
y2

∫ t

t−1
y1(s) ds

]

C(y1, y2, y3) := r̃0

[
(1− ū)f ′′′(ū)

6
y1 y2 y3 − f ′′(ū)

6
y1 y2

∫ t

t−1
y3(s) ds− f ′′(ū)

6
y2 y3

∫ t

t−1
y1(s) ds

− f ′′(ū)
6

y3 y1

∫ t

t−1
y2(s) ds

]
.
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Taking a small perturbation of the parameter (r = r̃0 + α), the equation (1.3) can be rewritten as

Ly = αΛy + B(y, y) + C(y, y, y) + αB(y, y) + O(y4) . (1.8)

Since we are interested in finding small oscillatory solutions we can consider the following asymptotic

expansion for (small) y and α

α = ε α1 + ε2α2 + ε3α3 + · · · , y(t) = ε u0(t) + ε2u1(t) + ε3u2(t) + · · · , ε → 0 ,

and obtain, instead of (1.8), ε Lu0 + ε2Lu1 + ε3Lu2 + O(ε4) = [ε α1 + ε2α2 + ε3α3 + · · · ] · [εΛu0 +

ε2Λu1 + ε3Λu2 + · · · ]+ [1+ ε α1 + · · · ] ·B(ε u0 + ε2u1 + ε3u2 + · · · , ε u0 + ε2u1 + ε3u2 + · · · )+C(ε u0 +

ε2u1 + ε3u2 + · · · , ε u0 + ε2u1 + ε3u2 + · · · , ε u0 + ε2u1 + ε3u2 + · · · ) + O(ε4), i.e.

ε Lu0 + ε2Lu1 + ε3Lu2 + O(ε4) = ε2 [ α1 Λu0 + B(u0, u0) ]

+ ε3 [ α1 Λu1 + α2 Λu0 + 2B(u0, u1) + C(u0, u0, u0) + α1 B(u0, u0)] + O(ε4) . (1.9)

Based on the fact that the equation Ly = 0 has two independent solutions (e± iω0t) on the center

manifold and by the asymptotic expansion Lu0 = ε [α1 Λu0 + B(u0, u0)− Lu1]+ · · · we can choose

u0(t) = z(t)eiω0t + z̄(t)e−iω0t

with z depending on ε (e.g. z = z(ε2t)). The expansion with respect to ε gives z = z(0)+ ε2tz′(0)+

O(ε4) as ε tends to 0. We then use z and the properties of the defined operators in (1.9) to obtain

0 = ε
[
α1 z(0)Λ(eiω0t) + α1 z̄(0)Λ(e−iω0t) + 2z(0)z̄(0)B(eiω0t, e−iω0t) + z(0)2B(eiω0t, eiω0t)

+ z̄(0)2B(e−iω0t, e−iω0t)− Lu1

]
+ ε2

[−Lu2 − z′(0) L(teiω0t)− z̄′(0) L(te−iω0t) + α1 Λu1

+ α2 z(0) Λ(eiω0t) + α2 z̄(0)Λ(e−iω0t) + 2B(u0, u1) + α1 B(u0, u0) + C(u0, u0, u0)
]
+ O(ε3).

(1.10)

Therefore the coefficient of ε in the above expansion implies Lu1 = g, with the given function g,
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g(t) = α1 z(0)Λ(eiω0t) + α1 z̄(0)Λ(e−iω0t)

+ 2z(0)z̄(0)B(eiω0t, e−iω0t) + z(0)2B(eiω0t, eiω0t) + z̄(0)2B(e−iω0t, e−iω0t) .

Remark 1.5. In order to ensure the existence of a solution for the equation Lu1 = g we need the in-

homogeneous term g(t) to be orthogonal to the solutions of the adjoint homogeneous equation. The

adjoint operator of L (see Appendix A.0.1) is L∗y := −dy
dt +A r̃0 y+b r̃0

∫ t+1
t y(s) ds, and on the two-

dimensional center manifold eiω0t and e−iω0t are independent solutions for L∗. The inner product

is the usual < φ,ψ >=
∫ 2π

ω0
0 φ(t)ψ̄(t) dt, so we need

∫ 2π
ω0

0 g(t)e± iω0t dt = 0. The definition of the op-

erators L, Λ, B, C implies immediately that L(eλt) = L̃(λ) eλt , Λ(eλt) = Λ̃(λ) eλt , B(eλ1t, eλ2t) =

B̃(λ1, λ2) e(λ1+λ2)t , C(eλ1t, eλ2t, eλ3t) = C̃(λ1, λ2, λ3) e(λ1+λ2+λ3)t with L̃, Λ̃, B̃ and C̃ given in Ap-

pendix A.0.2. Therefore g can be expressed as a linear combination of powers of eiω0t and e−iω0t.

The orthogonality condition becomes [α1 z̄(0) 2π
ω0

Λ̃(−iω0) = 0, α1 z(0) 2π
ω0

Λ̃(iω0) = 0]. Obvi-

ously in this case α1 is zero, and the equation Lu1 = g becomes

Lu1 = z(0)2 B̃(iω0, iω0) e2iω0t + z̄(0)2 B̃(−iω0,−iω0) e−2iω0t + 2z(0)z̄(0) B̃(iω0,−iω0) . (1.11)

We choose u1 = a1z
2e2iω0t + 2a2zz̄ + a3z̄

2e−2iω0t which implies u1 = a1z
2(0)e2iω0t + 2a2z(0)z̄(0) +

a3z̄
2(0)e−2iω0t+O(ε2t), as ε → 0, substitute into L, and compare with (1.11). We get the coefficients

a1, a2, a3, with a2 ∈ R and ā1 = a3,

a1 =
B̃(iω0, iω0)

L̃(2iω0)
, a2 =

B̃(iω0,−iω0)
L̃(0)

, a3 =
B̃(−iω0,−iω0)

L̃(−2iω0)
.

So far we have calculated u0, u1, α1. We can now conclude that in equation (1.10), u2 should

satisfy

Lu2 =− z′(0) L(teiω0t)− z̄′(0)L(te−iω0t) + α2 z(0) Λ̃(iω0)eiω0t + α2 z̄(0)Λ̃(−iω0)e−iω0t

+ 2a1 z3(0)B(eiω0t, e2iω0t) + 4a2 z2(0)z̄(0)B(eiω0t, 1) + 2a3 z̄3(0)B(e−iω0t, e−2iω0t)

+ 4a2 z(0)z̄2(0) B(e−iω0t, 1) + 2a1 z2(0)z̄(0)B(e−iω0t, e2iω0t) + 2a3 z(0)z̄2(0) B(eiω0t, e−2iω0t)

+ z3(0)C(eiω0t, eiω0t, eiω0t) + 3z2(0)z̄(0)C(eiω0t, eiω0t, e−iω0t) + z̄3(0)C(e−iω0t, e−iω0t, e−iω0t)

+ 3z(0)z̄2(0)C(eiω0t, e−iω0t, e−iω0t)
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Similar to u1, for solutions, we need the right hand side to be orthogonal to e± iω0t, i.e.

z′(0)
∫ 2π

ω0
0 e−iω0tL(teiω0t) dt + z̄′(0)

∫ 2π
ω0

0 e−iω0tL(te−iω0t) dt = α2 z(0) Λ̃(iω0) 2π
ω0

+2a1 z2(0)z̄(0) B̃(−iω0, 2iω0) 2π
ω0

+ 4a2 z2(0)z̄(0) B̃(iω0, 0) 2π
ω0

+ 3z2(0)z̄(0) C̃(iω0, iω0,−iω0) 2π
ω0

.

This immediately implies

z′(0) =
i ω0 α2

r̃0

[
2 + A r̃0 + i(ω0 − A r̃0+b r̃0

ω0
)
] z(0)

+
4a2 B̃(iω0, 0) + 2a1 B̃(−iω0, 2iω0) + 3C̃(iω0, iω0,−iω0)

2 + A r̃0 + i(ω0 − A r̃0+b r̃0
ω0

)
z2(0)z̄(0) (1.12)

where

B̃(iω0, 0) =
[
r̃0

1− ū

2
f ′′(ū) +

A

2b
f ′(ū) r̃0 − 1

2
f ′(ū) r̃0

]
+ i

ω0

2b
f ′(ū) ,

B̃(−iω0, 2iω0) =
[
r̃0

1− ū

2
f ′′(ū) +

(
A r̃0

b
− Aω2

0

2b2

)
f ′(ū)

]
+ i

r̃0 ω0

4b2

[
A2 − ω2

0

r̃2
0

]
f ′(ū) ,

C̃(iω0, iω0,−iω0) =
[
r̃0

1− ū

6
f ′′′(ū) +

A

2b
f ′′(ū) r̃0

]
+ i

ω0

6b
f ′′(ū) .

We have just proven the following theorem.

Theorem 1.2. Suppose that ū is an equilibrium point of the equation (1.1) and that A, b satisfy

−b < A < Mb where M is as in Theorem 1.1. Take r̃0 and ω0 as in Theorem 1.1 and denote by δ

the coefficient of z2(0)z̄(0) in (1.12).

Then the normal form on the center manifold at r = r̃0 is given by (1.12). If Re(δ) < 0

(Re(δ) > 0) then at r = r̃0 the system passes through a supercritical (subcritical) Andronov-Hopf

bifurcation which proves the existence of a small amplitude periodic stable (unstable) solution in the

vicinity of the steady state near the bifurcation point.

Proof: The nondegeneracy condition requires the real part of the coefficient of z(0) to be

nonzero. The real part of the coefficient is

ω2
0 − (A + b)r0

r0[(2 + Ar0)2 + (ω0 − (A + b)r0/ω0)2]
.

Using the substitution of r0 = ω2
0/[b(1 − cosω0)] into the numerator and the fact that A/b =

− sin(ω0)/ω0 we find that the numerator is ω2
0

1−cos ω0

(
sin ω0

ω0
− cosω0

)
. The first term cannot vanish
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since ω0 ∈ (0, 2π). Thus, the coefficient will be zero if and only if sin ω0
ω0

= cosω0. Recall that the

extrema of sin(ω)/ω = −A/b can occur only when sin(ω)/ω = cosω so that the numerator will

vanish only along the lines A = −b and A = Mb. Since −b < A < bM this is impossible.

1.2.3 Example

Let us consider the function

f(x) =
1

1 + e−a(x+θ)
with a = 8, θ = −0.333

that has only one equilibrium point ū . We compute A, b and the values for the first three derivatives,

i.e. ū = 0.335909, A = −0.328002, b = 0.505818, f ′(ū) = 1.99973, f ′′(ū) = −0.186145, f ′′′(ū) =

−63.9653, and solve for ω and r; we find here a unique solution ω0 = 1.541455, r̃0 = 4.839469881.

By immediate calculation we have sin(ω0)/ω0 − cosω0 = 0.619121, so the linear coefficient in

the normal form is positive and the rest state loses stability when the value of r increases through

r = r̃0. At r = r̃0 a stable periodic orbit is born. In this example the quantities which appear in

the formula for the coefficient of z2z̄ in the normal form are

2 + Ar̃0 + i(ω0 − r̃0(A + b)
ω0

) = 0.4126442001 + 0.9831933729 i ,

B̃(iω0, 0) = −8.275709357 + 3.047038468 i , B̃(−iω0, 2iω0) = −3.52893752 + 0.0893831027 i ,

C̃(iω0, iω0,−iω0) = −33.97038306− 0.0945445928 i ,

a1 = 4.172849433 + 0.097025506 i , a2 = −7.640204473 , δ = −36.6125− 138.977 i ,

therefore since Re(δ) < 0, this is a supercritical Andronov-Hopf bifurcation.

We note that Figure 1.1 shows the numerical solutions for a variety of values of r. In particular,

the fixed point is the only attractor for r = 4.7 but clearly, when r = 4.9 there is a stable periodic

solution. The period computed analytically is 2π/ω0 = 4.08 which agrees well with the numerically

found period of 4.00. Thus, the numerical solutions and the Hopf calculations are consistent.
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1.3 Relaxation oscillator approximation

We now consider equation (1.1) for large values of the parameter r. By introducing ε = 1
r and

the function z(t)

z(t) :=
∫ t

t−1
u(s) ds

equation (1.1) is equivalent to the two-dimensional delay-differential equation





εdu
dt = −u + (1− z) f(u)

dz
dt = u(t)− u(t− 1)

(1.13)

We recall that (1.1) is obtained by rescaling time t with respect to the parameter R in the original

equation, so t represents a slow time. We analyze the solution by treating ε as a small positive

parameter. We will first point out how to construct a singular periodic orbit for this system and

then we will estimate the period T for the relaxation oscillator.

Remark 1.6. Mallet-Paret and Nussbaum [73] have extensively and rigorously analyzed an equa-

tion similar to (1.13), εdx(t)
dt = −x(t) + f(x(t − 1)) where f is an odd negative feedback function

(that is, xf(x) ≤ 0). In particular, they consider a step function for f. Hale and Huang [57] have

studied the vector analogue, εdx(t)
dt = −Ax(t) + Af(λ, x(t− 1)) where A is an invertible matrix and

f is smoothly dependent on x and the free parameter λ. They assume that the map x −→ f(λ, x)

undergoes a period-doubling bifurcation at λ = 0 and then prove that the delay-differential equation

undergoes a similar bifurcation. More recent work by Hale and Huang [56] shows a similar behavior

as well as a Hopf bifurcation. As far as we know, however, the rigorous analysis of equation (1.13)

has not been done and remains an open problem.

By setting ε = 0 in (1.13), we obtain the equations corresponding to the slow flow





0 = −u + (1− z) f(u) ,

dz
dt = u(t)− u(t− 1)

(1.14)

For the fast flow we consider the original integro-differential equation. In this case the function z

is z(t) = 1
r

∫ t
t−r u(s) ds and it satisfies dz/dt = (u(t) − u(t − r))/r. When r tends to infinity (ε
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tends to zero), the system becomes





du
dt = −u + (1− z) f(u) ,

dz
dt = 0

Thus, the two-dimensional system is decomposed in two one-dimensional equations, the solutions

of which we now characterize.

Consider the graph for 0 = −u + (1 − z) f(u) with f(x) = 1
1+e−a ( x+θ ) , a = 8, θ = −0.333.

The sign of (−u + (1 − z) f(u)) is negative above the graph and positive below it. Consider

the points A,B, C,D on the graph with corresponding coordinates A(u1, zmin) , B(umax, zmin) ,

C(u2, zmax) , D(umin, zmax) (see Figure 1.3).

We begin with the system at the point A at t = 0, where z cannot decreases anymore so a jump

up takes place to the BC branch (z = constant and u suddenly increases by the fast system). On

this branch the system’s law of motion is (1.14). Here dz/dt > 0 so z increases until the point

reaches C. We remark that in order to have dz/dt > 0 on BC branch we need u(t) > u(t− 1) all

the time. This is obviously true at B since uB = u(t = 0+) = umax > u(t = −1). In order to have

uC = u(t = Td) > u(t = Td − 1) we need u(t = Td − 1) to be on the DA branch. This implies that

Td, the time the system stays on the upper branch BC, must be less than 1.

At the point C since z cannot increases anymore there is a jump down to the branch DA (z =

constant and u decreases by the fast system). On the branch DA, z decreases from zmax to zmin.

In order to have dz/dt < 0 we need u(t) < u(t − 1), in particular uD = u(t = Td +) = umin <

u(t = Td − 1) and uA = u(t = T ) < u(t = T − 1), which means that it is necessary that u(T − 1)

be on the BC branch, i.e. T − 1 is positive and less than Td.

Following these considerations we see that in order to construct a singular periodic solution it

has to be true that

0 < T − 1 < Td < 1 < T (⇒ T < 2)

where T is the period of oscillation. We estimate T and Td considering u constant, u = uH , on the
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Figure 1.3. Plot of 0 = −u + (1− z)f(u) with points relevant to the relaxation oscillation labeled.
Below is a numerically computed solution with r = 300 illustrating the relaxation character of the
oscillation.
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branch BC, and u = uL on the branch DA. At t = 0, z = zmin, u = uH and

dz/dt = u(t)− u(t− 1) =





0 , t ∈ [0, Td + 1− T ]

uH − uL , t ∈ [Td + 1− T, Td]

0 , t ∈ [Td, 1]

uL − uH , t ∈ [1, T ]

equivalently with

z(t) =





zmin , t ∈ [0, Td + 1− T ]

(uH − uL) t + C1 , t ∈ [Td + 1− T, Td]

C2 , t ∈ [Td, 1]

(uL − uH) t , t ∈ [1, T ]

with z(T ) = zmin and z(Td) = zmax. Using this and the identity z(t = 0) = zmin =
∫ 0
−1 u(s) ds

we obtain an approximating formula for T and Td

T ≈ 1 +
zmax − zmin

uH − uL
and Td ≈ zmax − uL

uH − uL
.

Remark 1.7. For our example, umin = 0.065, u1 = 0.15957447, umax = 0.777, u2 = 0.45106383,

zmin = 0.20141882, zmax = 0.37353106. Choosing uH = umax and uL = umin we obtain

T = 1.2417 and Td = 0.4333. The period for the oscillation shown in Figure 1.3 is 1.35. Given

that u is not really constant on the branches, this is a pretty good estimate of the period. We can

improve this approximation with just a minor change in the choice of uL and uH . Above, we chose

umax and umin; a better approximation is to choose the mean value

uL =
umin + u1

2
, uH =

u2 + umax
2

.

For our example, this implies uL = 0.1122872, uH = 0.6140319 and T = 1.3430, Td = 0.5206. This

is a considerably better approximation of the period without any extra work.
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1.4 Conclusions

We have analyzed the original Wilson-Cowan model for an excitatory population of neurons

with an absolute refractory period. It is not surprising that there exist oscillations as the system is

essentially a delayed negative feedback model. Curiously, however, as the effective delay increases,

the oscillation converges to a relaxation-like pattern and the frequency goes to a nice limit. In

terms of the original time, the actual oscillation period scales linearly with R the absolute refractory

period.

We have looked only at oscillatory solutions of the scalar problem. An interesting subject for

future research is to investigate what happens when two populations are coupled and answer the

question if the resulting oscillations synchronize, or not.

Based on the fact that if we let a be larger in the definition of the function f , the system is not

oscillatory but rather excitable, another interesting question is the existence of a traveling wave

when such (1.1) units are coupled locally on a line. An analytical approach is possible by letting

a →∞ so that f can be approximated by a step function.
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Chapter 2

Pattern formation in a network of excitatory and

inhibitory cells with adaptation

2.1 Introduction

We analyze in this chapter a rate model that describe the activity of two populations of neurons

coupled together, one excitatory and one inhibitory, in the presence of adaptation. Our goal is to

investigate what types of patterns can be obtained in the system as a consequence of changing the

strength of synaptic coupling and/or the strength of the adaptation variable.

The model was introduced by Hansel and Sompolinsky [58] when studying feature selectivity

in local cortical circuits. In that context the network of neurons was assumed to code for a sensory

or movement scalar feature x (for example the angle a bar is rotated in the subject receptor field,

so that x can be taken in the interval [−π
2 , π

2 ]). The local cortical network consists of ensembles

of neurons that respond (are tuned) to a particular feature of an external stimulus, and so are

called ’feature columns’, and that are interconnected by recurrent synaptic connections. In other

words, each neuron in the network is selective, firing maximally when a feature (’preferred feature’

of the neuron) with a particular value is present. The synaptic interactions between a presynaptic

neuron y from the β-population and a postsynaptic neuron x from the α-population are denoted

by a function Jαβ(x− y) = jαβ
0 + jαβ

2 cos(2(x− y)) where α and β indices stand for E (excitatory)

and/or I (inhibitory) population of neurons, depending on the context. We take jαE
0 ≥ jαE

2 ≥ 0

for input coming from the excitatory population, and jαE
0 ≤ jαE

2 ≤ 0 for input coming from the

inhibitory population.

Hansel and Sompolinsky collapsed both excitatory and inhibitory populations into a single

equivalent population. In this case the synaptic connectivity function J is defined as J(x − y) =

j0 + j2 cos(2(x− y)) with no restrictions on the sign of coefficients, and the rate model has a single

rate variable m(x, t) that represents the activity of the population of neurons in the column x at
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time t. Moreover the population is assumed to display adaptation. The resulting model [58] is

τ0
∂m

∂t
(x, t) = −m(x, t) + F

(
1
π

∫ π
2

−π
2

J(x− y) m(y, t) dy + I0(x− x0)− Ia(x, t)− T

)

τa
∂Ia

∂t
(x, t) = −Ia(x, t) + Ja m(x, t) . (2.1)

I0 stands for the synaptic currents from the external neurons, T is the neuronal threshold, Ia is

the adaptation current, τa > τ0 is its time constant, and Ja measures the strength of adaptation.

An additional assumption for (2.1) is that the stable state of the network is such that all the

neurons are far from their saturation level, allowing the gain function F to be in a semilinear form

F (I) = I for I > 0, and zero otherwise.

The model we analyze in this chapter is based on the above Hansel and Sompolinsky model,

but includes a more general nonlinear sigma-shaped gain function F . It can be also used in a

more general context of synaptically coupled populations of excitatory and inhibitory neurons with

adaptation.

2.1.1 Biological model description

The problem we are interested in, concerns the possible patterns that can be obtained in a neu-

ronal network consisting of both excitatory and inhibitory cells, and in the presence of adaptation.

The network model consists of two homogeneous populations of neurons, one excitatory (E),

displaying adaptation, and the other one inhibitory (I), without adaptation. This is a reasonable

assumption, for example, for cortical neurons, since experimental studies report that in cortex most

of the inhibitory neurons do not display spike adaptation ([22], [23], [52]).

The spatial connectivity is assumed to be all-to-all from E to E, E to I, and I to E cells, and

in all cases the strength of interactions decreases with the distance between neurons according to

a Gaussian distribution with zero mean, say JEE , JIE and JEI respectively. No I to I interactions

are included. In addition, the network is considered one-dimensional in space.

We assume in the following a linear adaptation, and describe the neuronal activity by a rate
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model. That is we have

τE
duE

dt
= −uE + FE(JEE ∗ uE − JEI ∗ uI − gA) ,

τI
duI

dt
= −uI + FI(JIE ∗ uE) ,

τA
dA

dt
= −A + uE , (2.2)

where τE , τI , τA are the time constants for the excitatory and inhibitory neurons, and for adaptation

respectively; A is the variable that defines the adaptation; g is the strength of adaptation; FE and

FI are the firing-rate functions; and Jij ∗ uj , with i, j ∈ {E, I}, is the convolution Jij ∗ uj(x, t) =
∫∞
−∞ Jij(x− y)uj(y, t) dy.

