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VARIANCE COMPONENTS MODELS IN STATISTICAL GENETICS:

EXTENSIONS AND APPLICATIONS

Feng Dai, PhD

University of Pittsburgh, 2007

Variance components linkage analysis is a powerful method to detect quantitative trait loci

(QTLs) for complex diseases. It has the advantages of easy applicability to large extended

pedigrees and provides a good flexible framework to accommodate more complicated models

like gene-gene, gene-environmental interactions.

This dissertation consists of two major parts. In the first part, I propose two approaches

for deriving relative-to-relative covariances that are indispensable for expanding the appli-

cations of standard variance components linkage approaches to more complicated genetic

models such as those involving genomic imprinting. In the first approach, I extend ‘Li and

Sacks’ ITO method to model ordered genotypes and derive some generalized linear functions

of the extended transition matrices. I demonstrate the wide applicability of this extension

by applying it to calculate the covariance in unilineal and bilineal relatives under genomic

imprinting. In the second approach, I derive a general formula for calculating the genetic

covariance using ordered genotypes for any type of relative pair, which does not have the

limitation of the extended ITO method to biallelic loci and to unilineal and bilineal relatives.

I also propose a recursive algorithm to calculate necessary coefficients in the formula, which

opens up the possibility of calculating even inbred relative-to-relative covariance.

In the second part of my dissertation, I discuss linkage evidence for susceptibility loci for

adiposity-related phenotypes in the Samoan population, an extensive summary of our multi-

center study “Genome-scan for Obesity Susceptibility Loci in Samoans”. Obesity, BMI ≥ 30

kg/m2, in the U.S. has become a major and serious public health problem, affecting 33% of
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adults in 2002. Obesity increases risks for serious diet-related diseases, such as cardiovascu-

lar disease, type-2 diabetes, and certain forms of cancers. Obesity is a typical multi-factorial

disease with overwhelming evidence of genetic effects, yet their roles in obesity are largely

unknown. Our current research findings will help further understand the genetics of obe-

sity, which may have great influence on early prevention and later interventions for human

obesity, making it a fundamentally important contribution to public health.
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1.0 INTRODUCTION

1.1 THE STRUCTURE OF THIS DISSERTATION

This dissertation is organized as follows. In chapter 1, I give a brief introduction to current

genetic studies: backgrounds and statistical methods with a focus on variance component

(VC) models. A motivation to extend VC models is discussed. In chapter 2, I propose to

extend the ITO method to handle ordered genotypes and apply the extension to calculate

the covariance in unilineal and bilineal relatives under genomic imprinting. I also derive a

general formula for calculating the genetic covariance using ordered genotypes. In chapter

3, I derive a preliminary recursive algorithm for computing the detailed identity coefficients,

which are necessary for the analytical calculation of general covariance discussed in chapter 2.

In chapter 4, I report findings from our study “genome-scan for Obesity Susceptibility Loci

in Samoans” and discuss the significance of those findings in the whole picture of genetics of

obesity. In chapter 5, I introduce a simulation study investigating bias in multipoint linkage

analysis from map misspecification. I also report findings in our sex-specific linkage analyses

of Samoan data. Finally, I conclude the whole dissertation in the chapter 6 and give some

discussion about future work.

Chapter 2 of this dissertation discussing the ordered genotype ITO method has been

published and is dedicated to our late esteemed colleague, C. C. Li, one of the co-developers

of the original ITO method. I would like to thank our reviewers for their helpful comments,

and, in particular, to thank Kenneth Lange for suggesting the elegant approach for deriving

the general covariance formula. This work was supported by the University of Pittsburgh

and by NIH grants R01DK059642 and R01DC005630.
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1.2 STATISTICAL GENETICS: CONCEPTS AND METHODOLOGIES

Since the successful completion of the Human Genome Project in 2003, genetic studies of

complex human diseases such as cardiovascular diseases, obesity, and diabetes has increased

dramatically [1]. In this chapter, necessary genetic models and two main genetic mapping

methodologies, linkage analysis and association analysis, are briefly reviewed, followed by

new emerging issues in the linkage analysis that motivate our proposed methods described

in chapter 2.

1.2.1 Genetic terminology

Each individual has 23 paired chromosomes, one is from mother and the other is from father.

A region of a chromosome that codes for a protein product is termed as gene, which can

be passed from parent to child. At each chromosomal location or genetic locus, there may

be several distinct variants for a gene, known as alleles. The composition of two alleles at

a locus is called the genotype. The relative frequency of an allele in a population is defined

as allele frequency. Two alleles at a locus are called homozygous if they are identical, and

heterozygous if they are different [1]. An ordered arrangement of alleles found on a single

chromosome is called haplotype. The probability of an allele or haplotype inherited from one

generation to the next is called transmission probability.

When two alleles are sufficiently close together (linked) on the same chromosome, they

tend to be transmitted to the same gamete (sperm or egg) in a process called meiosis [1]. If

two alleles are far apart on the same chromosome or on the different chromosomes, they are

transmitted to the same or different gametes with equal probability, i.e., their recombination

frequency is 50%. During the time of gamete formation, the chromosome strands pair up

and each may swap a portion of its genetic material for the matching portion from its mate

by a process known as crossing over, a form of genetic recombination, which is a source of

genetic diversity.

The observable manifestation of an alleles or a specific genotype is denoted as the pheno-

type of an individual. Most commonly phenotype was used to describe the observable trait

2



(disease) manifestations. The term penetrance denotes the probability that an individual

will express the disease phenotype given that they inherited the disease-causing genotype

or allele(s). The phenotype may be discrete (qualitative) or continuous (quantitative) [1].

By a quantitative trait, we mean a measurable human trait that shows continuous varia-

tion. Typically we refer to the chromosomal loci that influence human quantitative traits in

humans as quantitative trait loci (QTL). A typical genetic analysis concerns modeling the

relationships between underlying genotypes and observed phenotype of an individual. Many

statistical methods have been developed from the ad hoc scientific efforts of dissecting these

relationships, and they can be divided into two broad categories: (i) genetic linkage analysis

and (ii) association analysis. Both methods rely on the similar principles and assumptions

[2], that is, “people who have similar trait values should have higher than expected levels of

sharing of genetic materials near the genes that influence those traits” (page 1, [3]).

