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                                                                                                                     Robert E. Ferrell, PhD 

 

Essential hypertension (EH) is a major risk factor for cardiovascular disorders, the 

leading cause of death in the United States. Given its great public health impact, it is crucial to 

understand the genetic basis of EH. EH is highly heterogeneous and to use an intermediate 

phenotype of EH, sodium lithium countertransport (SLC), will provide substantial advantage for 

disease genes discovery.  We proposed two approaches to explore the genes for SLC. 

The first study examined the relationship between SLC and a positional candidate gene, 

SLC34A2, which is linked to SLC in baboon. We sequenced gene SLC34A2 in baboon and 

human. Strong homology was established in exonic organization and sequence between human 

and baboon SLC34A2 genes and extensive variation in both species was identified. Association 

studies between SLC and SLC34A2 were carried out in 1856 RFHS phase II individuals and 634 

baboons. Significant association of SLC with human SNP rs3775909 (p=0.03) in SLC34A2 and 

haplotype block 2 (p<0.005) were observed. Strong evidence for association of SLC with 

SLC34A2 was found for baboon SNP Asn136Asn (p=0.0001). Consistent findings in two 

different species implied that SLC34A2 may be one of the genes involved in SLC. However, 

linkage analyses conditional on genotypes of baboon Asn136Asn suggest that Asn136Asn is not 

the primarily functional site for SLC. We conclude that SLC34A2 is associated with SLC, 

though it may not be the major effect gene. 
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In second study, we integrated gene expression micrarray with linkage analysis to search 

for genes for SLC. Two independent microarrays (U133A and U133_plus_2.0) were used to 

identify the differentially expressed genes in high verse low SLC groups. Five genes, IER3, 

ARHGAP15, CD47, CDKAL1 and PRKRA, were among top 1% of differentially expressed 

genes in both arrays and also mapped to linkage region for SLC in RFHS Phase II population.  A 

follow-up association study for IER3 shows that SNP rs8512 is significantly associated with SBP 

(p=0.002) and DBP (p=0.0008), and SNP rs2284174 has marginal association with SLC 

(p=0.055) and SBP (p=0.085). In conclusion, we identified some interesting susceptible genes 

for SLC by combining gene expression profiling and linkage study. 
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1.0  BACKGROUND AND SIGNIFICANCE 

1.1 ESSENTIAL HYPERTENSION  

1.1.1 Epidemiology and genetics of essential hypertension 

 Hypertension is a common vascular disorder, defined as occurring when the systolic 

pressure is persistently over 140 mm Hg, or the diastolic blood pressure is consistently over 90 

mm Hg (Chobanian et al. 2003). Essential hypertension which refers to hypertension without 

known detectable etiology, accounts for 94% of all hypertension. Over 60 million people in 

United States were affected by essential hypertension (National center for health statistic, [CDC], 

2005). It is also the most frequent reason that Americans visit a doctor. Essential hypertension is 

generally asymptomatic, occationally causing headache, but it is a major risk factor for stroke, 

myocardial infarction and end-stage renal disease, all of which are leading causes of death and 

illness in the United States. The yearly disease-related spending is almost $108.8 billion 

(Hodgson et al. 2001). Given its great public health impact, it is crucial to understand the 

etiology of essential hypertension.  

Essential hypertension is one of the most complex disorders. It’s determined by 

environmental, genetic and demographic factors as well as their interactions (Hamet et al. 1998; 

Marenberg et al. 1994; Douglas et al. 1996). Twin and family aggregation studies have suggested 



 2 

that the estimated genetic contribution to hypertension is around 30%-50% (Ward 1990; Snieder 

et al. 2003). Although the genetic basis for several rare monogenic forms of hypertension has 

been well established, these rare mutations in single genes are unlikely to determine all the 

variation in blood pressure in the population at large. The reasons for this assumption derive 

from the nature of this disorder. Blood pressure control is a polygenic phenotype involving a 

complex combination of processes and systems (Ferrannini 1991). It is regulated by numerous 

traits with balancing depressor and pressor roles, and the effect of any single gene may be muted 

due to this functional redundancy. Province et al. (2003) further reported that multiple genes 

involved in hypertension might have only small to moderate effects; no major genes with large 

effect existed (Thiel et al. 2003). These features of essential hypertension have confounded the 

study of the genetic etiology of this disorder. The substantial heterogeneity due to the gene-

environment and gene-gene interactions makes it even more elusive. It is well documented that 

essential hypertension is highly heterogeneous (Laragh and Pecker 1983; Resnick and Laragh 

1985; Mullins et al. 1996; Kurtz et al. 1989; Tournoy et al. 1996). Individuals with the same 

blood pressure levels may have mutations at completely different loci, or hypertension may 

involve the same disease loci with different alleles. 

1.1.2 Genetic studies for essential hypertension 

Intensive efforts have been taken to characterize the genes involved in essential 

hypertension. At present most published data arise from candidate gene studies and genome-

wide scans, but contradictory results have been achieved in these studies. Candidate genes, based 

on their biochemical or physiological features which are likely to participate in blood pressure 

regulation, may be selected from chromosome loci identified by linkage mapping or congenic 
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analysis. Differences in allele frequencies at marker loci of candidate gene in unrelated case and 

control individuals are tested by association study. True association appears when the marker 

itself contributes to hypertension or alleles at marker locus are in linkage disequilibrium (the 

frequency of the presence of two alleles in one gamete in a population is higher than would be 

expected from random recombination) with the disease causative allele. To date, more than 150 

candidate genes have been proposed to influence blood pressure (Kato et al. 1998; Tao et al. 

1995; Markovic et al. 2005; Quintana et al. 2006), including genes coding vascular proteins, 

metabolic proteins, adrenoceptors, proteins involved in renin-angiotensin-aldosterone system and 

volume and/or sodium homeostasis.  

None of the genes is consistently associated with essential hypertension in general 

population. The non-replication might result from different genetic background in various 

populations, the relatively small effect of a single gene, genetic heterogeneity of essential 

hypertension, or spurious association derived from multiple tests or population stratification. 

Population stratification is a confounding factor in case-control association studies. It occurs 

when allele frequencies are different in cases and controls due to ethnic substructure, and the 

disease prevalence between the two ethnic groups is dissimilar. For example, if two ancestral 

populations with different disease prevalence happen to be over-represented in either cases or 

controls, and if the allele frequency of a marker is different between the two populations, a false 

positive association may appear. To reduce the effect of population stratification, a family based 

study design, including transmission disequilibrium test (TDT) has been suggested in recently 

studies (Laird et al. 2004; Laird 2000; Rabinowitz and Laird 2000; Horvath et al. 2001). TDT 

only uses genotype data from parents and their offspring, and tests whether the probability of 

transmission of a marker allele from affected heterozygous parents to an affected offspring is 
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more than 50%. The hypothesis (HA) of the test is that the marker is in both linkage and 

association with disease loci. If the marker is associated but not linked to the disease loci, they 

won’t tend to be transmitted together, therefore no allele will be transmitted to affected offspring 

more than expected; if the marker is linked but not associated with the disease loci, the 

transmitted alleles will be different in different families. Similarly overall no marker will have 

more possibility than chance to be transmitted to affected kids. This feature of the TDT 

potentially avoids the spurious association due to population stratification.  However, due to the 

difficulty in collecting large family-based samples, it has not been widely used in genetic studies 

yet. 

Genome-wide linkage analysis once dominated the gene discovery for hypertension in 

the middle of the 1990’s. However, linkage and association studies are not mutually exclusive 

approaches. Linkage analysis examines the co-segregation with hypertension of genetic markers 

within families. The assumption is that the genetic marker tested is linked to disease causative 

gene. Usually linkage study is used to map the susceptible genes into a region around 10-30 CM 

(10-30 Mb); an association study then refines the map to identify the target gene. Suggestive 

linkage regions have been identified for essential hypertension on multiple human chromosomes, 

including chromosomes 1, 2, 3, 4, 5, 6, 10, 11, 15, 16, 17, 19, and 22 (Rice et al. 2000; Perola et 

al. 2000; Krushkal et al. 1999; Levy et al. 2000; Sharma et al. 2000; Xu et al. 1999; Andrea et al. 

2002, Caulfield et al. 2003), which also confirmed that essential hypertension is a polygenetic 

disorder. With the availability of high throughput genotyping and the completion of Hapmap 

project, genome-wide association has been employed in studies of essential hypertension in 

recent years (Nakayama et al., 2004). An association study has greater power than linkage to 

identify genes of small effect, but it is also more liable to show false positive result due to 
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genetic conversion, and variation in the pattern of linkage disequilibrium cross human genome. 

When the disequilibrium between the disease locus and marker is low, or there is allelic 

heterogeneity, linkage analysis might be a better approach.  

1.1.3 Statement of the problem and solution 

A common obstacle for both linkage and association studies is the heterogeneity of 

essential hypertension, which might explain the conflicting observations found in genome-wide 

scans. Individuals having the genetic predisposition to hypertension may not necessarily 

develop hypertension, and individuals may have hypertension due to non-genetic factors. The 

use of the intermediate trait previously associated with hypertension and one that may be 

regulated by fewer genes and environmental factors, such as sodium-lithium countertransport, 

provide substantial advantages for using either linkage or association tests. It can improve the 

power of linkage analysis, because the intermediate phenotype is closer than hypertension to the 

proximate gene product and is influenced by less confounding factors, it’s more likely to follow 

the classical Mendelian pattern of inheritance and make the genetic signal stronger and more 

detectable. For an association study, intermediate traits can help with identifying true cases and 

controls which is essential to find the disease causing genes. Unfortunately, not many studies 

have yet used the intermediate phenotype in exploiting the etiology of essential hypertension.  
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1.2 SODIUM LITHIUM COUNTERTRANSPORT 

1.2.1 Genetics of sodium lithium countertransport 

Sodium-lithium countertransport (SLC), a membrane transport phenotype first reported 

by Canessa et al. (1980), is assessed by measuring the rate of lithium loss from lithium loaded 

erythrocytes incubated in sodium-free versus sodium-rich medium.  Canessa et al. (1980) further 

reported that SLC is elevated in individuals with hypertension. Since that, increased SLC has 

been consistently documented in individuals with essential hypertension. Turner et al. (1992) 

showed that for each standard deviation increase in SLC, the risk of hypertension approximately 

doubled in men (OR 2.25, 95% CI 1.44-3.51) and women (OR=1.77, 95% 1.32-2.37). Weder et 

al. (1991) reported that adults with elevated SLC exhibited higher blood pressure levels as 

children. Elevated SLC in normotensive offspring of hypertensive parents has also been 

observed in U.S. Caucasians, African Americans and Africans (Woods et al. 1982; Obasohan et 

al. 1998).  

The reported heritability of SLC is fairly high in both humans and baboons (58%-88%) 

(Hasstedt et al. 1988; Dadone et al. 1984; Kammerer et al. 2001). However little is known about 

its genetic etiology. Turner et al. (1985) reported that SLC is a stable, bimodal distributed 

quantitative trait. Although the bimodality itself is not direct evidence for the existence of a 

major genetic determinant for the SLC, it implies the possibility. Later, complex segregation 

analyses (Boerwinkle et al. 1986; Rebbeck et al. 1991; Motulsky et al. 1987) presented strong 

evidence that a single gene with large effects might contribute to the distribution of SLC in the 

population at large. These findings were supported by study of Rebbeck et al.(1993), who further 

proposed that a biometrically inferred major gene might be used to predict the development of 
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hypertension, since the odds of having hypertension increased 5.2 times more in men with this 

statistically inferred “high” SLC genotype compared with those with alternative genotypes. 

Similar results were also achieved in a prospective study of adults from Utah pedigrees (Hunt et 

al. 1991; Williams et al. 1994). A large polygenic contribution to the variation in SLC has also 

been postulated (Hasstedt et al. 1994; Schork et al. 2002; Weder et al 2003; Dadone et al. 1984).  

The observations of strong association of SLC with essential hypertension, the high 

heritability of SLC in human and other species as well as the potential existence of single gene or 

genes with large effect on SLC, suggest that SLC may be a good intermediate trait for essential 

hypertension.  

1.2.2 Functions of sodium lithium countertransport 

The role of sodium lithium countertransport in the pathology of essential hypertension is 

unknown. SLC activity has typically been measured in mature erythrocytes; however if SLC 

activity can only been observed in erythrocytes, its function in essential hypertension would be 

doubted. Grinstein et al. (1984) first reported an SLC-like activity in thymic lymphocytes, then 

Zerbini et al. (1997 and 2001) found SLC activity was significantly elevated in human skin 

fibroblast from hypertensive individuals, extended the association of SLC with essential 

hypertension to cells outside erythrocyte, which also potentially made the involvement of SLC in 

development of human essential hypertension possible. 

Several hypotheses were proposed regarding what catalyzed the exchange (West et al. 

1998), but none of them has been validated. 
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Model I 

      The role of sodium balance (Dahl 2005; Boero et al. 1989; Hasegawa et al. 1987; 

     Weinberger and Fineberg 2001) in the development of hypertension has been very well 

       established. It was originally assumed that SLC may represent a mode of operation of some 

           abnormal membrane sodium transport (Hardman et al. 1999; Guarena, et al. 1993; Brearley et al. 

      1993; Hunt et al. 2006; Meneton et al. 2001) which may cause essential hypertension. For 

         example, Na+/H+ exchanger (NHE) was reported to be correlated with SLC (Touyz et al. 1999; 

         Bradford et al. 1989; Ng et al. 2000; Zerbini et al. 2003) by a presumable mechanism of altered 

       smooth muscle growth and contraction, but there’re debates on that (Zerbini et al. 1998; van 

           Norren et al. 1997; Lifton et al, 1991).  

            Model II 

            The observations that SLC activity is elevated in both essential hypertension and diabetes 

             patients (Grunfeld et al. 1994; Houtman et al. 1995; Andronico et al. 1998; Monciotti et al. 1997) 

        and the Na+/H+ exchanger was activated by insulin receptor kinase in hepatocytes (Demaurex 

          and Grinstein 1994, Bianchini and Poussegur 1994) triggered a hypothesis. It was assumed that 

        the membrane sodium transport itself might not cause hypertension, alteration of SLC activity 

       and essential hypertension were equally caused by raised insulin, which might mediate SLC 

     through activating some membrane transport or a mechanism involving the cytoskeleton. 

         However, contradictory results of the relationship between SLC and insulin have been reported 

           (Grunfeld et al. 1994; Herlitz et al. 2001; Foyle and Drury 1991; Rutherford et al. 1993; Canessa 

             et al. 1992; Canessa 1994; Zerbini  et al. 1995)   

             Model III 

             Abnormalities in modification of SLC by alkylation of erythrocyte thiol groups have been 

      found to be very similar in patients with hypertension, diabetes and diabetic nephropathy 



 9 

(Vareesangthip et al. 1996; Thomas et al. 1995; Vareesangthip et al. 2006). Therefore, a 

hypothesis that the aberrent thiol modification (e.g. oxidation) of cell membrane or cytoskeletal 

components may be resposible for these diseases was proposed. However, no solid evidence has 

been shown to support this hypothesis yet.  