One simplification is to assume that the inhibition is much faster than the excitation, and that

the firing rate for inhibitory population is linear. That allows us to replace the equation for I cells

by its steady state, i.e. to take uI ≈ FI(JIE ∗ uE) = JIE ∗ uE .

Then, since a convolution of two Gaussians with zero mean is still a Gaussian with zero mean,

we have (JEE ∗ uE − JEI ∗ uI)(x, t) = (JEE − JEI ∗ JIE ) ∗ uE(x, t) = J ∗ uE(x, t), where J(x) is a

difference of two Gaussians.

Therefore the system (2.2) can be reduced to a rate model for only one variable u in which we

include the neuronal activity for both excitatory and inhibitory populations, and with the synaptic

coupling defined by a function J as in Figure 2.1a (the ”Mexican hat”). This means that we assume

to have a network characterized by local excitation and long range (lateral) inhibition.

2.1.2 Mathematical model

Under the assumptions considered in the previous section, the mathematical model equivalent

to (2.2) is

∂u

∂t
= −u(x, t) + F (α J ∗ u (x, t)− g v(x, t)) ,

τ
∂v

∂t
= −v(x, t) + u(x, t) (2.3)

with x ∈ IR the one-dimensional spatial coordinate, and α, g and τ positive parameters.

The variables u and v represent the neuronal activity and adaptation respectively, τ and g
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correspond to the time constant and the strength of adaptation, and α is a parameter that controls

the strength of the synaptic coupling J .

Synaptic coupling J is a continuous and even function, J(−x) = J(x), ∀x ∈ IR, and absolutely

integrable on the interval [−l, l] where l ∈ IR+ ∪ {∞}. If l = ∞ we ask that limx→−∞ J(x) =

limx→∞ J(x) = 0. Otherwise, J is assumed to be periodic of period 2l. Then the operator J ∗ u is

defined as

J ∗ u (x, t) =
∫ l

−l
J(x− y) u(y, t) dy . (2.4)

There is an operator associated to J , which is defined on the frequency space, and that is

Ĵ(k) =
∫ l

−l
J(x) eikx dx . (2.5)

Remark 2.1. If we consider an infinite neural network, we take l = ∞ and the function J is

typically as in Figure 2.1a. For example, we can define J as

J(x) =
1√
π

[
A
√

a e−ax2 −B
√

b e−bx2
]

, x ∈ IR (2.6)

where A ≥ B > 0, a > b > 0. Then Ĵ(k) = Ae−k2/4a − B e−k2/4b , k ∈ IR and Ĵ has the graph

as in Figure 2.1b. Nevertheless, in numerical simulations we cannot consider an infinite domain.

Therefore we have to restrict ourselves to a finite domain [−l, l] with l ∈ IR+ and work with

periodic boundary conditions. In order to maintain the assumptions of local excitation and long

range inhibition, J is typically as in Figure 2.2a. For example, we can take J as

J(x) =
1
2l

[
a + b cos

(πx

l

)
+ c cos

(
2πx

l

)]
, x ∈ IR (2.7)

where a, b, c are real parameters. Therefore Ĵ (see Figure 2.2b) is

Ĵ(0) = a , Ĵ(±π/l) = b/2 , Ĵ(±2π/l) = c/2 , Ĵ(±jπ/l) = 0 (j ∈ IN \ {0, 1, 2}) ,

Ĵ(k) =
sin(lk) [(a− b + c)(lk/π)4 + (−5a + 4b− c)(lk/π)2 + 4a]

lk [ (lk/π)2 − 1 ][ (lk/π)2 − 4 ]
, k /∈ ±π

l
IN .
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Figure 2.3. The firing rate (2.8) for r = 3 and θ = 0.3.

Firing rate F in (2.3) is a sigmoid function (Figure 2.3) assumed to satisfy

F (0) = 0 , F ′(0) = 1 .

The first condition translates the steady state to the origin ū = 0, v̄ = 0. The second condition

brings additional simplifications to our calculations. A typical expression for F is then F (u) =

K
[

1
1+e−r(u−θ) − 1

1+erθ

]
, with r and θ positive parameters, and K = (1 + erθ)2 e−rθ/r, i.e.

F (u) =
1 + erθ

r
· 1− e−ru

1 + e−r(u−θ)
. (2.8)

Remark 2.2. The condition F ′(0) = 1 is not essential. As long as F ′(0) is nonzero and positive,

the results proved in the following sections remain valid. To see this, let us assume that F ′(0) 6= 1.

Then, by the change of variables unew = u/F ′(0), vnew = v/F ′(0), the change of parameters

αnew = F ′(0)α, gnew = F ′(0) g, and the change of function Fnew = F/F ′(0) we obtain a system

topologically equivalent to (2.3) where Fnew satisfies the constraints Fnew(0) = 0 and F
′

new(0) = 1.

2.1.3 Linear stability analysis and pattern initiation mechanism

Previous studies on reaction diffusion pattern generation mechanisms (see [77] for a review) and

neural models of pattern generation (such as a mechanism for stripe formation in the visual cortex
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[96], a model for the brain mechanism underlying visual hallucination patterns [37], [39], or a neural

activity model for shell patterns [38]) indicate that in one-dimensional structures the linear theory

turns out to be a good predictor of the ultimate steady state of the full nonlinear system. There is

very good agreement between the theoretical solutions obtained from the linearized problem, and

the numerical simulations of the original nonlinear system with initial conditions taken to be small

random perturbations about the steady state.

Nevertheless, in order to find the solution of the linearized problem that corresponds to the

stable spatial or spatio-temporal pattern that appears when the zero steady state loses stability,

nonlinear terms of the original system must be taken into account, and a singular perturbation

analysis around a bifurcation point must be pursued.

In the following we investigate the possible spatial and spatio-temporal patterns that can occur

in the neuronal system with adaptation (2.3), as a dependence on the parameters α, g and τ .

Based on the hypotheses F (0) = 0, F ′(0) = 1, the expansion of (2.3) in linear and higher order

terms becomes

∂u

∂t
= −u + (αJ ∗ u− gv) +

F ′′(0)
2

(αJ ∗ u− gv)2 +
F ′′′(0)

6
(αJ ∗ u− gv)3 + . . . ,

∂v

∂t
= (−v + u)/τ , (2.9)

and then the linear operator is

L0U =
∂

∂t
U −



−1 + αJ ∗ (·) −g

1/τ −1/τ


 U (2.10)

where U = (u, v)T . We are looking for solutions of L0U = 0 that are bounded and have the form

ξ(t) eikx with k ∈ IR.

Let us assume first that l = ∞. Then, according to (2.4) and (2.5), the equation (2.10) can

be written as
[

dξ
dt − L̂(k)ξ(t)

]
eikx = 0 where

L̂(k) =



−1 + αĴ(k) −g

1/τ −1/τ


 . (2.11)
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Since we work on an infinite domain (l = ∞) and J is symmetric, this statement is true for all

values of k ∈ IR. Moreover, we have Ĵ(−k) = Ĵ(k).

The equation to be solved now is the ODE dξ
dt = L̂(k)ξ which has two independent solutions

ξ1k eλ1kt, ξ2k eλ2kt where ξ1,2 k are two-dimensional complex vectors. Therefore the eigenfunctions

of L0 have the form ξ1,2 k eλ1,2 kt± ikx and ξ1,2 k eλ1,2 kt∓ ikx, where λ1,2 k are the eigenvalues defined

by λ1,2 k = 1
2

[
Tr(L̂(k))±

√
Tr(L̂(k))2 − 4 det(L̂(k))

]
.

If det(L̂(k)) > 0 and Tr(L̂(k)) < 0 for all k, i.e. α Ĵ(k) < g + 1 and α Ĵ(k) < 1/τ + 1, then all

eigenfunctions of L0 correspond to the stable manifold , and they decay exponentially in time to

zero. The trivial solution is asymptotically stable.

Remark 2.3. The eigenvalues k represent a measure of the wave-like pattern that can occur in

the system. That is why k are called wavenumbers, or modes of the system, and 2π/k are called

wavelengths.

We consider k0 to be the most unstable mode, defined as

Ĵ(k0) = maxk≥0Ĵ(k) = maxk≥0

(∫ ∞

−∞
J(x) eikx dx

)
(2.12)

and assume that

k0 6= 0 and Ĵ(k0) > 0 , (2.13)

Ĵ(k0) 6= Ĵ(k) ,∀k 6= ±k0 . (2.14)

This is true for functions J as in Figure 2.1.

There are only two ways the trivial solution can lose its stability: either when the determinant,

or the trace becomes zero. We notice that (2.12), with additional conditions (2.13), (2.14), implies

that Tr(L̂(k)) < Tr(L̂(k0)) and det(L̂(k)) > det(L̂(k0)) for k 6= ±k0. Therefore k0 is the first

eigenvalue where the system may lose its stability, that is k0 is the most unstable mode of the

system (2.3). For all k 6= ±k0 the eigenfunctions belong to the stable manifold. On the other hand,

the eigenfunctions with ±k0 wavenumber may form a basis for the center manifold that becomes

our point of interest.

The wavenumber k0 determines then the mechanism that generates the emerged pattern. There

are basically two possible cases. At α Ĵ(k0) = g + 1, g < 1/τ the determinant becomes zero and a
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spatial pattern (steady state SS) bifurcates. At α Ĵ(k0) = 1 + 1/τ , g > 1/τ the trace becomes zero

and a spatio-temporal pattern (traveling wave TW /standing wave SW) bifurcates.

Let us assume now that l is finite There is a considerable difference when working with finite

domains as the interval [−l, l] and periodic boundary conditions. The difference comes from the

fact that in this case there is only a discrete set of possible wavenumbers. The wavenumbers k must

satisfy the condition k ∈ (±π
l IN

)
in order for the integral

∫ l
−l J(x− y) eik(x−y) dy to be independent

of x and so equal to Ĵ(k) =
∫ l
−l J(y) eiky dy.

This allows us to use the matrix L̂(k) from (2.11) and construct the eigenvalues and eigenfunc-

tions of the linear operator as in the case of infinite domain. Moreover, the discussion from the

previous paragraph remains valid here with the observation that in the case of l finite we consider

only those values of k belonging to the set
(±π

l IN
)
.

The most unstable mode k0 is then defined as

Ĵ(k0) = Ĵ
(πn0

l

)
= maxk∈ πIN

l

(∫ l

−l
J(x) eikx dx

)
(2.15)

and we assume again that k0 6= 0 and Ĵ(k0) > 0, Ĵ(k0) 6= Ĵ(k), ∀k = ±πn/l, n ∈ IN such that

n 6= n0. This is true for functions J as in Figure 2.2.

Remark 2.4. In the next sections we analyze the case of spatial and spatio-temporal patterns that

occur in the system when at the most unstable mode k0 6= 0 either the trace Tr(L̂(k0)) becomes

zero, or both the trace Tr(L̂(k0)) and the determinant det(L̂(k0)) become zero.

2.2 Spatio-temporal patterns obtained by a loss of stability at a

pure imaginary pair of eigenvalues

In the case of Tr(L̂(k0)) = 0 and det(L̂(k0)) > 0, at the most unstable mode k0 defined by

(2.12), or (2.15), with conditions (2.13), (2.14), the eigenvalues of the associated ODE dξ
dt = L̂(k0)ξ

are complex with zero real part. This happens when the parameters of the system (2.3) satisfy

g > 1/τ and α∗ =
1 + 1/τ

Ĵ(k0)
. (2.16)
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Remark 2.5. In the following we fix the values of τ and g as above, and take α as the bifurcation

parameter. The bifurcation value around which we will consider the singular perturbation analysis

is α∗. Therefore on the entire Section 2.2, the operator L0 defined by (2.10), and the matrix L̂(k)

defined by (2.11) for all k where it makes sense, will be evaluated at α = α∗.

The matrix L̂(k0) has pure imaginary eigenvalues ±iω0 with corresponding eigenvectors Φ0 and

Φ0 such that

ω0 =
1
τ

√
gτ − 1 , (2.17)

L̂(k0)Φ0 = iω0Φ0 with Φ0 =
(

φ ,
φ

1 + i
√

gτ − 1

)T

. (2.18)

Based on the general theory [37], in the case of a pair of pure imaginary eigenvalues that arises

at the most unstable mode k0, the solution U of the nonlinear system (2.3) can be approximated

by

U(x, t) ≈ 2Re
[
z(t)Φ0 ei(ω0t+k0x) + w(t)Φ0 ei(ω0t−k0x)

]
, (2.19)

where z, w are time-dependent functions that satisfy the ODE system





z′ = z(a + bzz + cww) ,

w′ = w(a + bww + czz) ,

(2.20)

called the normal form for the Turing-Hopf bifurcation in the time-and-space-variable case, with

a = a1 + ia2, b = b1 + ib2, c = c1 + ic2 complex coefficients.

The importance of the normal form becomes apparent when we write it in polar coordinates.

It provide us with essential information about the existence and stability of the (new) bifurcating

solutions. We notice that actually only the sign and values of the real part a1, b1, c1 of the

coefficients a, b and c play a role in the matter.

In that sense let us define z(t) = reiθ1 and w(t) = Reiθ2 . Then (2.20) is equivalent to the system

r′ = r[a1 + b1r
2 + c1R

2], R′ = R[a1 + b1R
2 + c1r

2], θ′1 = a2 + b2r
2 + c2R

2, θ′2 = a2 + b2R
2 + c2r

2,

and the normal form is basically reduced to

r′ = r [ a1 + b1r
2 + c1R

2 ] , R′ = R [ a1 + b1R
2 + c1r

2 ] . (2.21)
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There are two distinct qualitative pictures of small amplitude bifurcating patterns in a system

with normal form (2.20), and so (2.21), as long as −a1/b1 < 0 and −a1/(b1 + c1) < 0 (Ermentrout

B. [37]).

One corresponds to the solution r̃ = 0, R̃ =
√
−a1/b1 of (2.21) (or R̃ = 0, r̃ =

√
−a1/b1), and it

represents a traveling periodic wave train with velocity c = ±ω0/k0 (”traveling wave”). This can be

understood easily by using the formula (2.19): up to a translation in time, an approximation of the

solution U(x, t) is then 2
√
−a1/b1Re

[
Φ0 ei(ω0t±k0x)

]
= 2

√
−a1/b1Re

[
Φ0 e∓ik0(ct−x)

]
. Therefore

the pattern will change with time and position in space, according to the traveling wave coordinate

ξ = ct− x (see for an example Figure 2.6).

The other case corresponds to the solution r̃ = R̃ =
√
−a1/(b1 + c1), and it represents a

standing oscillation, periodic in space with spatial frequency k0, and periodic in time with temporal

frequency ω0 (”standing wave”). The approximating solution of U(x, t) (up to a translation in time)

is now 4
√
−a1/(b1 + c1)Re

[
Φ0 eiω0t

]
cos(k0x) , and the pattern consists of oscillations with respect

to the position x in space, for any fixed time t, respectively in oscillations with respect to time at

any fixed position x (see for an example Figure 2.5).

They cannot be simultaneously stable, therefore physically only one of these patterns is selected

([37], [35], [39]). The traveling wave solution TW has the corresponding eigenvalues λ1 = −2a1,

λ2 = −a1(c1−b1)
b1

with eigenvectors (1, 0)T , (0, 1)T . Therefore the traveling wave exists and it is

stable if and only if a1 > 0, b1 < 0 and c1 − b1 < 0. The standing wave solution SW has the

corresponding eigenvalues λ1 = −2a1, λ2 = −2a1(b1−c1)
b1+c1

with eigenvectors (1, 1)T and (1,−1)T .

Therefore the standing wave exists and it is stable if and only if a1 > 0, b1 + c1 < 0 and c1− b1 > 0.

Since the goal of our study is to investigate the existence of stable TW and/or SW patterns in

the neural network (2.3), we have to construct the normal form for the Hopf bifurcation case. More

precisely, according to the general theory summarized above, we have to determine the coefficients

a, b and c in (2.20), and then, their real part.

2.2.1 Hopf bifurcation and pattern formation

The construction of the normal form uses a singular perturbation approach with a proper

scaling of the variables, parameters, and time with respect to ε, the small pertubation quantity.

The Fredholm alternative method is then used to identify solutions for the functional equations
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obtained from the ε-power series expansion.

In the case of a pair of pure imaginary eigenvalues, a good scaling for the bifurcation parameter

α and the solution U we are seeking, is

α− α∗ = ε2 γ , γ ∈ IR ,

U(x, t) = ε U0(x, t) + ε2 U1(x, t) + ε3 U2(x, t) + · · · = ε




u0

v0


 + ε2




u1

v1


 + ε3




u2

v2


 + · · · .

(2.22)

The system (2.9) can be written in the equivalent form

L0U = (α− α∗) (J ∗ u , 0)T + B(U,U) + C(U,U,U) + . . . (2.23)

with B(U,U) =
(

F ′′(0)
2 (α J ∗ u− gv)2 , 0

)T
and C(U,U,U) =

(
F ′′′(0)

6 (α J ∗ u− gv)3 , 0
)T

.

With the notation E = (1, 0)T , (2.22) and (2.23) imply

εL0U0 + ε2L0U1 + ε3L0U2 + O(ε4) = ε2E
F ′′(0)

2
[α∗ J ∗ u0 − gv0]2 + ε3E [ γ (J ∗ u0)

+ F ′′(0)[α∗ J ∗ u0 − gv0][α∗ J ∗ u1 − gv1] +
F ′′′(0)

6
[α∗ J ∗ u0 − gv0]3 ]+ O(ε4) . (2.24)

Remark 2.6. The calculation of the normal form is cumbersome. For this reason we prefer to

present in this section only the main steps and results, and to leave the details of proofs for

Appendices B.0.1 and B.0.2.

The first equation to be solved is L0U0 = 0. The nullspace of L0 corresponding to the center

manifold is four-dimensional and it has the basis { Φ0 ei(ω0t±k0x), Φ0 e−i(ω0t±k0x)} , therefore U0 can

be written as

U0 = z Φ0 ei(ω0t+k0x) + w Φ0 ei(ω0t−k0x) + z Φ0 e−i(ω0t+k0x) + w Φ0 e−i(ω0t−k0x) .

Since in (2.24), L0U0 = O(ε), we have z and w as ε-dependent. By considering z = z(ε2t) and

w = w(ε2t) and expanding them as z = z(0) + z′(0)ε2t + O(ε4) and w = w(0) + w′(0)ε2t + O(ε4) as
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ε → 0, we then obtain

U0 = [ z(0) Φ0 ei(ω0t+k0x) +w(0)Φ0 ei(ω0t−k0x) +z(0)Φ0 e−i(ω0t+k0x) +w(0)Φ0 e−i(ω0t−k0x) ]+O(ε2) .

The equation that defines U1 is

L0U1 =
{[

A2z(0)2 e2i(ω0t+k0x) + A2w(0)2 e2i(ω0t−k0x) + 2A2z(0)w(0) e2i ω0t + cc
]

+2A A
[
z(0)z(0) + w(0)w(0) + z(0)w(0) e2ik0x + z(0)w(0) e−2ik0x

]} F ′′(0)
2

E ,

where cc denotes the complex conjugation of the previous expression, and

A = ΦT
0 · (1 + 1/τ , −g) = φ (1 + iω0) . (2.25)

Therefore U1 can be constructed as

U1 =
(
ξ1 z2 e2i(ω0t+k0x) + ξ2 w2 e2i(ω0t−k0x) + ξ3 z w e2iω0t + ξ4 z w e2ik0x + cc

)
+ ξ5 z z + ξ6 w w

with ξi, i = 1, . . . , 6, vectors in IC2 that depend on g, τ , Ĵ(k0), Ĵ(0), Ĵ(2k0), and F ′′(0). With the

use of formula (B.15), we then obtain the equation for U2

L0U2 = Q(1)E −
(
z′(0)Φ0 ei(ω0t+k0x) + w′(0)Φ0 ei(ω0t−k0x) + cc

)
,

that provides the explicit normal form for the Hopf bifurcation





z′(0) = z(0) ( ã + b z(0)z(0) + c w(0)w(0) ) ,

w′(0) = w(0) ( ã + bw(0)w(0) + c z(0)z(0) ) ,

(2.26)

where the time variable is ε2t, and ã = a/ε2, with a, b, c of order 1 (see Appendix B.0.1). We proved

then the following result.

Proposition 2.2.1. If g > 1/τ , in the neighborhood of the bifurcation value α∗ = 1+1/τ

Ĵ(k0)
, the

system (2.3) has the normal form (2.20) with a1 = Re(a) = 1
2

[
α Ĵ(k0)− (1 + 1

τ )
]
, and b1 = Re(b),
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c1 = Re(c) satisfying the equations

b1 =
τ + 1
4τ

|A|2

F ′′′(0) + F ′′(0)2 ·


−3 +

2

g + 1− (1+1/τ)Ĵ(0)

Ĵ(k0)

+
MB

NB





 , (2.27)

c1 + b1 =
τ + 1
4τ

|A|2 ·


 3

[
F ′′′(0)− 3F ′′(0)2

]

+F ′′(0)2 ·


 2

g + 1− (1+1/τ)Ĵ(2k0)

Ĵ(k0)

+
4

g + 1− (1+1/τ)Ĵ(0)

Ĵ(k0)

+ 2
MC

NC
+

MB

NB





 , (2.28)

c1 − b1 =
τ + 1
4τ

|A|2 ·




[
F ′′′(0)− 3F ′′(0)2

]
+ F ′′(0)2 ·


 2

g + 1− (1+1/τ)Ĵ(2k0)

Ĵ(k0)

+ 2
MC

NC
− MB

NB





 .

(2.29)

Here we have MB = M
(

Ĵ(2k0)

Ĵ(k0)

)
, MC = M

(
Ĵ(0)

Ĵ(k0)

)
, NB = N

(
Ĵ(2k0)

Ĵ(k0)

)
, NC = N

(
Ĵ(0)

Ĵ(k0)

)
, where M

and N are functions defined as

M(X) = (4gτ − 3)[2gτ − (τ + 1)(τ + 2)]X + 4(gτ − 1)(τ + 1)2 + (3gτ − 4− τ)2 + gτ(gτ + τ − 2),

and

N(X) = (4gτ − 3)(τ + 1)2X2 + 2τ(τ + 1)(3− g− 4gτ)X + [4(gτ − 1)(τ + 1)2 + (3gτ − 4− τ)2].

Proof: The normal form (2.20) is obtained directly from (2.26) as a result of the scaling ε z(0) ↔
z, εw(0) ↔ w, and ε2t ↔ t.

2.2.2 Traveling wave and standing wave patterns in the neural system

Based on the formulas (2.27), (2.28), (2.29) from Proposition 2.2.1 we obtain the first important

result regarding the type of patterns that can be selected by the neural system (2.3).

Theorem 2.1. Let us assume that the most unstable mode k0 of the system (2.3) satisfies the

conditions (2.13), (2.14), and at k0 a pair of pure imaginary eigenvalues appears.

