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Background:  Growth hormone (GH) SNPs are associated with breast cancer and colon 

cancer.  The author investigated the association of prostate cancer with genetic polymorphisms in 

GH SNPs in the Ancillary MrOS study.  Methods:  Included in the current investigation were 

128 men with prostate cancer and 743 healthy men, 65 years of age or older.  SNPs were tested 

in Growth Hormone 1 (GH1, n=4), Growth Hormone Receptors (GHR, n=15), Growth 

Hormone-Releasing Hormone (GHRH, n=4), Growth Hormone-Releasing Hormone Receptors 

(GHRHR, n=10), Ghrelin (GHRL, n=8), and Growth Hormone Secretagogue Receptor (GHSR, 

n=9) genes for an association with prostate cancer risk.  SNPs were selected based on HapMap 

Phase 1 and based on functional variation.  The SNPs were genotyped using Illumina Assay and 

were included if the minor allele frequency was 1% or greater.  Logistic regression analysis was 

used to examine associations, adjusted for age, weight, BMI, truncal % fat, total % fat, and 

diabetes.  Similarly, tests of trends and tests of dominant/recessive effect were performed.  

Results:  After adjusting for potential confounding factors, two GH1 SNPs, one GHR SNP, one 

GHRH SNP, two GHRHR SNPs, one GHRL SNP, and one GHSR SNP showed significant 

associations with prostate cancer risk.  Public Health Significance:  If the relationships 

observed in this study are confirmed, it would justify the investigation of approaches that would 

reduce the activity of GH in those at high risk for prostate cancer.  Conclusions:  The results of 
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the current study suggest that GH SNPs are associated with prostate cancer risk.  This provides 

support for replication of these findings in other studies.   
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1.0  INTRODUCTION 

Prostate cancer is one of the most common cancers of males in developed countries.1  Incidence 

rates of prostate cancer increased in the United States2, Canada3, England and other parts of 

Western Europe4 during the early 1990s due to improved screening tests based on prostate 

specific antigens (PSA).5  Although there has been a decline in prostate cancer incidence since 

19946, it remains a significant public health concern.  The National Cancer Institute estimated 

218,890 men will be diagnosed with and 27,050 men in the U.S. will die of cancer of the prostate 

in 2007.7  The latest SEER statistics stated that in 2003, there were 1,937,807 men alive with a 

history of prostate cancer, and one in six men will be diagnosed with prostate cancer at some 

point in their life.8  In addition, it has been estimated that approximately $8 billion is spent on 

prostate cancer treatment each year in the U.S.9  The impact of prostate cancer on quality of life, 

economic expenditure, and survival is immense and further research is needed to understand the 

etiology of and risk factors for prostate cancer.  

Known risk factors of prostate cancer include age, race/ethnicity, and family history.  

Age is a strong risk factor for prostate cancer and the likelihood of developing prostate cancer 

increases with advancing age.   Incidence and mortality rates increase after the age of 50 10, and 

the probability of being diagnosed with prostate cancer before the age of 40 is 1 in 10,149, 1 in 

28 for men between the ages of 50 and 60, and 1 in 7 for men aged 60 and older.11  

Race/ethnicity is another significant risk factor.  African American men have the highest risk of 
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developing prostate cancer; it tends to be diagnosed at younger ages and the cancer grows faster 

compared to men of other racial/ethnic backgrounds.12  Next, it is most common in Caucasian 

men and is followed by Hispanic and Native American men; men of Asian ancestry are at the 

lowest risk of developing prostate cancer.  Family history of prostate cancer also increases one’s 

risk of developing this disease, especially if a father or brother had prostate cancer.  Several 

epidemiologic / twin studies have shown that hereditary prostate cancer is characterized by early 

onset and autosomal dominant inheritance.13 

Several susceptibility genes for prostate cancer have been identified, such as ELAC2, 

PCAP, RNASEL and HPC1 polymorphisms.14-17  These polymorphisms are not common and the 

genetic influence on prostate cancer is relatively small; rare, highly penetrant polymorphisms in 

these genes probably account for less than 10% of susceptibility in prostate cancer cases.18, 19   

It is likely that more common polymorphisms with a relatively weak effect have a larger 

overall impact on prostate cancer risk because these variants may occur at higher frequencies.  

The combined effect of risk factors – such as race, age, and family history – and genetic factors 

influence the etiology of prostate cancer, making it a multifactorial disease.8  The heterogeneity 

of prostate cancer (i.e. slow- versus fast-growing) makes it difficult to identify genetic factors 

associated with incident cases.  Further research is needed to identify multiple genetic factors 

associated with the etiology of prostate cancer. 
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1.1 GENETICS OF GROWTH HORMONE GENES 

1.1.1 Growth Hormone 1 (GH1)  

Genes associated with growth hormones are of significant interest in cancer research and recent 

data suggests higher levels of growth hormone are associated with increased risk of breast 

cancer20, neuroendocrine tumors21, and colorectal cancer22.  GH1 is transcribed in the 

somatotrophic cells of the pituitary and GH1 is responsible for the release of GH into circulation 

[see figure 1].  The GH1 gene is positioned on chromosome 17q23 and is located in a pituitary-

specific transcription factor binding region, PIT-1.  Transcription of GH1 depends on proximal 

promoter regions that house two binding sites for PIT-1/GH1.  In addition, the proximal region 

of the GH1 gene promoter exhibits a high level of sequence variation with 16 single nucleotide 

polymorphisms (SNPs) within a 535 base-pair region23, and the SNPs significantly influence the 

expression of GH1.24 

However, SNPs located in the promoter region do not fully explain transcription of GH1; 

a transgenic study of human (h)GH expression revealed that the promoter region is not enough to 

initiate gene expression of (h)GH in vivo.25  GH1 expression is also under the influence of a 

locus control region (LCR) which is upstream of the GH1 between 14.5 kb and 32 kb.26  This 

LCR includes several DNase I hypersensitive sites, which are required for the activation of the 

GH1 gene.  Two DNase I hypersensitive sites (I and II) have binding sites for the pituitary 

transcription factor PIT-1 and they are responsible for the expression of the somatotrope 

expression of GH1.27  Building on this, another study found that the LCR increases the activity 

of the proximal promoter of a GH1 haplotype and the effect of a particular proximal promoter 
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haplotype is differentially affected by differing LCR haplotypes.24  The interaction between the 

different LCR and GH1 haplotypes seem to determine the extent to which GH1 is expressed. 

1.1.2 Growth Hormone Receptors (GHR) 

The GHR gene is positioned on chromosome 5p12 and it is present on in most cells. The actions 

of GH are mediated by the binding gh1 to the transmembrane receptor of GHR, which is present 

on the surface of most cells.  Binding of GH1 results in receptor dimerization and activation, and 

a short isoform of the receptor circulates as a binding protein (GHBP); the main function of 

GHBP is to act as a physiological buffer that stabilizes GH in plasma.28  Following dimerization 

and activation, this leads to internalization and down-regulation of GHR and is processed by one 

of two pathways: 1) a small rapid, nondegradative pathway or 2) a slower lysosomal degradative 

pathway.29  A polymorphism of GHR has been identified and it has an effect on GHBP, thereby 

influencing GH in the plasma.  hGHRtr contains a 26-bp deletion, leading to the creation of a 

stop codon at position 280, which truncates approximately 97% of the intracellular domain of 

hGHR.30  After comparing GHR to GHRtr, GHRtr was shown to have a significantly increased 

ability to generate soluble GHBP.31  This association has been found in animal studies (i.e. rat) 

and in studies utilizing human liver cells.32  This suggests that the association between increased 

production of GH and GHR is mediated by GHBP and GHBP is differentially expressed based 

on GHR polymorphisms.  
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1.1.3 Growth Hormone-Releasing Hormone (GHRH), GHRH-Receptors (GHRHR) and 

Somatostatin 

The GHRH gene is on chromosome 20q11 and it is responsible for GHRH, a peptide hormone 

secreted from the hypothalamus.  GHRH stimulates the proliferation of pituitary somatotrophs 

and induces secretion of GH from these cells.  This is accomplished by the binding of GHRH to 

a seven-membrane domain receptor of the somatotropes, namely the GHRH receptor 

(GHRHR).33  In addition to GHRH, somatostatin is another hypothalamic hormone responsible 

for the regulation of GH.  These two hormones have opposing functions, with GHRH stimulating 

the release of GH1 by activating cyclic Amp (cAMP) accumulation and somatostatin inhibiting 

cAMP accumulation.34 

The GHRH-receptor (GHRHR) is on chromosome 7p15 and is present in pituitary cells.35  

Ghrh binds to its receptor on the surface of the pituitary somatotroph cells, the coupling of G 

protein stimulates adenylate cyclase to generate cAMP (cAMP).36  cAMP then stimulates the 

transcription of the PIT1 gene, which stimulates the transcription of GH1 and GHRHR.36, 37  

Antagonists of GHRHR also operate to influence transcription of GH1; antagonists bind to and 

prevent GHRH from binding to GHRHR.38   Therefore, multiple mechanisms are involved in the 

expression of GH of the pituitary. 
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Figure 1. GHRL: ghrelin precursor; GHRH: growth hormone-releasing hormone; GHRHR: growth 

hormone-releasing hormone receptor; SSTR: somatostatin receptor; GHSR: growth hormone secretagogue receptor; 

GH1: growth hormone 1; and GHR: growth hormone receptor. 

1.1.4 Ghrelin precursor (GHRL) and Growth Hormone Secretagogue Receptor (GHSR) 

The GHRL gene is positioned on chromosome 3p25 and the GHSR gene is located on 

chromosome 3q26. The majority of research in this field has identified GHRH and somatostatin 

as the primary regulators of growth hormone secretion; however, recent research reveals a third 

mechanism, GHRL and GHSR, involved in GH secretion [see Figure 2].  GHRL is produced in 

the stomach and is an endogenous ligand for GHSR 39, which is expressed in the pituitary.  

GHRL circulates in human blood at considerable plasma concentrations (120 pmol/g).40  In 

addition, in vitro and in vivo studies of pituitary cells reveal that GHRL acts directly on the 

pituitary by binding with GHRL to release GH.41, 42  Several studies also reveal that GHRL 

stimulates GH release in a dose-dependent manner.33, 43  Identification of pathways that regulate 
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GHRL release in the stomach is not well understood, and further research is needed to elucidate 

this mechanism. 

1.2 THE IMPACT OF GROWTH HORMONE GENES ON CANCER 

1.2.1 Breast Cancer 

Growth hormones (GH) are increasingly implicated in the development of breast cancer; 

however, little is known about the role of GH in cancer and the mechanisms regulating GH 

production.  Several studies show an association between several GH1 SNPs of the proximal 

promoter region and decreased risk of breast cancer44, 45, while another study found no 

association.46  In addition, several GH1 haplotypes have also shown a significant association 

with decreased risk of breast cancer.47, 48  This is of great interest since GH mRNA and GH 

protein have been found at different levels in epithelial cells from normal and malignant breast 

tissue.49  There was greater expression of GH mRNA and greater cellular proliferation in cancer 

cells than normal cells. 

Tissue composition and breast density have significant associations with breast cancer 50, 

51, and recent findings suggest that GH1 polymorphisms are associated with breast density.52  

Mulhall et al. found that GH1-75A homozygotes had a significantly greater percent density, 

larger dense area, and a smaller area of non-dense tissue52, suggesting the role of GH1 on cellular 

proliferation. 

