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Standard Poisson-Nernst-Planck (PNP) theory is modified by adding contributions due the 

Dielectric Self Energy and dynamic relaxation of a protein channel in response to ion 

permeation. This approach is utilized to predict ionic currents through the Gramicidin A (GA) 

channel, in which the applicability of conventional continuum theories is questionable. The 

Potential of Mean Force for K+ and Cl- ions in GA are obtained by combining an equilibrium 

molecular dynamics (MD) simulation that samples dynamic protein configurations with a 

continuum electrostatic calculation of the free energy. The results of our study show that the 

channel response to the permeating ion produces significant electrostatic stabilization of K+ 

inside the channel. 

The local diffusion constant of K+ inside the GA channel has been calculated using four 

different computational methods based on MD simulations: Mean Square Displacement (MSD), 

Velocity Autocorrelation Function (FACF), Second Fluctuation Dissipation Theorem (SFDT) 

and analysis of the Generalized Langevin Equation for a Harmonic Oscillator (GLE-HO). All 

methods were tested and compared in bulk water and all predicted the correct diffusion constant. 

Inside GA, MSD and VACF methods were found to be unreliable because they are biased by the 

systematic force exerted by the channel system. SFDT and GLE-HO methods properly unbias 

the influence of systematic force and predicted a similar diffusion constant of K+ inside GA, 

namely, ca. 10 times smaller than in the bulk. 

A simplified three-dimensional model of ClC chloride channel was constructed to couple 

the ion permeation to the motion of a glutamate side chain which acts as the putative fast gate. 

Dynamic Monte Carlo (DMC) simulations were carried out using this model channel to 

investigate the dependence of the gate closing rate on internal and external chloride 

concentration as well as the gate charge. Our simulation results were in qualitative agreement 

with experimental observations and consistent with the “foot-in-the-door” mechanism. 
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Osmotic and diffusion permeabilities of H2O and D2O in Aquaporin 1 (AQP1) were 

calculated using MD simulations and, subsequently, osmotic permeabilities were measured 

experimentally. The combined computational and experimental results suggest that D2O 

permeability through AQP1 is similar to that of water. 
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1.0  INTRODUCTION 

Cells of living organisms are surrounded by membranes whose main function is to separate the 

internal environment from the external. Membranes are made of a phospholipid bilayer that can 

contain different proteins and molecules such as cholesterol. Due to lipid hydrophobic properties, 

membranes have low permeability for charged and polar species. However, cells need to 

exchange their chemical material with the outside environment to carry out diverse metabolic 

functions. Nature has developed a variety of elaborate ways to transport compounds across the 

membrane (Figure 1). There are three main classes of transmembrane proteins that perform 

transport functions: channels, carriers and pumps [1]. Both channels and carriers facilitate the 

passive transport of chemical species down their electrochemical gradients across the membrane 

while pumps transport chemical species against their electrochemical gradients by consuming 

chemical energy stored in ATP or light. Channels have well defined water-filled pores and 

selectively facilitate the transport of ions and molecules at almost barrier free rates. A single 

channel can transport as many as millions of solute species per second. Another intrinsic 

property of channels is that they can open and close in the response to external factors such as 

ligand binding and membrane potential. What distinguishes carriers from channels is that carriers 

do not have well defined water-filled pores. The mechanism of carrier conductance is still poorly 

understood and presumably involves binding/unbinding of solute species to specific sites that 

due to conformational changes become available to one or the other side of the membrane. 

Because carriers can transport only one or few species per cycle they are much slower than 

channels. There are several classes of pumps based on transport mechanism as well as genetic 

and structural homology. The reaction mechanism for P-class ion pumps involves transient 

covalent modification of the protein inducing large conformational changes. At one step of the 

reaction cycle, phosphate is transferred from ATP to the carboxyl of a glutamate or aspartate 

side-chain, forming “high energy” anhydride linkage. At the later step the phosphate is released 
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by hydrolysis. Due to the induced conformation changes solute species bound to the protein on 

one side of the membrane get transported to the other side of the membrane. 

 

 
Figure 1. Membrane motif. 

(http://sun.menloschool.org/~cweaver/cells/c/cell_membrane/) 

 

Although the history of ion channels is only about 50 years old, it has been characterized 

by rapid progress, leading to the award of three Nobel Prizes [2]. The hypothesis of the existence 

of selective pathways for ions in the membrane started to emerge during the classical 

electrophysiological studies of action potential propagation in nerve cell axons in 1930s-1950s. 

The squid giant axon was particularly popular to use because of its large size. The squid giant 

axon can be up to 1 mm in diameter, which is 100-1000 times larger than mammalian axons. The 

discovery of the squid axon made it much easier for the experimentalists to conduct 

electrophysiological studies i.e., to insert electrodes inside the cell and make reliable electrical 

measurements. These studies involved the stimulating of the axon with electric current and 

measuring the change in the membrane potential caused by such stimulations. Unfortunately, this 

did not allow the experimentalists to control the membrane potential and had limited application 

for the studies of the action potential. The development of the voltage clamp technique in the late 

1940s was a breakthrough in channel research [3, 4]. Using the feedback amplifier device it 

 2 



allowed the voltage across the membrane to be “clamped” and the transmembrane currents to be 

directly measured. Using this technique Hodgkin and Huxley demonstrated in 1952 that 

permeabilities of K+ and Na+ contribute separately to the action potential of the squid giant axon 

by varying both the membrane potential and extracellular electrolyte composition [5, 6]. The 

analysis of electrical responses led them to distinguish and separately measure ion currents 

carried by K+ and Na+. Membrane permeabilities for these ions were characterized by different 

selectivity and separable kinetics but they both were voltage dependent. This study let Hodgkin 

and Huxley to conclude that there are separate ionic pathways for K+ and Na+ in the membrane. 

Hodgkin and Huxley summarized their experimental data in an empirical kinetic model [7]. This 

model accurately predicted different features of the action potential in terms of permeability 

changes. It correctly described the basic property of the ion channels that ions passively move 

across the membrane down their electrochemical gradients and suggested some features of ion 

channel gating. Hodgkin and Huxley were awarded the Nobel Prize in medicine in 1963 for their 

work elucidating the ionic mechanism of nerve cell excitation. 

The next major advances in ion channel research came with the discovery of specific 

channel blocking agents in the 1960s. One of these is tetrodotoxin, which is found in fugu puffer 

fish and some other species [8]. Tetrodotoxin drew some medical attention in Japan because fugu 

puffer fish is considered a delicacy there - with occasional lethal consequences. Tetrodotoxin 

blocks voltage gated sodium channels responsible for generation of action potentials, paralyzing 

the victim unfortunate enough to eat it. Another natural toxin, saxitoxin, is a chemical analog of 

tetrodotoxin produced by some dinoflagellate species that are a component of marine plankton. 

In fertile seasons the population of microscopic dinoflagellates blooms, discoloring the water 

with their reddish color: this phenomenon is known as “red tide”. Shellfish feeding on filtering 

the water get contaminated with accumulated toxin and it becomes very dangerous to eat them 

because cooking does not destroy the toxin. Public health authorities control the commercial 

harvest of shellfish to prevent this type of poisoning. It was also found that tetraethyl ammonium 

is an effective agent for blocking voltage dependent potassium pathways [9]. The discovery of 

specific channel blocking agents made it possible to study sodium and potassium channels 

separately from each other and provided further evidence that permeability of different ions is 

controlled by separate ion pathways. Later, in the 1980s neurotoxins became crucial for 

biochemical isolation and purification of ion channels. 
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The final and most compelling evidence establishing the existence of ion channels as 

distinct membrane entities came from the studies of Hladky and Haydon in 1972 [10]. They 

incorporated small amounts of the antibiotic gramicidin into an artificial membrane and observed 

that ionic permeability of the membrane dramatically increased with stepwise fluctuations in the 

ionic current. This suggested that each step in the current recording corresponds to opening or 

closing of an individual ion channel. 

Until the 1970s it was possible to study ion channels only collectively. The breakthrough 

came in 1976 when Erwin Neher and Bert Sakmann invented “patch clamp” technique, which 

allowed isolation and characterization of individual ion channels [11]. In this method a tiny glass 

pipette filled with salt solution is placed against a cell membrane where it is believed a single ion 

channel is. If this is the case, then the current is recorded by the measuring device. This method 

makes it possible to detect currents which are smaller than 10-12 amps i.e., sensitive enough to 

measure ion flow through single ion channel protein. Patch clamping became possible in part 

because of improvement in amplifiers, as well as in cell culturing techniques. The slightly 

modified version of the patch clamp technique called “gigaseal” still remains one of the most 

important experimental methods for studying ion channels [12]. In the gigaseal method a slight 

suction is applied to seal the microelectode to the membrane, which considerably reduces the 

noise level due to formation of resistance to extraneous ion flow. It also allowed different 

modifications of this technique to be used, including “cell attached”, “whole cell”, “inside-out” 

and “outside-out” configurations. The importance of the development of patch clamp technique 

for ion channel research was reflected in the Nobel Prize awarded to Neher and Sakmann for 

Physiology and Medicine in 1991. 

Patch clamp recordings provided unprecedented opportunities in assessing ion channel 

function, but mechanistic understanding was still limited to cartoon models. The mechanistic 

understanding relies on the knowledge of detailed three-dimensional (3D) structure that can 

explain permeability, selectivity and gating. New methods started to be applied to reveal the 

structure of ion channels and relate it to function. The amino-acid sequence of nicotinic 

acetylcholine receptor channel was determined in 1982 by applying recombinant DNA 

techniques [13]. Combining these data with methods for predicting secondary structure [14] and 

regions of hydrophobicity [15], provided the first robust hypothesis for ion channel architecture 
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[16]. Another important method called site directed mutagenesis allowed mutation of selected 

residues in order to understand their role in permeability, selectivity and gating [17]. 

The first atomic structure of an ion channel was obtained by Arseniev’s group in 1985 for 

Gramicidin A incorporated in sodium dodecyl sulfate micelles using solution state Nuclear 

Magnetic Resonance (NMR) [18]. Gramicidin A is a 17 residue peptide with alternating D- and 

L-amino acids which is selectively permeable only to monovalent cations. It is secreted by 

organisms in the defense response against foreign bacterial cells by “punching holes” in their cell 

membranes. The structure revealed that the channel is a head-to-head right handed β-helix dimer 

that is formed by hydrogen bonding between carbonyl and amino groups six residues apart. The 

two monomers are held together by the “locking” of six hydrogen bonds so that the total length 

of the channel is ca. 25 Å and its radius is ca. 2 Å. 

Structures provide important information about the mechanism of channel functions at 

the molecular level. They also serve as important input data to any rigorous theoretical model 

that aims to elucidate the molecular mechanism of permeation, selectivity or gating. 

Unfortunately, the rapid progress in determining the high resolution structures (at the atomic 

detail) of globular proteins has not transpired in the case of ion channels. By present, there is 

only handful of high resolution structures available for ion channels. This situation has arisen 

because obtaining high resolution structures relies on using x-ray crystallography, which 

provides superior signal-to-noise ratio. Ion channels have a hydrophobic exterior, rendering them 

insoluble in aqueous solutions and, therefore, hard to crystallize. The NMR method is limited to 

determining structures of small peptides or protein segments and cannot be used to resolve the 

structure of large channel complexes. The first structure of a physiologically relevant KcsA 

potassium channel, was resolved by MacKinnon’s group in 1998 at 3.2 Å resolution using x-ray 

crystallography [19]. It provided a great deal of information about how “real” channels look like. 

The structure revealed that the selectivity filter is a narrow cylinder near the channel’s external 

mouth, ca. 15 Å long, that accommodates two potassium ions. An aqueous cavity was found in 

the middle of the channel containing one potassium ion. The crystal structure of bacterial ClC 

channel resolved by MacKinnon’s group at 3 Å was reported in 2002 [20]. Surprisingly, the 

structure of ClC channel was significantly different from any other known ion channel, but 

consistent with an early “double barrel” model [21]. MacKinnon was awarded a Nobel Prize in 

Chemistry in 2003 for structural and mechanistic studies of ion channels. 
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Electron microscopy (EM) is another useful technique for obtaining structures of ion 

channels at medium to low resolution (typically ca. 5-20 Å) [22]. The structure of nicotinic 

acetylcholine receptor at 4 Å resolution, obtained by Unwin and collaborators in 2003, has 

helped to elucidate the mechanism of ligand gating [23]. Several structures of physiological 

relevant ion channels have been resolved at medium and low resolution by the cryogenic EM 

method including the calcium-release channel of skeletal muscle ryanodine receptor 1 (RyR1) at 

9.6 Å resolution [24], voltage gated L-type calcium channel at 23 Å [25] and sodium channel at 

19 Å [26]. 

Many ion channels have been identified since the first voltage clamp studies by Hodgkin 

and Huxley on voltage dependent sodium and potassium channels. Classification of ion channels 

is based on selectivity and gating [1]. Some channels are permeable only by certain ions (e.g., the 

potassium channel KscA is permeable only by K+ [27]), by a certain class of ions (e.g., 

Gramicidin A is permeable only by small monovalent cations [28]) or not selective at all (e.g., 

gap junctions [1]). Classification based on gating includes what kind of physical modulation 

controls their gating activity. There are channels whose opening or closing is activated by ligand 

binding (e.g. nicotinic acetylcholine receptor [1]), by a change in the membrane potential, or by 

membrane tension (e.g. mechanosensitive MscL channel). There are also channels that are not 

gated at all (e.g. gap junctions, OmpF porin [29]). 

It was generally assumed for a long time that water passes biological membranes by 

simple diffusion through the lipid bilayer [30]. The discovery of Aquaporin 1 (AQP1) in red cells 

and renal tubules ended the controversies about the existence of molecular water channels [31, 

32]. Although water can be transported by different membrane proteins in varying degree, it is 

now known that water transport across the membrane can be regulated independently of solute 

transport due to unique properties of the aquaporins. Since the discovery of AQP1 in 1992 

around 200 members of the aquaporin family have been identified at all levels of life: bacteria, 

plants, animals and humans [33]. Eleven aquaporins, designated AQP0-AQP11, have been found 

in mammals [34]. Aquaporins are expressed differently in many types of cells and tissues in the 

human body and their mutations are responsible for a wide range of pathological diseases [34]. 

As experimental methods developed, so did theoretical methods to explain the 

mechanism of channel functions. Early theoretical studies relied on cartoon structures. These 

studies treated water-channel-membrane as a problem of electrostatics aimed at discriminating 
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between different qualitative pictures of ion permeation [35, 36]. For example, it was found that 

the model describing the channel as the water-filled pore had the most favorable energy for ion 

permeation compared to other putative models. Several methods for modeling ionic currents 

across the membrane were proposed [37]: the Poisson-Nernst-Planck (PNP) theory, reaction rate 

theory [38], Brownian dynamics [37] and Molecular Dynamics [39, 40]. 

In late 1880s Nernst [41] and Planck [42] independently derived an electro-diffusion 

equation by combining Fick’s law of diffusion with Kohlrausch’s electrophoretic equation. In 

Nernst-Planck theory ions are represented by continuum average concentrations whose time 

evolution is described as drift down the electrostatic potential gradient accompanied by 

diffusion. The ionic flux Ji of species i is described by the following one-dimensional (1D) 

Nernst-Planck equation: 

 ⎥
⎦

⎤
⎢
⎣

⎡
+−=

dx
dc

Tk
ez

dx
dcDJ

B

ii
ii

ψ , (1.1) 

where Di is the diffusion constant, ci is the concentration and zi is the valence of ionic species i; e 

is the elementary charge, kB is the Boltzmann constant, T is the absolute temperature and ψ is the 

electrostatic potential. Goldman [43], Hodgkin and Katz [44] introduced three assumptions that 

helped them to derive analytical equations for ion current and zero-current potential across the 

membrane using 1D Nernst-Planck equation, namely, 1) the electrostatic potential drops linearly 

across the membrane (constant-field), 2) each ion is not influenced by any other ions and 3) the 

diffusion coefficients do not vary along the channel. 

B

In a more rigorous approach, the electrostatic potential in the Nernst-Planck equation is 

not presupposed in advance but calculated from the first principles using Poisson’s law: 
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4 ρπψε , (1.2) 

where ε  is the dielectric constant of the medium, ρf is the density of fixed charges, N is the 

number of the ion species in the solution. The resulting method in which Poisson and Nernst-

Planck equations are solved self-consistently is called Poisson-Nernst-Planck theory [45-47]. 1D 

PNP was useful for modeling ion currents for channel with unknown atomic structure. For 

channels with known atomic structure, a 3D version was developed [48]. The numerical 

algorithm for solving the 3D PNP equations consists of independently solving a set of partial 

differential equations, namely Nernst-Planck (one for each ionic species) and Poisson [47]. 
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Among different numerical methods for solving partial differential equations, finite difference 

and finite elements are the most popular. In the finite difference approach the electric potential, 

charge distribution and spatially dependent dielectric constant are discretized onto a 3D lattice. 

The relaxation algorithm involves cycling around the interior lattice points and updating them 

based on an appropriate average over the nearest neighbors. 3D PNP was tested for channels 

with different radii and it was found that 3D PNP is reliable for channels with medium and large 

radii but implementation for narrow ion channels encountered several serious weaknesses relates 

to its mean-field nature [29, 47, 49-51]. In PNP ions are infinitesimal in size and, therefore, the 

change in the solvation energy as the ion moves from the high dielectric medium provided by the 

aqueous solution into the low dielectric environment of the channel and membrane is not taken 

into account. This change in the free energy, known as a dielectric barrier (or dielectric self 

energy (DSE)), imposes a significant obstruction for ion permeation across the membrane. 

Numerical calculations based on the Poisson equation revealed that in a narrow cylindrical 

channel the dielectric barrier for a single ion is very high (ca. 15 kBT) and, therefore, cannot be 

neglected [49, 50]. Another serious weakness of PNP is that ion-ion interactions are treated only 

on the mean-field level, which does not properly describe the physical interactions between ions 

in the channel. It can be especially severe for channels that are occupied by several ions and 

whose permeation mechanism relies on “knocking” of one ion by another [47, 51]. In its 

standard implementation, PNP does not take into account flexibility of the protein in response to 

ion permeation [47, 51]. Furthermore, in the narrow cylindrical channels, which characterize 

biological channels, the dielectric constant of water may be ill-defined. 

In the reaction rate model, the ionic pathway through the channel is described by series of 

energy wells and barriers [38]. The wells represent specific sites where ions prefer to be 

localized with barriers separating these sites. Ion permeation consists of a series of “hops” from 

one site to another. In order to hop an ion must gain enough thermal energy to overcome the 

imposed energy barrier. Thus, ion permeation is described by a set of kinetic rate equations: 

 
an an+1 ...

kf
n-1 kf

n

kb
n-1 kb

n

... an-1
, (1.3) 

where an-1, an, an+1 represent the ion’s favored (“binding”) sites, and kf and kb represent forward 

and backward rate constants respectively for hoping between the sites. The rate constants can be 

calculated using the transition-state theory: 
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where the pre-exponential factor k0 is the attempt frequency for the barrier crossing and ΔG is the 

free energy of activation. In the case of dilute gas-phase reactions, according to the absolute 

reaction rate theory the prefactor k0 is equal to 
h
TkB . In a condensed phase environment such as 

aqueous solution, the reactants suffer continuous damping interactions with the fluctuating 

environment and the absolute reaction rate constant cannot be used [1, 37]. A great deal of the 

statistical mechanics work beginning with Kramers [52] focused on the deriving the appropriate 

form of the prefactor for reactions in condensed phases. The following equation for prefactor due 

to Kramers [52] is often used for aqueous solutions 
Tk
kkD

k
B

bw

π20 = , where kw and kb are constants 

of the harmonic potential function ( 2x ) that describe the curvature of the potential energy 

near the well and the barrier respectively. Nernst-Planck theory is considered to be superior to 

the absolute reaction rate theory because the latter theory constitutes a gross simplification of 

complex microscopic events that captures some important part of a problem while ignoring many 

others [1, 37, 53]. Nevertheless, standard 1D Nernst-Planck theory does not allow the channel 

conductance to be interpreted in terms of the actual channel geometry and electrostatics. It can be 

used if one simply wants to parameterize the channel using the available experimental data. 

2
1 k

In Brownian Dynamics ions are treated explicitly but the solvent is replaced by a 

continuum whose interactions with the ions are modeled via a friction coefficient and a dielectric 

constant [37, 54]. The protein is held fixed. With these assumptions the 3D movement of ion i 

can be described by the Langevin equation [55]: 
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where mi is mass of ionic species i, )(tri
r  is its 3D position, sysF

r
 is systematic force acting on ion 

including the externally applied electric field, electric field due to partial charges on the protein 

atoms, all other ions, and induced charges from the discontinuity in the dielectric constant at the 

boundaries between the protein, water and lipid. Furthermore, γi is the friction coefficient and 

)(tR
r

 is the random force representing the effect of collisions with the water and the channel 
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wall. The electric potential at each ion position can be calculated using Poisson’s law. Because 

the dynamics of the water and the protein are no longer computed, relatively long time steps can 

be taken for the ion motion (ca. 1 ps). A major advantage of BD method compared to 3D PNP is 

that it allows direct simulation of ion-ion interactions [49-51]. One difficulty with this approach 

is that because of the induced charges at the membrane, channel and water interfaces, the 

calculation of the electrostatic energy at each step requires time-consuming calculations. Several 

approaches were developed to make such calculations faster. In one approach the electrostatic 

potential of one, two and if necessary more ions inside the channel is calculated in advance, 

stored on the computer and used during the BD simulations [56]. In another approach a simple 

empirical equation was found to accurately describe pairwise electrostatic interactions between 

ions in a model channel and used in BD simulations [57]. 

The concept of Molecular Dynamics (MD) is rooted in the Born-Oppenheimer 

approximation [58]. This approximation states that the motion of electronic and nuclear degrees 

of freedom in molecules can be separated. Therefore, the motion of nuclei can be solved 

independently of the motion of electrons. The Born-Oppenheimer approximation implies that the 

motion of the nuclei occurs in the average field exerted by the electrons called the potential 

energy surface. Because the mass of nuclei is much heavier than the mass of electrons, the 

motion of nuclei can be often described using classical laws of motion. In MD, time evolution of 

the atomic coordinates is calculated by integrating Newton’s equation of motion in the potential 

energy surface described by molecular force fields [59]. These force fields describe the physical 

interactions between atoms such as repulsion at short distances, electrostatic interactions between 

partially charged atoms and ions, bond stretching, the opening and closing of angles and 

rotations about single bonds. Force field models of physical interactions often rely on simple 

functions such as Hooke’s laws [59]. 