(i) Linkage analysis

Traditionally, the search for a disease gene begins with linkage analysis, which aims at

finding the rough location of the gene relative to a DNA segment called a genetic marker

with known position on a chromosome, an effort to narrow down the region of interest so

that conventional molecular approaches can then be used to identify the specific defects un-

derlying the disease. Linkage analysis asks the question of whether certain genetic material

co-segregate or not with disease of interest in each family, and it consists of estimating the

genetic distance (or recombination fraction) between a measured marker and a trait (dis-

ease) locus with an unknown genotype that is inferred from trait phenotype (single-point

analysis). The purpose is to find a group of markers that give low recombination fractions

with the trait locus, so as to identify the genomic region most likely to contain the trait

locus. The power of single-point linkage analysis can be increased by computing IBD shar-

ing probabilities at a locus using information from multiple linked markers (i.e., multipoint)

and then correlate those genotypic similarities between relatives to some measure of trait

similarities. In linkage analysis, a LOD (logarithm of the odds to the base 10) score of three

or more (the odds are a thousand to one in favor of genetic linkage) is generally taken to

indicate that two gene loci are close to each other on the chromosome.
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The linkage analysis approaches have been successful in mapping hundreds of monogenic

Mendelian traits [4], and they generally fall into two main classes: model-based or paramet-

ric methods, which requires a prior specification of a precise genetic model, e.g., penetrance,

disease-allele frequency, phenocopy and the mode of disease inheritance; and model-free or

nonparametric methods that do not require a prior specification of a genetic model. Para-

metric linkage analysis is often used when researchers have a good understanding of the

genetic model for the trait. For complex traits, for which the underlying genetic models

are too complicated and less known to researchers, model-free or nonparametric methods

are often used. For most nonparametric linkage methods, “sharing of genetic material” is

measured as identity by descent (IBD) in families [3]. Two related people share an allele

IBD if that allele was inherited from a common ancestor. Two alleles can be identical by

state (IBS) without being IBD. A pair of siblings can share 0, 1, and 2 alleles IBD, and most

other types of relatives (unilineal relatives) can share 0 or 1 allele IBD. Because linked loci

tend to cosegregate, if two related people share alleles IBD at one genetic locus, there is a

high probability that they share alleles IBD at a second closely linked locus. Nonparametric

methods test whether IBD sharing at a locus is greater than expected under the null hy-

pothesis of no linkage.

There are two types of nonparametric or model-free linkage analysis, one for both qualita-

tive traits and the other for quantitative traits. In this dissertation, we are mainly interested

in the latter, especially those methods for detecting quantitative trait loci (QTLs) that in-

fluence human quantitative traits, with a focus on the statistical issues arising in variance

components (VC) linkage analysis approach [5],[6] (see next section). A very detailed review

of other human QTL gene mapping methods can be found in Feingold (2001) [3] and in

Szatkiewicz (2004) [7].

One thing worthy to be noted is that gene regions identified by linkage analysis is often

large (typically 10 cM) [8], and can contains hundreds of other biologically plausible can-

didate genes. Further fine-mapping methods are often needed to narrow down the linkage

region. Linkage analysis is powerful to detect the effects of rare variants, but less powerful

for common variants [8].

4



(ii) Association analysis

Genetic association analysis, in which allele or genotype frequencies at markers are de-

termined in affected individuals and compared with those of controls, provides an effec-

tive and powerful method to detecting the effects of common variants with modest effects

and often yields fine-scale location [9]. Generally there are two types of association tests:

family-based analysis and population-based analysis. Family-based association analysis com-

pares the transmission of sequence variants from parents to affected offspring. Instead, the

population-based association analysis compares frequencies of sequence variants between un-

related cases and controls. The most prominent method in family-based association studies

is transmission disequilibrium test (TDT) [10] and its various extensions; the population

association studies can be classified into several types: candidate polymorphism method,

candidate gene method, fine mapping method and genome-wide method [11].

Recent advances in molecular genetic techniques have made it possible to genotype many

individuals for increasingly dense genetics markers (SNPs). With the availability of high-

resolution genetic maps, human population-based genome-wide association (GWA) studies

involving hundreds of thousands of SNPs in thousands of cases and controls are underway

[12], albeit with little consensus on optimal research design and analysis strategies. As is

true for general case-control study design, confounding is a problem. For population-based

association analysis, population admixture and stratification can generate spurious genotype-

phenotye associations. So far solutions like genomic control [13],[14], and structured associa-

tion methods [15],[16],[17] have evolved, another alternative is to do family-based association

test instead but with the cost of lower power per genotype. With millions of independent

tests in typical GWA studies, multiple testing problem arise frequently as in other biomedi-

cal and genomic research. Bonferroni correction (too conservative), permutation procedure

(subject to null hypothesis of no association of genotype with phenotype), and false discov-

ery rate (FDR) approach are among the usual frequentist approaches to multiple testing

problem [11]. The Bayesian approach might a be a “remedy” but is complex because of a

need to choose a prior probability for every disease model [11].
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1.2.2 Issues in variance components linkage analysis

One of the most popular approaches to quantitative trait linkage analysis, variance compo-

nents (VC) linkage analysis [5],[6] has many attractive features that other quantitative trait

linkage methods lack. It requires few assumptions and can be easily extended to accommo-

date multiple gene effects, environmental effects, and their interactions [18]. Here we only

review two most often used VC linkage analysis approaches: (1) univariate linkage analysis

and (2) bivariate linkage analysis. The reason is that we will apply these two methods into

our whole genome scan for obesity susceptibility loci in adults from Samoan archipelago

(chapter 4).

(1) Univariate VC Linkage Analysis

Quantitative trait model

The idea of VC methods is to specify the genetic covariances between relatives within a

pedigree as a function of IBD sharing at a marker locus, which is assumed to be closely

linked to a trait locus [5]. Let Yi be the trait value of the ith individual in the pedigree, the

genetic mean model is

Yi = µ + gi + Gi +
K∑

k=1

βkcik + ei (1.1)

where µ is the grand mean, gi is the unobserved random major gene effect at the trait locus,

Gi is the unobserved random polygenic effect, cik is the value of kth covariate measure for

ith individual, βk is the coefficient of regression of Yi onto covariate cik, and ei is the random

residual deviation. We assume two allelic variants, A and B, with population frequencies p

and q (= 1− p) , respectively at a given trait locus. The major gene effect gi is

gi =


a, if individual i has genotype AA

d, if individual i has genotype AB

−a, if individual i has genotype BB

The usual assumption is that gi, Gi and ei are uncorrelated random variables with

expectation 0. So the expected trait value is

E(Yi) = µ +
K∑

k=1

βkcik
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The covariance between individuals i and j is

Cov(Yi, Yj) =

 σ2
q + σ2

d + σ2
G + σ2

e if i = j

2φij(σ
2
q + σ2

G) + ∆7ijσ
2
d if i 6= j

where σ2
q = 2pq(a + (2p − 1))2 is the additive genetic variance due to the major gene,

σ2
d = 4p2q2d2 is the dominant genetic variance due to the major gene, σ2

G is the polygenic

variance, φij =
∆7ij

2
+

∆8ij

2
, the kinship coefficient [19] between individuals i and j, is the

probability that an allele selected randomly from individual i and an allele selected randomly

from the same autosomal locus of individual j are IBD. The ∆kij’s (k = 1, ..., 9) are the

probabilities for the nine possible condensed IBD status between two individuals i and j as

defined by Jacquard (1974) [20]. Also, 2φij is the expected coefficient of relationship between

individuals i and j, which is the expected proportion of allele IBD for individuals (i, j ) at

this locus. ∆7ij, the fraternity coefficient, is the probability that individuals i and j share 2

alleles IBD at an autosomal locus.