One study found that a GHR haplotype is associated with a significantly decreased risk of 

breast cancer.47  GHR mRNA has been expressed in both epithelial and stromal components of 
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breast tissue, and GHR mRNA expression has been significantly higher in cancer tissue.53  In 

addition, levels of GHR have been reported to have an inverse correlation with tumor grade54, 

and an upregulation of GHR has been found in cancerous breast tissue compared to adjacent 

normal breast tissue.47  This provides evidence of GHR expression in breast cancer and indicates 

a potential role of GHR signaling in breast cancer. 

GHRH mRNA and protein have been found in both normal and malignant breast tissue.55  

One study found that GHRH was detected at a significantly higher ratio in lobular than in ductal 

carcinomas.56  GHRHR mRNA has also been found in breast cancer.57  One study found that 

GHRHR C-261T is associated with a decreased risk of breast cancer48, while such an association 

was absent in another study.46 

1.2.2 Colorectal Cancer 

Recent findings suggest growth hormone may have a role in the development of colorectal 

cancer.  One study shows that expression of the IGF-I gene is regulated primarily by growth 

hormone58, and other studies have shown that IGF polymorphisms are associated with colorectal 

cancer.59, 60  Therefore, it is possible that GH exerts its influence on colorectal cancer through the 

IGF pathway.  One study showed an inverse association with risk of colorectal cancer and a 

gene-dosage effect in a GH1 polymorphism.61  The adjusted means for the level of plasma IGF-I 

and the IGF-I/IGFBP-3 ratio were lower for the GH1 A/A genotype than for the T/T genotype 

(this SNP was not in the present study).61  In addition, GH serum levels are higher in colorectal 

cancer cases62 and GH receptors are expressed in advanced colorectal tumors and at lower levels 

in normal tissues.63 
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1.2.3 Pituitary Carcinomas 

GHSR has been identified in the pituitary and because of this, it is possible that GHRL binds to 

GHSR in the pituitary and stimulates secretion of GH.  GHRL and GHSR expression was 

relatively low in corticotroph tumors and was relatively high in somatotroph tumors compared 

with normal tissue.41  Other studies found no association between GHRL and GHSR and non-

functioning pituitary tumors, yet there was a significant association between GHRL and GHSR 

with somatotroph tumors.21, 64-66  Furthermore, several studies showed a negative correlation 

between GHSR mRNA and GHRL mRNA expression in pituitary tumors21, 66; since the GHSR / 

GHRL is a mechanism that controls secretion of GH from the pituitary, these findings suggest 

that this pathway may be involved in the pathogenesis of pituitary tumors. 

1.2.4 Prostate Cancer 

There is a limited amount of research conducted on growth hormones and risk of prostate cancer.  

Both breast cancer and prostate cancer are affected by hormones; because recent findings suggest 

that GH genes may influence development of breast cancer44, 45, 47, 48 one might also suggest that 

GH genes are involved in the pathogenesis of prostate cancer.  One study found increased 

expression of a GHR mRNA in prostate cancer tissue compared to normal tissue.67  Another 

study found an intense nuclear GHRHR immunoreactivity and cytoplasmic GHRHR mRNA 

expression in the secretory cells of prostate cancer.68  In addition, GHRH and GHRHR mRNA 

co-expression in prostate cancer cell lines is associated with cellular proliferation,69 consistent 

with studies on other cancer types.47, 61  Last, GHRL mRNA has been shown to be involved in 
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cellular proliferation in prostate cancer cells.70  These studies suggest that growth hormone genes 

are associated with cellular proliferation and increased risk of prostate cancer.   

1.2.5 Growth Hormones and Cancer 

Research suggests that GH1 polymorphisms increase proliferation of colonic epithelial cancer 

cells61 and breast cancer cells47; in addition, it has been shown that GHRH agonists inhibit 

growth in breast cancer71 and colorectal cancer.72  Other studies have shown an association 

between growth hormone polymorphisms and increased cellular proliferation in prostate cancer 

cases.69, 70  Research on prostate cancer tissue and growth hormone expression is limited to one 

on GHR67, one on GHRH69, two on GHRHR68, 69 and one on GHRL / GHSR 70.  There were not 

any studies identified that focused on growth hormone polymorphisms.  Therefore, further 

research is needed to understand the impact of growth hormone polymorphisms on prostate 

cancer risk. 

1.3 GROWTH HORMONES, BODY COMPOSITION, DIABETES AND PROSTATE 

CANCER 

Research suggests that anthropometric measures are associated with both increased prostate 

cancer risk and growth hormones.  Several studies have shown taller people to be at increased 

risk of prostate cancer.73, 74  In addition, BMI and obesity are associated with decreased risk of 

prostate cancer;74 however, this relationship is not clear.  Obesity in males is associated with 

lower levels of testosterone75, and higher levels of testosterone are associated with increased risk 
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of prostate cancer.76  Diabetes is also associated with both obesity and decreased levels of 

testosterone.77  Recent studies have reported that impaired insulin action is associated with 

increased fat mass, especially abdominal fat.78 Compared to subjects of normal weight, growth 

hormone levels have been shown to be negatively correlated with age, BMI, and waist 

circumference in a group of obese subjects.79 It could be hypothesized that multiple mechanisms 

(i.e. anthropometric measures, growth hormone levels) are involved in the development of 

prostate cancer.  

The prostate gland is essentially undeveloped until puberty, when an interaction between 

sex and growth hormones induces its development.80  Therefore, it is biologically plausible that 

growth hormones and GH polymorphisms impact cellular proliferation that could lead to prostate 

cancer.  The present study utilized MrOS data collected for an ancillary study of candidate gene 

polymorphisms in pathways which may be related to osteoporosis.  Known functional variants 

were included, and haplotype tagging SNPs were chosen to capture the majority of the variability 

in each candidate gene.  Here we are reporting on the growth hormone pathway in which we 

screened four GH1 SNPs, fifteen GHR SNPs, four GHRH SNPs, ten GHRHR SNPs, 8 GHRL 

SNPs, and 9 GHSR SNPs in men diagnosed with prostate cancer and healthy controls.  I tested 

the hypothesis that growth hormone variants and haplotypes are associated with increased risk of 

prostate cancer independent of body composition measures.  In addition, I investigated the gene-

dose effect and the effect of recessive and dominant genes on prostate cancer risk. 
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2.0  METHODS 

2.1 STUDY POPULATION 

The longitudinal, community-based design of the MrOS study has been published elsewhere.81 

The original sample of MrOS included 5995 men 65 years of age or older recruited between 

March 2000 and April 2002 from six communities in the United States: Birmingham, AL; 

Minneapolis, MN; Pittsburgh, PA; Palo Alto, CA; Portland, OR; and San Diego, CA.  The 

eligible participants of the MrOS cohort were able to walk without the assistance of another 

person, have not had bilateral hip replacement, able to give self-reported consent, attend the 

clinic visit, complete at least the anthropometric, DEXA, and vertebral X-ray procedures, and 

were able to answer a self-administered questionnaire over medical history, physical activity, 

diet, and lifestyle and demographic characteristics.  There were no other exclusion criteria.   

An ancillary study of candidate gene polymorphisms and bone-related variables among 

participants from the Pittsburgh and Minneapolis sites was conducted at the University of 

Pittsburgh.82  A total 2010 participants were recruited at the two study sites.  Of those 

participants, 124 were excluded for being treated for osteoporosis, taking antiandrogen therapy 

or oral corticosteroids.  The number of minorities at these two sites was small; therefore, 92 

minority race participants were not genotyped.  Due to budgetary constraints and sample size 

considerations, a random sample of the remaining 1794 participants at these sites was chosen to 
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arrive at the final sample of 871.  This sample included 74 men reporting prostate cancer at 

baseline, and 54 incident prostate cancer cases, resulting in 128 prostate cancer cases and 743 

healthy controls (see Figure 3).  Eligible participants had a mean age of 71.9 years (age range: 

65-94). 

2010 Participants at the Pittsburgh and 
Minneapolis site

92 minorities excluded1918 participants 

124 treated for osteoporosis, 
taking antiandrogen therapy or 
oral corticosteroids were 
excluded 

5995 MrOS Participants

1794 participants eligible for 
genotyping

923 participants not genotyped871 participants randomly selected

128 Cases (54 incident 
and 74 prevalent)

743 Controls

 

 

Figure 2. Study Flow Chart 

2.2 MEASURES 

2.2.1 Baseline Characteristics. 

The primary MrOS study collected numerous characteristics of personal and medical history.  A 

structured interview collected information on age, diabetes diagnosis, medications and medical 
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history, and prostate disease.  Current body weight, height, and body composition measures were 

taken at baseline by an examiner using standard equipment. Weight was determined using the 

balance beam scale.  The Harpenden stadiometer was used to measure height.  Two different 

height measurements were collected; two additional measurements were taken if the difference 

between measurement 1 and measurement 2 was ≥ 4 mm.  DEXA scanners were utilized to 

determine body composition, total fat, and truncal fat. 

2.2.2 Prostate Cancer and Prostate Symptoms 

Prevalent prostate cancer cases were determined at baseline in the self-administered 

questionnaires.  Yearly follow-ups consisted of a questionnaire to obtain information about 

incident prostate biopsies and incident prostate cancer.  Permission was granted for study 

personnel to review medical records for incident cases concerning PSA levels, Gleason scores, 

tumor stage and grade and type of treatment.  The information about the diagnosis was centrally 

reviewed and adjudicated. 

2.3 SNP SELECTION 

SNPs were selected from 374 physiologically defined candidate genes by generating a reference 

SNP panel from the International HapMap database (Phase I) in the gene region (10kb 

downstream and 30kb upstream).  Tag SNPs were selected if they had minor allele frequency 

(MAF) ≥5% using a pairwise correlation method (r² ≥0.80).83  In addition, functional variation 

was also targeted if there was: 1) non-synonymous coding SNPs with a reported MAF >1%; or 



15 

2) SNPs abolished or created new transcription factor binding sites or altered an exon splice 

enhancer site (MAF > 2%). 

2.4 GENOTYPING PROCEDURES 

DNA from frozen whole blood specimens was extracted using Qiagen’s Flexigene protocol.  

High quality, genomic DNA samples were selected for genotyping on the Illumina Golden Gate 

Assay platform at the University of Pittsburgh’s Genomics and Proteomics Core Facility.  37 

patient samples were genotyped in duplicate and 4 internal controls were included per plate to 

ensure reproducibility.  A 100% reproducibility rate among the internal controls and a 99.9% 

reproducibility rate among replicate patient samples was observed.    

Loci which had a minor allele frequency less than 1%, did not conform to Hardy-

Weinberg equilibrium, or had a low call rate were not included in analysis.  Hardy-Weinberg 

was assessed for the total sample, and was also assessed separately for cases and controls.  ,026 

SNPs in 368 gene regions meeting these stringent quality control criteria were included in the 

final analysis.  Individual samples with a low call rate or that were highly correlated with another 

(indicating relatedness) were excluded from the analysis.  In total, 871 unique participant 

samples were used for the final analysis. 
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2.5 STATISTICAL ANALYSIS 

Differences in demographic characteristics, selected variables, and distribution of genotypes 

across polymorphisms of GH1, GHR, GHRH, GHRHR, GHRL and GHSR between cases and 

controls were assessed using the χ2 test (for categorical variables) and student t-test (for 

continuous variables).  The association between GH1, GHR, GHRH, GHRHR, GHRL and 

GHSR polymorphisms and prostate cancer risk were estimated by determining the ORs and 95% 

CIs from multivariate logistic regression analyses.   Multivariate models assessed the impact of 

dominant gene effect and dose effect on prostate cancer risk.  Multivariate models were further 

adjusted for other potentially confounding factors, such as age, weight, height, BMI, trunk % fat, 

total % fat, and diabetes.   SAS/Genetics and Haploview were used to test for Hardy-Weinberg 

Equilibrium (HWE), Linkage Disequilibrium (LD), and tests of trends.   All SNPs were tested 

for conformation with Hardy-Weinberg expectations in both the Pittsburgh site and the 

Minneapolis site.  Allele and genotype association was calculated using χ² and trend tests.  

