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Isolated medial collateral ligament (MCL) injuries occur frequently (95,000 per year in the US) 

and heal with conservative treatment.  Long-term clinical outcome is generally excellent because 

the structural properties of the Femur-MCL-Tibia complex (FMTC) naturally return to normal 

especially the stiffness.  However, the quality of the healing ligament, as described by its 

histomorphological appearance, as well as biochemical, mechanical, and viscoelastic properties, 

remain poor [37, 70, 108, 109, 116].  Functional tissue engineering techniques such as the use of 

extracellular matrix (ECM) bioscaffolds have shown promise in improving healing of soft tissues 

after injury.  In particular, small intestine submucosa (SIS) is especially attractive due to its 

chemoattractant properties, organized fiber alignment, and natural concentration of growth 

factors [9, 13, 48].  The objective of this thesis is to use SIS to improve MCL healing in a 

clinically relevant injury model. 

Sixteen New Zealand white rabbits were subjected to a mop-end tear (Weiss et al. 1991) 

in order to simulate a clinically relevant injury, which included damage to the ligament insertion 

sites, over-stretching of collagen fibers, and a frayed appearance of the torn ligament ends.  After 

12 weeks of healing, seven rabbits per group were euthanized and subjected to a well-established 

biomechanical testing protocol [111], including a load to failure test.  The remaining rabbits (n=2 

per group) were evaluated histologically. 
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It was found that SIS treatment resulted in a marked improvement for the tangent 

modulus of the healing MCL midsubstance over non-treatment (404 ±120 MPa vs. 273 ± 91 

MPa, respectively, p<0.05).  However, this difference did not translate into a change in the 

measured structural properties of the FMTC.  Nearly half of the specimens in each treatment 

group failed at the tibial insertion, this indicates asynchronous healing between the ligament 

insertion and midsubstance. 

In conclusion, these results confirm SIS enhances the quality of the healing MCL.  SIS 

positively effects the local healing response of an MCL regardless of injury model.  This work 

provides a basis to explore the effect of applying SIS to ligaments which do not heal well 

naturally, such as the anterior cruciate ligament. 
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PREFACE 

On April 16th, 2007 I turned in this thesis to my committee.  Also on that day, a troubled 

young man killed 33 people including himself and two professors who I was acquaintances with 

on the campus of Virginia Tech, my undergraduate institution.  Not only did this occur on a 

campus where I spent 4 years, but in the building where I spent a majority of my junior and 

senior years, Norris Hall.  Norris Hall is the home of Engineering Science and Mechanics 

Department, and by extension a home to me.  The events of that day shocked and saddened me to 

a great degree, and I am merely an alumni of the department and school.  I cannot fathom how it 

effected those students and professors in the classrooms, in the building or on campus that day, 

let alone the families and close friends of the victims.  I think though that can be the enduring 

message of the massacre, not the senseless killing, but rather the amazing way the entire Hokie 

nation embraced each other as a community, to support the memory of the victims, and there 

grieving families.  We all cried, we all cheered, we all hugged, emailed and called each other, 

and we all donated, together.  The university’s motto UT PROSIM, Latin for that I may serve 

rang true as Virginia Tech showed the world what it means to serve each other, what it means to 

be a community. WE ARE VIRGINIA TECH! 

At this time it is fitting that I acknowledge all those who have taught, guided and helped 

me through these difficult two years.  Each one has had a part in helping me become the 

scientist, engineer and professional I am today.  First, I would like to thank my advisor Dr. Woo 
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I need to also thank the clinicians who made this study possible, by doing the surgeries, 
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Sinan for being the older brother I never had (even though he is closer to the age of my father). 
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1.0  MOTIVATION 

In the United States there are nearly 100,000 cases of isolated medial collateral ligament 

(MCL) tears plus nearly 50,000 combined MCL+ACL (anterior cruciate ligament) injuries 

annually [76].  Isolated MCL tears heal with conservative treatment and the structural properties 

of the bone-ligament-bone complex can return to near normal values in the long-term.  However, 

the quality of the healing tissue, described by the viscoelastic and mechanical properties, as well 

as the ultra-structure and biochemical composition of the healing MCL, remains inferior for 

years [45, 108, 118].  In other words, the quality of the healing tissue decreases, and the ligament 

responds through hypertrophy of that inferior tissue in order to restore function.   

In the case of a combined MCL+ACL injury, the clinical management has been debated 

[5, 28, 29, 98, 120-122].  The current consensus is to treat the MCL conservatively and 

reconstruct the ACL [29].  However, because the function of both ligaments directly affects the 

other [55], questions remain as to the timing of the surgical repair and rehabilitation following 

this type of injury [5, 28, 29, 98, 120-122].  It is also known that even after ACL reconstruction 

the healing MCL tissue in a combined injury is not comparable to that of an isolated MCL injury 

[90]. 

Functional tissue engineering (FTE) techniques have shown promise to improve the 

properties of healing ligaments and tendons.  The use of decellularized porcine small-intestinal 

submucosa (SIS) as a bioscaffold is especially attractive.  SIS offers many positive advantages, 
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including resistance to bacterial infection, promotion of angiogenesis, preferred alignment, and 

the presence of growth factors [14, 62, 105].  Previous animal studies have shown that the in vivo 

application of SIS improves healing of the Achilles tendon [14] and rotator cuff [25].  In our 

research center, we have used SIS to enhance MCL healing in a gap injury rabbit model.  This 

treatment improved mechanical properties of the healing MCL at 12 and 26 weeks when 

compared to non-treatment.  Other important results were a reduction of the collagen V/I ratio 

which leads to an increase in collagen fibril diameter and an improved fiber organization [67, 

79].  Both of these were displayed histologically and led to the improvement of the tissue’s 

mechanical properties.  It was hypothesized that the unique biological properties of the SIS, such 

as growth factors and highly aligned ECM, decreased collagen V/I ratio.  A reduction in collagen 

V increases collagen fibril diameter [83].  At the same time, the SIS guides the cells to produce a 

more aligned matrix through contact guidance [107]. These experiments were designed using a 

severe “gap injury” model in which 6 mm of MCL tissue was excised.  This was done to better 

elucidate the positive effects of SIS.  However, with this injury model no damage was done to 

the insertion sites, there was no overstretching of the collagen fibers, nor were there frayed edges 

of the torn ligament ends. 

The main objective of this thesis is to examine the improvement to the outcome of 

ligament healing after a clinically relevant injury model and treatment with SIS.  With the 

knowledge of ligament healing acquired in this thesis there is a potential to extend the use 

of SIS in other ligaments or tendons such as the ACL or patellar tendon where the healing 

response is less than favorable.  Thus, the work is significant to both basic science and the 

clinical realm.   



2.0  BACKGROUND 

2.1 ANATOMY AND STRUCTURE OF MCL 

The MCL is one of 4 major ligaments which stabilize the tibiofemoral knee joint.  It along with 

the lateral collateral ligament (LCL), are considered extra-articular as they are outside of the 

joint capsule.  These ligaments as well as the intra-articular passive stabilizers the (ACL and 

posterior cruciate ligament [PCL]) are shown in Figure 1.  The MCL connects the femur to the 

tibia on the medial side of the knee.  As such its main purpose is to stabilize valgus rotation of 

the tibia and femur. 

Femur

Posterior 
Cruciate
Ligament

Medial 
Collateral 
Ligament

Anterior 
Cruciate
Ligament

Lateral 
Collateral 
Ligament

Fibula Tibia

Femur

Posterior 
Cruciate
Ligament

Medial 
Collateral 
Ligament

Anterior 
Cruciate
Ligament

Lateral 
Collateral 
Ligament

Fibula Tibia
  

Figure 1. The anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral 

ligament (MCL), and lateral collateral ligament (LCL) of the right knee. 
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The MCL is predominantly made of a highly organized extracellular matrix (ECM) of 

densely packed collagen fibers (shown in pink in Figure 2) and interspersed cells named 

fibroblasts (the nuclei of which are stained blue in Figure 2).    In a healthy MCL, the fibroblasts 

are spindle-shaped and aligned along the direction of loading.  The collagen fibers are oriented in 

the direction of normal loading as well.  These fibers follow an architectural hierarchy with 

tropocollagen as the basic molecular component, and systematically arranged into microfibrils, 

subfibrils, fibrils, and fibers.  Inspection of an MCL under a microscope reveals an undulating 

crimp pattern which straightens easily when a force is applied.  Figure 2 shows a histological 

section of a rabbit medial collateral ligament.   

 

Figure 2. Histological image of rabbit medial collateral ligament showing highly organized collagen fibers 

and the crimp pattern (Hematoxylin & Eosin staining). 

Another important functional area of the MCL are its insertion sites.  The insertions of 

ligaments into bone distribute and dissipate loads from soft to hard tissues.  There are two types 

of insertions--direct and indirect-and the MCL uses both types.  The MCL femoral insertion site 

is a direct insertion which the transition of fibers from ligament to bone occurs in four distinct 

phases: ligament, fibrocartilage, mineralized fibrocartilage, and bone (Figure 3 A)   [24, 33, 116].  

 4 



The middle two phases, uncalcified and calcified fibrocartilage, minimize stress concentrations 

[116].  The tibial insertion of the MCL is an indirect insertion. The indirect insertion is more 

complex than the direct insertion as it contains distinct superficial and deep fibers. The 

superficial fibers are connected to the periosteum (Figure 3 B) [24, 63, 116], while the deeper 

fibers, sometimes called the Sharpey fibers, are anchored directly to the bone. 

 

Figure 3. Morphology of the insertion sites in a ligament. (A) Direct insertion; (B) Indirect insertion. 

 

At the molecular level, Type I collagen is the major component of all fibers and is 

primarily responsible for an MCL’s tensile strength [36].  Other collagen types, such as type III, 

V, VI, IX, X, XI and XII appear in minor amounts; however, they play a significant role in 

fibrillogenesis and homeostasis. Types III and V collagen have been implicated in the regulation 

of collagen fibril diameter and organization [15, 16, 69], and they also function in wound healing 

where their levels were found to be elevated [83]. Research has shown that Type XII collagen 

provides lubrication between collagen fibrils.  Types IX, X, and XI collagen have been identified 

to coexist with Type II collagen at the fibrocartilaginous zone of the ligament-bone interface [39, 

 5 



 6 

84, 85] and are believed to have the function of minimizing the stress concentrations when loads 

are transmitted from soft tissue into bone [24, 73, 112]. 

Elastin, another fibrous protein present in ligaments (usually <1% of the dry weight), 

allows the tissue to return to its pre-stretched length following physiological loading.  Other 

constituents include glycoprotiens (e.g., fibronectin), proteoglycans, and glycosaminoglycans 

(GAGs).  Although they exist in relatively small amounts, they have a significant function in the 

formation, organization, and maintenance of the ECM [36].  They also play a role in water 

retention, which is correlated with viscoelastic behavior [22]. 