If the firing rate function F is such that F (0) = 0, F ′(0) > 0, F ′′(0) = 0, and F ′′′(0) < 0,

then the system (2.3) has a traveling wave (TW) and a standing wave (SW) solution for α > α∗,

α close to α∗. The SW solution is unstable. The TW solution is stable.

Proof: First we notice that there exist sigmoid functions F that satisfy the theorem hypotheses.
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For example, if θ = 0, we have from (2.8), F (u) = 2
r tanh

(
ru
2

)
and so F (0) = 0, F ′(0) = 1,

F ′′(0) = 0, F ′′′(0) = − r2

2 < 0.

In this case b1 = τ+1
4τ |A|2F ′′′(0) < 0, c1 = 2b1, and therefore c1 + b1 < 0 and c1 − b1 < 0. Both

standing and traveling waves bifurcate from the trivial solution at α = α∗, but only the TW is

stable.

Remark 2.7. The condition F ′′(0) = 0 on the firing rate function is quite restrictive. We are

interested to see what happens in the general case of F ′′(0) 6= 0 (then the firing rate function F

as in (2.8) has the second and third derivatives F ′′(0) = r 1−e−rθ

1+e−rθ , F ′′′(0) =
r2(e−2rθ−4e−rθ+1)

(1+e−rθ)2
). In

that sense, the coefficients of the normal form (2.20) computed in the previous section provide us

with some useful information. They have indeed a complicated expression that does not allow us to

give a general, theoretical prediction. Nevertheless we can use the equations (2.27), (2.28), (2.29)

in Matlab, for example, to search for possible parameter values of g, τ , r, θ, plus coupling J , such

that the stable pattern selected in the bifurcation at α∗ is SW. The importance of the construction

of the normal form (2.20) becomes clear, since this allows us to show that both traveling wave and

standing wave patterns can be found in the neural system (2.3).

Proposition 2.2.2. Let us assume that the hypotheses in Proposition 2.2.1 are true.

i) If b1 < 0 and c1 − b1 < 0, then for α > α∗, sufficiently close to α∗, the system (2.3) has

a traveling wave solution TW that is stable. The velocity of the TW is approximately
(
±
√

gτ−1
τk0

)
,

and the solution can be approximated by

U(x, t) ≈
√

2Ĵ(k0)(α− α∗)
(−b1)

Re
[
Φ0e

i(ω0t±k0x)
]

with Φ0 and ω0 defined by (2.17) and (2.18).

ii) If c1 + b1 < 0 and c1− b1 > 0, then for α > α∗, sufficiently close to α∗, the system (2.3) has

a standing wave solution SW that is stable. The solution can be approximated by

U(x, t) ≈ 2 cos(k0x)

√
2Ĵ(k0)(α− α∗)

(−b1 − c1)
Re

[
Φ0e

iω0t
]

.

Proof: The solution U can be approximated by its projection onto the eigenvectors space, i.e.

U ≈ 2ε Re
[
z(0)Φ0 ei(ω0t+k0x) + w(0)Φ0 ei(ω0t−k0x)

]
, where as we mentioned above ε z(0) ↔ z and
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εw(0) ↔ w. Therefore (2.19) results immediately.

When the TW exists, z = r̃eiθ1 = 0 and w = R̃eiθ2 , R̃ =
√
−a1/b1 and θ2(t) = −t(α −

α∗) Ĵ(k0)
2 [ 1√

gτ−1
+ b2

b1
]. Since we have ω0t + θ2(t) ≈ ω0t at α → α∗, we obtain the conclusion (i).

In a similar manner one can show that when SW exists, we use in (2.19) z = w = r̃eiθ1 = R̃eiθ2

with r̃ = R̃ =
√
−a1/(b1 + c1) and θ1(t) = θ2(t) = −t(α−α∗) Ĵ(k0)

2 [ 1√
gτ−1

+ b2+c2
b1+c1

]. The conclusion

(ii) follows immediately.

Example. If we consider an infinite domain (l = ∞), the synaptic coupling J is defined by (2.6)

with a graph as in Figure 2.1. For example for A = 5, B = 4, a = 1, b = 0.3 we have k0 = 1.2967,

Ĵ(0) = 1, Ĵ(k0) = 2.2988, Ĵ(2k0) = 0.9158, and at τ = 4 we obtain α∗ = 0.5438. We choose the

function F as in (2.8) with r = 3 and θ = 0.3. The theory predicts that there exist values of g such

that the stable pattern in the neural network (2.3) that occurs through the Hopf bifurcation is the

TW, and there exist values of g such that the SW pattern is stable. For example, at g = 0.34, both

TW and SW bifurcate, but only SW is stable (b1 = −0.0651, c1 + b1 = −0.0955, c1 − b1 = 0.0347).

On the other hand at g = 0.35, both TW and SW bifurcate, but only TW is stable (b1 = −0.1283,

c1 + b1 = −0.2873, c1 − b1 = −0.0306).

2.2.3 Numerical results

A good agreement is obtained between the theoretical prediction (based on the normal form

construction), and the numerical simulation of the full nonlinear system (2.3).

For numerical simulations we need to consider a finite domain together with periodic boundary

conditions. The synaptic coupling J is defined by (2.7) with a graph as in Figure 2.2, and there

is only a discrete set of wavenumbers. We choose the gain function F as in (2.8) with r = 3

and θ = 0.3, or θ = 0, and l = π and a = −0.2, b = 2.5, c = 2 in J . Then k0 = 1, Ĵ(0) = −0.2,

Ĵ(k0) = 1.25, Ĵ(2k0) = 1, and at τ = 4 we obtain α∗ = 1. The simulations for the system (2.3) were

run in Xppaut [32], [36] on a network of 100 neurons, with the method of integration Runge-Kutta

RK4 and step size dt = 0.25.

At θ = 0.3, the theory predicts that, for example, at g = 0.45, both TW and SW bifurcate, but

only SW is stable (b1 = −3.4412, c1 + b1 = −5.1928, c1 − b1 = 1.6895). At g = 0.7, both TW and

SW bifurcate, but only TW is stable (b1 = −3.1939, c1 + b1 = −7.7540, c1 − b1 = −1.3661).
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At θ = 0, for any g > 1/τ = 0.25, we can obtain both SW and TW solutions, but the stable

pattern is always TW.

These results are confirmed by the numerical simulations of the full model (2.3).

Remark 2.8. In the figures below we represent the space x on the horizontal axis, the time t on

the vertical axis, and the value of the variable u(x, t) by the level of color. The upper left corner

corresponds to the minum value of x that increases to the right. The value of time increases in the

up-to-down direction. In general, the time is represented after t = 3000 transients. We choose two

different sets of initial conditions to illustrate the possible behaviors in the system (2.3).

Let us consider first the case θ = 0.3.

For different values of the parameter g, e.g. g = 0.45 and g = 0.7, before the bifurcation point,

at α = 0.99, by choosing random initial conditions around the origin, the solution decays in time to

zero. After the bifurcation point, at α = 1.01, both traveling and standing waves patterns can be

obtained, depending on the choice of the initial conditions. In order to test what pattern is stable,

we have also run the simulations of the system (2.3) in the presence of white noise add to the first

equation and scaled by a factor of 0.001 (Figure 2.4(b)-Figure 2.7(b))

As a consequence we notice that at g = 0.45, the stable pattern is SW (Figure 2.4, Figure 2.5),

and at g = 0.7 the stable pattern is TW (Figure 2.6, Figure 2.7). This means that for both sets of

initial conditions that in the absence of noise might produce different patterns, we obtain the same

pattern in the presence of noise, that is SW at g = 0.45, respectively TW at g = 0.7.

At θ = 0 the stable pattern obtained as a result af added noise is always TW. We present the

numerical results in Figure 2.8 and Figure 2.9 for g = 0.45, respectively 2.10 and Figure 2.11 for

g = 0.7.
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Figure 2.4. (a) SW is the pattern obtained at g = 0.45, θ = 0.3, and set 1 of initial conditions; (b)
in the presence of noise SW is preserved.

Figure 2.5. (a) SW is the pattern obtained at g = 0.45, θ = 0.3, and set 2 of initial conditions and
it is stable since (b) in the presence of noise SW is preserved.
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Figure 2.6. (a) TW is the pattern obtained at g = 0.7, θ = 0.3, and set 1 of initial conditions; (b)
in the presence of noise TW is preserved.

Figure 2.7. (a) SW is the pattern obtained at g = 0.7, θ = 0.3, and set 2 of initial conditions but
it is unstable since (b) in the presence of noise SW is replaced by TW.
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Figure 2.8. TW is the pattern obtained at g = 0.45, θ = 0, and set 1 of initial conditions.

Figure 2.9. (a) SW is the pattern obtained at g = 0.45, θ = 0, and set 2 of initial conditions and
it is unstable since (b) in the presence of noise SW is replaced by TW.
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Figure 2.10. TW is the pattern obtained at g = 0.7, θ = 0, and set 1 of initial conditions.

Figure 2.11. (a) SW is the pattern obtained at g = 0.7, θ = 0, and set 2 of initial conditions and
it is unstable since (b) in the presence of noise SW is replaced by TW.
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2.3 Spatio-temporal patterns obtained by a loss of stability at a

double-zero eigenvalue

We analyzed in the previous section, the case of traveling wave and standing wave spatio-

temporal patterns that occur when the parameters in the system (2.3) are chosen such that at the

most unstable mode the trace of the linearized part vanishes while the determinant is still positive.

The resulting solutions change with both time and space position. Another possible situation is

when the choice of parameters is such that the determinant vanishes first and the trace is still

negative. In this case a zero eigenvalue occurs and the resulting pattern oscillates with respect to

space position due to the unstable mode k0, but it is independent of time. We call this pattern a

steady state or stationary pattern.

An obvious question is how these possible patterns in the system (2.3) interact, that is how the

system’s behavior changes from traveling wave or standing wave to a stationary pattern or vice-

versa. The issue of transition between spatio-temporal and only spatial patterns can be addressed

by the analysis of the case when the trace and the determinant of the linearized system vanish

simultaneously. Then at the most unstable mode we obtained a double-zero eigenvalue. The

double-zero eigenvalue case is approached from two different directions: one when we already have

a zero eigenvalue and now obtain another one (that is coming from the domain of spatial/stationary

patterns), and the other when we have a pair of pure imaginary eigenvalues ±iω0 that collide (that

is coming from the domain of spatio-temporal patterns).

As a result of the above remarks, the aim of the present section is to see how behaviors in the

system (2.3) look like at the transition between stationary states and traveling/standing waves.

Therefore we assume that at the most unstable mode k0 we have Tr(L̂(k0)) = det(L̂(k0)) = 0. This

is true when the parameters satisfy the conditions

g∗ = 1/τ and α∗ =
1 + 1/τ

Ĵ(k0)
. (2.30)

Remark 2.9. In the following we fix the value of τ , and take α and g as bifurcation parameters.

The bifurcation values around which we will consider the singular perturbation analysis are α∗ and

g∗. Therefore on the entire Section 2.3, the operator L0 defined by (2.10), and the matrix L̂(k)
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defined by (2.11) for all k where it makes sense, will be evaluated at α = α∗ and g = g∗.

At ±k0 the associated ODE dξ
dt = L̂(k0)ξ has a double-zero eigenvalue. For all other values

k 6= ±k0 we have Tr(L̂(k)) < 0 and det(L̂(k)) > 0, and the corresponding eigenvalues have negative

real part.

Let us construct the (generalized) eigenvectors of L̂(k0) and L̂(k0)T as follows

Φ0 =
1√
τ




1

1


 , Ψ1 =

1√
τ




1

−1


 , Φ1 =

√
τ




1

0


 , Ψ0 =

√
τ




0

1


 , (2.31)

according to the conditions





L̂(k0)Φ0 = 0 , L̂(k0)Φ1 = Φ0 , L̂(k0)T Ψ1 = 0 , L̂(k0)T Ψ0 = Ψ1 ,

Φ0 ·Ψ0 = Φ1 ·Ψ1 = 1 , Φ0 ·Ψ1 = Φ1 ·Ψ0 = 0 .

(2.32)

Around the double-zero bifurcation point, the first order approximation of the solution of the

nonlinear system (2.3) is given by its projection on the generalized eigenspace. That means U can

be approximated by

U(x, t) ≈ 2Re
[
z(t)Φ0 eik0x + w(t)Φ1 eik0x

]
(2.33)

where z, w are time-dependent functions that satisfy the ODE system with real coefficients





z′ = w ,

w′ = ζ1z + ζ2w + A|z|2z + Cz[ z w + z w ] + D|z|2w ,

(2.34)

called the normal form for the double-zero (Takens-Bogdanov) bifurcation with O(2)-symmetry [27].

Indeed the linear part of the system (2.34) has two eigenvalues equal to zero at ζ1 = ζ2 = 0.

That is why we call this type of bifurcation as ’double-zero’, or ’Takens-Bogdanov’. The additional

name of ’O(2)-symmetry’ comes from the fact that the system (2.34) exhibits symmetry under

both rotations and reflections. This means that the vector field G(z, w) (the right hand side of

the equation (2.34)) commutes with the rotation z 7→ eiθz for any angle θ ∈ IR, i.e. we have

G(eiθz, eiθw) = eiθG(z, w), and it also commutes with reflection z 7→ z, i.e. G(z, w) = G(z, w).

Therefore the system shows no directional preference and we say that it is isotropic. The technical
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terminology is that the vector field G, and therefore the system (2.34), is covariant (or equivariant)

with respect to the group O(2) of rotations and reflections.

Recall that for (2.3) we seek spatially periodic solutions of the form ψk eikx + cc , where cc

stands for the complex conjugate of the previous term. Since
[
ψk eik(x+d) + cc = eikdψk eikx + cc

]
,

a translation in space [x 7→ x + d] will be associated with a rotation of the time-dependent vector

ψk. Furthemore a reflection in space [x 7→ (−x)] is associated with a reflection of the vector ψk

since
[
ψk eik(−x) + cc = ψk eikx + cc

]
. Let us notice that the vector field of the original system (2.3)

satisfies the properties G( u(x + d, t), v(x + d, t) ) = G(u, v)(x + d, t) and G(u(−x, t), v(−x, t) ) =

G(u, v)(−x, t), so we say that the system (2.3) is isotropic.

The system (2.3) has at least one solution that preserves the symmetry with respect to both

rotations, u(x + d, t) = eikdu(x, t), v(x + d, t) = eikdv(x, t), and reflection u(−x, t) = u(x, t),

v(−x, t) = v(x, t), and this is the trivial solution u(x, t) = v(x, t) ≡ 0. For different values of

parameters other solutions may exist which do not necessarily preserve the symmetry. We say

that the symmetry in the system is broken and call the phenomenon that leads to this situation,

symmetry breaking bifurcation. The above mentioned correspondence between (2.3) and (2.34),

together with formula (2.33), allows us to work with the system (2.34) and detect the solutions

that break its symmetry, rather than working with (2.3).

Dangelmayr and Knobloch present in [27] a detailed analysis of the existence and stability

properties for five types of possible solutions of the system (2.34). These are the trivial solution/T,

steady state/SS, traveling waves/TW, standing waves/SW, and modulated waves/MW. Depending

on the sign of the coefficient A, and then the signs of D and M = 2C + D together with some

nondegeneracy conditions based on the value of the ratio D/M , different regions in the parameter

plane (ζ1, ζ2) were identified, and the corresponding bifurcation diagrams were drawn. That is, as

a dependence on the values of parameters, all possible qualitative different behaviors in the system

are described.

As an example, TWs break the symmetry with respect to reflection and keep the symmetry

to rotations. On the other hand SWs break the symmetry with respect to rotations but keep the

symmetry to reflection (see below).

We summarize in the following the basic ideas followed by Dangelmayr and Knobloch [27] in

their analysis. Moreover in a similar approach to Section 2.2 we give a geometric interpretation of
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the solutions SS, TW, SW and MW.

First we write z and w in polar coordinates and tranform the system (2.34) accordingly. Since

w = z′ we need only the polar representation of z, say z(t) = r eiφ. Then by the separation of the

real and imaginary parts, the system (2.34) is equivalent to





r′′ − r(φ′)2 − r(ζ1 + Ar2)− r′ (ζ2 + Mr2) = 0 ,

r φ′′ + 2r′φ′ − r φ′ (ζ2 + Dr2) = 0 .

(2.35)

The trivial solution T corresponds to the solution r = 0 and exists for all parameter values.

Therefore z(t) = w(t) = 0 and from (2.33) we have U(x, t) ≡ 0. The solution is independent of

time and position in space.

The linearization of (2.35) around r = 0, φ′ = 0, e.g. take r = 0 + ξ, φ′ = 0 + η with ξ, η

small, is the equation ξ′′ − ζ2 ξ′ − ζ1 ξ = 0. The eigenvalues have negative real part if and only if

ζ1 < 0 and ζ2 < 0. The stability of the trivial solution T is lost at ζ1 = 0 through a zero eigenvalue

when other constant solutions r0 appear (with φ′ still zero) (we denote the line ζ1 = 0 in the

parameter space (ζ1, ζ2) by L0 - see Figure 2.12), or at ζ2 = 0 and ζ1 < 0 (see the half-line H0 in

Figure 2.12) through a pair of pure imaginary eigenvalues ±iω0, when a small amplitude periodic

solution r = r(t) appears with φ′ still zero. This case will correspond to a standing wave solution.

We mention that the O(2)-symmetry of the system forces both types of TW and SW solutions to

appear simultaneously from the trivial solution.

The steady state SS corresponds to solution of (2.35) constant on the radial direction, r(t) = r0,

and with no orbital motion φ′ = 0. This means that r0 must satisfy the condition ζ1 +Ar2
0 = 0 and

obviously it does not exist for all parameter values. In order to get a SS we need Aζ1 < 0 so that

r0 =
√
−ζ1/A. Moreover φ′ = 0 implies φ(t) = ω, constant, and z(t) = r0 eiω, w(t) = z′(t) = 0.

The approximating formula (2.33) implies U(x, t) = 2r0Φ0 cos(k0x + ω) = 2
√
− ζ1

A Φ0 cos(k0x + ω),

or up to a translation in space,

U(x, t) ≈ 2

√
−ζ1

A
cos(k0x) Φ0 . (2.36)
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The steady state pattern SS consists in oscillations with respect to the position in space x, and it

is independent of time; therefore it forms stationary stripes (see Figure 2.19 for an example).

The linearization of (2.35) around r = r0, φ′ = 0, e.g. take r = r0 + ξ, φ′ = 0 + η with

ξ, η small, is the system of equations ξ′′ − (ζ2 + Mr2
0) ξ′ − 2Ar2

0 ξ = 0, η′ − (ζ2 + Dr2
0)η = 0, i.e.

ξ′′ − (ζ2 − M
A ζ1)ξ′ + 2ζ1ξ = 0 and η′ − (ζ2 − D

A ζ1)η = 0. The only possible bifurcations that result

in appearance/disappearance of time independent solutions correspond to a zero eigenvalue. That

can happen for ζ1 = 0 (we have already mentioned this case of new SS branch solution), or for

Aζ2 = Dζ1, Aζ1 < 0 (see the half-line Lm in Figure 2.12) when a new φ′ constant and nonzero

solution is created, say φ′ = ω0 (see the TW case)

The traveling wave TW corresponds to a solution of (2.35) constant on the radial direction,

r(t) = r0, but with orbital motion with constant angular frequency φ′ = ω0. This means that r0

and ω0 must satisfy the conditions ζ2 + Dr2
0 = 0 and ω2

0 = −(ζ1 + Ar2
0) and TW exists only in

the parametric regime Dζ2 < 0, A
Dζ2 − ζ1 > 0. We have r0 =

√
−ζ2/D and ω0 = ±

√
Aζ2/D − ζ1;

then z(t) = r0 ei(ω0t+ω), w(t) = z′(t) = ir0ω0 ei(ω0t+ω) and from formula (2.33), the traveling wave

equation, up to a translation in space is

U(x, t) ≈ 2

√
−ζ2

D
Re

[
(Φ0 + iω0Φ1) ei(ω0t+k0x)

]
, (2.37)

with

ω0 = ±
√

A

D
ζ2 − ζ1 . (2.38)

The traveling wave solution TW changes with respect to time and position in space according

to the traveling wave coordinate ξ = ct − x where c = ω0/k0 is the wave velocity; therefore the

pattern is formed by non-stationary stripes, i.e. stripes with finite slope (see Figure 2.16 for an

example). Equation (2.37) shows that TW solutions break the symmetry with respect to reflection,

but respect the symmetry to rotations.

The modulated wave MW corresponds to a periodic solution r(t) of (2.35) and a nonzero

angular velocity φ′. This means that we have oscillations in the radial direction and orbital motion

as well. The modulated waves bifurcate from a traveling wave through another Hopf bifurcation
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that introduces a new frequency in the solution. Therefore the MW pattern is characterized by two

different frequencies, one corresponding to the orbital motion and the other to radial oscillations

(not shown in this thesis).

The standing wave SW corresponds to a periodic solution r(t) of (2.35) and φ′ = 0. This

means that we have oscillations in the radial direction and no orbital motion. SWs can occur

as oscillations about the trivial solution or about a steady state. From (2.35), r(t) satisfies the

equation r′′ − r′ (ζ2 + Mr2) − r(ζ1 + Ar2) = 0 and φ = ω is constant. Then z(t) = r(t) eiω,

w(t) = z′(t) = r′(t) eiω, and (2.33) implies, up to a translation in space,

U(x, t) ≈ 2
[
r(t)Φ0 + r′(t)Φ1

]
cos(k0x) , (2.39)

where r(t) is the periodic solution of period, say, 2π/ω0 of the ODE

r′′ − r′ (ζ2 + Mr2)− r(ζ1 + Ar2) = 0 . (2.40)

The standing wave solution SW oscillates with respect to time with frequency ω0 for any fixed

position in space, and oscillates with respect to space with frequency k0 for any fixed t (see Figure

2.17 for an example of the SW pattern). Equation (2.39) shows that SW solutions break the

symmetry with respect to rotations, but respect the symmetry to reflection.

Remark 2.10. We summarized above the properties of possible patterns in a system with O(2)-

symmetry. Let us describe now the type of bifurcation diagram [27] that we need later in our study.