The first detailed MD simulation of an ion channel was reported by Wilson’s group in 

1984 for the Gramicidin A channel after a reasonable structure became available [60]. The full 

atomic structure of Gramicidin A was simulated along with approximately 13 water molecules 

and one ion. Four different ions Li+, Na+, K+, Cs+ were studied. This study provided important 

insights about the mechanism of ion solvation, energy stabilization inside the channel and the 

single-file concerted motion of an ion with the channel water molecules. Nowadays, MD 

simulations are routinely used to study channels with known atomic structures. The simulations 
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systems contain as many as tens and even hundreds of thousands of atoms with explicit 

representation of a phospholipid bilayer and external electrolyte solutions [61-63]. Using MD 

simulations, accurate free energy curves (in 1D) or surfaces (in 2D) and diffusion constants of 

solute species can be calculated [61, 64, 65]. Unfortunately, MD is still too slow for calculating 

solute or solvent fluxes through the channels although several attempts have been made [39, 40, 

62, 66]. The approximate time of ion permeation at physiological conditions is in the range of 

10-100 ns [1]. Hundreds of ion permeation events must be simulated to obtain statistically 

reliable results. This would require microseconds of MD time – still far unreachable by standard 

MD method. However, several MD simulations at high ion concentrations and applied voltages 

were reported [39, 40, 62]. In the method called Non-equilibrium Molecular Dynamics (NEMD) 

an electric field is applied to all charged species in the simulation box along the channel axis 

forcing ions to move through the channel. By averaging the number of ions that crossed the 

channel over the time period, an ionic current can be calculated. To simulate osmotic fluxes of 

solvent molecules through channels, a different version of NEMD was developed in which a 

hydrostatic pressure gradient is established across the membrane by applying extra force to a 

layer of solvent molecules parallel to the membrane interface [66]. However, the same sampling 

problem remains and the fluxes can be calculated only at unrealistically high osmotic pressures. 

The further development of the field has been made and Chapter 2 addresses 

improvements of the standard PNP theory for modeling ionic current through narrow ion 

channels. Gramicidin A was chosen as a test system due to its mature state of experimental and 

theoretical characterization. A hybrid molecular dynamics–PNP model was developed, termed 

PMFPNP, which properly accounts for dielectric barrier and channel relaxation effects. In this 

approach molecular dynamics was used to generate snapshots along the equilibrium MD 

trajectory for an ion (K+ and Cl-) fixed at several different positions along the channel. 

Subsequently, these snapshots were used to calculate the free energy of transferring the ion from 

the bulk into the particular point inside the channel by numerical solution of the Poisson equation 

and averaging the energy over the MD snapshots. Single ion potentials for K+ and Cl- ions 

calculated in this fashion were used to compute ionic currents by solving the appropriately 

modified 3D PNP equation. The calculated ionic currents were in reasonable agreement with the 

available experimental data. The new PMFPNP method even predicted saturation of ion current 

with increase of bulk ion concentration, an effect which is completely missed by the standard 
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PNP theory. This saturation can be attributed to “clogging” of the channel by the ions as the 

ionic concentration increases in the bulk solutions. However, this success should be taken with 

some caution because it is hard to estimate the accuracy of the mean-field approximation and 

more work is needed to fully asses the model’s reliability. In general, mean-field theories have a 

habit of working better than one might expect (e.g., Debye-Huckel theory, Born theory of 

solvation) and remain invaluable to the present day [47]. 

PNP and Brownian dynamics in their approximations rely on the magnitude of the 

diffusion constant of ions inside the channel. To date there are no direct experimental 

measurements of the diffusion constant of ions in narrow pores. Indirect experimental data 

reveals that they are much smaller than in bulk solution [67]. This is reasonable to expect 

because the mobility of ions and water molecules is suppressed in the confined environment of a 

narrow ion channel; ions and water molecules form a single file and must move in concert to 

pass the channel [1]. Therefore, one must rely on theory to predict the diffusion constants and, 

indeed, several theoretical methods have been developed for this purpose. They are widely used 

for calculating diffusion properties of ions and molecules in bulk phase [68-70], but the 

applicability of some of these methods to narrow ion channels is questionable. Currently, there is 

no consensus in the biophysical literature about the magnitude of the diffusion constants of ions 

inside narrow pores [65, 67, 71-73]. Different methods and authors predicted a wide range of 

diffusion constants. In Chapter 3 the diffusion constant of K+ was calculated inside the 

Gramicidin A channel using four computational methods based on molecular dynamics 

simulations, specifically: Mean Square Displacement (MSD), Velocity Autocorrelation Function 

(FACF), Second Fluctuation Dissipation theorem (SFDT) and Generalized Langevin equation 

for a Harmonic Oscillator (GLE-HO). All methods were first tested and compared for K+ in bulk 

water – all predicted the correct diffusion constant. Inside GA, the MSD and VACF methods 

were found to be unreliable because they are biased by the systematic force exerted by the 

membrane channel system on the ion. It was found that SFDT and GLE-HO techniques properly 

unbias the influence of the systematic force on the diffusion properties and predicts a similar 

diffusion constant of K+ inside GA, namely, ca. 10 times smaller than in the bulk. A similar 

diffusion constant inside the channel, namely, 8.5 times smaller compared to the bulk was used 

in Chapter 2 to calculate ion currents using PMFPNP model. The results were in reasonable 

agreement with experimental data. 
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In Chapter 4 the Dynamic Monte Carlo method (essentially equivalent to Brownian 

Dynamics) was used to study the fast gating of the ClC-0 channel. According to experimental 

measurements the gate open time of ClC-0 depends strongly on the intracellular concentration, 

but only weakly on the extracellular concentration [74-76]. To explain this dependence, a “foot-

in-the-door” mechanism was proposed [74, 75]. According to this mechanism a permeating Cl- 

ion blocks the fast gate from closing by occupying a binding site that would be occupied by the 

fast gate in the closed state. Recently, Dutzler et al. [77] presented a structural basis for this 

mechanism and suggested a possible way of coupling ion permeation to ClC channel gating. To 

test this experimental hypothesis a simplified three-dimensional ClC chloride channel was 

constructed to couple the ion permeation to the motion of a glutamate side chain which acts as 

the putative fast gate in the ClC-0 channel. The simulation results were in qualitative agreement 

with experimental observations and consistent with the “foot-in-the-door” mechanism. 

In Chapter 5 NEMD was used to predict diffusion and osmotic permeabilities of water 

(H2O) and heavy water (D2O) through the AQP1 channel. The molecular mechanism of water 

permeation and selectivity in the AQP channels was recently revealed using MD simulations [63, 

78]. Quite recently, an experimental interest arose to study the permeability of heavy water 

across AQP channels [79] because D2O properties are almost the same as H2O and it would be 

reasonable to expect that their permeabilities are the same too. This hypothesis was first tested 

using MD simulations in which the diffusion and osmotic permeabilities of H2O and D2O 

through AQP1 were calculated. The simulation results were subsequently confirmed by 

experimental measurements: indeed, the diffusion and osmotic permeabilities of H2O and D2O 

are very similar through the AQP1 channel. 
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2.0  THE ROLE OF THE DIELECTRIC BARRIER IN NARROW BIOLOGICAL 

CHANNELS: A NOVEL COMPOSITE APPROACH TO MODELING SINGLE 

CHANNEL CURRENTS. 

Mamonov, A. B., R. D. Coalson, A. Nitzan, and M. G. Kurnikova. Biophys. J. 2003, vol. 84, p. 

3646-3661. 

2.1 ABSTRACT 

A composite continuum theory for calculating ion current through a protein channel of known 

structure is proposed, which incorporates information about the channel dynamics. The approach 

is utilized to predict current through the Gramicidin A ion channel, a narrow pore in which the 

applicability of conventional continuum theories is questionable. The proposed approach utilizes 

a modified version of Poisson-Nernst-Planck (PNP) theory, termed Potential-of-Mean-Force-

Poisson-Nernst-Planck theory (PMFPNP), to compute ion currents. As in standard PNP, ion 

permeation is modeled as a continuum drift-diffusion process in a self-consistent electrostatic 

potential. In PMFPNP, however, information about the dynamic relaxation of the protein and the 

surrounding medium is incorporated into the model of ion permeation by including the free 

energy of inserting a single ion into the channel, i.e., the potential of mean force along the 

permeation pathway. In this way the dynamic flexibility of the channel environment is 

approximately accounted for. The PMF profile of the ion along the Gramicidin A channel is 

obtained by combining an equilibrium molecular dynamics (MD) simulation that samples 

dynamic protein configurations when an ion resides at a particular location in the channel with a 

continuum electrostatics calculation of the free energy. The diffusion coefficient of a potassium 

ion within the channel is also calculated using the MD trajectory. Therefore, except for a 
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reasonable choice of dielectric constants, no direct fitting parameters enter into this model. The 

results of our study reveal that the channel response to the permeating ion produces significant 

electrostatic stabilization of the ion inside the channel. The dielectric self-energy of the ion 

remains essentially unchanged in the course of the MD simulation, indicating that no substantial 

changes in the protein geometry occur as the ion passes through it. Also, the model accounts for 

the experimentally observed saturation of ion current with increase of the electrolyte 

concentration, in contrast to the predictions of standard PNP theory. 

2.2 INTRODUCTION 

Ion permeation through narrow protein channels is a topic of considerable current interest [80-

85]. The importance of ion transport for many vital cell functions is difficult to overestimate.  

Processes in which substantial ionic currents are generated in membrane channels include 

maintenance of ionic concentration gradients across the cell membrane, generation of action 

potentials in neurons and auto-waves in heart muscle to name just three. Moreover, many 

modern drugs target ionic channels to modify their action [86-89]. Therefore, in addition to 

extensive experimental effort, there is much theoretical interest in understanding mechanisms of 

ion channel function at the molecular level. Recent advances in solving 3D structures of 

membrane proteins in general and channel proteins in particular [90] have enabled attempts at 

detailed molecular level modeling of ion current through protein channels [48, 91, 92] (see also 

recent reviews of the subject [85, 93]). A first attempt to perform a full scale non-equilibrium 

Molecular Dynamics (MD) simulation of ion current through a simplified model channel at very 

high ion concentrations and applied voltage has been reported recently [40, 94]. However, non-

equilibrium MD simulations are too expensive for realistic biological ion channel systems at 

physiological conditions because of the many different time-scales and length-scales involved. 

Instead, several Dynamic Monte-Carlo (DMC) [50, 95] and Brownian Dynamics (BD) studies 

[91, 96-100] of current-voltage relations through different natural and model channels have been 

recently reported. A key conclusion drawn from these studies is that the dielectric self-energy 

(DSE) which arises when an ion moves through a relatively narrow channel with diameter of up 

to ca.1 nm greatly affects the dynamics of ion permeation [49, 50, 95, 101]. A charged particle 
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which moves from a highly polarizable medium such as water solution into a low polarity 

medium such as a protein surrounded by a lipid bilayer experiences a dielectric barrier or 

dielectric self-energy (DSE). Several studies have demonstrated that transport through a narrow 

channel is greatly reduced or even completely inhibited by the presence of a dielectric barrier 

[49, 50, 95, 97]. In contrast, experimentally observed currents through narrow channels such as 

Gramicidin A (GA) are not negligible but, on the contrary, quite substantial - measured in tens of 

millions of ions per second [1]. Therefore, these relatively small and simple molecular structures 

function very efficiently as ion channels. One thus suspects that a rigid model of a narrow 

membrane channel is inadequate for describing its ionic permeability. What is obviously missing 

from this oversimplified model is the motion of the channel structure itself. The importance of 

this aspect of ion-channel operation has been clearly demonstrated in equilibrium simulations 

[102]. In this paper we propose a modeling approach that takes into account the dynamic 

implication of this motion for the transport of ions under nonequilibrium conditions. The 

proposed approach can describe ion currents (a long-time scale process) while accounting for the 

molecular flexibility of the channel protein (fast conformational changes on a short time-scale) 

which forms the channel. We examine the possible mechanisms by which a functional channel 

overcomes the impediment of a dielectric barrier and devise a model of an ion channel that is 

free of fitting parameters (except for a reasonable choice of dielectric constants) and realistic 

enough to yield ion currents which are compatible with experimental observations. We employ a 

combination of modeling methods that span a range of molecular resolutions (particle dynamics, 

continuum electrostatics), thus enabling treatment of ion channel permeation from first 

principles. 

Ion permeation is slow on a molecular time scale. As an ion passes through the channel, 

the protein channel molecule has time to adjust its local geometry to the presence of the ion 

“instantaneously” on the time scale of the ion transport [102-105]. We have performed an 

equilibrium MD study of protein channel relaxation with an ion placed at various positions inside 

the channel. Our simulations reveal that the introduction of an ion into the channel causes only 

small changes in the 3D structure of the protein in agreement with previous studies of an Na+ ion 

in Gramicidin A channel [106]. These small structural changes, however, substantially alter the 

ion-protein electrostatic interaction energy, leading to the relative stabilization of the ion-channel 

complex. This observation forms the basis for the numerical approach proposed herein. 
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The remainder of this paper is organized as follows. In “Theory and Simulation Methods” 

section the theoretical formulation is discussed and the simulation methods used are outlined. 

The “Simulation Procedure” section describes the system studied and provides details of the 

numerical modeling. Our results are presented and discussed in “Results and Discussion” 

section, followed by a “Conclusions” section. An Appendix is provided with a summary of terms 

and abbreviations used throughout the article. 

2.3 THEORY AND SIMULATION METHODS 

2.3.1 Potential-of-Mean-Force-Poisson-Nernst-Planck (PMFPNP) approach to calculate 

ion currents through the channel 

In continuum theory electrolyte ions are treated as a continuous charge distribution characterized 

by the concentrations { } of the ionic species involved. The electric charge of the i)(rci
r th ionic 

species is qi and the associated charge density is )(rcq ii
r . The distribution of these 

concentrations is governed by a set of drift-diffusion equations, also called Nernst-Planck 

equations, one for each ionic species i present in solution. In particular, ij
r

, the flux of species i 

at a given point in space is given by 
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and the concentration of species i  evolves in accordance with the continuity equation 

i
i jdiv
t
c r

−=
∂
∂ . In Eq. 2.1a Di is the position dependent diffusion coefficient of species i, 

 is the inverse temperature,  is the Boltzmann constant and ( ) 1−= kTβ k T  is the absolute 

temperature. Finally, )(ri
rψ  is the free energy of ions of species i in solution. At steady-state, 

 0 =ijdiv
r

, (2.1b) 

and thus all quantities in Eq. 2.1 are time-independent. The second term on the right-hand side of 

Eq. 2.1a is the drift term due to the forces acting on a charged particle of species i from both ion-
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ion interactions and external sources. The latter include interactions with fixed charges on the 

protein system and the externally imposed electric field. Eq. 2.1 is supplemented by 

concentration boundary conditions that account for the external bulk ionic concentrations of 

species i (which may be different on different boundary “faces”, particularly if concentrations in 

the bathing solutions on the two sides of the membrane differ). 

In a continuum model )(ri
rψ  depends on the electrostatic charge distribution in the 

system and on the (generally position dependent) dielectric response function )(rrε . It is 

convenient to separate the ion free energy into two contributions: 

 )()()( rGrqr i
SIPmobileii

rrr
Δ+= φψ , (2.2) 

where )(rmobile
rφ  is the electrostatic potential due to all mobile ions and the applied electric field 

associated with external electrodes, and )(rGi
SIP

r
Δ  is the potential of mean force (PMF) [55] for a 

single test ion [hence “Single Ion Potential” (SIP)]. In an inhomogeneous dielectric medium 

)(rmobile
rφ  is determined by the Poisson equation: 

 )(4))()(( rcqrr iiimobile
rrrrr

Σ−=∇⋅∇ πφε , (2.3) 

subject to Dirichlet boundary conditions, i.e., values of the electrostatic potential are fixed on the 

boundaries of the computational box [48]. In reality, these boundary conditions are imposed by 

the electrodes. In numerical models practical considerations often dictate the use of smaller 

subsystems, for which the computational boundary conditions need to be taken to reflect the 

effect of the actual ones using theoretical considerations [50]. In the simplest approximation that 

was introduced in the field of channel modeling by Eisenberg and coworkers [107] the term 

)(rGi
SIP

r
Δ  is disregarded. In an obvious generalization )(rGi

SIP
r

Δ  may include the electrostatic 

potential due to partial charges fixed on the protein and lipid atoms, i.e. )()( rqrG proteini
i
SIP

rr φ=Δ  

[48, 92, 108, 109]. Equations 2.1 and 2.3 are coupled nonlinearly via the ci and mobileφ  variables. 

In the general case of a protein of arbitrary geometry and distribution of partial charges on 

protein atoms, they have no analytical solution and must be solved numerically to self-

consistency [48]. Equations 2.1-2.3 with )()( rqrG proteini
i
SIP

rr φ=Δ  comprise the so-called Poisson-

Nernst-Planck (PNP) theory. 
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It is important to note that PNP theory invokes a mean field approximation in which the 

ion responds to the average concentrations of all mobile ions and its integrity as a particle is not 

accounted for. In particular, it was recognized recently that the change in solvation energy of a 

single ion when it moves in an inhomogeneous dielectric medium provides an important 

contribution to the drift flux term of Eq. 2.1 but is missing from the PNP definition of )(rGi
SIP

r
Δ  

[49, 50, 110]. This change in the free energy of a single ion defined with respect to the free 

energy of that ion in a bulk solvent was termed the dielectric-self energy (or dielectric barrier) 

)(rGi
DSE

r
Δ  [50, 95]. When the DSE is taken into account, )(rGi

SIP
r

Δ  is modified to 

 )()()( rGrqrG i
DSEproteini

i
SIP

rrr
Δ+=Δ φ . (2.4) 

Recent studies have shown that  in a narrow channel strongly influences the resulting 

current [50, 95]. Therefore, a careful assessment of 

i
DSEGΔ

)(rGi
SIP

r
Δ  is essential for modeling realistic 

channel behavior. PNP-like theory that implements )(rGi
SIP

r
Δ  as defined in Eq. 2.4 will be 

termed Dielectric-Self-Energy-Poisson-Nernst-Planck (DSEPNP) theory [95]. It was found that 

using this model to calculate ion transport through narrow channels such as Gramicidin A leads 

to very low permeability due to the high dielectric self-energy barrier, and cannot account for the 

observed relatively efficient ionic permeation through such channels. Note however that  

as defined by Eq. 2.4 still disregards a potentially important contribution to the free energy of 

inserting an ion at some location in the channel that results from the induced change in the 

channel geometry. A better calculation of  is clearly needed. 

i
SIPGΔ

i
SIPGΔ

In general, calculating free energy differences in bio-molecular processes is a challenging 

task. Several approaches have been adopted for various problems in molecular modeling. These 

theoretical methodologies span a wide range of molecular resolution—from estimating 

electrostatic free energies on a continuum level by solving the Poisson equation [101, 111-113] 

to full atomistic Molecular Dynamics simulations [102, 114]. In this paper we adopt a 

methodology to calculate )(rG i
SIP

r
Δ  for an ion entering the channel which is both cost–effective 

in terms of computational power and can account for the most essential properties of the system, 

including efficient ion permeation, when the function )(rGi
SIP

r
Δ  thus estimated is utilized in a 
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PNP-like kinetic theory. The general approach of combining the precalculated PMF for a single 

ion with the self-consistent PNP approach to estimate ion currents will be termed PMFPNP. 

The electrostatic free energy of transferring an ion from the bulk solution into the channel 

is defined by 

 ionproteincomplexi
SIP GGrGrG −−=Δ )()( rr , (2.5) 

where  is the energy of an ion plus protein/membrane complex embedded in the solvent 

(water) with the ion located at a point 

complexG

rr  inside the channel, is the energy of the 

protein/membrane system (without the ion) embedded in the same solvent and is the energy 

of a single ion in the bulk solvent. The conventional continuum electrostatic approach for 

calculating 

proteinG
ionG

)(rGi
SIP

r
Δ , based on Eq. 2.4, is outlined in the next subsection. A combined 

MD/continuum approach, which takes into account the channel flexibility, is presented in the 

following subsection. In subsequent sections we present results of applying both methodologies 

to first determine a plausible set of dielectric constants and then simulate current through the 

Gramicidin A channel. 

2.3.2 A Continuum approach to calculate the electrostatic free energy 

In the absence of external fields, the electrostatic energy G of a collection of point charges can be 

found as ∑=
i

iiqG φ
2
1 , where the summation is over all electrostatic charges  in the system 

and 

iq

iφ  is the value of the electrostatic potential at the position of charge i. The electrostatic 

potential )(rrφ  needed to calculate G can be found from the corresponding Poisson equation: 

 )(4))()(( jjj
rrqrr rrrrrr

−Σ−=∇⋅∇ δπφε  (2.6) 

supplemented by Dirichlet boundary conditions with the boundary potential set to zero. In Eq. 

2.6 δ  is the three-dimensional Dirac delta-function and jrr is the position of charge qj. We have 

recently shown [50, 95] that for channels as narrow as 4 Å in radius, a continuum description of 

ion permeation described by DSEPNP, i.e. Eqs. 2.1-2.6, compares well with results of Dynamic 

Monte-Carlo (DMC) simulations in which ions are treated as charged particles that diffuse in an 

inhomogeneous dielectric medium with a prescribed diffusion coefficient. As already mentioned, 
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such particle based simulation models of narrow rigid channels [50, 91] exhibit very small 

superlinear currents for voltages up to 200 mV. The insignificance of these currents can be traced 

to the presence of a DSE barrier of several kT in such. In contrast, real biological channels of 

similar size and shape exhibit substantial ionic current at low voltages, with nearly linear or 

sublinear current-voltage characteristics. A detailed analysis of DSEPNP and DMC particle 

simulations suggests that the effective polarizability of the channel environment (loosely defined 

as the ability of the local protein environment to adjust in order to stabilize an extra electric 

charge) must be higher than implied by the “standard” model utilized in both DMC and DSEPNP 

studies reported previously. Both approaches for simulating ion motions across channels suffer 

from the following two major limitations, related to the insufficient flexibility assigned to the 

description of the channel. First, the solvent polarizability is accounted for by a single parameter 

(a dielectric constant), while in reality solvent response in the confined channel environment may 

vary with the position in the channel in a way that cannot be determined from the bulk solvent 

properties. Second, the protein structure is taken to be rigid (usually at its average NMR 

configuration), while in reality the protein structure responds to the ionic presence. Below we 

will investigate the consequences of both limitations. 