2.2 BIOMECHANICAL PROPERTIES OF LIGAMENTS 

Since the major function of ligaments (like the MCL) is to resist tensile loads, it is of clinical 

importance to characterize their biomechanical behavior and their relative contribution to joint 

kinematics.  Uniaxial tensile tests are the common way to obtain structural and mechanical 

properties [111].  Generally, when a bone-ligament-bone complex is tested, the resulting load-

elongation curve exhibits non-linearity, including an initial non-linear region called the “toe 

region.”  During this stage, in which normal joint movements occur, the progressive 

straightening and stretching of an increasing number of fibers takes place (fiber recruitment).  

Once a majority of the fibers are recruited with the increasingly applied load, the curve gradually 

transitions to a “linear” region where the slope becomes constant.  This biphasic behavior allows 

ligaments to maintain normal joint laxity in response to low loads (low stiffness toe region), and 

to prevent excessive joint displacement in response to high loads (high stiffness linear region). 
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Finally, a continuous increase in loading will eventually cause the specimen to fail.  Figure 4 (A) 

shows a typical non-linear load-elongation curve for a bone-ligament-bone complex. 

The load-elongation curves represent the tensile behavior of the whole structure including 

their insertions to bone.  Structural properties are described by the following parameters:  

• Stiffness (N/mm):  The relationship between load and elongation defined as the 

slope of the linear portion of the curve. 

• Ultimate Load (N):  Maximum value of load before failure. 

• Ultimate Elongation (mm):  Maximum elongation before failure. 

• Energy Absorbed to Failure (N mm):  The area under the load-elongation curve 

which represents energy stored in the complex before failure. 

To assess the quality of the ligament substance, mechanical properties as represented by a 

stress-strain curve must be obtained.  These properties reflect collagen fiber organization and 

orientation, fibril diameter, collagen density, as well as the microstructure among other things.  

Mechanical properties are determined by normalizing the load to the cross sectional area 

(stress, σ) and normalizing the change in elongation to the ligament’s original length (strain, ε).  

Cross sectional area can be obtained by a variety of methods, but it is best to use a non-contact 

method such as a laser micrometer system [110] or laser reflectance system [77].  For strain, 

video cameras and a video dimension analysis system are used to track the position of 

contrasting markers placed on the ligament [96]. Thus, measuring stress and strain is possible 

without making physical contact with the soft tissue. In order to avoid the contribution of the 

insertion sites, it is important to use the stress-strain relationship of the midsubstance of the 

ligament or tendon.  A typical stress-strain curve for a ligament midsubstance is shown in Figure 

4 (B). Mechanical properties of the ligament or tendon are described by  the following 

parameters: 



• Tangent Modulus (MPa):  The relationship between stress and strain defined by the slope 

of the linear portion of the stress-strain curve. 

• Ultimate Tensile Strength (MPa):  Also called ultimate stress, it is the highest stress 

experienced by the tissue before failure. 

• Ultimate Strain (unitless or %):  The strain in the ligament at failure. 

• Strain Energy Density (MPa):  The area under the stress strain curve, and can be 

described as the amount of energy absorbed per unit volume.   

 

Figure 4. The biomechanical properties of bone-ligament-bone complex. (A) A typical load-elongation 

curve; (B) A typical stress-strain curve for a ligament midsubstance. 

 

Ligaments also exhibit complex time- and history-dependent viscoelastic properties 

which reflect complex interactions between proteoglycan molecules, water, collagen, and other 

structural components of soft tissues.  When a ligament is pulled to a particular elongation, either 

once or repeatedly in cycles, the stress in the tissue decreases with time.  Specifically, this means 

that when soft tissue is elongated to a given length and remains at this same length over time, the 

load supported by the tissue progressively declines.  This behavior is referred to as a stress 

relaxation (Figure 5 A).  Conversely, when a viscoelastic material is subjected to a constant 
 8 
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stress it elongates with time.  This behavior is called creep (Figure 5 B).  During cyclic loading, 

an elastic material follows the same stress-strain curve, whereas a viscoelastic material displays a 

hysteresis loop-a phenomenon in which the load-elongation curve differs during loading and 

unloading and results in net internal energy loss (Figure 6).  Due to these properties, the shape of 

the load-elongation curve of the bone-ligament-bone complex depends on the previous loading 

history and the time over which the load is applied.  However, over the course of several cycles, 

the area of hysteresis is reduced and the curves become more repeatable.  Because the 

mechanical behavior of a tissue tested after the first cycle will differ from that of a tissue tested 

at the tenth cycle, the specimen must be preconditioned by a number of cycles to obtain more 

consistent data. 

The viscoelastic behavior of ligaments has important physiological and clinical 

implications. During walking or running, ligaments undergo cyclic loading.  As a result, cyclic 

stress relaxation will effectively lower the stress in the ligament substance [113, 117]. This 

phenomenon may help prevent fatigue failure of ligaments.  Repetitive stress causes failure at a 

much lower load than that required to cause failure from a single application of stress. Similarly, 

cyclic creep can be used to demonstrate how warm-up exercises and stretching can increase the 

flexibility of a joint, as a constant applied stress during stretching increases the length of the 

ligaments. 

 



 

 Figure 5. (A) Schematic representation of stress-relaxation; (B) Schematic representation of creep.  

` 

Figure 6. The loading and unloading curves for a ligament do not follow the same path, forming a 

hysteresis loop. Note the decrease in the area of hysteresis by the tenth cycle of loading and unloading. 

 

In order to model this behavior many theories have been developed from the simple 

Maxwell model [40], to more complex non-linear models [40, 47, 93, 94].  The quasi-linear 

viscoelastic (QLV) theory developed by Fung [40, 41] has been successfully applied to describe 

the time- and history-dependent viscoelastic properties of soft tissues [19, 58, 100, 123], 

especially ligaments [4, 42, 61, 114] and tendons [30, 104]. The theory assumes a separable non-

linear elastic response and a separate time-dependent relaxation function can be combined in a 

convolution integral to result in a 1-D general viscoelastic model expressed as follows: 
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The elastic response is a strain dependent function and can be written: 
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Using Fung’s generalized relaxation function based on the assumption of a continuous relaxation 

spectrum, the time-dependent reduced relaxation function, G(t) [40, 41], takes the form 
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Where ∫
∞ −

=
y

z

dz
z

eE1 , yielding parameters C, τ1, and τ2 [41].   

Thus, this approach yields five physically significant constants: A, B, C, τ1, and τ2.  A*B 

represents the initial slope of the instantaneous elastic response, and B correlates with the non-

linearity of the instantaneous elastic response.  C is a scaling parameter that is proportional to the 

amount of stress relaxation. τ1 and τ2 govern the early and late relaxation responses respectively. 

Using this approach, the QLV theory has been utilized to model the canine MCL [114].  

Based on separate curve fitting σe(ε)and G(t) to the loading and relaxation portions of the static 

stress relaxation curve respectively, the constants of the QLV theory were obtained. These 

constants were then employed to successfully predict the peak and valley stress values of a cyclic 

stress relaxation experiment.  It should be noted, however, that the theory has been developed 

based on the assumption of an idealized step-change in strain, which is impossible to apply 

experimentally.  Therefore, significant errors could occur when determining the viscoelastic 

constants, especially τ1 [27, 42]. 
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Previous methods to account for these errors include, normalization procedures, iterative 

techniques, extrapolation and deconvolution, as well as directly fitting the measured strain 

history [19, 26, 42, 61, 80, 82].  Recently, our research center has developed an alternative 

approach whereby the QLV theory can be applied to experiments which utilize a slow strain rate 

in order to avoid experimental errors such as overshoot and vibrations [3].  Using Boltzmann’s 

superposition principle, it can be shown that the loading portion of a stress relaxation experiment 

with a linear strain history and strain rate, γ, for 0<t<t0 can be described by:    
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Similarly, the subsequent stress relaxation at a constant strain from t0 to t =  ∞ can be 

described by changing the upper limit of integration in Eq. (4) from t to t0: 
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where A, B C,  τ1,  and τ2 are material constants to be determined. Simultaneously curve-fitting 

these equations to the loading and relaxation portions of the data from a stress relaxation 

experiment and assuming ligaments are relatively insensitive to strain rate allows the constants 

A, B, C, τ1, and τ2  to be determined [3].  Because this approach accounts for relaxation 

manifested during loading, the errors in the obtained constants resulting from the assumption of 

an idealized step-elongation are minimized.   

While various investigators have noted experimentally that the viscoelastic behavior of 

ligaments is largely non-linear meaning the amount of relaxation or creep is dependent not only 

on time but strain level [17, 47, 93], QLV theory assumes that the relaxation response is strain 
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level independent.  However, the constants still allow for comparisons between groups where the 

strain level is the same. 

2.3 MCL INJURIES AND TREATMENT 

 

In the United States there are nearly 100,000 cases of isolated MCL (medial collateral ligament) 

tears plus nearly 50,000 combined MCL + ACL (anterior cruciate ligament) injuries annually 

[76].  The most common injury mechanism is a severe valgus force produced by a direct blow to 

the lateral aspect of the leg or by landing on the leg in an abnormal way [29, 32, 43]. 

Isolated MCL injuries heal with conservative treatment, and the long-term structural 

properties return to normal; however, the ligament quality, signified by histomorphological 

appearance, biochemical, mechanical, and viscoelastic properties of the healing tissue remains 

poor [18, 21, 37, 70, 108, 109, 116].  Physical therapy regimens vary depending upon the 

seriousness of the injury.  The goal of these treatments is to return the patient to full activity once 

the strength, agility, and propreoception of the injured leg equal that of the contralateral leg.  

However, the most important factor in returning a patient to normal activity is pain.  Treatment 

techniques include:  progressive weight-bearing, range-of-motion exercises, agility, 

strengthening, and propreoception drills, bracing, and functional electrical stimulation [29, 43]. 

This non-surgical aggressive rehabilitation treatment of MCL injuries has not always 

been widely accepted.  Prior to the 1980s, clinical management was usually surgical repair 

followed by joint immobilization as advocated by O’Donoguhue [87].  Later trials and basic-

science studies reported equally good results for operative or non-operative treatment for 
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complete tears [32, 54].  Ellasser et al. also reported that with conservative motion and exercise 

athletes were able to return to normal activity levels as early as 3-8 weeks post-injury [31].  

These clinical trials, as well as many basic-science animal studies from our research center [44, 

56, 118], indicate a consensus regarding conservative treatment for isolated MCL tears. 