It corresponds to A < 0 with D < 0, M < 0 and 0 < D/M < 1
2 . The parameter plane (ζ1, ζ2) is

divided into seven regions (Figure 2.12) by the following curves: L0 : ζ1 = 0, H0 : [ζ2 = 0, ζ1 < 0],

LM : [Aζ2 = Mζ1, ζ1 > 0], SLS : [5Aζ2 = 4Mζ1, ζ1 > 0], SNS2 : [Aζ2 ≈ 0.74Mζ1, ζ1 > 0],

Lm : [Aζ2 = Dζ1, ζ1 > 0]. A bifurcation producing steady-state solutions occurs along L0, and

a Hopf bifurcation, from the trivial solution T , of a TW and SW1 occurs along H0. By crossing

LM , SLS , SNS2 and Lm secondary bifurcations occur: along SNS2 we have a saddle-node for two

standing waves, SW1 and SW2; along LM a standing wave oscillation SW3 about a non-trivial

steady state bifurcates; then SW3 and SW2 undergo a global bifurcation and join smoothly to each
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Figure 2.12. The bifurcation diagram corresponding to the system (2.34) with A < 0, D < 0,
M < 0 and 0 < D/M < 1/2.

other along SLS ; and TW bifurcates from a steady state along Lm.

Since our goal is to study how the SS, TWs and SWs solutions occur in the neural system (2.3)

and how they interact, that is how the patterns change as the parameters α and g vary about α∗

and g∗, the next necessary step in the analysis is to construct the normal form for the double-zero

bifurcation, and determine its coefficients. That is the aim of the next section.

2.3.1 Double-zero bifurcation with O(2)-symmetry and pattern formation

In the case of a double-zero eigenvalue, we choose the singular perturbation expansion for α, g

and the solution U as

α− α∗ = ε2 γ, g − g∗ = ε2 η , γ, η ∈ IR ,

U(x, t) = ε U0(x, t) + ε2 U1(x, t) + ε3 U2(x, t) + ε4 U3(x, t) + · · ·

and write the system (2.9) in its equivalent form,

L0U = (α− α∗) L1U + (g − g∗) L2U + B(U,U) + C(U,U,U) + Q(U,U,U, U) + . . . (2.41)

where B(U,U), C(U,U,U), Q(U,U,U, U) represent the quadratic, cubic and fourth order terms, L0

is defined according to Remark 2.9, and L1 =




J ∗ (·) 0

0 0


 , L2 =




0 −1

0 0


 .
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With the notation E for the unit vector (1, 0)T , equation (2.41) becomes

εL0U0 + ε2
[
L0U1 − F ′′(0)

2
[α∗ J ∗ u0 − g∗v0]2E

]
+ ε3[ L0U2 − γ L1U0 − η L2U0 ] + ε4[ L0U3

− γ L1U1 − η L2U1 ]

= ε3
[
F ′′(0)[α∗ J ∗ u0 − g∗v0][α∗ J ∗ u1 − g∗v1] +

F ′′′(0)
6

[α∗ J ∗ u0 − gv0]3
]

E+

ε4
[

F ′′(0)
2

[α∗ J ∗ u1 − g∗v1]2 + F ′′(0)[α∗ J ∗ u0 − g∗v0][α∗ J ∗ u2 − g∗v2 + γ J ∗ u0 − η v0]

+
F ′′′(0)

2
[α∗ J ∗ u0 − gv0]2[α∗ J ∗ u1 − gv1] +

F (4)(0)
24

[α∗ J ∗ u0 − gv0]4
]

E + O(ε5) . (2.42)

Remark 2.11. We give the details of the construction of the normal form in Appendix B.0.3.

The main idea is to identify the functional equations that U0, U1, U2 and U3 satisfy and then solve

for them.

The nullspace of L0 corresponding to the center manifold is now only two-dimensional with

the basis { Φ0 e±ik0x} where Φ0 is the real vector defined in (2.31). As a consequence, U0 can be

written as

U0 =
(
z eik0x + z e−ik0x

)
Φ0

with z being ε-dependent. An appropriate time scale is z = z(εt) = z(0) + z′(0)εt + z′′(0)
2 ε2t2 +

z′′′(0)
6 ε3t3 + O(ε4), therefore U0 =

(
z(0) eik0x + z(0) e−ik0x

)
Φ0 + O(ε) .

The equation that defines U1 reads as

L0U1 = −[z′(0) eik0x + z′(0) e−ik0x]Φ0 +
F ′′(0)

2τ
E[z(0)2 e2ik0x + z(0)2 e−2ik0x + 2z(0) z(0)]

and U1 can be constructed as

U1 =
[
w eik0x + w e−ik0x

]
Φ1 + z2ξ1 e2ik0x + z2ξ1 e−2ik0x + 2z zξ2

with w = w(εt) = w(0) + w′(0)εt + w′′(0)
2 ε2t2 + O(ε3), and ξ1, ξ2 real vectors. The first equation of

the normal form is obtained by solving for U1 and it is z′(0) = w(0). The next two steps consist in
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finding U2 as

U2 = [zwe2ik0x + z we−2ik0x]β1 + [z w + z w]β2 + [z3e3ik0x + z3e−3ik0x]β3

with β1, β2, β3 real vectors to be computed, and then solving for U3 (see Appendix B.0.3 for

details). As a consequence we obtain the following result.

Theorem 2.2. For any positive τ , in the neighborhood of the bifurcation values α∗ = 1+1/τ

Ĵ(k0)
and

g∗ = 1/τ , the system (2.3) has the normal form (2.34) with ζ1 = α Ĵ(k0)−(g+1)
τ , ζ2 = α Ĵ(k0)−(1+ 1

τ ),

and the coefficients





A = 1
2τ2 [F ′′′(0)− 3F ′′(0)2] + F ′′(0)2

τ(τ+1) ·
[

Ĵ(k0)

Ĵ(k0)−Ĵ(0)
+ Ĵ(k0)

2 [ Ĵ(k0)−Ĵ(2k0) ]

]
,

C = (τ + 1)A + F ′′(0)2

τ(τ+1) ·
Ĵ(k0)

Ĵ(k0)−Ĵ(0)
,

D = (τ + 1)A + F ′′(0)2

τ(τ+1) ·
Ĵ(k0)

Ĵ(k0)−Ĵ(2k0)
.

Proof: The normal form obtained by the above constructive method is z′(0) = w(0), w′(0) =
[

γ Ĵ(k0)−η
τ + A|z(0)|2

]
z(0)+ε{γ Ĵ(k0)w(0)+Cz(0)[ z(0)w(0)+z(0)w(0) ]+D|z(0)|2w(0)}+O(ε2),

but this is equivalent to (2.34) for the scaling γ = (α − α∗)/ε2, η = (g − g∗)/ε2 and ε z(0) ↔ z,

ε2 w(0) ↔ w, ε t ↔ t.

Remark 2.12. If we consider the solution U of the nonlinear system approximated only by its

projection on the generalized eigenspace, we have

U(x, t) ≈ 2εΦ0 Re
[
z(0) eik0x

]
+ 2ε2 Φ1 Re

[
w(0) eik0x

]
.

Since ε z(0) ↔ z, ε2 w(0) ↔ w this becomes exactly the formula (2.33).

Theorem 2.3. In the hypotheses of Theorem 2.2, the steady state SS, traveling wave TW and

standing wave SW solutions that occur about the bifurcation point α∗ = 1+1/τ

Ĵ(k0)
and g∗ = 1/τ , are

approximated by the following expressions

SS : u(x, t) = v(x, t) ≈ 2
τ

cos(k0x)

√
α Ĵ(k0)− (g + 1)

(−A)
,

53



TW :





u(x, t) ≈ [ cos(ω0t + k0x)− τ ω0 sin(ω0t + k0x) ]

√
2[α Ĵ(k0)−(1+1/τ)]

(−D) τ ,

v(x, t) ≈ cos(ω0t + k0x)

√
2[α Ĵ(k0)−(1+1/τ)]

(−D) τ ,

SW :





u(x, t) ≈ 2√
τ

[ r(t) + τ r′(t) ] cos(k0x) ,

v(x, t) ≈ 2√
τ

r(t) cos(k0x) ,

where r(t) is the periodic solution of

r′′ − r′
[
[α Ĵ(k0)− (1 + 1/τ)] + (2C + D)r2

]
− r

[
α Ĵ(k0)− (g + 1)

τ
+ Ar2

]
= 0

and

ω0 = ±
√

A

D
[α Ĵ(k0)− (1 + 1/τ)]− 1

τ
[α Ĵ(k0)− (g + 1)] .

Proof: The above formulas result directly from equations (2.36), (2.37) and (2.39) with Φ0 and

Φ1 defined by (2.31) and ζ1, ζ2 as in Theorem 2.2.

Theorem 2.4. Let us assume that the most unstable mode k0 of the system (2.3) satisfies the

conditions (2.13), (2.14), and at k0 a double-zero eigenvalue occurs.

If the firing rate function F is such that F (0) = 0, F ′(0) > 0, F ′′(0) = 0, and F ′′′(0) < 0,

then about α∗ = 1+1/τ

Ĵ(k0)
, g∗ = 1/τ , the system (2.3) has the bifurcation diagram from Figure 2.13

(equivalent to Figure 2.12). The curves that divide the parametric plane (α, g) into seven regions

have the following equations





L0 : α Ĵ(k0) = g + 1 ,

H0 : α Ĵ(k0) = 1 + 1/τ , g > 1/τ ,

LM : α Ĵ(k0) = τ+1
2τ+3(3g + 2) , g > 1/τ ,





SLS : α Ĵ(k0) = τ+1
7τ+12(12g + 7) , g > 1/τ ,

SNS2 : α Ĵ(k0) ≈ τ+1
61τ+111(111g + 61) , g > 1/τ ,

Lm : α Ĵ(k0) = (τ + 1)g , g > 1/τ .

(2.43)

Proof: Since F ′′(0) = 0 and F ′′′(0) < 0, we have A < 0, C = D = (τ + 1)A < 0 and then

M < 0, D/M = 1
3 6= 1

2 , 3
5 , 0.7, 0.74, 3

4 , 4
5 , 1 (the nondegeneracy conditions). This is exactly the case

described by Figure 2.12. With the formulas provided by Theorem 2.2 we obtain immediately the

equations (2.43).
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Figure 2.13. The bifurcation diagram corresponding to the system (2.3) about (α∗, g∗) when θ = 0
in F .

2.3.2 Numerical results

We run the numerical simulations for the same hypotheses as in Section 2.2.3. The full system

(2.3) is simulated with synaptic coupling (2.7) that has the coefficients a = −0.2, b = 2.5, c = 2;

the gain function F is chosen with r = 3 and θ = 0, and the parameter τ is fixed at τ = 4. The

horizontal axis represents the space x, the vertical axis corresponds to time t, and the variable

u(x, t) is plotted by the change in the level of color.

Therefore we have F ′′(0) = 0 , k0 = 1, Ĵ(0) = −0.2, Ĵ(k0) = 1.25, Ĵ(2k0) = 1 and α∗ = 1,

g∗ = 0.25. The coefficients in the normal form are A = −0.1406, C = D = −0.7031, and then

M = −2.1094, D/M = 1
3 . From Theorem 2.4 we obtain: L0 : α = 4

5(g +1), H0 : [α = 1, g > 0.25],

LM : [α = 12
11(g+ 2

3), g > 0.25], SLS : [α = 6
5(g+ 7

12), g > 0.25], SNS2 : [α = 444
355(g+ 61

111), g > 0.25],

Lm : α = 4g, g > 0.25].

We choose parameters in different regions.

Along the bifurcation line L0 we take α = 0.95, g = 0.2 in the region (1) and obtain the trivial

solution T, and take α = 0.98, g = 0.2 in region (2) and obtain the steady-state SS pattern (Figure

2.14). The same set of initial conditions, say Ic1, is considered in both cases. This set of initial

conditions will be used later for other parameter values.

Along the bifurcation line H0 let us take α = 0.98, g = 0.26 in the region (1) (Figure 2.15),

and α = 1.004, g = 0.26 in region (7) . We consider two distinct sets of initial conditions, Ic1, the

same as above, and Ic2. By crossing H0 the patterns that bifurcate from T are different: TW for

Ic1 (Figure 2.16), and SW for Ic2, but this is unstable (Figure 2.17, Figure 2.18).

Along the bifurcation line Lm we consider α = 1.08, g = 0.26 in region (2) with different initial
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conditions: Ic1 and Ic2. A steady-state pattern SS is selected (Figure 2.19). At α = 1.03, g = 0.26

in region (3) we obtain a TW pattern for Ic1, and a SS pattern for Ic2 (Figure 2.20). The SS pattern

is unstable as we see when we introduce in the system white noise scaled by a factor nz = 0.001

(Figure 2.21)

We consider α = 1.0122, g = 0.26 in region (4), between SNS2 and SLS , and α = 1.01122,

g = 0.26 in region (5), between SLS and LM . For different initial conditions, Ic1, Ic2 and Ic3,

patterns as TW, SW and SS respectively can occur, but the last two are destabilized in time to a

TW. We present, for example, the numerical results for the α = 1.0122, g = 0.26. Starting with Ic1

initial condition we obtain a TW pattern (Figure 2.22); starting with Ic2, a SW pattern is formed

but it destabilizes in time to a TW (Figure 2.23); starting with Ic3, a SS pattern is formed but it

destabilizes in time to a TW (Figure 2.24).

Similar pictures are obtained for α = 1.01122, g = 0.26 in region (5).

At α = 1.009, g = 0.26 in region (6) the patterns that might occur are TW and SW, but always

SW is destabilized in time to a TW (Figure 2.25).

Remark 2.13. There is a nice agreement between the theoretical and numerical results. Numeri-

cally it is impossible to detect a pattern that has all the corresponding eigenvalues positive, i.e. it

is completely unstable (as one of the SWs in regions (4) and (5) in the bifurcation diagram, or the

SS in region (6)). Nevertheless the other patterns that present stability at least on one direction

can be visualized in the numerical simulation. Of course, finally they will approach the only stable

solution, i.e. TW.

Remark 2.14. We did not complete in this thesis the analysis of the system (2.3). A direction for

future research is to investigate other possible cases (bifurcation diagrams) that might occur for

different values of the parameter θ in the function F . We are especially interested in the case when

the standing wave pattern is stable, and furthermore in the case that can give rise to an additional

pattern not studied here that is the modulated waves pattern. These situations correspond to

different kinds of bifurcation diagrams listed in [27].
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2.4 Conclusions

We have analyzed a rate model with nonlinear sigma-shaped gain function for two homogeneous

populations of neurons, one excitatory that displays adaptation, and one inhibitory. The coupling is

characterized by local excitation and long range (lateral) inhibition, and the adaptation is assumed

to be linear. When the strength of adaptation is sufficiently large (or the adaptation is slow enough)

temporal oscillations occur in the system. In general they form traveling waves, but we were able

to show that it is possible, when the threshold is sufficiently high, to obtain also standing waves.

These are spatial oscillations with frequency k0 and temporal oscillations with frequency ω0 that

can be computed as functions of parameters τ , g, and the strength of the coupling α. Numerical

simulations indicate that for a fixed adaptation time constant τ , the standing wave pattern occurs

for intermediate value of the strength g of adaptation, in a relatively small regime. When g is

increased the local activity is disrupted and starts to travel along the network, resulting in a

traveling wave pattern.

We have also investigated the transition between stationary patterns and spatio-temporal pat-

terns in the neural network therefore explaining the patterns found in the numerical simulations of

the full model.

We did not complete the analysis of the system (2.3). The general theory predicts, under

certain conditions, the existence of a different spatio-temporal pattern, that is the modulated waves

characterized by two different temporal frequencies in addition to the spatial frequency k0. The

questions if the conditions necessary to the existence of modulated waves are met in this neural

system, and if this pattern can be made to be stable, remain open.
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Figure 2.14. Along the bifurcation line L0 we have (a) the trivial solution T in region (1), at
α = 0.95, g = 0.2, and (b) steady state SS in region (2), at α = 0.98, g = 0.2. The same set of
initial conditions Ic1 is used.

Figure 2.15. At α = 0.98, g = 0.26 in region (1), close to the bifurcation line H0, we obtain T for
different sets of initial conditions (a) Ic1 will give rise in region (7) to a TW; (b) Ic2 will give rise
in region (7) to an unstable SW.

58



Figure 2.16. The TW pattern obtained for Ic1, at α = 1.004, g = 0.26 in region (7).

Figure 2.17. The SW pattern obtained for Ic2, at α = 1.004, g = 0.26 in region (7). This pattern
is unstable.

Figure 2.18. The SW pattern obtained at α = 1.004, g = 0.26 for Ic2 is destabilized to TW in the
presence of noise.
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Figure 2.19. The SS pattern obtained at α = 1.08, g = 0.26 in region (2), close to the bifurcation
line Lm for initial conditions (a) Ic1; (b) Ic2.

Figure 2.20. At α = 1.03, g = 0.26 in region (3) we obtain (a) TW for Ic1; (b) SS for Ic2 (this
pattern is unstable).

Figure 2.21. The SS pattern obtained at α = 1.03, g = 0.26 for Ic2 is destabilized to TW in the
presence of noise.
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Figure 2.22. At α = 1.0122, g = 0.26 in region (4), starting with Ic1 initial conditions a TW pattern
is formed.

Figure 2.23. At α = 1.0122, g = 0.26 in region (4), starting with Ic2 initial conditions, a SW pattern
is formed. Nevertheless it is destabilized in time to a TW.
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Figure 2.24. At α = 1.0122, g = 0.26 in region (4), starting with Ic3 initial conditions, a SS pattern
is formed. Nevertheless it is destabilized in time to a TW.
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Figure 2.25. At α = 1.009, g = 0.26 in region (6), a SW pattern may form, but it destabilizes in
time to a TW.
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Chapter 3

Multiple-spike waves in a one-dimensional

integrate-and-fire neural network

3.1 Introduction

Traveling waves in networks of neurons with purely excitatory synaptic coupling have been the

object of many recent theoretical studies [10, 11, 33, 40, 45, 44, 79, 81, 80, 82, 84]. These studies

are motivated by experiments in which a slice of cortical tissue, with all inhibition blocked, is

subjected to a local shock stimulus. This stimulus results in a wave of activity propagating across

the network [17, 18, 43, 66, 98]. Theoretical models of this phenomenon range from continuum

firing rate models [2], [84] to simplified spiking models [10, 33, 82] to detailed conductance-based

models [43], [98].

Firing rate models do not include individual spikes; as a result, the temporal details of neuronal

activity cannot be considered. In spiking models (and in experiments), it becomes apparent that

after the first wave front passes through a network, a single neuron can fire many times [43]. How-

ever, theoretical analysis of spiking models has, with few exceptions, required that each neuron fire

exactly once during wave propagation. This is either a priori imposed on the model or implemented

by strong synaptic depression or after-hyperpolarization. In the single-spike case, the existence of

traveling waves is reduced to solving a certain nonautonomous boundary value problem [33], [82].

This computation can be done explicitly when the individual neurons are modeled by the leaky

integrate-and-fire (LIF) model. Ermentrout [33], Bressloff [10] and Golomb and Ermentrout [45],

[44] developed methods for studying the existence of traveling waves of activity in networks of

LIF cells, incorporating a variety of additional features such as synaptic delays, again under the

assumption that each cell only fires once. Under this assumption it is also possible to obtain an

expression for the wave velocity c [80].

The aim of this work is to address several questions related to networks of spiking neurons in

which each cell fires multiple spikes during wave propagation. As with most previous analysis, we
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will restrict our attention to an excitatorily coupled network of LIF neurons. Recall that the LIF

model for an individual neuron has the form

τ1
dV

dt
= −V + I(t) ,

where I(t) represents inputs and τ1 is the membrane time constant. If V (t−) = VT , the voltage

threshold, then V (t+) = VR, the reset voltage, and the neuron emits a “spike.” We can formally

rewrite this equation to take into account the resetting as

τ1
dV

dt
= −V + I(t) + ṼR

∑
n

δ(t− tn) (3.1)

where ṼR = τ1(VR − VT ) and tn denotes the sequence of firing times of the neuron; that is,

V (t−n ) = VT for each n ≥ 1. Henceforth, we omit the − (minus) superscript when taking the limit

of V as t approaches a firing time from the left.

We consider a continuous network of such neurons, coupled in a translationally invariant manner

on an infinite one-dimensional domain and parameterized by the spatial variable, x. The model is

identical to those studied in many of the papers mentioned above. Coupling between a neuron at

position x and one at position y is mediated by a time-dependent current with maximal strength

depending on the distance, |x − y|. Each time a neuron fires, it activates a potential defined by a

fixed function, α(t), which vanishes for t < 0, is typically positive for t > 0, and decays to zero as

t > 0 increases. With these considerations, the network of interest is:

τ1
∂ V

∂ t
= −V (x, t) + g

∞∑
n=−∞

∫ ∞

−∞
dy J(x− y) α(t− t∗n(y)) +

∞∑
n=−∞

δ(t− t∗n(x)) ṼR (3.2)

for (x, t) ∈ IR × IR, where ṼR is given in (3.1); we assume that VT is positive and VR < VT . In

this continuous network, note that the firing times t∗n(x) have a spatial dependence. Integration of

(3.2) yields V (x, t∗n(x)) = VT and V (x, t∗+n (x)) = VR, which verifies that the constant ṼR is defined

appropriately.

In (3.2), the parameter g denotes maximal synaptic coupling strength, while J(x) : IR →
IR+ ∪ {0} is the synaptic coupling function, with integral 1. Any integrable, even, non-negative
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function could be used here. We take

α(t) = e−t/τ2H(t) =





0, t < 0

e−t/τ2 , t ≥ 0
(3.3)

where H(t) is the Heaviside step function, τ1 < τ2 and

J(x) =
1
2σ

e−|x|/σ . (3.4)

In this chapter, we provide a framework for the study of traveling waves with arbitrary (finite

or countably infinite) collections of spike times. We first, in Section 3.2, provide a reformulation of

(3.2) which is particularly suitable for the study of traveling waves. In Section 3.3, we use this to

provide a necessary and sufficient condition for the existence of single-spike traveling waves, thereby

completing the partial study of such waves begun in [10], [33], and to analyze two-spike traveling

waves.

We analytically calculate the interspike interval for a two-spike wave, and then in Section 3.4 we

consider traveling wave solutions for which each cell spikes at an infinite sequence {Tn(x)}, n ≥ 0, of

spike times. Our traveling wave formulation can be used naturally for the iterative computation of

the interspike intervals Tn+1−Tn that must arise for such a solution to be consistent with equations

(3.2), (3.3), (3.4).

Further considerations regarding periodic solutions, the derivation of a three-branched disper-

sion relation between wave speed c and period T and the case when the absolute refractory period

is included in the model are made in [78].

3.2 Traveling wave description

We begin by considering constant speed traveling wave solutions of (3.2) for which each cell has

a finite first spike time.