Model IV 

 It has been acknowledged that hyperlipidemia is involved in development of essential 

hypertension. The association of SLC with hyperlipidemia has been reported by several studies 

(Wierzbicki et al. 2001; Wierzbicki et al. 2000; Macleond et al. 1997; Engelmann et al. 1993). 

This prompts a hypothesis that the change of SLC kinetics may be caused by hyperlipidemia 

through a mechanism of altering the erythrocyte membrane viscosity.  However, the fact that 

association of SLC with hypertension remains even after adjustment of blood lipid levels 

suggests that this mechanism alone can not explain the relationship between SLC and 

hypertension.  

1.2.3 Significance of characterizing genetic variants determining SLC 

Sodium lithium countertransport has been well established as an intermediate marker for 

essential hypertension, but little is known about its genetic determinants. Searching for the 

genetic variants influencing sodium lithium countertransport will lead to a better understanding 

of how alteration of SLC activity may contribute to the elevated blood pressure and its clinical 

complications, and eventually to a better understanding of the etiology of essential hypertension. 

It may also help with early diagnosis of young normotensive individuals with predisposition to 

hypertension and to better treatment options.  

. 
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2.0  A POSITIONAL CANDIDATE GENE FOR SODIUM LITHIUM 

COUNTERTRANSPORT-SLC34A2 

2.1 SPECIFIC AIM 

To examine the relationship between a positional candidate gene-SLC34A2 (Type IIb 

sodium dependent phosphate co-transporter) and erythrocyte SLC in both baboon and human. 

2.2 BACKGROUND 

2.2.1 Baboon model 

Baboons (Papio hamadryas) are among the closest living relatives to humans in terms of 

evolution and genetics. They share many genetic, metabolic and physiological features with 

humans, which make them excellent animal models for hypertension.  

Kammerer et al. (2001) have studied the genetic and environmental factors that affect 

erythrocyte SLC in 634 baboons comprising 11 pedigrees and presented convincing evidence of 

a locus influencing SLC on baboon chromosome 5. 
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2.2.2 Positional candidate gene-SLC34A2 

SLC34A2 (Type IIb sodium dependent phosphate co-transporter) belongs to the SLC34 

family of solute carriers, which comprise three members: Type II Na/P(i)-cotransporters NaPi-IIa 

(SLC34A1), NaPi-IIb (SLC34A2) and NaPi-IIc (SLC34A3). The major role of this family is 

thought to maintain phosphate homeostasis (Murer et al., 2004). Hattenhauer et al. reported that 

NaPi-llb is involved in sodium dependent transcellular flux of phosphate in the small intestine. 

(Hattenhauer et al, 1999; Hilfiker et al, 1998; Katai et al, 1999). The role of SLC34A2 in other 

tissues has yet to be well defined.  

Human SCL34A2 is located at chromosome 4p15.1-p15.3 (Xu et al. 1999) in a region of 

the genome homologous to the region of baboon chromosome 5, linked to SLC (Kammerer et al., 

2001).  Thus, SLC34A2 is a positional candidate gene for SLC.  

2.3 EXPERIMENTAL DESIGN 

This specific aim was accomplished through the completion of the following steps: 

- Sequencing SLC34A2 in 24 founders from 11 baboon pedigrees and 94 individuals from 

Rochester Family Heart Study (RFHS) phase II. 

- Comparing structural variants between two species. 

- Genotyping most informative SNPs across the SLC34A2 locus in 634 baboons, and 1856 

individuals from RFHS phase II. 

-  Evaluating the relationships between the allelic variation of SNPs and the variation of SLC 

activity by linkage and association tests. 
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2.4 MATERIAL AND METHODS 

2.4.1 Human Samples - Rochester Family Heart Study 

The objective of the Rochester Family Heart Study (RFHS) is to identify genetic 

variation that influences the risk of cardiovascular disease in the population of Rochester, MN. 

Multi-generation pedigrees were ascertained through households having two or more children 

enrolled in the school of Rochester between 1984 and 1991. Members were ascertained 

regardless of health status. The samples are of mixed European ancestry. The sampling details, 

clinic examination protocol, and baseline features have been described by Moll et al (1983) and 

Turner et al (1989). Clinical and laboratory data and DNA samples from the members of RFHS 

phase II, including 252 pedigrees containing 1856 individuals were used to accomplish the 

specific aim of project 1 with informed consent. Confidentiality of all subjects participated the 

study is fully protected. The characteristics of individuals in the RFHS phase II are shown in 

table 1. 

The average SBP and DBP were 116.9 and 69.5 mmHg respectively, which fall into the 

normal range of blood pressure level. The rate of males and females is almost equal. The average 

SLC activity was 298.1umol/l RBC/hr. 
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Table 1 Characteristics of individuals in the RFHS phase II 
Characteristics RFHS Phase 2 (n=1856) 

Age (year) 41.1 ± 23.3 

Male (%) 51.1 

DBP(mmHg) 69.5 ± 11.1 

SBP(mmHg) 116.9 ± 20.2 

Height(cm) 165.9 ± 12.4 

Weight(kg) 68.7 ± 19.3 

BMI(kg/m2) 24.6 ± 5.4 

SLC activity(umol/l RBC/hr) 298.1 ± 119.8 

 

2.4.2 Animal samples – baboons 

Blood samples from 634 noninbred baboons (P. hamadryas) comprising 11 pedigrees of 

2 and 3 generations each were used for measuring the SLC activity and genotyping. 24 baboons 

out of approximately 202 founders in these pedigrees were selected for DNA sequencing 

(Kammerer et al, 2001). All experimental protocols were approved by the Southwest Foundation 

institutional animal care and use committee. Table 2 shows the characteristics of 634 baboons.  
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Table 2 Characteristics of baboons 
Characteristics Values 

Age (year) 9.4 ± 6.0 

Sex (F/M) 430/204 

Weight(kg) 17.5±5.5 

SLC activity(umol/l RBC/hr) 0.242±0.099 

 

2.4.3 Measurement of SLC activities  

Data on baboon and human SLC activity were supplied by Dr. Kammerer and Dr. 

Morrison respectively. SLC is assessed by measuring the rate of lithium loss from lithium loaded 

erythrocytes incubated in sodium-free versus sodium-rich medium. 

In brief, 20 to 30 mL blood samples were drawn from the femoral vein. The RBCs were 

separated from plasma and buffy coat by centrifuging at 1000g for 10 minutes. After being 

washed three times with a washing solution (150 mmol/l choline chloride, 1 mmol/l MgCl2, 10 

mmol/L glucose, 10 mmol/l Tris-MOPS), 5 mL of packed RBCs was removed and used for 

sodium lithium countertransport assay. The SLC activity assay measures the external Na+-

stimulated Li+ efflux by comparing the lithium loss rates from lithium loaded erythrocytes 

incubated in sodium-free verse sodium-rich medium. The method had been previously described 

by Canessa et al. (1980) and Smith et al. (1984). Briefly, RBCs were suspended and incubated in 

20 mL 150 mmol/L LiCl solution for 3 hours at 37°C for lithium loading. Samples were then 

incubated with sodium-containing media of 150 mmol/L NaCl, 10 mmol/L ouabain, 10 mmol/L 
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glucose, and 10 mmol/L Tris-MOPS (pH 7.4 at 37°C) or with sodium-free solution of 150 

mmol/L choline chloride, 10 mmol/L ouabain, 10 mmol/L glucose, and 10 mmol/L Tris-MOPS ( 

pH 7.4 at 37°C). Lithium concentration was measured at different time points (0, 30, 50, 70, and 

90 minutes) by atomic absorption spectroscopy. The erythrocytes lithium efflux rate was 

calculated by linear regression analysis of sample time versus lithium concentration. Samples 

with the linear regression r2 <0.9 were removed from further analyses. The difference between 

the lithium efflux rates of RBCs incubated in sodium-containing media and sodium-free solution 

is the maximal velocity of SLC, which is expressed as micromoles lithium per liter RBCs per 

hour. Blind duplicates of RBC samples were used for quality control. (Modified from Kammerer 

et al., 2001) 

2.4.4 Taqman real time RT-PCR 

Total RNA from human tissues (kidney, arota, heart, left atrium, left ventricle, placenta, 

liver, lung, brain, skeletal muscle) was purchased from Ambion, Inc. (Austin, TX). Taqman 

Assays-on-demand for human SLC34A2 (including primers and probe) and Taqman GAPDH 

Control reagents were also  from Ambion, Inc. Taqman RT−PCR assay was conducted according 

to the manufacturer's specifications (Applied Biosystems, Forest City, CA). In brief, for each 

tissue, RNA dilutions of 80 and 20ng/μl were made in Nuclease-free water and used for two 

separate RT reactions. cDNA was synthesized using TaqMan RT kit (Applied Biosystems, 

Forest City, CA), and the 100ul RT reaction mixtures (contained 5ul RNA dilutions) were 

incubated in a thermal cycler with 10 min at 25°C, 45 min at 48°C, heat inactivated for 5 min at 

95°C, hold at 4°C. 5ul of each RT sample was used in the Taqman PCR reaction and all 

reactions (SLC34A2 and GAPDH were in separate tubes) were carried out in 96-well plates using 
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the ABI PRISM 7700 Sequence Detection System (Applied Biosystems) under the following 

conditions: 95°C for 12 min, and 40 cycles of 95°C for 15 sec and 60°C for 60 sec. Each sample 

was done in triplicate. Reactions in which reverse transcriptase was not added were used to 

control for DNA contamination. The comparative CT method was used to calculate the relative 

expression of SLC34A2 mRNA in different tissues according to the manufacturer's protocol 

(Applied Biosystems). The tissue with the lowest expression level was used as a calibrator. Ct 

values of both the calibrator and the samples of interest are normalized to an endogenous 

housekeeping gene - GAPDH. The relative expression level was calculated by an arithmetic 

formula 2 -∆∆CT.  

2.4.5 Prediction of promoter sequences 

Promoter sequences of SLC34A2 were predicted by using Gene2Promoter in Genomatix 

software (Genomatix Software GmbH, Munich, Germany). 

2.4.6 Sequence analysis of SLC34A2  

Genomic DNA was isolated from peripheral blood leucocytes (Baboon and human DNA 

were supplied by Dr. Cox, Southwest Foundation and Dr. Morrison, University of Texas 

respectively).  DNA from 24 baboon founders and 94 individuals with extreme (top 15 percentile 

vs. bottom 15 percentile) of SLC levels (Fig. 1) belonging to RFHS phase II was used for our 

sequence analysis. To obtain sufficient DNA, samples from 24 baboon founders were whole 

genome amplified using the method of Dean et al. (2002) and the Genomiphi (Amersham 

Biosciences) whole genome amplification protocol. Briefly, 1 µL of DNA was added to 9 µL of 
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sample buffer containing random hexamers and heated to 95°C to denature the DNA. The 

sample was cooled and mixed with 9 µL of reaction buffer containing salts and deoxynucleotides 

and 1 µL of enzyme mix. The mixture was incubated overnight at 30°C. After amplification, the 

Phi29 DNA polymerase was heat-inactivated during a 10 minute incubation at 65°C. 

Each exon, exon-intron boundary, proximal 5’ region and predicted promoter region of 

SLC34A2 was thoroughly sequenced. Unique sequence primers for amplifying SLC34A2 exons 

and flanking regions were designed using the human genomic sequence (Genbank NT 

006316.15) and synthesized by DNA Synthesis Facility at University of Pittsburgh.  PCR 

amplifications were carried out by using Taq DNA polymerase kit (Invitrogen Corporation, CA). 

50 ng of DNA was added to a reaction mixture, including 10pmoles of each of primer pair (Table 

3), 10nmoles of each dNTP, 10xbuffer 5ul, Mg2+ 2ul (Table 3), Tag DNA polymerase 1U. 

Adjust the final total reaction volume to 50 μl by adding deionized water. Samples were 

denatured at 95oC for 3 min. followed by cycles (indicated in table 3 and table 4) of denaturation 

at 95oC for 30 sec., annealing at temperatures indicated in Table 3 and table 4 for 30 sec. and 

extension at 72oC for 1 min.  8%(v/v, final concentration) betaine and dimethyl sulfoxide 

(DMSO) (Promega Corp., Madison, WI) was added in PCR mixture during amplification of 

human exon 1. A two-step PCR was used to specifically amplify baboon exon 1, because two 

DNA fragments were amplified in the first step.  After the primary PCR, products were separated 

on 2% agarose gel and the fragment with the exact molecular size of exon 1 was extracted from 

agarose gels according to Nucleospin extraction kits protocols (BD Biosciences Clontech, CA). 

The reisolated PCR fragment was used as a template for secondary PCR reamplification. All 

amplimers (10ul) were electrophoresed in 1% agarose, stained with ethidium bromide and 

visualized under UV illumination to confirm the size and purity of the product. 
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The ExoSAP process was used to clean up the PCR products before sequencing. Briefly, 

we incubate 5ul PCR product with 5ul master mix of ExoSAP (0.5ul shrimp alkaline 

phosphatase, 0.05ul of exonuclease I, 0.5ul buffer and 4ul deionized water) at 37oC for 30 min., 

followed by denaturation at 88oC for 15 min.   

Amplimers were sequenced from both directions using the ABI dRhodamine cycle 

sequencing kit (Applied Biosystems, Forest City, CA) as described in protocol. Mix 2.5ul PCR 

product, 2.3ul primer (0.8uM), 0.575ul dRhodamine dye and 1.725ul of sequencing buffer 

together. Incubate reaction mixture at 96 oC for 10sec., 50 oC for 5 sec. and 60 oC for 4 min., 

repeated by 24 cycles. Products were cleaned by Cleanseq Dye-Terminator Removal kit 

(Agencourt Bioscience Corporation, Beverly, MA). Briefly, add 10ul of clean sequence beads 

and 38ul of 85% ethanol to each sample, vortex for 30 sec., then place in magnetic tray for 10 

min. aspirate the cleared supernatant. Dispense 100ul of 85% ethanol and incubate at room 

temperature for 30 sec. aspirate out the ethanol, air dry for 10 min. Elute the sequencing products 

from the beads by elution buffer and load onto the ABI3700 capillary sequencer.  Sequences 

were aligned and curated using the program SEQUENCHER (Gene Codes).   