 Unlike isolated MCL injuries, clinical management of MCL injuries sustained in 

conjunction with injuries to other knee ligaments such as the ACL and/or posterior cruciate 

ligament (PCL) is disputed.  Current rehabilitation protocols contain long periods of 

immobilization [5, 28, 29, 122].  This could be helpful to ACL graft incorporation, assisting 

tendon to bone healing [95]; however, prolonged immobilization increases the chance of 

arthrofibrosis and has a negative effect on ligament healing.  In addition, the loss of ACL 

function is detrimental to the healing of an MCL injury [120] because the MCL and ACL jointly 

stabilize varus-valgus knee laxity [55]. 

This then raises the question in the case of a combined injury:  Is there an optimal 

treatment?  While ACL reconstruction after a combined injury does improve MCL healing 

compared to no reconstruction, the resulting healing MCL tissue is still inferior to the healing 

tissue in an isolated MCL injury [90].  Furthermore, clinical and laboratory studies have shown 

that primary repair of the MCL has no long-term effect on outcome [98, 121].  Therefore, if 

functional tissue engineering provides a technique in which MCL healing is enhanced it could be 

applied in the case of a combined MCL + ACL injury, resulting in better patient outcome.  The 

first step towards this goal is to show that application of SIS does in fact improve MCL healing 

after a clinically relevant injury. 
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2.4 MCL HEALING AND TISSUE HOMEOSTASIS 

The healing process following a tear of the MCL can be roughly divided into three overlapping 

phases [35, 88, 108].  The inflammatory phase is marked by hematoma formation, which starts 

immediately after injury and lasts for a few weeks [109].  After 3-5 days, fibroblasts proliferate 

and produce a matrix of proteoglycan and collagen (especially Type III collagen) to bridge the 

torn ends. During the reparative phase, over the next 6 weeks, the matrix (predominantly type I 

collagen) becomes increasingly organized and cellular proliferation occurs [109].  Finally, the 

remodeling phase, marked by alignment of collagen fibers and collagen matrix maturation, 

continues for years after the injury [35, 109]. 

The biochemical constituents of the healing ligament are abnormal even after one year 

[108]. The MCL healing tissue contains an increased amount of proteoglycans, a higher ratio of 

Type V to Type I collagen, a decrease in the number of mature collagen crosslinks, fibrils with 

homogenously small diameters (~70 nm) [83, 99], and the cell alignment is highly disorganized 

compared to normal [37]. 

These changes are reflected in the structural properties of the healing FMTC, which are 

inferior to controls at 12 weeks after injury [108].  By 52 weeks post-injury, the stiffness of the 

injured FMTC recovered to pre-injury levels, but the varus–valgus (V–V) rotation of the knee 

remained elevated and the ultimate load of the FMTC remained lower than those of the sham 

operated MCL [56, 70, 89].  At the same time, the cross sectional area of the healing ligament 

measured as much as 2.5 times its normal size by 52 weeks [90]. Thus, the recovery of the 

stiffness of the FMTC is largely the result of tissue hypertrophy.   

As a result of the hypertrophy, the mechanical properties of the healing MCL 

midsubstance remain consistently inferior to those of the normal ligament and do not improve up 
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to one year post-injury [90, 108]. In terms of the viscoelastic properties of the healing MCL, 

there is increased viscous behavior, reflected by a greater amount of stress relaxation, for the first 

3 months after injury.  Some studies suggested that these values returned to normal levels after 

this time period [21], though others suggested they remained increased [81].  

Some literature suggests a tie between the structure and biochemical constituents of tissue 

and its viscoelastic properties; for example, ligaments with higher water content demonstrated 

greater cyclic load relaxation [22].  It is also known that glycosaminoglycans have a hydrophilic 

nature and can attract water molecules into the matrix; thus, the elevated levels of proteoglycans 

with GAG side chains found in healing tissue [66] can affect the visoelastic properties of the 

tissue [7, 30, 97].  As well, studies have shown that healing MCL tissue has significantly altered 

constants describing the QLV theory compared to normal [4, 6].  SIS has shown an effect on 

gene expression of some small proteoglycans, namely decorin [66].  A denser collagen matrix 

could affect the viscoelasticty of the tissue [103].  Healing tissue is typically less dense and less 

organized than normal, and these findings could help explain the differences between 

viscoelastic properties in healing and normal tissue.  As SIS has an effect on the structure and 

biochemical constituents of the neo ligament, in depth analysis of its viscoelastic properties 

warranted. 

The time-and-history dependent viscoelastic behavior modeled by QLV parameters were 

also investigated for the healing MCL.  In a goat model, it was found that after 12 weeks of 

healing stress relaxation was significantly higher for the healing tissue compared to normal.  The 

healing tissue also had significantly different QLV parameters AxB, C, and τ2 [4]. 

Even without injury, connective tissue is highly dynamic.  Studies show a highly non-

linear relationship between different levels of stress and ligament properties that can be summed 

up in Figure 7. The normal range of physiological activities is represented by the middle of the 



curve.  Immobilization results in a rapid reduction in tissue properties and mass.  In contrast, 

long-term exercise resulted in a slight increase in mechanical properties as compared with those 

observed in normal physiological activities [109]. 

  

Figure 7. A schematic representing the response of connective tissue to various levels of stress and motion 

[116]. 

2.5 INJURY MODEL 

When a severe valgus force causes an injury to the MCL, there is damage to the ligament 

insertion sites, a stress upon the collagen fibers and frayed ligament endings.  Researchers have 

tried many ways to reproduce this injury in animal models with some success.  In order to 

demonstrate the effect of SIS, the injury model used in this study must have the following 

characteristics: 

 17 
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1. Injury to the insertion sites 

2. Over stretching of the collagen fibrils 

3. Frayed appearance at torn ends 

4. Repeatable injury 

Previous investigators have also had the aim to reproduce a clinically relevant injury 

using various methodologies.  Initially investigators have ruptured manually abducted the knee  

[46, 57, 64, 75].  While this is likely the most clinically relevant way to cause an injury, it is 

largely inconsistent.  In one study, injury location varied many injuries occurring close to both 

insertions, while some were described as “oblique tears” leaving two long triangular tongues [57, 

106].  This inconstancy is troublesome, from a healing stand point.  Frank et al. showed that 

injury location effects MCL healing with, injuries occurring closer to either insertion site healing 

more slowly than those injured in the midsubstance [37].  In addition to the non repeatable nature 

of manual abduction, actually producing the injury is quite difficult and requires a great deal of 

force.  

A more controlled method would be to cut the ligament using a scalpel or hemostat [44, 

79, 91, 106].  While this is certainly repeatable, it fails to cause injury to the insertion sites, or 

have a frayed appearance.  Histology reveals some mild uncrimping of the collagen fibers near 

the cut line.   

In an effort to have the clinical relevance of the knee abduction and the repeatability of 

the scapel cut, Walsh et al. compared an injury caused by a scalpel cut to one created by a wire 

suture rupture morphologically [106].  The wire rupture model creates more damage than the 

scapel cut, but there is still no visible damage to the insertion site when inspecting 

morphologically and histologically.  However, there was damage done to the small attachments 

of the meniscus to the MCL with the wire method.  The authors concluded that while the wire 



 19 

method was an improvement over a scapel cut, the damage was still not extensive enough to be 

“clinically relevant.”  Therefore they recommended other injury models be found which cause 

greater damage to insertion sites. 

Damage to the insertion site is paramount in a clinically relevant model.  It is known that 

healing of the tissue midsubstance and insertion sites is asyncronys  as is evident from failure 

mechanism, and histologic evidence of osteoclastic bone resorption [108, 116].  Still other 

studies show that if there is injury to the insertion site, healing of the whole complex can be 

delayed [57, 75]. 

Figure 8, a schematic from Weiss et. al. 1991, illustrates the strength of the tibial 

insertion site as a factor contributing to the changes in the ultimate load and stiffness 

characteristics of the healing FMTC.  Just after injury the strength of the insertion sites is 

compromised.  Then, because of lack of stress, the insertion sites begin to remodel and properties 

decrease until the two ruptured ends join.  This allows for stress to return to the entire complex, 

and both the insertion sites and midsubstance remodel, signified by an increase in the structural 

properties [108].  



 

Figure 8. A schematic of the changes to the structural properties of an MCL and the insertion sites [108]. 

 

To fulfill the need for a repetable injury with damage to the insertion sites, over 

streaching of the collagen fibers and frayed ligament ends, a mop-end tear injury model was 

developed in our laboratory by clinician S. Horibe [108].  By pulling medially on a rod 

underneath an exposed MCL, the ligament ruptured in tension, producing a midsubstance tear 

with simultaneous damage to the ligament insertion sites. The ends of the ligament were frayed, 

and frequently broken into several discrete bundles, giving a mop like appearance (Figure 9).  

Later histological evaluation confirmed injury to the insertion sites [108].  With this 

methodology, a consistent injury can be obtained, while still being clinically relevant, thus this 

injury model has been utilized in this thesis. 
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Figure 9. MCL just after mop-end tear. 

2.6 FUNCTIONAL TISSUE ENGINEERING 

In order to improve the quality of healing tissues where natural healing is limited or 

conventional/surgical treatments result in impaired joint function, other approaches were 

investigated.   Functional tissue engineering provides attractive tools, which not only aim at 

restoring the macro- and micro-structures of injured ligaments/tendons, but also the normal joint 

function.  Examples include the usage of a variety of growth factors, gene therapy, cell therapy, 

and the use of scaffolding materials [109].  While all of these methods show promise and warrant 

study, growth factors, gene therapy, and cell therapy have challenges for implementation in the 

human body such as safety concerns (gene therapy) or logistics (cell therapy), which makes 

scaffolding a favorable choice for translatable research.   

2.6.1 Scaffolds.  

Generally, scaffolding materials serve as guides for cells to migrate, proliferate and synthesize 

new extracellular matrices, as well as provide mechanical support during repair of injured tissue.  

Scaffolds are either synthetic or naturally occurring, and both of these scaffold types have 
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strengths and weaknesses.  Production and design of synthetic scaffold characteristics like pore 

size, alignment, degradation rate, and bioactivity can easily be controlled.  However, the design 

of synthetic scaffolds often mimics the charactersitcs of bioscaffolds like alignment, optimal 

pore size, and growth factor bioactivity, which are optimized already for use in the body. 

 Because naturally derived scaffolds, are built by the body to organize cells, including acellular 

dermis, amniotic membrane tissue, small intestine submucosa, fascia, and acellular bladder 

matrix [48], it is logical to use them for FTE applications. 