2.3.3 A Combined Molecular Dynamics/Continuum Electrostatics approach to calculate 

free energy 

)(rGi
SIP

r
Δ  can, in principle, be found from an atomistic simulation in which all atoms on the 

protein, the lipid membrane and the solvent are treated explicitly. Several attempts to calculate 

the free energy of an ion in a Gramicidin A channel by MD simulation have been reported [102, 

106, 115]. Such calculations obviously rely on a parameterized potential function [116] and 

require complete sampling of the system configuration space. Improvements in the available 

parameterizations of potential functions have been slow in recent years [116]. Fortunately, an 

alternative method of dealing with the second problem, namely the limited sampling of the 

environment configurational space, has recently been introduced. Since a large portion of the 

configuration space required for quantitative calculation of the free energy of an ion in a solvent 

is due to the solvent itself, it was recently proposed [114, 117] that the computationally 

expensive sampling of solvent configurations may be replaced by considering solvent effects via 
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an appropriate approximate averaging procedure. A similar procedure was applied to model a 

polyglycine analogue of Gramicidin A channel [118]. Following the approach of Kollman et al. 

[114] a full-scale equilibrium Molecular Dynamics (MD) trajectory of the protein in an atomistic 

solvent is generated to sample the protein conformational space (with and without ion in the 

channel). The resulting sequence of N protein/water configurations is used to obtain a 

corresponding sequence of dielectric continuum models of these systems, in which the fixed 

protein charges are embedded in their corresponding atomic positions. These continuum 

dielectric configurations, obtained with the permeating ion fixed in a given position, are then 

used to compute the electrostatic free energy of inserting the ion at that position [111]. Adapting 

the procedure introduced by Kollman et al, [114] the free energy of ion-protein complex 

formation is calculated as an average over all n=1,...,N configurations: 

 ∑
=

Δ=Δ
N

n

ni
SIP

i
SIP G

N
G

1

)(1 , (2.7) 

where  has the same meaning as in Eq. 2.5, calculated for the n-th configuration. The 

method thus combines an MD simulation to obtain atomistic configurations of the membrane-

protein-ion complex with a continuum dielectric representation of each configuration in order to 

obtain a simple estimate of 

)(ni
SIPGΔ

)(ni
SIPGΔ  for that configuration, followed by the average indicated in 

Eq. 2.7. This approach allows us to account for solvent effects on average, i.e. at a mean field 

level, and to reduce the noise in the free energy calculations due to insufficient sampling of 

solvent configurations. The procedure described above, in which the potential of mean force 

 is calculated via Eq. 2.7 and then used in the PNP formalism, will be termed Potential-of-

Mean-Force-Poisson-Nernst-Planck (PMFPNP). We should note that this calculation still 

disregards contributions to the free energy due changes in the protein internal energy and 

accounts only approximately (through the temperature dependence of the dielectric functions) for 

entropic contributions. These missing contributions are expected to be small because 

deformation of the protein is minimal during the ion permeation (see the results and discussion 

sections), and because the changes in configuration entropy in these processes are typically 

small. (A similar number of degrees of freedom are constrained independent of the ion position 

in the channel). 

SIPGΔ
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2.4 THE SIMULATION PROCEDURE 

 

2.4.1 The model system 

The approach outlined above was implemented in a series of calculations performed for a model 

Gramicidin A (GA) channel. GA is an antibiotic peptide widely used in single-channel 

experiments on passive ion-current permeation through a lipid membrane. It is a robust narrow 

channel with a relatively rigid structure. It reconstructs into a lipid bilayer by forming head-to-

head dimers of betta-helical polypeptides. Due to its unusual primary sequence of alternating L 

and D amino acids it forms a helix with all the amino acid side-groups extending away from the 

backbone helix, which forms the channel. Therefore, the channel is lined with backbone carbonyl 

and amide groups, generating a hydrophilic environment inside the channel. Figure 2 shows a 3D 

GA ion channel structure incorporated into a crude model of a lipid bilayer membrane, with the 

membrane/protein channel system solvated in water. This snapshot is taken from an MD 

simulation performed as described in the next section. As has been noted by several workers [50, 

101, 119] the dielectric self-energy is very large for channels less than 5 Å in radius, implying 

the conundrum discussed above in modeling their permeability. We have chosen to work with 

GA, the narrowest known ion channel, to emphasize our goal of understanding the permeability 

of such narrow channels. It has also been pointed out [93, 120] that the selectivity filter of the 

potassium channel possesses certain similarities to the GA channel and thus our study of GA 

may help to understand the energetics of the potassium channel selectivity filter as well as other 

narrow channels. 
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Figure 2. Snapshot of the GA channel with a K+ ion embedded in a model membrane and solvated with water after a 

300 ps MD simulation as described in text. 

The model lipid bilayer is represented by pink spheres (the radius of the pink sphere in a picture does not reflect its 

Lennard-Jones parameters). The K+ ion is shown as the blue sphere in the center of the channel. Only backbone 

atoms of the peptide chains are shown. 
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2.4.2 MD/continuum simulation of an ion in the GA channel 

We have performed a set of Molecular Dynamics (MD) simulations of a single potassium ion 

and a single chloride ion fixed at various positions in a Gramicidin A channel. GA was 

incorporated into a slab of heavy (mass=100 au) spheres with Lennard-Jones parameters ε=0.05 

kcal/mol and σ=4.45 Å, and no partial charge. The slab of these dummy spheres represents a 

lipid bilayer by providing a non-polar environment for the channel molecule. This channel-

membrane model system was then immersed in a box of 738 SPC/E water molecules. Eight 

water molecules in random configurations were placed inside the GA pore. This system was 

subjected to energy minimization followed by a 200 ps constant pressure MD equilibration run at 

300 K. Positions of the dummy atoms and GA atoms were constrained in space with 200 

kcal/mol/Å2 harmonic spring forces. After the GA-water equilibration was completed, an ion (K+ 

or Cl-) was introduced into the channel. A force constant of 200 kcal/mol/Å2 was again applied 

to the positions of the dummy atoms and a 10 kcal/mol/Å2 force constant was applied to the 

backbone atoms of the GA. The energy of each system thus prepared was minimized, followed 

by a 30 ps equilibration period when the harmonic constraints on the GA backbone atoms were 

gradually reduced from 10 kcal/mol/Å2 to 0.5 kcal/mol/Å2. Subsequently, 300 ps production runs 

were performed with constant volume dynamics at 300 K. 0.5 kcal/mol/Å2 harmonic constraints 

were maintained on each of the backbone C and N atoms of GA. The coordinate of the ion along 

the channel axis (z axis) was held fixed, while its x, y coordinates were allowed to fluctuate. The 

coordinates of the protein atoms were collected every 2 ps. For every such time point along the 

MD trajectory the coordinates of the protein molecule and the ion were used to calculate the 

appropriate electrostatic free energy by solving the Poisson equation as described in “A 

Continuum Approach to Calculate the Electrostatic Free Energy”. 

An MD trajectory of GA without K+ was also generated as described above. All MD 

simulations were performed using the AMBER 6 software package and Cornell et al. force field 

[121]. The Lennard-Jones parameters for the potassium ion were taken from work of Aqvist 

[122]. Bonds involving hydrogen atoms were constrained via the SHAKE algorithm. A 12 Å cut-

off distance was used for all non-bonded interactions. The MD time step was set to 2 fs. 
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For the continuum electrostatics calculations, partial charges on the GA atoms were taken 

from the Cornell et al. force field [121]. The dielectric response profile )(rrε  and the positions of 

the partial charges represent the molecular system in a continuum representation. In the 

numerical solution of Eq. 2.6, these functions are discretized on a uniform 3D grid as described 

in [48]. The radii of potassium and chlorine ions, estimated by fitting experimental enthalpies of 

hydration, were chosen to be RK
+=2.17 Å [101] and RCl

-=1.81 Å [123]. The electrostatic energy 

was calculated using our 3D PNP program [48], modified to allow the assignment of several 

arbitrary values of dielectric constant parameters to different regions of space. For all results 

reported in the following sections, the grid dimensions of the simulation box were 1513 with a 

linear scale of 3 grid points per Å. The width of the membrane was set to 33 Å to mimic a 

glycerilmonoolein (GMO) bilayer. In Figure 3, a two-dimensional slice of ε( rr ) shows how 

different dielectric constants are assigned to membrane (ε ), protein (ε ), bulk (ε ), and channel 

(ε ) regions. The set of calculations described above was repeated with the potassium ion fixed 

at 18 different positions along one GA monomer at spatial increments of 1 Å, and the chloride 

ion fixed at 7 different positions at spatial increments of 3 Å. 

m p w

w
ch

All calculations were performed on a set of IBM RS6000 workstations. It took ~12.5 h to 

complete a 300 ps MD simulation and ~27 h to solve a set of Poisson equations as prescribed by 

Eq. 2.7 for N=150. 
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Figure 3. 2D center-cut of the 3D space-dependent dielectric constant function used for numerical solution of the 

Poisson equation. 

The simulation system is divided into four regions: the protein and the ion (εp), the bulk water (εw), the membrane 

(εm) and the channel water (εw
ch). 
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2.4.3 MD calculation of the diffusion coefficients 

The diffusion coefficients of the ion were calculated from the all atom MD simulation using the 

force-force autocorrelation function [55, 68]. According to the fluctuation-dissipation theorem 

for a Brownian particle moving in thermal equilibrium, the 1D friction coefficient is: 

 ∫
∞

∞−

>×<= dttrFrFr zzz ),()0,(
2

)( rrr βγ , (2.8) 

where ),( trFz
r  is the random force on the particle at position rr  along the channel axis. The 

space-dependent diffusion coefficient )(rD r for the ion can then be extracted using the Stokes-

Einstein relation . ( ) 1)()( −= rrD rr βγ

The input needed for Eq. 2.8 was obtained from equilibrium MD simulations with the 

potassium ion fixed in space. All parameters needed for the MD simulation were set as described 

in section 3.2. Starting with equilibrated systems of K+ fixed in the GA channel at a particular 

position along the channel axis, a 1 ns trajectory was generated and the forces acting on the ion 

were collected. This calculation was repeated at 18 K+ ion positions selected as indicated above. 

A similar MD simulation of a potassium ion in bulk water was also performed. In the latter 

simulation the K+ ion was immersed in a box of 735 SPC/E water molecules, the system was 

equilibrated, and finally, a 1 ns constant volume equilibrium trajectory was generated. 

2.5 RESULTS AND DISCUSSION 

2.5.1 Continuum dielectric theory: the role of the dielectric response 

In continuum modeling of biological channels the position dependent dielectric response 

function plays a prominent role. The most common choice for the dielectric constant of the 

membrane and the protein molecule is εm=εp=2-5. Water is usually represented as a dielectric 

medium with dielectric constant εw=80. The choice of these parameters for calculating 
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electrostatic free energies of binding in solution has been intensively scrutinized in recent 

literature on globular proteins and organic molecules [111, 124, 125]. However, the appropriate 

choice of dielectric constants for membrane proteins and membrane environments is relatively 

unexplored. We have examined the dependence of the electrostatic binding free energy  in 

the GA channel, calculated as described in “A Continuum Approach to Calculate the 

Electrostatic Free Energy”, on the choice of the dielectric constant values of the channel 

environment (as in Figure 3

+

Δ K
SIPG

). Indeed, the two-ε model predicts a huge solvation barrier for an ion 

in a narrow channel. Figure 4 shows via the solid line with filled circles  for a potassium 

ion in a GA channel, as a function of the ion position along the channel axis, for a set of ε values 

in the range indicated above, namely, ε

+

Δ K
SIPG

w=εw
ch=80, εm=εp=4. The 3D channel structure reported 

by Arsen’ev et al. [126] was employed in these calculations. Note the high barrier of ~14 kT to 

bring the ion into the center of the channel which results from this choice of parameters. Such a 

barrier would completely block ion current [95], in contrast to experimental observation. Since 

the GA channel is very efficient in passing simple cations, one should ask what other properties 

of the channel and its environment must be incorporated into the model to describe its interaction 

with the ion at least qualitatively correctly. It is widely believed that the environment around a 

biological channel is highly inhomogeneous in its electrostatic properties and therefore cannot be 

described adequately by just two dielectric constant regions. One possibility is that simply 

employing a better description of the dielectric response function may yield a more realistic 

permeability model. A protein is a polarizable medium and εp values between 4 and 20 have 

recently been suggested to represent a protein molecule1 [127-129]. Therefore, the dielectric 

constant ε was increased in several increments up to ε =30, keeping ε =ε  and ε  as 80 and 4, 

respectively. Figure 4

p p w w
ch

m

 shows results for obtained under these conditions. We see that even 

for ε  as high as 30 the barrier  is still ~2.5 kT. Note that the mobility of water inside the 

channel is highly restricted and its dielectric response is probably substantially lower than that of 

+

Δ K
SIPG

p
+

Δ K
SIPG

                                                 
1 It should be emphasized that this separation of the single ion potential into two contributions, one associated with 
explicit charges in the environment (in this case the protein) and the other arising from the dielectric self energy, is 
to some extent arbitrary and reflects our choice of the electrostatic model for the protein.  
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bulk water. Still, we find that the ion penetration free energy is rather insensitive to the water 

dielectric constant value in this region. This is shown in Table 1, in which ε  was varied 

between 40 and 200. It appears that for a narrow channel confined within a low dielectric 

constant (ε<6) membrane, a substantial dielectric barrier exists even if the protein and/or the 

channel region are assigned unphysically high dielectric constants. Our recent DMC studies of 

ion current in a model cylindrical channel [50] indicate that an energetic barrier as low as 2 kT 

effectively inhibits any appreciable ionic current at low applied voltages [50, 95]. Therefore, 

other mechanisms by which the environment can polarize in response to the presence of a 

permeating ion must exist. As outlined in the Introduction, a likely mechanism entails local 

conformational changes in the protein as the ion moves through the channel. The next subsection 

considers this possibility. 

w
ch

 

Table 1. The value of the  barrier calculated by numerical solution of the Poisson equation for a rigid NMR 

configuration of GA (as prescribed by Eq. 2.5). 

+

Δ K
SIPG

εw
ch +

Δ K
SIPG  (kT) 

40 7.2 

80 6.4 

200 5.4 
The dielectric constant of the channel water is varied while dielectric constants of other parts of the system are kept 

fixed with epsilon of bulk water εw=80, membrane εm=4, and protein εp=10. 
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Figure 4. Electrostatic free energy of the K+-GA binding [ )(rG K
SIP

r+Δ  (PMF) is calculated here for the rigid channel 

with different dielectric constants].  is plotted as a function of the ion displacement from the center of the 

GA channel along the channel axis. 

+

Δ K
SIPG

The energy is calculated by numerical solution of the Poisson equation for a configuration of GA taken from the 

PDB data bank [126] (Eq. 2.5-2.6). The dielectric constant of the bulk water is εw=80, the membrane εm=4 and the 

channel water εw
ch= 80. The dielectric constant of the protein was taken to be εp=4 (●), 10 (■) and 30 (♦). See Figure 

3 for the assignment of regions with different dielectric constants. 
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2.5.2 Free energy of ion-channel association from combined MD simulations and 

continuum electrostatics method: the role of channel relaxation 

In order to elucidate the influence of the protein molecule itself on the passage of an ion through 

the channel, the free energy  associated with transferring a K
+

Δ K
SIPG + ion from the bulk electrolyte 

solution to a particular point rr  inside the GA channel was calculated as described above in “A 

Combined Molecular Dynamics/Continuum Electrostatics Approach to Calculate Free Energy”. 

Namely, a sample of GA configurations was obtained from equilibrium MD simulations with a 

K+ ion at various positions along the channel, followed by continuum dielectric model 

calculations of the free energy associated with transferring the potassium ion into the channel. 

The results obtained from these simulations are shown in Figures 5-8. Figure 5 shows  as a 

function of time calculated along the MD trajectory for the complex with the ion positioned in 

the center of the channel as in 

+

Δ K
SIPG

Figure 2, starting from an initial protein structure taken as the 

NMR geometry. The values of the dielectric constants used in the electrostatic part of this 

calculation are εp=2, εm=4, εw
ch=40 and εw=80. The initial relaxation of energy at the onset of the 

simulation is shown in Figure 5a. The free energy drops below zero on average in a fraction of a 

pico-second. This result clearly demonstrates the short time-scale required for the protein to 

adjust to the insertion of the ion. The equilibrium state is reached after a longer time. 

Electrostatic calculations in the equilibrated part of the trajectory, presented in Figure 5b, were 

performed using εp=4 (solid line) and εp=2 (dashed line), keeping εm and εw
ch as above: note that 

 is characterized by large fluctuations between positive and negative values. That is, the 

protein fluctuates between “permeable” and “non-permeable” structures in rapid succession. On 

average, however, more configurations that favor ion binding inside the channel occur and the 

resulting average energy is negative, i.e. favorable for ion permeation into the channel. Another 

important observation that can be drawn from Figure 5

+

Δ K
SIPG

b is that the dependence of the calculated 

energy on the value of ε  is different for different configurations. For some structures e.g. the 

initial NMR structure,  increases as ε  decreases in the same manner as observed in 

p

+

Δ K
SIPG p Figure 
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4. For others, however, the energy decreases with decreasing εp, resulting in tighter binding of 

the ion-protein complex. This is somewhat counterintuitive and demonstrates that for any 

particular spatial distribution of the dielectric response function )(rrε  it is impossible to predict a 

priori how the polarization of the media around the charge will influence the calculated 

electrostatic energy in the system. The dependence of  on the choice of ε
+

Δ K
SIPG w

ch and εm is 

shown in Figure 6, a and b, respectively, for several snapshots from the MD simulation.  

depends very weakly on ε  (

+

Δ K
SIPG

w
ch Figure 6a) and varies monotonically with εm (Figure 6b). 
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Figure 5.  calculated for different protein structures which are collected during the MD simulation. 
+

Δ K
SIPG

Note how the energy fluctuates between positive and negative values, indicating ion-permeable and impermeable 

structural conformations of the protein (see explanation in text). In both panels εw
ch=40, εw=80, εm=4. (a) Initial 

relaxation. εp=2. (b) A portion of the equilibrium trajectory. Solid line shows the calculations with εp=4 and dashed 

line is for εp=2. 
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Figure 6. Dependence of  on ε
+

Δ K
SIPG w

ch plotted for several snapshots taken from the MD trajectory. n is the index 

labeling snapshots along the MD trajectory. 

The following set of dielectric parameters was used εp=εm=4, εw=80. The dielectric constant of the channel water 

was set to εw
ch=20 (♦), 40 (■) and 80 (●). See Figure 3 for the assignment of regions with different dielectric 

constants. (b) Dependence of  on ε plotted for several snapshots taken from the MD trajectory. The 

following set of dielectric parameters was used ε =2, ε =80, ε =40. The dielectric constant of the membrane was 

set to ε =2 (♦) and 4 (●). 

+

Δ K
SIPG

m 

p w w
ch
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+

Δ K
SIPG  was shown for individual channel configurations in Figures 4-6. In what follows 

we consider the corresponding free energy averages over the entire equilibrium MD trajectory 

according to Eq. 2.7. The following values of dielectric parameters were used to obtain the 

results presented in the remainder of the paper: εm=εp=4, and εw =εw
ch=80. Figure 7 shows this 

trajectory-averaged free energy as a function of ion position along the channel axis. Deep wells 

in the  profile indicate cation stabilization (and thus possible ion binding sites). The energy 

minima located closer to the entrance to the channel are deeper than the two energy minima near 

the center of the channel. It is important to emphasize the large difference between the free 

energy for ion insertion calculated for the relaxed channel and for the NMR configuration. In 

+

Δ K
SIPG

Figure 8a the trajectory-averaged )(rG K
SIP

r+

Δ  in the relaxed channel with K+ is shown (again) 

along with )(rG K
DSE

r+

Δ . The electrostatic free energy of transferring an ion from the bulk solution 

into the channel for the (unrelaxed) NMR channel geometry, calculated via Eq. 2.5, is shown in 

Figure 8b. In Figure 8c we show the electrostatic free energy of transferring K+ from the bulk 

solution into an averaged structure obtained by first equilibrating the GA protein in an MD 

simulation with only water inside. Comparing Figure 8a to either Figure 8b or Figure 8c, it is 

clearly seen that the relaxation of the channel environment in the ion’s presence during the MD 

simulation leads to a huge decrease in the cost of introducing an ion into the channel. If the 

channel is kept in its NMR geometry or in an average geometrical structure obtained by pre-

equilibrating the channel with water but without K , an ion entering the channel experiences a 

significant energetic barrier. Thus, it is favorable for the ion to bind into channel that was 

allowed to relax in response to the ion’s presence, as is the case in Nature. This relaxation 

evidently leads to a dramatic decrease of the electrostatic free energy, which may become 

negative. Further inspection of the DSE term in 

+

Figure 8 (diamonds) and the total )(rG K
SIP

r+

Δ  

(circles) reveals that when channel flexibility is allowed in the ion’s presence (Figure 8a) only 

minor changes in the dielectric-self-energy (DSE) term occur, whereas the total complex 

association energy )(rG K
SIP

r+

Δ  decreases significantly. The latter observation indicates that for our 

choice of the electrostatic model of the protein the main effect of the small structural changes in 

the channel molecule, which occur as a result of the local relaxation around the permeating ion, 

is to modify the direct electrostatic interactions of the permeating ion with the nearby partial 
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charges on the protein groups. The effect of protein relaxation on )(rG K
DSE

r+

Δ  is small. The direct 

ion-protein electrostatic interactions become significantly stronger in a flexible channel and can 

compensate the large DSE, thus rendering the channel permeable.  
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Figure 7. The total free energy profile calculated for K+ ion in the channel using the flexible channel from MD 

trajectory as described in “A Combined Molecular Dynamics/continuum electrostatics approach to calculate free 

energy”, this is averaged  for a flexible protein. 
+

Δ K
SIPG

Each point in the plot is the average of N=150 calculations along the 300 ps MD trajectory as prescribed by Eq 2.7. 

The following set of dielectric parameters was used: εp=εm= 4, εw=εw
ch=80. 
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Figure 8. (a) Average free energy of K+-flexible GA binding , i.e. with partial charges on GA atoms (●), and 

, i.e. without partial charges on the GA atoms (♦). 
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+

Δ K
DSEG
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Each point is the average of N=150 calculations along the 300 ps MD trajectory as prescribed by Eq. 2.7. (b) The 

same as in (a) but for the rigid NMR geometry of GA as prescribed by Eq. 2.5. (c) The same as in (b) but for 

average MD geometry of GA equilibrated with only water (no ion) in the channel. 
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Figure 9. Root Mean Square Deviation (RMSD) of GA backbone carbonyl oxygen atoms in the MD simulation. 