Linkage disequilibrium (LD) was calculated using SAS/Genetics and Haploview.  Both 

Lewontin’s D and r² values were used to assess LD.  Haplotype analysis was also completed 

using SAS/Genetics.  HAPLOVIEW was used to double-check haplotype frequencies.  Global 

tests of association were performed on haplotype analysis; individual haplotype analysis were 

preformed if the global test is significant.   A p-value of < 0.05 indicated significant results for 

all analyses.  All the statistical analyses were performed with SPSS, SAS, or Haploview 

software. 
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3.0  RESULTS 

3.1 BASELINE CHARACTERISTICS 

Table 1 shows relevant characteristics of the subjects by case-control status.  Cases with prostate 

cancer and controls were similar in weight, height, BMI, trunk % fat, total % fat, and diabetes.  

Combined and prevalent cases were older than control subjects.  The study sample (n=871) had a 

higher BMI at baseline compared to white subjects not selected for genotyping from the 

Pittsburgh and Minneapolis sites (n=1047; p=0.01; data not shown).  

 
 
Table 1.  Baseline Characteristics 

 

 Total 
Sample 
(n=871) 

Controls 
(n=743) 

Combined 
Cases (n=128) 

Prevalent 
Cases 
(n=74) 

Incident Cases 
(n=54) 

Age, mean years (SD) 73.6 (5.8) 73.3 (5.7) 75.3 (5.5)* 76.0 (5.2)** 74.2 (5.9) 
Weight, mean kg (SD) 85.32 (14.1) 85.5 (14.1) 84.4 (14.1) 84.4 (13.2) 84.3 (15.3) 
Height, mean cm (SD) 173.5 (6.7) 173.6 (6.8) 173.3 (6.5) 174.2 (6.9) 172.2 (5.7) 
BMI, mean kg/m2 (SD) 28.3 (4.1) 28.3 (4.2) 28.0 (3.7) 27.7 (3.3) 28.3 (4.1) 
Trunk % Fat, mean (SD) 29.3 (6.0) 29.3 (6.1) 29.6 (5.3) 29.8 (4.7) 29.4 (6.2) 
Total % Fat, mean (SD) 26.9 (5.3) 26.9 (5.4) 26.9 (4.8) 27.0 (4.6) 26.8 (5.3) 
Diabetes, N (%) 110 (12.6) 97 (13.1) 13 (10.2) 7 (9.5) 6 (11.1) 
*p-value = 0.001; **p-value < 0.001 (ANOVA p-values) 
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3.2 ASSOCIATIONS BETWEEN GH SNPS AND BASELINE CHARACTERISTICS 

SNPs were included in the present analysis if there were significant associations with cases (e.g., 

combined, prevalent, or incident) and controls (See Table 6 in Appendix B).  Nine of the 50 GH 

SNPs were significant in one or more of the categories listed above and entered subsequent 

analysis.  Various SNPs are associated with baseline characteristics (See Table 7 in Appendix C).   

Age is associated with GHRH SNP 1 (p=0.04) in the total study sample and with GH1 SNP 1 

(p=0.03) and GHRH SNP 1 (p=0.01) in controls (data not shown).  Weight is associated with 

GHRHR SNP 9 (p=0.04) in the total sample, with GHRHR SNP 10 (p=0.02) in cases (data not 

shown), and with GHRHR SNP 9 (p=0.03) in controls (data not shown).  Height is associated 

with GHRHR SNP 9 (p=0.005) and GHRL SNP 7 (p=0.008) in the total sample and with 

GHRHR SNP 9 (p=0.005) and GHRL SNP 7 (p=0.01) in controls (data not shown).  BMI is 

associated with GHRHR SNP 10 (p=0.03) in cases (data not shown).  Trunk % fat is associated 

with GHRHR SNP 10 (p=0.04) in controls (data not shown).  Total % fat is associated with GHR 

SNP 9 (p=0.03) in controls (data not shown).  Diabetes is associated with GHRL SNP 7 

(p=0.008) in the total sample and with GHRH SNP 9 (p=0.005) in cases (data not shown). 

3.3 HARDY-WEINBERG EQUILIBRIUM  

Hardy-Weinberg Equilibrium (HWE) was assessed for allele frequencies for all SNPs in the 

study for the total sample, by case-control status and by site (Pittsburgh vs. Minneapolis).  The 

SNPs that were included in the final analysis are in HWE in the total sample; GHRL SNP 7 is 

not in HWE for controls and GH1 SNPs 1 and 2 are not in HWE for cases (See Table 8 in 
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Appendix D).  GHRHR SNP 10 (χ² 9.89; p=0.002) was not consistent with HWE for the 

Minneapolis site (data not shown). 

 

Table 2. Allelic frequencies of cases and controls 

 

Gene, N (%) Total Sample 
(n=871) 
N (%) 

Controls 
(n=743) 
 
N (%) 

Combined 
Cases  
(n=128) 
N (%) 

Prevalent Cases 
(n=74) 
N (%) 

Incident  
Cases 
(n=54) 
N (%) 

GH1 SNP 1 (rs2854184) 
   1 1131 (0.65) 944 (0.64) 187 (0.73) 108 (0.73) 79 (0.73) 
   2 603 (0.35) 534 (0.36) 69 (0.27) 40 (0.27) 29 (0.27) 
χ² p-value   p=0.004 p=0.03 p=0.05 
GH1 SNP 2 (rs2070776) 
   1 1128 (0.65) 947 (0.64) 181 (0.71) 97 (0.65) 76 (0.70) 
   2 614 (0.35) 539 (0.36) 75 (0.29) 51 (0.34) 32 (0.30) 
χ² p-value   p=0.03 p=0.08 p=0.16 
GHR SNP 2 (rs10473282) 
   1 1160 (0.66) 1004 (0.67) 156 (0.61) 97 (0.65) 59 (0.55) 
   2 582 (0.34) 482 (0.32) 100 (0.39) 51 (0.34) 49 (0.45) 
χ² p-value   p=0.91 p=0.62 p=0.005 
GHR SNP 9 (rs12233949) 
   1 1254 (0.72) 1069 (0.72) 185 (0.72) 107 (0.72) 78 (0.72) 
   2 488 (0.28) 417 (0.28) 71 (0.28) 41 (0.28) 30 (0.28) 
χ² p-value   p=0.91 p=0.93 p=0.95 
GHRH SNP 1 (rs2050093) 
   1 1411 (0.81) 1214 (0.82) 197 (0.77) 117 (0.79) 80 (0.74) 
   2 329 (0.19) 270 (0.18) 59 (0.23) 31 (0.21) 28 (0.26) 
χ² p-value   p=0.07 p=0.41 p=0.04 
GHRHR SNP 9 (rs4988498) 
   1 1647 (0.95) 1413 (0.95) 234 (0.93) 132 (0.90) 102 (0.96) 
   2 85 (0.05) 67 (0.05) 18 (0.07) 14 (0.10) 4 (0.04) 
χ² p-value   p=0.07 p=0.007 p=0.72 
GHRHR SNP 10 (rs740336) 
   1 1704 (0.98) 1459 (0.98) 245 (0.96) 143 (0.97) 102 (0.94) 
   2 36 (0.02) 25 (0.02) 11 (0.04) 5 (0.03) 6 (0.06) 
χ² p-value   p=0.007 p=0.14 p=0.004 
GHRL SNP 7 (rs35668) 
   1 1049 (0.60) 878 (0.59) 171 (0.67) 105 (0.71) 66 (0.61) 
   2 691 (0.40) 606 (0.41) 85 (0.33) 43 (0.29) 42 (0.39) 
χ² p-value   p=0.02 p=0.005 p=0.69 
GHSR SNP 4 (rs2922126) 
   1 1167 (0.67) 1001 (0.67) 166 (0.65) 107 (0.72) 59 (0.55) 
   2 573 (0.33) 483 (0.33) 90 (0.35) 41 (0.23) 49 (0.45) 
χ² p-value   p=0.41 p=0.23 p=0.006 
Notes: χ² p-values for cases vs. controls; 1: the dominant allele, and 2: the recessive allele; GH1: growth 
hormone 1 SNPs; GHR: growth hormone receptors SNPs; GHRH: growth hormone-releasing hormone 
SNPs; GHRHR: GHRH-receptor SNPs; GHRL: ghrelin precursor SNPs; GHSR: growth hormone 
secretagogue receptor SNPs. 
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3.4 ASSOCIATIONS OF GH SNPS AND PROSTATE CANCER 

Table 6 in Appendix A contains descriptive analysis and tests of trends for 9 GH SNPs that 

entered analysis.  Tests of allelic association and prostate cancer risk for the GH SNPs are shown 

in Table 2.  The associations between GH SNPs and prostate cancer risk are shown in Table 3.  

Test of dominant effect and recessive effect are shown in Tables 4 and 5, respectively.  All 

logistics regression models were adjusted for age, weight, height, BMI, trunk % fat, total % fat 

and diabetes.   

3.4.1 GH1 SNP1 

Chi-square statistics show that GH1 SNP 1 is associated with combined prostate cancer cases 

compared to controls.  Combined cases had a significantly higher frequency of the common 

homozygote compared to controls with frequencies of 57% and 45%, respectively.  In addition, 

tests of trends (dose effect) were significant for combined and prevalent cases compared to 

controls, with p-values of 0.009 and 0.04, respectively.  The test of trend for incident cases 

compared to controls was marginally significant (p=0.08).  Tests of association between alleles 

and case-control status reveal that combined cases and prevalent cases had a statistically 

significant greater frequency (both are 73%) of the dominant allele compared to controls (64%).  

The test of allelic association was borderline significant for incident cases (p=0.05), in which 

73% of cases had the dominant allele compared to 64% controls.   

Homozygote carriers of the rare GH1 SNP 1 were associated with decreased prostate 

cancer risk in the combined case-control group (OR, 0.50; p=0.027).  Tests for dominant effect 

revealed significant associations.  Combined heterozygote and rare homozygote carriers of GH1 
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SNP 1 were associated with decreased risk of prostate cancer in the combined case-control group 

(OR, 0.62; p=0.02) and in the prevalent case-control group (OR, 0.60; p=0.04). 

3.4.2 GH1 SNP 2 

Chi-squared statistics for GH1 SNP 2 showed a significant association between combined and 

prevalent cases compared to controls.  The frequency of the common homozygote for combined 

cases, prevalent cases and controls was 54.7%, 55.4%, and 41.2%, respectively.  The test of 

trend for combined cases compared to controls was significant (p=0.03).  The frequency of the 

dominant allele was statistically different in combined cases (71%) and controls (64%; p=0.03). 

Heterozygote carriers of GH1 SNP 2 were associated with decreased prostate cancer risk 

(OR, 0.49; p=0001) in the combined case-control group.  Heterozygote carriers of GH1 SNP 2 

were associated with decreased risk of prostate cancer in the prevalent case-control (OR, 0.46; 

p=0.006).  Tests for dominant effect of GH1 SNP 2 revealed significant associations for risk of 

prostate cancer.  Combined heterozygote and rare homozygote carriers of GH1 SNP 2 were 

associated with decreased risk of prostate cancer in the combined case-control group (OR, 0.54; 

p=0.002) in the prevalent case-control group (OR, 0.52; p=0.01), and in the incident case-control 

group (OR, 0.55; p=0.04). 