2.6.2 Small Intestine Submucosa.  

Small intestine submucosa (SIS), is particularly desirable for this study because it has 

demonstrated promising results in both laboratory and clinical settings in enhancing tendon and 

ligament healing  [11, 13, 14, 23, 25, 38, 59, 60, 67, 92].  SIS possesses a structural hierarchy 

that is naturally arranged with the ECM proteins collagen Type I with collagen Types III, IV, V, 

VI, and VII.  In addition, SIS contains fibronectin, glycoaminoglycans, hyaluronic acid, 

chondroitin sulfates A and B, heparin, heparin sulfate and cytokines such as TGF-β1, BFGF, 

VEGF, and so on [10, 50, 51, 53, 68, 74, 105].  Further, the immune-mediated inflammatory 

reactions evoked by SIS are limited due to the processing of the scaffold and the actual chemical 

makeup of the scaffold itself [8, 9, 49, 52]. 

These intrinsic properties have made the use of SIS attractive for clinical settings.  As of 

2004, over 250,000 patients have been implanted with SIS, for ailments involving general 

surgery, gastroenterology, and urology, with largely positive results [11, 12, 38, 62, 72, 86, 102].  

In addition to the clinical success, SIS may be ideal for application to ligaments and tendons 

because it can act as a guide for the cells to grow on in an organized manner and it contains 



growth factors which chemoattractants which increase cell migration to the injury site and elicit a 

favorable gene expression from these cells (i.e., down regulation of Types III and V collagen). 

2.7 THE USE OF SIS IN RABBIT MCL WITH 6 MM GAP INJURY 

Our research center has completed a few studies concering SIS and the biomechanics of the 

healing MCL.  A 6 mm gap injury was created in the MCL of many rabbits, half were treated 

with SIS and the others left non treated.  After 12 and 26 weeks of healing the animals were 

euthanized.  At both time points Hematoxylin and eosin (H&E) staining showed that the collagen 

fibers for the SIS-treated group stained denser and were more aligned along the longitudinal axis 

of the ligament.  The 12-week slides are seen in Figure 11.  Also, there were more spindle–

shaped cells in the SIS-treated neo-ligament.  Transmission electron microscopy (TEM) 

demonstrated that larger collagen fibrils started to appear as early as 12 weeks post-injury, with 

increasing numbers at 26 weeks.  The collagen content, examined with a hydroxyproline assay, 

demonstrated that SIS could increase the collagen deposited, which was 36% higher compared to 

the non-treated group at 12 weeks post-injury.  Moreover, the collagen type V/I ratio, measured 

by SDS-PAGE, was 5-6% lower than the non-treated group (p < 0.05). 

 
Figure 10. H&E staining of MCL. I Sham tissue; II SIS-treated healing tissue; III NT healing tissue 12 

weeks post-injury.  The arrows denote preferred direction, adapted from [67]. 
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Corresponding to these structural and biochemical changes, mechanical properties of the 

healing MCL treated with SIS showed significant increases compared to the non-treated group.  

Specifically, the tangent modulus of the healing MCL was 50% higher with SIS treatment at 12 

weeks, and persisted up to 26 weeks (33% higher; p < 0.05) (Figure 11).  The tensile strength at 

26 weeks post-injury was also 49% higher (p < 0.05).  Since SIS has been shown to be feasible 

in a severe transection injury it is important to show its efficacy in a clinically relevant model. 

 

Figure 11. Typical stress-strain curves for SIS-treated and non-treated groups at 26 weeks post-surgery 

[67]. 

 

For the rabbit, the healing tissue was also statistically different in terms of QLV 

parameters, specifically A, AxB, C and τ1 [6].  However, significant changes between SIS and 

non-treatment were only seen for AxB (or the initial slope).  These findings, as well as the 

structural and biochemical changes seen between SIS and NT, suggest that a more in-depth 

analysis is necessary to fully understand the healing of the MCL in the presence of SIS.  

 24 
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3.0  OBJECTIVES 

As the feasibility of SIS to improve MCL healing has been demonstrated with a 6 mm gap 

injury, the objective of this thesis was to improve the outcome of ligament healing after a 

more clinically relevant injury by applying SIS to the injury site.  To fulfill this objective, 

improvement in the structural properties of the FMTC and mechanical properties of the tissue 

midsubstance and its time-and-history dependent viscoelastic properties will be examined.  

Improvement will be qualitatively assessed through the examination of the gross morphology 

and histology of the healing tissue.   

To answer the research question, Is there a role for SIS to improve MCL healing in a 

realistic injury model at 12 weeks?  The following specific aims will be studied: 

 

Specific Aim 1: To assess the positive effects of SIS in the restoration of a ligament’s quasi-

static biomechanical properties after an injury to the tissue mid-substance and insertion sites.   

It has been shown that SIS can increase the collagen fibril diameter and improve the collagen-

fiber alignment of the healing MCL, thus improving the midsubstance’s mechanical properties 

[67, 79].  However, those studies were performed using controlled injury models with no injury 

to insertion sites. 

 

Hypothesis 1: Due to chemoattractant properties and contact guidance [105, 107], SIS treatment 

will accelerate the healing of the MCL tissue [67, 79], allowing for faster transmission of load 

across the bone-ligament-bone complex which has been shown to improve the resulting tissue 

quality [45, 56, 115, 118].  Thus, given both the inherent qualities of the SIS and a more severe 
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mechanical environment, the histomorphological appearance and biomechanical properties of the 

SIS-treated ligament will more closely resemble those found in normal MCLs as compared to 

non-treated controls. 

 

Specific Aim 2:  Describe the effect of SIS treatement on the viscoelastic behavior of the rabbit 

healing ligament using an existing phenomenological model.  

Previous studies have shown that healing MCL tissue is significantly more non-linear and has 

higher amounts of stress relaxation when compared to sham controls [3, 71, 79].  Similarly, 

when the healing MCL tissue is analytically described using an existing constitutive model based 

on quasi-linear viscoelastic (QLV) theory, both the instantaneous elastic response and reduced 

relaxation function constants change [1, 4].   

 

Hypothesis 2: Because SIS has been shown to improve collagen fiber alignment in healing 

tissue, and fiber recruitment and uncrimping are mechanisms that have been used to explain the 

non-linear behavior in the “toe region” of  the MCL, the use of SIS will result in a non-linear 

stress strain curve closer to that of the sham control than NT.  In addition, the more aligned SIS-

treated tissue will have less stress relaxation than non-treated tissue. 
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4.0  METHODS 

4.1 STUDY DESIGN 

To accomplish these specific aims, an animal study was conducted using 16 New Zealand white 

rabbits.  This number was determined using a power analysis, estimating a power of 0.8, a 

significance value of 0.05, and an effect size of 50%.  Citing the 12-week gap injury model 

having SIS improve over NT 50%, and using generous standard deviation estimates, a power 

analysis revealed that seven specimens per group were needed to detect a difference of 50% in 

the tangent modulus.  Thus, the 16 rabbits were allocated seven per group for biomechanical 

testing and 2 per group for histology.  Two additional rabbits were purchased in case of 

premature death. 

4.2 SURGICAL PROCEDURES 

Nine animals per treatment group (7/grp biomechanics, 2/grp histology) will be given an 

intramuscular (IM) preanesthetic dose of xylazine HCl 0.1 mg/kg and ketamine HCl (3.3 mg/kg), 

and a preoperative antimicrobial dose of 20-25 mg/kg Cephazolin.  The fur will be shaved from 

the hind limbs, and the exposed area will be sterilized with betadine solution. 
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 An isolated MCL injury will be created by making an anteromedial incision centered 

over the joint line and carried down to the deep fascia.  The fascia will be incised, exposing the 

MCL that is to be undermined.  In the right knee (experimental), a stainless steel rod (4-mm-

diameter for goats; 2-mm-diameter for rabbits) will be passed beneath the ligament, just inferior 

to the attachment of the medial meniscus, and pulled medially to rupture the ligament [89].  The 

left knees of all animals will serve as sham-operated controls [96, 108].  Skin incisions for the 

shams will be the same as for the experimental groups.  The fascia over the MCL will be incised, 

and the MCL will be undermined for all shams.   

For SIS-treated MCLs, a sheet of SIS (approximately 200 μm thick) will be punched 

using a custom-made stamp to a size of 5 mm x 10 mm, and placed in normal 0.9% saline. The 

strip will then be laid on top of the MCL, centered over the rupture site with the luminal side 

facing toward the MCL. To assure stable positioning of the SIS and to mark the location, Nr. 6.0 

Silk sutures will be used to tie the SIS to the MCL in a single stitch fashion at each of the four 

corners. 

Postoperatively, all animals will be allowed free cage activity (cage area, 0.5 m2).  The 

status of weight bearing and the general health conditions of all animals will be monitored during 

recovery.  Cephazolin (20-25 mg/kg) will be administered twice a day for five days post-

operatively for infection prophylaxis.  Xylazine will be injected intramuscularly (0.05-0.3 

mg/kg) twice a day for three days postoperatively as an analgesic.  A lethal injection of sodium 

pentobarbital intravenously (50-100 mg/kg) while under sedation will be used to humanely 

euthanize the animals at the time of sacrifice.  This surgical procedure has been approved by the 

University of Pittsburgh Institutional Animal Care and Use Committee (IACUC). 
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4.3 EXPERIMENTAL PROCEDURES 

4.3.1 Histology.  

For qualitative characterization of the SIS scaffolds and the healing MCL tissue, H&E staining 

will be performed on sections cut on a cryotome.  These sections will be mounted on slides, 

fixed with acetone and stained with H&E.  The slides will then be viewed using normal RGB 

light and polarized light microscopy.  Observations will be made as to the tendency of the cells 

to aggregate, the average number of cells in cell clusters, and the appearance of cells in different 

locations.  ECM density and alignment will also be observed.  A similar number and distribution 

of cells and a similar arrangement of ECM fibers is expected in the SIS-treated ligaments 

compared to normal. 

4.3.2 Cross sectional area measurement.  

A laser micrometer was developed in our research center to measure the cross-sectional area of 

soft tissues without contacting the tissue midsubstance [65, 110].  Following a well-established 

protocol, the rabbit legs will be dissected to the FMTC.  The tibia and femur will be cut 10 cm 

from the joint line to allow for placement in the laser micrometer clamps.  Then the tibial plateau 

and femoral condyles will be trimmed within 5 mm of the respective insertions of the MCL to 

allow for an unobstructed line of sight for the laser.  The cross sectional area and shape of the 

MCL will be measured at three locations: (1) at the center of the joint line, (2) just proximal 

(approx. 2.5 mm) to the femoral insertion, and (3) just distal (approx. 2.5 mm) to the tibial 

insertion [108].  The three measurements will be averaged, and this average will be used for 



calculating Lagrangian stress (force/initial cross sectional area).  The accuracy of this system has 

been determined to be less than 0.1 mm2. 