The numbers of the residues in the protein sequence are indicated on the abscissa. Circles correspond to the 

simulation with a K+ ion placed in the center of the channel (●). The curve with the squares is for the GA channel 

without K+ (■). Each RMSD curve is calculated along the 300 ps MD trajectory relative to the corresponding 

average MD structure. 
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Next, we investigate how the structure of the protein is affected on average by the 

presence of an ion in the protein channel. The central part of the GA channel is formed when two 

alpha-helical monomers are stacked on top of each other in the membrane. They are held 

together only by hydrogen bonds, and, therefore, the center is the most flexible part of the 

channel, which is fairly rigid in other parts [106]. We have found that deviations from the 

average atom positions due to the ion presence are relatively small even in the center of the 

channel. Therefore, we report only the results corresponding to the ion position in the center of 

the channel to demonstrate that the influence of the ion on the channel structure is small even in 

this case. In Figure 9 the root mean square deviation (RMSD) from the average equilibrium 

geometry of the backbone carbonyl oxygen atoms lining the channel pore, accumulated over the 

course of the MD simulation, is shown. Comparison of the RMSD for a channel simulated with 

and in the absence of K  ion further supports the conclusion that the average geometry of the 

protein molecule remains essentially unchanged as the ion is introduced into the channel. Direct 

comparison of the NMR and average MD structures indeed reveals only small changes in the 

average positions of the protein atoms. This is further illustrated in 

+

Figure 10, a and b, where we 

have superimposed the average MD coordinates of the GA-K+ system (ion inside the channel) 

with the average MD coordinates of the GA system (no ion in the channel). It can be seen from 

these figures that the largest changes in atomic positions between the two structures occur for 

carbonyl oxygen atoms closest to the ion. In particular, carbonyl groups near the ion have tilted 

towards it, as indicated by arrows. Other workers studying narrow channels, e.g. GA and K+ 

channels [102, 103, 105, 115, 130] have observed that ions distorted the positions of the carbonyl 

oxygens to achieve proper solvation. The average positions of most other GA atoms have not 

changed significantly. Tables 2-5 report various configurational changes that occur in the 

channel when an ion is placed in different positions along the channel’s aqueous pore. The 

average distances and magnitudes of distortion between the potassium ion and the nearest 

carbonyl groups are within the range of changes reported earlier in NMR and MD analyses of 

Na+ ion migration through GA [106]. There are four carbonyl oxygens whose distances from the 

ion decrease substantially when the ion is introduced into the center of the GA channel. Even for 

the largest distortions reported here, it can be seen that the hydrogen bonds among the backbone 

atoms of GA remain intact, i.e. the additional tilt angle of carbonyl groups involved remains 

small (see Figure 10). 
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The shape of the free energy profile in Figure 7 suggests that there are four energy wells 

in the GA channel. Two of them, represented by the deeper minima, are located at a distance of 

~9 Å from the center of the channel. This observation agrees well with previous experimental 

and theoretical studies of GA binding sites [48, 106, 115]. Two other, energetically shallower, 

energy minima reside approximately 3 Å from the center of the channel [48]. 

Finally we consider the free energy profile for a chloride ion in the GA channel. As in the 

K+ case, when the GA channel is allowed to relax as described above the free energy barrier 

calculated for a Cl- ion decreases (see Figure 11). However, the magnitude of the net barrier in 

the center of the channel is still much too large to expect any significant Cl  current through the 

channel. 

-
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Table 2. Distances between K+ and the nearest backbone carbonyl oxygen atoms are reported for NMR (RNMR), 

MD_GA (RMD_GA) and MD_GA_K (RMD_GA_K) configurations. 

Name and no. of 

the residue 

RNMR (Å) RMD_GA (Å) RMD_GA_K (Å) ΔRNMR (Å) ΔRMD (Å) ΔαMD (deg) 

FOR0 3.95 4.30 4.25 0.30 -0.05 6 

VAL1 4.03 4.01 3.30 -0.73 -0.71 24 

ALA3 3.07 3.35 2.87 -0.20 -0.48 14 

FOR17 3.95 3.99 4.03 0.08 0.04 17 

VAL18 4.04 4.11 3.13 -0.91 -0.98 33 

ALA20 3.09 3.35 2.89 -0.2 -0.46 15 

For the NMR configuration K+ was placed in the center of the channel, for the MD_GA configuration Gramicidin A 

was equilibrated with only water in the channel, then the average configuration over the trajectory was generated, 

and a K+ ion placed in the center of the channel. To generate the MD_GA_K configuration gramicidin A was 

equilibrated by MD simulation with K+ placed at the center of the channel, fixing the coordinate in the axial 

direction: then the average configuration over the trajectory was generated. Changes in K+-carbonyl oxygen 

distances between NMR and MD_GA_K (ΔRNMR) configurations and between MD_GA and MD_GA_K (ΔRMD) 

configurations are also given in the table, as are changes in the carbonyl group angles (ΔαMD) between MD_GA and 

MD_GA_K configurations. The name and the number of the corresponding residues are given in the first column of 

the table and are enumerated as in the original file (1GRM) taken from the protein data bank (www.rcsb.org). 
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Table 3. Same as in Table 2 but for NMR, MD_GA and MD_GA_K configurations with K+ ion placed 9 Å away 

from the center of the channel. 

Name and no. of 

the residue 

RNMR (Å) RMD_GA (Å) RMD_GA_K (Å) ΔRNMR (Å) ΔRMD (Å) ΔαMD (deg) 

VAL8 3.64 3.33 2.91 -0.73 -0.42 14 

LEU10 3.91 3.76 3.16 -0.75 -0.60 22 

TRP11 3.15 3.55 3.26 0.11 -0.29 15 

LEU12 5.05 4.73 4.81 -0.24 0.08 15 

TRP13 2.55 3.10 2.73 0.18 -0.37 12 

TRP15 3.00 2.96 2.78 -0.22 -0.18 0 

 

 

Table 4. Backbone carbonyl groups angles with respect to the bilayer normal are reported for NMR (θNMR), 

MD_GA (θMD_GA) and MD_GA_K (θMD_GA_K) configurations. 

Name and no. of the 

residue 

θNMR (deg) θMD_GA (deg) θMD_GA_K (deg) 

FOR0 5 12 10 

VAL1 157 158 155 

ALA3 158 161 158 

FOR17 174 171 161 

VAL18 24 23 26 

ALA20 23 18 23 

To generate the MD_GA configuration Gramicidin A was equilibrated with only water in the channel, then the 

average configuration over the trajectory was computed, and a K+ ion placed in the center of the channel. For the 

MD_GA_K configuration gramicidin A was equilibrated by MD simulation with K+ placed at the center of the 

channel, fixing the coordinate in the axial direction: then the average configuration over the trajectory was 

computed. 
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Table 5. The same as in Table 4 but for NMR, MD_GA and MD_GA_K configurations with K+ ion placed 9Å 

away from the center of the channel2. 

Name and no. of the 

residue 

θNMR (deg) θMD_GA (deg) θMD_GA_K (deg) 

VAL8 15 13 17 

LEU10 9 4 23 

TRP11 155 155 144 

LEU12 19 8 5 

TRP13 150 155 146 

TRP15 142 144 147 

 

                                                 
2 It is worth noting that the carbonyl group angle with respect to the bilayer normal does not fully 

characterize the actual degree of protein motion. For example, from Table 2 the distance between carbonyl oxygen 
of VAL18 and K+ decreases by ~1Å when the ion is placed in the center of the channel and the carbonyl group 
changes its angle by ~33o. On the other hand, as seen in table 4, the carbonyl group angle with respect to the bilayer 
normal has not changed significantly. The reason is that the carbonyl group has flipped, so that the change in 
interatomic distances occurred not due to the change of the angle with respect to the bilayer normal but due to the 
change of the angle in the plane of the bilayer. We have also noticed that the potassium ion changes its position in 
the bilayer plane relative to the center of the channel by ~0.2Å when it has been equilibrated in the center of the 
channel and by ~0.3Å when it has been equilibrated at 9Å away from the center. 
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Figure 10. The average configuration of GA in MD simulation without the ion (orange peptide) is superimposed 

with the average configuration of GA in MD simulations with the K+ ion (green peptide). 

K+ is shown as a blue sphere. Arrows indicate the carbonyl oxygens that bent toward the K+ due to favorable 

electrostatic interactions. (a) During the MD simulation, an ion was in the center of the channel; (b) K+ is at 9 Å 

from the center of the channel, the predicted position of the binding cite (cf. Figure 7). 
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Figure 11. Average  for a flexible GA (●) and for a rigid one (♦). 
−

Δ Cl
SIPG

For the flexible protein each point in the plot is the average of N=150 calculations along the 300 ps MD trajectory as 

prescribed by Eq 2.7. The NMR geometry of the GA was used for the rigid channel. The following set of dielectric 

parameters was used for both calculations: εp=εm=4, εw=εw
ch=80. 
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2.5.3 Calculation of diffusion constants 

Current calculations using PMFPNP or Brownian Dynamics techniques crucially depend on the 

magnitude of the diffusion coefficients that characterize the motion of ions in the channel. In the 

narrow pore of Gramicidin the permeant ion is largely dehydrated and is instead coordinated by 

backbone carbonyl groups. The mobility of the permeating ion is suppressed not only by the 

restrictions inherent in its lateral confinement but also by strong electrostatic interactions with 

these relatively immobile carbonyl oxygens. Moreover, due to the single file arrangement of the 

ion and water molecules, the motion of the ion is coupled to the motion of surrounding water, 

which is also inhibited inside the channel [115]. 

There are no direct experimental measurements of diffusion coefficients of ions inside 

Gramicidin or other channels. The diffusion coefficient of a potassium ion in bulk water 

calculated as described in MD Calculation of the Diffusion Coefficients and indicated in Figure 

12 is only 13% smaller than the experimentally measured value [131]. Figure 12 also shows the 

calculated diffusion coefficient of a K+ ion inside the channel. The resulting values are ca. 8.5 

times less than in the bulk solution. Several model MD studies of ion diffusion coefficients 

inside various model channels have been reported recently. All of them find reduction by a factor 

of 3-10 in the diffusion coefficient when the ion is moved from bulk water into a channel 

environment [73, 132]. Furthermore, the ion’s mobility is expected to be position dependent. In 

Figure 12 position is measured with respect to the channel center. We see that when an ion 

leaves the channel (at about 17 Å from the channel center) its diffusion coefficient abruptly 

increases by a factor of four. At this distance the ion is completely solvated by reservoir water 

and interaction with the channel is very weak. The small size of the simulation box did not allow 

us to move the ion to a distance from the channel at which the value of the bulk is 

completely recovered. In the kinetics calculations described below we have used =1.75x10  

cm /s in the bulk region and 0.25x10  cm /s in the channel based on the numerical results shown 

in 

+K
wD

+K
wD -5

2 -5 2

Figure 12. A linear interpolation function has been employed to connect bulk and channel 

diffusion constant at the ends of the GA. The diffusion constants for Cl- ion were set to the same 
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values as for the K+ ion, based on the fact that in bulk water these ions have similar diffusion 

constants. 
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Figure 12. Calculated diffusion coefficient for K+ ion inside of the GA channel (●), and in bulk SPC/E water (solid 

line). Only the Dz component of the diffusion coefficient of the ion in the channel is calculated. 
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2.5.4 Ion current 

With the calculated diffusion coefficients and free energies for ion–channel interaction in hand 

we can now apply the PMFPNP procedure, as prescribed by Eqs. 2.1-2.7, to evaluate ion currents 

in the GA channel. The SIP potentials for K+ and Cl- as reported in Figure 7 and Figure 11, 

respectively, were used for the ion current evaluation in PMFPNP procedure to model the 

required PMF potential for permeating ions. The 1D potential along the (z) channel axis 

extracted from MD/continuum calculation was simply extended in the lateral (x,y) directions. 

Within the narrow channel, variation in the lateral direction is expected to be minor, and likewise 

in the bulk solution regions. Near the channel entrances, the SIP will not be strictly independent 

of x, y position, but again, we expect the error in the I-V curves resulting from the simplified SIP 

profile employed here to be negligible. The SIP profiles shown in Figure 7 and Figure 11 were 

used for the K+ and Cl- ions, respectively. The dielectric constants were set to εm=εp=4, and 

εw=εw
ch=80. In Figure 13 the current-voltage characteristic of a GA channel in a GMO 

membrane is shown for two values of reservoir electrolyte concentrations. The inset to Figure 13 

displays experimental measurements of single ion channel currents for this system [133]. Our 

calculated currents compare rather well with the experimental curves. At 200 mV applied voltage 

the theory underestimates measured currents for the low bath electrolyte concentration (0.1 M) 

by about a factor of two. Given that no fitting parameters were employed in our analysis, the 

agreement with experiment is encouraging. 

In Figure 14, ion current is plotted as a function of the electrolyte concentration in the 

bathing solutions at an applied voltage of 100 mV. At V=100 mV the experimental current data 

points shown in Figure 13 at concentrations up to 2 M are consistently 2-3 times larger than the 

prediction of our PMFPNP calculations, but show a similar trend towards saturation. Such 

saturation of the I-c curves is not observed in simple PNP theory, i.e. with  and a rigid 

channel (as demonstrated by the line with diamonds in Figure 14

0=Δ
+K

DSEG

). We note that one remaining 

possible source of error is underestimating the diffusion constants in the channel, and further 

studies regarding the validity of the procedure that uses Eq. 2.8 in the restricted channel 

environment are required. In order to understand the mechanism of saturation in PMFPNP we 
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have plotted the free energy )(ri
rψ  along the channel axis that results from PNP (Figure 15, a 

and c) and PMFPNP (Figure 15, b and d) for several bulk electrolyte concentrations. By 

comparing Figure 15, a and b, we observe that the potential profile features several barriers for 

the positive ion in PMFPNP. The height of the barriers increases as the bulk electrolyte 

concentration increases. In standard PNP, however, such barriers are not observed (Figure 15a). 

In PMFPNP (see Figure 15, b and d) negative ions experience a much larger barrier than positive 

ions in the channel. As indicated in Figure 16, when the bulk ion concentration increases, the 

positive ion density in the channel also increases and cannot be compensated by negative ions. 

The resulting effective positive charge in the channel creates a larger effective barrier for the 

transfer of positive ions and leads to current saturation with increased salt concentration. 

However, since PMFPNP does not account for direct ion-ion dynamic correlations, it may only 

partially account for correlation-dependent phenomena such as currents at large bath electrolyte 

concentrations at high voltages. Clearly, the nature of direct ion-ion correlations in a channel 

environment is not completely understood and requires further study. 
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Figure 13. Current-voltage relations predicted by PMFPNP model are compared to experimental results [133] 

(upper left inset). 

Bulk KCl concentrations of 0.1 M (shaded square) and 1.0 M (open circle) were used in the simulations. The 

experimental curves in the inset correspond to the following concentrations of bulk KCl solutions: shaded square, 

0.1 M; filled circle 0.2 M; open square, 0.5 M; open circle, 1.0 M; and filled square, 2.0 M. The analogous 

experimental and calculated curves are labeled with the same symbols. 
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Figure 14. Current-Concentration relations as predicted by PNP (♦) and PMFPNP (•) models. The external 

potential difference was set to 100mV. 
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Figure 15. )(ri

rψ  profile along the channel axes for K+ and Cl- is plotted for several bulk electrolyte concentrations 

and 100 mV applied voltage: a , c calculated using PNP; b, d calculated using PMFPNP. 

The curve with circles is for 0 M, the curve with squares is for 0.5 M and the curve with diamonds is for 10 M 

electrolyte concentrations. The dashed line is the result of the calculation at 0 M electrolyte concentration in which 

protein molecule had no partial charges on the atoms. It corresponds to the linear ramp potential caused by the high 

resistivity of the membrane. 
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Figure 16. Ion concentration profile along the channel axis for K+ and Cl- is plotted for several bulk electrolyte 

concentrations: a and c calculated using PNP; b and d calculated using PMFPNP. 

The curves with diamonds and circles are for 0.5M; the curves with squares and triangles are for 10 M electrolyte 

concentrations. 
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2.6 CONCLUSIONS 

The passage of ions through narrow membrane channels is affected by a combination of 

interconnected energetic and kinetic factors including the local electric field resulting from the 

response of the membrane and the channel protein to the externally imposed potential, the 

energetics (electrostatic and short range interactions) of the ion accommodation in different parts 

of the channel, the electrostatic interaction between mobile ions in and near the channel and the 

ion’s mobilities in the channel environment. Full-scale MD simulations of this process are not 

yet practical because of the vastly different time and length-scales involved. 

Alternative simplified coarse-grained models have tried to capture the essential physics 

of the process. The Poisson-Nernst-Planck (PNP) approach focuses on the electrostatic 

interaction between permeant ions and between one such ion and its rigid inhomogeneous 

dielectric environment as the main factors that control the channel operation. Calculations of ion 

transport through the Gramicidin A (GA) channel based on this approach have shown a 

remarkable agreement with experimental results [48, 92, 134]. The present calculations together 

with several recent works show, however, that this apparent success is an artifact resulting from 

the cancellation of two errors that are big for narrow channels such as GA. First, the PNP 

approach strongly underestimates the dielectric barrier associated with transferring an ion from 

bulk water into the channel. This would lead to a strong overestimate of the ion current. Second, 

the PNP model considers the channel protein and the membrane as rigid dielectric environments, 

disregarding the channel structural response to the presence of the ion and thus implying a 

relatively small ability of the channel to accommodate the ion and to facilitate its transfer. This 

alone would lead to the opposite effect of underestimating the ion current. These two errors 

compensate each other in the final result for ion transport through the GA channel. 

In the present paper we have described a hybrid molecular dynamics-continuum 

electrostatic methodology that makes it possible to combine the convenience and numerical 

efficiency of a PNP-based calculation with correct accounting for dielectric barrier and channel 

relaxation effects. This methodology contains several ingredients: 
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1. The standard PNP approach is corrected by adding the gradient of a suitable single-ion 

potential to the drift term in the drift-diffusion Eq 2.1. In another work [95], in which this 

potential is derived from the dielectric response of a rigid membrane-protein complex to 

the presence of a single ion, we show that this approach provides a good approximation 

for the dielectric barrier. 

2. This electrostatic single-ion potential is further augmented by a contribution arising from 

the structural response of the channel to the ion. This is done by using atomistic MD 

simulations to compute this response, while still maintaining numerical simplicity by 

representing the resulting responsive structure as a dielectric continuum for the purpose 

of computing the local electrostatic energy. 

3. The local diffusion coefficient of the ion is obtained from a first-principles calculation 

based on MD evaluation of the force-force autocorrelation function associated with the 

ion positioned at different locations along the channel. 

4. The modified PNP equations, including all the above ingredients, now referred to as the 

Potential of-Mean-Force-Poisson-Nernst-Planck (PMFPNP) model, are used to calculate 

the ionic current for the imposed potential and concentration biases.  

We have seen that this calculation yields results that agree well with available 

experiments on ion transport through the GA channel, without employing any arbitrary 

adjustable parameters. This suggests that the present modeling may account for the essential 

factors that affect ion transport through open membrane channels. Still, one must view this 

success with some caution. The use of continuum dielectric models for the protein and water 

with the inevitable introduction of ill-defined dielectric constants and the neglect of restrictions 

on water mobility in the channel is obviously a serious approximation. Also, dynamic 

correlations between ions in the channel that possibly affect the dynamics of ion permeation, 

especially at higher concentrations, are only partially accounted for by this model. Further work 

is needed to fully assess the model reliability. 
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APPENDIX 

SYMBOLS 

)(ri
rψ   Free energy function entering the Nernst-Planck equation (Eq. 2.1a). 

)(rmobile
rφ  Electrostatic potential due to all mobile ions and the applied electric field. 

)(rprotein
rφ  Electrostatic potential due to partial charges fixed on the protein and lipid atoms. 

)(rrφ  Electrostatic potential found from the solution of the corresponding Poisson 

equation (Eq. 2.6). 

)(rGi
SIP

r
Δ   Potential of mean force for a single test ion [hence “Single ion potential” (SIP)]. 

)(rGi
DSE

r
Δ  Dielectric self-energy (DSE) or solvation energy of a single ion. 

)(rGcomplex r  Electrostatic free energy of an ion-protein/membrane complex with the ion 

located at a point rr  inside the channel, calculated by numerical solution of 

Poisson equation (Eq. 2.6). 
proteinG  Electrostatic free energy of the protein/membrane in the absence of the ion, 

calculated by numerical solution of Poisson equation. 
ionG  Electrostatic free energy of the ion in bulk solvent, calculated by numerical 

solution of Poisson equation. 

)(rrε   Position dependent dielectric response function (dielectric constant). 

εp, εm, εw, εw
ch Dielectric constant of protein, membrane, bulk and channel water region (Figure 

3). 
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ACRONYMS 

PNP  Poisson-Nernst-Planck theory. 

DSEPNP Dielectric-Self-Energy-Poisson-Nernst-Planck theory. 

PMFPNP Potential-of-Mean-Force-Poisson-Nernst-Planck theory. 

DMC  Dynamic Monte-Carlo method. 

DSE  Dielectric self-energy. 

PMF  Potential of mean force. 
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3.0  DIFFUSION CONSTANT OF K+ INSIDE GRAMICIDIN A: A COMPARATIVE 

STUDY OF FOUR COMPUTATIONAL METHODS 

Mamonov, A. B., M. G. Kurnikova, and R. D. Coalson. Biophys. Chem. 2006. In press. 