2.4.7 Functional Domain Prediction 

Functional domains in SLC34A2 were predicted by using Bioinformatic Harvester (Urban 

Liebel and Bjoern Kindler, the European Molecular Biology Laboratory - Heidelberg, Germany) 

(Liebel et al 2005), a bioinformatic meta search engine. It can provide comprehensive gene-

protein information by searching 16 major databases and prediction servers and combining the 

results. 
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Table 3 Amplication and Sequencing reaction components and conditions for Baboon SLC34A2 
Amplified    Primers (5'-3') Positions Annealing  Mg2+  Cycles 

region   Baboon  temp (mM)   

Exon 1 1F AGCCTCTTTGCGCAACAC    5’ -55 ~ -38 59°C 1 36 

  1R AGTCAGCACCGAGAGGTA   IVS1 +73 ~ +90     

Predicted F GAGATTAAAGGTGGTACATGCAGCTA Exon2 -281~ -256 60°C 1.5 36 

promoter R CGTGGAGTAGGACGGCAGAAGTTCAA Exon2 +234~ +259      

Exon 2 2F CCTCCTTTCCATGACTGC    exon2  -45~ -28 58.5°C 1 35 

  2R TCACAAAGGCCGATCTGC   IVS2  +22~ +39      

Exon 3 3F GTAAGTGTCGCTCGTTTG  IVS2  +1~ +18 56°C 1 38 

  3R TGACACCGTGAACCACAG   IVS3  +42~ +59      

Exon 4 4F GAGCTCTGAGCTCATTGC   exon4  -91~ -74 58.5°C 1 35 

  4R ACACTCCAGGAGGCTGCA  IVS +90~ +107      

Exon 5 5F CCCTCGATCACGTTGTGA   exon5 -49~ -32 53°C 1.25 36 

  5R TAGACAGGAGAGTGTCTG  IVS5  +35~ +52      

Exon 6 6F CATAGTGAGGTGCAGAGT  exon6 -157~ -140 56°C 1 36 

  6R CAATAGAGCTGATA*TCGC IVS6 +25~ +42      

Exon 7 7F GTACATGTGCACACTTCC  exon7 -126~ -109 58°C 1 35 

  7R CCAGGCCCAGAATAGTGT  IVS7 +88~+105      

Exon 8 8F CAGTGCCTCTGCAGATAG  exon8 -157~ -140 58°C 1 35 

  8R AGGCATTCACTGGTCACT  IVS8 +132~ +149      

Exon 9 9F GTGTCTGCGCCTGTTCAT  exon9 -92~ -75 57.5°C 1 35 

  9R CCAGACAACACCTGTCAT  IVS9 +29~ +46      

Exon 10 10F GTCTTGATTTGGGGCTGC  exon10 -140~-123 58°C 0.75 35 

  10R AGAGGCCATTGCTAGATG  IVS10+73~ +90      

Exon 11 11F TGATGTACAACCTCACCC  exon11 -98~ -81 58°C 1 35 

  11R CAGCGTGAGTGGATAAGC  exon12 +27~ +44      
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Table 3 continued 

Amplified    Primers (5'-3') Positions Annealing  Mg2+  Cycles 

region   Baboon  temp (mM)   

Exon 12 12F CTGCCATTTCCTGTCATC  exon12 -57~ -40 57.5°C 1.25 35 

  12R GGCTCTTGTTAGAGACCA  IVS12 +63~ +80      

Exon 13 13F1 CTCACCTGTCCAACCTCT  exon13 -28~ -11 59°C 1 38 

  13R1 CAAGTCCTT*GCAGCACTT  exon13 +469~+486      

Exon 13 13F2 CGTCGTCTCCAAGTTCAC   exon13 +357~+374 53°C 1 38 

  13R2 GTTAGGTAGGACTGCATC  IVS13 +123~ +140       

*This nucleotide is different in human SLC34A2. In human sequence, it’s G instead of A at exon 
6; it’s C instead of T at exon 13. 
F and R: Forward and Reverse primers for PCR amplification respectively. 
 

Table 4 Amplication and Sequencing reaction conditions for human SLC34A2 
Amplified    Primers (5'-3')  Positions Annealing   Mg2+  Cycles 

region   Human   temp (mM)   

Exon 1 1F CTTAGGACGGAGTGGTGA         5’  -581~ -598   55.5°C 0.9 36 

  1R TGAAGTCAGCACCGAGAG   IVS1 +76~ +93      

Predicted F1 GCAATGGCACAATCTCAGCTCACTGC Exon2 -575~ -550 64°C 2 36 

Promoter R1 CTAAGTGTGGCATATTAAGCACCAT Exon2 -185~ -161      

Predicted F2 GAGATTAAAGGTGGTACATGCAGCTA Exon2 -281~ -256 60°C 1.5 36 

Promoter R2 CGTGGAGTAGGACGGCAGAAGTTCAA 

Exon2 +234~ 

+259      

Exon 2 2F CACCCAGTTGATGCTTTG   exon2 -100~ -83 58°C 1 35 

  2R CTATCAGTGTAGCCGTGG  exon3 +52~+69      

Exon 3 3F GTAAGTGTCGCTCGTTTG   IVS2 +1~ +18 58°C 1.25 35 

  3R GGTGACAGAGCAAGACTC  IVS3 +157~ +174      

Exon 4 4F CTGTAAGGCTGGCTAGAC  exon4 -156~ -139 58°C 1 35 

  4R CCTAAAACACTCCAGGAG  IVS4 +96~ +113      



 21 

Table 4 continued 

Amplified    Primers (5'-3')  Positions Annealing   Mg2+  Cycles 

region   Human   temp (mM)   

Exon 5 5F TGGACTCTGCAACCCACA  exon5 -118~ -101 58°C 1 36 

  5R GCCTGGACATATTCAGAG  IVS5 +85~ +102      

Exon 6 6F CATAGTGAGGTGCAGAGT  exon6 -157~ -140 58°C 1 35 

  6R GCTGGTGAGTATGTGATC  IVS6 +152~ +169      

Exon 7 7F GTACATGTGCACACTTCC  exon7 -126~ -109 58°C 1 35 

  7R CCAGGCCCAGAATAGTGT  IVS7 +88~+105      

Exon 8 8F CAGTGCCTCTGCAGATAG  exon8 -157~ -140 58°C 1 35 

  8R AGGCATTCACTGGTCACT  IVS8 +132~ +149      

Exon 9 9F GCCATACTGCATGCACCA  exon9 -116~ -99 58°C 0.75 35 

  9R GTTGCTCACTGCTTGATG  IVS9 +122~ +139      

Exon 10 10F GTCTTGATTTGGGGCTGC  

exon10 -140~-

123 58°C 0.75 35 

  10R AGAGGCCATTGCTAGATG  IVS10+73~ +90      

Exon 11 11F TGATGTACAACCTCACCC  exon11 -98~ -81 58°C 1 35 

  11R CAGCGTGAGTGGATAAGC  exon12 +27~ +44      

Exon 12 12F GTACAGAGCAGCTCTGTG  exon11 +72~ +89 58°C 1 35 

  12R GGTCTTACTGCTTCTCTC  

IVS112 

+187~+204      

Exon 13 13F1 TGATGCCTGCTAGCTTAC  exon13 -92~ -75 58°C 1 36 

  13R1 GTCTCAGGAGCCTTGACA  

exon13 +516~ 

+533      

Exon 13 13F2 CGTCGTCTCCAAGTTCAC  

exon13 +357~ 

+374 58°C 0.75 36 

  13R2 GTACACTTCCTCATCTGG  

IVS13 +403~ 

+420      
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2.4.8 Genotypes of SLC34A2 in baboon and human 

2.4.8.1 Selection of SNPs 

Informative SNPs of human SLC34A2 were genotyped in 1856 individuals from RFHS 

phase II. Human SNPs for genotyping were selected based on our resequencing results, a private 

database Celera and the public database SNPper (CHIP Bioinformatics Tools, Riva and Kohane, 

2002). All genotyped SNPs had a minor allele frequency ≥10%. 

For association and linkage analysis, all 634 baboons were genotyped. Baboon SLC34A2 

SNPs were chosen based on our sequencing data with the help of Haploview. The functional 

sites such as missense mutations and mutations located in important functional domains with 

minor allele frequency ≥10% were genotyped. 

2.4.8.2 High throughput genotyping - TDI-FP 

All genotyping was done by TDI-FP (Template direct dye-terminator incorporation with 

fluorescence-polarization assay), except for SNPs in baboon exon 13, which were done by 

sequencing by Dr. Laura A. Cox. The reason is that several informative SNPs are located on the 

same exon, so it is more efficient to genotype these SNPs by one time sequencing. 

PCR amplifications were carried out in a total reaction volume of 20 μl, containing 10ng 

of baboon DNA (due to limited amount of available baboon DNA) or 25ng of human DNA, 4 

pmoles of each primer (Table 3), 4 nmoles of each dNTP, 2.0ul of 10xbuffer, 0.8ul of Mg2+ 

(Table 3) and 0.9U Tag DNA polymerase.  The amplification and amplicon check procedures 

were the same as described before. Excess PCR primers and unincorporated dNTPs were 

degraded by ExoSAP process (USB Corporation, Cleveland, Ohio, USA). Incubate 10ul PCR 

product with 10ul master mix of ExoSAP (1ul shrimp alkaline phosphatase, 0.1ul of exonuclease 
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I, 1ul buffer and 8ul deionized water) at 37oC for 90 min., followed by denaturation at 95oC for 

15 min.   

A template direct dye-terminator incorporation with fluorescence-polarization (TDI-FP) 

assay as previously described (Chen et al, 1999; Kwok 2002) was then performed for high 

throughput genotyping. The cleaned PCR product (total volume 20ul) was combined with 0.05 

µl thermosequenase DNA polymerase(USB corporation, OH ), 1.0 µl 10X reaction buffer, 0.05 

µl of the 1:16 two-dye mix (eg. for SNP C/T, 16ul 0.1mM ddATP, 16ul 0.1mM ddGTP, 15ul 

0.1mM ddCTP,  16ul 0.1mM ddTTP, 1ul R110-UTP, 1ul TAMRA-CTP) (Perkin Elmer Life 

Sciences, Inc, Boston, MA), 1.0 µl 10 µmol/L SNP specific primer (DNA Synthesis Facility, 

University of Pittsburgh,PA), and 8 µl water. Template-directed incorporation (TDI) was 

performed in 96-well, black-skirted plates (MJ Research, Waltham, MA) using a Tetrad thermal 

cycler (MJ Research) under the condition at 95°C for 1 min, followed by 35 cycles of 94°C for 

10 s and annealing temperature (see table 4) for 30 s with a final hold step of 4°C. FP was 

measured by L.J.L biosystem’s Analyst HT Assay Detection System and analyzed by Allele 

Caller software package (L.J.L biosystems, Sunnyvale, CA). The amplification and TDI-FP 

primers and conditions were summarized in Table 5.  
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Table 5 Amplification and FP primers and conditions for genotyping tag SNPs of SLC34A2 in 
human and baboons

SNPs ID Celera ID rs # position Primers 

Annealing 

temp 

Mg2+ 

(mM) 

SLC34A2_1 cv1222755 rs12501856 Intron 1 F CTTGTGATGGCTGTAAGG 

Human      R CATAGGCACCACAACACT 54°C 1.5 

       FP-F GAATTTTTGAAGCACAGAGTCA 

       FP-R AAAACTTTCTTGTACTTTGAAAGA 55°C   

SLC34A2_2 cv1222758 rs3775909 Intron 3 F TATGCAGCCAGACAGCTG 

Human      R CCACAGTGTCACTGAGTG 56°C 2 

       FP-F AGCCAGTGGAGTAAACAGCA 

       FP-R CCTGGGATGCTACATCCTTAA 55°C   

SLC34A2_3 cv122770 rs3796777 Intron 9 F AACCCAGCCATCCTTCGTTATTC 

Human      R GATAATCCCAGCAAAACATGG 59°C 1.5 

       FP-F CCACATTAATTCTGAGCACTATA 

       FP-R AATCATACCTAGAGTATTAAG 55°C   

SLC34A2_4 

By 

resequencing 

Gly 633 

Asp exon 13 F CTCCAGAACTGGAACTTC 

Human      R CAAGTCCTCGCAGCACTT 54°C 2 

       FP-F GCGTGCTGCTTGCTGTGTG 

       FP-R CGGCAGCACTTGGGGCAG 55°C   

Baboon 

By 

sequencing 

Asn 136 

Asn exon5 F CCCTCGATCACGTTGTGA   

       R TAGACAGGAGAGTGTCTG  53°C 1.25 

       FP-F GCAGGACAGTTCTTCAGCAA 

        FP-R AGGGTTGGACATAATAGAGCT 52°C   
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2.5 DATA ANALYSIS 

2.5.1 Tests of Hardy-Weinberg Equilibrium 

A basic X2 goodness-of-fit test was used to test the deviations from the Hardy-Weinberg 

Equilibrium (HWE). We didn’t conduct HWE test for sequencing data in baboon due to the 

small sample size (only 24 samples). 

2.5.2 Linkage and association analysis 

2.5.2.1 Baboon 

Allelic association analyses for baboon SLC34A2 were conducted by the variance 

component method in SOLAR (Sequential Oligogenic Linkage Analysis Routines) Version 2.1.4 

(Southwest Foundation for Biomedical Research, San Antonio, TX) that was extended for use on 

full pedigrees (Almasy and Blangero, 1998).Genotype-data cleaning, including Mendelian error 

checking, was performed using the INFER procedure in PEDSYS software version 2.0 

(Southwest Foundation for Biomedical Research, San Antonio, TX ). An additive model was 

used for all analyses. The measured genotypes were recoded as covariates - most common 

homozygous genotype was coded as 0, the heterozygous and the less common homozygous 

genotype were coded as 1 and 2 respectively. Their effects on the trait were then estimated by the 

maximum likelihood ratio test through comparing the model including the covariate against the 

model excluding the covariate by SOLAR. The other estimated covariates included age, sex and 

weight. The Bonferroni correction was used for the multiple testing adjustments. 
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For the SNP significantly associated with the trait, the means of the trait in each 

measured genotype were calculated by SOLAR to further understand the genotype specific effect 

on the means of the trait.  In this case, three genotypes AA (common genotype), AB, BB were 

recoded as dummy variables 0 0, 0 1 and 1 0 respectively. The means of trait for each genotype 

group were calculated by the formula: mean + ß*1; mean is the final trait mean in the optimized 

regression model, ß is the slope rate of each genotypic covariate, which were reported in Poly.out 

file in SOLAR.  

To evaluate the attribution of a specific SLC34A2 SNP to the observed SLC linkage 

signals by Kammerer (2001), linkage analysis conditional on measured genotype was performed. 

Highly polymorphic microsatellite markers data which was used to localize a quantitative trait 

locus (QTL) for baboon SLC was obtained from Dr. Candace Kammerer. The multipoint 

variance component linkage analyses was conducted by calculating the log10 likelihood ratio 

(LOD) of a polygenic model that does not incorporate genetic marker information and models 

that incorporate marker genotype data across a chromosome (Levy et al. 2000) by using SOLAR.  