4.3.3 Uniaxial Tensile Testing.  

Using standard procedures from our research center, the  FMTCs will be mounted in custom-

made clamps following the cross sectional area measurement [108], fixed to an Instron™ (Instron 

5565) testing machine, and immersed in a saline bath that is held at a constant 37 ºC.  With the 

MCL unloaded, specimens will be given 15 minutes to reach equilibrium.  Afterwards, the 

specimen will be preloaded to 1 N, and one cycle of preconditioning will be performed to 

“settle” the clamps.  The specimen will be preloaded to 1 N yet again and the gauge length reset.  

It will then be preconditioned for 10 cycles between 0 and 0.75 mm, which equates to loading 

within the toe region of the stress-strain curve.  This will be followed by 1 hr of recovery; a static 

stress-relaxation test whereby it will be elongated to 0.75 mm (~ 3% strain) [108] and held for a 

period of 25 min; 1 h recovery; a cyclic stress-relaxation test whereby it was subjected to 30 

cycles of elongation between 0.5 and 0.75 mm;, and finally, a load-to-failure test (Figure 12).   

All tests will be conducted at an elongation rate of 10 mm/min, which corresponded to a strain 

rate of 0.457 %/s.  A Motion Analysis™ video tracking system will be used to track markers on 

the surface of the ligament (1 cm apart) and centered about the joint line. 

Structural properties of the FMTC (i.e., stiffness, ultimate load to failure, elongation to 

failure, and energy absorbed) and mechanical properties of the ligament substance (i.e., elastic 

modulus, stress at failure, strain at failure, and strain energy density) will be determined from the 

resulting load-elongation curves and stress-strain curves, respectively [108].  The data from the 

static and cyclic stress relaxation tests will be modeled using QLV theory [3, 4, 41].  The values 
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of the parameters determined from this model will then be used for statistical comparisons 

between groups. 

 

Figure 12. Tensile testing protocol, 1 hour of recovery between tests. 

4.4 EXPERIMENTAL PROCEDURES 

The QLV theory of Fung [41] will be used to examine the stress relaxation behavior of the 

normal and healing MCL under uniaxial tension.  This theory has been used previously by our 

research center to describe the viscoelastic properties of the injured and uninjured MCL and PT 

[2, 6, 34].  A description of the theory can be found in Section 2.2.  In order to find 5 physically 

significant constants (A, B, C, τ1, τ2) the ramping and relaxation phases of the experimental 

stress relaxation data will be simultaneously fit using an algorithm developed by our research 

center [3] to obtain a unique solution with parameters describing the viscoelastic properties of 

the MCL.  This approach has also recently been modified to account for an initial preload 

applied to tissues during tensile testing experiments [34]. 
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4.5 STATISTICAL METHODS 

In order to compare mechanical and structural properties (e.g. elastic modulus, tensile strength, 

etc.) between treatment groups (SIS vs. NT), an unpaired t-test will be performed.  If the 

experimental treatment group is significantly different from the non-treatment group, then paired 

t-tests will be utilized to compare the experimental treatment group to the contralateral sham-

operated control. 

When comparing the QLV parameters between groups, it will first be necessary to 

determine if the experimental data and obtained constants from individual specimens were 

normally distributed.  For this, a Kolmogrov-Smirnov test will be used.  If it is normally 

distributed, a student-t test will be used to compare constants between SIS-treated and non-

treated groups.  The experimental groups will be compared with the sham-operated control 

groups by using a paired t-test.  The significance level for all comparisons will be set at p < 0:05 

[4, 6]. 
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5.0  RESULTS 

5.1 GROSS INSPECTION 

During dissection, it was noted that all of the mop-end injuries healed with 

neoligamentous tissue.  All specimens healed with continuity, except for one in the SIS 

treated group (specimen # 183-06).  This specimen had a small defect in the tissue near 

the femoral insertion, which was covered by a thin film of tissue.  With the exception of 

this specimen, the SIS group had a more uniform, dense midsubstance than the NT group.  

In both treatment groups, there was hypertrophy of the tissue mass compared to 

measurements made at surgery, as the ligaments generally lengthened and widened. 

There was a reddish tint to most of the healing ligaments, especially near either 

insertion site.  For the SIS group, the tissue between the suture markers near joint level 

was white in color and mostly opaque, but not as organized as the sham.  After failure, 

the femoral insertion was inspected and a brownish hard cartilage-like tissue was seen in 

a number of specimens in both treatment groups.  For the sham-operated side, gross 

inspection revealed no significant swelling or inflammation.  Figure 14 below shows a 

typical gross view of the FMTC for each treatment group, as well as the sham-operated 

group. 



 

CBA 

Figure 13. Gross morphology of FMTC of (A) Sham tissue; (B) SIS treated; (C) Non-treated. 

 

There was one specimen, in the SIS treated group #183-06 where the healing response 

was vastly different than all other healing specimens, let alone those in the SIS treated group.  

Figure 14 shows the gross morphology of the tissue.  Important to note is the near-transparent 

thinning near the femoral insertion.  It is here that the ligament failed during the load-to-failure 

test.  While the odd healing response was noted during dissection, it was only the second 

specimen to be tested, thus the “normal” gross morphology of the SIS-treated healing tissue was 

not yet known. It was therefore tensile tested and showed the lowest structural and mechanical 

properties of all healing specimens tested.  The test results confirmed that the specimen was 

abnormal; its stiffness was nearly 1/3rd smaller than the average of the SIS-treated group (21.2 
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N/mm), whereas its ultimate load was an order of magnitude smaller than the average (31.4 N).  

The tangent modulus was an abysmal 71.5 MPa, only 20% of the average of the SIS group. 

 

Figure 14. Gross morphology of specimen # 183-06 during dissection; note the discontinuity in the healing 

tissue. 

 

While it is not documented, there is a strong possibility that this rabbit’s adverse healing 

response was a result of infection, reopening of the wound, sickness, or any number of other 

confounders.  Even though the reason has not been discovered, it is clear that this was abnormal 

response and thus will be excluded from the remainder of the results. 

5.2 HISTOLOGY 

Figure 15 shows an H&E staining 200x of both treatment groups.  This and other histological 

evaluation clearly showed there was a difference in matrix density between the two groups, with 

the SIS group having more tightly packed collagen fibers at 12 weeks.  In addition, the ECM was 
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more organized and had a higher cell count.  Cell shape in both groups was elongated and 

spindle shaped. 

Figure 15 H&E staining at 200x of SIS and NT healing tissue. 

SIS NT

 Polarized light microscopy confirmed that the new ECM of the SIS-treated ligaments was 

dense.  It also revealed more organized collagen fibers in the SIS group.  Fiber crimp was not 

noted in either treatment group.  Figure 16 shows both polarized and normally lit histologic 

sections at 100x for both treatment groups. 

 

Figure 16  H & E staining at 100x of SIS and NT healing tissue viewed with polarized and normal lighting. 
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5.3 CROSS SECTIONAL AREA 

There was no statistical difference between the cross sectional area of the treatment groups (SIS-

treated 7.2 + 1.1 and NT 7.3 + 2.1 mm); however, both were about twice as large as the sham-

operated side (3.6 + 0.7 mm2, p<0.05).  None of the healing specimens exhibited any major 

concavities. 
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Figure 17. Cross sectional area of the three groups, * denotes significant difference from sham. 

 

In all the healing specimens, the largest of the three CSA measured was near the femoral 

attachment, slightly above joint level (close to where the ligament was injured).  Starting from 

the measurement at the femoral insertion and moving distally toward the tibial insertion, the 

CSA of these healing groups reduced.  The CSA of the SIS-treated group decreased 1.6 mm2 and 
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0.9 mm2 from the proximal to joint level and joint level to distal, respectively, whereas in the NT 

group the CSA was reduced 2.0 mm2 from the proximal to joint level, and 0.3 mm2 from the 

joint level to the distal measurement point.  The CSA of the sham-operated control was relatively 

consistent along the length of the ligament with a decrease of 0.5 mm2 from the proximal to joint 

level and a decrease in CSA of 0.1 mm2 from the joint level to distal.  At all three levels of 

measurement there was no statistical difference between treatment groups, while both were 

statically different from the sham control.  Figure 18 shows a CSA values for the treatment 

groups at the three measurement levels. 
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Figure 18. Cross sectional area of the three groups compared at different measurement levels. 
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5.4 STRUCTURAL PROPERTIES 

Structurally, no statistical difference was found between the two treatment groups.  This is 

demonstrated by the typical load elongation curves shown in Figure 19.  Both groups exhibited a 

non-linear toe region for the first 0.5 mm of elongation.  After this, the bone-ligament-bone 

complex of both treatment groups exhibited a linear relationship between elongation and load.  

The average values of the parameters describing this load elongation curve (stiffness, ultimate 

load, elongation at failure and energy absorbed) are listed in Table 1.  The stiffness of the SIS-

treated group was  
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Figure 19. Typical load-elongation curves for SIS, NT, and Sham groups. 
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larger than the non-treated group, though not significantly (SIS 63.8 ± 9.4 N/mm vs. 56.8 ± 8.6 

N/mm, p < 0.05).  The ultimate load and energy absorbed, too, were larger in the SIS group, but 

not significantly. 

Both groups are significantly less than the sham-operated control.  Stiffness of the SIS 

group being ~75% of the sham control, and the NT group being ~63% of control.  The ultimate 

load in both healing groups was restored ~55% and ~44% of sham for the SIS and NT groups, 

respectively.  The ultimate elongation for both healing groups was 70% of sham.  

 

Table 1. Structural properties of the FMTC, a denotes significant difference from sham (p<0.05) 

SIS (n=6) NT (n=7) Sham (n=13)

CSA, mm 2 7.2 + 1.1a 7.4 + 2.1a 3.6 + 0.7

Stiffness, N/mm 63.8 + 9.4a 56.8 + 8.6a 88.7 + 10.0
Ult. Load, N 145.6 + 57.2a 137.7 + 45.9a 283.9 + 40.7
Elongation at Failure, mm 3.1 + 0.9a 3.3 + 0.9a 4.6 + 0.5
Energy Absorbed, N*mm 226 + 149a 211 + 145a 685 + 155  

Failure mode was classified in three categories: midsubstance failure, failure in the 

ligament stubstance near the tibial insertion, and tibial insertion site failure.  (The difference 

between tibial insertion site failure and failure in the ligament substance near the tibial insertion 

is, in the case of that a tibial insertion site failure, the ligament completely shears off the face of 

the tibia, whereas a failure in the ligament substance leaves some ligament on the bone.  In both 

instances, stress estimation is not valid.)  In the SIS-treated group, three failed in the mid-

substance and three failed at the tibial insertion site. The NT group had zero midsubstance 

failures, four in the ligament substance near the tibial insertion, and three failed at the tibial 

insertion.  Therefore, almost half of the 13 experimental specimens failed at the tibial insertion 
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site, meaning the insertion site was the area most prone to failure.  Eight of the sham-operated 

control group failed in the midsubstance.  Five of the 13 sham tissues failed by femoral avulsion 

due to removing too much of the femoral condyles during dissection in order to fit the FMTC 

into the clamp.  Many of the animals were small, and as such, the ligament length between 

insertion sites was short. 