3.4.3 GHR SNP 2  

GHR SNP 2 was associated with prostate cancer in incident cases compared to controls.  GHR 

SNP 2 common homozygotes have a frequency of 31.5% and 48.9% for incident cases and 

controls, respectively.  Heterozygotes have a frequency of 46.3% and 37.4% for incident cases 
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and controls, and rare homozygotes have a frequency of 22.2% and 13.7% for incident cases and 

controls, respectively. The test of trend for incident cases compared to controls was significant 

(p=0.01).  The test for allelic association was significant for cases and controls, with a higher 

frequency of incident cases with the dominant allele than controls (p=0.005). 

Heterozygote carriers of GHR SNP 2 were associated with increased prostate cancer risk 

in the incident case-control group (OR, 2.05; p=0.03).  Rare homozygote carriers of GHR SNP 2 

were associated with increased risk of prostate cancer in the incident case-control group (OR, 

2.72; p=0.01).  In the test for dominant effect, combined heterozygote and rare homozygote 

carriers of GHR SNP 2 were associated with increased risk of prostate cancer in the incident 

case-control group (OR, 2.22; p=0.01). 

3.4.4 GHR SNP 9 

Chi-squared statistics for GHR SNP 9 showed a significant association between prevalent cases 

and controls.  The frequency of the heterozygote SNP is 50.0% and 38.1% for prevalent cases 

and controls, respectively.  However, logistic regression analysis did not show a significant 

relationship between GHR SNP 9 and prostate cancer risk. 

3.4.5 GHRH SNP 1 

Chi-squared statistics for GHRH SNP1 had significant associations for combined and incident 

cases compared to controls.  The frequency of the rare homozygote is 7.8%, 9.3%, and 3.1% for 

combined cases, incident cases, and controls.  Tests of trends were marginally significant for 

combined cases (p=0.07) and incident cases (p=0.05) compared to controls.  There is a 
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statistically higher frequency of the recessive allele for incident cases (26%) compared to 

controls (18%; p=0.04).  Rare homozygote carriers of GHRH SNP 1 were associated with 

increased prostate cancer risk in the combined case-control group (OR, 2.34; p=0.04). 

3.4.6 GHRHR SNP 9  

GHRHR SNP 9 rare homozygotes were collapsed into the category of heterozygotes due to small 

sample size (n=2).  The frequency of heterozygote carriers of GHRHR SNP 9 was significantly 

higher in prevalent cases (16.4%) compared to controls (9.1%); and there was a significant gene-

dose effect (ptrend =0.007) for prevalent cases compared to controls.  The frequency of the 

recessive allele was statistically different in prevalent cases (10%) compared to controls (0.05; 

p=0.007).  Carriers of GHRHR SNP 9 were associated with increased risk of prostate cancer in 

the prevalent case-control group (OR, 2.12; p=0.033). 

3.4.7 GHRHR SNP 10 

GHRHR SNP 10 rare homozygotes were collapsed into the category of heterozygotes due to a 

small sample size (n=1).  Heterozygotes had a frequency of 7.8%, 9.3%, and 3.4% for combined 

cases, incident cases, and controls, respectively, and these associations were statistically 

significant.  The frequency of the recessive allele was statistically different in combined cases 

(4%; p=0.007) and incident cases (6%; p=0.004) compared to controls (2%).  Carriers of 

GHRHR SNP 10 were associated with increased prostate cancer risk in the combined case-

control group (OR, 2.81; p=0.011) and in the incident case-control group (OR, 3.69; p=0.014). 
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3.4.8 GHRL SNP 7 

Chi-squared statistics for GHRL SNP 7 showed a significant association between cases 

compared to controls.  The frequency of the common homozygote for combined cases, prevalent 

cases and controls was 57.8%, 60.8%, and 45.3%, respectively.  The test of trend for prevalent 

cases compared to controls was significant (p=0.02).  The frequency of the dominant allele was 

significantly higher in combined cases (67%; p=0.02) and prevalent cases (71%; p=0.005) 

compared to controls (59%).   Heterozygote carriers of GHRL SNP 7 were associated with 

decreased risk of prostate cancer in the combined case-control group (OR, 0.50; p=0.008) and in 

the incident case-control group (OR, 0.44; p=0.04).  A similar association was marginally 

significant in the prevalent case-control group (OR, 0.54; p=0.05).  In the test for dominant 

effect, combined heterozygote and rare homozygote carriers were associated with decreased 

prostate cancer risk in the combined case-control group (OR, 0.62; p=0.01) and in the prevalent 

case-control group (OR, 0.56; p= 0.02).     

3.4.9 GHSR SNP 4 

Chi-squared statistics showed a significant association between GHSR SNP 4 and case-control 

status.  The frequency of the rare homozygote is 22.2% and 10.1% for incident cases and 

controls, respectively.  The test of trend (gene-dose effect) for incident cases compared to 

controls was significant (p=0.006).  The frequency of the recessive allele was statistically 

different for incident cases (45%; p=0.006) compared to controls (33%). 

  Heterozygote carriers of GHSR SNP 4 were associated with decreased risk of prostate 

cancer in the prevalent case-control group (OR, 0.53; p=0.02).  In addition, the test for dominant 
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effect showed that combined heterozygote and rare homozygote GHSR SNP 4 carriers have a 

decreased risk in the prevalent case-control group (OR, 0.57; p=0.03).  Furthermore, rare 

homozygote carriers of GHSR SNP 4 were associated with increased prostate cancer risk in the 

incident case-control group (OR, 3.00; p=0.006).  The test for recessive effect showed that 

homogygote rare carriers of GHSR SNP 4 were associated with decreased prostate cancer risk in 

the incident case-control group (OR, 2.48; p=0.01). 
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Table 3. Logistic regression models. 

Total Sample  
Frequency 
(n=871) 

Cases and 
Controls 
 

Prevalent 
Cases and 
Control 

Incident 
Cases and  
Controls 

SNP  OR (p-value) OR (p-value) OR (p-value) 
GH1 SNP 1 (rs2854184) 
   0 411 1.00 1.00 1.00 
   1 309 0.68 (0.08) 0.63 (0.09) 0.77 (0.41) 
   2 147 0.50 (0.027) 0.56 (0.13) 0.42 (0.08) 
GH1 SNP 2 (rs2070776) 
   0 376 1.00 1.00 1.00 
   1 376 0.49 (0.001) 0.46 (0.006) 0.54 (0.05) 
   2 119 0.69 (0.22) 0.73 (0.40) 0.61 (0.29) 
GHR SNP 2 (rs10473282) 
   0 416 1.00 1.00 1.00 
   1 328 1.28 (0.26) 0.91 (0.73) 2.05 (0.03) 
   2 127 1.71 (0.05) 1.24 (0.53) 2.72 (0.01) 
GHR SNP 9 (rs12233949) 
   0 457 1.00 1.00  1.00  
   1 340 1.25 (0.27) 1.44 (0.15) 1.00 (0.99) 
   2 74 0.68 (0.34) 0.33 (0.14) 1.03 (0.95) 
GHRH SNP 1 (rs2050093) 
   0 574 1.00 1.00  1.00  
   1 263 1.19 (0.42) 1.09 (0.75) 1.34 (0.34) 
   2 33 2.34 (0.04) 2.23 (0.13) 2.61 (0.09) 
GHRHR SNP 9 (rs4988498)* 
   0 783 1.00 1.00  1.00  
   1 81 1.29 (0.43) 1.73 (0.14) 0.79 (0.66) 
   2 2 - - - 
GHRHR SNP 9 (rs4988498)* 
   0 783 1.00 1.00  1.00  
   1 83 1.49 (0.19) 2.12 (0.033) 0.79 (0.66) 
GHRHR SNP 10 (rs740336)* 
   0 835 1.00 1.00  1.00  
   1 34 2.53 (0.026) 2.34 (0.11) 2.90 (0.06) 
   2 1 - - - 
GHRHR SNP 10 (rs740336)* 
   0 835 1.00 1.00  1.00  
   1 35 2.81 (0.011) 2.34 (0.11) 3.69 (0.014) 
GHRL SNP 7 (rs35668) 
   0 410 1.00 1.00  1.00  
   1 231 0.76 (0.24) 0.57 (0.08) 1.08 (0.80) 
   2 229  0.50 (0.008) 0.54 (0.05) 0.44 (0.04) 
GHSR SNP 4 (rs2922126) 
   0  392 1.00 1.00  1.00  
   1 383 0.80 (0.29) 0.53 (0.02) 1.41 (0.29) 
   2 95 1.39 (0.26) 0.77 (0.54) 3.00 (0.006) 
Notes: OR: odds ratio; 0: the common homozygote; 1: the heterozygote; and 2: the homozygous rare.  
GH1: growth hormone; GHR: growth hormone receptor; GHRH: growth hormone-releasing hormone; 
GHRHR: GHRH receptor; GHRL: ghrelin; GHSR: growth hormone secretagogue receptor.  Models 
adjusted for: age, weight, height, BMI, trunk % fat, total % fat, and diabetes. 



27 

 

Table 4.  Test for dominant effect of GH SNPs 

 

 Total Sample  
Frequency 
(n=871) 

Cases and 
Controls 

Prevalent 
Cases and 
Control 

Incident 
Cases and  
Controls 

SNP  OR (p-value) OR (p-value) OR (p-value) 
GH1 SNP 1 (rs2854184) 
   0  411 1.00 1.00 1.00 
   1 456 0.62 (0.02) 0.60 (0.04) 0.66 (0.14) 
GH1 SNP 2 (rs2070776) 
   0  376 1.00 1.00 1.00 
   1 495 0.54 (0.002) 0.52 (0.01) 0.55 (0.04) 
GHR SNP 2 (rs10473282) 
   0  416 1.00 1.00 1.00 
   1 455 1.39 (0.09) 0.99 (0.97) 2.22 (0.01) 
GHR SNP 9 (rs12233949) 
   0  457 1.00 1.00 1.00 
   1 414 1.14 (0.50) 1.24 (0.39) 1.01 (0.98) 
GHRH SNP 1 (rs2050093) 
   0  574 1.00 1.00 1.00 
   1 296 1.31 (0.18) 1.21 (0.46) 1.48 (0.18) 
GHRHR SNP 9 (rs4988498) 
   0  783 1.00 1.00 1.00 
   1 83 1.49 (0.19) 2.12 (0.03) 0.79 (0.66) 
GHRHR SNP 10 (rs740336) 
   0  835 1.00 1.00 1.00 
   1 35 2.81 (0.011) 2.34 (0.11) 3.69 (0.014) 
GHRL SNP 7 (rs35668) 
   0  410 1.00 1.00 1.00 
   1 460 0.62 (0.01) 0.56 (0.02) 0.74 (0.28) 
GHSR SNP 4 (rs2922126) 
   0  392 1.00 1.00 1.00 
   1 478 0.90 (0.61) 0.57 (0.03) 1.70 (0.08) 
 
Notes: OR: odds ratio; 1: the heterozygote and the homozygous rare, 0: the common 
homozygote; GH1: growth hormone 1 SNPs; GHR: growth hormone receptors SNPs; GHRH: 
growth hormone-releasing hormone SNPs; GHRHR: GHRH-receptor SNPs; GHRL: ghrelin 
precursor SNPs; GHSR: growth hormone secretagogue receptor SNPs.  All Models were 
adjusted for the following: age, weight, height, BMI, trunk % fat, total % fat, and diabetes. 
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Table 5.  Test for recessive effect of GH SNPs 

 

 Total Sample  
Frequency 
(n=871) 