Linkage was reevaluated conditional on the genotypes of interest. Multipoint IBD probabilities 

were generated by CRIMP linkage analysis package along chromosome 4 at 1 cM intervals. The 

measured genotypes were modeled as a covariate with fixed effect on the trait mean. By this 

way, the variance due to this SNP was removed from the final linkage model. The contrast 

between the original and conditional LODs was used to assess the attribution of a SNP to the 

linkage component. If the SNP is the sole functional variant accounted for the trait, the linkage 

signal will completely disappear and the LOD score should drop to 0 in the conditional linkage 

analysis. If the measured SNP is only one of the several functional polymorphisms or is in 
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disequilibrium with true variant, the evidence for linkage should remain in the conditional 

analysis (Almasy and Blangero, 2004).  

(All statistical tests in baboon were carried out with the collaboration of Dr. Candace 

Kammerer and Marget Kenney). 

2.5.2.2 Human 

Human SNP genotype association analyses were performed by both SOLAR and family-

based association test (FBAT) version 1.5.1 (Harvard school of public health, Boston, MA) 

(Laird et al. 2000 and Horvath et al. 2001). The procedure for data cleaning was same as 

described for the baboon. The null hypothesis of FBAT is “no linkage and association” between 

the marker and the disease underlying locus. Option –e in FBAT, which could test for 

association in an area of known linkage (Lake et al., 2000) was used to complete the association 

analysis.  An additive model was tested. The haplotype version of FBAT (HBAT) was used to 

estimate the associations between SLC and SNPs hyplotypes (Horvath et al. 2004). Due to the 

complex family structure within the baboon pedigrees, we couldn’t use FBAT in association 

analysis for baboons.  

The association analysis in SOLAR was similar to that described in baboon, except for 

the estimation of covariates. The effects of covariates, including age, sex, height, weight, BMI, 

Cholesterol, LDL, HDL, fasting, triglycerides and smoke status were first assessed by SAS 

(SAS, version 9.1, SAS institute Inc., Cary, NC). Those with P values less than 0.1 were re-

examined by SOLAR, and covariates which didn’t significantly influence the trait were removed 

from the final model. The results were adjusted for multiple testing using the Bonferroni 

correction.  
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 (All statistical analyses in human were done with the collaboration of Dr. Alanna 

Morrison, Human Gentic Center, Houston, TX).  

2.6 RESULTS 

2.6.1 The distribution histogram for sodium lithium countertransport 

The frequency distribution histogram for sodium lithium countertransport in human 

RFHS phase II is shown in Figure 1.  The distribution is skewed toward higher values, which is 

consistent with previous report (Turner et al. 1985). Forty seven individuals from the top 15th 

percentile and forty seven individuals from the lower 15th percentile of the distribution were 

used for sequencing. 
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Frequency distribution histogram for SLC in 
RFHS phase II
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Figure 1 The frequency distribution histogram for sodium lithium countertransport in human 

RFHS phase II 
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2.6.2 Relative expression of SLC34A2 in human tissues 

It is shown in figure 2 that SLC34A2 has high expression in lung, kidney, placenta and 

liver; moderate in aorta, left atrium and heart; lowest in skeletal muscle. 
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Figure 2 Relative Expression of SLC34A2 in diverse tissues 

 
Figure 2 shows relative expression of SLC34A2 in human tissues with potential functions 

in blood pressure regulation. The RNA from skeletal muscle was used as calibrator. Y-axis 
indicates the relative expression values in diverse tissues expressed as log2 transformed 2–

[delta][delta]Ct.  
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2.6.3 The sequence variation observed in the baboon and in human 

Figure 3 summarizes the sequence variation observed in 24 baboons and 94 humans. The 

Genomatix predicted promoter region in human genome sequence starts from exon2 -503 and 

ends at exon2 +92. A total of 16 exonic single nucleotide polymorphisms (SNP) and 3 intronic 

SNPswere observed in the baboon compared to 5 exonic SNPs and 10 intronic SNPs in the 

human, despite the smaller sample size.  This difference in occurrence of SNP variation between 

humans and baboons has been observed for other loci (Wang et al. 2004) and may be due to the 

mixed nature of the founding population of baboons, which included both P.h. cynocephalus and 

P.h. anubis, or to the difference in population history between humans and baboons.  

 The comparison of the nucleotide and amino acid sequence alignments of SLC34A2 

between human and baboon is shown in appendix 1. Bioinformatic Harvester (Liebel et al 2005) 

found five predicted domains, including 2 sodium-phosphate (Na_Pi) cotransport domains, 2 low 

compositional complexity domains and 1 transmembrane domain which were highlighted in 

different colors in appendix 1. “Low complexity regions are regions of biased composition. 

Theses regions are often mosiacs of a small number of amino acids. These regions have been 

shown to be functionally important in some proteins, but they are generally not very well 

understood”. This description is from Pfam: help page (Wan et al. 2000 and Wootton 1994). 

There are several SNPs in baboon which occur in regions important for SLC34A2 function. For 

example, the SNP Asn136Asn (exon5) located in Na_Pi cotransport domains and Lys636Asn 

(exon 13) in low compositional complexity domains are very interesting SNPs. These SNPs as 

well as other missense mutations with minor allele frequency ≥10% were genotyped in all 

baboon pedigrees. 
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Figure 3 Baboon and human sequence variation in SLC34A2 

2.6.4 Single nucleotide polymorphisms identified in sequencing SLC34A2 in 24 baboons 

Table 6 summarizes the genotype and allele frequencies (based on 48 chromosomes) 

observed in this sample.  Appearing to depart from Hardy Weinberg Equilibrium   for SNP 

Asn136Asn is due to small sample size and the fact that the 24 founders used for sequencing 

were not a random sample of the population. Follow-up genotyping Asn136Asn in all 634 

baboon pedigrees showed that it didn’t deviate from Hardy Weinberg Equilibrium at all 

(p=0.85). Only a small region flanking each exon was sequenced so the number of intronic SNP 
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detected is small. Table 7 summarizes genotype and allele frequencies for humans. No SNP was 

shared between the two species.   

 Table 6 Single nucleotide polymorphisms identified in sequencing SLC34A2 in 24 baboons
Region SNP Genotypes # Allele freq 

Exon 1 Exon1 +28 G/G 22 G = 0.958 

(5' UTR) (G-->A) G/A 2 A = 0.042 

Promoter Exon2 -159 G/G 20 G = 0.927 

  G/A 4 A = 0.083 

Promoter Exon2 -78 T/T 20 T = 0.927 

  T/C 4 C = 0.083 

Exon 3 Glu 61 Glu G/G 13 G = 0.708 

 (G-->A) G/A 8 A = 0.292 

  A/A 3  

Exon 4 Val 112 Val G/G 23 G = 0.979 

 (G-->A) G/A 1 A = 0.021 

Exon 5 Asn 136 Asn * T/T 12 T = 0.604 

 (T-->C) T/C 5 C = 0.396 

  C/C 7  

Exon 7 Leu 225 Leu C/C 23 C = 0.979 

 (C-->G) G/C 1 G = 0.021 

intron 8 IVS 8 +4 C/C 22 C = 0.958 

 C-->T C/T 2 T = 0.042 

Exon 9 Thr 341 Thr C/C 21 C = 0.917 

 (C-->T) T/C 2 T = 0.083 

  T/T 1  

Exon 10 Leu 357 Ile C/C 22 C = 0.958 

 (C-->A) A/C 2 A = 0.042 
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Table 6 continued 
Region SNP Genotypes # Allele freq 

Exon 13 Pro 560 Pro C/C 19 C = 0.875 

 (C-->T) C/T 4 T = 0.125 

  T/T 1  

 Val 568 Val A/A 23 A = 0.958 

 (A-->T) T/T 1 T = 0.042 

 Pro 583 Pro C/C 23 C = 0.979 

 (C-->G) G/C 1 G = 0.021 

 Leu 630 Leu T/T 7 T = 0.521 

 (T-->C) T/C 11 C = 0.479 

  C/C 6  

 Leu 630 Leu G/G 21 G = 0.938 

 (G-->A) A/G 3 A = 0.062 

 Lys 636 Asn * G/G 6 G = 0.479 

 (G-->C) G/C 11 C = 0.521 

  C/C 7  

 Lys 645 Glu * A/A 21 A = 0.896 

 (A-->C) C/A 3 C = 0.104 

  C/C 1  

 Glu 649 Glu G/G 21 G = 0.938 

 (G-->A) A/G 3 A = 0.062 

 Arg 678 Arg T/T 23 T = 0.958 

 (T-->G) G/G 1 G = 0.042 

 Pro 680 Ala C/C 6 C = 0.5 

 (C-->G) G/C 12 G = 0.5 

  G/G 6  

* SNPs were further genotyped. ** SNPs are in LD with Lys 636 Asn. 
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Table 7 Single nucleotide polymorphisms identified in sequencing SLC34A2 in 94 unrelated 
individuals from RFHS Phase II 

Sequencing 

region SNP Genotypes # 

Allele 

frequencies 

HWE 

P value 

5' region 5' -564 T/T 69 T = 0.936 0.63 

 (T-->C) T/C 8 C = 0.064  

  C/C 1   

 5' -312 G/G 72 G = 0.929 1 

 (G-->C) G/C 12 C = 0.071  

 5' -91 G/G 79 G = 0.976 1 

 (G-->T) G/T 4 T = 0.024  

Promoter Exon2 -426 C/C 88 C = 0.978 1 

 (C-->T) C/T 4 T = 0.022  

Intron 2 IVS2 +10 G/G 90 G = 0.979 1 

 (rs4697597) G/A 4 A = 0.021  

 (G-->A)     

Exon 5 Ser134Asp G/G 91 G = 0.995 1 

 (G-->A) G/A 1 A = 0.005  

Exon 6 Iso 183 Iso T/T 88 T = 0.978 1 

 (T-->C) T/C 4 C = 0.022  

Intron 7 IVS7 +851 G/G 91 G = 0.995 1 

 (G-->A) G/A 1 A = 0.005  

Exon 8 Glu 290 OCH G/G 91 G = 0.995 1 

 (G-->T) G/T 1 T = 0.005  

Intron 8 IVS8 +28 G/G 91 G = 0.995 1 

 (G-->A) G/A 1 A = 0.005  

Intron 9 IVS9 +1319 C/C 88 C = 0.994 1 

 (C-->G) C/G 1 G = 0.006  
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Table 7 continued 
Sequencing 

region SNP Genotypes # 

Allele 

frequencies 

HWE 

P value 

Intron 10[1] IVS10 +30 T/T 79 DEL=0.944 1 

 (C insertion) C insertion 10 INS=0.056  

Exon 11 Leu 413 Phe G/G 87 G = 0.994 1 

 (G-->C) G/C 1 C = 0.006  

Exon 13 Gly 633 Asp G/G 55 G = 0.807 0.441 

Genotyping (G-->A) G/A 24 A = 0.193  

  A/A 4   

3’UTR IVS13 +25 G/G 46 G = 0.769 0.683 

 (rs3733545) G/T 31 T = 0.231  

 (G-->T) T/T 3   

[1]. Nucleotides IVS10 +30 ~ IVS10 +37 differed from the published sequence  
CACATGTA. The observed sequence was TGAGGGATG. 

2.6.5 Allelic association analysis between human SLC34A2 SNPs and SLC phenotypic 

variation 

Due to the fact that almost all SNPs identified by the resequencing of 94 humans are rare 

SNPs (minor allele frequency<10%) except for the SNP in exon 13, we selected some common 

SNPs from both private and public databases to cover the whole gene. The results of human 

SLC34A2 allelic association analysis in RFHS phase II are shown in table 8. SNP rs3775909 is 

significantly associated with phenotypic variations of SLC in individual association test by both 

SOLAR and FBAT.  The p-value (≈ 0.03) in SOLAR and FBAT (-e) are significant individually, 

but couldn’t pass the multiple testing adjustment by Bonferroni, by which the significance level 

for a single test is set as 0.0125 (α = 0.05/4; Four SNPs). However, haplotype association tests 
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(table 9) shown strong association (p<0.005) between block 2 in human SLC34A2 and SLC even 

after the multiple test corrections and marginal significant association with SBP and DBP. 

Table 8 Results of human SLC34A2 allelic association tests in Phase II 
HHWWEE  

((pp__vvaalluuee))    

SSLLCC  

((PP__  vvaalluuee))  

SBP 

(P_value) 

DBP 

(P_value) 

SSNNPPss  IIDD  rrss##  LLooccaattiioonn  

mmiinnoorr  

aalllleellee  

ffrreeqquueennccyy    

FFBBAATT  

((--ee))  SOLAR 

FFBBAATT    

((--ee))  

FFBBAATT  

  ((--ee))  

SSLLCC3344AA22__11  rrss1122550011885566  IInnttrroonn  11  00..1188  00..6666  00..5588  00..7722  0.35 0.3 

SSLLCC3344AA22__22  rrss33777755990099  IInnttrroonn  33  00..3344  00..7799  00..0033  00..0033  0.29 0.3 

SSLLCC3344AA22__33  rrss33779966777777  IInnttrroonn  99  00..1133  00..3388  00..9988  00..7788  0.86 0.81 

SLC34A2_4 

Gly633Asp by 

resequencing Exon13 0.13 0.2 0.13 0.18 0.42 0.48 

The significance level for a single test is set as p=0.0125 (α = 0.05/4; Four SNPs). 

Table 9 Summary of HBAT (Haplotype association analysis) results 
FFBBAATT  ((--ee))  PP  vvaalluuee  

HHaapplloottyyppeess    

EEssttiimmaatteess  ooff  

ffrreeqquueennccyy  SSLLCC  SBP DBP 

hh11  CC      TT      AA      GG  00..443333  00..2233  0.38 0.36 

hh22  CC      CC      AA      GG  00..229955  00..000022  0.08 0.09 

hh33  GG      TT      GG      GG  00..007799  00..8855  0.61 0.52 

hh44  GG      TT      AA      GG  00..004488  00..5533  0.2 0.2 

hh55  CC      TT      AA      AA  00..004488  00..1133  0.49 0.46 

hh66  GG      TT      GG      AA  00..004411  00..7711  0.78 0.84 

hh77  CC      CC      AA      AA  00..003377  00..001144  0.01 0.01 

hh88  GG      TT      AA      AA  00..001111  00..1177  0.25 0.29 

hh99  CC      TT      GG      GG  00..000077        

The significance level for a single test is set as p=0.0056 (α = 0.05/9; Nine haplotypes). 
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2.6.6 SNP association analysis between baboon SLC34A2 SNPs and SLC phenotypic 

variation 

 

Figure 4 LD pattern of all observed SNPs in sequencing baboon SLC34A2 by haploview 

White: D’<1 and LOD <2; Blue: D’=1 and LOD <2; Shades of pink/red: D’<1 and LOD ≥2; 

Bright red: D’=1 and LOD ≥2.  