For a pedigree of n members, the covariance matrix has the form

Σ = 2Φσ2
q + ∆7σ

2
d + Inσ2

e (1.2)

where Φ is the n × n kinship matrix for the pedigree, ∆7 is the n × n matrix containing

fraternity coefficient for the pedigree members, In is the n× n identity matrix. For linkage

analysis, an additional QTL-specific component is introduced [5],[6]. If n QTLs and an

unknown number of residual polygenes influence a trait, assuming that dominance variance

is negligible (only individuals who share 2 alleles IBD contribute the dominant variance),

the expected covariance is then

Σ = Π̂σ2
q + 2Φσ2

G + Inσ2
e (1.3)

where Π̂ is a matrix with elements (π̂ij) providing the estimated allele-sharing proportions

at a marker that is putatively linked to the QTL; σ2
q is the additive genetic variance due to

the major locus; σ2
G now represents the residual additive genetic variance not explained by

the QTL.
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Parameter estimation

Assuming multivariate normality distribution for phenotypic trait Y within pedigrees,

the log likelihood of a pedigree of n individuals is given by

lnL(µ, σ2
q , σ

2
G, σ2

e , β|Y ) = −n

2
ln(2π)−−1

2
ln|Σ| − −1

2
(Y − E(Y ))T Σ−1(Y − E(Y )) (1.4)

A likelihood-ratio test for linkage is carried out by testing whether the additive genetic

variance due to the QTL (σ2
q ) was significantly different from 0 by comparing the likelihood

of the general model, in which genetic variance due to the QTL σ2
q is estimated, with that

of the restricted model, in which σ2
q is constrained to 0. Twice the difference of the log-

likelihoods of these two models yields a test statistic that is asymptotically distributed as a

1/2:1/2 mixture of a χ2
1 and a unit point mass at the origin (χ2

0) [21]. The classical LOD

scores are obtained by converting the statistic into values of log to the base 10.

(2) Bivariate VC Linkage Analysis

Multiple traits that are correlated can add information to each other. Joint use of data

from multiple traits can increase power to detect QTLs, and make it possible to test the

genetic correlations between two traits [22]. Here we briefly review the genetic models used

in bivariate quantitative trait linkage analyses [22],[23].

Quantitative trait model

Let X, Y be two pedigree quantitative trait vectors, for which the genetic trait model

discussed in univariate linkage analysis applies. For simplicity, we assume both X and Y

are measured for each pedigree member (total n), which can be relaxed by appropriate eval-

uations of the pedigree likelihood [23]. Assume the composite phenotype Z = [X, Y ]T , the

analogous covariance matrix for Z is

Σz =

 Σx Σxy

Σyx Σy


where Σx and Σy are as in equation 1.3, and the matrix Σxy = Σyx of cross-covariances is

given by

Σxy = Π̂σ2
qxy + 2Φσ2

Gxy + Inσ2
exy (1.5)
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As shown in Williams et al. (1999) [23], the covariance matrix Z is

ΣZ = Π̂⊗Q+ 2Φ⊗G+ In ⊗E (1.6)

where ⊗ is the Kronecker product operator (Searle 1971 [24]), Q, G, and E are the QTL,

polygenic and environmental covariance matrix, respectively. In a bivariate analysis, Q, G,

and E have the form  σ2
θx σθxσθyρθ

σθxσθyρθ σ2
θy


where ρθ is the correlation between X and Y due to effect θ (q, G, and e).

Parameter estimation

Assume trait vector Z follows a 2n-variate normal distribution with mean E(Z) and

variance ΣZ [23], the log-likelihood for the data is

lnLZ = −n

2
ln(2π)−−1

2
ln|ΣZ | −

1

2
(Z − E(Z))T Σ−1

Z (Z − E(Z)) (1.7)

where lnLZ is

lnL(µx, µy, σ
2
qx, σ

2
qy, σ

2
Gx, σ

2
Gx, σ

2
ex, σ

2
ey, ρq, ρG, ρe, βx, βy|X, Y )

Two trait-specific estimates of the mean, σ2
q (major gene effects), σ2

G (residual additive ge-

netic effects), and σ2
e (random environmental effects) as well as three associated correlations

ρq (correlation caused by a major gene), ρG (correlation caused by residual additive genetic

effects), ρe (correlation caused by random environmental effects) are estimated using maxi-

mum likelihood method.

As in univariate linkage analysis, the hypothesis of no linkage for either trait (i.e.,

σ2
qx

= σ2
qy

= 0) is tested using likelihood-ratio tests, in which the log-likelihood of the

restricted model was compared with that of the model in which σ2
q was estimated for the

two traits. However, the bivariate LOD score obtained this way is on a different scale than

the usual univariate LOD score, as the bivariate LOD asymptotically has two degrees of

freedom [25]. An asymptotic P -value for the bivariate LOD score can be calculated using

a 1/4χ2
2:1/2χ2

1:1/4χ2
0 mixture distribution [21],[22]. Using this P -value, it is then possible

to derive a univariate equivalent LOD score, LODeq, which has the same P -value as the

bivariate LOD score.
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1.3 MOTIVATION AND CONTRIBUTION OF OUR PROPOSED

METHODS

1.3.1 Ordered genotypes: an extended ITO method and a general formula for

genetic covariance

Genomic imprinting is a phenomenon where the functional activity of the two copies of each

gene is not equivalent, and depends on whether they have been inherited maternally or pa-

ternally. Genomic imprinting occurs when both maternal and paternal alleles are present,

but while one is expressed, the other is inactive, e.g. maternal imprinting means the ma-

ternally inherited mutant allele is not expressed (not 100% off). A gene is imprinted if its

allele-specific expression depends on its parental origin. Several dozen mammalian genes are

affected by genomic imprinting, and those affected genes express from only one of the two

parental chromosomes [26].

More accurate modeling of underlying biological processes should lead to more accurate

and more powerful inference. Extending the standard quantitative trait locus (QTL) model

to a model incorporating parent-of-origin effects or parental imprinting can result in a more

powerful test for linkage[27],[28]. Hanson et al. (2001)[27] also reported that the incorpora-

tion of parent-of-origin effects within linkage analysis of quantitative traits would facilitate

the genetic dissection of complex traits, and substantially increase the power to detect an

imprinted locus as well. Methods for detection of linkage and imprinting have been devel-

oped in sibship data [27],[28],[29], and in extended pedigrees [30]. Shete and Amos (2002)

[28] reported that imprinting model became more powerful when the imprinting was moder-

ate to large compared with usual variance-components model [31]. They also recommended

testing for imprinting only if significant evidence for linkage is observed. However, despite

the increasingly availability of a few literature talking about parent-of-origin linkage analy-

sis [27],[28],[29],[30],[32], there is not a general uniform relative-to-relative (including inbred)

covariance equation that is necessary for generalizing the analysis to any pedigree.