For non-periodic solutions, the n-th spike time, n ≥ 0, of the neuron at the position x can be

written as t∗n(x) = x
c + Tn. Here we assume T0 = 0, and {Tn}n≥0 is a sequence of nonnegative

numbers T0 = 0 < T1 ≤ . . . ≤ TN ≤ . . ., with strict inequality as long as the Tn are finite. Traveling
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wave solutions of (3.2) take the form V (x, t) = V (ξ) for traveling wave coordinate ξ = tc− x ∈ IR,

where c denotes the traveling wave velocity. In terms of this coordinate, and under the assumption

that each cell’s first spike occurs at a finite time, equation (3.2) becomes

τ1c V ′(ξ) = −V (ξ) + g
∞∑

n=0

∫ ∞

−∞
duJ(u− ξ)α(u/c− Tn) +

∞∑

n=0

δ(ξ/c− Tn)ṼR. (3.5)

A traveling wave solution of (3.5) is obtained by direct integration. For such a solution to be

valid, it must satisfy a self-consistency condition, which we state here. This consistency condition

relates the asymptotic behavior of V as ξ → −∞ with the fact that V reaches threshold for the

first time at ξ = 0. In the limit as ξ → −∞, the synaptic input to each cell becomes 0 (that

is, all wave fronts become infinitely far away from each cell). Since solutions of the equation

τ1cV
′(ξ) = −V (ξ) decay to 0, the consistency condition states that the potential of each neuron

must satisfy limξ→−∞ V (ξ) = 0. Upon integration of (3.5) from ξ = −∞ to ξ = 0, using V (0) = VT ,

this condition formally yields

VT =
g

(∑∞
n=0 e−

c Tn
σ

)

2
(

τ1c
σ + 1

) (
1 + σ

τ2c

) . (3.6)

The derivation of the consistency condition (3.6) will become more clear in Section 3.2.2.

For expression (3.6) to be meaningful, a second condition must hold, namely that the series
∑∞

n=0 e−c Tn/σ is convergent; we will only consider traveling wave solutions for which this is true.

Clearly this holds if each neuron fires only a finite number M of times. In this case, we obtain

T0 = 0 < T1 < . . . < TM−1 < ∞ and set Tn = ∞ for all n ≥ M ; thus, the series becomes the finite

sum
∑∞

n=0 e−c Tn/σ =
∑M−1

n=0 e−c Tn/σ.

Using the consistency condition (3.6), integration of (3.5) up to arbitrary ξ yields

V (ξ) = VT e−ξ/τ1c + Isyn(ξ) + R(ξ). (3.7)

The function R(ξ) is the “decaying reset,” encoding the refractoriness of a cell after a spike. This

is given by R(ξ) =
∑∞

n=0 η(ξ/c− Tn) where

η(t) = 0, t ≤ 0 ; η(t) = (VR − VT ) e−t/τ1 , t > 0 (3.8)
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and Isyn(ξ) is the “synaptic integral”

Isyn(ξ) = g
τ1c e−ξ/τ1c

∫ ξ
0 ds

[∑∞
n=0

∫∞
0 du J(u + c Tn − s)α(u/c)

]
es/τ1c

≡ (e−ξ/τ1c/τ1c)
∫ ξ
0 ds (

∑∞
n=0 In(s)) es/τ1c .

(3.9)

On each interval between two consecutive spikes the decaying reset has the form

R(ξ) =





0 , ξ ≤ 0

(VR − VT )
(∑N−1

n=0 eTn/τ1
)

e−ξ/τ1c , c TN−1 < ξ ≤ c TN (N ≥ 1) .

The balance between the input from the synaptic integral and the reset after spiking determines

what types of constant speed wave fronts can propagate in the neural network.

3.2.1 Computation of synaptic currents

We now derive the synaptic current due to the n-th front of the traveling wave, In(s) =

g
∫∞
0 du J(u + c Tn − s)α(u/c), at some point s on the traveling wave coordinate axis.

Suppose we freeze the time t and record what happens at each position in space along the neural

network. Without loss of generality, we fix our point of reference at x = 0, where by assumption

the first spike occurs at t = 0 (such that ξ = ct− x = 0).

For any fixed negative time t, none of the wave fronts has yet reached the point x = 0, and

all synaptic current results from waves that will arrive in the future. The n-th front (n ≥ 0) will

reach x = 0 at time Tn. Hence, one can derive the position yn of the n-th front at time t < Tn

from 0 − yn = c(Tn − t), which gives yn = c(t − Tn) < 0. Correspondingly, the current (measured

at x = 0) that is induced by this front (“future wave”)at time t is

In;f (t) = g

∫ c(t−Tn)

−∞
dy J(y) α(t− y/c− Tn) .

Written in the wave coordinates (s = ct − x = ct, u = ct − y − cTn = s − y − cTn), and using the

fact that J is an even function and that u + cTn − s = −y > 0, this becomes

In(s) ≡ In;f (s) = g

∫ ∞

0
du J(u+cTn−s) α(u/c) =

g

2σ

∫ ∞

0
due−(u+cTn−s)/σe−u/τ2c =

g e−cTn/σ

2(1 + σ
τ2c)

es/σ
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Figure 3.1. Illustration of incoming waves relative to the cell at x = 0.

In summary, for t (and thus s) negative, all the synaptic currents correspond to “future waves”

(In; f ) and the total current at s is

Itotal(s) =
∞∑

n=0

In(s) =
g

(∑∞
n=0 e−cTn/σ

)

2(1 + σ
τ2c)

es/σ . (3.10)

At any fixed nonnegative time t (such that s = ct ≥ 0), say between two consecutive spike-times

TN−1 < t ≤ TN , there are “previous wave” fronts that have already passed through x = 0 and

many others that have yet to arrive. The position reached by each front at the moment t can be

found by the same formula, yn = c(t − Tn), as above; the only difference is that yn > 0 for all

previous waves (n = 0, . . . , N − 1) and yn ≤ 0 for all “future waves” (n ≥ N).

Remark 3.1. The above classification of waves is illustrated in Figure 3.1. At the time labelled

with the solid black circle on the t-axis, the two waves labelled with ‘f’ are future waves for the cell

at x = 0, as they have not yet reached x = 0; one of them will arrive at time T2 and the other at

time T3 (not shown). The two waves to the right of the diagonal dashed line are previous waves,

as they have already passed through x = 0. We subdivide the synaptic contribution from these

waves into p− and p+, below and above the horizontal dashed line, respectively; these correspond

to synaptic inputs from spikes that occurred for some t < 0 and from spikes that occurred for some

time t > 0, respectively. The synaptic currents are characterized below.
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Synaptic current due to a future wave (n ≥ N)

In(s) = In; f (s) = g

∫ c(t−Tn)

−∞
dy J(y) α(t− y/c− Tn) = g

∫ ∞

0
du J(u + cTn − s) α(u/c)

=
g e−cTn/σ

2(1 + σ
τ2c)

es/σ .

Synaptic current due to a previous wave (n = 0, . . . , N − 1)

In(s) = In; p(s) = g

∫ c(t−Tn)

−∞
dy J(y) α(t− y/c− Tn) = In; p−(s) + In; p+(s)

where

In; p−(s) = g

∫ 0

−∞
dy J(y)α(t− y/c− Tn) = g

∫ ∞

s−cTn

du J(u + cTn − s) α(u/c)

=
g

2σ

∫ ∞

s−cTn

du e−(u+cTn−s)/σe−u/τ2c =
g eTn/τ2

2(1 + σ
τ2c)

e−s/τ2c .

and

In; p+(s) = g

∫ c(t−Tn)

0
dy J(y)α(t− y/c− Tn) = g

∫ s−cTn

0
du J(u + cTn − s) α(u/c)

=
g

2σ

∫ s−cTn

0
du e(u+cTn−s)/σe−u/τ2c =

g eTn/τ2

2(1− σ
τ2c)

e−s/τ2c − g ecTn/σ

2(1− σ
τ2c)

e−s/σ .

Total current

Itotal(s) =
∞∑

n=0

In(s) =
N−1∑

n=0

In; p(s) +
∞∑

n=N

In; f (s) = (3.11)

=
g

(∑N−1
n=0 eTn/τ2

)

1− σ2

τ2
2 c2

e−s/τ2c −
g

(∑N−1
n=0 ecTn/σ

)

2(1− σ
τ2c)

e−s/σ +
g

(∑∞
n=N e−cTn/σ

)

2(1 + σ
τ2c)

es/σ .

3.2.2 The traveling wave solution

Once the synaptic integral Isyn(ξ) in (3.9) is computed by integrating Itotal(s) =
∑∞

n=0 In(s),

the right hand side of expression (3.7) for the solution V (ξ) is completely specified. The necessary
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condition (3.6) that we imposed at the beginning of our analysis now appears in the form of Isyn(s)

for ξ ≤ 0, i.e.

Isyn(ξ) =
g

( ∑∞
n=0 e−cTn/σ

)

2( τ1c
σ + 1)(1 + σ

τ2c)

(
eξ/σ − e−ξ/τ1c

)
.

That is, if (3.6) holds, then the terms VT e−ξ/τ1c and Isyn(ξ) in (3.7) sum to VT eξ/σ, such that

V (ξ) → 0 as ξ → −∞. Moreover, as we expected, the equations V (0) = VT and V (c T+
N ) =

limξ↘c TN
V (ξ) = (VR − VT ) + V (c TN ) = VR are valid. These results are summarized in Lemma

3.2.1 below. A more concise expression for V (ξ) is provided in Theorem 3.1; however, we shall see

that for practical purposes, Lemma 3.2.1 is very useful.

Lemma 3.2.1. If condition (3.6) is true, then the following function V (ξ), ξ = tc−x, is a traveling

wave solution of the integro-differential equation (3.2), if all of the terms converge as ξ,N →∞.

V (ξ) = VT e ξ/σ, ξ ≤ 0 ,

V (ξ) =
[

VT − g (
PN−1

n=0 e−c Tn/σ )
2(

τ1c
σ

+1)(1+ σ
τ2c

)

]
e ξ/σ +

g (
PN−1

n=0 ec Tn/σ )
2(

τ1c
σ
−1)(1− σ

τ2c
)

e−ξ/σ +
g (
PN−1

n=0 eTn/τ2 )
(1− σ2

τ2
2 c2

)(1− τ1
τ2

)
e−ξ/τ2c−

−g (
PN−1

n=0 eTn/τ1 )
(1− σ2

τ2
1 c2

)(1− τ1
τ2

)
e−ξ/τ1c + (VR − VT )

(∑N−1
n=0 eTn/τ1

)
e−ξ/τ1c, c TN−1 < ξ ≤ c TN (N ≥ 1) .

(3.12)

Theorem 3.1. [general traveling wave solution] If condition (3.6) is true, then the following

expression for V (ξ), ξ = tc − x, denotes a traveling solution of the integrate-and-fire model (3.2),

if it converges:

V (ξ) =
∞∑

n=0

η(ξ/c− Tn) + g
∞∑

n=0

∫ ∞

0
J(u− ξ + c Tn)A(u/c) du . (3.13)

In (3.13), η is defined by (3.8) and A is defined as the convolution function A(t) = α ∗ β (t) =
∫ t
0 α(s) β(t− s) ds with β(t) = 1

τ1
e−t/τ1, i.e.

A(t) = 0 , t ≤ 0 ; A(t) =
1

1− τ1/τ2

(
e−t/τ2 − e−t/τ1

)
, t > 0 .

Remark 3.2. For any traveling wave solution with a finite number of spikes, as discussed in the

next section, convergence is not an issue.
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3.3 Solutions with a finite number of spikes

3.3.1 One-spike traveling waves

We focus first on the case of a solitary wave with speed c and corresponding firing time t∗(x) =

x/c. In the notation introduced in Section 3.2, T0 = 0 and TN = ∞ for all N ≥ 1. Therefore

equation (3.6) reads

VT =
g

2
(

τ1c
σ + 1)(1 + σ

τ2c

) (3.14)

and can be solved exactly for c, if g/VT ≥ 2
(
1 +

√
τ1
τ2

)2
. This necessary condition for the existence

of a one-spike wave was used as an existence criterion in [11], [33], [80]. When this condition holds,

there exist two candidate solutions, the slow wave and the fast wave, corresponding to

cslow ; fast =
σ

2τ1


 g

2VT
− τ1

τ2
− 1∓

√(
g

2VT
− τ1

τ2
− 1

)2

− 4
τ1

τ2


 .

As g/VT increases from its minimal critical value to infinity, cslow decreases from σ/
√

τ1τ2 to zero

and cfast increases from σ/
√

τ1τ2 to infinity. We will denote the curve g/VT = 2
(
1 +

√
τ1
τ2

)2
as 1F

below.

Remark 3.3. In what follows, we analyze the fast one-spike traveling wave, since only this one is

stable [10], [33]. We will simply write c for the velocity cfast.

If a traveling wave solution to (3.2) exists, then it takes the form V (ξ) = VT e ξ/σ when ξ ≤ 0.

When ξ > 0 it is given by, from Lemma 3.2.1,

V (ξ) = (VR − VT ) e−ξ/τ1c +
g e−ξ/σ

2( τ1c
σ − 1)(1− σ

τ2c)
+

g e−ξ/τ2c

(1− σ2

τ2
2 c2

)(1− τ1
τ2

)
− g e−ξ/τ1c

(1− σ2

τ2
1 c2

)(1− τ1
τ2

)
.

Note that limξ→±∞ V (ξ) = 0, V (0) = VT , and V (0+) = VR.

The next step is to check that the candidate solution above indeed has no other spike after it

passes ξ = 0; that is, the spiking threshold is never reached again. Therefore we must verify that

V (ξ) < VT for all positive ξ. This is not true in general for reasons that are simple to understand.

At fixed VR, as g/VT → ∞, it becomes increasingly easier for the individual neurons to re-excite

and spike again. We compute in the following the equation of a curve, call it 1S , which separates
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the (g/VT ,−VR/VT ) plane to the right of 1F into two disjoint regions: a region where the one-spike

fast wave solution exists and a region where it does not.

Theorem 3.2. [a necessary and sufficient condition for the existence of the fast one-

spike traveling wave solution] The integrate-and-fire model (3.2) has a one-spike fast wave

solution if and only if

g/VT ≥ 2
(

1 +
√

τ1

τ2

)2

(3.15)

and the reset voltage value satisfies

(−VR/VT ) > (H(y∗)− 1), (3.16)

where H is defined by

H(y) =
1

yσ/τ1c


y − 1 +

g/VT

1− τ1
τ2


yσ/τ2c − y

1− σ2

τ2
2 c2

− yσ/τ1c − y

1− σ2

τ2
1 c2





 (3.17)

and y∗ is the unique solution in the interval (0, 1) of the equation G(y) = 0 with

G(y) = y − 2τ2c

τ2c + σ
yσ/τ2c +

σ(τ2c− σ)
(τ1c + σ)(τ2c + σ)

. (3.18)

When (3.15) holds, for values of VR for which (3.16) fails, there exists a positive ξ where the

threshold VT is reached again, so the one-spike condition is violated.

Proof: We sketch the proof here and provide technical details in Appendix C.0.1.

Set y = e−ξ/σ. The condition V (ξ) < VT for all positive ξ reads as V (y) < VT for all y ∈ (0, 1),

which is equivalent to H(y) < (−VR/VT + 1) with H defined by (3.17).

We analyze H(y) and obtain that H ′(y) = τ2
2τ1

σ
τ2c−σ

g
VT

y−(1+σ/τ1c) G(y). The sign of H ′(y) is

the sign of G(y) since for the fast wave we have c ≥ σ/
√

τ1τ2 > σ/τ2.

On the interval [0, 1], the function G satisfies

G(0) = σ(τ2c−σ)
(τ1c+σ)(τ2c+σ) > 0, G(1) = − τ1c(τ2c−σ)

(τ1c+σ)(τ2c+σ) < 0;

Moreover it can be proved that G has exactly one zero in this interval, say y∗. Hence, H(y) has

a maximum at y = y∗, and further, limy↘0 H(y) = −∞ and H(1) = 0. Together, these imply

H(y∗) > 0. In summary, V (ξ) < VT for all ξ > 0 if and only if (−VR/VT ) > (H(y∗)− 1).
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Remark 3.4. A special case occurs at g/VT = 4(1 + τ1/τ2), where the fast wave has the veloc-

ity c = σ/τ1 and V (ξ) = VT

(
−2(τ2+τ1)

τ2−τ1
ξ
σ e−ξ/σ + 4τ2

2
(τ2−τ1)2

e−τ1ξ/τ2σ − 3τ2
2 +2τ1τ2−τ2

1
(τ2−τ1)2

e−ξ/σ
)

+ (VR −
VT ) e−ξ/σ. In this case, the definition of H changes in the following way: the ratio yσ/τ1c−y

1−σ2/τ2
1 c2

=

−
(

yτ1c
τ1c+σ

)(
y

σ
τ1c−1−1

σ
τ1c

−1

)
becomes − τ1c

τ1c+σ y ln(y), or equivalently −1
2 y ln(y). In the computation of

G, the logarithm cancels and we again end up with expression (3.18), i.e. y∗ is again the unique

solution of the equation G(y) = 0 on (0, 1).

Remark 3.5. The curve 1S which divides the plane (g/VT ,−VR/VT ) into the two regions mentioned

above has the equation

−VR/VT = H(y∗)− 1 .

To see that this really forms a curve in the (g/VT ,−VR/VT ) plane, note that y∗ = y∗(σ, τ1, τ2, c),

with c depending on g/VT . If we fix all parameters except g/VT , then we get H(y∗) = H(y∗(g/VT )).

Remark 3.6. Recall that the equation g/VT = 2
(
1 +

√
τ1
τ2

)2 defines the curve 1F in the plane

(g/VT ,−VR/VT ). Theorem 3.2 states that to obtain a one-spike traveling wave in the integrate-

and-fire model, the parameters must lie to the right of the curve 1F for firing to occur, and above

the curve 1S for firing to stop after one spike. That is, the first condition allows for self-sustained

propagation of the traveling wave, while the second prevents multiple spikings by resetting the

potential to low enough values. These curves are displayed in Figure 3.2 for a representative

parameter set.

3.3.2 Two-spike traveling waves

In a two-spike traveling wave, each cell fires at times that we denote T0 = 0 and T1 = T . In

our earlier notation, this also means Tj = ∞ for each j ≥ 2. In this case, equation (3.6) and

substitution of the condition V (cT ) = VT into (3.12) in Lemma 3.2.1 read as

VT =
g

(
1 + e−c T/σ

)

2( τ1c
σ + 1)(1 + σ

τ2c)
, (3.19)

VT = (VR − VT ) e−T/τ1 +
g

2( τ1c
σ + 1)(1 + σ

τ2c)
+

g e−c T/σ

2( τ1c
σ − 1)(1− σ

τ2c)
+

+
g e−T/τ2

(1− σ2

τ2
2 c2

)(1− τ1
τ2

)
− g e−T/τ1

(1− σ2

τ2
1 c2

)(1− τ1
τ2

)
. (3.20)
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Figure 3.2. The curves 1F and 1S for τ1 = 1, τ2 = 2, σ = 1, VT = 1. Parameter values must lie to
the right of 1F for cells to be able to fire upon receiving the one-spike synaptic input. Parameter
values must lie above 1S for cells to stop firing after just one spike. Between the two curves, one-
spike waves exist in the region labelled EXIST. Note that 1S terminates in an intersection with 1F ,
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Figure 3.3. Numerically generated curves showing wave speed as a function of coupling strength
for one- and two-spike waves.
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With the definition

f(c) =
2

g/VT

(τ1c

σ
+ 1

)(
1 +

σ

τ2c

)
− 1 (3.21)

we obtain according to (3.19) an explicit equation for T ,

T = −σ

c
ln f(c) . (3.22)

We are ready now to investigate under which conditions the system (3.19), (3.20) has a solution

(c, T ) with positive c and T , i.e. when f(c) is between 0 and 1. Let us define





c̃1;2 = σ
2τ1

[
g

VT
− τ1

τ2
− 1∓

√(
g

VT
− τ1

τ2
− 1

)2
− 4 τ1

τ2

]
,

c1;2 = σ
2τ1

[
g

2VT
− τ1

τ2
− 1∓

√(
g

2VT
− τ1

τ2
− 1

)2
− 4 τ1

τ2

] (3.23)

and notice that f(c) = 0 at c = c1;2 and f(c) = 1 at c = c̃1;2.

The set Sc = { c ∈ IR+ | f(c) ∈ (0, 1) } is easily computed: if g/VT <
(
1 +

√
τ1
τ2

)2
then Sc = ∅;

if
(
1 +

√
τ1
τ2

)2
< g/VT < 2

(
1 +

√
τ1
τ2

)2
then c1;2 are complex with nonzero imaginary parts and

Sc = (c̃1, c̃2); if 2
(
1 +

√
τ1
τ2

)2
≤ g/VT then 0 < c̃1 < c1 ≤ c2 < c̃2 and Sc = (c̃1, c1) ∪ (c2, c̃2) ⊂ IR.

Remark 3.7. c1 = c1
slow and c2 = c1

fast; that is, c1 and c2 are the slow and fast velocities from the

one-spike wave case. Moreover, T (c) →∞ as c → c1;2 since we have then f(c) ↘ 0.

Remark 3.8. As g/VT →∞ we obtain c̃1, c1 → 0, c2, c̃2 →∞ and c̃2/c2 → 2, c̃1/c1 → 1/2.

The equations (3.20) and (3.22) imply F (c) = 0, where

F (c) =
(
−VR

VT
+ 1

)
f(c)

σ
τ1c

−1 +
g/VT

1− τ1
τ2

(
τ2c

τ2c + σ
fτ2(c)−

τ1c

τ1c + σ
fτ1(c)

)
, (3.24)

with

fτi(c) =





f(c)
σ

τic−1−1
σ

τic
−1 , c 6= σ/τi

ln f( σ
τi

) , c = σ/τi

(i = 1, 2) .

The velocities of candidate two-spike traveling wave solutions are precisely the roots of F that belong

to the set Sc. Such velocities correspond to true two-spike traveling wave solutions if V (ξ) < VT
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for all ξ > cT .

Lemma 3.3.1. The function F : Sc → IR defined by (3.24) is continuous on Sc and satisfies

F (c̃+
1 ) = F (c̃−2 ) = −VR

VT
+ 1 > 0.

Proof: The result comes directly from the definition of F and the fact that limc→c̃1;2 f(c) = 1.

Here and below we use the notation F (x+
0 ) = limx↘x0 F (x), F (x−0 ) = limx↗x0 F (x).