 

 Variance component method by SOLAR was used for baboon allelic association 

analysis. Among all genotyped sites in baboon, SNP Asn136Asn (exon5) show (table 10) strong 

evidence of association with SLC variations (p=0.0001) even after multiple test adjustment by 
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Bonferroni, by which the significance level for a single test is set as 0.0175 (α = 0.05/3; three 

SNPs).The genotypes of this single SNP explained about 5% of total variance in SLC.  

Table 10 Summary of results of baboon SLC34A2 allelic association analyses 

SNPs Position minor allele frequency 

HWE 

P value SOLAR  

Asn136Asn exon 5 0.48 0.85 0.0001 

Lys 636 Asn exon 13 0.46 0.17 0.28 

Lys 645 Glu exon 13 0.1 0.14 0.27 

The significance level for a single test is set as 0.0175 (α = 0.05/3; three SNPs). 

 

In order to further understand the genotype effect on the means of trait, we calculated the 

means of SLC activity by each genotype in the Asn136Asn which was significantly associated 

with SLC (table 11). Interestingly, means of SLC activity among individuals with minor 

homozygous genotype (CC) is significantly higher than ones with other two genotypes 

(P=0.0003), which suggests that CC might increase the risk of high SLC. 
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Table 11 Means of SLC activity by each genotype of Baboon Asn136Asn 
Baboon 

SNPs Asn 136 Asn 

Genotypes CC CT TT 

Number of Individuals (n) 136 277 155 

Average SLC activity 0.286 0.229 0.229 

P value 0.00003 

 

2.6.7 Conditional linkage analysis based on baboon Asn136Asn  genotype 

In order to determine if Asn136Asn is the genetic variant that accounts for the baboon 

linkage signal identified by Kammerer et al (2001), multipoint linkage analysis conditional on 

Asn136Asn genotypes was performed. The peak LOD score was only slightly reduced in 

conditional linkage models from 11.2 to 10.8. Strong evidence of linkage remained in the model 

after the effect of Asn136Asn genotypes was removed from the model (Figure 5). 
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Figure 5 Comparison of the original linkage signals (red line) with the linkage analysis 
results conditional on Asn136Asn genotypes in baboons on chromosome 5 (homologous to 

human chromosome 4) 
 

 

2.7 DISCUSSION 

SLC34A2 is located at chromosome 4p15.1-p15.3 (Xu et al. 1999) in a region of the 

genome homologous to the region of baboon chromosome 5, linked to SLC (Kammerer et al. 

2001); therefore SLC34A2 is a positional candidate gene for SLC. SLC34A2 was first cloned by 

Xu et al. (1999) and was reported to be involved in sodium dependent transcellular flux of 
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phosphate in small intestine (Hilfiker et al, 1998; Xu et al. 1999). The role of SLC34A2 in other 

tissues is unclear until recently Corut et al. (2006) reported that mutations in SLC34A2 cause 

pulmonary alveolar microlithiasis and might be responsible for calcium deposits in lung and 

other tissues.  We tested the expression of SLC34A2 in diverse human tissues which might 

involve in the development of hypertension. It was shown that SLC34A2 is strongly expressed in 

lung, kidney and placenta; moderately expressed in arota, left atrium and heart. The active 

expression of SLC34A2 in these blood pressure regulation related tissues implied that this gene 

might play a role in the network of blood pressure control, which made this sodium related solute 

carrier both a positional and functional candidate gene for SLC. 

Resequencing of SLC34A2 in the baboon and the human establishes the strong homology 

in exonic organization and sequence between the human and baboon SLC34A2 genes and 

extensive variation in both species (see figure 3). Genotyping of SNPs of SLC34A2 in baboon 

revealed one variation Asn136Asn on exon 5 is significantly (p=0.0001) associated with 

phenotypic variation in sodium-lithium countertransport. The proportion of the SNP explained 

variation in SLC is around 5%. In human, the SNP rs3775909 located in intron 3 was 

significantly associated with SLC (p=0.03) with SNP effect less than 1%, but it failed to pass a 

multiple testing adjustment. However, strong association (p<0.005) was observed through 

haplotype analysis and was still significant even after adjustment for multiple testing. There are 

several possible explanations for why allelic effect is larger in baboons than in humans.1) the 

living environment of baboons are more homogeneous than that of humans, for example, 

baboons were fed the same food and water. 2) Differences between the two species. 3) Specific 

genotype effects of different SNPs.  
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To further understand which genotype of these SNPs affected the trait, we compared the 

means of SLC activity by each genotype of baboon Asn136Asn. It’s very interesting that much 

higher levels of SLC activity were observed in the less common C/C genotype compared to C/T 

and T/T genotypes, while similar levels between C/T and T/T groups in Asn136Asn. This may 

suggest that the CC genotype of this SNP may increase the risk of high SLC through a recessive 

effect.  

We also observed that covariates triglycerides (p=1.1e-13), BMI (p=3.2e-7) and sex 

(p=0.04) are significantly associated with SLC in human. Cholesterol, HDL and LDL are 

collinear with triglycerides; age is partially collinear with BMI; the approximately explained 

variance for triglycerides is around 5%. This is consistent with previous studies by Herlitz et 

al.(2001) and Wierzbicki et al.(2001). We find no association between SLC34A2 and 

triglycerides (p=0.61), which suggested that the effect of SLC34A2 on SLC was not through 

triglycerides.  

 To address the question if the SNP Asn136Asn account for the linkage signal identified 

by Kammerer et al. (2001), conditional linkage analysis which incorporated the measured 

genotype effect of this SNP into model was conducted. After removing the SNP effect, strong 

evidence of linkage remained in the conditional analyses. There are several possible explanations 

for why this polymorphism showed strong association with SLC but only accounted for mild 

linkage signal. Since the association analysis is far more powerful than linkage analysis in 

detecting the common variants with modest effects, it’s likely that Asn136Asn is only one of 

several functional variants. There are still other polymorphisms with larger effect in this gene 

that exist. It is also possible that the linkage signal was explained by several genes, SLC34A2 

being one of them but not the major effect gene. Alternatively, Asn136Asn itself may not be a 
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functional site or the association is spurious, however the consistent evidence of associations of 

SLC with SLC34A2 in two different species makes the last explanation less possible. Because 

our study design was family-based, including ascertainment of relatively large family-based 

samples and application of family-based association tests (FBAT), which avoided the effect of 

major confounding factor-population stratification in association study. Also, the very small p-

values of association tests in both species make the likelihood of false positive result very 

unlikely. 

Our study focused on finding functional variants, so we only resequenced the coding 

regions, splicing regions and predicted promoter regions of SLC34A2; also we only genotyped 

the common sites with functional importance in baboon and some most common SNPs in 

human. There are certainly additional polymorphisms that need to be tested. We are currently 

using the Illumina beadarray to genotype tag SNPs at human SLC34A2 in RFHS phase II 

population. On the other hand, in this study we primarily investigated the structure variants of 

SLC34A2. To thoroughly assess the role of SLC34A2 in SLC, systematically assaying the 

association of SLC34A2 gene expression levels with SLC is necessary. We are planning to test 

the expression levels of this gene in individuals with extreme SLC activities by taqman real time 

PCR.  

2.8 CONCLUSION 

In conclusion, our study provided strong evidence that SLC34A2 is significantly 

associated with phenotypic variation in sodium lithium countertransport in both human and 

baboon, though with only moderate effect. The explained variance of SLC by single SNP 
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Asn136Asn in baboon SLC34A2 is around 5%, and SLC is significantly higher (p=0.0003) in 

rare homozygous genotype CC of Asn136Asn. However the SNP Asn136Asn in baboon 

SLC34A2 might not be the primarily functional site responsible for SLC, there seems to be other 

variants with larger effect in or near SLC34A2 accounting for the largest part of the linkage 

signal in baboon. Further studies need to be done to thoroughly screen this gene and regions next 

to it.   
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3.0  SEARCHING FOR CANDIDATE GENES FOR SLC BY COMBINING GENE 

EXPRESSION PROFILES WITH LINKAGE ANALYSIS 

3.1 SPECIFIC AIM 

To identify genes for SLC by integrating data from gene expression profiling with 

linkage data. 

3.2 BACKGROUND 

3.2.1 Gene expression profiling in hypertension 

Gene expression microarray analysis (GEMA), which measures the relative expression 

levels of tens of thousands genes simultaneously, has shed light in the investigation of 

hypertension. cDNA and oligonucleotide microarrays are the most commonly used methods 

now. Although it has been criticized as a non-hypothesis driven, descriptive study with noisy 

data due to both the experimental and biological variation, GEMA has helped with identifying 

novel genes whose expression show unexpected relationships to blood pressure and generating 

new hypotheses to untangle the web of pathways leading to hypertension (Barta et al., 2002; 

Liang et al., 2002). Besides every effort including sufficient replicates, standardization of the 
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experimental protocol, and optimization of statistical methods must be made to minimize the 

noise in GEMA data, extensive work is needed in order to respond to other challenges in the 

GEMA study. We still don’t know which cell types or tissues are most important to study in the 

pathogenesis of essential hypertension, and it’s difficult to determine whether the changes in 

gene expression level reflect primary genetic mechanisms contributing to hypertension or simply 

secondary responses to the increased blood pressure. One way to overcome this problem is to 

combine genetic strategies with gene expression profiling, including applying gene profiling in 

genetically selected animals, such as congenic strains or transgenic strains (Aitman et al.,1999; 

Monti et al., 2001; Eaves et al., 2002); and combining gene expression profiling with linkage 

analysis.  

3.2.2 Combining gene expression profiling with linkage analysis to identify candidate 

genes. 

GEMA can generate a long list of differentially expressed genes, but many of them are 

not disease related genes. Recently, two different integrative approaches for combing genetic 

linkage with expression profiling have been reported to successfully guide the focus on high-

priority genes.   

One approach (Yagil et al. 2005) integrated data from expression profiling with genetic 

linkage data. The assumption is that differentially expressed genes which also map within the 

linkage region will be the best possible candidate genes.  

The other approach (Hubner et al. 2005 and 2006) treated the expression profiling as an 

expression phenotype, which was used in genetic linkage to generate expression quantitative trait 

locus (eQTL). The loci which mapped physical phenotype in linkage was called physical 
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quantitative trait locus (pQTL). The assumption is the eQTL genes that colocalize with pQTL 

will be the highly likely candidate genes.  

The strength of the first approach is that it is straightforward and relatively inexpensive; 

the strength of the second approach is that it can distinguish ‘causative’ gene (the alteration of 

the gene expression is due to the polymorphisms in or near this gene) and ‘regulatory’ gene (the 

variants in this gene effect the expression of another gene rather than itself). We plan to use the 

first approach to investigate the candidate genes for SLC.  

3.2.3 Epstein-Barr Virus- transformed human lymphoblastoid cell lines 

The use of normal human cells has been restricted by their limited proliferative potential. 

Epstein-Barr Virus- transformed human lymphoblastoid cell lines are transformed cell lines with 

the characteristics of continuous proliferation and cellular homology. Therefore, it has been 

widely used in many types of research and has achieved success in studies of various inherited 

diseases (Miller 1990; Nilsson 1992, Deutsch et al. 2005).  

3.3 EXPERIMENTAL DESIGN 

This specific aim will be accomplished through the completion of the following steps: 

- Isolating RNA from 12 lymphoblastoid cell lines from individuals with extreme phenotype 

(High verse Low level of SLC) belonging to RFHS phase II. 

- Identifying differentially expressed (DE) genes by duplicate affymetrix oligonucleotide   

microarrays.  
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- Searching for DE genes which map within the peak linkage region for SLC in RFHS phase II 

(Linkage data came from Dr. Alanna Morrison). 

- Allelic association analysis between the candidate genes and sodium lithium countertransport 

phenotypic variation. 

3.4 MATERIALS AND METHODS 

3.4.1 Cell culture 

12 Epstein-Barr virus transformed lymphoblastoid cell lines were established according 

to a routine method (Henderson et al, 1983; Neitzel 1986) and supplied by Dr. Alanna Morrison. 

The donor individuals belonging to RFHS phase II with extreme phenotypes (cases were selected 

from individual with SLC >410 umol/l RBC/hr and controls were selected from individual with 

SLC <190 umol/l RBC/hr) of sodium lithium countertransport (table 1). All 12 cell lines were 

quickly thawed at 37°C water bath on the same date. Transfer cells to a 15ml centrifuge tube, 

bring the volume to 10ml with RPMI 1640 medium (Mediatech, Inc. VA), centrifuge at 1000rpm 

for 6 minutes. Remove all but 0.5ml of supernatant and resuspend cell pellet in 10ml of RPMI 

1640 working media - 85% RPMI 1640 medium 15% FBS ( Mediatech, Inc., Herndon, VA ), 

100 U/ml penicillin, and 100 mg/mL streptomycin (Biowhittaker, Frederick, MD), 2mM L-

glutamine (sigma-Aldrich Corp. St. Louis, MO). Transfer cell suspension to T-25 tissue culture 

flasks and incubate under identical conditions (37°C with 5% CO2, 21% O2, 74% N2). The 

degree of confluence and the state of bacterial and fungal contamination were monitored by 

using an inverted phase contrast microscope.  The cell density was maintained between 0.5 X106 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3017841&dopt=Abstract
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and 1X106. The cultures were refed the fresh RPMI 1640 working medium every two to three 

days when the pH of cultures became acidic (appearing yellow), or passaged when the cells 

clumped (above 1X106 vial cells/ml). When large clumps were observed (1~2X106 cells/ml), one 

flask of culture was harvested, the others were frozen for the second time microarrays. Briefly, 

10ml of the cell suspension was transferred to a 50ml centrifuge tube, and centrifuge at 1000rpm 

for 6 minutes at room temperature. Aspirate all but 0.ml of supernant. Resuspend the cell pellet 

in 1.0ml of 10% DMSO solution (0.1ml DMSO, 0.9ml RPMI 1640 working medium) and 

transfer to a cryovial. The cryovials are placed into a Nalgene cryogenic freezing container 

(Cole-Parmer, Vernon Hills, IL) which was filled with isopropyl alcohol and placed at -80°C 

freezer to achieve a 1°C/min rate of cooling. After 24 hours, the vials were transferred to a 

cryobox and stored in the liquid nitrogen freezer. 