We have extended the traditional “ITO” transition method (Li and Sacks 1954 [33]) to

derive the covariance components equations both for sibs and parent-offspring (incorporating
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imprinting) [34], and then including them in the variance components linkage analysis which

is a new test of linkage and imprinting in nuclear families for quantitative traits, which has

increased power than sibship methods (data not published). In chapter 2, I continue to derive

some generalized linear functions of those transition matrices for both unilineal and bilineal

relatives under genomic imprinting in extended pedigrees, which can be easily applied to

calculate covariance between relatives in those pedigrees. Meanwhile, the current extension

expands the application of ITO method to more contemporary genetic models such as those

involving imprinting, e.g., computing genetic recurrence risks to any relative of the proband.

Although historically attractive, the ITO method we generalized is limited to biallelic loci

and to unilineal and bilineal relatives. In order to tackle these limitations, in the Chapter 2

we introduce a more general way for calculating the covariance for any relative pair under

genetic imprinting [35]. This is a generalization of the approach utilized by Gillois (1964)

[36], which was more recently summarized by Lange (2002) [37].

1.3.2 A recursive algorithm for computing generalized kinship coefficients: an

ordered genotype version

The derived general equation for the covariance needs the computation of the detailed iden-

tity state coefficients (defined in details in chapter 2). In chapter 3, we modify the definition

of generalized kinship coefficients to whether the sampled genes are maternal or paternal and

propose a recursive algorithm for computing them (we call it parental generalized kinship co-

efficients) in general. Our ultimate goal is to write a recursive software implementing

the algorithm that opens up the opportunity of calculating covariance between even inbred

relatives.

1.3.3 Genome-wide scan for adiposity-related phenotypes in adults from Samoan

archipelago

Overweight and obesity have reached epidemic proportions on a global scale. Obesity, BMI

≥ 30 kg/m2, in the U.S. has become a major and serious public health problem, affecting

33% of adults in 2002. Obesity increases risks for serious diet-related diseases, such as CVD,
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type-2 diabetes, and certain forms of cancers. Obesity is a typical multi-factorial disease with

overwhelming evidence of genetic component effects, yet their roles in obesity are largely un-

known.

In chapter 4, I discuss linkage evidences of susceptibility loci for adiposity-related phe-

notypes in Samoan population, an extensive summary of our multicenter NIH funded study

“Genome-scan for Obesity Susceptibility Loci in Samoans”. Univariate and bivariate VC

linkage analysis approaches are used to localize possible candidate genes that influence vari-

ation of those phenotypes independently or simultaneously (a phenomenon called pleiotropy).

Our current research findings will help further understand the whole picture of genetics of

obesity, which has great influences on early preventions and later interventions of human

obesity, making it a fundamentally important contribution to public health.

1.3.4 Sex-specific linkage analysis: sex-averaged genetic maps vs. sex-specific

genetic maps

Since multipoint linkage analysis usually assumes a known genetic map, a map misspec-

ification might compromise the estimation and testing procedures in the linkage analysis

[38], [39], [40]. In the chapter 5, we carry out a preliminary simulation study to investigate

the bias of multipoint linkage analysis arising from map misspecification. We also perform

linkage analyses of sex-specific subsets of Samoan data and report some sex-specific obesity

susceptibility loci, which may be hard to detect in the regular genome scans that fail to

model for sex-specific differences [41].
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2.0 ORDERED GENOTYPES: AN EXTENDED ITO METHOD AND A

GENERAL FORMULA FOR GENETIC COVARIANCE

This chapter has been published in American Journal of Human Genetics, volume 78, pages

10351045 (Dai and Weeks 2006 [35]). I have obtained the copyright permission from the

Chicago Press. The content of the paper has been modified to fit the style of this dissertation.

Parts of this chapter are extended from my master thesis (Dai 2004 [34]).

2.1 INTRODUCTION

The “ITO” paper (Li and Sacks 1954 [33]) provides an elegant algorithm for deriving joint

genotype probabilities between pairs of relatives. With ITO method, given the genotype

of an individual, it is possible to derive the conditional probability of the genotypes of any

non-inbred relative of that individual, i.e., P (G2|G1), where Gi denotes the genotype of

ithperson. The ITO method was extended to handle multiple alleles and generalized for

inbred populations (Richardson 1964 [42]). The ITO method was generalized for multiple

loci and was also extended to handle consanguinity (Campbell and Elston 1971 [43]).

Although the ITO method has been widely used to solve various problems in human ge-

netics, it only uses unordered genotypes, i.e., the genotypes are unordered in the sense that

maternal and parental contributions are not distinguished. However, some new applications

require the use of the ordered genotypes, e.g., when one is modeling genomic imprinting, one

must keep track of the parental (ordered) origin of alleles. Genomic imprinting occurs when

the functional activity of a person’s allele depends on whether it was inherited maternally

or paternally. Strong genomic imprinting renders an imprinted locus effectively haploid and
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thereby causes certain genetic diseases, including disorders affecting cell growth, develop-

ment, and behavior (Reik and Walter 2001 [26]). From the point of view of quantitative

genetics, the effect of genomic imprinting is to make the phenotypical values of reciprocal

heterozygotes different, which means various basic values of genetic quantities, as well as

correlations, are not the same as the standard values. This difference may be crucial, espe-

cially in human quantitative genetics.

While Campbell and Elston [43] did attempt to extend the ITO method to handle or-

dered genotypes, their extension is flawed due to an incorrect assumption that does not

generalize (as we explain in detail below). Li (1998 [44]) revised the 4× 4 Li-Sacks matrices

[33] to 2 × 2 matrices by focusing on allele IBD instead of genotype IBD. However, Li [44]

still did not consider ordered genotypes.

More accurate modeling of underlying biological processes should lead to more accurate

and more powerful inferences. In this report, we extended the ITO method to handle ordered

genotypes. We derived some generalized linear functions of the transition matrices for deriv-

ing the probabilities of an individual’s genotype, conditional on a relative’s genotype. In the

application part of this paper, our extended method is applied to calculate the covariance

between both unilineal and bilineal relatives under imprinting. While the ITO approach is

pleasing in terms of its clarity and understandability, it is difficult to extend it to handle loci

with multiple alleles, as well as to handle very complex inbred relative pairs. Therefore, we

also derive a completely general formula for the genetic covariance using ordered genotypes

for any type of relative pair; this uses the approach of Gillois (1964 [36]) as more recently

elucidated by Lange (2002 [19]). The resulting covariance equations can be easily applied

in a variance component-based linkage analysis that takes genomic imprinting into account

(not shown here).