3.1 ABSTRACT 

The local diffusion constant of K+ inside the Gramicidin A (GA) channel has been calculated 

using four computational methods based on molecular dynamics (MD) simulations, specifically: 

Mean Square Displacement (MSD), Velocity Autocorrelation Function (VACF), Second 

Fluctuation Dissipation Theorem (SFDT) and analysis of the Generalized Langevin Equation for 

a Harmonic Oscillator (GLE-HO). All methods were first tested and compared for K+ in bulk 

water – all predicted the correct diffusion constant. Inside GA, MSD and VACF methods were 

found to be unreliable because they are biased by the systematic force exerted by the membrane-

channel system on the ion. SFDT and GLE-HO techniques properly unbias the influence of the 

systematic force on the diffusion properties and predicted a similar diffusion constant of K+ 

inside GA, namely, ca. 10 times smaller than in the bulk. It was found that both SFDT and GLE-

HO methods require extensive MD sampling on the order of tens of nanoseconds to predict a 

reliable diffusion constant of K+ inside GA. 
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3.2 INTRODUCTION 

There is a great deal of interest in studying biological ion channels due to the important roles that 

they play in the physiology of organelles, cells and tissues. With the availability of detailed 

atomistic structures of several ion channels (Gramicidin A (GA) [135], KcsA potassium channel 

[19], α-hemolysin [136], ClC chloride channel [20]) it has become feasible to do accurate 

theoretical modeling of ion currents in order to understand the mechanisms of ion transport 

through biological channels. At present, the most popular methods of ion current modeling are 

Poisson-Nernst-Planck (PNP) [48, 92, 107, 137-139], Brownian Dynamics (BD) [50, 54, 96-98, 

140] and Non-equilibrium Molecular dynamics (NEMD) [39, 40, 62]. Of these methods PNP is 

the most primitive but fastest method. In PNP, ions are represented by continuous densities 

whose steady state concentrations are calculated in the electrostatic field due to partial charges 

on the protein and mobile ion charge densities, plus a contribution due to external electrodes, by 

solving Poisson’s equation self-consistently with a Nernst-Planck Equation for each ion species 

[48]. In BD, ions are modeled explicitly but water is treated implicitly as a continuous medium 

characterized by dielectric and friction constants. In BD, ions move in the electrostatic field of 

partial charges on the protein, surface charges induced on dielectric boundaries within the 

system, externally applied electric fields, pairwise electrostatic interactions with other ions and 

steric overlap interactions with other ions and the walls of the protein/membrane system [50]. In 

NEMD the entire system, including water, is modeled explicitly and the dynamics of all atoms is 

computed by numerical integration of Newton’s second law using an atomistic force field [39, 

40, 62]. Therefore, NEMD is the most accurate method, but very slow compared to PNP and BD 

and still not very practical. 

For calculating ion currents, both PNP and BD methods rely heavily on the magnitude of 

the diffusion constant inside the channel, which is a phenomenological input into these theories. 

To date, there are no direct experimental measurements of diffusion constants of ions inside 

narrow pores. Therefore, one must rely on simulations to predict diffusion constants, and, indeed, 

several theoretical methods have been developed for this purpose. They are widely used for 

calculating diffusion properties of ions and molecules in bulk phases [68-70], but the 

applicability of some of these methods to narrow ion channels (e.g., Gramicidin A) is 

questionable. Currently, there is no consensus in the biophysics literature about the magnitude of 
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diffusion constants of ions inside narrow channels [65, 67, 71-73, 137, 141]. Different methods 

and authors have predicted a wide range of diffusion constants. Therefore, it is imperative to test 

and compare different methods to assess their applicability in narrow channels and to estimate 

the value of the diffusion constants of ions inside such channels. 

An important question that has to be addressed first is how to define the diffusion 

constant. In fact, the diffusion constant can be defined in many different ways depending on the 

model used to describe transport of ions across the channel. In Brownian (Smoluchowski) 

Dynamics and PNP-like models the flux ),( trji
rr

 of ion species i is expressed as 

 ( )[ ])(),(),(),( rtrctrcDtrj iiiii
rrrrrrr

βψ∇+∇−= , (3.1) 

where  is the diffusion constant for this species, iD ),( trci
r  is its concentration and )(ri

rψ  is its 

free energy or potential of mean force (PMF); furthermore, 
TkB

1
=β  (  is Boltzmann’s 

constant and 

Bk

T  is absolute temperature). The free energy of an ion at a given position in space 

arises from its interactions with the protein, membrane, and water molecules. In particular, these 

interaction forces can be attributed to electrostatic interactions of the ion with the partial charges 

of the protein and membrane, rotational polarization of water, rotational/translational 

polarization of protein and membrane groups as well as electronic polarization of the protein, 

membrane and water. It has been shown in several studies that translational/rotational 

polarization of protein groups is important in electrostatic stabilization of ions inside narrow 

channels [137, 142]. This is manifested in the flexibility of key protein groups that relax locally 

around the ion and stabilize it, ultimately rendering permeation more favorable. 

Let us briefly review what has been done to date to calculate diffusion constants of ions 

inside narrow channels. The most widely employed methods for calculating diffusion constants 

are based on extracting the mean square displacement (MSD) or the velocity autocorrelation 

function (VACF) from MD simulations. In Ref. [71], the diffusion constants inside smooth 

cylindrical channels with repulsive walls of different width and length were calculated using the 

MSD method for Na+, K+, Cs+, Ca2+, F-, Cl- and I- ions. It was observed that the diffusion 

constants decreased as the radius of the channel decreased. In a 3 Å radius channel the diffusion 

constant of K+ was found to be ca. 5 times smaller than in the bulk water. This decrease was 

attributed to two main factors, one being an increase in the mean square of random forces on the 
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ions as the channel gets narrower and the second an increase in time scale of random force 

correlations. In Ref. [72], the diffusion constants of K+ and Na+ were estimated using the MSD 

method from MD simulations in hydrophobic cylindrical channels with varying radii, as well as 

in the KcsA potassium channel. In a 3 Å radius hydrophobic channel the diffusion constants for 

both K+ and Na+ were ca. 12 % of the bulk value. In Ref. [73] mobilities of K+ and Cl- were 

studied by extracting MSD and VACF functions from MD simulations inside five different 

channels with radii ranging from 2 Å to 6 Å. It was found that the diffusion constants were 2-10 

times smaller than in the bulk solution depending on the channel width and the position where 

the probe ion was released. In a 2 Å radius channel the diffusion constant was found to be on 

average 10 times smaller than in the bulk. In Ref. [143], friction coefficients of K+ and Na+ ions 

were evaluated by fitting the analytical expression for the VACF of a Brownian harmonic 

oscillator to the VACF obtained from MD simulations inside the KcsA potassium channel. The 

authors of this study found diffusion constants of K+ and Na+ ca. 3 times smaller inside the 

channel. In Ref. [67] the effective diffusion constant of K+ and Na+ ions was estimated inside a 

Gramicidin-like β-helix using two methods. The first method utilized the effect that the 

dependence of the terminal velocity on the external weak force applied to the ion is proportional 

to the diffusion constant. The other methods used in Ref. [67] was based on the second 

fluctuation dissipation theorem. Both methods predicted that the effective diffusion constant of 

K+ is 3-5 times smaller inside the β-helix compared to the bulk value. In our earlier study [137] 

the diffusion constant of K+ inside the Gramicidin A (GA) channel was calculated using the 

fluctuation dissipation theorem by extracting the force autocorrelation function (FACF) from 

MD simulations. A reduction of 8.5 times in diffusion constant compared to the bulk value was 

found inside the channel. 

A different approach to calculation of diffusion constants is based on fitting the diffusion 

constant to reproduce experimental ion currents using BD or PNP. In Ref. [141] the potential 

energy well depth and barrier height as well as the internal diffusion constant were fit for the GA 

channel: a best fit was obtained when the diffusion constant inside the channel was taken to be 

10 times smaller than in the bulk. It was found that the model did not reproduce the 

experimentally observed saturation of ion current when the mobile ion concentration in the 

reservoir was increased beyond 1 M, implying that the value of this constant may critically 

influence the saturation properties of the channel. In Ref. [92] the internal diffusion constant of 
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Cs+ (K+) had to be decreased 11 (17) times compared to the bulk in calculations of ion currents 

via the PNP model in order to get agreement with experimental results. The overall conclusion 

drawn from these studies is that diffusion constants of ions in narrow channels are roughly 3-10 

times smaller than in the bulk. In contrast to this conclusion, it was found in Ref. [65] that the 

diffusion constant of K+ inside the GA channel is not much different from the bulk. These 

authors used MD simulations of K+ restrained with a harmonic potential and mapped this 

microscopic dynamics to the generalized Langevin equation (GLE). They estimated that the 

internal diffusion constant was 66 % of its bulk value. 

The goal of the present study is to calculate the diffusion constant of K+ ion inside the 

GA channel using four different methods based on MD simulations. The paper is organized in 

the following way. The theoretical basis of the methods and their computational implementation 

are described in the “Methods” section. The main results of our study are reported in the “Results 

and Discussion” section, and our main conclusions are summarized in the “Conclusions” section. 

3.3 METHODS 

3.3.1 Theory 

We will compare four methods for calculating diffusion constants of ions in bulk water and 

inside the GA channel. The first method is based on the MSD of a particle from its initial 

position [55]: 

 
t
tz

D
t

2)(
2
1lim

Δ
=

∞→
, (3.2) 
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where D  is the one dimensional diffusion constant3, and 2)(tzΔ  is the mean square 

displacement elapsed at time t calculated as an average over all possible time origins along the 

MD trajectory. 

The second method is based on calculation of the VACF [55]: 

 ∫
∞

=
0

)()0( dttvvD , (3.3) 

where  is the ion’s velocity. )(tv

The final two methods are based on the Generalized Langevin Equation (GLE) [55]: 

 )()()()(

0

tRdvtMF
dt

tdvm
t

sys +−−= ∫ τττ , (3.4) 

where  is the ion’s mass,  is the systematic force,  is the random force acting on the 

ion and  is the appropriate memory function. 

m sysF )(tR

)(tM

According to the second fluctuation-dissipation theorem (SFDT), the memory function is 

related to the random force autocorrelation function (FACF) [68, 144] according to 

 )()0(1)( tRR
Tk

tM
B

= . (3.5) 

Using Einstein’s relation 
γ
TkD B=  and the connection between friction constant and 

memory function , then: ∫
∞

=
0

)( dttMγ

 

∫
∞=

0
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)(

dttRR

TkD B . (3.6) 

The last method [65, 145, 146] is based on an analysis of the GLE for a harmonic 

oscillator (GLE-HO). In Eq. 3.4 sysF  can be replaced with the harmonic oscillator force 

                                                 
3 We will consider only one dimensional diffusion because diffusion of ions inside the GA 

channel is essentially a one dimensional phenomenon. Subscripts x, y or z will be dropped throughout: 

when necessary it will be explicitly noted in the text which direction is relevant. 
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)(tzkΔ− , where  is the displacement of the oscillator from its equilibrium position, and  

is an appropriate Hooke’s Law spring constant. The GLE then reads: 

)(tzΔ k

 )()()()()(

0

tRdvtMtzk
dt

tdvm
t

+−−Δ−= ∫ τττ . (3.7) 

Using  and various properties of the random force and equilibrium 

velocity distribution, one finds: 

∫=Δ
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00
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where 
2)0(

)()0(
)(

v
tvv

tC =  is the normalized VACF of an ion. Laplace transforming this equation 

with  gives: ∫
∞

−≡
0

)()(ˆ stetdtfsf

 [ ] )(ˆ)(ˆ)(ˆ
1)(ˆ sCsM

s
sCksCsm −−=− . (3.9) 

The diffusion constant is related to the  limit of the Laplace transform of the 

memory function through the Einstein relation: 

0→s
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Substituting from Eq. 3.9 into Eq. 3.10 the following expression is obtained: )(ˆ sM
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The Equipartition Theorem [55] for a harmonic oscillator implies that, 
2)0(z

Tkk B

Δ
=  and 

2)0(v
Tkm B= ; hence Eq. 3.11 can be rewritten as 
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The diffusion constant is then the  limit of : 0→s )(ˆ sD

 . (3.13) )(ˆlim
0

sDD
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3.3.2 MD simulations 

Molecular dynamics (MD) simulations of K+ ion in bulk water and inside the GA channel were 

carried out to calculate the diffusion constant of K+ using the four methods described in the 

Theory subsection. Two systems were built for the MD simulations: one consisted of K+ in bulk 

water, the other one was comprised of a K+ ion inside the GA channel. For the first system one 

K+ ion was solvated by 1077 SPC/E [147] water molecules. For the second system one K+ ion 

was placed inside the GA channel, embedded in a slab of 235 randomly positioned neutral 

Lennard-Jones spheres to mimic the hydrophobic environment of a membrane and solvated by 

1020 SPC/E water molecules. One Cl- ion was placed outside the channel to neutralize the 

charge of the K+ ion (see Figure 17). For the starting configuration, we used the NMR structure 

of GA downloaded from the Protein Data Bank (www.rcsb.org) with pdb code 1GRM [135]. 

Both systems were equilibrated first at constant volume, then at a constant pressure of 1 atm at 

300 K. For all MD simulations, the SANDER module of the AMBER7 software package [148] 

was used. The modified Cornell et. al. force field (parm99.dat) [149, 150] was used for the ions 

and GA. The coordinates of the Lennard-Jones spheres were fixed during all MD simulations. To 

prevent drifting and misfolding of GA during long MD simulations a weak 1.0 kcal/mol/A  

harmonic restraining potential was applied to all backbone peptide carbon atoms. The Cl  ion 

was also restrained during MD simulations so as to keep it in the middle of the reservoir and thus 

prevent direct influence on the K  motion. 

2

-

+

For the MSD MD simulations, K+ was released and its coordinates collected every 10 fs 

for 4-6 ns of equilibrium simulation. The diffusion constant was calculated from the slope of the 

MSD versus time plot according to Eq. 3.2. 
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For the VACF MD simulations, K+ was released and the Cartesian components of its 

velocity were collected every 10 fs for 4-6 ns. VACFs were calculated from the velocity 

components and then numerically integrated to find the diffusion constant according to Eq. 3.3. 

For the SFDT MD simulations, K+ was fixed at a particular point along the channel axis 

and the Cartesian components of the total force on the ion collected every 1 fs for 15-27 ns 

depending on the location. By fixing the ion we employed the infinitely heavy particle 

approximation [151] to satisfy a condition of the Generalized Langevin equation that the random 

force does not correlate with the velocity [144]. The random force acting on the ion was 

extracted by subtracting the time-averaged force from the instantaneous force value. From the 

random force, the FACF was calculated, numerically integrated and the diffusion constant found 

according to Eq. 3.6. 

For the GLE-HO MD simulations, a harmonic restraint was applied to K+ and the 

Cartesian components of the coordinate and velocity of K+ were collected every 10 fs for 27-42 

ns depending on the location and the strength of the harmonic restraint employed. Then the 

normalized VACF was computed and Laplace transformed numerically to find  according 

to Eq. 3.12. The effect of the harmonic restraint strength on the ion diffusion constant was tested 

in the 4 ≤ k ≤ 40 kcal/mol/Å

)(ˆ sD

2 range (vide infra). 

The potential of mean force (PMF) of K+ inside GA was calculated using the Umbrella 

Sampling technique [152] by restraining the ion in 3D via a harmonic potential of 4 kcal/mol/Å2 

with umbrella windows separated by 0.5 Å. The initial configurations for the umbrella windows 

were created by placing K+ at a particular position along the channel and checking for 

overlapping water molecules. If the ion-water and water-water steric overlaps disappeared in the 

energy minimization then the system was accepted for further equilibration; otherwise, 

overlapping water molecules were manually moved to the bulk reservoir and the whole system 

was energy minimized again. These simulations were carried out for the ion restrained along one 

monomer only so that a total region of 16 Å was covered with umbrella windows. This was done 

because the GA channel system is symmetrical relative to the middle of the channel, and thus 

there is no need to repeat the simulations for the other monomer. For each umbrella window the 

coordinate of the ion was collected every 10 fs over a 1 ns interval. The PMF profile of K+ in the 

z direction was reconstructed using Weighted Histogram Analysis Method (WHAM) [153]. 
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These simulations were carried out on 15 Dual AMD Athlon computer nodes and it took 

30 h to complete 1 ns MD simulation on 2 CPUs. 

 

 

 
Figure 17. A snapshot from an MD simulation of Gramicidin A embedded in a model hydrophobic membrane and 

solvated by 1020 SPC/E water molecules. 

Potassium ion is shown in green, chloride ion in blue, peptide backbone in yellow, protein side chains in blue and 

neutral Lennard-Jones spheres (that constitute the membrane mimetic) as white dots. 

 

3.4 RESULTS AND DISCUSSIONS 

3.4.1 Calculation of diffusion constant of K+ in bulk water 

The main results of applying the four methods described in the Theory subsection for K+ in bulk 

water are reported in Figure 18 and Table 6. MSDs versus time plots of K+ in x, y and z are 

illustrated in Figure 18A. The VACF of K  in one dimension (the z direction) is shown in + Figure 

18B. The correlation time of the VACF is ca. 1.5 ps. The FACF of K+ in the z direction is shown 

in Figure 18C. The correlation time of the FACF is ca. 1 ps. The function  calculated using 

the GLE-HO method (Eq. 3.12) is shown in 

)(ˆ sD

Figure 18D. The harmonic restraining force strength 

was varied over the range of 4 ≤ k ≤ 40 kcal/mol/A2 and found to have little effect on the shape 

of  in this case. Namely, at s<10 ps)(ˆ sD -1 the  function bends down as . In the )(ˆ sD +→ 0s
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10<s<30 range it has a relatively linear shape and bends up at s>30 ps-1. We found that at very 

small s the smooth shape of  function is corrupted by a singularity near s=0, as has been 

observed previously [154]. We observed that the location of the singularity depends on the 

amount of MD sampling: longer simulations shifted the singularity to smaller s. For a 30 ns MD 

simulation the onset of the singularity went down to s=0.05 ps

)(ˆ sD

-1. Such dependence of the 

singularity on the length of the sampling suggests that it arises from numerical errors. Close 

inspection of Eq. 3.12 shows that at small s the final result depends critically on a delicate 

balance of arithmetic operations involving small and large numbers in the denominator. 

Therefore, small numerical errors in , )(ˆ sC 2)0(v  or 2)0(zΔ  may get significantly amplified 

and lead to large errors in the final result. This assumption was further tested by calculating 

 analytically based on a functional fit to MD data for , so that its shape should not be 

affected by numerical errors in , 

)(ˆ sD )(tM

)(ˆ sC 2)0(v  or 2)0(zΔ . Results of this test are discussed in 

the next subsection. In practice, we extrapolated  to s=0 from the 0.05<s<0.2 range by 

ignoring the numerical singularity at s<0.05. This resulted in a diffusion constant of 0.19 Å

)(ˆ sD
2/ps, 

i.e., the same as predicted by the other three methods (Table 6). 

Recently, Hummer [155] proposed an alternative form of expression for Eq. 3.12, which 

in the limit of an overdamped harmonic oscillator uses the position autocorrelation function 

)0()( ztz ΔΔ  instead of C(t) and avoids this singularity. However, this procedure also requires a 

long MD simulation, because the position autocorrelation function and its time integral 

∫
∞

ΔΔ
0

)0()( dtztz  depend delicately on the simulation length. 

 

Table 6. Diffusion constants of K+ in bulk water calculated using the four methods described in the “Theory”. 

 MSD VACF SFDT GLE-HO 

D (Å2/ps) 0.2 0.19 0.18 0.19 
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Figure 18. Calculation of K+ diffusion constants in bulk water using four methods described in the Theory section. 

(A) MSD plots in x (circles), y (squares) and z (diamonds) direction. (B) VACF in z direction. (C) FACF in z 

direction. (D)  function (with error bars) in z direction. )(ˆ sD
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3.4.2 Analytic test of  behavior at small s in bulk water )(ˆ sD

The behavior of  as  has been further investigated by extracting it analytically from 

an appropriate functional representation of the memory function according to Eq. 3.10. In 

particular, an analytic form of the M(t) function determined by fitting the memory function 

which is extracted from MD simulation of the force autocorrelation function with the ion fixed in 

space; cf. Eq. 3.5. A function composed of two damped cosine waves with six parameters 

 was found to give a good fit (cf. Figure 19

)(ˆ sD 0→s

)cos()cos()( 5320
41 taeataeatM tata −− +≅ A) using 

the regression analysis feature of the GRACE program (http://plasma-

gate.weizmann.ac.il/Grace/). The optimal fit parameters for this fitting function are given in 

Table 7.  obtained from MD using the GLE-HO method (Eq. 3.12) is compared in Figure 

19

)(ˆ sD

B with the version of  obtained by analytical Laplce transformation of our functional fit 

to  (cf. Eq. 3.10), which we will term the “analytic” . Both  functions have the 

same linear shape in the 10<s<30 range and bend down towards the same value at s=0. No 

singularity was observed for the analytic  function, which provides further evidence that 

the singularity obtained in 

)(ˆ sD

)(tM )(ˆ sD )(ˆ sD

)(ˆ sD

Figure 19D is a numerical artifact. 

Using Eq. 3.9 associated with the GLE-HO method, the normalized VACF C(t) can be 

found by inverse Laplace transformation of a function that contains the Laplace transform of the 

memory function, namely: 
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We calculated  using the above equation with the analytic form of  described 

above. Alternatively,  was calculated directly from MD simulations of K

)(tC )(ˆ sM

)(tC + restrained with 

the same harmonic force constant as used to calculate  analytically (i.e., Eq. 3.14). These 

functions compare well, as shown in Figure 19

)(tC

C. 

 71 



 

Figure 19. Analytic test of  behavior at small s for K)(ˆ sD + in bulk water. 

(A) Memory function calculated using SFDT method i.e. Eq. 3.5, from fixed ion MD simulations (circles) 

(corresponds to FACF illustrated in Figure 18C) and its analytically fitted analog (squares). (B)  function 

calculated from MD using GLE-HO method i.e. Eq. 3.12 (circles) and analytically derived using Eq. 3.10 from 

)(ˆ sD
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analytic (squares). (C)  calculated directly from MD for a harmonically restrained K  (circles) and 

analytically derived using GLE-HO analysis i.e. Eq. 3.14 from analytic  (squares). 

)(ˆ sM )(tC +

)(ˆ sM

 

 

 
Table 7. Best fit parameters for analytic memory function of K+ in bulk SPC/E water fitted from fixed ion MD 

simulations (cf. Eq. 3.5). 

a0 a1 a2 a3 a4 a5

70.92 19.86 -28.97 5.343 2.472 -0.0007743 

 

 

3.4.3 Calculation of K+ PMF in the GA channel 

The PMF profile of K+ along the z (channel) axis inside GA is shown in Figure 20: 0=z  

corresponds to the middle of the channel. It can be seen that there is some periodicity in the PMF 

profile, which is related to the helical structure of the GA channel. The maximum barrier for a 

K  ion inside the channel is 7.5 kcal/mol. The PMF of K  inside GA has been calculated 

previously using the CHARMM PARAM27 force field and TIP3P water model [65]. Both PMFs 

exhibit similar features such as periodicity and a maximum barrier of approximately 7 kcal/mol. 