Lemma 3.3.2. Suppose that g/VT ≥ 2
(
1 +

√
τ1
τ2

)2
, i.e. Sc = (c̃1, c1)∪(c2, c̃2). Then F (c+

2 ) = −∞
and F (c−1 ) < 0. Moreover

i) if 2
(
1 +

√
τ1
τ2

)2
≤ g/VT < 4

(
1 + τ1

τ2

)
, then c̃1 < σ

τ2
< c1 ≤ c2 < σ

τ1
< c̃2 and F (c−1 ) = −∞,

ii) if g/VT = 4
(
1 + τ1

τ2

)
, then c̃1 < c1 = σ

τ2
< σ

τ1
= c2 < c̃2 and F (c−1 ) = −∞,

iii) if g/VT > 4
(
1 + τ1

τ2

)
, then c̃1 < c1 < σ

τ2
< σ

τ1
< c2 < c̃2 and

F (c−1 ) = − g
VT

(
1 + τ1

τ2

)
σ2

τ2
1 c21−σ2

τ2
2 c21

τ2
2 c21−σ2 < 0.

Proof: See Appendix C.0.2.

These two lemmas immediately imply the following result. The relation between velocities

described in the theorem is shown in the numerical results in Figure 3.3.

Theorem 3.3. If g/VT ≥ 2
(
1 +

√
τ1
τ2

)2
, then for all VR ∈ IR−, there exist two distinct positive

values cS ∈ (c̃1, c1), cF ∈ (c2, c̃2) such that F (cS) = F (cF ) = 0. Therefore there exist two distinct

solutions (cS , TS), (cF , TF ) for the system (3.19), (3.20).

When these correspond to two-spike traveling wave solutions, the velocity cF (cS) of the fast

(slow) two-spike traveling wave solution is greater (less) than that of the fast (slow) one-spike

traveling wave solution.

Remark 3.9. The above results apply for g/VT ≥ 2(1 +
√

τ1/τ2)2. We also expect two-spike

traveling waves to exist for some g/VT < 2(1 +
√

τ1/τ2)2, since Sc 6= ∅ for (1 +
√

τ1/τ2)2 < g/VT <

2(1 +
√

τ1/τ2)2. In fact, in analogy to the one-spike case, we expect that there exist curves 2F ,

given by g/VT = F2(−VR/VT ), and 2S , given by −VR/VT = S2(g/VT ), in the (g/VT ,−VR/VT )

plane, such that for all g/VT to the right of 2F , cells can fire two spikes, while for all −VR/VT above

2S , cells fire at most two spikes.

It is perhaps non-intuitive that, for fixed VR and VT , a two-spike traveling wave should exist

for smaller g than needed for a one-spike wave. This holds because in a two-spike wave, the two
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spikes fired by each cell produce a larger overall synaptic input to each cell in the medium, which

promotes firing. We can carry these ideas further to make several reasoned conjectures. Recall that

a cell’s voltage is reset to VR after a spike. For fixed VT , as |VR| increases, a larger g is required to

elicit a subsequent second spike. Hence, we expect the function F2 to have a positive slope, with

F2(−VR/VT ) → 2(1 +
√

τ1/τ2)2 as |VR| → ∞. For fixed g and VT , a sufficiently large value of

|VR| (sufficiently strong reset) is required to prevent subsequent spikes after a second one, with a

stronger reset needed for larger g. Hence, we also expect S2 to have a positive slope. Finally, the

same arguments should give corresponding curves for N -spike waves, for any positive integer N ,

such that NF moves leftwards and NS moves upwards in the (g/VT ,−VR/VT ) plane, as N increases.

Figure 3.4 illustrates a numerically generated version of the curve 2F , the shape of which agrees

with our conjectures. The expected relation of the curves for one- and two-spike waves is drawn in

Figure 3.5. The proofs of these conjectures remain open.

By solving the equation F (c) = 0 numerically for fixed parameters, one can analytically find the

velocity c. Given this, equation (3.22) yields the time T between the two spikes in the corresponding

traveling wave (if it really is a two-spike solution). These results match quite closely to those

obtained from numerical simulation of fast two-spike traveling waves [78].

3.4 Arbitrary numbers of spikes and infinite spike trains

3.4.1 Computation of interspike intervals

Consider a traveling wave solution for which each cell spikes at an infinite sequence {x/c+Tn},
n ≥ 0, of spike times. We will discuss here how the formulation given in Lemma 3.2.1 can be

used to compute the interspike intervals Tn−Tn−1 between successive waves. In the traveling wave

formulation, in which V is expressed as a function of ξ = ct− x, we have V (cTn) = VT for each Tn.

Correspondingly, Lemma 3.2.1 implies that for any N ≥ 1,

VT =
[

VT − g (
PN−1

n=0 e−c Tn/σ )
2(

τ1c
σ

+1)(1+ σ
τ2c

)

]
e c TN/σ +

g (
PN−1

n=0 ec Tn/σ )
2(

τ1c
σ
−1)(1− σ

τ2c
)

e−c TN/σ +
g (
PN−1

n=0 eTn/τ2 )
(1− σ2

τ2
2 c2

)(1− τ1
τ2

)
e−TN/τ2

+

(
(VR − VT )− g

(1− σ2

τ2
1 c2

)(1− τ1
τ2

)

)( ∑N−1
n=0 eTn/τ1

)
e−TN/τ1 .

(3.25)
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Suppose that there are a finite number of spikes in the traveling wave, say N + 1. For each

spike, equation (3.25) applies. In fact, one obtains a system with N + 1 equations and N + 1

unknowns to be solved to obtain a valid (N + 1)-spike traveling wave solution. The unknowns are

c, which denotes the velocity of the traveling wave, and the spike-times T1 up to TN (since T0 = 0

by convention). The equations in the system are those corresponding to V (cTn) = VT , 1 ≤ n ≤ N ,

and the equation (3.6). Based on the analysis in the previous section, it appears that this highly

nonlinear system can only be solved numerically for most N .

The situation becomes even more complicated when an infinite number of spikes is considered.

Thanks to the traveling wave description set out in Section 3.2, equation (3.25) is available, and one

can iteratively solve for the spike time TN from the previously known spike times T0 = 0, T1, ..., TN−1

for every N ≥ 1. To do so, however, an obstacle must first be overcome: since equation (3.6) involves

all of the traveling fronts, it cannot be used independently from (3.25) in the case of infinitely many

spikes. Thus, the velocity c that appears in each equation must be determined from some alternate

source and then used here as a constant. Once c is specified from such a source, one can iteratively

compute the spike times, and hence the interspike intervals ∆TN = TN − TN−1.

Remark 3.10. One source for the wave speed here is the fast two-spike wave speed calculated

from the analytical formulas (3.19), (3.20). Numerics show [78] that the speeds of waves with large

numbers of spikes are quite similar to those calculated for two-spike waves with corresponding

parameter sets. Intuitively, this makes sense because in fast two-spike waves, the interspike interval

cT is significantly greater than σ, the space constant or “footprint” of the synaptic coupling; see

Figures 3.2, 3.4. Even for cT = 2σ, we have J(cT ) = (1/2σ)e−2, such that little interaction occurs

between the synaptic inputs from different waves in the same solution. Thus, waves travel with

roughly the same speed, no matter how many waves there are.

One might question the value of computing the interspike intervals from numerical solution of

equation (3.25), given that one can perform a numerical simulation of traveling waves in the full

network. However, such simulations are based on applying a localized shock somewhere in the

network at a fixed time and allowing waves to propagate thereafter [81], [80]. This corresponds to a

different, although closely related, form of traveling wave from that which we analyze analytically,

for which all waves can be thought of as having existed somewhere in the infinite network for all
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time. In fact, one interesting result that arises from using equation (3.25) to compute interspike

intervals is that we can compare theory and analysis, to see just how closely related these forms of

traveling wave solutions are.

Remark 3.11. By choosing the parameters τ1 = 1, τ2 = 2, σ = 1, VT = 1, VR = −25 and

g = 6, the comparison leads to the following conclusion: For the first six interspike intervals,

full numerical simulation of equation (3.2), labelled as ‘Numerics,’ and numerical solution of the

analytical expression (3.25), labelled as ‘Iterations,’ produced excellent agreement, as shown in the

following table. Note that for the analytical approach, we used c = 1.256422, the speed of the wave

found in the numerical simulations.

Numerics Iterations Error

T1− T0 2.4258 2.4258 2.83e− 006

T2− T1 2.0479 2.0479 1.56e− 005

T3− T2 1.8844 1.8845 9.72e− 005

T4− T3 1.7953 1.7964 6.22e− 004

T5− T4 1.7417 1.7488 0.0040

We mention that R. Oşan [78] implemented the numerical scheme and the full numerical simulation.

Errors in the table grow due to difficulty in solving equation (3.25) numerically, resulting from the

fact that the first product in this equation consists of a factor that converges to 0 as N →∞ with

a factor that diverges as N →∞. Thus the computation was stopped after the first six interspike

intervals.

Remark 3.12. It can be shown, by induction on N ≥ 1, that equation (3.25) is equivalent to

VT =
[

VT − g (
PN−1

n=0 e−c Tn/σ )
2(

τ1c
σ

+1)(1+ σ
τ2c

)

]
· e c TN/σ ·

[
1− e

−(TN−TN−1)( 1
τ1

+ c
σ

)
]

+
g (
PN−1

n=0 ec Tn/σ )
2(

τ1c
σ
−1)(1− σ

τ2c
)
· e−c TN/σ ·

[
1− e

−(TN−TN−1)( 1
τ1
− c

σ
)
]

+
g (
PN−1

n=0 eTn/τ2 )
(1− σ2

τ2
2 c2

)(1− τ1
τ2

)
· e−TN/τ2 ·

[
1− e

−(TN−TN−1)( 1
τ1
− 1

τ2
)
]

+ VR e−(TN−TN−1)/τ1 .

(3.26)
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This formulation proves its advantage when it is discussed the effect of adding an absolute refractory

period to the integrate-and-fire model [78].

3.5 Conclusions

Traveling waves of activity are observed in slices of cortical tissue under various pharmacological

manipulations. Previous works [33, 45, 44, 79, 82] studied how the velocity of traveling waves

depends on various parameters by assuming that each cell spiked once. In particular, conditions on

the parameters which prevent propagation are readily computed.

By studying propagation in the integrate-and-fire model, we have attempted to address here

the following questions (i) is it possible to get multiple-spike waves; (ii) how does the existence

of waves depend on having multiple spikes; (iii) how does the velocity depend on the number of

spikes.

Lemma 3.2.1 and Theorem 3.1 provide two equivalent formulas for general traveling wave solu-

tions to the continuum integrate-and-fire model (3.2), with the synaptic coupling functions α(t) and

J(x) given in (3.3) and (3.4), respectively. The functions defined by these formulas correspond to

traveling wave solutions, for which the neuron at position x spikes at times {t∗n(x) = x/c+Tn}∞n=0,

where ξ = ct − x, if and only if the consistency condition (3.6) holds and the sum
∑∞

n=0 e−cTn/σ

converges. Convergence is not an issue, of course, when each cell fires only finitely many spikes (cor-

responding to Tn = ∞ for all but finitely many values of n). The same type of computations used

to derive these formulas would be valid for other forms of α(t) and J(x). With more complicated

functions, however, difficulties in evaluating relevant integrals may arise.

We use these formulas to prove that there are curves that delineate the region on which single-

spike traveling wave solutions exist, in a certain parameter space. These curves are shown in

Figure 3.2. We also prove that in another region of parameter space, neurons can propagate a

two-spike traveling wave. It remains open to determine where such solutions actually exist, by

rigorously specifying the set of parameter values for which neurons stop spiking after exactly two

spikes. Our reasoned conjecture on this result, illustrated in Figure 3.5, stems from the numerical

results displayed in Figure 3.4. It also remains open to prove results about solutions with more

than two spikes. We expect a similar pattern of regions in parameter space to extend to these cases.
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The traveling wave formula in Lemma 3.2.1 is rewritten in (3.25), and equivalently (3.26) . This

provides a relationship that can, in theory, be used in an iterative way to solve for as many spike

times as desired in a traveling wave with any countable number of spikes, for fixed parameter values

and a fixed wave speed. Numerics are needed here due to the highly nonlinear nature of (3.25).

Remark 3.13. An example that connects the present work with firing rate models (see the models

in the previous chapters), in which spikes are completely ignored, is presented in [78]. We summarize

here the main idea: We allow the neuron to spike continuously after shocking and suppose that the

synapses saturate, i.e. once the neuron fires the synapse stays on for all time. Let A(x, t) denote the

firing rate of the neuron at spatial point x and time t, so A(x, t) = F (I(x, t)) where F is the firing

rate of a neuron as a function of the applied current. For the integrate-and-fire model, this is almost

a threshold linear curve ([28], p. 164). Since the current is given by I(x, t) = g
∑∞

n=−∞
∫∞
−∞ dy J(x−

y) α(t − t∗n(y)), or, equivalent I(x, t) =
∫ t
−∞ α(t − s)

∫∞
−∞ J(x − y)

∑
n δ(s − t∗n(y)) ds dy, and the

sum is essentially the firing rate of the neuron ([28],p. 233), the following closed system is obtained

A(x, t) = F

(∫ t

−∞

∫ ∞

−∞
α(t− s)J(x− y)A(y, s) ds dy

)
.

Finally, if α(t) = exp(−t/τ)/τ , and U(x, t) =
∫ t
−∞ α(t− s)A(x, s) ds, we get at least formally,

A(x, t) = τ
∂U(x, t)

∂t
+ U(x, t) = F

(∫ ∞

−∞
J(x− y)U(y, t) dy

)
.

This is the familiar firing rate model that has been the subject of much analysis. Let us recall,

for example, the rate model we investigated in Chapter 2 of this thesis. That assumed a smooth

sigma-shaped F function and two different populations, one excitatory, and one inhibitory. When

an additional adaptation equation was considered, we proved some sufficient conditions for the

network to give rise to traveling waves solutions.
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Chapter 4

Discussion

The first two chapters in this thesis discuss possible behaviors in two different rate models. The

third chapter contains some analytical and computational results for a spiking model that is the

leaky-integrate-and-fire (IF) model.

Chapter 1 studies the Wilson-Cowan model for a self-excited population of neurons with absolute

refractory period. This is a rate model, the variable u of which, represents the proportion of

excitatory cells firing per unit time at the instant time t. The spatial interactions are neglected and

only the temporal dynamics of the network are considered (u = u(t)). R, the absolute refractory

period of the neurons in the excitatory network is the parameter with respect to what the analysis

is done.

Chapter 2 investigates a rate model that describes the feature selectivity in local cortical circuits

(Hansel-Sompolinsky model). The spatial connectivity is now important and the ”spatial” variable

corresponds to a different ”feature” presented to the system (e.g. x ∈ [−π
2 , π

2 ] the angle a bar is

rotated in the subject receptive field). The rate variable u depends on the position x in the feature

space and on the time value t, i.e. u = u(x, t).

Similar mathematical methods are used in the first two chapters to analyze these models. The

methods come from bifurcation theory and involve singular perturbation expansions. In both cases,

normal form for typical bifurcations are constructed (Hopf bifurcation in Chapter 1, and Hopf and

Takens-Bogdanov with O(2)-symmetry in Chapter 2). We were able to show that both rate models

can lead to oscillations in some specific range of parameters.

In both cases, oscillations are driven by a ’delayed negative feedback’ mechanism. In the Wilson-

Cowan model the absolute refractory period is the biological mechanism that introduces negative

feedback in the mathematical model. In the Hansel-Sompolinsky model the adaptation plays the

role of negative feedback.

In chapter 2, due to the dependence of the rate variable u(x, t) on spatial connectivity we were

able to make a distinction between different types of oscillations. They occur as spatial-temporal
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patterns in the form of traveling waves and standing waves.

As a result of our analysis, a new kind of pattern is found to be stable in the Hansel-Sompolinsky

model and this is the standing wave pattern. In order to obtain it we need to consider a more general

sigmoid gain function in the system. This pattern corresponds to oscillations in space for a given

time t and oscillations in time for a given position (feature) x in space. The standing wave pattern

can account for example, for the psychophysically investigated phenomenon of binocular rivalry [3],

[9], [69], [70], [71]. Binocular rivalry phenomenon appears when two different stimuli (images) are

presented in competition, that is when one image is shown to one eye simultaneously with showing

another image to the other eye. In this case, subjects report that only one image is perceived

at a moment in time with an alternation between perceived images. The time intervals between

consecutive switches obey a Gamma distribution.

The standing wave solution we obtained in chapter 2 splits the neuronal network in two clusters

the activity of which alternates in time. Therefore this result can be interpreted as corresponding to

the effects on the neuronal network of the two images perceived alternatively in binocular rivalry.

Nevertheless, the two problems cannot be directly connected because on one hand the standing

wave pattern we obtained is a result of spatial connectivity in the system, so it arises as an intrinsic

pattern; on the other hand in binocular rivalry, the pattern results as a consequence of the applied

competing stimuli.

Chapter 3 studies the IF model. The mathematical methods used here are completely different

from the previous chapters and they are more computational oriented. In chapter 3 we investigate

again, this time in the context of spiking models, traveling wave patterns. Since temporal details

are now taken into account, we can make the distinction between one-spike and multiple-spikes

traveling wave solutions. The analysis focuses on this direction and results that characterize the

existence of multiple-spike solutions are presented.

In conclusion, by studying three models in mathematical neuroscience we showed that oscilla-

tions and different kinds of wave patterns can be obtained in neuronal networks, and we analyze

distinct possible mechanisms that can lead to these patterns.
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Appendix A

Adjoint operator and coefficients in the normal form for the

refractory neural network

A.0.1 Adjoint operator

We construct the adjoint operator of L, Ly = dy
dt + A r̃0 y + b r̃0

∫ t
t−1 y(s) ds in the space of

solutions spanned by {1, eiω0t, e−iω0t, e2iω0t, e−2iω0t, . . .}, which means we work with functions x =

x(t) that satisfy x(0) = x(2π
ω0

). We define the primitive X(t) :=
∫ t
0 x(s) ds (so X(0) = 0) , and the

inner product as usual, < φ, ψ >=
∫ 2π

ω0
0 φ(t)ψ̄(t) dt. Now for any two functions x, y in this space

< x, Ly >=< L∗x, y > , where L∗ is the adjoint of the operator L. Compute < x, Ly > :

< x, Ly >=
∫ 2π

ω0

0
x(t)

[
dy

dt
+ A r̃0 y + b r̃0

∫ t

t−1
y(s) ds

]

= x(t) ȳ(t)|
2π
ω0
0 −

∫ 2π
ω0

0

dx

dt
ȳ(t) dt + A r̃0

∫ 2π
ω0

0
x(t) ȳ(t) dt + b r̃0

∫ 2π
ω0

0

[
x(t)

∫ t

t−1
y(s) ds

]

= −
∫ 2π

ω0

0

dx

dt
ȳ(t) dt + A r̃0

∫ 2π
ω0

0
x(t) ȳ(t) dt + b r̃0

∫ 2π
ω0

0

[
x(t)

∫ t

0
y(s) ds− x(t)

∫ t−1

0
y(s) ds

]

=
∫ 2π

ω0

0

[
A r̃0 x(t)− dx

dt

]
ȳ(t) dt + b r̃0

[∫ 2π
ω0

0
x(t) Ȳ (t) dt−

∫ 2π
ω0

0
x(t) Ȳ (t− 1) dt

]
.

Since x = dX
dt and y = dY

dt we use integration by parts and the properties of the functions X and

Y to get < x,Ly >=
∫ 2π

ω0
0

[
A r̃0 x(t)− dx

dt

]
ȳ(t) dt − b r̃0

∫ 2π
ω0

0

(∫ t
0 x(s) ds

)
ȳ(t) dt + b r̃0

∫ 2π
ω0
−1

−1 X(t +

1) ȳ(t) dt + b r̃0X(t)Ȳ (t)
∣∣ 2π

ω0
0 − b r̃0X(t + 1)Ȳ (t)

∣∣ 2π
ω0
−1

−1 i.e.

< x, Ly >=
∫ 2π

ω0
0

[
A r̃0 x(t)− dx

dt + b r̃0

∫ t+1
t x(s) ds

]
ȳ(t) dt

+
∫ 0
−1

[∫ 2π
ω0

0 x(s) ds− ∫ t+1+ 2π
ω0

t+1 x(s) ds

]
ȳ(t)dt.

Since the last integral is zero, the adjoint operator of L can be defined as
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L∗x = −dx
dt + A r̃0 x + b r̃0

∫ t+1
t x(s) ds .

By direct calculation we see that L∗(e± iω0t) = 0. We use for this both λ0 = ± iω0 and the

characteristic equation (1.4).

A.0.2 Coefficients in the normal form

Directly from the definition of the operators L,Λ, B, C we can prove that L(eλt) = L̃(λ)eλt

where the function L̃ is defined as follows L̃(λ) = λ + A r̃0 + (1−e−λ)b r̃0

λ if λ 6= 0, and (A + b)r̃0 if

λ = 0. Similarly, Λ(eλt) = Λ̃(λ)eλt with Λ̃(λ) = −A − 1−e−λ

λ b for λ 6= 0 and −(A + b) for λ = 0,

and B(eλ1t, eλ2t) = B̃(λ1, λ2)eλ1teλ2t with

B̃(λ1, λ2) =





r̃0
1−ū

2 f ′′(ū)− 1
2

[
1−e−λ1

λ1
+ 1−e−λ2

λ2

]
f ′(ū) r̃0 , λ1 6= 0, λ2 6= 0

r̃0
1−ū

2 f ′′(ū)− 1
2

[
1 + 1−e−λ1

λ1

]
f ′(ū) r̃0 , λ1 6= 0, λ2 = 0

r̃0
1−ū

2 f ′′(ū)− 1
2

[
1 + 1−e−λ2

λ2

]
f ′(ū) r̃0 , λ1 = 0, λ2 6= 0

r̃0
1−ū

2 f ′′(ū)− f ′(ū) r̃0 , λ1 = 0, λ2 = 0

and C(eλ1t, eλ2t, eλ3t) = C̃(λ1, λ2, λ3)eλ1teλ2teλ3t. In our problem we are interested only in the case

when all λ1, λ2, λ3 are nonzero. Then C̃(λ1, λ2, λ3) is

C̃(λ1, λ2, λ3) = r̃0
1− ū

6
f ′′′(ū)− 1

6

[
1− e−λ1

λ1
+

1− e−λ2

λ2
+

1− e−λ3

λ3

]
f ′′(ū) r̃0

We make the remark that L̃(λ̄) = L̃(λ) , Λ̃(λ̄) = Λ̃(λ) , B̃(λ1, λ2) = B̃(λ2, λ1), B̃(λ̄1, λ̄2) =

B̃(λ1, λ2) and C̃(λ̄1, λ̄2, λ̄3) = C̃(λ1, λ2, λ3). In order to find the coefficient of z2(0)z̄(0) in the

normal form (1.12) we compute L(teiω0t) = eiω0t
[
2 + A r̃0 + i

(
ω0 − A r̃0+b r̃0

ω0

)]
and L(te−iω0t) =

e−iω0t
[
2 + A r̃0 + i

(
−ω0 + A r̃0+b r̃0

ω0

)]
.