Cases and 
Controls 

Prevalent 
Cases and 
Control 

Incident 
Cases and  
Controls 

SNP  OR (p-value) OR (p-value) OR (p-value) 
GH1 SNP 1 (rs2854184) 
   0  720 1.00 1.00 1.00 
   1 147 0.59 (0.07) 0.68 (0.30) 0.47 (0.12) 
GH1 SNP 2 (2070776) 
   0  752 1.00 1.00 1.00 
   1 119 0.94 (0.82) 0.1.02 (0.96) 0.80 (0.62) 
GHR SNP 2 (rs10473282) 
   0  744 1.00 1.00 1.00 
   1 127 1.52 (0.09) 1.29 (0.44) 1.87 (0.07) 
GHR SNP 9 (rs12233949) 
   0  797 1.00 1.00 1.00 
   1 74 0.60 (0.22) 0.28 (0.08) 1.03 (0.95) 
GHRH SNP 1 (rs2050093) 
   0  837 1.00 1.00 1.00 
   1 33 2.18 (0.06) 2.17 (0.14) 2.32 (0.14) 
GHRHR SNP 9 (rs4988498)* 
   0  864 1.00 1.00 1.00 
   1 2 - - - 
GHRHR SNP 10 (rs740336)* 
   0  869 1.00 1.00 1.00 
   1 1 - - - 
GHRL SNP 7 (rs35668) 
   0  639 1.00 1.00 1.00 
   1 231 0.94 (0.77) 0.68 (0.23) 1.38 (0.29) 
GHSR SNP 4 (rs2922126) 
   0  775 1.00 1.00 1.00 
   1 95 1.55 (0.11) 1.03 (0.95) 2.48 (0.01) 
 
Notes: OR: odds ratio; 0: the common homozygote and the heterozygote, 1: the homozygous 
rare; GH1: growth hormone 1 SNPs; GHR: growth hormone receptors SNPs; GHRH: growth 
hormone-releasing hormone SNPs; GHRHR: GHRH-receptor SNPs; GHRL: ghrelin 
precursor SNPs; GHSR: growth hormone secretagogue receptor SNPs.  All Models were 
adjusted for the following: age, weight, height, BMI, trunk % fat, total % fat, and diabetes.   
* Recessive models could not be performed due to small frequency of homozygous rare. 
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3.5 HAPLOTYPE ANALYSIS 

Using SNP data, haplotype frequencies for prostate cancer cases and controls were calculated 

(Figures 4-6).  Global tests of significance did not show any associations between GH haplotypes 

and prostate cancer risk in this study; therefore, individual haplotype block analysis was not 

performed. 

SNPs

GH1 Cases GH1 Controls

χ² 24.2, p-value=0.06

GHR Cases GHR Controls

χ² 85.1, p-value=1.00

Major Allele

Minor Allele
 

 

Figure 3. GH1 and GHR haplotype frequency estimates for prostate cancer cases and controls 
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SNPs

GHRH Cases GHRH Controls

χ² 8.75, p-value=0.89

GHRHR Cases GHRHR Controls

χ² 91.9, p-value=1.00Major Allele

Minor Allele
 

 

Figure 4.  GHRH and GHRHR haplotype frequency estimates for prostate cancer cases and controls 

SNPs

GHRL Cases GHRL Controls

χ² 21.3, p-value=1.00

GHSR Cases GHSR Controls

χ² 43.9, p-value=1.00
Major Allele

Minor Allele
 

Figure 5.  GHRL and GHSR haplotype frequency estimates for prostate cancer cases and controls 
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3.6 FUNCTIONAL VARIATION 

Inclusion of SNPs targeted for functional variation.  GHRHR SNP 10 was the only SNP in the 

present analysis to be included based on functional variation; it showed variation with missense 

mutations and alternative splicing (Appendix F Table 12).  GHRHR SNP 9 had similar results.  

In addition, the NCBI SNP database also revealed functional variation in 25 of the 50 GH SNPs. 
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4.0  DISCUSSION 

Although expression of GHR, GHRH, GHRHR, and GHRL has been previously demonstrated in 

different studies66-70 investigating its role in prostate cancer tissue compared to normal tissue, 

this is the first study to report the association of polymorphisms in genomic growth hormone 

genes (GH1, GHR, GHRH, GHRHR, GHRL and GHSR) and prostate cancer risk.   

The results reveal that 8 GH SNPs (out of the 50 SNPs genotyped) are associated with   

prostate cancer risk.  GH1 SNP 1, GH1 SNP 2, and GHRL SNP 7 showed a decreased frequency 

of the recessive allele in cases compared to control, and the frequency of the heterozygote 

genotype also had a decreased frequency in cases compared to controls.  GH1 SNP 2 and GHRL 

SNP 7 showed a significantly decreased risk of prostate cancer for the heterozygote carriers, and 

GH1 SNP 1 showed a significantly decreased risk of prostate cancer for the rare homozygote 

carriers.  Of these SNPs, GH1 SNP 2 and GHRL 7 had the strongest association with prostate 

cancer.  It should be noted that GH1 SNP 1 and GH1 SNP 2 were in HWE for controls, but not 

for cases.   

As described above, GHR SNP 2 was associated with increased risk of prostate cancer.  

A recent study found an association between a GHR haplotype and increased prostate cancer 

risk.91  McKay et al. investigated the 92 GHR SNPs in the haplotype analysis, and the haplotype 

block that was significantly related to prostate cancer risk contained GHR SNP 2.  These findings 

were based on a larger sample size (cases, n =2,863; controls, n=1,737) and this strengthens the 
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results from the present study.  Haplotype analysis was completed in the present study, but the 

findings were not significant.   

GHR SNP 2, GHRH SNP 1, GHRHR SNP 9, and GHRHR SNP 10 showed an increased 

frequency of the recessive allele in cases compared to controls.  The frequency of heterozygote 

and rare homozygote carriers of GHR SNP 2, GHRHR SNP 9, and GHRHR SNP 10 were higher 

in cases compared to controls.  The frequency of rare homozygote carriers of GHRH SNP 1 was 

higher in cases compared to controls.  In addition, GHR SNP 2, GHRHR SNP 9, and GHRHR 

SNP 10 showed an increased risk of prostate cancer for heterozygote carriers, and GHR SNP 2 

and GHRH SNP 1 showed an increased risk of prostate cancer for rare homozygote carriers.      

Although these 8 GH SNPs were associated with prostate cancer risk, there were some 

differences in association between the different case groups (e.g., combined, prevalent, and 

incident) and controls.  GH1 SNP 1, for example, was associated with prostate cancer risk in the 

combined case-control group, whereas GH1 SNP 2 was associated with prostate cancer risk in 

combined and prevalent case-control groups.  However, these are two independent groups of 

cases, and it provides evidence for replication of these findings in other study populations.    

GHSR SNP 4 showed mixed results between the different groups.  Heterozygote carriers 

of GHSR SNP 4 showed a significant decrease in prostate cancer risk in the prevalent case-

control group, whereas the opposite effect was found in the incident case-control group, which 

showed a non-significant increase in prostate cancer risk.  Likewise, rare homozygote carriers 

showed an increased risk of prostate cancer in the incident case-control group, whereas the 

prevalent case-control group showed a non-significant decrease in risk.  There are several 

possibilities for these mixed results.  It is possible that these findings are false positive and a 

larger sample size with more cases would provide greater insight on these specific findings.  In 
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addition, this gene may be associated with more aggressive cases resulting in a survival bias.  

Last, there are differences in ascertainment of case status in prevalent versus incident groups.  

Prevalent cases reported a history of prostate cancer at the baseline self-report questionnaire, and 

incident cases reported prostate cancer incidence at yearly follow-ups, with corroborating data 

from medical records.       

In addition, there were associations of baseline characteristics with GH SNPs (See Table 

7 in Appendix C).  However, these SNPs (with the exception of GHR SNP9) remained 

significantly associated with prostate cancer risk after adjustment for the baseline characteristics.  

The results suggest that GH genotypes influence risk of prostate cancer independently of an 

effect of age, diabetes and body composition.   

The ancillary study utilized tagging for inclusion of SNPs; in addition, SNPs were 

included if they were shown to have possible functional effects.  According to the NCBI Single 

Nucleotide Polymorphism database, GHR SNP 9, GHRH SNP 1, and GHRL 7 contain 

polymorphisms in the intron.  Several studies show evidence that introns are involved in 

development of cancer.84-86  These SNPs were also significantly associated with prostate cancer 

in cases (combined, prevalent, or incident) compared to controls.  Malkinson87 hypothesized that 

introns of genes whose products influence tumor development can also affect cancer incidence 

and regulatory mechanisms that control growth and differentiation steps may be controlled by 

their intronic structure.  Mutations in introns may influence development of a neoplasm because 

introns can affect the various steps involved in normal expression of the gene even though the 

intron is not in the final protein.88   

GHRHR SNP 9 and GHRHR SNP 10 were found to have possible functional effects as 

missense SNPs and alternative splicing.  In addition, GHRHR SNP 9 and SNP 10 would be in 
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different regions depending on which splicing of the gene is present.  Both SNPs are located in 

the promoter / regulatory region upstream, with splice variants located in the coding region.  The 

splice variants were found to have the possible functional effect of missense (non-conservative) 

that causes the domain to be abolished.  One study69 investigated gene expression and prostate 

cancer tissue; they found that a splice variant of GHRHR differs from the full-length receptor in a 

small part of the extracellular portion of the receptor protein which could affect the strength of 

the binding of GHRH to its receptor.  In addition, another study found that cells transfected with 

GHRHR splice variant proliferate faster than the full-length receptor.89 

There are limitations in this study which should be discussed in the context of the 

findings.  First, there is a relatively small sample size which places limitations on the statistical 

power to detect effects due to genotype.  As another issue, a case-control association study with 

multiple SNPs or haplotypes in multiple genes represents a statistical multiple comparisons 

problem.  However, 19% of the 50 GH SNPs investigated were significantly associated with 

cases compared to controls suggesting the GH pathway is important.  Even though there are 

methods for addressing multiple comparisons in genetic epidemiology studies, no standard 

approach has been universally adopted.90  Second, several SNPs within the growth hormone 

genes were not included.  There was a total of 8 GH SNPs (1 GH1, 1 GHRH, 2 GHRHR, and 4 

GHRL) that failed Illumina and were not included in analysis; these SNPs may be associated 

with prostate cancer risk.  Third, this study sample may be biased.  More advanced cancer cases 

were likely to be excluded since they were taking bone-modulating medications.  In addition to 

this, those included are more likely to have greater mobility and physical function, since men 

were excluded if they required assistance walking.  This could result in a healthier sample 

population and may not be generalizable to the source population.  Fourth, due to budgetary 
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constraints and sample size calculations, a random sample was taken only from the Pittsburgh 

and Minneapolis sites.  However, those included were comparable to those excluded on all 

baseline measures except BMI.    