This demonstrates that both force fields predict similar behavior for K  inside the GA channel. 

+ +

+

According to the Smoluchowski Equation, in the absence of an externally applied electric 

field and ion-ion interactions an ion diffuses in the force field implied by its PMF. Thus, it is 

instructive to consult the PMF when calculating the position-dependent diffusion constant as will 

be described in the next subsection. 
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Figure 20. PMF profile of K+ along z (channel) direction inside GA. The origin of the coordinate system coincides 

with in the center of the channel. 
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3.4.4 Calculation of the K+ diffusion constant inside the GA channel 

The main results of our calculations of K+ diffusion constants inside the GA channel are 

summarized in Table 8. MSDs in x, y and z directions are illustrated in Figure 21A. At short 

times up to 1 ps all MSDs have the same slope. This is the average time over which K+ is 

unconstrained by the cage formed by the walls of the channel in the x and y directions and 

neighboring water molecules in the z direction. This “free diffusion” time period is nearly the 

same because the size of the cage is similar in x, y and z directions. A diffusion constant 

calculated from these data reflects the (nearly) free diffusion properties of the ion inside the cage 

and therefore cannot be used to represent its long time behavior. MSDs in the x and y direction 

(perpendicular to the channel) reach a plateau at several picoseconds because of the channel wall 

constraints. The MSD plot in the z direction continues to increase with time. We tested how the 

shape of the MSD in the z direction depends on the location at which K+ is released inside GA. 

MSD plots in z direction of K+ released at five different locations are illustrated in Figure 21B. 

All MSDs have the same slope up to ca. 10 ps and then diverge at longer time. This strong 

dependence of MSD on the ion’s release location reflects the spatial inhomogeneity of the PMF 

(see, Figure 20) which governs motion of the ion inside the channel. 

When the ion was released at the center and at 2.4 Å from the middle of the channel, the 

MSD in z direction had the same shape for up to 250 ps (Figure 21B) because the ion moved in 

the same free energy basin (see, Figure 20). These MSDs deviate from each other after 250 ps 

because in the 2.4 Å release case the ion traveled further away from the release location. The 

long time dynamics saturates with time for all these MSDs. Due to strong position dependence of 

the MSD functions, estimation of diffusion constants is difficult. We estimated the lower and the 

upper limit of the calculated diffusion constant. An upper limit for the diffusion constant, 

calculated from the largest MSD slope corresponding to the 10-250 ps region (i.e., prior to 

saturation of the MSD for the ion released at the center and 2.4 Å away from the center of the 

channel), was found to be 0.0146 Å2/ps - approximately 14 times smaller than in the bulk. A 

lower limit of the diffusion constant was calculated from the slope of the 200-1000 ps region of 

the MSD function for the K+ ion released 5 Å away from the middle of the channel. The 
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diffusion constant in this case is close to zero because the ion remained within a narrow local 

free energy well during the whole simulation time. 

Now let us examine results of applying the VACF method, i.e. Eq. 3.3, for calculating the 

diffusion constant of K+ inside GA. In Figure 22A the VACF of the ion inside the channel is 

compared with its bulk water analog. The z-component of the VACF inside the channel has a 

more complex shape characterized by two major minima, one occurring at 0.07 ps and the other 

at 0.18 ps. The negative part of the VACF is more pronounced than in bulk water. This suggests 

that there is a larger back scattering of the ion from the neighboring water molecules although 

the decorrelation time is the same, ca. 1 ps. Comparison of the VACF inside the channel in the z 

direction with that in the x and y directions is shown in Figure 22B. Again, the VACF in the z 

direction has a more complex shape: the VACFs in the x and y directions have only one 

minimum and do not have a flat region. The complex shape of the VACF in the z direction 

compared to bulk water analog and the internal ion VACF in the x and y directions suggests a 

more complex character of the correlations between particles moving in single file where the 

motions of individual molecules are coupled in a non-trivial way with the motion of the single 

file chain. 

Diffusion constants calculated using the VACF method for K+ released at different 

locations inside GA are reported in Table 9. When the ion is released in the center and at 2.4 Å 

the diffusion constants are the same, namely, ca. 26 times smaller compared to the bulk. When 

the ion is released 5 Å away from the middle of the channel the diffusion constant is 550 times 

smaller (nearly zero) than in the bulk. When the ion is released at 8.2 Å and 9.2 Å away from the 

center the diffusion constants are the same and ca. 72 times smaller than in the bulk. This 

dependence of the diffusion constant on the location of release has the same trend as calculated 

using MSD method, although the absolute value of the diffusion constants calculated by VACF 

method is on average two times smaller. 

FACFs and integrals of the FACF for K+ fixed at three different locations inside GA are 

shown in Figure 23. We found that the FACFs inside the channel have much longer correlation 

tails (namely, ca. 80 ps) than in the bulk. This suggests that there are much longer correlation (or 

memory) effects inside the channel. Comparison of the mean values of the squared random 

forces in bulk and in the channel is provided in Table 10. We found that mean of the squared 

random force in the channel is ca. 1.6 times larger than in the bulk. This is another manifestation 
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of stronger interactions between K+ and water molecules in the channel. It was found that the 

error bars for integrals of the FACFs are very large (also shown in Figure 23) although they were 

calculated from long MD simulations of ca. 40 ns. (We could not do much longer MD sampling 

due to computer time limitations.) The diffusion constant calculated as the arithmetic average of 

three integrals (corresponding to three positions along the channel axis, as described in the 

caption for Figure 23) is 9 times smaller compared to bulk with the lower limit being 5.7 and the 

upper limit 12.3 times smaller than in the bulk. We have identified that the two main reasons for 

such a large depression of the diffusion constant inside the channel are larger mean square 

random forces and longer random force correlation time. Other workers have reached the same 

conclusion about the depression of diffusion constants of ions inside model hydrophobic 

channels [71]. 

Now let us look at the results calculated using the GLE-HO method, i.e. Eq. 3.12. The 

 function of K)(ˆ sD + restrained in the center of GA is compared with the one in bulk water in 

Figure 24. For both systems the  function bends down at )(ˆ sD 10<s  ps . We encountered the 

same singularity of  function at small s as in the bulk water simulations and were able to 

shift it to smaller s by increasing the simulation time. As our analytical test above showed, this 

singularity is almost certainly a numerical artifact and therefore is ignored in extrapolating the 

numerical  function to . 

-1

)(ˆ sD

)(ˆ sD 0→s

We tested how the strength of the harmonic restraint in the 4≤k≤40 kcal/mol/Å2 range 

affects the behavior of  function, as illustrated in Figure 25)(ˆ sD . It was found that a harmonic 

restraint of k<20 kcal/mol/Å  resulted in a low diffusion constant, ca. 40 times smaller than in 

the bulk (

2

Figure 25A). When a stronger harmonic restraint was used, 20≤k≤40 kcal/mol/Å2 then 

the diffusion constant was found to be ca. 13 times smaller compared to bulk (Figure 25B). The 

purpose of a harmonic restraint is to overwhelm the influence of the actual systematic force on 

the dynamics of the ion by a harmonic force. The reason for this is that it is difficult to accurately 

calculate the actual position dependent systematic force. It is thus advantageous to replace the 

full systematic force by a known harmonic oscillator force that can later be easily unbiased using 

GLE-HO analysis to extract a diffusion constant. If the harmonic restraint is weak it cannot 

effectively overcompensate for the effect of the systematic force. This can leads to a large error 

in diffusion constant. 
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We also calculated the  function for harmonic restraints applied at several different 

locations inside the channel, as illustrated in Figure 26

)(ˆ sD

. At all locations it leads to a diffusion 

constant significantly (4-13 times) smaller than in the bulk. 

Calculation of the diffusion constant of K+ in bulk TIP3P water and inside GA channel 

has been carried out by other researchers [65]. In their work a 10 kcal/mol/Å2 harmonic restraint 

was used for K+ and the function  was extrapolated to s=0 from 15<s<35 range. They found 

that the diffusion constant inside GA is 66 % of the bulk value. Our computations show that the 

 function significantly bends down at s<15 and thus that extrapolation from the 15<s<35 

range results in a significant overestimation of the diffusion constant, namely, a value about 66 

% of the bulk - the same as in Ref [65]. Such an extrapolation of  from the 15<s<35 range 

to  is shown in Figure 24

)(ˆ sD

)(ˆ sD

)(ˆ sD

0≅s  for K  in bulk water (squares) and in the center of GA (circles). 

The fact that this function bends to such small values of  is another manifestation of long 

time correlation effects inside GA. 

+

)(ˆ sD

As noted above, the diffusion constants of K+ inside GA predicted by the different 

methods are collected in Table 9. For MSD and VACF methods we give the lower and the upper 

limit of the diffusion constant. Of the methods investigated here, SFDT and GLE-HO predicted a 

similar diffusion constant roughly 10 times smaller compared to the bulk. This value of the 

diffusion constant is in good agreement with results predicted by other workers as noted in the 

Introduction section [71, 141]. The results of our study strongly suggest that SFDT and GLE-HO 

are the two most reliable extant methods for calculating the diffusion constant of ions inside 

narrow ion channels. We found that MSD and VACF methods are not reliable because of their 

strong dependence on the position along the channel from which the ion is released. But, perhaps 

surprisingly, the upper limit (0.0145 Å /ps) predicted by MSD method is not very far from the 

diffusion constant predicted by SFDT and GLE-HO methods. 

2

 
Table 8. Diffusion constants of K+ inside the Gramicidin A channel calculated using the four methods describes in 

the Theory section. 

 MSD VACF SFDT GLE-HO 

D (Å2/ps) ~0-0.0145 0.000035-0.0075 0.019±0.008 0.016±0.004 
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Figure 21. MSDs of K+ released at several different locations inside GA. 

(A) MSD in x (circles), y (squares) and z (diamonds) direction when K+ was released in the center of the channel. 

(B) MSDs in z (channel) direction for K+ released in the center (circles), 2.4 Å away from the center (squares), 5 Å 

away from the center (diamonds), 8.4 Å away from the center (triangles up) and 9.2 Å away from the center 

(triangles down) of the channel. They are compared to one dimensional MSD of K+ in bulk water (triangles left). 

 

 

 

 
Figure 22. (A) Velocity Autocorrelation Function (VACF) of K+ in z direction in bulk water (circles) and in the 

center of GA (squares). (B) VACF in x (circles), y (diamonds) and z (squares) direction for K+ released in the center 

of GA. 
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Table 9. Diffusion constants of K+ inside the Gramicidin A channel calculated using the four methods describes in 

the Theory section. 

 MSD VACF SFDT GLE-HO 

D (Å2/ps) ~0-0.0145 0.000035-0.0075 0.019±0.008 0.016±0.004 

 

 

 

 

 
Figure 23. Force Autocorrelation Function (FACF) (jagged line on the bottom) for K+ fixed in the center of GA, and 

integrals of the FACF with error bars for K+ fixed in the center of the channel (squares), 2.5 Å away from the center 

of the channel (circles), and 11.5 Å away from the center of the channel (diamonds). 

 

 80 



 
Table 10. Comparison of the mean value of  the squared random force in bulk SPC/E water and inside GA. 

 Bulk water Center of GA 
2R , kcal2/mol2/Å2 43.1 69.5 

 

 

 

 

 

Figure 24.  function calculated using GLE-HO method for K)(ˆ sD + in bulk water (squares) and in the center of GA 

(circles) along with extrapolations from 15<s<35 range (the extrapolation range used in Ref. [65]). 
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Figure 25.  function calculated using GLE-HO method i.e. Eq. 3.12, for K)(ˆ sD + restrained with different 

harmonic restraints in the center of GA. 

(A) k=4 kcal/mol/Å2 (squares) and k=8 kcal/mol/Å2 (circles). (B) k=24 kcal/mol/Å2 (diamonds), k=32 kcal/mol/Å2 

(squares) and k=40 kcal/mol/Å2 (circles). A blowup of the  functions at small s is shown in the insets. The 

broken line represents where the  function was linearly extrapolated to s=0 (broken lines). 

)(ˆ sD

)(ˆ sD
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Figure 26.  function calculated using GLE-HO method for K)(ˆ sD + restrained at three different locations along the 

channel (z axis) with harmonic constant of 40 kcal/mol/Å2: 5.2 Å away from the center (diamonds), 2.4 Å away 

from the center (squares) and in the center of the channel (circles). 
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3.5 CONCLUSIONS 

There are two main conclusions of this study. The first conclusion is that all four methods predict 

that diffusion constant of K+ inside the GA channel is significantly (at least 4 times) smaller than 

in bulk water. We have identified a possible explanation for the large diffusion constant of K+ 

inside GA calculated by GLE-HO method reported recently [65], namely extrapolation of  

to s=0, based on its “intermediate s” behavior (which misses critical details of  near s=0; 

see Figure 24

)(ˆ sD

)(ˆ sD

). 

The second conclusion is that of the four methods considered here, SFDT and GLE-HO 

predict a similar diffusion constant which is ca. 10 times smaller than in bulk water. The other 

two methods, MSD and VACF, predict a much smaller diffusion constant compared to the bulk. 

We attribute this to the fact that SFDT and GLE-HO methods correctly unbias the influence of 

the systematic force on the diffusion properties of the ion, while MSD and VACF do not. 

Therefore, the MSD and VACF methods inject unwanted information about the systematic force 

(manifested in the PMF), resulting in predicted diffusion constants which are quite different than 

when calculated by SFDT and GLE-HO methods. 
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4.0  MODELING THE FAST GATING MECHANISM IN CLC CHLORIDE 

CHANNELS 

Mamonov, A. B., J. W. Dukes, H. Cheng, and R. D. Coalson. Manuscript in preparation. 

4.1 ABSTRACT 

A simplified three-dimensional ClC chloride model channel is constructed to couple the 

permeation of Cl- ions to the motion of a glutamate side chain which acts as the putative fast gate 

in the ClC-0 channel. The gate is treated as a single spherical particle attached by a rod to a pivot 

point. This particle moves in a one-dimensional arc under the influence of a bi-stable potential, 

which mimics the isomerization process by which the glutamate side chain moves from an open 

state (not blocking the channel pore) to a closed state (blocking the channel pore, at a position 

which also acts as a binding site for Cl- ions moving through the channel). A Dynamic Monte 

Carlo (DMC) technique is utilized to perform Brownian Dynamics simulations in order to 

investigate the dependence of the gate closing rate on both internal and external chloride 

concentration, and the gate charge as well. To accelerate the simulation of gate closing to a time 

scale which can be accommodated with current methodology and compute power, i.e. 

microseconds, parameters that govern the motion of the bare gate (i.e., in the absence of coupling 

to the permeating ions) are chosen appropriately. Our simulation results are in qualitative 

agreement with experimental observations and consistent with the “foot-in-the-door” mechanism 

[74, 75], although the absolute time scale of gate closing in the real channel is much longer 

(millisecond time scale). A simple model based on the fractional occupation probability of the 

Cl- binding site that is ultimately blocked by the fast gate suggests straightforward scalability of 
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simulation results for the model channel considered herein to experimentally realistic time 

scales. 

4.2 INTRODUCTION 

The ClC family of ion channels primarily regulates the flow of Cl- across cell membranes. By 

doing so, ClC channels control a variety of important physiological functions, such as skeletal 

muscle excitability (ClC-1), renal and intravascular transport (ClC-K and ClC-5), and cell 

volume regulation (ClC-2 and ClC-3). The presence of a double-barreled channel was first 

suggested by early electrophysiological recordings from Torpedo electroplax ClC-0 channel 

[156], and was recently confirmed by X-ray crystallography [20, 77]. Opening and closing of 

these two pores appear to be regulated by two distinct mechanisms, corresponding to a fast and a 

slow gate. Slow gating involves structural changes of both monomers, and thus opens or closes 

both pores simultaneously. The slow gate operates on a time scale of seconds. Fast gating is 

controlled separately by each individual pore and occurs on a time scale of milliseconds. It was 

observed experimentally that both gating mechanisms are regulated by Cl- concentrations [75, 

76, 157]. Changing  the concentrations of Cl- on the intracellular and extracellular sides of the 

membrane affects the fast gating in different ways. Increasing the extracellular concentration 

increases the rate of fast gate opening but has little effect on the closing rate [75, 76]. In contrast, 

increasing the intracellular concentration reduces the rate of fast gate closing but has a much 

smaller effect on the rate of fast gate opening [74, 75]. Thus, it was suggested that the opening 

and closing of the fast gate are coupled to ion permeation and regulated by two different 

mechanisms. To explain the dependence of the fast gate closing rate on the internal 

concentration, a foot-in-the-door mechanism was proposed [74, 75]. According to this 

mechanism a permeating Cl- ion blocks the fast gate from closing by occupying a binding site 

that would be occupied by the fast gate in the closed state. Recently, Dutzler et al. [77] presented 

a structural basis for this mechanism and suggested a possible way of coupling ion permeation to 

ClC channel gating. The authors solved the x-ray structure of a channel-antibody complex for the 

wild type channel at 2.5 Å resolution that allowed identification of two Cl- binding sites: one 

located close to intracellular and the other in the center of the channel. However, the passage to 
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the extracellular side was blocked by the glutamate E148 residue. In the next step the authors 

solved the structures of two mutants in which the glutamate E148 residue was replaced with 

alanine and glutamine. In both cases the side chains of the mutated residues pointed away 

towards the extracellular side and the position of the carboxyl group found in the wild type 

channel was occupied by a Cl- ion. Based on this study the authors suggested a gating 

mechanism in which the permeant Cl- ions compete with the carboxyl group of E148 for the 

binding site located closest to the extracellular side. 

The goal of the present study is to test the proposed foot-in-the-door mechanism for the 

dependence of the fast gate closing rate on internal and external [Cl−] using numerical modeling. 

With currently available computational power, a fully atomistic simulation of ion permeation is 

intractable on the time scales relevant for studying the fast-gating mechanism of ClC channels. 

Coarse-grained models sacrifice some realism, but by virtue of their relative simplicity make it 

possible to calculate ion permeation kinetics on currently available computing platforms to 

predict the rate of ion permeation through a variety of open channels. Among such models, 

Poisson-Nernst-Planck theory [48], Brownian dynamics [56, 98] and the dynamic Monte Carlo 

(DMC) technique  [50, 140] have been extensively applied. However, modeling gating of ion 

channels remains challenging for two reasons: 1) gating often involves large structural changes 

and 2) gating times far exceed the amount of time the most powerful computers are able to 

simulate via MD. To account for this, in the present study we have developed a coarse-grained 

model which couples the ion permeation to fast gating. 

The outline of this paper is as follows. In “Methods” section, we discuss the protocol and 

rationale for constructing a numerical model channel which mimics ion permeation and the fast 

(glutamate) gate in ClC channels. We also outline a DMC method for carrying out Brownian 

Dynamics (BD) simulations of both ion permeation and the motion of the gate in our model 

system. In “Results and Discussion” section, we discuss our simulation results and present a 

simple quasi-analytical model to address the “foot-in-the-door” mechanism. Finally, our 

conclusions are presented in “Conclusions” section. 
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4.3 METHODS 

4.3.1 Model channel 

The ClC gate model channel is depicted schematically in Figure 27. The membrane is 32 Å wide. 

The selectivity filter is 12 Å long and 2 Å in radius, and is connected to two cone-like vestibules 

on each side of the channel. The widest part of these vestibules is 6 Å in radius. This geometry 

was designed to mimic the ClC-0 channel based on its crystallographic structure [20, 77]. Three 

binding sites for Cl  ions were positioned inside the channel to represent experimentally 

determined Cl  binding sites in ClC-0 [77]. In our model, the Cl  binding sites are asymmetrically 

located at -6 Å, 1 Å and 6 Å relative to the center of the channel. 

-

- -

Since the fast-gate is linked to non-equilibrium chloride permeation through the ClC 

channel, to model this mechanism, both the dynamics of the fast gate and permeation of chloride 

ions must simultaneously be taken into account. In the present study, we invoke a minimalist 

model for the fast gate, in which a spherical particle is attached to a lever whose pivot is located 

in the wall of the pore (cf. Figure 27). The gate particle is allowed to swing from the extracellular 

vestibule of the channel into the selectivity filter of the channel, thus blocking chloride 

permeation. 

The gate particle has a radius of 2 Å and mimics the side chain of the glutamate residue 

E148, which was determined experimentally to be the residue most likely responsible for the fast 

gating in the ClC-0 channel [77]. The pivot of the model gate lever was positioned inside the 

membrane 6 Å away from the center of the channel in the z direction and -4 Å in the x direction. 

The length of the lever is 4 Å. The gate particle undergoes Brownian motion in a bistable 

potential, as shown in Figure 28. Results of preliminary MD simulations of the ClC channel 

[158] indicated that the two dihedral angles of E148 contribute most significantly to the closing 

and opening of the gate. Let us adopt the nomenclature that dihedral angle 1 is closest to the 

peptide backbone and dihedral angle 2 is adjacent to dihedral angle 1 (closer to the terminal 

carboxyl group). The dihedral coordinate in our simple model corresponds roughly to dihedral 

angle 1 of the E148 side chain. The wells of our bistable potential correspond to the stable states 

where the steric hindrance between the substituents is minimum while the barrier corresponds to 

sterically hindered conformations between substituents. The shape of the bistable potential was 
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chosen to mimic the shape of the dihedral energy functions employed in the description of 

torsional potentials in standard MD force fields [59]. We have chosen the following equation to 

describe the bistable potential 4

222

60
)60)60(( −−θactE , where E  is height of the energy barrier 

and θ is the angle of the gate lever. The closed state of the gate corresponds to θ=0° angle. In this 

state the gate lever is perpendicular to the channel (z) axis. The open state of the gate is located at 

θ=120°. The maximum barrier height of the gate is at θ=60°. In our computational study we 

employed several sets of parameters, which are reported in 

act

Table 11. The choice of parameters 

will be discussed at length below. 

The radii of mobile ions Cl- and Na+ were taken to be 1.8 Å and 1 Å, respectively. Inside 

the channel they moved in the single ion free energy profiles shown in Figure 29. The Na  PMF 

was calculated based on the numerical solution of the Poisson equation for a model ClC system 

in which the Cl  binding sites were represented by three rings of dipoles [158]. The magnitude of 

dipole rings were fit to reproduce the same Cl  binding energies as reported in Ref. [159]. This 

energy profile completely excluded the passing of Na  through the model channel. The Cl  PMF 

has three energy wells, which mimic experimentally determined Cl  binding sites in ClC-0 [77]. 