3.4.2 RNA isolation and purification  

Cells were harvested when the cultures reached approximately 1~2.0 x 106 viable 

cells/ml. RNA was isolated with Trizol reagent (GIBCO-BRL). In brief, cells were centrifuged at 

1000rpm for 8 min at room temperature, and pellets were lysed by adding 1ml of trizol reagent 

and repetitive pipetting. 0.2ml chloroform was then added to above tubes. After shaken 

vigorously, the samples were incubated at room temperature for 2 minutes, and centrifuged at 

12,000 RPM for 15 minutes at 4°C. The aqueous phase was transferred into new tubes. 0.5ml 

isopropanol was added and incubated at room temperature for 10 minutes. After centrifuged at 

12,000 RPM for 10 minutes at 4°C, pellets were washed with 1ml 75% ethanol. DNA was dried 

in air for 10 minutes.  
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RNA was then purificated by RNeasy Mini Kit (QIAGEN) according to the 

manufacturer's instructions. Adjust samples to a volume of 100ul with RNase-free water. Add 

350ul buffer RTL and mix thoroughly. Add 250ul ethanol to the diluted RNA, pipetting 

thoroughly. Transfer samples to an RNeasy mini column placed in a collection tube. Centrifuge 

at 10,000 rpm for 30sec. Discard the follow-through. Add 500ul buffer RPE onto the RNeasy 

column, centrifuge at 10,000 rmp for 30 sec. Repeat this step by ending with centrifuge at 10,000 

rpm for 2 min. Transfer the RNeasy column to a new collection tube and elute the RNA by 

adding 45ul RNase free water to the spin column and centrifuge at 10,000 rpm for 2 min.  

The concentration of RNA was measured by absorbance at 260nm on a 

spectrophotometry ( GeneQuant, Pharmacia Biotech). All samples have 260/280 nm ratio 

between 1.8~2.0. Integrity of total RNA was assessed by electrophoresis on a denaturing agarose 

gel follwing Ambion’s (Austin, TX) protocol. Heat 1 g agarose in 72 ml water until dissolved, 

when cool to approximately 60°C, add 10 ml 10X MOPS running buffer (0.4 M MOPS, pH 7.0, 

0.1 M sodium acetate, 0.01 M EDTA), and 18 ml 37% formaldehyde (12.3 M), pour the gel to a 

tank. Prepare the RNA samples by adding 2 μl of formaldehyde load dye (Ambion Inc., Austin, 

TX) and 0.8ul ethidium bromide (500ug/ml) into1ul RNA sample. Heat the sample to 65°C for 5 

min and immediately place on ice. Load the samples to the gel and electrophorese in 1XMOPS 

running buffer at 100 Volts for 1.5 hours. Visualize the gel on a UV transilluminator. All 28S 

and 18S rRNA bands were sharp and clear with a 28s/18s rRNA ratio approximately 2.0. The 

quality of RNA was double-checked by core lab of University of Pittsburgh using an Agilent 

2100 BioAnalyzer with the RNA 6000 Nano LabChip before starting microarray hybridization. 
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3.4.3 Microarray and data analysis 

Oligonucleotide microarray hybridization was done by the core lab of the University of 

Pittsburgh. Total RNA was reverse transcribed into cDNA by using GeneChip T7-Oligo(dT) 

Promoter Primer Kit (Affymetrix, Santa Clara,CA, ) as described in affymetrix microarray suite 

user’s guide 5.0. In brief, primer hybridization was done by incubating mixture of 2ul of T7-

Oligo(dT) primer, 5ul of high quality total DNA and DEPC-treated water at 70°C for 10 min. Put 

on ice after quick spin. Add 5xfirst-strand cDNA buffer, 0.1M DTT, 10mM dNTP and 

superscript II RT to above mixture and incubate at 42°C for 1 hour for first strand synthesis. 

Second-strand cDNA synthesis was conducted by adding 5xsecond-strand cDNA buffer, 10mM 

dNTP mix, 10U/ul E. coli DNA ligase, 10U/ul E. coli DNA polymerase I and 2U/ul E. coli 

RNase H to the first-strand synthesis tube, the final volume was adjusted to 150ul by DEPC-

treated water. Double stranded cDNA was then cleaned (Qiagen Genechip Samples Cleanup 

Module) and synthesized into Biotin-labeled cRNA by using Enzo Bioarray Highyield RNA 

transcript Labeling Kit (Affymetrix). Biotin-labeled cRNA was cleaned up  by Qiagen Genechip 

Samples Cleanup Module and quality checked by Bioanalyzer 2100. The labeled cRNA was 

fragmented by incubating with fragment reaction buffer supplied with the Genechip sample 

cleanup module at 94°C for 35 mins. Target fragmented cRNA was eventually hybridized to 

Affymetrix human U133A oligonucleotide arrays containing over 22000 probe sets. The entire 

experiment was conducted independently in replicate by using the passages from the first time 

cultured cell lines under identical conditions; human U133_plus_2.0 oligonucleotide microarrays 

(Affymetrix, Santa Clara,CA)  with over 54000 probe sets were applied.  

After washing and staining, the probe arrays were scanned by Affymetrix Genechip 

Scanner 3000 and scaled by Affymetrix Microarray Suite 5.0. The intensity value of each probe 
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was saved in .cel files. The array quality was assessed by the percent genes present, hybridization 

controls: BioB, BioC, BioD, cre as well as internal control gene (GAPDH). The percent genes 

present was similar across all arrays and approximately 40%~50%. The 3’ to 5’ ratio of GAPDH 

was around 1.0 for all arrays. The intensities of the BioB, BioC, BioD and cre probe sets were 

approximately equal for each array. 

In affymetrix oligonucleotide microarrays, each gene is represented by a probe set of 16-

20 pairs of probes, which are usually 25-mer oligonucleotides.  Each probe pair is composed of a 

perfect match (PM) and a mismatch (MM) probe, which has same oligonucleotides as PM except 

for a change at the middle base. In order to use the intensity information of 16-20 probe pairs to 

represent the gene expression level of a given gene, the probes intensity data in .cel file was log2 

transformed and normalized by the Robust Multi-array Average (RMA) algorithm (Irizarry, et al. 

2003; Bolstad, et al. 2003) in Bioconductor (Gautier, 2002). The RMA adjusts the probe-level 

data in three stages, including model-based background correction, quantile normalization and 

iterative median polishing procedure. A robust linear model which removes probe specific 

affinities was used in the RMA algorithm.  

Data was filtered after RMA normalization; only probes with the average log2 expression 

value across all samples of more than 5.0 and standard deviation of more than 0.1 were 

considered.  

An empirical Bayesian Method for analyzing one-channel microarray data (Lin et al. 

2003) using the statistical package R (R, Version 2.1.0; R Foundation for Statistical Computing, 

Vienna, Austria) (Becker et al. 1988) was used to rank genes. The ranking of the genes is based 

on the log odds of differential expression of each gene. This method is a simplification of the 

empirical Bayes method proposed by Lönnstedt and Speed (2002) extended to unpaired data. It 
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performs much more reliably than a T-test for a small number of replicates of microarrays. The 

common genes among the top 220 (approximately 1% of all the probes of U133A ) differentially 

expressed (DE) genes in U133A arrays and top 540 (1% of all probes of  U133_plus_2.0) DE 

genes in U133_plus_2.0 arrays, which also map within the 1 LOD confidence interval of linkage 

signal for SLC were selected as candidate genes. Genes within the peak linkage regions, but only 

differentially expressed in U133_plus_2.0 arrays were also considered, due to the fact that the 

U133_plus_2.0 oligonucleotide arrays comprise a lot of probes that U133A arrays did not 

include.  

The function classifications of the top 540 DE genes in the U133_plus_2.0 arrays were 

explored by using Ingenuity Pathways Analysis (IPA) (Ingenuity systems, www.ingenuity.com), 

a web-based knowledgebase and analysis tool. Over-expressed canonical pathways or molecular 

functions were identified simultaneously by IPA. After assigning these 540 genes into different 

functions based on the IPA biology database, it compares the numbers of genes appearing at a 

given function/pathway with their occurrence in all IPA annotated functions/pathway. Only 

function/pathway annotations containing more genes than expected by chance are considered as 

over-represented and the significance is expressed as a P value using a right tailed Fisher’s exact 

test.  

(Microarray data analysis was carried out in collaboration with Dr. Eleanor Feingold and 

Dr. Brian Reck). 

3.4.4 Genetic linkage analyses for SLC in RFHS all generation 

Merlin variance-components method was conducted in linkage analysis in all generations 

for RFHS Phase II (This part of work was done by Dr. Alanna Morrison’s lab). CNT by itself, 
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log-transformed CNT, and CNT and log-transformed CNT adjusted for age, age-squared and 

gender were tested. Multipoint IBD (identity by descent) was calculated by using Lander-Green 

algorithm with sparse gene flow trees. A QTL (Quantitative trait loci) with LOD ≥1.50 was 

considered as a tentative candidate, with LOD ≥2.00 as suggestive, with LOD ≥3.00 was 

considered in significant linkage with the trait. 

3.4.5 Genotyping 

High throughput TDI-FP was used to genotype the candidate genes as described before.  

3.4.6 SNP association analysis 

SOLAR was used to assess the allelic association of candidate genes with the phenotypic 

variation in all generations of RFHS phase II. The procedures were same as before. 

3.5 RESULTS 

3.5.1 Characteristics of subjects 

Table 12 summarizes the clinical characteristics of all 12 subjects. The age, sex, BMI, 

cholesterol, blood pressure, triglycerides were not significantly different between groups. 

However, the SLC activity level was significantly elevated in High SLC group compared with 

Low SLC group. 
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Table 12 Clinical characteristics of all 12 subjects used in microarrays 

  SEX AGE BMI SBP CHOL TRIG 

SLC 

activity 

High SLC 

group   (Year) (kg/m2) (mmHg) (mg/dl) (mg/dl) 

(umol/l 

RBC/hr) 

H1 F 20.0 21.3 93.3 171.0 75.0 520.4 

H2 M 53.0 30.2 141.3 278.0 251.0 492.0 

H3 F 63.5 28.7 149.0 245.0 159.0 578.6 

H4 F 41.5 23.7 99.0 232.0 88.0 488.7 

H5 F 37.7 28.0 98.7 185.0 133.0 418.4 

H6 F 45.1 32.1 99.0 164.0 83.0 472.3 

Average 1M/4F 43.5 27.3 113.4 212.5 131.5 495.1 

standard 

deviation  14.7 4.1 24.8 46.0 67.0 53.0 

Low CNT 

group        

L1 M 12.8 20.2 94.0 151.0 243.0 169.5 

L2 M 77.6 21.7 163.7 192.0 89.0 180.1 

L3 F 79.6 31.0 155.0 195.0 131.0 183.1 

L4 F 42.3 19.6 89.0 228.0 50.0 136.8 

L5 F 46.1 21.8 91.7 183.0 59.0 128.7 

L6 F 45.3 28.1 86.0 210.0 97.0 124.3 

Average 2M/3F 50.6 23.7 113.2 193.2 111.5 153.8 
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Table 12 continued 

  SEX AGE BMI SBP CHOL TRIG 

SLC 

activity 

standard 

deviation  25.0 4.7 35.9 26.0 70.6 26.8 

High/Low 

CNT (t test 

P value)   0.56 0.19 0.99 0.40 0.63 1.32E-06

 

3.5.2 Linkage regions by MERLIN 

Table 2 lists the suggestive linkage regions discovered by running MERLIN variance-

components method. The tentative linkage regions overlapped with those reported earlier 

(Schork et al. 2002; Hasstedt et al. 2004) were also indicated.  It’s shown that our linkage results 

are concordant with the suggestive QTL for SLC of previous study.  
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Table 13 Suggestive linkage region for SLC by MERLIN 

Chromosome cM LOD 

Cytogenic 

region 

 location(cM) of peak marker 

reported 

2 

110, 

190 

2.57, 

 1.4 

2q11.2, 

 2q31.1 204 (Schork et al. 2002) 

3 

40, 

100, 

160 

1.46, 

3.15,  

1.4 

3p21.3, 

3p11.2,  

3q23 

45 (Hasstedt et al.2004); 149 

(Schork et al. 2002) 

6 

40,  

70,  

145 

2.38, 

2.26, 

1.81 

6p21.2, 

6q11.2, 

 6q23.1 73 (Schork et al. 2002) 

 

3.5.3 Functional classification of DE genes  

Functional classifications of the top 540 differentially expressed genes from array 

U_133_plus2.0 were done by using Ingenuity Pathway Analysis. There were a total of 492 

annotated genes found in Ingenuity IPA database. These were classified into 68 different 

function/disease groups. The top ten over-represented molecular and cellular functional 

annotations are shown in Figure 6.  
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Figure 6 Top 10 over-represented functional annotations from DE genes in array 

U_133_plus2.0 

 

Figure 6 was generated through the use of Ingenuity Pathway Analysis (Ingenuity 

systems, www.ingenuity.com). Y-axis shows –log10 transformed P values. The X-axis shows the 

top 10 over-represented molecular and cellular functional annotations. Among them, molecular 

transport and protein trafficking are the most significantly over-represented functional 

annotations. Any –log (P value) lower than indicated threshold means that over-representation 

may be only due to chance.  
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3.5.4 Combining gene expression profiling and linkage analysis 

After filtering, 12253 probes in the U133A array and 22680 probes in the U133_plus_2.0 

array were used for further analysis. Common genes between the top 220 differentially expressed 

(DE) genes from individuals with high SLC activity as compared to low SLC controls in 

U_133A and the top 540 DE genes in U133_plus_2.0, which also located within the suggestive 

linkage region for SLC are listed in table 3. We found five genes were differentially expressed in 

both arrays and map on suggestive linkage regions on chromosome 2, 3 and 6 respectively. Two 

out of them, IER3 and PRKRA, were increased in high SLC individuals compared with normal 

controls, while the other three genes, CD47, ARHGAP15 and CDKAL1, were decreased in high 

SLC individuals. We further tested the allelic association between IER3 and SLC. The primers 

and conditions for PCR and TDI-FP are listed in table 14.  

Table 14 Common DE genes between two arrays which also map within the linkage regionS for 
SLC 

Gene name 

Gene 

symbol Cytoband 

Rho GTPase activating protein 15 ARHGAP15 2q22.2 

protein kinase, interferon-inducible double stranded RNA PRKRA 2q31.2 

CD47 antigen (Rh-related antigen, integrin-associated signal 

transducer) CD47 

3q13.1-

q13.2 

immediate early response 3 IER3 6p21.3 

CDK5 regulatory subunit associated protein 1-like 1 CDKAL1 6p22.3 
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DE genes between High SLC and Low SLC individuals identified only in array 

U133_plus_2.0 and located in linkage regions are shown in table 15. There were 19 genes that 

were found differentially expressed in U133_plus_2.0 and also located within the SLC linkage 

regions. 