A strength of this study includes the random sample from the larger sample of 

community-dwelling men.  The MrOS study investigated risk factors for osteoporosis and 

fractures in older men; the present study, then, is not affected by selection bias since participants 

were not selected on the basis case-control status for prostate cancer.  In addition, this is the first 

study to report on these GH SNPs and prostate cancer risk.  The SNPs in this study were not 

investigated in the studies looking at the relationship between breast cancer,47, 49, 53-56 pituitary 

tumors,64, 66 and neuroendocrine tumors.41, 42   
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5.0  SUMMARY 

In summary, this study investigated the effect of GH1, GHR, GHRH, GHRHR, GHRL and GHSR 

SNPs on the risk of prostate cancer.  The results suggest that eight of these SNPS are associated 

with risk of prostate cancer.  Sample size, power, and issues pertaining to multiple comparisons 

support the replication of these findings in larger studies.  However, this is of public health 

significance; if the relationships observed in this study are confirmed, it would justify the 

investigation of approaches that would reduce the activity of GH in those at high risk of prostate 

cancer.   
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APPENDIX A  

LIST OF ABBREVIATIONS 

GH1    Growth Hormone 1 
 
GHR    Growth Hormone Receptor 
 
GHRH    Growth Hormone-Releasing Hormone 
 
GHRHR   Growth Hormone-Releasing Hormone Receptor 
 
GHRL    Ghrelin  
 
GHSR    Growth Hormone Secretagogue Receptor 
 
MAF    Minor Allele Frequency 
 
OR    Odds Ratio 
 
PC    Prostate Cancer  
 
SNP    Single Nucleotide Polymorphism 
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APPENDIX B 

SNPS ENTERING ANALYSIS 

Table 6. Association of SNPs with case-control status 

 

Gene, N (%) Controls 
 
(n=743) 

Combined 
Cases  
(n=128) 

Prevalent 
Cases 
(n=74) 

Incident  
Cases 
(n=54) 

GH1 SNP 1 (rs2854184) 
   0 338 (45.7) 73 (57.0) * 43 (58.1) 30 (55.6) 
   1 268 (36.3) 41 (32.0) 22 (29.7) 19 (35.2) 
   2 133 (18.0) 14 (10.9) 9 (12.2) 5 (9.3) 
Test of Trend  p=0.009 p=0.04 p=0.08 
GH1 SNP 2 (rs2070776) 
   0 306 (41.2) 70 (54.7) ** 41 (55.4) * 29 (53.7) 
   1 335 (45.1) 41 (32.0) 23 (31.1) 18 (33.3) 
   2 102 (13.7) 17 (13.3) 10 (13.5) 7 (13.0) 
Test of Trend  p=0.03 p=0.09 p=0.17 
GHR SNP 2 (rs10473282) 
   0 363 (48.9) 53 (41.4) 36 (48.6) 17 (31.5) * 
   1 278 (37.40) 50 (39.1) 25 (33.8) 25 (46.3) 
   2 102 (13.7) 25 (19.5) 13 (17.6) 12 (22.2) 
Test of Trend  p=0.05 p=0.64 p=0.01 
GHR SNP 9 (rs12233949) 
   0 393 (52.9) 64 (50.0) 35 (47.3) * 29 (53.7) 
   1 283 (38.1) 57 (44.5) 37 (50.0) 20 (37.0) 
   2 67 (9.0) 7 (5.5) 2 (2.7) 5 (9.3) 
Test of Trend  p=0.91 p=0.93 p=0.95 
GHRH SNP 1 (rs2050093) 
   0 495 (66.7) 79 (61.7) * 48 (64.9) 31 (57.4) * 
   1 224 (30.2) 39 (30.5) 21 (28.4) 18 (33.3) 
   2 23 (3.1) 10 (7.8) 5 (6.8) 5 (9.3) 
Test of Trend  p=0.07 p=0.41 p=0.05 
GHRHR SNP 9 (rs4988498) 
   0 673 (90.9) 110 (87.3) *** 61 (83.6) *** 49 (92.5) 
   1 67 (9.1) 14 (11.1) 10 (13.7) 4 (7.5) 
   2 0 (0) 2 (1.6) 2 (2.7) 0 (0) 
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Table 6 (Continued) 
     
Test of Trend  p=0.07 p=0.007 p=0.71 
GHRHR SNP 9 (rs4988498) 
   0 673 (90.9) 110 (87.3) 61 (83.6) * 49 (92.5) 
   1 67 (9.1) 16 (12.7) 12 (16.4) 4 (7.5) 
GHRHR SNP 10 (rs740336) 
   0 717 (96.6) 118 (92.2) *** 69 (93.2) 49 (90.7) *** 
   1 25 (3.4) 9 (7.0) 5 (6.8) 4 (7.4) 
   2 0 (0) 1 (0.8) 0 (0) 1 (1.9) 
Test of Trend  p=0.008 p=0.14 p=0.006 
GHRHR SNP 10 (rs740336) 
   0 717 (96.6) 118 (92.2) ** 69 (93.2) 49 (90.7) * 
   1 25 (3.4) 10 (7.8) 5 (6.8) 5 (9.3) 
GHRL SNP 7 (rs35668) 
   0 336 (45.3) 74  (57.8) ** 45 (60.8) * 29 (53.7) 
   1 206 (27.8) 23 (18.0) 15 (20.3) 8 (14.8) 
   2 200 (27.0) 31 (24.2) 14 (18.9) 17 (31.5) 
Test of Trend  p=0.05 p=0.02 p=0.74 
GHSR SNP 4 (rs2922126) 
   0 334 (45.0) 58 (45.3) 41 (55.4) 17 (31.5) ** 
   1 333 (44.9) 50 (39.1) 25 (33.8) 25 (46.3) 
   2 75 (10.1) 20 (15.6) 8 (10.8) 12 (22.2) 
Test of Trend  p=0.41 p=0.23 p=0.006 
*0.05 > p ≥ 0.025; **0.025 > p ≥ 0.01; ***p < 0.01.  Notes: χ² p-values for cases vs. 
controls; 0: the common homozygote, 1: the heterozygote, and 2: the homozygous rare; 
GH1: growth hormone 1 SNPs; GHR: growth hormone receptors SNPs; GHRH: 
growth hormone-releasing hormone SNPs; GHRHR: GHRH-receptor SNPs; GHRL: 
ghrelin precursor SNPs; GHSR: growth hormone secretagogue receptor SNPs. 
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APPENDIX C 

Table 7.  Association of GH SNPs and Baseline Characteristics 

 

Gene, N (%) Total Sample, 
N (%) (n=871) 

Age, mean 
years (SD) 

Weight, mean 
lb (SD) 

Height, mean 
cm (SD) 

BMI, mean 
kg/m2 (SD) 

Trunk % Fat, 
mean (SD) 

Total % Fat, 
mean (SD) 

Diabetes, N 
(%), (n=110) 

GH1 SNP 1 (rs2854184) 
   0 411 (47.4) 73.9 (5.7)  188.4 (32.0) 173.9 (6.8) 28.3 (4.3) 29.3 (6.4) 26.9 (5.7) 45 (40.9) 
   1 309 (35.6) 73.7 (5.8) 186.4 (29.9) 173.4 (6.4) 28.1 (4.0) 29.1 (5.9) 26.8 (5.2) 48 (43.6) 
   2 147 (17.0) 72.7 (5.6) 188.8 (29.1) 173.3 (7.5) 28.5 (3.6) 29.7 (5.4) 27.2 (4.9) 17 (15.5) 
GH1 SNP 2 (rs2070776) 
   0 376 (43.2) 73.9 (5.7)  188.4 (32.0) 173.9 (6.8) 28.3 (4.3) 29.3 (6.4) 26.9 (5.7) 45 (40.9) 
   1 376 (43.2) 73.7 (5.8) 186.4 (29.9) 173.4 (6.4) 28.1 (4.0) 29.1 (5.9) 26.8 (5.2) 48 (43.6) 
   2 119 (13.7) 72.7 (5.6) 188.8 (29.1) 173.3 (7.5) 28.5 (3.6) 29.7 (5.4) 27.2 (4.9) 17 (15.5) 
GHR SNP 2 (rs10473282) 
   0 416 (47.8) 73.6 (6.0) 187.5 (29.4) 173.2 (6.7) 28.4 (4.1) 29.1 (6.0)  26.7 (5.2)  41 (37.3) 
   1 328 (37.7) 5.6 (5.6) 186.0 (31.3) 173.6 (6.7) 28.0 (4.1) 29.0 (6.0) 26.7 (5.4) 48 (43.6) 
   2 127 (14.6) 73.8 (5.5) 192.6 (30.7) 174.3 (7.3) 28.7 (3.7) 30.6 (6.1) 28.0 (5.2) 21 (19.1) 
GHR SNP 9 (rs12233949) 
   0 457 (52.5) 73.5 (5.6) 186.1 (30.3)  173.4 (6.8) 28.1 (4.0)  29.1 (6.0) 26.7 (5.3) 57 (51.8) 
   1 340 (39.0) 73.9 (5.7) 188.0 (30.7) 173.8 (6.9) 28.2 (4.1) 29.2 (6.0) 26.9 (5.3) 42 (38.2) 
   2 74 (8.5) 72.9 (6.2) 194.3 (30.7) 173.3 (6.0) 29.3 (3.9) 30.7 (6.0) 28.3 (5.5) 11 (10.0) 
GHRH SNP 1 (rs2050093) 
   0 574 (66.0) 74.0 (5.8) * 188.7 (30.9) 173.5 (6.8) 28.4 (4.2) 29.5 (6.1) 27.1 (5.3) 68 (61.8) 
   1 263 (30.2) 72.6 (5.4) 185.0 (29.7) 173.8 (6.6) 27.8 (3.8) 28.8 (5.8) 26.4 (5.3) 36 (32.7) 
   2 33 (3.8) 74.7 (5.5) 187.3 (30.5) 172.4 (7.2) 28.5 (3.4) 30.1 (6.3) 27.5 (5.7) 6 (5.5) 
GHRHR SNP 9 (rs4988498) 
   0 783 (90.4) 73.6 (5.7) 188.3 (30.9) * 173.8 (6.8) ** 28.3 (4.1) 29.3 (6.1) 26.9 (5.4) 102 (93.6) 
   1 81 (9.4) 73.7 (6.0) 180.5 (26.4) 171.7 (6.5) 27.8 (3.8) 29.1 (5.2) 26.6 (4.7) 6 (5.5) 
   2 2 (0.2) 75.5 (0.71) 191.1 (7.3) 169.3 (5.6) 30.3 (0.84) 30.6 (1.03) 28.9 (0.23) 1 (0.9) 
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Table 7 (Continued) 
 
GHRHR SNP 10 (rs740336) 
   0 835 (96.0) 73.6 (5.7) 187.7 (30.6)  173.5 (6.7)  28.3 (4.0) 29.4 (6.0)  26.9 (5.3)  106 (96.4) 
   1 34 (3.9) 73.3 (5.7) 181.9 (29.8) 174.0 (7.5) 27.4 (5.5) 26.8 (6.7) 24.9 (5.7) 3 (2.7) 
   2 *** 1 (0.1)       1 (0.9) 
GHRL SNP 7 (rs35668) 
   0 410 (47.1) 73.7 (5.8) 186.6 (31.8) 172.8 (6.9) ** 28.3 (4.1) 29.5 (5.7) 26.9 (4.9) 24 (22.0) ** 
   1 231 (26.6) 73.9 (5.9) 186.9 (31.6) 173.4 (6.7) 28.1 (4.1) 29.4 (6.0) 26.9 (5.5) 42 (38.5) 
   2 229 (26.3) 73.1 (5.5) 190.6 (29.7) 174.5 (6.6) 28.4 (3.8) 29.1 (6.4) 26.8 (5.5) 43 (39.4) 
GHSR SNP 4 (rs2922126) 
   0 392 (45.1) 73.9 (5.7) 188.3 (30.9) 173.8 (6.9) 28.3 (4.11) 29.4 (5.9) 26.9 (5.2) 55 (50.0) 
   1 383 (44.0) 73.1 (5.8) 187.7 (31.2) 173.4 (6.6) 28.3 (4.1) 29.3 (6.2) 26.9 (5.5) 43 (39.1) 
   2 95 (10.9)  74.2 (5.6) 186.1 (32.2) 173.2 (7.0) 28.1 (3.9) 29.2 (6.0) 26.6 (5.0) 12 (10.9) 
*0.05 < p ≥ 0.025; **p < 0.008.  Notes: ANOVA p-values for SNPs vs. baseline measures; 0: the common homozygote, 1: the heterozygote, and 2: the 
homozygous rare; GH1: growth hormone 1 SNPs; GHR: growth hormone receptors SNPs; GHRH: growth hormone-releasing hormone SNPs; GHRHR: 
GHRH-receptor SNPs; GHRL: ghrelin precursor SNPs; GHSR: growth hormone secretagogue receptor SNPs. 
 