Finally we have Λ̃(iω0) = iω0
r̃0

, L̃(0) = (A + b) r̃0, L̃(2iω0) = A ω2
0

b + i
[
ω0 − ω0 r̃0 A2

2b + ω3
0

2br̃0

]
,

B̃(iω0,−iω0) = r̃0
1−ū

2 f ′′(ū) + A
b f ′(ū) r̃0, B̃(iω0, iω0) =

[
r̃0

1−ū
2 f ′′(ū) + A

b f ′(ū) r̃0

]
+ i ω0

b f ′(ū),

B̃(−iω0, 2iω0) =
[
r̃0

1−ū
2 f ′′(ū) +

(
A r̃0

b − A ω2
0

2b2

)
f ′(ū)

]
+ i r̃0 ω0

4b2

[
A2 − ω2

0

r̃2
0

]
f ′(ū),

B̃(iω0, 0) =
[
r̃0

1−ū
2 f ′′(ū) + A

2bf
′(ū) r̃0 − 1

2f ′(ū) r̃0

]
+ i ω0

2b f ′(ū),

C̃(iω0, iω0,−iω0) =
[
r̃0

1−ū
6 f ′′′(ū) + A

2bf
′′(ū) r̃0

]
+ i ω0

6b f ′′(ū).
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Appendix B

Normal forms in the case of the neural system with adaptation

B.0.1 Normal form for Hopf bifurcation in the neural system with adaptation

We present in the following the proofs for the results stated in Section 2.2.1. With the singular

perturbation expansion (2.22), the first component of equation (2.23) reads as

[εL0U0 + ε2L0U1 + ε3L0U2 + O(ε4)](1) = ε2 γ J ∗ u +
F ′′(0)

2
[α∗ J ∗ u− gv + (α− α∗) J ∗ u ]2

+
F ′′′(0)

6
[ α∗ J ∗ u− gv + (α− α∗) J ∗ u ]3 + · · · = ε2

F ′′(0)
2

[α∗ J ∗ u0 − gv0]2 + ε3 F ′′(0)[α∗ J ∗ u0

− gv0][α∗ J ∗ u1 − gv1] + ε3 γ (J ∗ u0) + ε3
F ′′′(0)

6
[α∗ J ∗ u0 − gv0]3 + O(ε4) , i.e.

[L0U0 + εL0U1 + ε2L0U2 + O(ε3)](1) = ε
F ′′(0)

2
[α∗ J ∗ u0 − gv0]2 + ε2 [ γ (J ∗ u0)

+ F ′′(0)[α∗ J ∗ u0 − gv0][α∗ J ∗ u1 − gv1] +
F ′′′(0)

6
[α∗ J ∗ u0 − gv0]3 ]+ O(ε3) ,

(B.1)

and its second vector-component is zero,

[L0U0 + εL0U1 + ε2L0U2 + O(ε3)](2) = 0 . (B.2)

Solving for U0

The first equation to be solved is L0U0 = 0, and since the nullspace of L0 corresponding to the

center manifold has the basis
{
Φ0e

i(ω0t±k0x),Φ0e
−i(ω0t±k0x)

}
with Φ0 and ω0 defined by (2.18),

(2.17), the solution U0 can be written as

U0 = z Φ0 ei(ω0t+k0x) + w Φ0 ei(ω0t−k0x) + z Φ0 e−i(ω0t+k0x) + w Φ0 e−i(ω0t−k0x) ,

88



with z and w being ε-dependent. Let us then consider z = z(ε2t) and w = w(ε2t) and expand them

as z = z(0) + z′(0)ε2t + O(ε4) and w = w(0) + w′(0)ε2t + O(ε4) as ε → 0. We obtain

U0 = [ z(0) Φ0 ei(ω0t+k0x) + w(0)Φ0 ei(ω0t−k0x) + z(0)Φ0 e−i(ω0t+k0x) + w(0)Φ0 e−i(ω0t−k0x) ]
+ tε2[z′(0)Φ0e

i(ω0t+k0x) + w′(0)Φ0e
i(ω0t−k0x) + z′(0)Φ0e

−i(ω0t+k0x) + w′(0)Φ0e
−i(ω0t−k0x)]+ O(ε4)

We have L0

(
Φ0 ei(ω0t±k0x)

)
= iω0Φ0 ei(ω0t±k0x)− L̂(k0)Φ0 ei(ω0t±k0x) = 0 and L0

(
Φ0 e−i(ω0t±k0x)

)
=

−iω0Φ0 e−i(ω0t±k0x)−L̂(k0)Φ0 e−i(ω0t±k0x) = 0, and therefore L0U0 = ε2[ z′(0)L0

(
Φ0 tei(ω0t+k0x)

)
+

w′(0)L0

(
Φ0 tei(ω0t−k0x)

)
+ z′(0)L0

(
Φ0 te−i(ω0t+k0x)

)
+ w′(0)L0

(
Φ0 te−i(ω0t−k0x)

)]+ O(ε4).

By direct calculation, we obtain

L0

(
Φ0te

i(ω0t±k0x)
)

= d
dt

(
Φ0te

i(ω0t±k0x)
)−



−1 + α∗J ∗ (·) −g

1/τ −1/τ


Φ0te

i(ω0t±k0x) = Φ0e
i(ω0t±k0x)+

t d
dt

(
Φ0e

i(ω0t±k0x)
)−t



−1 + α∗J ∗ (·) −g

1/τ −1/τ


Φ0e

i(ω0t±k0x) = Φ0 ei(ω0t±k0x)+t L0

(
Φ0 ei(ω0t±k0x)

)
.

Then L0

(
Φ0 t ei(ω0t±k0x)

)
= Φ0 ei(ω0t±k0x). Similar L0

(
Φ0 t e−i(ω0t±k0x)

)
= Φ0 e−i(ω0t±k0x). The

resulting expression for L0U0 is

L0U0 = ε2[z′(0)Φ0 ei(ω0t+k0x) + w′(0)Φ0 ei(ω0t−k0x) + z′(0)Φ0 e−i(ω0t+k0x) + w′(0)Φ0 e−i(ω0t−k0x)]
+ O(ε4) = ε2[z′(0)Φ0 ei(ω0t+k0x) + w′(0)Φ0 ei(ω0t−k0x) + cc]+ O(ε4) (B.3)

where here cc denotes the complex conjugation of the expression it follows.

L∗0 the adjoint operator of L0

The solution U = (u1(x, t) , u2(x, t))T from (2.22) belongs to the subspace of functions that satisfy

uj(x, t) = uj(x +
2π

k0
, t) , uj(x, t) = uj(x, t +

2π

ω0
) , ∀x ∈ IR , ∀t ∈ IR , j = 1, 2. (B.4)

Let us consider now the following linear operator

L∗0V = − d

dt
V −



−1 + α∗J ∗ (·) 1/τ

−g −1/τ


 V . (B.5)
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When looking for bounded solutions of L∗0V = 0 of the form ξ(t)e±ikx with k ∈ IR, respectively

k ∈ (±π
l IN

)
when l is finite, we find that ξ(t) must satisfy the ODE

[
dξ
dt (t) = −L̂(k)T ξ(t)

]
. Since

det(−L̂(k)T ) = det(L̂(k)), tr(−L̂(k)T ) = −tr(L̂(k)) and k0 is the most unstable mode for (2.3),

the eigenfunctions of L∗0 have the form ξ1,2 k eλ1,2 kt± ikx, ξ1,2 k eλ1,2 kt∓ ikx where Re(λ1,2 k) > 0 for

k 6= ±k0 and λ1,2±k0 = ±iω0.

Remark B.1. The operator that corresponds to the restriction of L∗0 on the space of functions

(B.4) has a four-dimensional nullspace with the basis { Ψ0 ei(ω0t±k0x), Ψ0 e−i(ω0t±k0x)} , where Ψ0

is the two-dimensional complex vector defined by

L̂(k0)T Ψ0 = −iω0Ψ0 and Φ0 ·Ψ0 = 1 . (B.6)

We show that L∗0 is the adjoint operator of L0 on the space of functions (B.4) with the inner product

< V, W >=
∫ 2π

ω0

0
dt

∫ 2π
k0

0
dxV (x, t) ·W (x, t) =

∫ 2π
ω0

0
dt

∫ 2π
k0

0
dx [ v1(x, t)w1(x, t) + v2(x, t)w2(x, t) ] .

Let us consider V = (v1(x, t) , v2(x, t))T , W = (w1(x, t) , w2(x, t))T with the property (B.4),

and compute

< V,L0W > − < L∗0V, W >=
∫ 2π

ω0

0
dt

∫ 2π
k0

0
dx [ v1

dw1

dt
+ w1

dv1

dt
+ v2

dw2

dt

+ w2
dv2

dt
− α∗v1(J ∗ w1) + α∗w1(J ∗ v1)] .

Using integration by parts and the periodicity of vj , wj , j = 1, 2 with respect to t, we obtain

< V, L0W > − < L∗0V, W >= α∗
∫ 2π

ω0

0
dt

∫ 2π
k0

0
dx [w1(J ∗ v1)− v1(J ∗ w1)]

which is zero, based of the fact that the inner integral is zero for any fixed t (see Appendix B.0.2

for a proof). Therefore < V,L0W >=< L∗0V, W > for all V , W functions in the space (B.4), that

proves that L∗0 is the adjoint operator of L0.

Solving for U1

In order to compute U1 we need to evaluate J ∗ u0 and α∗ J ∗ u0 − gv0 where (u0 , v0)T = U0 and
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then introduce the result, together with (B.3), in equation (B.1). For Φ0 = (Φ1
0 , Φ2

0)
T as in (2.18),

let us define A ∈ IC as the inner product

A = ΦT
0 · (1 + 1/τ , −g) = (1 + 1/τ)Φ1

0 − g Φ2
0 = φ + i φ

√
gτ − 1

τ
= φ (1 + iω0) . (B.7)

Then we have

J∗u0 = z Φ1
0 Ĵ(k0) ei(ω0t+k0x) + w Φ1

0 Ĵ(k0) ei(ω0t−k0x) + z Φ1
0 Ĵ(k0) e−i(ω0t+k0x)

+ w Φ1
0 Ĵ(k0) e−i(ω0t−k0x) = Ĵ(k0) [φ z(0) ei(ω0t+k0x) + φw(0) ei(ω0t−k0x)

+ φ z(0) e−i(ω0t+k0x) + φ w(0) e−i(ω0t−k0x) ] + O(ε2) , i.e.

J ∗ u0 = Ĵ(k0) [φ z(0) ei(ω0t+k0x) + φw(0) ei(ω0t−k0x) + cc ] + O(ε2) . (B.8)

Similar, we obtain

α∗ J ∗ u0 − gv0 = (1 + 1/τ) [ z(0)Φ1
0 ei(ω0t+k0x) + w(0)Φ1

0 ei(ω0t−k0x) + z(0)Φ1
0 e−i(ω0t+k0x)

+ w(0) Φ1
0 e−i(ω0t−k0x) ]− g [ z(0)Φ2

0 ei(ω0t+k0x) + w(0)Φ2
0 ei(ω0t−k0x) + z(0) Φ2

0 e−i(ω0t+k0x)

+ w(0) Φ2
0 e−i(ω0t−k0x) ] + O(ε2) = A [ z(0) ei(ω0t+k0x) + w(0) ei(ω0t−k0x) ] + A [z(0) e−i(ω0t+k0x)

+ w(0) e−i(ω0t−k0x) ] + O(ε2) , i.e.

α∗ J ∗ u0 − gv0 = [Az(0) ei(ω0t+k0x) + Aw(0) ei(ω0t−k0x) + cc ] + O(ε2) . (B.9)

Now, using the equations (B.1), (B.3), (B.8) and (B.9) we obtain

L0U1−F ′′(0)
2

P = ε [−
(
z′(0)Φ0 ei(ω0t+k0x) + w′(0)Φ0 ei(ω0t−k0x) + cc

)
−L0U2+Q ]+O(ε2) (B.10)

where the second components of P and Q are zero, and their first components are

P (1) =
[
A2z(0)2 e2i(ω0t+k0x) + A2w(0)2 e2i(ω0t−k0x) + 2A2z(0)w(0) e2i ω0t + cc

]

+ 2A A
[
z(0)z(0) + w(0)w(0) + z(0)w(0) e2ik0x + z(0)w(0) e−2ik0x

]
(B.11)
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Q(1) = γ Ĵ(k0) [φ z(0) ei(ω0t+k0x) + φw(0) ei(ω0t−k0x) + cc ] +
F ′′′(0)

6
[A3z(0)3 e3i(ω0t+k0x)

+ A3w(0)3 e3i(ω0t−k0x) + 3A3z(0)2w(0) ei(3ω0t+k0x) + 3A3z(0)w(0)2 ei(3ω0t−k0x)

+ 3A2Az(0)2z(0) ei(ω0t+k0x) + 3A2Aw(0)2w(0) ei(ω0t−k0x) + 3A2Az(0)2w(0) ei(ω0t+3k0x)

+ 3A2Az(0)w(0)2ei(ω0t−3ik0x) + 6A2Az(0)w(0)w(0)ei(ω0t+k0x) + 6A2Az(0)z(0)w(0)ei(ω0t−k0x) + cc]

+ F ′′(0) [Az(0) ei(ω0t+k0x) + Aw(0) ei(ω0t−k0x) + cc ][α∗ J ∗ u1 − gv1] . (B.12)

Based on equation (B.10), U1 = (u1 , v1)T is the solution of L0U1 = F ′′(0)
2 P up to the order O(ε).

Using the form of P (1) we may write U1 in a similar manner as

U1 =
(
ξ1 z2 e2i(ω0t+k0x) + ξ2 w2 e2i(ω0t−k0x) + ξ3 z w e2iω0t + ξ4 z w e2ik0x + cc

)
+ ξ5 z z + ξ6 w w

with ξi, (i = 1, 6), vectors in IC2. Therefore

U1 = [ ξ1 z(0)2 e2i(ω0t+k0x) + ξ2 w(0)2 e2i(ω0t−k0x) + ξ3 z(0)w(0) e2iω0t

+ ξ4 z(0) w(0) e2ik0x + cc ] + ξ5 z(0) z(0) + ξ6 w(0) w(0) + O(ε2)

This implies L0U1 = −z(0)z(0)[L̂(0)ξ5]−w(0)w(0)[L̂(0)ξ6]+(z(0)2e2i(ω0t+k0x)[2iω0ξ1− L̂(2k0)ξ1]+

w(0)2e2i(ω0t−k0x)[2iω0ξ2− L̂(2k0)ξ2]+z(0)w(0)e2iω0t[2iω0ξ3− L̂(0)ξ3]−z(0)w(0) e2ik0x[L̂(2k0) ξ4]+

cc) + O(ε2).

In equation (B.10) we match the coefficients of the terms z(0)2 e2i(ω0t+k0x), w(0)2 e2i(ω0t−k0x),

. . . up to the order O(ε). It results that

ξ1 = ξ2 =
A2F ′′(0)

2
[2iω0I − L̂(2k0)]−1




1

0


 , ξ4 = |A|2F ′′(0)[−L̂(2k0)]−1




1

0




ξ3 = A2F ′′(0)[2iω0I − L̂(0)]−1




1

0


 , ξ5 = ξ6 = |A|2F ′′(0)[−L̂(0)]−1




1

0




where, obviously, ξ4, ξ5, ξ6 ∈ IR2.

Remark B.2. The matrices involved in the equations above are invertible since Ĵ(k0) > Ĵ(nk0),
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n = 0, 2 and g > 1/τ , α∗ = 1+1/τ

Ĵ(k0)
. On one hand det[L̂(nk0)] = 1

τ (g + 1 − α∗Ĵ(nk0)) = 1
τ [g + 1 −

(1+1/τ)Ĵ(nk0)

Ĵ(k0)
] > τ+1

τ2 [1 − Ĵ(nk0)

Ĵ(k0)
] > 0. On the other hand det[2iω0I − L̂(nk0)] is nonzero since its

imaginary part is equal to 2iω0(1 + 1
τ )[1− Ĵ(nk0)

Ĵ(k0)
] > 0.

We find that

ξ1 = ξ2 =
A2F ′′(0)

2

3(1/τ−g)
τ + ( 1

τ + 2iω0)(1 + 1
τ )[1− Ĵ(2k0)

Ĵ(k0)
]




1
τ + 2iω0

1
τ


 ,

ξ3 =
A2F ′′(0)

3(1/τ−g)
τ + ( 1

τ + 2iω0)(1 + 1
τ )[1− Ĵ(0)

Ĵ(k0)
]




1
τ + 2iω0

1
τ


 ,

ξ4 =
|A|2F ′′(0)

g + 1− (1+1/τ)Ĵ(2k0)

Ĵ(k0)




1

1


 , ξ5 = ξ6 =

|A|2F ′′(0)

g + 1− (1+1/τ)Ĵ(0)

Ĵ(k0)




1

1


 . (B.13)

Solving for U2

With the notation

A2F ′′(0)
2

B := α∗Ĵ(2k0)ξ1
1 − gξ2

1 = α∗Ĵ(2k0)ξ1
2 − gξ2

2 ,

A2F ′′(0) C := α∗Ĵ(0)ξ1
3 − gξ2

3 , |A|2F ′′(0)D := α∗Ĵ(2k0)ξ1
4 − gξ2

4 ,

|A|2F ′′(0)E := α∗Ĵ(0)ξ1
5 − gξ2

5 = α∗Ĵ(0)ξ1
6 − gξ2

6 (B.14)

(notice that D,E ∈ IR) we have

α∗J ∗ u1 − gv1 = [
A2F ′′(0)

2
Bz(0)2e2i(ω0t+k0x) +

A2F ′′(0)
2

Bw(0)2e2i(ω0t−k0x)

+ A2F ′′(0) Cz(0)w(0) e2iω0t + |A|2F ′′(0) Dz(0)w(0) e2ik0x + cc] + |A|2F ′′(0)Ez(0) z(0)

+ |A|2F ′′(0) Ew(0)w(0) + O(ε2) .

The terms in Q(1) that will count in the computation of the normal form are those that include

the exponential ei(ω0t+k0x), ei(ω0t−k0x) and their complex conjugates, therefore (B.12) reads as

Q(1) = [γ Ĵ(k0)φ z(0) + F ′′′(0) ·A|A|2 (1
2

z(0)2z(0) + z(0)w(0)w(0))+

93



F ′′(0)2 ·A|A|2 ((E +
B

2
)z(0)2z(0) + (E + D + C)z(0)w(0)w(0))] ei(ω0t+k0x)

+ [γ Ĵ(k0)φ w(0) + F ′′′(0) ·A|A|2 (1
2

w(0)2w(0) + z(0)z(0)w(0))+

F ′′(0)2 ·A|A|2 ((E +
B

2
)w(0)2w(0) + (E + D + C)z(0)z(0)w(0))] ei(ω0t−k0x) + cc + · · ·

(B.15)

The coefficient of ε in the expansion (B.10) gives us the functional equation that defines U2. This

is

L0U2 = Q−
(
z′(0) Φ0 ei(ω0t+k0x) + w′(0)Φ0 ei(ω0t−k0x) + cc

)
.

In order to have a solution here we need the right term to be orthogonal on the basis of

the nullspace of L∗0, the adjoint operator of L0. This is, as we noted in Remark B.1, the set
{

Ψ0 ei(ω0t±k0x), Ψ0 e−i(ω0t±k0x)
}
.

Therefore we have < Q − (
z′(0)Φ0 ei(ω0t+k0x) + w′(0)Φ0 ei(ω0t−k0x) + cc

)
,Ψ0 ei(ω0t±k0x) >=

∫ 2π
ω0

0 dt
∫ 2π

k0
0 dxΨ0 e−i(ω0t±k0x) · [Q− ( z′(0)Φ0 ei(ω0t+k0x) + w′(0)Φ0 ei(ω0t−k0x) + cc)] = 0.

Based on the fact that Ψ0 · Φ0 = 1 and using Q(1) from (B.15) and Q(2) = 0, we obtain





z′(0) = z(0) ( ã + bz(0)z(0) + cw(0)w(0) ) ,

w′(0) = w(0) ( ã + bw(0)w(0) + cz(0)z(0) ) ,

with ã = γĴ(k0) φΨ1
0, b = |A|2 · AΨ1

0 · [ F ′′′(0)
2 + (E + B

2 )F ′′(0)2] and c = |A|2 · A Ψ1
0 · [F ′′′(0) +

(E + D + C)F ′′(0)2 ].

Coefficients of the normal form. Equations (2.18), (B.6) and (B.7) imply

φ Ψ1
0 =

1
2
− i

1
2
√

gτ − 1
, (B.16)

A Ψ1
0 =

1 + 1/τ

2
+ i

g − (1 + 1/τ)
2
√

gτ − 1
(B.17)

so we can write ã, b and c as ã = ã1 + iã2, b = b1 + ib2, c = c1 + ic2 with

ã1 =
γĴ(k0)

2
=

Ĵ(k0)(α− α∗)
2ε2

, ã2 = − γĴ(k0)
2
√

gτ − 1
= − Ĵ(k0)(α− α∗)

2ε2
√

gτ − 1
,
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b1 =
τ + 1
4τ

· |A|2 · F ′′(0)2 ·
[
2E + Re(B) +

1− gτ/(τ + 1)√
gτ − 1

Im(B)
]

+
τ + 1
4τ

· |A|2 · F ′′′(0) ,

c1 =
τ + 1
4τ

· |A|2 · F ′′(0)2 ·
[
2E + 2D + 2Re(C) + 2

1− gτ/(τ + 1)√
gτ − 1

Im(C)
]

+
τ + 1
4τ

· |A|2 · 2F ′′′(0),

b2 =
gτ − (τ + 1)
4τ
√

gτ − 1
· |A|2 · F ′′(0)2 ·

[
2E + Re(B)−

√
gτ − 1

1− gτ/(τ + 1)
Im(B)

]

+
gτ − (τ + 1)
4τ
√

gτ − 1
· |A|2 · F ′′′(0) ,

c2 =
gτ − (τ + 1)
4τ
√

gτ − 1
· |A|2 · F ′′(0)2 · [ 2E + 2D + 2Re(C)

− 2
√

gτ − 1
1− gτ/(τ + 1)

Im(C)]+
gτ − (τ + 1)
4τ
√

gτ − 1
· |A|2 · 2F ′′′(0) .