5.5 MECHANICAL PROPERTIES 

The mechanical properties of the ligament midsubstance are detailed in Table 2. Typical stress–

strain curves of healed FMTCs from SIS-treated and nontreated groups are shown in Fig. 20.  As 

the healing tissues failed in various places, only the tangent modulus of the ligament 

midsubstance will be compared between groups.  The ultimate stress, ultimate strain, and strain 

energy density could only be found in the three SIS specimens which failed in the midsubstance.  

The tangent modulus of the healing tissue midsubstance in the SIS-treated group measured ~30% 

greater than that of the non-treated group, and was significantly larger (403.9 ±119.5 MPa vs. 

272.9 ± 90.9 MPa, respectively, p < 0.05).  Both treatment groups were significantly smaller than 

the sham-operated control (1180.7 + 316.4, p<0.05). 

Table 2. Mechanical properties of the healing tissue midsubstance, a denotes significant difference from sham, b 
denotes significant difference between treatment groups (p<0.05) 

 

SIS (n=6) NT (n=7) Sham (n=13)

Modulus, MPa 403.9 + 119.5a,b 272.9 + 90.9a,b 1180.7 + 316.4  
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Figure 20. Typical stress-strain curves for the treatment groups. 

5.6 VISCOELASTIC PARAMETERS 

Investigating the time-dependent behavior of the healing tissue, a static stress relaxation test was 

used.  The peak strains for the static stress-relaxation test were 1.4 + 0.5% and  2.2 + 1.1% with 

peak stresses of 3.4 + 0.8 and 2.7 + 0.7 MPa, respectively, for the SIS and NT groups.  The peak 

strain was indistinguishable from the Motion Analysis data for two of the six SIS specimens and 

thus was not included in this data.  For all but these two specimens, the average strain rate from 

the static stress relaxation, cyclic stress relaxation and load-to-failure tests was used as an input 

for the QLV curve fit.  The strain rate from the load-to-failure test was used for these specimens.  
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 At 25 min, the total amount of stress relaxation not found to be statistically different 

between groups and was to be 54.9 + 7.4% and 58.1 + 6.5%, respectively.  Comparing both 

healing groups to sham (30.7 + 5.7% static stress relaxation), healing tissue generally relaxed 

28% more than sham tissue based on the static stress relaxation curves.  For the cyclic stress-

relaxation tests, the peak stress decreased by 31.3 + 4.2% and 34.7 + 4.6%, respectively, after 30 

cycles of elongation.  The peak stress, final stress, peak strain and stress relaxation of both 

groups were all statistically different than sham.  Table 3 sums up this behavior, while Figure 20, 

shows typical stress relaxation curves on both normal and log timescale.  

Table 3. Basic viscoelastic behavior of the tested specimens; a denotes significant difference from sham (p<0.05). 

SIS (n=6) NT (n=7) Sham (n=13)
Static stress relaxation
Peak Stress, Mpa 3.4 + 0.8a 2.7 + 0.7a 13.1 + 3.1
Final Stress, Mpa 1.5 + 0.5a 1.2 + 0.5a 8.4 + 2.5
Peak Strain, % 1.4 + 0.5 2.2 + 1.1 2.7 + 1.2
Percent Relaxation, % 55.4 + 7.3a 58.1 + 6.5a 36.8 + 10.5

Cyclic stress relaxation
Percent Relaxation from 
Cycle 1 to Cycle 30, % 31.3 + 4.2 34.7 + 4.6a 20.1 + 7.0
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Figure 21. Typical stress relaxation curves on (A) log , and (B) normal time scale. 
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Curve fits of the static stress relaxation data using the QLV theory revealed an R2 value 

of 0.98 or higher for all specimens.  All variables were found to be normally distributed therefore 

a student t-test was used to compare treatment groups.  There was no statistical difference found 

between the treatment groups in any of the QLV constants; however, AxB for the SIS trended to 

be higher than NT control, meaning that the initial slope of the elastic response function 

appeared to improve with SIS treatment.  To compare the experimental groups to sham controls, 

a paired-t test was used.  Both experimental groups were statistically different from sham 

controls for A, and AxB.  Table 4 displays the means and standard deviations for each parameter 

in the three groups (SIS, NT, and Sham). 

Table 4. QLV parameters of the experimental groups; a denotes significant difference from sham (p<0.05). 

SIS (n=6) NT (n=7) Sham (n=13)
QLV parameters
A 1.8 + 1.3a 1.4 + 0.8a 8.5 + 5.5
B 74.1 + 24.1 55.4 + 15.3 57.8 + 32.3
A x B 115.0 + 46.1a 71.0 + 15.3a 414.24 + 201.4
C 0.20 + 0.03a 0.22 + 0.07a 0.11 + 0.06
τ1 0.13 + 0.01a 0.11 + 0.02a 0.13 + 0.3
τ2 665 + 475 501 + 74 533 + 112

 

To validate these constants, experimental peak stresses of the 30 cyclic stress relaxation 

cycles were compared to predicted values calculated with constants in Table 4 and equations 1-5 

(Section 2.2).  Generally, the predictions were best for the first few cycles, and the accuracy of 

the peak stress prediction decreased with each new cycle.  The sham-operated control was the 

most accurate, predicting the peaks within the acceptable 10% accuracy.  Surprisingly, the 

experimental groups were not this accurate.  The SIS predictions were as high as 37.1% off from 

the measured experimental stresses (average error for all specimens all peaks being 22.6%).  The 
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NT group was no better with an average error of 23.0%.  Figure 22 compares the predicted and 

experimental peak stress for each of the SIS and NT groups.  
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Figure 22. Mean and standard deviations of both the experimental and predicted peak stresses for each of the 30 

cyclic stress relaxation cycles. 
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6.0  DISCUSSION 

6.1 HYPOTHESIS 1 

Restated, Hypothesis 1 was:  Due to chemoattractant properties and contact guidance [105, 107], 

SIS treatment will accelerate the healing of the MCL tissue [67, 79], allowing for faster 

transmission of load across the bone-ligament-bone complex, which has been shown to improve 

the resulting tissue quality [45, 56, 115, 118].  Thus, given both the inherent qualities of the SIS 

and a more stringent mechanical environment, the histomorphological appearance and 

biomechanical properties of the SIS-treated ligament will more closely resemble those found in 

normal MCLs as compared to non-treated controls. 

 This hypothesis was shown to be partially supported.  SIS did improve the inherent 

quality of the tissue, as is evidenced by a 32% increase in tangent modulus, as well as 

histological evidence of a more organized matrix; however this did not translate to improved 

structural properties.  Logically, if there is the same amount of higher quality tissue (CSA of the 

two groups was not different), then there would be an improvement in that tissue’s ability to 

resist load, so why was no improvement in structural properties observed?  Looking at failure 

mode, nearly half of all the experimental group specimens failed at the tibial insertion (3/6 in the 

SIS and 3/7 in the NT).  This was similar to the non-repaired group of the Weiss and Woo study 

in which 3 of 6 FMTCs failed by tibial avulsion [108], making the insertion site the weakest link 

in both studies.  The Weiss study postulated that insertion site healing and midsubstance healing 
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are asynchronous, and SIS did nothing to change this.  Rather it had a very localized 

improvement in tissue quality, much like the gap injury studies.  A comparison between the 

mop-end tear study and the gap injury SIS treatment studies offers further support as to why 

there was no structural property improvement. 

6.2 COMPARISON WITH GAP INJURY RESULTS 

For this thesis, a single layer of SIS was used to treat a realistic mop-end injury model.  This 

injury model is highlighted by injury to the insertion site of the ligament, frayed edges of the 

injured ends and stretching of the collagen fibers during injury.  SIS treatment saw no statistical 

increase in CSA or structural properties over non-treatment.  However, the modulus of the SIS 

healed tissue was about 32% higher than the NT healed tissue.  This difference was statistically 

significant.  Due to numerous failures at the insertion site for both healing groups (~50 of all the 

treatment group specimens), other mechanical properties were not compared. 

These findings are slightly different from a study conducted with a gap injury to the 

MCL.  At 12 weeks, the stiffness and ultimate load (structural properties) of the FMTC of the 

two healing groups were statistically different for the gap injury model.  SIS improved the 

stiffness 56%, and the ultimate load nearly doubled compared to NT.  Tangent modulus was also 

statistically different between the two groups.  Unlike the gap injury, the mop-end tear causes 

damage to the insertion sites, this is reflected in the number of insertion site failures.  After 12 

weeks of healing in this study nearly half of the FMTCs failed at the insertion site, whereas in 

the gap injury model only 32% of the healing FMTCs failed by tibial avulsion.  To confirm that 

the damage to the insertion site at injury time and the subsequent asynchronous healing of the 



insertion site is the reason why SIS did not improve structural properties as well as mechanical 

properties, a later-timepoint study can be used.  Given a longer time span, insertion sites will 

heal and an improvement in structural properties would be observed.  

Another stark difference is that in this thesis, improvement in modulus value was less 

than that in the gap injury study.  The gap injury SIS treatment yielded a tangent modulus over 

50% higher than the NT group [79], whereas this thesis only improved the modulus by 32%.  

And the modulus of the NT group of this study was almost larger than the SIS treated group of 

the gap injury model as seen in Figure 23.  
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Figure 23. Tangent modulus of both treatment groups for both the mop-end and gap injury models.  * denotes 
significance between groups p<0.05. 

 

Gap width could have played a role.  Previous studies have shown that as gap width 

increases the MCL healing response is adversely affected [21, 70].  The gap injury had a 
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controllable 6 mm gap between injured ends, and in this study the gap between edges at time of 

rupture was measured to be ~1.6 mm, less than 1/3 of the Musahl et al. study; therefore, the 

structural and mechanical properties were higher in the mop-end injury.  For example, the 

stiffness in both healing groups for the mop end study was about 60 N/mm, whereas in the gap 

injury model even with SIS treatment the stiffness was only 45.7 + 13.3 N/mm.  Similar trends 

exist for ultimate load, and modulus.  Because the injured ends of the ligament are so close to 

each other, the non-treatment group has a good start, and SIS may not have as noticeable an 

effect on the ligament healing.  This may explain, in part, why there was no statistical difference 

in structural properties, and tangent modulus improved only 32% with a mop-end injury while in 

the gap injury SIS improved it over 50%. 