 



42 

APPENDIX D 

Table 8.  Hardy-Weinberg Equilibrium 

 

 

 Cases and 
Controls 
(n=871) 

Controls 
(n=743) 

Cases 
 (n=128) 

Hardy-Weinberg Equilibrium χ² (p-value) χ² (p-value) χ² (p-value) 
GH1 SNP 1 (rs2854184) 0.27 (0.60) 2.13 (0.14) 4.80 (0.03) 
GH1 SNP 2 (rs2070776) 2.57 (0.11) 0.45 (0.50) 6.58 (0.01) 
GH1 SNP 3 (rs2070720) 0.20 (0.65) 1.49 (0.22) 3.03 (0.08) 
GH1 SNP 4 (rs2058194) 0.01 (0.90) 0.002 (0.97) 0.14 (0.70) 
GHR SNP 1 (rs3764451) 1.25 (0.26) 2.25 (0.13) 0.65 (0.42) 
GHR SNP 2 (rs10473282) 0.07 (0.79) 0.92 (0.34) 2.47 (0.11) 
GHR SNP 3 (rs1876790) 5.79 (0.02) 3.91 (0.05) 2.21 (0.14) 
GHR SNP 4 (rs2036745) 4.53 (0.03) 2.79 (0.09) 2.21 (0.14) 
GHR SNP 5 (rs11744988) 0.70 (0.40) 0.76 (0.38) 0.13 (0.71) 
GHR SNP 6 (rs4866931) 1.73 (0.19) 1.04 (0.31) 0.94 (0.33) 
GHR SNP 7 (rs4129472) 0.59 (0.44) 0.04 (0.84) 2.10 (0.15) 
GHR SNP 8 (rs7736209) 0.06 (0.81) 0.35 (0.55) 0.67 (0.41) 
GHR SNP 9 (rs12233949) 0.90 (0.34) 2.38 (0.12) 1.57 (0.21) 
GHR SNP 10 (rs7709790) 0.23 (0.63) 0.32 (0.57) 0.02 (0.89) 
GHR SNP 11 (rs7721081) 0.58 (0.45) 1.82 (0.18) 1.27 (0.26) 
GHR SNP 12 (rs6179) 0.48 (0.49) 1.11 (0.29) 0.53 (0.46) 
GHR SNP 13 (rs4242119) 0.57 (0.45) 1.41 (0.23) 0.79 (0.37) 
GHR SNP 14 (rs6180) 0.02 (0.88) 0.13 (0.72) 0.25 (0.62) 
GHR SNP 15 (rs719756) 0.06 (0.80) 0.22 (0.63) 0.25 (0.62) 
GHRH SNP 1 (rs2050093) 0.17 (0.67) 0.15 (0.70) 2.54 (0.11) 
GHRH SNP 2 (rs1073768) 0.02 (0.88) 0.05 (0.82) 0.89 (0.34) 
GHRH SNP 3 (rs4988492) 0.34 (0.56) 0.27 (0.60) 0.07 (0.79) 
GHRH SNP 4 (rs6032470) 0.003 (0.98) 0.07 (0.78) 0.33 (0.57) 
GHRHR SNP 1 (rs7458593) 0.09 (0.75) 0.008 (0.93) 0.33 (0.57) 
GHRHR SNP 2 (rs4723034) 0.15 (0.70) 0.003 (0.95) 1.27 (0.26) 
GHRHR SNP 3 (rs7384927) 0.30 (0.58) 0.07 (0.79) 0.77 (0.38) 
GHRHR SNP 4 (rs6954044) 0.76 (0.38) 0.24 (0.62) 1.13 (0.29) 
GHRHR SNP 5 (rs2302019) 0.29 (0.58) 0.01 (0.91) 1.89 (0.17) 
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Table 8 (Continued) 
    
GHRHR SNP 6 (rs2267721) 0.96 (0.33) 0.44 (0.51) 1.17 (0.28) 
GHRHR SNP 7 (rs11771444) 0.31 (0.57) 0.66 (0.42) 0.09 (0.75) 
GHRHR SNP 8 (rs2267723) 1.36 (0.24) 0.50 (0.48) 2.06 (0.15) 
GHRHR SNP 9 (rs4988498) 0.004 (0.95) 1.66 (0.20) 3.32 (0.06) 
GHRHR SNP 10 (rs740336) 1.10 (0.29) 0.22 (0.64) 2.69 (0.10) 
GHRL SNP 1 (rs35682) 0.78 (0.38) 1.21 (0.27) 0.13 (0.71) 
GHRL SNP 2 (rs10490815) 1.41 (0.23) 3.10 (0.08) 1.31 (0.25) 
GHRL SNP 3 (rs10490816) 0.44 (0.51) 0.93 (0.33) 0.34 (0.56) 
GHRL SNP 4 (rs1629816) 2.03 (0.15) 2.35 (0.12) 0.0001 (0.99) 
GHRL SNP 5 (rs696221) 0.45 (0.50) 0.43 (0.51) 0.03 (0.86) 
GHRL SNP 6 (rs697231) 4.68 (0.03) 4.68 (0.03) 0.18 (0.67) 
GHRL SNP 7 (rs35668) 2.87 (0.09) 6.59 (0.01) 3.31 (0.07) 
GHRL SNP 8 (rs703915) 0.03 (0.87) 0.06 (0.80) 0.04 (0.84) 
GHSR SNP 1 (rs558572) 0.003 (0.96) 0.005 (0.94) 0.0008 (0.97) 
GHSR SNP 2 (rs1403637) 1.59 (0.21) 1.39 (0.23) 0.17 (0.68) 
GHSR SNP 3 (rs4144707) 0.25 (0.61) 0.04 (0.84) 0.94 (0.33) 
GHSR SNP 4 (rs2922126) 0.13 (0.72) 0.43 (0.51) 0.22 (0.64) 
GHSR SNP 5 (rs9819506) 0.05 (0.82) 0.02 (0.88) 0.01 (0.90) 
GHSR SNP 6 (rs863441) 0.20 (0.65) 0.19 (0.66) 0.01 (0.90) 
GHSR SNP 7 (rs9881073) 0.68 (0.41) 1.35 (0.24) 0.43 (0.51) 
GHSR SNP 8 (rs11713751) 3.77 (0.05) 1.95 (0.16) 2.01 (0.16) 
GHSR SNP 9 (rs12638147) 0.54 (0.46) 0.70 (0.40) 0.01 (0.91) 
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APPENDIX E 

LINKAGE DISEQUILIBRIUM 

E.1 GH1 SNPS 

 

 

Figure 6 Linkage Disequilibrium of GH1 SNPs 

LD structure across the GH1 gene.  Haploview (http://www.broad.mit.edu/mpg/haploview/) display of 
GH1 gene.  The color code shows r² value of LD estimations: with the depth of color showing degree 
evidence of LD; evidence of recombination (white) or higher correlation (darker).  LD was calculated for 
the entire sample. 
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E.2 GHR SNPS 

 

 

 

Figure 7. Linkage Disequilibrium of GHR SNPs 

LD structure across the GHR gene.  Haploview (http://www.broad.mit.edu/mpg/haploview/) display of 
GH1 gene.  The color code shows r² value of LD estimations: with the depth of color showing degree 
evidence of LD; evidence of recombination (white) or higher correlation (darker).  LD was calculated for 
the entire sample. 
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E.3 GHRH SNPS 

 

 

Figure 8. Linkage Disequilibrium of GHRH SNPs 

LD structure across the GHRH gene.  Haploview (http://www.broad.mit.edu/mpg/haploview/) display of 
GH1 gene.  The color code shows r² value of LD estimations: with the depth of color showing degree 
evidence of LD; evidence of recombination (white) or higher correlation (darker).  LD was calculated for 
the entire sample. 
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E.4 GHRHR SNPS 

 

 

Figure 9. Linkage Disequilibrium of GHRHR SNPs 

LD structure across the GHRHR gene.  Haploview (http://www.broad.mit.edu/mpg/haploview/) display of 
GH1 gene.  The color code shows r² value of LD estimations: with the depth of color showing degree 
evidence of LD; evidence of recombination (white) or higher correlation (darker).  LD was calculated for 
the entire sample. 
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E.5 GHRL SNPS 

 

 

Figure 10.  Linkage Disequlibrium of GHRL SNPs 

LD structure across the GHRL gene.  Haploview (http://www.broad.mit.edu/mpg/haploview/) display of 
GH1 gene.  The color code shows r² value of LD estimations: with the depth of color showing degree 
evidence of LD; evidence of recombination (white) or higher correlation (darker).  LD was calculated for 
the entire sample. 
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E.6 GHSR SNPS 

 

 

Figure 11.  Linkage Disequilibrium of GHSR SNPs 

LD structure across the GHSR gene.  Haploview (http://www.broad.mit.edu/mpg/haploview/) display of 
GH1 gene.  The color code shows r² value of LD estimations: with the depth of color showing degree 
evidence of LD; evidence of recombination (white) or higher correlation (darker).  LD was calculated for 
the entire sample. 
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APPENDIX F 

FREQUENCY, REGION AND FUNCTION OF SNPS 

Table 9.  GH1 SNPs Frequency, Region and Function 

 

Gene, N (%) Controls 
(n=743) 

Cases 
(n=128) 

Region / Function 

GH1 SNP 1 (rs2854184) 
   0 338 (45.7) 73 (57.0)   
   1 268 (36.3) 41 (32.0)  
   2 133 (18.0) 14 (10.9)  
p-value  0.035  
GH1 SNP 2 (rs2070776) 
   0 335 (45.1) 70 (54.7)  Intron / synonymous 
   1 306 (41.2) 41 (32.0)  
   2 102 (13.7) 17 (13.3)  
p-value  0.011  
GH1 SNP 3 (rs2070720) 
   0 333 (44.9) 67 (52.3) synonymous 
   1 317 (42.7) 50 (39.1)  
   2 92 (12.4) 11 (8.6)  
p-value  0.11  
GH1 SNP 4 (rs2058194) 
   0 371 (49.9) 61 (47.7) nonsynonymous 
   1 206 (27.7) 41 (32.0)  
   2 166 (22.3) 26 (20.3)  
p-value  0.60  
 
NOTES: p-value (χ²) of cases vs. controls; GH1: growth hormone 1 SNPs; 0: the common homozygote, 1: the 
heterozygote, and 2: the homozygous rare. 
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Table 10. GHR SNPs Frequency, Region and Function 

 

GHR SNPs 
Gene, N (%) Controls 

(n=743) 
Cases 
(n=128) 