Following a procedure described in Ref. [141], the well depths and barrier heights of Cl  PMF 

were adjusted to reproduce a saturation behavior of the gate open time with internal [Cl ] by 

approximating the binding energies reported in Ref. [159]. The diffusion coefficient for both Na  

and Cl  was set to 0.2 Å /ps in the bulk [131] and assumed to be 10 times smaller than this inside 

the channel. 

+

-

-

+ -

-

-

-

+

− 2
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Figure 27. Schematic depiction of the DMC simulation model. 

The membrane is shown in green. The gate is represented by a gray particle connected to a pivot rod. Three Cl- 

binding sites in the middle of the channel are shown in pink. In the buffer regions, a constant number of ions is 

maintained during DMC simulations. During simulations of the ion motion, the bath concentrations are monitored in 

order to assess the performance of the imposed constant concentration boundary conditions. 
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Figure 28. Free energy profile of the fast gate used in our model. θ=0 degrees corresponds to the closed state and 

θ=120 degrees to the open state of the fast gate. 

 

 

 

 
Table 11. Parameters used in our DMC simulations. Rate constant was calculated using Eq. 4.9. 

 Set 4.6 Set 6 Set 6.7 Set 8 

actE , kBT B
4.6 6 6.7 8 

gateD , Å2/ps 0.02 0.061 0.02 0.061 

esck , ns-1 0.04732 0.04633 0.008424 0.008377 
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Figure 29. 1D Potential of mean force (PMF) of Na+ (solid line) and Cl- (dashed line) along the channel (z) axis. 

The Na+ PMF was calculated based on numerical solution of the Poisson equation for a model ClC system in which 

Cl- binding sites were represented by three rings of dipoles [158]. The magnitude of dipole rings and location of 

binding sites were fit to reproduce the same binding energies and geometries as reported in Ref. [159]. The Cl- PMF 

was calculated by adjusting the depths and barriers of the binding sites to reproduce a saturation behavior of the gate 

open time with internal [Cl-] by approximating binding energies reported in Ref. [159]. 

 

 

 

4.3.2 Dynamic Monte Carlo 

We used Dynamic Monte Carlo (DMC) method to simulate ion permeation and motion of the 

gate. Complete computational details of our DMC algorithm and its application to ion 

permeation through protein channels can be found in Refs. [50, 57, 95, 140]. Here we will give a 

brief review of our computational model. 
In a DMC algorithm for ion permeation [50, 57, 95], configurations are generated by 

random changes of the ion positions. The total number of ions is characterized by N= NL +NR +NI 

+Nv. Here NL and NR are the fixed numbers of ions on the left and right boundaries (buffers in 
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Figure 27), which are obtained by integrating the given boundary concentrations C  and C  over 

the volumes of the boundary layers. In this study, the constant concentration boundary condition 

is imposed by uniformly distributing N  or N  ions in the buffers at each Monte Carlo (MC) step. 

N  is the number of ions inside the system and N  is the number of virtual ions. The total number 

of ions N is fixed and N  fluctuates. N  is introduced only for counting purposes and is included 

to account for dynamic fluctuation of the number of ions in the interior of the system, and ensure 

the proportionality of Monte Carlo cycles to real time (characterizing time evolution under the 

corresponding multi-ion Smoluchowski Equation). For example, in DMC simulation that 

involved the ionic concentration of 0.135 M NaCl on both sides of the membrane, the number of 

ions in the left buffer was the same as in the right N =N =4 (2 for Cl and 2 for Na  to make the 

buffer neutral), the number of ions in the internal system was N =8 and the virtual number of ions 

N =2; so that the total number of ions used was N=18. 

L R

L R

I v

I v

L R
- +

I

ν

One MC cycle consists of N steps. At each step, one ion k is randomly chosen to move ±h 

in one direction (x, y, or z) if the chosen ion is not a virtual one, where h is a position-dependent 

displacement. In the present implementation, this new configuration is accepted 

if )exp( WRand Δ−< β , where Rand is a uniform random number that belongs to the interval [0, 

1] and ; ΔW is the energy change between the old and the new configurations based 

on the chosen ions k with charge q

1( )Bk Tβ −=

k [140]. In the present study, ΔW is calculated as: 
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where qj and qgate are charges of ion j and the gate particle, respectively. D0 and D(z) are the 

diffusion constants of ion in the bulk and at position z, respectively. The first term in the right 

hand side of Eq. 4.2 is the PMF (cf. Figure 29) of ion k. The second term represents Coulombic 

interactions between pairs of ions in an environment characterized by the (uniform) water 

dielectric constant ε . The third term is Coulombic interactions between the gate particle and the 

chosen ion k. The effect of the dielectric inhomogeneity of the channel environment on the ion-

ion and ion-gate electrostatic interactions was not included in this study. The last term in Eq. 4.2 

is incorporated to reflect the effect of non-uniform diffusion constant of ions. While this term can 

be applied to treat any given three dimensional inhomogeneous diffusion constant profile, in the 

w
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model considered in this paper the diffusivity varies only along the channel direction. The 

diffusion constants and the associated ion displacement steps taken in one DMC step obey the 

relation: 

  (4.3) 0
2
0

2 /)(/ DhzDhz =

where h0 and hz are the associated ion displacement in the bulk and at the position z, respectively. 

The total simulation time Ts for ions is related to the number of the Monte Carlo cycles Nc as 

 
0

2
0

6D
Nh c

s =Τ  (4.4) 

The putative gate is assumed to undergo one-dimensional angular motion. At one MC 

cycle, the gate moves ±Δ angle. This new configuration is accepted if )exp( gWRand Δ−< β , 

where ΔWg is the energy change of the gate between these two configurations. The energy of the 

gate is calculated in the following way: 

 )()( gj
coul

j w

jg
gg r

qq
W φ

ε
θφ ∑+= , (4.5) 

where (θ) is the angular dependent potential of the gate (cf. Figure 28gφ ) and the second term 

represents the Coulombic interactions between the gate particle and the ions. The total simulation 

time for the gate particle T  is related to the number of the Monte Carlo cycles N  as g g

 
gate

gg
g D

NL
2

)( 2Δ
=Τ , (4.6) 

where Lg is the arm of gate and Dgate is the diffusivity of the gate. In order to keep the same total 

MC cycles and the real time as ions, the gate angular displacement is related to the ion 

displacement in the bulk as follows: 

  (4.7) 0
2
0

2 3//)( DhDL gateg =Δ

Unless otherwise explicitly noted, for one MC cycle the angular displacement for the gate 

was Δ=0.0458 radian (or 2.6241 degrees) for all parameter sets. The displacement of ions in the 

bulk was set to 0.575 Å for parameter Set 6 and Set 8, and 1.0 Å for parameter Set 4.6 and Set 

6.7. For all our simulations, -100 mV external electric potential was applied across the 

membrane. The gate open time was calculated by counting the time it took for the gate to go 

from the open state (corresponding to θ=120 degrees) to the closed one (θ=0 degree). 
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4.4 RESULTS AND DISSCUSION 

4.4.1 Test of the gate motion using a simple analytical model 

In order to test our DMC algorithm for simulating combined ion permeation/gate particle motion, 

we first considered one dimensional bistable gate particle motion in the absence of any coupling 

to ion permeation, i.e., the channel was empty of ions. Simulation results for the escape rate (rate 

of transitions from the initial to the final state well, suppressing any back transitions from the 

final to the initial state well) were compared to the corresponding predictions of Kramer’s theory 

in the high friction limit, namely [160] 

 Tk
E

bw
esc

B

act

ek
−

=
πξ
ωω

2
, (4.8) 

where  is Kramer’s escape rate constant,  is height of the energy barrier (activation 

energy), and 

esck actE

ξ  is the coefficient of dynamical friction of the escaping particle. Furthermore, wω  

and bω  are harmonic curvatures describing the energy well and the barrier of the escaping 

potential, respectively. Specifically, 
m
kw

w =ω , where m is the particle mass and >0 is the 2wk nd 

derivative of the gate particle potential function evaluated at the bottom of the reactant well; 

analogously, 
m
kb

b =ω  with  >0 being the negative of the 2bk nd derivative of the gate particle 

potential evaluated at the top of the barrier. Using Einstein’s relation 
ξm
TkD B= , Eq. 4.8 reads 
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where  is the diffusion constant of the gate particle. Note that the mass of the particle does 

not appear in Eq. 4.9 because it gets incorporated into the diffusion constant. Comparison of 

Kramer’s formula, which is essentially exact when >>1, to the corresponding DMC 

simulation results for several different sets of  and  is shown in Table 11

gateD

TkE Bact /

gateD actE  (discussion of 

 and  values used in our model is presented below in the subsection “Effect of  and gateD actE gateD
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actE ”). Transition of the gate particle from the open to the closed state is analogous to a first 

order chemical reaction, where the open state corresponds to the reactant side and the closed 

state to the product side. Therefore, the survival probability of the gate to be open is [161] 

 , (4.10) tk
o

escetp −=)(

where  is the probability for the gate to be open at time . We calculate  analytically via 

Eqs. 4.9 and 4.10 and then compare to the corresponding numerical calculation using the DMC 

method, as illustrated in Figure 30

)(tpo t op

. There is excellent agreement between them. 

 

 

 

 
Figure 30. Dependence of the neutral gate probability to be open on time for parameter Set 6 (Table 11) calculated 

using Kramer’s rate theory (circles) and DMC (diamonds). The error bars for DMC data are smaller than symbol 

labels. 

 96 



 

4.4.2 Dependence of the gate open time on internal and external [Cl-] 

To validate computationally the foot-in-the-door mechanism for the ClC channel, we studied two 

main relationships that were measured experimentally [74, 75]: the dependence of the gate open 

time on internal [Cl-] while keeping external [Cl-] constant at 0.135 M and the dependence of the 

gate open time on external [Cl-] while keeping internal [Cl-] constant at 0.135 M. Results of the 

open time dependence on internal [Cl-] for parameter Set 6 (Table 11) are shown in Figure 31, 

for the case of a neutral gate (analogous results for a gate with -1 charge, representing the 

deprotonated state of E148, are presented below). In order to scan the range of [Cl-] used in 

experiments [74, 75], the following set of constant concentrations was imposed in the internal 

buffer boundary (cf. Figure 27): 0.135 M, 0.270 M, 0.54 M, 0.81 M, 1.22 M, and 2.02 M. The 

average bath (cf. Figure 27) concentrations fluctuate as: 0.1397±0.006 M, 0.2708±0.008 M, 

0.5297±0.011 M, 0.7907±0.011 M, 1.179±0.0128 M, 1.982±0.015 M, indicating successfully 

implemented constant boundary conditions in our simulation systems. A smooth saturation of the 

open time is observed when the internal [Cl-] is increased from 0 M to 2 M, which is in 

qualitative agreement with experimental observations [74] shown in the inset of Figure 31. This 

saturation behavior observed in our simulations is consistent with the “foot-in-the-door” 

mechanism proposed by Chen and Miller [74]: at low [Cl ], the probability of S  being occupied 

by a Cl  ion (thus preventing the gate from closing) increases linearly with internal [Cl ], since 

the flux through the channel scales linearly with bathing solution concentration at low 

concentration. At higher concentration, S  becoming “clogged” with Cl , and further increase of 

the bath concentration of Cl  does not increase the probability that S  will be occupied by Cl . 

Thus a saturated gate open time is observed, as would be expected for this model. 

-
ext

- -

ext
-

-
ext

-

Results of DMC calculations for the dependence of gate open time on external [Cl-] are 

shown in Figure 32. Our simulations show a relatively weak dependence of gate open time on 

the external [Cl ], qualitatively consistent with experimental measurements [74, 75], Such 

behavior might be expected in the model channel explored here, since the ions are being driven 

from the internal to external by the applied membrane potential, and thus should be less sensitive 

to the ion concentration in the external compartment. 

-
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The dependence of gate open time on the external [Cl-] was not further investigated 

because of the speculated presence of a fourth binding site on the extracellular side whose 

existence could significantly affect how a extracellular Cl- ions regulate opening and closing of 

the gate [74]. The location of the fourth binding site has not been identified yet and, therefore, 

the fourth binding site was not included in our model. 
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Figure 31. Dependence of the gate open time on the internal [Cl-] for the neutral gate and parameter Set 6 (Table 

11) calculated using DMC. Result of the experimental measurements [74] are shown in the inset. 
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Figure 32. Dependence of the gate open time on the external [Cl-] (squares) for neutral gate with parameter Set 6 

(Table 11) calculated using DMC. For comparison, dependence of the gate open time on the internal [Cl ] is also 

shown (circles). 

-

 

 

 

4.4.3 Effect of a negatively charged gate on the gate open time 

There is at present no consensus in the biophysical literature whether the glutamate residue in the 

ClC channel is charged or not [162-164]. Using our DMC model, we studied how a -1 e negative 

charge on the gate particle affects the gate open time. Results of DMC simulations for the neutral 

and charged gate are shown in Figure 33. For the negatively charged gate the open time is 

slightly larger than for the neutral one, but the saturation effect is still observed. The longer open 

time for the charged gate is consistent with the expected consequence of electrostatic repulsion 

between the gate and the Cl  in the external binding site, which pushes the gate away from the 

closed state and increases the open time. The effect of the negative charge on the gate open time 

-
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is rather small (cf. Figure 33) in our simulation since we calculated the ion-gate interaction in 

water bath with εw=80. It should be noted that ignoring the effect of dielectric constant 

discontinuities on charge-charge interactions is in some sense a significant oversimplification of 

reality; nonetheless, given all the other uncertainties in our model, as well as the large additional 

computational cost of including dielectric inhomogeneity effects, the simple calculation of the 

ion-gate interaction used in the present study serves a reasonable zeroth-order approximation. 

 

 

 

 
Figure 33. Dependence of the gate open time on the internal [Cl-] for neutral gate (circles) and negatively charged 

gate (squares) calculated using DMC with parameter Set 6 (Table 11). 

 

 101 



 

4.4.4 Effect of Dgate and Eact 

Figure 31 illustrates the qualitative agreement between our numerical simulations and 

experiments. However, the absolute values of calculated gate open time are ca. 4 orders of 

magnitude smaller than the experimentally measured ones. In reality, the gate open time for the 

fast gate of the ClC channel is in the multi-ms time-scale, well beyond the time scale which can 

be computationally accessed at present (recall that in 3D Brownian Dynamic simulations of ion 

channel permeation kinetics, data is typically collected for several μs). Our model is crude of 

necessity: there are no experimental measurements of the gate diffusion constant in the ClC 

channel and the magnitude of the activation energy for the ClC gate is not known either. 

Therefore, we treated them as adjustable input parameters for our DMC calculations and 

appropriately chose these gate parameters (i.e., D  and E ) in order to accelerate the 

simulation of gate closing to a time scale accommodated with current methodology and compute 

power. There are four sets of  and  parameters used in our DMC simulations (see, 

gate act

gateD actE Table 

11). These parameters were selected to study the combined influence of Dgate and Eact based on 

what value of  they correspond to. Two different values of  were selected: 0.061 Åesck gateD 2/ps 

and 0.02 Å2/ps, which are, respectively, 3 and 10 times smaller than the diffusion constant of 

ions in the bulk solution. It should be noted that this is our crude estimate of the diffusion 

constant of the Glu-148 side chain responsible for the fast gating in our model. According to 

Stoke’s equation the friction constant of a spherical particle immersed in the fluid is ηπγ a6=  

[59], where γ is the friction coefficient, a is the radius of the particle and η is the fluid viscosity. 

There is a linear dependence between the friction coefficient and the radius of the particle. The 

size of the glutamate residue is much larger than the size of a single ion. Therefore, a smaller 

diffusion constant for the gate should be expected compared to the ion diffusion constant. 

Four different values of  were selected: 4.6 kactE BT, 6 kB BBT, 6.7 kBT and 8 kB BBT. This 

magnitude of  was chosen to satisfy the lower limit of the high friction Kramer’s theory (ca. 

1 k

actE

BT) and at the same time to be computationally inexpensive. The diffusion constants and  B actE
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were selected such that Set 4.6 and Set 6 had a similar  and Set 6.7 and Set 8 had a similar 

 (see, Table 11

esck

esck ). 

Results of the gate open time on internal [Cl-] for parameter Set 4.6 and Set 6 are shown 

in Figure 34A. The saturation behavior is the same for both parameter sets. Results of the gate 

open time on the internal [Cl ] for parameter Set 6.7 and Set 8 are shown in - Figure 34B. Both 

parameter sets predict the same saturation behavior. Based on these results we can conclude that 

saturation behavior of the gate does not depend strongly on  and  individually, but only 

on their combined influence on . 

gateD actE

esck

We also compared the saturation behavior of the gate open time on internal [Cl-] for 

parameter sets with much different  (Table 11esck ). For the sake of comparison we normalized 

the gate open time for parameter Set 6 and Set 8 and plotted them on the same graph (Figure 35): 

normalization was done by dividing the open time by that at internal [Cl-]=0. Both sets predicted 

the same saturation behavior. This result implies that  simply scales the curve of the gate 

open time but the curve shape is determined by some “universal” mechanism. This mechanism 

relies on saturation of external binding site (S

esck

ext) with Cl- as the internal [Cl-] increases (This 

mechanism is further discussed in subsection “Approximate Factorization of the Gate Closure 

Mechanism”). An important corollary of this observation is that if  was much slower 

(comparable to the experimentally measured values), we would expect the same normalized 

curve for the gate open time and, therefore, our model would be able to account semi-

quantitatively for the experimentally measured saturation of the gate open time with internal [Cl

esck

-

]. 
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A B 

Figure 34. Dependence of the gate open time on the internal [Cl-] for neutral gate calculated using DMC. 

(A) Results of parameter Set 6 (circles) are compared with results of parameter Set 4.6 (squares). (B) Results of 

parameter Set 6.7 (circles) are compared with results of parameter Set 8 (squares). See, Table 11 for parameter 

values. 
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Figure 35. Dependence of the normalized neutral gate open time on internal [Cl-] calculated using DMC. 

Results for parameter Set 6 (circles) are compared with parameter Set 8 (squares). See, Table 11 for parameter 

values. Open time was normalized by dividing it by open time at internal [Cl ]=0. -

 

4.4.5 Approximate Factorization of the Gate Closure Mechanism 

The saturation behavior of gate open time with internal [Cl-], implies that as the internal [Cl-] 

increases, the Sext site of the channel pore is occupied to an increasing extent at any particular 

time by a Cl- ion, thus preventing the gate from occupying the same site, i.e., closing. This is the 

essence of the foot-in-the-door mechanism. Saturation of the gate open time is then exerted to be 

correlated directly with saturation of the occupation probability (i.e., fractional occupation time) 

of the Sext site by Cl- ions, which is anticipated on the basis of chemical kinetics principles when 

there is an intermediate state which becomes “clogged” as more an more particles are forced to 

traverse the reaction pathway. To quantify these ideas in the context of the present model of 

coupled gate particle/ion motion, we can think of the “bare” escape rate along the 1D reaction 
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coordinate traversed by the gate particle as providing the rate of successful traversal of the 

reaction barrier. For a metastable 1D potential well, any particle that makes it over the barrier is 

captured in the product state (assuming that the product well is replaced by a probability sink), 

corresponding in our system to a gate closing event. However, in the full model under 

investigation here, in which gate closing is coupled to ion permeation through the channel pore, 

some of the barrier crossing events described above will be blocked by the presence of a Cl- ion 

in the product well region.  This will cause the observed closing rate to be reduced from the 

value given by Kramer’s escape rate constant, roughly by a factor of ))(1( cf
extS− , where  

is the fractional occupation probability that the S

)(cf
extS

ext site is occupied by a Cl- ion, which is in turn a 

function of the internal chloride concentration c=[Cl-]int. With increasing c,  saturates to 

some maximum value less than unity, and thus the observed gate closing rate saturates to a 

corresponding minimum value. Furthermore, it is reasonable to expect that the function  

will be largely independent of the dynamics of the gate particle in its open state, because in this 

configuration the gate particle is relatively far away from the channel pore and the S

)(cf
extS

)(cf
extS

ext site in 

particular. If all the elements of the scenario just described are valid, then the exact values of the 

activation barrier and diffusion constants of the reaction coordinate for the gate particle are not 

critical for describing the dependence of gate closing time on internal [Cl-], in the sense that this 

curve scales proportionally to Kramer’s , and the scaling of  with details of the gate 

particle reaction coordinate is well-understood (cf. Eq. 4.9). In the following section, we examine 

the validity of this mechanistic factorization scheme by carrying out appropriate numerical 

simulation studies on our model system. 

esck esck

4.4.6 Factorized model for gate closure mechanism 

We compared results of gate open time calculated using DMC method with the simple factorized 

mechanism. In this model the gate open time is related to occupation probability of Cl− in the 

external binding site according to: 

 ))(1/()( 0, cfc
extSoo −=ττ , (4.11) 
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where  esco k/10, =τ  is the gate open time without Cl- in the system. In practice  was 

calculated from DMC simulations by integrating the average number of Cl

)(cf
extS

- ions occupying the 

positions gateSCl
Rzz

ext
≤−−  where  is the z coordinate of Cl−Cl

z - center,  is z coordinate of the 

center of the external binding site, and  is the radius of the gate particle.  saturated to 

the maximum value of 0.72 at internal [Cl

extSz

gateR )(cf
extS

-]=2.02 M. The dependence of the ion density inside 

the channel system on internal [Cl-] is shown in Figure 36. Gate open times calculated directly 

from full all-ion plus gate potential DMC simulations are compared with factorized mechanism 

in Figure 37. Reasonable agreement is found. 

 107 



 

 
Figure 36. The average number of Cl- ions along the channel axis for several different internal Cl- concentrations 

calculated using DMC for parameter Set 6 (Table 11). 

Internal [Cl-] was set to 0.135 M (circles), 0.54 M (squares), 1.0 M (diamonds) and 2.02 M (triangles). The same 

external electric potential of -100 mV was used for all concentration calculations. Similar profiles were observed in 

other parameter sets. 
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Figure 37. Dependence of gate open time on the internal [Cl-] for neural gate and parameter Set 8 (Table 11). 

Results of DMC simulations (open squares) are compared with analytical model using Eq. 4.11 (solid line). 