Another possible cause for the difference in results between the two studies is the use of 

animals from different sources.  Even though they were the same species, rabbits in this study 

were purchased from Covance Rabbitry, while the Musahl et. al. study’s rabbits were purchased 

from Myrtle’s Rabbitry.  While the animals from the gap injury study were virgin, this study 

used retired breeders.  Also, while the rabbits were the same age, the size of this study’s rabbits 

(4.0 + 0.5 kg) was smaller than those of Musahl et al. (average 5.7 kg).   

There were also some slight differences in the mechanical testing protocol.  In this study, 

the preload was only 1 N as compared to 2 N for the gap injury study.  Also the preconditioning, 

static stress relaxation, and cyclic stress relaxation were tested to an elongation rate of 5 

mm/min.  This change in elongation rate was inconsequential due to the MCL’s relative 

insensitivity to strain rate [119]. Also, the results for the sham control of both studies were 

similar.  Structurally, the stiffness of mop-end and gap injury sham FMTC was 88.5 + 7.5 (n=11) 

and 89.7 + 15.3 (n=16) N/mm, respectively.  The ultimate load for either study was 284.2 + 42.4 

(n=12) and 332.0 + 50.8 (n=16) N, respectively.  As far as mechanical properties are concerned, 
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results again are similar for tangent modulus (sham values for mop-end study:  1086.4 + 292.9; 

and gap injury study:  936.3 ± 283.6). 

Because the sham data for both studies is reasonably comparable, however, the 

discrepancy in the effect of SIS on result trends between the studies is therefore likely due to 

differences in the injury models and not animal source or testing protocol. 

Other differences in the injury model may not have had an effect, or at least none that 

were quantifiable.  The frayed edges present in the mop-end tear model likely had little effect, as 

there have been studies which show that have shown repeatable mop ends created with a scalpel 

(as opposed to tearing) have little effect on the healing outcome [20].  Regarding the stretching 

of fibers, while this is a marked difference in the injury models it is difficult to ascertain its effect 

on the healing response. 

6.3 HYPOTHESIS 2 

Restated, Hypothesis 2 was:  Because SIS has been shown to improve collagen fiber alignment 

in healing tissue, and fiber recruitment and uncrimping are mechanisms that have been used to 

explain the non-linear behavior of the “toe region” of  the MCL, the use of SIS will result in a 

non-linearity similar to that of the sham control.  In addition, the more aligned SIS-treated tissue 

will have less stress relaxation than non-treated tissue. 

The testing of this hypothesis was inconclusive.  None of the QLV parameters exhibited 

statistical differences between treatment groups.  Nor was there a statistical difference in the 

amount of stress relaxation between groups, in either the static or cyclic stress relaxation test.  

While the stress relaxation trends had SIS being closer to sham, both experimental groups were 
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statically different from the sham side.  This is consistent with previous data concerning MCL 

healing and viscoelastic parameters.  In the gap-injury study there was no statistical difference 

found in any of the QLV constants except for AxB [6].  Again, AxB is the initial slope of the 

elastic response of the tissue; this means that in the toe region of the curve, where strains are in 

physiologic range, the tissue behaves more like normal.  For this thesis, AxB trended closer to 

sham with SIS treatment, but there was no statistical difference between the two treatment 

groups.  This difference in results could be due to the smaller gap size in the mop end tear injury 

model.  With a smaller gap there is less opportunity for SIS to improve the healing tissue.  This 

is similar to why there was less improvement in tangent modulus in the mop-end model than in 

the gap-injury model. 

A major issue with the QLV constants is their inability to predict the peak stresses during 

cyclic stress relaxation.  In some cases the predicted values were 37% different than the 

measured experimental values.  Looking deeper into the data that the peak stress in the cyclic 

stress relaxation was on average 20% less than that same specimen’s peak stress during the 

preconditioning and static stress relaxation.  All three tests went to the same 0.75 mm elongation 

level.  The data also reveals that at the initial gage length of the cyclic stress relaxation test, the 

load was near 0 N, while it should be around the preload of 1 N.  Next, looking at the strain data 

for the two tests, the strain rate was the same for most specimens, but the peak strain level was 

smaller for the cyclic stress relaxation test.  Simply put, some slack was systematically 

introduced to the system between the static and cyclic tests, which needed to be removed before 

the tissue could be strained; thus, in the 0.75 mm elongation, the tissue was not being strained the 

whole time in the cyclic test, a lower strain level was achieved, and a lower stress output was 

recorded. 
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The constitutive model predicted values of stress based on strain values that were not 

reached experimentally.  Ideally, this would have been noticed and corrected in preliminary 

testing, as it is a systematic experimental error.  However, this can be corrected with some 

manipulation to the predictive modeling program.  The program essentially uses strain rate to 

determine the amount of strain the tissue is undergoing.  It also utilizes a t0 term and cycle 

frequency to determine how long the tissue is being strained.  It was noticed in the strain data 

that because of the slack in the tissue, the t0 terms entered into the predictive program were too 

large, and the tissue was not strained as much as the model predicted. 

To solve this issue, the three specimens that had the largest errors between the prediction 

and experimental values were used (#s 188-06, 225-06, and 643-06).  The load-time data from 

the static stress relaxation was used to see at what time during loading the peak load from the 

cyclic test was obtained.  This was compared with the cyclic strain data, specifically how long it 

took to go from zero strain to the first peak strain.  The two times were very similar, and less 

than the amount of time the tissue was strained for the static stress relaxation.  So by altering t0 in 

the prediction program to accurately reflect the time from zero strain to peak strain during the 

cyclic stress relaxation, the error between the predicted value and experimental values reduced 

for the worst three specimens.  The error on the first peak modestly reduced from 16% to -15%, 

while on the 30th peak it was reduced from 35% to an acceptable 6%.  The peak stress values 

predicted by both methods and the experimental stress values for specimen #643-06 are depicted 

in Figure 24.  While not ideal, this methodology shows that in fact the QLV constants are valid 

and the source of error was experimental, not in the predictive constitutive model or curve 

fitting. 
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Figure 24. A comparison of the experimental and predicted peak stresses for specimen #225-06, in each of the 30 

cycles of the cyclic stress relaxation. 

 

Another interesting result is that the stress relaxation response from the healing and sham 

tissues was markedly different than previous studies.  Comparing the amount of stress relaxation 

of the sham tissue from the gap injury study (23.8 ± 5.5 %) to this study (37.7 + 10.7 %) a 

tendency for a higher amount of stress relaxation is revealed.  Another study conducted on the 

rabbit MCL, Moon et al., showed a stress relaxation of 17.2 + 4.2 %; again, markedly different 

than the amount of relaxation seen in this study. 

In both of these studies, the elongation level for the static stress relaxation was 1.5 mm, 

corresponding to 4.2 (Moon) and 5.0 % (gap injury sham) strain [78, 79].  This specimens in this 

thesis were subjected to half the elongation (0.75 mm), corresponding to 2.7% strain.  As such, 

the ramp time varied between studies from 4.5 seconds (this thesis) to 9 seconds (Moon and gap 
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injury) [78, 79].  With an increase in ramp time, the tissue was able to relax more before a peak 

stress was obtained; therefore, with a shorter ramp time more stress relaxation was measured. 

This would explain a difference in the amount of stress relaxation however with the 

current QLV approach taking into account relaxation during the ramp time, and the assumption 

that the viscoelastic response is strain-level-independent [3], the QLV parameters of the three 

studies’ sham tissue should be similar.  Table 5 shows the parameters for each of these studies. 

All three studies have a similar AxB, it is important to note that this thesis study has a 

much larger of B when compared to the other two, meaning the elastic response is more non-

linear.  This can be explained by the smaller preload (1 N as opposed to 2 N) causing a larger a 

toe region in the loading data. 

The constant C is an order of magnitude larger for this study, signifying a larger amount 

of stress relaxation, which is the same trend depicted by the % relaxation.  However, due to the 

concurrent curve-fitting of the reduced relaxation function and elastic response, these results 

should be more similar.  There is evidence that the MCL’s viscoelastic behavior is not as 

independent of strain level as once thought.  Therefore, the difference in strain level between this 

thesis and the previous work could explain the discrepancy with the QLV constants[17, 47, 93].  

This study had a lower strain level, which theoretically would yield more stress relaxation.  This 

study did have a higher amount of stress relaxation, supporting the nonlinear viscoelastic theory 

that the MCL is not independent of strain level.  However, because we are using QLV theory to 

compare treatment groups, which have similar strain, levels, its use is still valid. 



Table 5. Differences in QLV parameters of normal tissue across various studies 

Moon Gap-injury Thesis
n=6 n=10 n=13

Ramp time 9 sec 9 sec 4.5 sec
Elongation level 1.5 mm 1.5 mm 0.75 mm
A, MPa 12.7 ± 2.5 14.2 ± 4.9 8.5 + 5.5
B 29.2 ± 1.8 27.1 ± 8.4 57.8 + 32.3
A*B, MPa 371 ± 78 379.6 ± 177.7 414.2 + 201.4
C 0.042 ± 0.012 0.05 ± 0.02 0.11 + 0.06
τ1 0.35 ± 0.02 0.39 ± 0.03 0.13 + 0.03
τ2 462 ± 116 424 ± 98 533 + 112

%relax 17.42 + 4.2% 23.8 ± 5.5% 36.8 + 10.5%
Strain level 4.2 + 0.3% 4.9 ± 1.5% 2.7 + 1.2%
Modulus, MPa 1107 + 126 936 + 284 1081 + 316  

As there was little conclusive evidence from this methodology that SIS treatment had an 

effect on the viscoelastic properties, in order to verify hypothesis 2 a more in-depth analysis is 

necessary. 

6.4 STUDY LIMITATIONS 

A major limitation of this study was the use of the rabbit model.  First, the rabbit’s knee is 

always in deep flexion, making its use quite different from a human.  In addition, while it is a 

mammal, the rabbit’s healing response is different than a human’s.  The early phase of healing in 

a rabbit uses a different type of cell--a heterophil, as opposed to the neutrophil which is present 

in humans [101].  This, however, is a more conservative model, meaning if there is no adverse 

response to SIS treatment in the rabbit, then it is almost certain that there would be no rejection 

from a human. 
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Group size was also small in this study.  Other healing studies have used more animals 

per group, such as the gap injury studies, which used 8 rabbits per treatment group.  Power 

analysis shows that it would likely take five more animals per group to find significant 

differences between the two treatment groups for the QLV parameter. 