2.2 METHODS

Here we notationally distinguish ordered and unordered genotypes. Accordingly, we let A/

a with a slanted slash represent an unordered genotype, and use a vertical bar to denote
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ordered genotypes (e.g., a|A and A|a). Here, without loss of generality, the maternal allele

is listed to the left of the vertical bar and the paternal allele is listed to the right.

2.2.1 The original ITO method

Two diploid outbred related individuals may share (i) both genes identical by descent (IBD),

(ii) one gene IBD, or (iii) no genes IBD. If we denote transition matrices as matrices of con-

ditional probabilities, then the three basic transition matrices corresponding to the number

of identical genes shared in common by the two relatives are respectively: [33]

G2 G2 G2

G1 A /A A /a a /a G1 A /A A /a a /a    G1 A /A A /a a /a

I
A /A
A /a
a /a

1 0 0
0  1 0
0 0 1

T
A /A
A /a
a /a

p q 0
p
2

1
2

q
2

0 p q

O
A /A
A /a
a /a

p2  2pq q2

p2  2pq q2

p2   2pq q2

Following convention, in these three matrices, p and q represent the allele frequen-

cies of A and a in the population, respectively, with p + q = 1. The first matrix, I,

P (G2|G1, share 2 IBD), gives the genotype transition probabilities for two relatives when

they share two alleles IBD with person 1’s genotype given. In such a case, their genotypes

are necessarily identical. When one is given to be A/A, the other must be the A/A, etc. The

second matrix, T , P (G2|G1, share 1 IBD), gives the transition probabilities from one relative

to the other when they share one gene IBD. Suppose the given relative is of genotype A/a

(second row of T ), the other relative must share allele A or allele a in common with probabil-

ity 0.5 plus a random allele from the population. The third matrix, O, P (G2|G1, share 0 IBD),

gives the conditional probabilities when the two individuals do not share any alleles IBD in

common. Hence, they are genetically unrelated individuals. Regardless of the genotype of

one individual, the probabilities of the other individual having the genotypes (A/A, A/a,

a/a) remain simply p2, 2pq, and q2, respectively, under Hardy-Weinberg equilibrium.

With these three basic matrices, it is then straightforward to find the joint distribution

and correlation between any pair of relatives (unordered genotypes) in a random-mating

population [33]. For autosomal genes, the general expression of the transition matrix for a
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specific pair of relatives is given as

R = cII + cT T + coO (2.1)

where cI , cT , and co are the probabilities that the two specified relatives share both, one,

and no genes IBD, respectively, with cI + cT + co = 1.

2.2.2 The ordered genotype ITO method

Since the original ITO matrices were derived for unordered genotypes, they are not useful

when one is modeling imprinting, since one must then keep track of parental origin. Thus,

in order to take genomic imprinting into consideration, we must track where the IBD gene

comes from by using ordered genotypes (where we list the maternal allele first). Since

the heterozygote A|a may have a different genotypic value from a|A, Campbell and Elston

[43] introduced four basic transition matrices with dimension 4 × 4 (instead of three 3 × 3

matrices), which are listed below.

G2

G1 A | A A | a a | A a | a

I

A | A
A | a
a | A
a | a

1   0 0  0
0   1 0  0
0   0 1  0
0   0 0   1

                 

G2

G1 A | A A | a a | A a | a

Sm

A | A
A | a
a | A
a | a

p   0 q 0
0 p 0 q
p   0 q 0
0 p 0 q

G2

G1 A | A A | a a | A a | a

S f

A | A
A | a
a | A
a | a

p q 0  0
p q 0  0
0  0 p q
0  0 p q

                  

G2

G1 A | A A | a a | A a | a

O

A | A
A | a
a | A
a | a

p2 pq pq q2

p2 pq pq q2

p2 pq pq q2

p2 pq pq q2

Each matrix element represents the probability of sibling 2 having the specific ordered geno-

type conditional on the genotype of sibling 1. The subscript m and f represent male and

female. We use the same notion I and O as defined in 3× 3 matrices discussed above. The

matrix Sm, P (G2|G1, share 1 allele IBD through father), specifies the probabilities of sibling

2’s genotypes conditional on sibling 1 sharing 1 allele IBD through father. Similarly, the
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matrix Sf , P (G2|G1, share 1 allele IBD through mother), specifies the probabilities of sibling

2’s genotypes conditional on sibling 1 sharing 1 allele IBD through mother.

Campbell and Elston [43] proposed that the transition matrix R for any specified pair of

relatives could be derived by the formula R = cII + cT

2
Sm + cT

2
Sf + coO. However, their for-

mula for R is incorrect for some pairs of relatives, as we explain in detail below. Furthermore,

a more complete derivation of the ITO method for ordered genotypes requires the specifica-

tion of two additional matrices, Tf and Tm, which concern parent-offspring transitions (Dai

2004 [34]). These matrices are:

Goffspring

G father A | A A | a a | A a | a

Tm

A | A
A | a

a | A
a | a

p  0  q  0
p
2

p
2

q
2

q
2

p
2

p
2

q
2

q
2

0 p  0  q

              

Goffspring

Gmother A | A A | a a | A a | a

Tf

A | A
A | a

a | A
a | a

p q  0  0
p
2

q
2

p
2

q
2

p
2

q
2

p
2

q
2

0    0  p q

The derivations of the matrices Tm, P (Goffspring|Gfather) and Tf , P (Goffspring|Gmother) are

straightforward. For example, if the genotype of the mother is A|a, the conditional probabil-

ities that the offspring’s genotypes are A|A, A|a, a|A, and a|a are p
2
, q

2
, p

2
, and q

2
respectively.

The reason is that the alleles A and a from the mother each have a 50% chance of being

transmitted to her offspring.

Li [44] showed how the 4×4 Sm and Sf matrices [43] can be derived as ‘external tensors’

of the 2× 2 matrices. However, the matrices Tf and Tm can’t be derived via outer products.

We have shown that Tf (Tm) can be computed as a weighted sum of the Sf (Sm) matrix and

a permuted version of Sf (Sm) where the middle two rows are switched (details omitted).
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2.3 TRANSITION MATRICES FOR UNILINEAL RELATIVES IN

EXTENDED PEDIGREES

Now with the above six ordered genotype 4 × 4 transition matrices, we can derive the

conditional probabilities for two specified outbred relatives, in which we track the origin

of both alleles at a locus. We first consider some simple unilineal relatives. For parent

and offspring pair, since they share one gene identical by descent, the transition probabil-

ities from parent to offspring for unordered genotypes are the elements of matrix T [33].

However, in ordered genotype method, we have to consider the transition of paternal and

maternal alleles separately. The elements of matrix Tm are now the transition probabilities

from father to offspring, and the elements of matrix Tf are the transition probabilities from

mother to offspring. Note that with ordered genotypes P (Gfather|Goffspring) is not equal to

P (Goffspring|Gfather), while these two are equal with unordered genotypes.