4.5 CONCLUSIONS 

We have constructed a simplified three-dimensional model channel that mimics the ClC channel 

in several important respects regarding geometry, energetics and position/function of the fast 

gate. Using a Dynamic Monte Carlo simulation technique, we calculated the dependence of the 

gate closing rate on both internal Cl- concentration (holding the external Cl- concentration fixed) 

and external Cl- concentration (holding the internal Cl- concentration fixed). Our simulation 

results show saturation of the gate open time with the increase of the internal [Cl-], in qualitative 

agreement with experiments [74, 75]. External [Cl-] concentration also regulates the fast gate, but 

the effect is less prominent on the closing rate of the fast gate. This saturation behavior is 

consistent with the foot-in-the-door mechanism and would be predicted by our simple kinetic 

model embodied by Eq. 4.11. 

The work presented here suggests future avenues of research on fast-gating in ClC 

channels that can focus on both more molecular detail and less.  In the direction of increased 

molecular detail, our representation of the E148 as a “ball on a stick” is clearly an 
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oversimplification. The glutamate side chain is a complicated and somewhat flexible molecular 

group, whose understanding would profit from careful study via all-atom equilibrium MD 

simulation the range of conformations accessible to the E148 side chain. Computations of the 

PMF as a function of one coordinate (dihedral angle 1) and two coordinates (dihedral angles 1 

and 2) would help to illuminate the energetic and mechanistic pathways by which the fast gate 

closes. 

It would also be instructive to proceed in the direction of reduced atomic resolution, by 

taking advantage of the three deep minima (“binding sites”) that characterize the single-particle 

potential seen by permeating Cl- ions to make a discrete-state model governed by kinetic master 

equations that can be solved efficiently via kinetic Monte Carlo, or by more deterministic 

(matrix-based) analysis. This reduction is motivated by the observation that even the minimalist 

3D Brownian Dynamics model developed in the present work strains available computational 

resources. To develop conceptual understanding of the mechanisms of fast-gate coupled ion 

permeation in ClC-type channels, it would be useful to have a mathematical model which 

enables rapid understanding of the relation between input parameters (e.g., concentration of ions 

in the reservoirs, depth of binding sites, relative time scale of motion of ion motion through the 

channel vs. that of the open/close transition of the gate particle coordinate, etc.) and output (ion 

currents, gating times, etc.). The well-defined binding sites of the narrow channel suggest a 3-site 

model for ions in the channel – each site can be occupied by zero or one ion. In addition, the gate 

particle has two stable states (open and closed), and makes transitions between these. The closed 

state of the gate particle corresponds to the same geometric site as the Sext binding site. With this 

effective state space, use of kinetic Monte Carlo simulation or Markov chain theory could be 

carried out with relative ease. As is clear from the results presented in this paper, 3D BD 

simulations of ion permeation with the additional fast gating coordinate can only be run for 10’s 

of microseconds, which is not even enough time to monitor the initial closing of a channel 

started in the open state, let alone to follow multiple opening and closing transitions.  By 

contrast, a discrete state model can easily yield this information and hence the distribution of 

opening and closing times (from which the mean dwell time can be extracted). Of course, one 

needs to input rate constants that connect various pairs of states in the state space, which will be 

difficult to obtain from first principles. However, all-atom simulations of PMF’s should be able 
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to provide effective activation barriers, etc., which will hopefully allow estimation of these 

critical input parameters. 

 111 



5.0  WATER AND DEUTERIUM OXIDE PERMEABILITY THROUGH 

AQUAPORIN 1: MD PREDICTION AND EXPERIMENTAL VERIFICATION 

Mamonov, A. B., R. D. Coalson, M. L. Zeidel, and J. C. Mathai. Manuscript in preparation. 

5.1 ABSTRACT 

Osmotic (pf) and diffusion (pd) permeabilities of H2O and D2O in Aquaporin 1 (AQP1) were 

calculated using Molecular Dynamics (MD) simulations and subsequently, the osmotic 

permeabilities of H2O and D2O were measured experimentally. For MD simulations the force 

field parameters of D2O model were reparameterized from the TIP3P water model to reproduce 

the experimentally observed difference in the bulk self diffusion constant between H2O and D2O. 

Two MD systems (one for each solvent) were constructed, each containing explicit palmitoyl-

oleoyl-phosphatidyl-ethanolamine (POPE) phospholipid molecules, solvent and AQP1. It was 

found that the calculated pf and pd are similar for H2O and D2O along with large error bars. 

Bovine AQP1 was reconstituted into palmitoyl-oleoyl-phosphatidylcholine (POPC) liposomes 

and it was found that the measured osmotic permeability of D2O is ca. 21 % lower than for H2O. 

The combined computational and experimental results suggest that deuterium oxide permeability 

through AQP1 is similar to that of water. The slightly lower osmotic permeability of D2O 

compared to H2O in AQP1 is most likely due to the lower self diffusion constant of D2O. 
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5.2 INTRODUCTION 

Aquaporins belong to a family of membrane proteins that passively transport water, glycerol and 

other small molecules [165]. The archetypical water channel AQP1 has been shown to be highly 

specific for water and excludes protons, ammonia and sugars such as glycerol [166, 167]. The 

specificity of the channel arises from the presence of two highly conserved NPA motifs (asn-pro-

ala residues) that form the narrow constriction of the pore region, which acts as a molecular 

sieve. Crystallographic studies suggest that the pore is narrow at the constriction and lets only 

water diffuse through it [168, 169]. Molecular dynamics simulation studies suggest the presence 

of another energy barrier that offers both steric and electrostatic selectivity, named the aromatic 

(ar/R) constriction, which is formed by the following four amino acids: Phe-56, His-180, Cys-

189 and Arg-195 (rat AQP1) in water selective aquaporins [170-172].  In aquaglyceroporins this 

constriction region is wider, as His-180 is usually replaced by Gly which allows for water and 

glycerol to pass through as shown in GlpF [173]. The positively charged arginine residue is 

thought to prevent the passage of protons through the channel while allowing water molecules to 

traverse it [174, 175]. 

To assess whether such a finely tuned channel allows the passage of deuterium oxide 

(D2O), a close analogue of water, we measured the permeability of D2O in AQP1 reconstituted 

proteoliposomes. D2O differs from H2O in the following respects: D2O is more polar, has a 

stronger O-D bond compared to O-H and exhibits a higher viscosity [88]. Further, its self 

diffusion coefficient is 18.6 % lower than that of water [176]. Since water is thought to interact 

with specific residues Phe-56 and Agr-195 in the pore via hydrogen bonding [174], it would be 

interesting to study the passage of D2O which has a stronger hydrogen bond. In addition, to 

check the predictive power of molecular dynamics simulations, we computed the osmotic 

permeability of deuterium oxide through AQP1 by MD simulations and compared it to 

experimental results. Both MD simulations and experimental results suggest that D2O and H2O 

permeate AQP1 at similar rates. 
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5.3 METHODS 

5.3.1 MD simulations 

Molecular Dynamics (MD) simulations were used to calculate the diffusion and osmotic 

permeability of H2O and D2O through AQP1. The X-ray structure of bovine AQP1 was 

downloaded from the Protein Data Bank (www.rcsb.org) with pdb code 1J4N [168]. The 

tetrameric structure was assembled from the coordinates of the monomer using transformation 

matrices provided in the pdb file. The tetramer was then embedded in a pre-equilibrated patch of 

177 palmitoyl-oleoyl-phosphatidyl-ethanolamine (POPE) molecules and solvated by 15,079 

CHARMM modified TIP3P water molecules [177, 178] (referred to here as TIP3P), so that the 

total system contained 80,434 atoms. This system was energy minimized and equilibrated for 3 

ns at 298 K and 1 atm. To construct the AQP1/D2O system, the TIP3P water model was replaced 

with a TIP3P-HW model (described below) and equilibrated for 1 ns at 298 K and 1 atm. 

Diffusion permeabilities were calculated for both AQP1/H2O and AQP1/D2O systems 

from ca. 40 ns equilibrium MD simulations at constant volume and constant temperature of 298 

K. A weak harmonic restraining potential of 0.12 kcal/mol/Å2 was applied in all 3 dimensions to 

AQP1 backbone alpha carbons to prevent the protein form drifting. Diffusion permeability was 

calculated using the following equation [66]: 

 00 qvq
N
Vp w

A

W
d == , (5.1) 

where  is the diffusion permeability,  is the molar volume of the solvent,  is the 

Avogadro’s number,  is the unidirectional permeation rate and  is the volume of a single 

solvent molecule.  was calculated by counting the number of H

dp WV AN

0q wv

0q 2O or D2O molecules passing 

from one side to the other of the channel per unit time. The pore region was chosen to be the 

narrow central section of the channel, 22 Å in length, where water molecules pass in single file 

or nearly single file fashion. 

Osmotic permeabilities were calculated by following the non-equilibrium MD method 

described in Ref. [66]. A hydrostatic pressure gradient was established across the membrane by 

applying extra force to a layer of solvent molecules parallel to the membrane interface. Applied 
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pressure MD simulations of different time length were carried out at 50 MPa and 100 MPa for 

AQP1/H2O system and at 25 MPa, 50 MPa, 100 MPa and 200 MPa for AQP1/D2O system. A 

force of 0.013445 kcal/mol/Å, 0.02689 kcal/mol/Å, 0.05378 kcal/mol/Å and 0.10756 kcal/mol/Å 

was applied to oxygen atoms of H2O/D2O within an 8 Å solvent layer to generate 25 MPa, 50 

MPa, 100 MPa and 200 MPa pressure, respectively. To prevent the protein and the lipid bilayer 

from moving under the influence of this external force a harmonic restraint of 0.12 kcal/mol/Å2 

was applied in all 3 dimensions to the backbone alpha carbons of the protein and a harmonic 

restraint of 0.8 kcal/mol/Å2 was applied to the phosphorus atoms of the POPE molecules. The 

net flux of H2O/D2O through AQP1 was calculated by averaging the number of molecules that 

crossed 3 planes located 5 Å away from each other inside the channel per monomer per unit 

time. Osmotic permeabilities were calculated from the best fit slope line of H2O/D2O flux versus 

applied hydrostatic pressure according to the following equation [66]: 

 RT
P
jp f Δ

= , (5.2) 

where  is the osmotic permeability, fp j  the solvent flux, PΔ the applied hydrostatic pressure, 

 the ideal gas constant, andR T  the absolute temperature.  

For MD simulations we used the CHARMM 27 force field [179] that was derived to be 

consistent with the TIP3P model [178]. For the parameterization of deuterium oxide we started 

with the TIP3P model as a reference, doubled the mass of the hydrogen atoms and adjusted the 

partial charges of both the deuterium and oxygen atoms. It is well known that TIP3P water 

considerably overestimates (by more than a factor of 2) the self diffusion constant of water [180, 

181]. That is why as a target for parameterization we have chosen to reproduce the 

experimentally measured 18.6 % difference in the self diffusion constants of H2O vs. D2O [176] 

rather than the experimental self diffusion constant of heavy water. A similar re-parameterization 

of the SPC/E model for deuterium oxide has been reported recently in which only the mass and 

partial charges of hydrogen atoms where changed in order to reproduce the experimental self 

diffusion constant, the molar volume and the potential energy of heavy water[182]. For our re-

parameterization a simulation box of 3921 TIP3P water molecules was constructed, minimized 

and equilibrated at 298 K and 1 atm. The mass of hydrogen atoms was set to 2 amu and atomic 

partial charges were incremented by fractions of a percent. The system was equilibrated for 0.5 

ns followed by 1 ns production runs carried out at a constant temperature of 298 K and a constant 
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pressure of 1 atm. The self diffusion constant was calculated from the collected coordinate time 

series using the mean-square-displacement (MSD) method [183]. Adjustment of D2O atomic 

partial charges along with recalculation of self diffusion constant was repeated until we 

generated a diffusion coefficient ca. 18 % smaller than the value obtained with TIP3P under the 

same conditions. 

All MD simulations were carried out using the NAMD package [184] version 2.5. For 

long range electrostatics the Particle Mesh Ewald method [185] was used as implemented in the 

NAMD program along with periodic boundary conditions. The MD time step was set to 2 fs and 

all the bonds between each hydrogen atom and its mother atom were fixed via the SHAKEH 

algorithm [184] to the nominal bond length given in the parameter file. MD coordinates of AQP1 

simulations were saved every 1 ps and for the parameterization of TIP3P-HW water model every 

100 fs. Most simulations were carried out on Lemieux supercomputer at the Pittsburgh 

Supercomputing Center (www.psc.edu). It took ca. 4.6 hours to run 1 ns of AQP1 simulations on 

160 CPUs of Lemieux. All visualizations and analysis of MD trajectories were made with the 

VMD program[186]. 

5.3.2 Reconstitution of AQP1 into liposomes. 

Purified bovine AQP1 was a kind gift from Dr. Jan J. Enghild and Dr. Niels Chr. Nielsen, 

University of Aarhus, Denmark. The AQP 1 reconstitution procedure was similar to that 

described earlier [167]. Briefly, 6-8 mg of POPC lipids (Avanti lipids, Alabama) was bath 

sonicated for 3 cycles of 3 min duration at 4 mW setting in 20 mM MOPS, pH 7.4. N-

Octylglucoside (OG) was added to the sonicated lipids to achieve a final concentration of 1.2% 

(v/v). To this, 50-60 μg of AQP1 in 1.5 % OG was added and incubated for 30 minutes on ice. 

The mixture was diluted 25 fold into reconstitution buffer (150 mM NaCl, 20 mM MOPS pH 

7.4) containing 10 mM carboxyfluorescein (CF). The proteoliposomes formed were collected by 

centrifugation at 100,000xg for 1 hour. The external CF was removed by 2 additional centrifugal 

washes. The final pellet was resuspended in 300 μl of reconstitution buffer and used for 

permeability studies. 
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5.3.3 Measurement of osmotic water permeability. 

Osmotic H2O and D2O permeabilities were measured as described earlier [167]. Briefly, the 

proteoliposomes were subjected to a doubling of external osmotic pressure in a stopped-flow 

fluorimeter (Applied Photophysics, SX.17 MV, Leatherhead, United Kingdom) and the 

fluorescence decrease of CF due to self quenching caused by shrinkage of the vesicle was 

measured as a function of time. The data were fit using a single exponential function. Pf was 

calculated by comparing the single-exponential time constants fitted to a family of numerically 

integrated curves generated using the water permeability equation in which Pf was varied to that 

obtained experimentally. MathCad was used to simulate the water permeability equation: 

 ⎟⎟
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In Eq. 5.3, Vr(t), is the relative volume of the vesicle at time t, (i.e., volume at time t, divided by 

the initial volume), Pf (cm/s) is the osmotic water permeability coefficient, rSV is the surface area 

to volume ratio of a vesicle; Cin and Cout are initial solute concentrations inside and outside the 

vesicle respectively. The size of the vesicles was measured by laser light scatter using a DynaPro 

particle sizer. 

5.4 RESULTS AND DISCUSSION 

Earlier studies prior to discovery of aquaporins showed that permeation of D2O across 

erythrocytes and red cell ghosts was mercury inhibitable [187, 188]. However, mercurial 

compounds are nonspecific and do not inhibit the AQP1 channel completely [166]. In teleost and 

elasmobronchs, gill vesicle preparations when treated with mercury do not behave as an ideal 

osmometer, which renders them unsuitable for volume measurements (personal observations). In 

this study we have performed a quantitative permeability measurement using purified AQP1, 

reconstituted into proteoliposomes, which eliminates the background permeability due to other 

proteins [189, 190]. Figure 38 shows the time course of relative volume change of liposomes on 

application of an osmotic gradient, causing the efflux of H O (2 Figure 38A) or D2O (Figure 38B). 
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It was found that the measured osmotic permeability of D O (1.8x10 ± 0.42x10  cm/s) is ca. 

21% lower than that for H O (2.3x10 ±0.31x10  cm/s). This difference in permeability can be 

attributed to higher viscosity and lower self diffusion coefficient of D O of 18.6 % compared to 

water [176]. In red blood cells, prior to discovery of aquaporins, the decreased permeability of 

D O was attributed to higher viscosity of D O [188]. A similar decrease of ion conductance 

through Gramicidin in D O was also attributed to higher viscosity of D O [191]. The osmotic 

permeabilities of H O and D O through POPC lipid vesicles were 0.0032 cm/s and 0.0034 cm/s 

respectively. 

2
-2 -2
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-2 -2
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2 2

2 2

2 2

The force field parameters of our TIP3P-HW (D2O) model are summarized in Table 12. 

In MD simulations the TIP3P-HW was characterized by b bulk diffusion coefficient of 4.00x10  

cm /s, which is 18.7 % smaller than that of the TIP3P model of water (4.92x10  cm /s). This 

difference is in good agreement with the 18.6 % difference between H O and D O measured 

experimentally [176]. The densities of TIP3P and TIP3P-HW models were found to be 1.00 

g/cm  and 1.13 g/cm  respectively. This is also in a good agreement with experimental densities 

of 0.997 g/cm  for H O and 1.104 g/cm  for D O [192]. These solvent models were subsequently 

used to calculate the osmotic and diffusion permeabilities of H O and D O in AQP1. 

-5

2 -5 2

2 2

3 3

3
2

3
2

2 2

A snapshot of the AQP1/H2O system from the equilibrium MD trajectory is illustrated in 

Figure 39, with only one monomer and channel shown for the sake of clarity. The single file 

arrangement and dipole rotation of water which are unique properties of AQP family [63, 78] are 

correctly reproduced in our simulations. The concentration profile of H O across the channel 

system at equilibrium conditions is compared with that obtained at 100 MPa applied hydrostatic 

pressure in 

2

Figure 40. When hydrostatic pressure was applied the concentration of water became 

slightly higher on the left side and lower on the right side of the membrane due to the 

compressibility of water. The main results of our equilibrium MD simulations for H2O and D2O 

are summarized in Table 13. The unidirectional permeation rate ( ) of H O was found to be 

0.26, which is 30 % higher than the value predicted by another AQP study reported in Ref. [78]. 

This difference can be attributed to the fact that they used a different (lower resolution) structure 

of AQP1 and a different water model. Also, there is some uncertainty about where to assign 

planes that define when a water molecule crosses the channel from one side of the membrane to 

the other. We found that  for D O is ca. 8 % higher than for H O. Furthermore, the error bars 

are large because we could not run much longer MD simulations. 

0q 2

0q 2 2
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Results of our osmotic pressure simulations are reported in Table 14 and Figure 41A for 

H2O, and in Table 15 and Figure 41B for D2O. We found that the osmotic permeability of D2O 

(7.8x10-14 cm3/s/monomer) is ca. 12 % lower than that of H2O (8.2x10-14 cm3/s/monomer). This 

difference compares well with the experimentally measured difference of ca. 21 %. The large 

error bars were found for MD results because of the limited MD sampling allowed by available 

computational resources. We could not compare the individual values of the osmotic 

permeabilities because of the experimental uncertainty in the number of channels per 

proteoliposome. The osmotic permeability of H2O 8.2x10-14 cm3/s/monomer obtained in our MD 

simulations is similar to that predicted by another MD study where a value of 7.1x10-14 

cm3/s/monomer was reported [66]. It also compares well with the experimentally measured unit 

osmotic conductance of 11.7x10-14±1.8x10-14 cm3/s/monomer reported in Ref. [167]. Since water 

moves in a single file fashion through the AQP1 channel, the 
d

f

p
p

 ratio should give the number 

of solute molecules lining the pore [193]. The calculated 
d

f

p
p

 ratios for H2O and D2O are 10.5 

and 9.3 respectively. The 
d

f

p
p

 ratio of H2O is in good agreement with 11.9 predicted in Ref. [66] 

and 13.2 measured experimentally [194]. 
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Figure 38. Osmotic permeability of H2O and D2O. Shown is the time course of relative volume (volume at time t 

divided by initial volume) change of AQP1 containing vesicles and control lipid vesicles on abrupt exposure to a 

doubling of external osmotic pressure in H2O (A) and D2O (B). 

 

 

 
Table 12. Force field parameters of TIP3P-HW model. 

OOrmin  

(Å) 

DDrmin  

(Å) 

OOε  

(kcal/mol) 

DDε  

(kcal/mol)

Oq  

(e units) 

Dq  

(e units) 

ODb  

(Å) 

DODθ  

(deg) 

3.5365 0.449 0.1521 0.046 -0.842 -0.421 0.9572 104.52
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Figure 39. A snapshot from MD simulation of AQP1/H2O system. Only one monomer and channel water is shown. 

Note the single file arrangement of water molecules inside the channel. 

 

 

 

 
Figure 40. Concentration profile of H2O along z axis (channel axis) at equilibrium conditions (black line) and 100 

MPa applied hydrostatic pressure (red line). Note the low concentration region between approximately z=-11 Å and 

z=+11 Å: this is the “channel pore region” discussed in the text. 
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Table 13. Results of equilibrium MD simulations. 

 Time 

(ns) 

No. of 

permeations 
0q  

(molecules/ns/monomer) 

dp x1015 

(cm3/s/monomer) 

H2O 21.6 46 0.26±0.05 7.8±1.5 

D2O 20.4 45 0.28±0.12 8.4±3.6 

 

 

 

 

A 

 

B 

 

Figure 41. Flux versus applied hydrostatic pressure with error bars for H2O (A) and D2O (B). Circles represent the 

calculated (average) data point values, which are shown along with the best-fit line. 

 

 

 122 



 
Table 14. Results of applied pressure MD simulations for H2O. 

Applied 

pressure (MPa) 

Time 

(ns) 

No. of H2O 

permeations 

flux 

(H2O/ns/monomer) 
fp x1014 

(cm3/s/monomer) 

50 22.85 92 1.04±0.40 

100 21.87 171 1.95±0.30 
8.2 

 

 

 
Table 15. Results of applied pressure MD simulations for D2O. 

Applied 

pressure (MPa) 

Time (ns) No. of D2O 

permeations 

flux 

(D2O/ns/monomer) 
fp x1014 

(cm3/s/monomer) 

25 7.0 20.6 0.74 

50 22.25 126 1.41 

100 33.84 239 1.81 

200 10 147.3 3.68 

7.8 

 

 

5.5 CONCLUSIONS 

A new TIP3P-HW model for D2O was developed for simulation of D2O transport through AQP1. 

This model reproduces the experimental differences observed in density and the self diffusion 

coefficient between H2O and D2O. Both MD simulations and experimental measurements 

confirm that D2O and H2O permeate the AQP1 channel. The observed lower permeability of 

D2O is attributed to the lower self diffusion coefficient and higher viscosity of D2O compared to 

H2O. Our study showed that MD could accurately predict the permeability properties of D2O in 

AQP1 in advance of experimental measurements. This study will be helpful for designing MD 

 123 



simulations to study permeation of solutes through AQP1 that are not easily amenable to 

experiments such as carbon dioxide, hydrogen sulfide and oxygen. 
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