Remark B.3. From (B.13) and (B.14) we have D = −1 + 1

g+1− (1+1/τ)Ĵ(2k0)

Ĵ(k0)

= −1 + D̃, E =

−1+ 1

g+1− (1+1/τ)Ĵ(0)

Ĵ(k0)

= −1+ Ẽ, Re(B)+ 1−gτ/(τ+1)√
gτ−1

Im(B) = −1+ MB
NB

, Re(C)+ 1−gτ/(τ+1)√
gτ−1

Im(C) =

−1 + MC
NC

with D̃, Ẽ,NB, NC > 0. We obtain

b1 = τ+1
4τ |A|2

[
F ′′′(0) + F ′′(0)2 ·

(
−3 + 2Ẽ + MB

NB

)]
,

c1 = τ+1
4τ |A|2

[
2F ′′′(0) + F ′′(0)2 ·

(
−6 + 2Ẽ + 2D̃ + 2MC

NC

)]
, where

MB = M
(

Ĵ(2k0)

Ĵ(k0)

)
, MC = M

(
Ĵ(0)

Ĵ(k0)

)
, NB = N

(
Ĵ(2k0)

Ĵ(k0)

)
, NC = N

(
Ĵ(0)

Ĵ(k0)

)
, and M , N are functions

defined as

M(X) = (4gτ −3)[2gτ − (τ +1)(τ +2)]X +4(gτ −1)(τ +1)2 +(3gτ −4− τ)2 + gτ(gτ + τ −2),

and

N(X) = (4gτ − 3)(τ + 1)2X2 + 2τ(τ + 1)(3− g− 4gτ)X + [4(gτ − 1)(τ + 1)2 + (3gτ − 4− τ)2].

Therefore

c1 + b1 = τ+1
4τ |A|2 · [3 [

F ′′′(0)− 3F ′′(0)2
]
+ F ′′(0)2 ·

(
2D̃ + 4Ẽ + 2MC

NC
+ MB

NB

)],
c1 − b1 = τ+1

4τ |A|2 · [ [
F ′′′(0)− 3F ′′(0)2

]
+ F ′′(0)2 ·

(
2D̃ + 2MC

NC
− MB

NB

)].

B.0.2 Some properties

In the sequel we prove that
∫ 2π

k0
0 dx [w1(J ∗ v1) − v1(J ∗ w1)]=0 on the space of the complex

functions at least C2 and such that v(x) = v(x + 2π
k0

), ∀x ∈ IR, together with the inner product

< v, w >=
∫ 2π

k0
0 v(x)w(x)dx.

We define on this space the integral operator J ∗ v(x) =
∫ l
−l J(x− y)v(y) dy where l and J are
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either l = ∞ and J as in (2.6), or l = πn0
k0

for some n0 ∈ IN \ {0} and J a 2l-periodic trigonometric

polynomial. An additional condition is J real and J(x) = J(−x) for all x ∈ IR.

Remark B.4. In our problem the choice of k0 depends on l, not vice-versa. We recall that k0 6= 0

is the most unstable mode defined by (2.12) when l = ∞, or by (2.15) when l finite. Nevertheless

the hypotheses we adopted here correspond to the conditions of the original problem.

The first step is to prove that J ∗ v also satisfy (J ∗ v)(x) = (J ∗ v)(x + 2π
k0

), so that the inner

products < v, J ∗ w > and < J ∗ v, w > make sense.

The case l = ∞ : It is obvious , by the a change of variables and by the periodicity of v, that

(J ∗ v)(x + 2π
k0

) =
∫∞
−∞ J(x + 2π

k0
− y)v(y) dy =

∫∞
−∞ J(x− y)v(y + 2π

k0
) dy =

∫∞
−∞ J(x− y)v(y) dy =

(J ∗ v)(x).

The case l finite: We compute (J ∗v)(x+ 2π
k0

) =
∫ l
−l J(x+ 2π

k0
−y)v(y) dy =

∫ l− 2π
k0

−l− 2π
k0

J(x−y)v(y+

2π
k0

) dy =
∫ l− 2π

k0

−l− 2π
k0

J(x − y)v(y) dy =
∫ l
−l J(x − y)v(y) dy = (J ∗ v)(x). The equality

∫ l+a
−l+a J(x −

y)v(y) dy =
∫ l
−l J(x − y)v(y) dy is true for any real a since J(x + 2l) = J(x) and u(x + 2l) =

u(x + 2π
k0

n0) = u(x), i.e. the function f(y) = J(x− y)u(y) is 2l-periodic.

We prove now that < v, J ∗w >=< J ∗ v, w >, i.e that
∫ 2π

k0
0 v(x) · (J ∗w)(x) dx =

∫ 2π
k0

0 (J ∗ v)(x) ·
w(x) dx.

For this, let us consider the Fourier series corresponding to the functions v and w, v(x) =
∑∞

n=−∞ cn eink0x, w(x) =
∑∞

n=−∞ dn eink0x with the coefficients cn = k0
2π

∫ π
k0

− π
k0

v(y) e−ink0ydy, dn =

k0
2π

∫ π
k0

− π
k0

w(y) e−ink0ydy. Since v, w ∈ C2, their attached Fourier series converge uniformly on each

closed interval in IR ([85]), and have the sum v and w respectively. Moreover the coefficients satisfy

cn = O(1/n2) , dn = O(1/n2) , as n →∞ . (B.18)

For any fixed x ∈ IR, we have

J ∗ v(x) =
∫ l

−l
dyJ(x− y)

∞∑
n=−∞

cneink0y =
∫ l

−l
dyJ(x− y) lim

M→∞

M∑

n=−M

cneink0y
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=
∫ l

−l
lim

M→∞

(
M∑

n=−M

cnJ(x− y) eink0y

)
dy =

∫ l

−l
lim

M→∞
fM (y)dy .

We have limM→∞ fM (y) = J(x − y)v(y) for any y ∈ IR, and based on conditions (B.18) there

exists a function g such that |fM (y)| ≤ g(y) for any integer M and y ∈ IR with
∫ l
−l g(y)dy < ∞,

no matter l is finite or infinite (when l = ∞ the function J is a linear combination of Gaussians).

Therefore we can apply Lebesgue’s dominated convergence theorem ([88]) and obtain J ∗ v(x) =
∫ l
−l limM→∞ fM (y)dy = limM→∞

∫ l
−l fM (y)dy, i.e.

J ∗ v(x) = lim
M→∞

(
M∑

n=−M

cneink0x

∫ l

−l
J(x− y)eink0(y−x)dy

)
=

∞∑
n=−∞

Ĵ(nk0)cneink0x

where Ĵ(k) is defined by (2.5). Similar we obtain J ∗w(x) =
∑∞

m=−∞ Ĵ(mk0)dme−imk0x. This im-

plies < v, J ∗w >=
∫ 2π

k0
0 v(x) · (J ∗w)(x) dx =

∑∞
n=−∞

∑∞
m=−∞ cndmĴ(mk0)

∫ 2π
k0

0 eink0xe−imk0xdx =

2π
k0

∑∞
n=−∞ cndnĴ(nk0) , and

< J ∗ v, w >=
∫ 2π

k0
0 (J ∗ v)(x) · w(x) dx =

∑∞
m=−∞

∑∞
n=−∞ cnĴ(nk0)dm

∫ 2π
k0

0 eink0xe−imk0xdx =

2π
k0

∑∞
m=−∞ cmdmĴ(mk0).

B.0.3 Normal form for double-zero bifurcation with O(2)-symmetry

We present in the following the proofs for the results stated in Section 2.3.

Solving for U0

Since the nullspace of L0 corresponding to the center manifold has the basis { Φ0 e±ik0x} , U0 can

be written as U0 =
(
z eik0x + z e−ik0x

)
Φ0 where z is ε-dependent. We choose a new time scale,

z = z(εt) = z(0) + z′(0)εt + z′′(0)
2 ε2t2 + z′′′(0)

6 ε3t3 + O(ε4), and therefore obtain

ε L0U0 = ε2[z′(0) eik0x + z′(0) e−ik0x]Φ0 + ε3t[z′′(0) eik0x + z′′(0) e−ik0x]Φ0 +
ε4t2

2
[z′′′(0) eik0x

+ z′′′(0) e−ik0x]Φ0 + O(ε5) ,

α∗J ∗ u0 − g∗v0 =
1√
τ
[z(0) eik0x + z(0) e−ik0x]+

ε t√
τ
[z′(0) eik0x + z′(0) e−ik0x]

+
ε2t2

2
√

τ
[z′′(0) eik0x + z′′(0) e−ik0x]+ O(ε3) ,
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γ J ∗ u0 − η v0 = (γ Ĵ(k0)− η)
1√
τ
[z(0) eik0x + z(0) e−ik0x]+ O(ε) ,

γ L1U0 + η L2U0 = (γ Ĵ(k0)− η)
1√
τ
E[z(0) eik0x + z(0) e−ik0x]+ ε t(γ Ĵ(k0)− η)

1√
τ
E[z′(0) eik0x

+ z′(0) e−ik0x]+ O(ε2) . (B.19)

These will be distributed in equation (2.42) accordingly to ε power.

Solving for U1

The equation that defines U1 corresponds to the coefficient of ε2 in expansion (2.42) and reads as

L0U1 = −[z′(0) eik0x+z′(0) e−ik0x]Φ0+
F ′′(0)

2τ
E[z(0)2 e2ik0x+z(0)2 e−2ik0x+2z(0) z(0)] . (B.20)

Remark B.5. The adjoint operator of L0 is L∗0V = − d
dtV −



−1 + α∗J ∗ (·) 1/τ

−g∗ −1/τ


 V and it

has a two-dimensional nullspace of basis { Ψ1 e±ik0x} where Ψ1 is defined by equations (2.32) and

(2.31).

Since Φ0 · Ψ1 = 0, the right hand side term of (B.20) is orthogonal on Ψ1 e±ik0x with respect

to the integration
∫ 2π

k0
0 dx and so the solution U1 can be constructed. We choose U1 in the form

U1 =
[
w eik0x + w e−ik0x

]
Φ1 + z2ξ1 e2ik0x + z2ξ1 e−2ik0x + 2z zξ2 with w = w(εt) = w(0) + w′(0)εt +

w′′(0)
2 ε2t2 + O(ε3), and find that

z′(0) = w(0) , (B.21)

L̂(2k0)ξ1 = −F ′′(0)
2τ

E , L̂(0)ξ2 = −F ′′(0)
2τ

E , (B.22)

i.e. ξ1 = (1, 1)T B1 , ξ2 = (1, 1)T B2 with

B1 =
F ′′(0)

2(τ + 1)[1− Ĵ(2k0)

Ĵ(k0)
]
, B2 =

F ′′(0)

2(τ + 1)[1− Ĵ(0)

Ĵ(k0)
]
. (B.23)

Therefore

γ L1U1 + η L2U1 = γ Ĵ(k0)
√

τE [w(0) eik0x + w(0) e−ik0x ] + B1(γ Ĵ(2k0) − η)E [ z(0)2 e2ik0x +
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z(0)2 e−2ik0x ]+ 2B2(γ Ĵ(0)− η)E z(0) z(0) + O(ε), and

α∗J ∗ u1 − g∗v1 = (1 +
1
τ
)
√

τ[w(0)eik0x + w(0)e−ik0x]+ [z(0)2e2ik0x + z(0)2e−2ik0x](B1 − F ′′(0)
2τ

)

+ (2B2 − F ′′(0)
τ

) z(0) z(0) + ε (1 +
1
τ
)
√

τ [ tw′(0) eik0x + tw′(0) e−ik0x ]+ ε [ tz(0)z′(0) e2ik0x

+ tz(0) z′(0) e−2ik0x ](2B1 − F ′′(0)
τ

) + ε (2B2 − F ′′(0)
τ

) [tz(0) z′(0) + t z(0)z′(0)] + O(ε2) .

Solving for U2

By using the above calculations together with (B.19), (B.21), and the property (B.22), equation

(2.42) becomes

L0U2 = (γ Ĵ(k0)− η)
1√
τ
E [ z(0) eik0x + z(0) e−ik0x ]− Φ1[w′(0) eik0x + w′(0) e−ik0x ]+

+ z(0)w(0)e2ik0x[− 2ξ1 + F ′′(0)(1 + 1/τ)E ]+ z(0)w(0)e−2ik0x[− 2ξ1 + F ′′(0)(1 + 1/τ)E]
+ [z(0)w(0) + z(0)w(0)][− 2ξ2 + F ′′(0)(1 + 1/τ)E ]+ z(0)2 z(0)eik0x [F ′′′(0)

2τ
√

τ
+

F ′′(0)√
τ

(B1

+ 2B2 − 3F ′′(0)
2τ

)]E + z(0) z(0)2e−ik0x [F ′′′(0)
2τ
√

τ
+

F ′′(0)√
τ

(B1 + 2B2 − 3F ′′(0)
2τ

)]E

+ z(0)3e3ik0x [F ′′′(0)
6τ
√

τ
+

F ′′(0)√
τ

(B1 − F ′′(0)
2τ

)]E + z(0)3e−3ik0x [F ′′′(0)
6τ
√

τ
+

F ′′(0)√
τ

(B1

− F ′′(0)
2τ

)]E + εS + O(ε2) (B.24)

where S = −L0U3 + γ L1U1 + η L2U1 + ..., the terms from (2.42) corresponding to ε4.

The orthogonality condition on Ψ1e
±ik0x, necessary for the existence of U2 becomes

w′(0) = [F ′′′(0)
2τ2

+
F ′′(0)

τ
(B1 + 2B2 − 3F ′′(0)

2τ
)]z(0)2z(0) +

1
τ
(γ Ĵ(k0)− η)z(0)

+ ε < S,Ψ1e
ik0x > +O(ε2) . (B.25)

This, together with the fact that
[
E − 1√

τ
Φ1 = 0

]
, implies that U2 can be chosen as

U2 = [zwe2ik0x + z we−2ik0x]β1 + [z w + z w]β2 + [z3e3ik0x + z3e−3ik0x]β3
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with β1, β2, β3 defined by [−L̂(2k0)β1] = −2ξ1 + F ′′(0)(1 + 1/τ)E, [−L̂(0)β2] = −2ξ2 + F ′′(0)(1 +

1/τ)E, [−L̂(3k0)β3] = [F ′′′(0)
6τ
√

τ
+ F ′′(0)√

τ
(B1 − F ′′(0)

2τ )]E.

Solving for U3

The resulting equation for U3 is then the following

L0U3 = −S + γ Ĵ(k0)
√

τ w(0) eik0xE + [z(0)2w(0) + z(0) z(0)w(0)] eik0xE[F ′′(0)√
τ

(α∗Ĵ(0)β1
2

− g∗β2
2) + F ′′(0)(1 + 1/τ)

√
τ(B1 − F ′′(0)

2τ
) +

F ′′′(0)
2
√

τ
(1 + 1/τ)]

+ z(0) z(0)w(0) eik0xE[F ′′(0)√
τ

(α∗Ĵ(2k0)β1
1 − g∗β2

1) + F ′′(0)(1 + 1/τ)
√

τ(2B2 −B1

− F ′′(0)
2τ

) +
F ′′′(0)
2
√

τ
(1 + 1/τ)]+ cc + terms

(
1, e±2ik0x, e±3ik0x, e±4ik0x

)
+ O(ε)

and we need

< S, Ψ1e
ik0x >= γ Ĵ(k0)w(0)+z(0) z(0) w(0)[F ′′(0)

τ
(α∗Ĵ(2k0)β1

1−g∗β2
1)+F ′′(0)(1+1/τ)(2B2

−B1 − F ′′(0)
2τ

) +
F ′′′(0)

2τ
(1 + 1/τ)]+ [z(0)2w(0) + z(0) z(0)w(0)][F ′′(0)

τ
(α∗Ĵ(0)β1

2 − g∗β2
2)

+ F ′′(0)(1 + 1/τ)(B1 − F ′′(0)
2τ

) +
F ′′′(0)

2τ
(1 + 1/τ)]+ O(ε) .

Based on equations (B.21) and (B.25) we obtain the normal form for the double-zero bifurcation

z′′(0)−ε{γ Ĵ(k0)z′(0)+Cz(0)[ z(0) z′(0)+z(0) z′(0) ]+D|z(0)|2z′(0)}−[
γ Ĵ(k0)−η

τ + A|z(0)|2
]
z(0) =

O(ε2), with coefficients A = 1
2τ2 [F ′′′(0) − 3F ′′(0)2] + F ′′(0)2

τ(τ+1) ·
[

Ĵ(k0)

Ĵ(k0)−Ĵ(0)
+ Ĵ(k0)

2 [ Ĵ(k0)−Ĵ(2k0) ]

]
, C =

(τ + 1)A + F ′′(0)2

τ(τ+1) ·
Ĵ(k0)

Ĵ(k0)−Ĵ(0)
, D = (τ + 1)A + F ′′(0)2

τ(τ+1) ·
Ĵ(k0)

Ĵ(k0)−Ĵ(2k0)
.
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Appendix C

Details of proof for results presented in LIF model

C.0.1 Proof of Theorem 3.2 for one-spike traveling wave in the LIF model

The inequality V (y) < VT can be written as
g/VT

2(
τ1c
σ
−1)(1− σ

τ2c
)
y + g/VT

(1− σ2

τ2
2 c2

)(1− τ1
τ2

)
yσ/τ2c − g/VT

(1− σ2

τ2
1 c2

)(1− τ1
τ2

)
yσ/τ1c < 1 + (−VR/VT + 1) yσ/τ1c,

or equivalently as

(y − 1) + 2(1+τ1/τ2)

(
τ1c
σ
−1)(1− σ

τ2c
)
y + g/VT

1− τ1
τ2

(
τ2
2 c2

τ2
2 c2−σ2 yσ/τ2c − τ2

1 c2

τ2
1 c2−σ2 yσ/τ1c

)
< (−VR/VT + 1) yσ/τ1c.

We used here g/VT

2(τ1c/σ−1)(1−σ/τ2c)−1 = 2(1+τ1/τ2)
(τ1c/σ−1)(1−σ/τ2c) , which comes from (3.14). When we regroup

the terms, we obtain

y


 2(1+τ1/τ2)

(
τ1c
σ
−1)(1− σ

τ2c
)
− g/VT (1+τ1/τ2)

(
τ2
1 c2

σ2 −1)(1− σ2

τ2
2 c2

)


 + +(y − 1) + g/VT

1− τ1
τ2

(
yσ/τ2c−y

1− σ2

τ2
2 c2

− yσ/τ1c−y

1− σ2

τ2
1 c2

)
< (−VR/VT +

1) yσ/τ1c. The difference inside the first set of parentheses is zero because of (3.14). Therefore, we

are left exactly with the inequality H(y) < (−VR/VT + 1).

The next step is to compute the derivative of H. This is

H ′(y) = y−(1+σ/τ1c)

1− τ1
τ2

[
σ(1− τ1

τ2
)

τ1c −
(

σ (1− τ1
τ2

) g/VT

τ1c

)
τ2
2 c2

τ2
2 c2−σ2 yσ/τ2c+

+y


 (τ1c−σ)(1− τ1

τ2
)

τ1c + g/VT


σ2(

τ2
2

τ2
1
−1)

τ2
2 c2−σ2




(
τ1c

τ1c+σ

)




.

By using again equation (3.14) we obtain

H ′(y) = y−(1+σ/τ1c)

1− τ1
τ2

[ σ(1− τ1
τ2

)

τ1c − 2(τ1c+σ)· τ2
τ1
·(1− τ1

τ2
)

τ2c−σ yσ/τ2c + y
(τ1c+σ)(τ2c+σ)(1− τ1

τ2
)

τ1c(τ2c−σ) ]

= (τ1c+σ)(τ2c+σ)
τ1c(τ2c−σ) y−(1+σ/τ1c)

[
σ(τ2c−σ)

(τ1c+σ)(τ2c+σ) − 2τ2c
τ2c+σ yσ/τ2c + y

]
= τ2

2τ1
σ

τ2c−σ
g

VT
y−(1+σ/τ1c) G(y)

with G defined by (3.18).

The existence of the unique root y∗ ∈ (0, 1) for G comes from the following observations.

Since G ′(y) = 1− 2σ
τ2c+σ yσ/τ2c−1, the derivative of G has exactly one zero in the interval (0, 1), at
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ỹ =
(

2σ
τ2c+σ

)τ2c/(τ2c−σ)
, G decreases on (0, ỹ), and G increases on (ỹ, 1). Further, since we calculated

that c > σ/
√

τ1τ2, the assumption τ2 > τ1 implies that G(0) > 0 and G(1) < 0. Therefore, G(ỹ)

must be negative, and the unique root of G belongs to (0, ỹ) ⊂ (0, 1).

C.0.2 Proof of Lemma 3.3.2 for two-spike traveling waves in the LIF model

The inequalities from i), ii), iii) can be easily verified. To establish the limits of F , we use these

inequalities, the assumption that τ2 > τ1, and the fact that limc→c1;2 f(c) = 0.

i) By direct calculation, we obtain limc↘c2 F (c) = limc↗c1 F (c) = −∞.

iii) By direct calculation, we have

limc↗c1 F (c) = − g
VT

(
1 + τ1

τ2

)
σ2

τ2
1 c21−σ2

τ2
2 c21

τ2
2 c21−σ2 and limc↘c2 F (c) = limc↘c2 f(c)

σ
τ1c

−1

[
−VR/VT

+1 + g/VT

1− τ1
τ2

(
f(c)

1− σ
τ1c−f(c)

− σ
τ1c(1− τ1

τ2
)

1− σ2

τ2
2 c2

− f(c)
1− σ

τ1c−1

1− σ2

τ2
1 c2

)]
= −∞.

ii) At g/VT = 4(1 + τ1/τ2), since c1 = σ
τ2

and c2 = σ
τ1

, the calculation needs to be handled more

carefully. We apply l’Hospital’s rule repeatedly and obtain

lim
c↘ σ

τ1

f(c)
σ

τ1c
−1 = 1 , lim

c↘ σ
τ1

f(c)
σ

τ1c
−1 − 1

σ
τ1c − 1

= −∞ , lim
c↘ σ

τ1

f(c)1−
σ

τ2c [ f(c)
σ

τ1c
−1 − 1 ]

σ
τ1c − 1

= 0 ,

and therefore limc↘ σ
τ1

F (c) =

limc↘ σ
τ1

f(c)
σ

τ2c
−1

[
(−VR/VT + 1)f(c)

σ
τ1c

�
1− τ1

τ2

�
+ g/VT

1− τ1
τ2

(
f(c)

1− σ
τ2c−1

1− σ2

τ2
2 c2

− f(c)
1− σ

τ2c (f(c)
σ

τ1c−1−1)
(1+ σ

τ1c
)( σ

τ1c
−1)

)]
=

−∞.

Similarly, limc↗ σ
τ2

f(c)
σ

τ2c
−1 = 1 , limc↗ σ

τ2

f(c)
σ

τ2c−1−1
σ

τ2c
−1 = −∞ , limc↗ σ

τ2
f(c)

σ
τ1c

−1 = 0 , and thus

limc↗ σ
τ2

F (c) = −∞.
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