Table 15 DE genes in array U_133 plus 2.0 located at linkage regions for SLC 
Gene name Gene symbol Cytoband 

COBW domain containing 2 CBWD2 2q14.1 

aspartyl-tRNA synthetase DARS 2q21.3 

DnaJ (Hsp40) homolog, subfamily C, member 10 DNAJC10 2q32.1 

lymphocyte antigen 75 LY75 2q24 

integrin, alpha 4 ITGA4 2q31-q32 

ankyrin repeat domain 57 ANKRD57 2q13 

bridging integrator 1 BIN1 2q14 

WAS/WASL interacting protein family, member 1 WASPIP 2q31.1 

integrin, alpha 4 ITGA4 2q31.3 

chromatin modifying protein 2B CHMP2B 3p11.2 

TATA element modulatory factor 1 TMF1 3P21-P12 

ADP-ribosylation factor 4 ARF4 3p21.2-p21.1 

methyl-CpG binding domain protein 4 MBD4 3q21-q22 

ring finger protein 7 RNF7 3q22-q24 

RAN binding protein 9 RANBP9 6p23 

solute carrier family 17 (anion/sugar transporter), member 5 SLC17A5 6q14-q15 

mannosidase, alpha, class 1A, member 1 MAN1A1 6q22 

malic enzyme 1, NADP(+)-dependent, cytosolic ME1 6q12 

heat shock 70kDa protein 1A HSPA1A 6p21.3 
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Table 16 Primers and conditions for genotyping IER3 

SNPs ID Primers 

Annealing 

temp 

Mg2+ 

(mM) Cycle 

rs8512 F GAAGGAGAGCGTCGTTAA 54°C 2.5 35 

 R CACCAGACTTCATCCCAG       

 FP-F CAAGGGTGTGAGATGTTCCC 55°C   35 

 FP-R AGAGACCTGCATTTACAGCAG       

rs3094124 F CTGATGGCTGAAGAGGGTG 54°C 1.5 35 

 R CAAGTTGCCTCGGAAGTC       

 FP-F CGCCCACCCCTGTGTCC 55°C   35 

 FP-R TTAAAGGGCTCGAGGACGG       

rs2284174 F GTACTATGCTCAGTACCTG 54°C 2.5 35 

 R GTTGCCCAGGCTCCTGAG       

 FP-F CCTGCACATATACCCCAGAAT 55°C   35 

 FP-R CTCCCTCCCCAACTTTTATTTTA       

 

         IER3 has only two exons, and three published SNPs in HapMap. One SNP has very 

small minor allele frequency (MAF=0.027%). So we decided to genotype the other two SNPs, 

rs8512 and rs309412. We also selected another SNP rs2284174 from database SNPper (CHIP 

Bioinformatics Tools, Riva and Kohane, 2002). It is shown by SOLAR (table 17) that SNP 

rs2284174 is marginal significantly associated with SLC (p=0.056) and SBP (p=0.085); SNP 

rs8512 significantly associated with SBP (p= 0.002) and DBP (p=0.0008), but not associated 

with SLC; SNP rs3094124 is associated with neither SLC nor blood pressure.  
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Table 17 Association analysis of SLC with IER3 gene by SOLAR 

P value (SOLAR) 

SNP ID Location 

Allele 

Change 

Amino 

acid 

change 

Minor 

Allele 

Freq. HWE SLC SBP DBP 

rs2284174 Promoter C/T None 0.21 0.89 0.056 0.085 0.14 

rs3094124 Exon 2 C/G A/P  0.07  0.64  0.73 0.64 0.45 

rs8512 Exon 2 A/G None  0.13 0.91  0.55 0.002 0.0008 

 

3.6 DISCUSSION 

We characterized the gene expression profiles of Sodium Lithium Countertransport by 

using the EBV transformed lymphocytes. Functional analysis by ingenuity Pathway analysis has 

shown that functional annotations including Molecular Transport, Protein Trafficking, Cellular 

Assembly and Organization, Gene Expression were most overrepresented in the profilings. 

These findings suggest genes involved in above pathways may play roles in SLC activity 

regulation, which is consistent with the hypotheses proposed by Demaurex et al. (1994; Canessa 

1994; Zerbini et al.2003; Bianchini and Poussegur 1994) that SLC may be operated by a 

mechanism involving the cytoskeleton or by way of altering the membrane component or 

membrane transport.  
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Linkage analysis by Merlin found several suggestive loci. Loci on chromosome 2, 3 and 

6 are extremely interesting, which are overlapped with the linkage and association regions 

reported before (Schork et al. 2002; Hasstedt et al. 2004). By combining gene expression 

profiling with linkage analysis, we found five commonly differentially expressed genes, 

ARHGAP15, CD47, IER3, PRKRA and CDKAL1, that are located within suggestive linkage 

regions for sodium lithium countertransport. Expression of IER3 and PRKRA were increased in 

high SLC individuals, while the other three genes, ARHGAP15, CD47 and CDKAL1, had 

decreased expression. 

Immediate early response 3 (IER3) is a stress-inducible gene, which encodes a 153-

amino acid protein. It’s widely expressed in epithelial and endothelial tissues, especially in the 

vascular endothelium (Feldmann et al. 2001). Some factors such as mechanical and oxidative 

stress associated with hypertension may influence the expression of this gene (Hamet et al. 1995; 

Wernig et al. 2002). Ohki et al (2002) and Keiji et al. (2003) investigated the molecular response 

of macrophages to mechanical stress, associated with hypertension, by cDNA microarray and 

found that IER-3 was one of the only three differentially expressed genes which were induced 

with fold change of more than 2.5. Most recently, Sommer et al (2006) showed strong evidence 

of association of IER3 with development of hypertension and cardiac hypertrophy. They found 

that the blood pressure was increased 20-25mmHg in IER3 knockout mice, the potential 

mechanism of which might involve nitric oxide pathway and peripheral resistance. They 

proposed that IEX-1 might influence vascular smooth muscle cell tone and intracellular calcium 

concentration by interactions with calcium-modulating cyclophilin ligand (CAML). Our study 

found that SNP rs8512 in IER3 was significant association with SBP and borderline association 

with DBP; another SNP rs3094124 in IER3 was associated with SLC. These findings suggest 



 65 

IER3 could be a very interesting gene for SLC and/or hypertension. We’re searching for SNPs 

from other database for genotyping in order to see if there’s a variant or haplotype in IER3 

associated with both SLC and blood pressure. 

Rho GTPase activating protein 15 (ARHGAP15) is a member of ARHGAP family which 

encode Rho/Rac/Cdc42-like GTPase activating proteins. The Rho GTPase, such as Rac1, plays 

an important role in actin cytoskeletal regulation (Nobes et al, 1995; Hall 1998). It has been 

suggested (Hassanain et al., 2007) that over-expression of Rac1 in transgenic mice may cause 

hypertension through the activation of DADPH oxidase. Strong evidence has shown by the study 

of Seoh et al (2003) that “ARHGAP15 could be a genuine regulator of Rac1 signaling”, and 

down-regulate Rac1. They also observed the cytoskeleton changes like cell contraction and 

augment of actin stress fibers after altering the expression of ARHGAP15. In our microarray 

study, the expression levels of ARHGAP15 were much lower in high SLC individuals, which 

may result in over-activation of Rac1 and eventually lead to high blood pressure through or 

accompanied by alteration of SLC activity by a mechanism involving cytoskeletal 

rearrangement. 

CD47 molecule (CD47) encodes an integrin-associated transmembrane protein. CD47 is 

involved in the regulation of many cellular processes including cell-cell adhension, cell 

migration and platelet spreading (Cooper et al, 1995; Parkos et al,1996; Chung et al,1997; Yu et 

al,2006). It has recently been validated (Shinohara et al. 2006) in epithelial cells that the role of 

CD47 in the regulation of cell migration is through reorganization of the actin cytoskeleton. Rac 

and Cdc42 may participate in some of the CD47 induced cellular processes (Miyashita et al, 

2004; Yoshida et al, 2000). Although it’s not clear about the phisiology and function of sodium 

lithium countertransport, and diverse models have been proposed ((Demaurex and Grinstein 
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1994; Bianchini and  Poussegur 1994; West et al, 1998; Vareesangthip et al,1996; Thomas et al, 

1995), there is a common point that all of these hypothetical mechanisms eventually involved the 

cytoskeleton change. Therefore, both ARHGAP15 and CD47 were potential functional candidate 

genes for SLC.  

Gene PRKRA (protein kinase, interferon-inducible double stranded RNA) is located in 

cytoplasm and intracellular, which has broad function and is involved in multiple process, 

including skeletal morphogenesis, response to stress, signal transduction, induction of apoptosis, 

protein amino acid phosphorylation, et al (Gene Ontology; Entrez gene, NCBI). The function of 

CDKAL1 (CDK5 regulatory subunit associated protein 1-like 1) is not clear, it may play roles in 

catalytic activity and metal ion binding (Gene Ontology; Entrez gene, NCBI).  

We plan to genotype all the candidate genes identified by our study using the Illumia 

Bead Array or FP. IER3 is the first gene that has been genotyped. We’re still in process of 

genotyping other genes. 

There several issues about our study those need to be discussed. It’s the advantage of our 

study that we used cell lines instead of tissue samples, because expression profiles from cell lines 

are much cleaner than from tissues which contain many heterogeneous cells. In addition, we are 

not sure which tissue is most important for pathogenesis of hypertension. However there may be 

concerns about using EBV transformed cells for microarray experiments, since there have been 

reports (Carter et al, 2002) regarding EBV induced gene expression change. Due to the fact that 

our experimental lymphocytes from high and low SLC individuals were immortalized and 

cultured under the same conditions, the modifications of some genes expression by EBV, if they 

exist, should be equal in both case and control groups.  

http://www.ncbi.nlm.nih.gov/entrez/utils/fref.fcgi?http://amigo.geneontology.org/cgi-bin/amigo/go.cgi?view=details&depth=1&query=6468
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There are some limitations of our experiments. Since our study was based on an 

assumption that the genes should be expressed in the lymphoblastoid cell lines in order to be 

identified by microarray as candidate genes for SLC, some genes with low or non-expression in 

lymphoblastoid cell lines could have been missed in our experiment. Also our study has little 

power to detect a disease-causing gene if it only has structural or functional alteration instead of 

change at the mRNA level. The relatively small sample size in our study also restricted our 

power to find the disease causing genes.  

We’re now planning to conduct another microarray study with larger independent well 

matched samples to validate our results and find new disease susceptibility genes. For the genes 

most significantly associated with SLC and hypertension, functional tests on the protein level 

will be conducted, such as Western Blot. 

3.7 CONCLUSION 

In conclusion, our study succeeded in exploring some interesting candidate genes for 

SLC by combining the gene expression profiling and linkage analysis. All five genes that were 

identified as common top 1% differentially expressed genes in both arrays and mapped in a 

linkage region, IER3, PRKRA, ARHGAP15, CD47 and CDKAL1, are good functional candidate 

genes. Among them, expression of IER3 and PRKRA were increased in high SLC individuals, 

while all other three genes ARHGAP15, CD47 and CDKAL1 showed decreased expression. 

Follow-up study on IER3 showed that one SNP in IER3 is associated with SBP and DBP, and 

another SNP is borderline associated with both SLC and DBP. Further studies are needed to be 
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done to thoroughly investigate the relationships between SLC and IRE3 as well as other 

candidate genes identified by our experiments. 
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4.0  SUMMARY 

Two studies were designed to search for genetic determinants for sodium lithium 

countertransport, an intermediate phenotype for essential hypertension.   

The first study explored the relationship between a positional candidate gene – SLC34A2 

and SLC. Human SLC34A2 is located at chromosome 4p15.1-p15.3 in a region of the genome 

homologous to the region of baboon chromosome 5, linked to sodium lithium countertransport 

(Kammerer et al. 2001).  

We examined the relative expression of SLC34A2 in diverse human tissues potentially 

related with blood pressure regulation and found that this gene has relatively high expression in 

lung, kidney and placenta, moderate in aorta, left atrium and heart, suggesting that SLC34A2 is 

functionally potential to be involved in hypertension. Sequencing analysis of this gene showed a 

strong homology in exonic organization and sequence between the human and baboon SLC34A2 

genes and extensive variation in both species. The informative SNPs in SLC34A2 were 

genotyped in 634 members of chromosome 5 linked baboon pedigree and 1856 RFHS Phase II 

samples. Strong evidence of associations of phenotypic variation of SLC with baboon SNP 

Asn136Asn (P=0.0001) and human SNP rs3775909 (P=0.03) as well as human haplotype 2 (P< 

0.005) were observed, implied that SLC34A2 may be one of the genes involved in SLC. 

However, evidence of linkage remained when the linkage analyses conditional on genotypes of 

baboon Asn136Asn, suggested that Asn136Asn is not the primarily functional site for baboon 
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SLC QTL. There might be other variants with larger effect in or near SLC34A2 accounting for 

the linkage signal in baboon.  

In second study, we searched for susceptible genes for SLC by combing gene expression 

microarray data and linkage analysis data for SLC.  

Linkage analysis was conducted by using Merlin variance component method in all 

generations from RFHS phase II. 12 EBV-transformed lymphocytes with two extremes SLC 

distribution selected from RFHS phase II were used for microarray study. Two independent 

microarrays (U133A and U133_plus_2.0) were used to identify the differentially expressed 

genes in “high” vs. “low” SLC groups. Functional analysis by Ingenuity Pathway Analysis 

showed that functional annotations as molecular transport, protein trafficking and cellular 

assembly and organization were significantly over-represented in top 1% differentially expressed 

genes for array U_133_plus 2.0, suggesting that genes might influence SLC by a mechanism of 

involving these functional pathways. Five genes: ARHGAP15, CD47, CDKAL1, IER3 and 

PRKRA were successfully identified as differentially expressed in both arrays and mapped 

within the linkage regions for SLC. Genotype association analysis of IER3 showed that one of 

the SNP (rs8512) is significantly associated with SBP (p=0.002) and DBP (p=0.0008); another 

SNP (rs2284174) is marginal significantly associated with SLC (p=0.055) and SBP (p=0.085). 

We’re searching for additional SNPs in IER3 to thoroughly investigate the relationship of IER3 

and SLC. Studies on exploring the relationship of SLC with other candidate genes identified by 

this study are undergoing.  