Region / Function 

GHR SNP 1 (rs3764451) 
   0 557 (75.0) 97 (75.8)  
   1 167 (22.5) 30 (23.4)  
   2 19 (2.6) 1 (0.8)  
p-value  0.46  
GHR SNP 2 (rs10473282) 
   0 363 (48.9) 53 (41.4)  
   1 278 (37.4) 50 (39.1)  
   2 102 (13.7) 25 (19.5)  
p-value  0.14  
GHR SNP 3 (rs1876790) 
   0 475 (63.9) 81 (63.3)  
   1 227 (30.6) 38 (29.7)  
   2 41 (5.5) 9 (7.0)  
p-value  0.79  
GHR SNP 4 (rs2036745) 
   0 475 (64.0) 81 (63.3) Intron 
   1 228 (30.7) 38 (29.7)  
   2 39 (5.3) 9 (7.0)  
p-value  0.71  
GHR SNP 5 (rs11744988) 
   0 658 (88.6) 120 (93.8) intron 
   1 81 (10.9) 8 (6.3)  
   2 4 (0.5) 0 (0)  
p-value  0.19  
GHR SNP 6 (rs4866931) 
   0 355 (47.8) 58 (45.3) Intron 
   1 222 (29.9) 41 (32.0)  
   2 165 (22.2) 29 (22.7)  
p-value  0.85  
GHR SNP 7 (rs4129472) 
   0 509 (68.5) 87 (68.0) Intron 
   1 211 (28.4) 34 (26.6)  
   2 23 (3.1) 7 (5.5)  
p-value  0.38  
GHR SNP 8 (rs7736209) 
   0 435 (58.6) 78 (61.4) Intron 
   1 270 (36.4) 41 (32.3)  
   2 37 (5.0) 8 (6.3)  
p-value  0.60  
GHR SNP 9 (rs12233949) 
   0 393 (52.9) 64 (50.0) intron 
   1 283 (38.1) 57 (44.5)  
   2 67 (9.0) 7 (5.5)  
p-value  0.23  
GHR SNP 10 (rs7709790) 
   0 487 (65.5) 88 (68.8) Intron 
   1 232 (31.2) 36 (28.1)  
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Table 10 (Continued) 
    
   2 24 (3.2) 4 (3.1)  
p-value  0.77  
GHR SNP 11 (rs7721081) 
   0 539 (72.5) 92 (71.9) Intron 
   1 193 (26.0) 31 (24.2)  
   2 11 (1.5) 5 (3.9)  
p-value  0.16  
GHR SNP 12 (rs6179) 
   0 391 (52.7) 69 (54.3) Synonymous 
   1 303 (40.8) 47 (37.0)  
   2 48 (6.5) 11 (8.7)  
p-value  0.54  
GHR SNP 13 (rs4242119) 
   0 394 (53.1) 71 (55.5) Intron 
   1 302 (40.7) 46 (35.9)  
   2 46 (6.2) 11 (8.6)  
p-value  0.43  
GHR SNP 14 (rs6180) 
   0 375 (50.5) 61 (47.7) Nonsynonymous 
   1 207 (27.9) 37 (28.9)  
   2 161 (21.7) 30 (23.4)  
p-value  0.83  
GHR SNP 15 (rs719756) 
   0 376 (50.7) 61 (47.7)  
   1 206 (27.8) 37 (28.9)  
   2 160 (21.6) 30 (23.4)  
p-value  0.81  
 
NOTES: p-value (χ²) of cases vs. controls; GHR: growth hormone receptor  SNPs; 0: the common homozygote, 1: 
the heterozygote, and 2: the homozygous rare. 
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Table 11. GHRH SNPs Frequency, Region and Function 

 

Gene, N (%) Controls 
(n=743) 

Cases 
(n=128) 

Region / Function 

GHRH SNP 1 (rs2050093) 
   0 495 (66.7) 79 (61.7) Intron 
   1 224 (30.2) 39 (30.5)  
   2 23 (3.1) 10 (7.8)  
p-value  0.033  
GHRH SNP 2 (rs1073768) 
   0 362 (48.9) 69 (53.9)  
   1 232 (31.4) 34 (26.6)  
   2 146 (19.7) 25 (19.5)  
p-value  0.50  
GHRH SNP 3 (rs4988492) 
   0 714 (96.2) 122 (95.3) Nonsynonymous 
   1 28 (3.8) 6 (4.7)  
   2 0 (0) 0 (0)  
p-value  0.62  
GHRH SNP 4 (rs6032470) 
   0 565 (76.1) 92 (71.9)  
   1 164 (22.1) 34 (26.6)  
   2 13 (1.8) 2 (1.6)  
p-value  0.54  
 
NOTES: p-value (χ²) of cases vs. controls; GHRH: growth hormone-releasing hormone SNPs; 0: the common 
homozygote, 1: the heterozygote, and 2: the homozygous rare. 
 

Table 12.  GHRHR SNPs Frequency, Region and Function 

 

GHRHR SNPs 
Gene, N (%) Controls 

(n=743) 
Cases 
(n=128) 

Region / Function 

GHRHR SNP 1 (rs7458593) 
   0 564 (75.9) 92 (71.9)  
   1 167 (22.5) 34 (26.6)  
   2 12 (1.6) 2 (1.6)  
p-value  0.59  
GHRHR SNP 2 (rs4723034) 
   0 469 (68.3) 72 (64.9)  
   1 197 (28.7) 37 (33.3)  
   2 21 (3.1) 2 (1.8)  
p-value  0.49  
GHRHR SNP 3 (rs7384927) 
   0 355 (47.8) 62 (48.8)  
   1 280 (37.7) 52 (40.9)  
   2 108 (14.5) 13 (10.2)  
p-value  0.41 
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Table 12 (Continued) 
 
GHRHR SNP 4 (rs6954044) 
   0 624 (84.1) 106 (82.8) Locus 
   1 114 (15.4) 22 (17.2)  
   2 4 (0.5) 0 (0)  
p-value  0.62  
GHRHR SNP 5 (rs2302019) * 
   0 366 (49.3) 67 (52.3) Upstream / with no known function 
   1 237 (31.9) 47 (36.7)  
   2 139 (18.7) 14 (10.9)  
p-value  0.09  
GHRHR SNP 6 (rs2267721) * 
   0 341 (46.0) 59 (46.1) Intronic / with no known function 
   1 318 (42.9) 60 (46.9)  
   2 82 (11.1) 9 (7.0)  
p-value  0.35  
GHRHR SNP 7 (rs11771444) 
   0 440 (59.4) 69 (53.9)  
   1 267 (36.0) 49 (38.3)  
   2 34 (4.6) 10 (7.8)  
p-value  0.23  
GHRHR SNP 8 (rs2267723) 
   0 378 (50.9) 70 (54.7) Intron 
   1 216 (29.1) 40 (31.3)  
   2 149 (20.1) 18 (14.1)  
p-value  0.28  
GHRHR SNP 9 (rs4988498) * 
   0 673 (90.9) 110 (87.3) Missense (nonconservative) / splicing regulation  
   1 67 (9.1) 14 (11.1) (domain abolished) 
   2 0 (0) 2 (1.6) 5 utr promoter – regulatory region / coding 
p-value  0.002  
GHRHR SNP 10 (rs740336) * 
   0 717 (96.6) 118 (92.2) Coding / missense (nonconsevative) / splicing  
   1 25 (3.4) 9 (7.0) regulation (domain abolished); sense-synonymous /  
   2 0 (0) 1 (0.8) splicing regulation (domain abolished); promoter -  
p-value  0.008 regulatory region / 5 upstream; intronic / intronic  
 
NOTES: p-value (χ²) of cases vs. controls; GHRHR: growth hormone-releasing hormone receptor SNPs; 0: the 
common homozygote, 1: the heterozygote, and 2: the homozygous rare.   
*These genes are functional in our dataset. 
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Table 13.  GHRL SNPs Frequency, Region and Function 

 

GHRL SNPs 
Gene, N (%) Controls 

(n=743) 
Cases 
(n=128) 

Region / Function 

GHRL SNP 1 (rs35682) 
   0 356 (48.0) 66 (51.6) Intron 
   1 192 (25.9) 33 (25.8)  
   2 194 (26.1) 29 (22.7)  
p-value  0.67  
GHRL SNP 2 (rs10490815) 
   0 402 (54.1) 65 (50.8)  
   1 276 (37.1) 56 (43.8)  
   2 65 (8.7) 7 (5.5)  
  0.23  
GHRL SNP 3 (rs10490816) 
   0 432 (58.2) 70 (54.7)  
   1 262 (35.3) 51 (39.8)  
   2 48 (6.5) 7 (5.5)  
p-value  0.59  
GHRL SNP 4 (rs1629816) 
   0 316 (43.9)) 57 (46.0)  
   1 295 (41.0) 51 (41.1)  
   2 108 (15.0) 16 (12.9)  
p-value  0.81  
GHRL SNP 5 (rs696221)* 
   0 361 (48.7) 63 (49.2) Downstream / 3utr / with no known function 
   1 211 (28.4) 34 (26.6)  
   2 170 (22.9) 31 (24.2)  
p-value  0.89  
GHRL SNP 6 (rs697231) 
   0 592 (79.8) 102 (79.7) Intron 
   1 135 (18.2) 24 (18.8)  
   2 15 (2.0) 2 (1.6)  
p-value  0.93  
GHRL SNP 7 (rs35668) 
   0 336 (45.3) 74 (57.8) Intron 
   1 206 (27.8) 23 (18.0)  
   2 200 (27.0) 31 (24.2)  
p-value  0.019  
GHRL SNP 8 (rs703915) 
   0 545 (73.5) 96 (75.0) Intron 
   1 180 (24.3) 30 (23.4)  
   2 16 (2.2) 2 (1.6)  
p-value  0.88  
 
NOTES: p-value (χ²) of cases vs. controls; GHRL: ghrelin precursor SNPs; 0: the common homozygote, 1: the 
heterozygote, and 2: the homozygous rare. *These genes are functional in our dataset. 
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Table 14.  GHSR SNPs Frequency, Region and Function 

 

GHSR SNPs 
Gene, N (%) Controls 

(n=743) 
Cases 
(n=128) 

Region / Function 

GHSR SNP 1 (rs558572) 
   0 493 (66.4) 87 (68.0)  
   1 224 (30.2) 37 (28.9)  
   2 25 (3.4) 4 (3.1)  
p-value  0.94  
GHSR SNP 2 (rs1403637) 
   0 346 (46.6) 61 (47.7)  
   1 259 (34.9) 40 (31.3)  
   2 138 (18.6) 27 (21.1)  
p-value  0.67  
GHSR SNP 3 (rs4144707) 
   0 377 (50.7) 69 (54.3)  
   1 306 (41.2) 52 (40.9)  
   2 60 (8.1) 6 (4.7)  
p-value  0.39  
GHSR SNP 4 (rs2922126) 
   0 334 (45.0) 58 (45.3)  
   1 333 (44.9) 50 (39.1)  
   2 75 (10.1) 20 (15.6)  
p-value  0.14  
GHSR SNP 5 (rs9819506) 
   0 369 (49.7) 73 (57.0)  
   1 308 (41.5) 47 (36.7)  
   2 66 (8.9) 8 (6.3)  
p-value  0.26  
GHSR SNP 6 (rs863441) 
   0 407 (54.9) 73 (57.0)  
   1 282 (38.0) 47 (36.7)  
   2 53 (7.1) 8 (6.3)  
p-value  0.87  
GHSR SNP 7 (rs9881073) 
   0 354 (47.6) 67 (52.3)  
   1 220 (29.6) 37 (28.9)  
   2 169 (22.7) 24 (18.8)  
p-value  0.52  
GHSR SNP 8 (rs11713751) 
   0 325 (44.5) 47 (37.0)  
   1 312 (42.7) 54 (42.5)  
   2 94 (12.9) 26 (20.5)  
p-value  0.05  
GHSR SNP 9 (rs12638147) 
   0 413 (55.6) 71 (55.5)  
   1 276 (37.1) 49 (38.3)  
   2 54 (7.3) 8 (6.3)  
p-value  0.91  
 
NOTES: p-value (χ²) of cases vs. controls; GHSR: growth hormone secretagogue receptor SNPs; 0: the common 
homozygote, 1: the heterozygote, and 2: the homozygous rare. 
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