Consider the transition probabilities from a maternal grandmother to a grandchild GC

through a mother M. If the genotype of the maternal grandmother is A|A, the resulting

genotype of her daughter M will be A|? (?-some unknown allele), so the total conditional

probability that the grandchild GC is A|a with allele A inherited from the mother M is

(1
2

+ 1
2
p)q. The reason is that there is a 50% chance that the grandchild GC receives the

grandmaternal A allele from her mother M and a 50% chance that she receives her maternal

grandfather’s allele, which is A with probability p. So the conditional probability of the

grandchild’s ordered genotype being A|a is then (1
2

+ 1
2
p)q, where q is the probability of

grandchild GC randomly inheriting the second allele (allele a) from his/her father.

It is much easier to understand if we do the above derivation using matrix manipulation.

The probabilities of the mother are the elements of first row of matrix Tf , since we are

conditioning on the grandmother’s A|A genotype. For each genotype of the mother M, the

elements of second column of Tf are the probabilities of the genotype of the grandchild GC

being A|a. The total conditional probability for the grandchild to have genotype A|a given

grandmother’s A|A genotype via his/her mother is the product of the first row and second
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column of the transition matrix Tf as shown below:

(
p q 0 0

)


q

q
2

q
2

0

 = pq +
q2

2
= (

1

2
+

1

2
p)q

By the same algorithm, the conditional probabilities for a grandchild given a specific genotype

for the maternal grandmother are given by the elements of the product matrix Tf · Tf = T 2
f .

In the same manner, the conditional probabilities of a grandchild’s genotypes given a specific

genotype for the maternal grandfather (via his/her mother) are given by the elements of the

product matrix Tm · Tf .

For the above grandmother-grandchild pair relation, Campbell and Elston’s [43] formula

(page 229)

R =
Sm

4
+

Sf

4
+

O

2

gives

(
1

4
+

1

2
p)q

as the probability of the genotype of the grandchild being A|a given the genotype of the

grandmother is A|A, which is clearly wrong. For another example, for an aunt-niece pair

connected through the mother, cT = 1
2
, but cT doesn’t split in half as Campbell and Elston

suggested, but rather all its “weight” goes on the Tf , and the correct matrix is

R =
Tf

2
+

O

2
.

Li and Sacks [33] showed that

T 2 =
T

2
+

O

2
,

which means a grandparent-grandchild pair shares 1 gene IBD and 0 gene IBD with an equal

50% chance. T 2 also gives the conditional probabilities for half sibs. They also showed that

in general,

T n+1 = (
1

2
)nT + (1− (

1

2

n

))O (2.2)
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where n + 1 is the total number of generations between the two relatives. When ordered

genotypes are used, similar equations hold. For example:



T 2
m = 1

2
Tm + 1

2
O, T 2

f = 1
2
Tf + 1

2
O

TmTf = 1
2
Tf + 1

2
O, TfTm = 1

2
Tm + 1

2
O

TmTfTf = 1
4
Tf + 3

4
O, TmTfTm = 1

4
Tm + 3

4
O

TfTmTm = 1
4
Tm + 3

4
O, TfTmTf = 1

4
Tf + 3

4
O

where T 2
m gives the conditional probabilities for half sibs who have same father but different

mothers, and T 2
f gives the conditional probabilities for half sibs who have same mother but

different fathers. And in general



T n+1
m(f) = (1

2
)nTm(f) + (1− (1

2
)n)O

(Ti1Ti2 · · ·Tin)Tm(f) = (1
2
)nTm(f) + (1− (1

2
)n)O, ij ∈ {m, f}, j = 1, ..., n

T n+1
m(f) → O, as n →∞

where n + 1 is the number of generations between two relatives. When n is infinitely large,

the conditional probabilities for two relatives are given by the elements of the matrix O, i.e.,

the two relatives could be treated as two random samples from the general human population

who are all unrelated to each other.

2.4 TRANSITION MATRICES FOR BILINEAL RELATIVES IN

EXTENDED PEDIGREES

Now we model bilineal relatives. Let us first consider the simple but most important type:

full sibs. Since full sibs have 25% chance of sharing two genes IBD, 25% chance of sharing 0

IBD, they therefore have 50% chance of sharing 1 gene IBD. However, we are dealing with
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ordered genotypes, so the two sibs have 25% chance of sharing 1 maternal allele IBD and no

paternal allele IBD and vice versa. Thus the transition matrix for full sibs is as follows:

S =
1

4
I +

1

4
Sm +

1

4
Sf +

1

4
O (2.3)

Another pair of relatives that can share 2 genes IBD is double first cousins whose parents

are members of two sibships. There are six types of sibships in the general population due

to six different mating types [33]. Following the same algorithm mentioned in Fig.1 in Li

and Sacks’s paper [33] but labeling maternal and paternal alleles, we derive the conditional

matrix for double first cousins, which is,

D = S2 =
1

16
I +

3

16
Sm +

3

16
Sf +

9

16
O (2.4)

Next we try to model the relationship for some unlineal relatives in which the conditional

matrix S for full sibs, and the matrices Tm and Tf are involved. We use the broad sense

“avuncular” term, which includes uncle-nephew, uncle-niece, aunt-nephew and aunt-niece

relations. The conditional probabilities of a nephew’s genotypes are then given by the prod-

uct of STm(f) when the uncle’s genotypes are conditioned on. Conversely, the conditional

probabilities of the uncle’s genotypes are given by elements of the product of Tm(f)S condi-

tional on the genotypes of the nephew. Whether the transition matrix Tm or Tf is involved

depends on whether the father or mother of the nephew is the “connecting” relative. We

verified that STm(f) = Tm(f)S, which indicates that uncle-nephew matrix is same as the

nephew-uncle transition matrix [33]. Through further multiplication of matrices, we can

also prove “the most remarkable property” that is

STm(f) = Tm(f)S = T 2
m(f) (2.5)

which indicates that uncle-nephew relations are same as those for grandparent-grandchild

or half sibs[33], whether the transition matrix Tm or Tf is involved depends on whether the

uncle is the nephew’s paternal uncle or the nephew’s maternal uncle. Extension of the above

equations results in other important matrices given by

Tm(f)STm(f) = T 3
m(f) =

1

4
Tm(f) +

3

4
O (2.6)

whose elements give the conditional probabilities for first cousins, and also the probabilities

for the great-grandchild conditional on one given great-grandparent.
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2.5 APPLICATION FOR DERIVING COVARIANCES BETWEEN

RELATIVES UNDER GENOMIC IMPRINTING

Next, as an illustration of the utility of our extended ordered genotype ITO method, we

now derive equations for the genetic covariance between sibs, and for the covariance between

parent-child taking genomic imprinting into account (Dai 2004 [34]). We begin with the stan-

dard genetic model and extend it to consider the case when a locus is subject to imprinting.