Due to the very low expression of SLC34A2 in EBV-transformed lymphocytes in 

microarray, we can not make any conclusion on whether the positional candidate gene-SLC34A2 

in our first study is differentially expressed in “high” verse “low” SLC groups.      
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APPENDIX A Comparisons of the nucleotide and amino acid sequence alignments of SLC34A2  

 Human: ................................................M   1 

Baboon: ................................................- 

 Human: ... GGCCGCCGCCTCCAGCCCAGCACCTGCGGAGGGAGCGCTGACCATG 46 

Baboon: ... ----------------------------------------------  

            •                          *               • 

 

 

   

 Human:  A  P  W  P  E  L  G  D  A  Q  P  N  P  D  K  Y  L 18 

Baboon:  -  -  -  -  -  -  -  -  -  -  -  -  -  S  -  -  - 

 Human: GCTCCCTGGCCTGAATTGGGAGATGCCCAGCCCAACCCCGATAAGTACCT 96 

Baboon: ---------------------------------------AG--------- 

 

 

  

 Human:   E  G  A  A  G  Q  Q  P  T  A  P  D  K  S  K  E    34 

Baboon:   -  -  -  T  S  -  -  -  I  T  -  -  -  -  -  - 

 Human: CGAAGGGGCCGCAGGTCAGCAGCCCACTGCCCCTGATAAAAGCAAAGAGA 146 

Baboon: ---------TA--A-------A----TCA--------------------- 

 

  

 

 

 Human: T  N  K  T  D  N  T  E  A  P  V  T  K  I  E  L  L  51         

Baboon: -  -  -  -  -  -  -  -  V  -  -  -  -  F  -  -  -                 

 Human: CCAACAAAACAGATAACACTGAGGCACCTGTAACCAAGATTGAACTTCTG 196 

Baboon: ------------------------T-------------T-----------   
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                 • 

  

  

 Human:  P  S  Y  S  T  A  T  L  I  D  E  P  T  E  V  D  D 68  

Baboon:  -  T  -  -  -  -  -  -  -  E  -  -  -  -  -  -  -     

       Human: CCGTCCTACTCCACGGCTACACTGATAGATGAGCCCACTGAGGTGGATGA 246 

      Baboon: ---A-------------------------G-----------------C-- 

                                           * 

  

 

           Human:   P  W  N  L  P  T  L  Q  D  S  G  I  K  W  S  E    84 

      Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

       Human: CCCCTGGAACCTACCCACTCTTCAGGACTCGGGGATCAAGTGGTCAGAGA 296 

      Baboon: ------------------G-------------------------------    

                                                             • 

 

  

           Human: R  D  T  K  G  K  I  L  C  F  F  Q  G  I  G  R  L  101 

      Baboon: -  -  -  -  -  -  -  -  -  v  -  -  -  -  -  -  - 

       Human: GAGACACCAAAGGGAAGATTCTCTGTTTCTTCCAAGGGATTGGGAGATTG 346 

      Baboon: --------------------------G-----------------------  

 

 

 

       Human:  I  L  L  L  G  F  L  Y  F  F  V  C  S  L  D  I  L 117  

      Baboon:  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  v  -                          

       Human: ATTTTACTTCTCGGATTTCTCTACTTTTTCGTGTGCTCCCTGGATATTCT 396  

      Baboon: -----------T-----------------T---------------G---- 

                                              * 

  

 

 Human:   S  S  A  F  Q  L  V  G  G  K  M  A  G  Q  F  F   133 

      Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

       Human: TAGTAGCGCCTTCCAGCTGGTTGGAGGAAAAATGGCAGGACAGTTCTTCA 446 
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      Baboon: -------------------------------------------------- 

                                  • 

 

  

 Human: S  N  S  S  I  M  S  N  P  L  L  G  L  V  I  G  V  150 

      Baboon: -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

              * 

       Human: GCAACAGCTCTATTATGTCCAACCCTTTGTTGGGGCTGGTGATCGGGGTG 496 

      Baboon: ----T--------------------------------------------- 

                  * 

  

 

       Human:  L  V  T  V  L  V  Q  S  S  S  T  S  T  S  I  V   166 

      Baboon:  -  -  -  -  F  -  -  -  -  -  -  -  -  -  -  - 

       Human: CTGGTGACCGTCTTGGTGCAGAGCTCCAGCACCTCAACGTCCATCGTTG 546 

      Baboon: --------------C---------------------------------- 

  

 

 

 Human: V  S  M  V  S  S  S  L  L  T  V  R  A  A  I  P  I  183 

      Baboon: -  -  -  -  A  -  -  -  -  -  -  -  -  -  -  -  - 

                                                               * 

       Human: TCAGCATGGTGTCCTCTTCATTGCTCACTGTTCGGGCTGCCATCCCCATT 596 

      Baboon: -----------G-------------------------------------- 

                             • 

  

 

 Human:  I  M  G  A  N  I  G  T  S  I  T  N  T  I  V  A  L  200 

Baboon:  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

       Human: ATCATGGGGGCCAACATTGGAACGTCAATCACCAACACTATTGTTGCGCT  646 

      Baboon: -----------------------------------------------A--   
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 Human:   M  Q  V  G  D  R  S  E  F  R  R  A  F  A  G  A    216 

      Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

       Human: CATGCAGGTGGGAGATCGGAGTGAGTTCAGAAGAGCTTTTGCAGGAGCCA  696 

      Baboon: ---------------C--A------------------------------- 

                                         • 

  

 

 Human: T  V  H  D  F  F  N  W  L  S  V  L  V  L  L  P  V   233 

Baboon: -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: CTGTCCATGACTTCTTCAACTGGCTGTCCGTGTTGGTGCTCTTGCCCGTG  746 

Baboon: ----------------------------------------G-----T--- 

                               * 

  

 

 Human:  E  V  A  T  H  Y  L  E  I  I  T  Q  L  I  V  E  S  250 

Baboon:  -  -  -  -  -  -  -  -  -  V  -  -  -  -  -  -  - 

 Human: GAGGTGGCCACCCATTACCTCGAGATCATAACCCAGCTTATAGTGGAGAG  796 

Baboon: --------------------T-----TG---------------------- 

 

 

 Human:   F  H  F  K  N  G  E  D  A  P  D  L  L  K  V  I    266 

Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: CTTCCACTTCAAGAATGGAGAAGATGCCCCAGATCTTCTGAAAGTCATCA  846 

Baboon: ---------------------------A-----------C---------- 

 

   

  

 Human: T  K  P  F  T  K  L  I  V  Q  L  D  K  K  V  I  S   283 

Baboon: -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: CTAAGCCCTTCACAAAGCTCATTGTCCAGCTGGATAAAAAAGTTATCAGC  896 

Baboon: -------------------------------------------------- 

                                     • 
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 Human:  Q  I  A  M  N  D  E  K  A  K  N  K  S  L  V  K  I  300 

Baboon:  -  -  -  -  -  -  -  T  -  -  -  -  -  -  -  -  - 

                          * 

 Human: CAAATTGCAATGAACGATGAAAAAGCGAAAAACAAGAGTCTTGTCAAGAT  946 

Baboon: ----------------------CC-------------------------- 

    

  

       Human:   W  C  K  T  F  T  N  K  T  Q  I  N  V  T  V  P    316 

Baboon:   -  -  -  -  -  -  -  M  -  -  M  -  -  -  -  -  

 Human: TTGGTGCAAAACTTTTACCAACAAGACCCAGATTAACGTCACTGTTCCCT  996 

Baboon: -----------------------T---------G---------------- 

                                 • 

 

 Human: S  T  A  N  C  T  S  P  S  L  C  W  T  D  G  I  Q   333 

Baboon: -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: CGACTGCTAACTGCACCTCCCCTTCCCTCTGTTGGACGGATGGCATCCAA  1046 

Baboon: -A--G--------------------------------------------- 

 

  

       Human:  N  W  T  M  K  N  V  T  Y  K  E  N  I  A  K  C  Q  350 

Baboon:  T  -  -  I  -  -  -  -  -  -  -  -  -  -  -  -  -  

 Human: AACTGGACCATGAAGAATGTGACCTACAAGGAGAACATCGCCAAATGCCA  1096 

Baboon: -C---------A-------------------------------------- 

                               *                      • 

  

 Human:   H  I  F  V  N  F  H  L  P  D  L  A  V  G  T  I    366  

Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  I  -        

 Human: GCATATCTTTGTGAATTTCCACCTCCCGGATCTTGCTGTGGGCACCATCT  1146   

Baboon: ---------C--------------------------------T-T----- 

                              * 
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 Human: L  L  I  L  S  L  L  V  L  C  G  C  L  I  M  I  V   383 

Baboon: -  -  -  I  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: TGCTCATACTCTCCCTGCTGGTCCTCTGTGGTTGCCTGATCATGATTGTC  1196 

Baboon: --------A----------------------------------------- 

  

  

 Human:  K  I  L  G  S  V  L  K  G  Q  V  A  T  V  I  K  K  400    

Baboon:  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -         

 Human: AAGATCCTGGGCTCTGTGCTCAAGGGGCAGGTCGCCACTGTCATCAAGAA  1246  

Baboon: -------------------------------------------------- 

 

 

       Human:   T  I  N  T  D  F  P  F  P  F  A  W  L  T  G  Y    416      

      Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

                                               * 

 Human: GACCATCAACACTGATTTCCCCTTTCCCTTTGCATGGTTGACTGGCTACC  1296 

Baboon: ---------------------------------G---------------- 

                      • 

 

 

 Human: L  A  I  L  V  G  A  G  M  T  F  I  V  Q  S  S  S   433 

Baboon: -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -    

 Human: TGGCCATCCTCGTCGGGGCAGGCATGACCTTCATCGTACAGAGCAGCTCT  1346 

Baboon: -------------------------------------G------------ 

 

 

 

 Human:  V  F  T  S  A  L  T  P  L  I  G  I  G  V  I  T  I  450 

Baboon:  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: GTGTTCACGTCGGCCTTGACCCCCCTGATTGGAATCGGCGTGATAACCAT  1396 
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Baboon: --------------------T-----------------A----------- 

                                       • 

  

          

 Human:   E  R  A  Y  P  L  T  L  G  S  N  I  G  T  T  T    466 

Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: TGAGAGGGCTTATCCACTCACGCTGGGCTCCAACATCGGCACCACCACCA  1466 

Baboon: -------------------------------------------------- 

 

 

 Human: T  A  I  L  A  A  L  A  S  P  G  N  A  L  R  S  S   483 

Baboon: -  -  -  -  -  -  -  -  -  -  -  -  T  -  -  -  - 

 Human: CCGCCATCCTGGCCGCCTTAGCCAGCCCTGGCAATGCATTGAGGAGTTCA  1496 

Baboon: -----------------------------------A-------------- 

  

 

       Human:  L  Q  I  A  L  C  H  F  F  F  N  I  S  G  I  L  L   500 

Baboon:  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

 Human: CTCCAGATCGCCCTGTGCCACTTTTTCTTCAACATCTCCGGCATCTTGCT   1546 

Baboon: -----------------------------------------------A-- 

              • 

 

 

 

       Human:   W  Y  P  I  P  F  T  R  L  P  I  R  M  A  K  G  L  517 

Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: GTGGTACCCGATCCCGTTCACTCGCCTGCCCATCCGCATGGCCAAGGGGCT  1596 

Baboon: ------------------------T-------------------------- 

  

 

       Human:   G  N  I  S  A  K  Y  R  W  F  A  V  F  Y  L  I  I  534 

Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 
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 Human: GGGCAACATCTCTGCCAAGTATCGCTGGTTCGCCGTCTTCTACCTGATCAT  1646 

Baboon: --------------------------------------------------- 

 

   

       Human:   F  F  F  L  I  P  L  T  V  F  G  L  S  L  A  G  W  551 

Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: CTTCTTCTTCCTGATCCCGCTGACGGTGTTTGGCCTCTCGCTGGCCGGCTG  1696 

Baboon: ----------------------------------------T---------- 

 

 

       Human:   R  V  L  V  G  V  G  V  P  V  V  F  I  I  I  L  V  568  

Baboon:   P  -  -  -  A  -  -  -  -  -  -  -  -  -  -  -  -        

 Human: GCGGGTGCTGGTTGGTGTCGGGGTTCCCGTCGTCTTCATCATCATCCTGGT  1746    

Baboon: --C---------G—C------------------------------------ 

                                   *                    

  

 

 

 

 Human:   L  C  L  R  L  L  Q  S  R  C  P  R  V  L  P  K  K  585 

Baboon:   -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: ACTGTGCCTCCGACTCCTGCAGTCTCGCTGCCCACGCGTCCTGCCGAAGAA  1796 

Baboon: ------------------------C-----T--------------C----- 

        *                                            * 

   

  

       Human:   L  Q  N  W  N  F  L  P  L  W  M  R  S  L  K  P  W  602 

Baboon:   -  -  -  -  -  -  -  -  -  -  -  H  -  -  -  -  - 

 Human: ACTCCAGAACTGGAACTTCCTGCCGCTGTGGATGCGCTCGCTGAAGCCCTG  1846 

Baboon: ------------------------A----------A------A-------- 
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 Human:   D  A  V  V  S  K  F  T  G  C  F  Q  M  R  C  C  C  619  

Baboon:   -  -  -  I  -  -  -  -  -  -  -  -  -  P  -  -  -        

 Human: GGATGCCGTCGTCTCCAAGTTCACCGGCTGCTTCCAGATGCGCTGCTGCTG  1896  

Baboon: ---C------A-------------------T----------C--------- 

 

 

       Human:   C  C  R  V  C  C  R  A  C  C  L  L  C  G  C  P  K  636     

      Baboon:   -  -  -  -  -  -  -  V  -  -  -  -  -  -  -  -  - 

                                                 * 

 Human: CTGCTGCCGCGTGTGCTGCCGCGCGTGCTGCTTGCTGTGTGGCTGCCCCAA 1946 

Baboon: -----------------------T-------C------------------- 

                                       * * 

  

 

       Human:   C  C  R  C  S  K  C  C  E  D  L  E  E  A  Q  E  G  653 

Baboon:   -  -  -  -  -  -  -  -  K  -  -  -  -  G  -  -  A 

 Human: GTGCTGCCGCTGCAGCAAGTGCTGCGAGGACTTGGAGGAGGCGCAGGAGGG  1997 

Baboon: -------------------------A---------------G--------C 

        *                        *             * 

  

 

 Human:   Q  D  V  P  V  K  A  P  E  T  F  D  N  I  T  I  S  670 

Baboon:   -  G  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 

 Human: GCAGGATGTCCCTGTCAAGGCTCCTGAGACCTTTGATAACATAACCATTAG  2048 

Baboon: -----G---------------C----------------------------- 

  

                              

 Human:   R  E  A  Q  G  E  V  P  A  S  D  S  K  T  E  C  T  687 

Baboon:   -  -  -  -  -  -  -  R  -  P  -  -  -  -  -  -  - 

 Human: CAGAGAGGCTCAGGGTGAGGTCCCTGCCTCGGACTCAAAGACCGAATGCAC  2099 

Baboon: -----------------------G----C-A-------------------- 

                                *   *   
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 Human:   A  L                                               689 

Baboon:   -  - 

 Human: GGCCTTG ...                                          2106 

Baboon: A------ ... 

 

 * Polymorphism site 

▲ Initial base of each exon 

   -   Same amino acid or nuclear acid base in baboon as in human 

Highlighted sequences are functional domains predicted by Bioinformatic Harvester. 

            Yellow sequences represent Alignment of Na_Pi_cotransport domains (AA/108-269) (AA/381-540) 

 Green  sequences represent Low compositional  complexity domain (AA/361-379) (AA/616/644) 

       Red Sequences represent  Transmembrane segment  domain (AA/553-575)                                             
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