The following revisions would improve this study if it were to be performed again.  First, 

the histology portion of the project was poorly planned.  The sections cut were not necessarily 

able to give the best information on fiber density or alignment under normal light, nor fiber 

crimp under polarized light.  The information desired from histology should have been better 

outlined before frontal sections were chosen.  Also, the insertion sites should have been 

preserved in the histology animals and made into slides.  This would have provided more 

evidence that the insertion sites were still damaged at 12 weeks.  And therefore given support to 

the explanation for why the improvement in tangent modulus was not coupled with an 

improvement in structural properties.  Secondly, a plan for visual outliers should have been 

established.  Instead of mechanically testing specimen #183-06 after noting its flaws, it could 

have been useful to save the specimen for biochemical or other evaluation in order to determine 

why there was an abnormal healing response.  Finally, the reduction in peak load between the 

static and cyclic stress relaxation phases of the mechanical testing protocol should have been 

dealt with experimentally instead of in the data analysis phase.  The reason for this reduction 

should have been pinpointed before any testing of specimens continued. 
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7.0  CONCLUSIONS 

The research question of this thesis was:  Is there a role for SIS to improve MCL healing in a 

realistic injury model at 12 weeks?  The results of this study definitively answer this question 

yes.  With improvement in the tangent modulus it is clear that SIS enhances healing of the MCL 

midsubstance.  However, this improvement did not translate to improved structural properties, 

even though there was a similar amount of healing tissue between the two groups.  This is likely 

indicative of the asynchronous healing of the injured insertion site and ligament midsubstance.  

Therefore in future studies insertion site healing cannot be ignored.  Due to inconclusive results 

the role of SIS in the healing MCL’s vicoelastic properties still needs to be elucidated through 

other methodologies. 

This study also offers information on scaffold design.  Some researchers argue that at 

time zero the scaffold must have the same properties as the native tissue.  This study shows that 

not to be the case--both the mechanical (contact guidance) and chemical factors (growth factors, 

etc.) of SIS help to improve MCL healing.  It is not necessary for a bioscaffold to have the native 

mechanical properties of the tissue, but rather, it must be utilized in an inductive manner rather 

than as a mechanical substitute. 

  These results confirm the feasibility of SIS as a ligament and tendon healing 

enhancement technique.  This is the third study from our research center to show improvement in 

MCL healing with the use of SIS.  This cannot be understated:  SIS affects the local healing 
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response of an MCL, and regardless of injury model, SIS can help the MCL heal.  This 

information is significant as future studies begin investigating the in vivo effect of SIS on the 

injured patellar tendon or ACL. 

7.1 FUTURE DIRECTIONS 

With three studies successfully showing MCL healing enhancement by using a single layer of 

SIS, it is quite clear that this FTE technique has promise in other ligament or tendon injury 

locations.  The patellar tendon after graft harvest and ACL after injury are two that directly come 

to mind.  Both have less than favorable natural healing responses.  SIS could also be used to treat 

the MCL after a joint ACL-MCL injury. 

SIS alone may not be enough to improve the healing response in these locations.  To 

improve upon the scaffold, FTE techniques should be combined and studied first in vitro, and 

then in vivo.  Examples of possible techniques include, but are not limited to:  combining SIS 

with some sort of cell therapy, applying stretching to further align the scaffold, or adding growth 

factors. 

In addition, this study confirms the complex nature of midsubstance and insertion site 

healing and demonstrates that the insertion site cannot be ignored after injury.  It also may be 

possible to treat the insertion sites with FTE techniques as well as the midsubstance. 

Also, given the results of the analytic analysis of the viscoelastic properties of the healing 

tissue in each of the treatment groups, a more rigorous attempt may be needed to fully 

characterize the complex time-and-history dependent nature of the tissue.  As such, it is possible 

that frequency sweep experimental methods or other constitutive models may be necessary. 
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Finally, the most immediate step for future work would be to investigate healing  over 

longer time spans with this current injury model.  As was previously discussed, using this injury 

model, SIS improved the tangent modulus of the tissue, but not the structural properties of the 

bone-ligament-bone complex.  This was due to the particularly vulnerable tibial insertion site in 

many of the treatment group FMTCs.  After the insertion sites are given more time to heal the 

structural properties should improve.  



APPENDIX A 

RAW DATA FOR SPECIFIC AIM 1 

A.1 STRUCTURAL PROPERTIES 

Table A-1. Structural properties of SIS group. 

Weight CSA Stiffness Ult. Load Ult. Elong. En. Abs.
kg mm^2 N/mm N mm N-mm

180-06 3.6 7.66 48.07 55.04 1.78 37.48
181-06 3 5.63 56.83 115.36 2.73 139.09
182-06 4 7.15 72.51 193.75 4.10 419.65
183-06 4 7.25 20.65 31.40 2.23 27.30
184-60 4.1 6.17 66.91 174.35 3.62 283.66
225-06 4.7 8.35 70.17 128.15 2.50 124.36
643-06 4.3 8.22 68.26 207.12 3.93 353.06  

Table B-2. Structural properties of NT experimental group. 

Weight CSA Stiffness Ult. Load Ult. Elong. En. Abs.
kg mm^2 N/mm N mm N-mm

179-06 4.1 8.87 62.93 158.27 3.63 269.76
188-06 4.4 9.96 48.78 213.60 5.18 501.23
226-06 4.1 9.43 66.35 166.83 3.30 238.26
542-06 4.4 7.26 54.56 97.44 2.63 107.95
543-06 4 5.55 65.49 124.48 2.75 123.67
544-06 3.5 5.01 43.86 77.05 2.48 81.55
641-06 4.1 5.5 55.85 125.96 2.93 157.66  

 61 



Table C-3. Structural properties of Sham group 

Weight CSA Stiffness Ult. Load Ult. Elong. En. Abs. Tan. Mod.
kg mm^2 N/mm N mm N-mm MPa

179-06 4.1 2.31 93.41 297.75 4.82 737.37 1695.42
180-06 3.6 3.34 79.29 246.08 3.83 476.67 879.16
181-06 3 3.89 88.76 246.50 4.07 569.14 789.06
182-06 4 2.94 66.38 264.28 4.72 605.23 1427.92
183-06 4 2.92 86.55 269.00 4.47 625.40 807.09
184-60 4.1 3.57 83.78 269.40 4.57 614.68 862.76
188-06 4.4 4.49 77.89 291.51 5.23 768.43 1170.75
225-06 4.7 4.82 99.15 323.05 4.53 737.12 1112.79
226-06 4.1 4.20 86.09 300.68 4.77 727.72 1151.46
542-06 4.4 2.99 101.95 356.70 5.43 1082.02 1538.29
543-06 4 4.37 99.80 343.27 4.57 797.25 1119.99
544-06 3.5 3.82 92.05 218.11 4.92 680.09 797.36
641-06 4.1 3.07 91.02 284.98 4.13 578.34 1674.08
643-06 4.3 3.52 93.62 248.44 4.02 532.28 1130.57  

A.2 MECHANICAL PROPERTIES 

Table D-4. Tangent Modulus of SIS group. 

Tan. Mod. Failure
MPa Mode

180-06 231.50 Tibial insertion
181-06 539.89 Mid.
182-06 428.30 Mid
183-06 62.47 Mid.
184-60 517.48 Tibial insertion
225-06 400.79 Tibial insertion
643-06 305.48 Mid.  
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Table E-5. Tangent Modulus of NT group. 

Tan. Mod. Failure
MPa Mode

179-06 236.1 Mid. @ tib
188-06 178.308 Mid. @ tib
226-06 319.15 Tibial insert
542-06 252.81 Tibial insertion
543-06 343.74 Mid. @ tib
544-06 165.5478 Tibial insertion
641-06 414.8457 Mid. @ tib  

Table F-6. Mechanical properties of Sham group. 

Tan. Mod. Failure
MPa Mode

179-06 1695.4 M. Subst
180-06 879.2 M.Subst
181-06 789.1 F avuls
182-06 1427.9 M.Subst
183-06 807.1 M.Subst
184-60 862.8 F avuls
188-06 1170.7 M. Subst
225-06 1112.8 F avuls
226-06 1151.5 M. Subst
542-06 1538.3 M. Subst
543-06 1120.0 F avuls
544-06 797.4 M. Subst
641-06 1674.1 F avuls
643-06 1130.6 M.Subst  
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APPENDIX B 

RAW DATA FOR SPECIFIC AIM 2 

Table G-1. QLV parameters and percent relaxation of SIS group. 

A B A*B C τ1 τ2 %
180-06 0.81 68.96 56.11 0.124 0.118 1565.8 48.03
181-06 3.63 46.40 168.21 0.163 0.145 375.7 49.87
182-06 2.33 58.31 136.09 0.175 0.134 631.1 51.58
184-06 0.94 105.21 98.84 0.188 0.128 539.8 55.82
225-06 0.78 91.69 71.85 0.218 0.124 545.8 59.76
643-06 2.41 66.02 159.18 0.348 0.111 329.3 67.59  

Table H-2. QLV parameters and percent relaxation of NT group. 

A B A*B C τ1 τ2 %
179-06 1.37 61.32 84.00 0.303 0.115 365.2 65.42
188-06 1.06 48.00 51.07 0.337 0.090 454.5 68.08
226-06 1.40 55.12 77.05 0.195 0.107 576.1 55.92
542-06 0.48 86.47 41.83 0.190 0.111 510.0 57.28
544-06 1.83 42.95 78.67 0.185 0.127 529.0 55.53
641-06 2.85 42.01 119.67 0.148 0.147 491.1 49.13   
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Table I-3. QLV parameters and percent relaxation of Sham group. 

A B A*B C τ1 τ2 %
179-06 10.43 58.58 610.86 0.096 0.144 521.2 37.06%
180-06 9.28 32.08 297.73 0.055 0.141 441.3 23.32%
181-06 9.26 36.27 335.91 0.060 0.143 518.6 26.56%
182-06 6.62 73.04 483.28 0.097 0.161 699.9 37.36%
184-60 2.01 50.94 102.29 0.265 0.090 350.7 60.60%
188-06 2.87 152.62 437.36 0.110 0.135 526.8 39.99%
225-06 7.76 55.01 426.89 0.112 0.123 471.9 38.95%
226-06 8.90 70.49 627.57 0.093 0.131 719.6 34.89%
542-06 3.57 48.53 173.23 0.073 0.145 614.8 31.45%
544-06 19.46 20.08 390.67 0.099 0.113 498.4 36.66%
641-06 7.31 64.67 472.48 0.065 0.173 670.5 28.98%
643-06 19.04 43.52 828.57 0.207 0.075 418.0 54.09%  
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