To derive the covariance formulae, it is necessary first to define the quantitative trait locus

(QTL) model and its variance components. Here, we briefly review results of Spencer [32].

Assume that an unobserved major gene has two alleles, allele A and allele a, with P (A) = p

And P (a) = q. In the standard genetic model, the genotypic value is a if the genotype is

A/A, that of the a/a homozygote is −a, and the genotypic value for heterozygote A/a is

denoted as d. However, under imprinting, different genotypic values are possible for the two

possible heterozygotes: d1 for A|a and d2 for a|A (Figure 2.1). It is usually assumed that

a ≥ d1 and d2 ≥ −a. We have d1 = a (d2 = −a) when there is complete inactivation of the

maternally (paternally) derived allele. A measure of imprinting is denoted as I = (d1−d2)/2

[28].

Frequency q2 pq                          pq      p2

Genotype a|a a|A A|a A|A

Genotypic value -a d2   0 d1 a

Figure 2.1: Genotypic values of the four possible genotypes
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Spencer [32] derived many useful genetic components of variance under imprinting, which

are summarized in Table 2.1. When d1 = d2 = d, i.e., there is no imprinting (I = 0),

the above various genetic values “revert” to their standard values. We further show that

σ2
Am +σ2

Af = 2σ2
a and σ2

D +σADm +σADf = σ2
d (no constraints on I), where σ2

a and σ2
d are the

additive genetic variance and dominance genetic variance respectively under the standard

genetic model with no imprinting (details not presented here).

Table 2.1: Values of genetic components of variance under genomic imprinting (after Spencer

[32]).

Name Expression Definition

µ a(p− q) + (d1 + d2)pq The mean phenotype of a population in HWE

αm a + d2q − d1p The average effect of a gene substituion for

males

αf a + d1q − d2p The average effect of a gene substituion for

females

σ2
Am

2pqα2
m The additive genetic variance for males

σ2
Af

2pqα2
f The additive genetic variance for females

σ2
D pq(pq(d1 +d2)

2 +(d1−d2)
2) The dominance genetic variance

σ2
Dm

pq(pq(d1 +d2)
2 +(d1−d2)

2) The dominance genetic variance for males

σ2
Df

pq(pq(d1 +d2)
2 +(d1−d2)

2) The dominance genetic variance for females

σ2
G pq(2αmαf + pq(d1 + d2)

2 +

(d1 − d2)
2)

The “overall” genetic variance

σADm pqαm(d1 − d2) The covariance between dominance deviation

and breeding value for males

σADf
pqαf (d2 − d1) The covariance between dominance deviation

and breeding value for females
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2.5.1 Covariance between sibs under genomic imprinting

With the above definitions of different genetic variance components (Table 2.1), we now

begin to derive the covariance between sibs and between parent-offspring under genomic

imprinting using our transition matrices. Spencer [32] has derived the covariance between

parent and offspring under genomic imprinting. However, he did not derive the covariance

between a pair of full sibs. As an illustration of the utility of our ordered ITO method,

we first derive the covariance between sib pairs and also include a short part on deriving

covariance between parent and offspring to verify that our results match Spencer’s results.

Let k0 denote the probability of sib 1 and sib 2 sharing 0 allele IBD, k1m denote the

probability of sib 1 and sib 2 sharing 1 paternal allele IBD, k1f denote the probability of sib

1 sharing 1 maternal allele IBD with sib 2, and k2 denote the probability of sib 1 and sib 2

sharing 2 alleles IBD. The probability of sib 2 having a particular genotype (G2) given the

genotype of sib 1 (G1) can be calculated as follows:

P (G2|G1) =
2∑

i=0

P (G2|G1, share i alleles IBD)P (share i alleles IBD)

= k2I + k1mSm + k1fSf + k0O (2.7)

which, for full sibs, is the same as matrix S (in equation (2.3) above).

Given the above conditional matrix, the joint probability of sib 2 having a certain geno-

type s2 and sib 1 having another certain genotype of s1, P (s1, s2) can be derived by multi-

plying the specific element of the above matrix P (G2|G1) by the probability of having the

certain genotype for sib1. The genetic covariance between a pair of sibs can be derived in

the following equation (2.8).

Cov(s1, s2) = E(s1s2)− E(s1)E(s2) =
∑
s1

∑
s2

s1s2P (s1, s2)− µ · µ

=
(k1m + k2)

2
σ2

Am +
(k1f + k2)

2
σ2

Af + k2(σ
2
D + σADm + σADf ) (2.8)

For full sibs, k0 = 1/4, k1m = 1/4, k1f = 1/4, and k2 = 1/4, we get the following model

from equation (2.8):

Cov(s1, s2) =
1

4
σ2

Am +
1

4
σ2

Af +
1

4
(σ2

D + σADm + σADf ) (2.9)
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As stated earlier, σ2
Am + σ2

Af = 2σ2
a and σ2

D + σADm + σADf = σ2
d (σ2

a and σ2
d are additive

genetic variance and dominance genetic variance respectively under the standard genetic

model). Thus, equation (2.9) simplifies to be exactly the standard genetic model defined as

Cov(s1, s2) =
1

2
σ2

a +
1

4
σ2

d (2.10)

For half sibs, we distinguish between half sibs who share a mother (k0 = 1/2, k1f = 1/2, and

k2 = 0) and half sibs who share a father (k0 = 1/2, k1m = 1/2, and k2 = 0). Equation (2.8)

gives, respectively:

Cov(s1, s2) =
1

4
σ2

Af

Cov(s1, s2) =
1

4
σ2

Am (2.11)

2.5.2 Covariance between parent-offspring under genomic imprinting

In the next part, we derive equations for the genetic covariance for a parent-offspring pair,

as follows. Let o and pf denote the genotypic values of offspring and mother, respectively.

The joint probability for the offspring having a certain genotype and the mother having

another genotype, P (o, pf ) can be derived by multiplying the specific element of the matrix

Tf (P (Goffspring|Gmother)) by the probability of having that certain genotype for the mother.

Then, the covariance σopf
is calculated as:

Cov(o, pf ) = E(opf )− E(o)E(pf ) =
∑

o

∑
pf

opfP (o, pf )− µ · µ

=
1

2
σ2

Af +
1

2
σADf (2.12)

Similarly, we can derive the covariance equation for father and offspring:

Cov(o, pm) =
1

2
σ2

Am +
1

2
σADm (2.13)

Equations (2.12, 2.13) were also derived by Spence (2002) [32].
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2.6 A GENERAL FORMULA FOR GENETIC COVARIANCE

Although historically attractive, the “ITO” method we generalized here is limited to biallelic

loci and to unilineal and bilineal relatives. In order to tackle these limitations, we now

introduce a more general way for calculating the covariance for any relative pair under

imprinting. This is a generalization of the approach utilized by Gillois [36], which was more

recently summarized by Lange [19], whose notation we use here.

First, suppose there are two or more alleles, let the kth allele have population frequency

pk and the ordered genotype k|l have the trait value wk|l, then we can write

wk|l = αk + βl + δk|l (2.14)

where αk is the additive impact of the maternal allele, βl is the additive impact of the

paternal allele, and δk|l is the residual departure from additivity. Under imprinting, the

identity wk|l = wl|k does not necessarily hold. No generality is lost if we adjust the trait

mean to be zero, so that
∑

k

∑
l wk|lpkpl = 0. The allelic contributions αk, βl are chosen to

minimize the deviations δk|l = wk|l − αk − βl. One way of doing this is to minimize the sum

of squares ∑
k

∑
l

δ2
k|lpkpl =

∑
k

∑
l

(wk|l − αk − βl)
2pkpl (2.15)

which is achieved by taking αk =
∑

l wk|lpl, and βl =
∑

k wk|lpk (See Appendix).

Next suppose individuals i and j are relatives. The covariance Cov(Xi,Xj) between the

trait values Xi and Xj of i and j can be computed in the following steps. Here we use the

fifteen detailed identity states of Gillois [36], Harris [45], and Jacquard [20]. Figure 2.2 (after

Sobel et al. [46], Jacquard [47]) shows the 15 detailed identity states possible when maternal

and paternal alleles are distinguished. The states vary from sharing no alleles IBD, S15, to

sharing all four alleles IBD, S1.
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Conditioning on these detailed identity states of the two relatives, and using the identities∑
k αkpk = 0,

∑
l βlpl = 0,

∑
k δk|lpk = 0, and

∑
l δk|lpl = 0, we can deduce

E(Xi, Xj) = (δ1 + δ2 + δ4 + δ9 + δ10)
∑

k

α2
kpk

+(δ1 + δ3 + δ5 + δ9 + δ11)
∑

k

β2
kpk

+(2δ1 + δ2 + δ3 + δ4 + δ5 + 2δ12 + δ13 + δ14)
∑

k

αkβkpk

+(2δ1 + δ2 + δ4)
∑

k

αkδk|kpk

+(2δ1 + δ3 + δ5)
∑

k

βkδk|kpk

+δ1

∑
k

δ2
k|kpk

+δ6

∑
k

∑
l

δk|kδl|lpkpl

+δ9

∑
k

∑
l

δ2
k|lpkpl

+δ12

∑
k

∑
l

δk|lδl|kpkpl (2.16)

where δi is the probability of the ith detailed identity state [20]. A detailed derivation of

equation (2.16) is given in Appendix. When there is no imprinting, equation (2.16) reduces

to the general covariance equation derived by Gillois [36].

Since trait means E(Xi) = E(Xj) = 0, the covariance Cov(Xi,Xj) = E(Xi,Xj), which

is given in equation (2.16). If we assume that neither i nor j is inbred, we have δ1 = δ2 =

· · · = δ8 = 0. The covariance Cov(Xi,Xj) then simplifies to

Cov(Xi, Xj) = (δ9 + δ10)
∑

k

α2
kpk + (δ9 + δ11)

∑
k

β2
kpk

+(2δ12 + δ13 + δ14)
∑

k

αkβkpk

+δ9

∑
k

∑
l

δ2
k|lpkpl + δ12

∑
k

∑
l

δk|lδl|kpkpl (2.17)
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When there are only two alleles, we can rewrite the summations in terms of our notation

used above: 

∑
k α2

kpk = 1
2
σ2

Af∑
k β2

kpk = 1
2
σ2

Am∑
k αkβkpk = 1

2
σ2

Am + σADm = 1
2
σ2

Af + σADf∑
k

∑
l δ

2
k|lpkpl =

∑
k

∑
l δk|lδl|kpkpl = σ2

d

Thus, from our general equation (2.17), we obtain the same covariances as we derived

above for full sibs (equation (2.9)), half sibs (equation (2.11)), mother-offspring pairs (equa-

tion (2.12)), and father-offspring pairs (equation (2.13)). Furthermore, our equation (2.16)

can be used to generalize the variance-component model developed by Shete et al. (2003)

[30] to handle all possible types of inbred relative pairs.

Once the detailed identity coefficients [20] are computed, any relative-to-relative covari-

ance is expressible in terms of the theoretical variances and covariances defined above. An

algorithm for computing these detailed identity coefficients (assuming the entire pedigree

structure connecting the two individuals is known) was derived by Nadot and Vaysseix [48].

2.7 DISCUSSION

In summary, in this chapter we extended the “ITO” method ([33],[43]), to handle ordered

genotypes in an attempt to generalize this simple but useful method. We also showed that

Campbell and Elston’s previous formula [43] for the transition matrix R is incorrect for some

pairs of relatives. In practice, a more complete derivation of the ITO method for ordered

genotypes requires the specification of two additional matrices Tm and Tf , which we derived

in this paper. By tracking the paternal or maternal origin of each allele, we now have six

basic transition matrices, with the help of which it is possible derive conditional probabilities

between two specified outbred relatives when we need to distinguish the two forms of the

heterozygotes. In addition to providing an algorithm for deriving conditional probabilities
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using ordered genotypes, the ITO approach can be used to derive formulae for the genetic

covariance between a pair of relatives. To complement the more limited ITO approach, we

also derived a completely general formula for the genetic covariance using ordered genotypes;

this formula is applicable to multi-allelic loci and to any type of inbred relative pair.

We illustrated the utility of the extended ITO approach and our general covariance

formula by using them to derive the genetic covariance under imprinting between parent-

offspring and sib pairs. The derived formulas for the covariance between parents and off-

spring’s genotypic values are the same as those given in previous work [32]. The derived

formulas for the covariance between sibs are also independently derived by Santure and

Spencer (2006) [49] later after we published our paper. The consistency of our equations

with previous/very recent work proves the applicability of our proposed method for the cal-

culation of covariance between two relatives when we have to deal with ordered genotypes,

e.g., when we try to model genomic imprinting in human quantitative genetic analysis. Also

it should be noted that, our work could help accurately test genetic hypotheses or pre-

dict risk for genetic counselling given a known genetic model [43]. Our extended ordered

genotype “ITO” method and our general covariance formula, with their easy applicability,

will be helpful in modeling the complex relationship between relatives under the important

biological phenomena (genomic imprinting) that need further statistical attention.
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S5 S6

 S9

S7 S8

S10 S11   S12

 S13  S14  S15

S1 S2 S3 S4

Figure 2.2: The 15 possible detailed identity states for individuals i and j with ordered

genotypes. The squares are maternal alleles and the circles are paternal alleles. The above

two symbols are i ’s alleles and the under two symbols are j ’s alleles. Lines connect alleles

that are IBD (after Sobel et al. [46], Jacquard [47]).
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3.0 A RECURSIVE ALGORITHM FOR COMPUTING GENERALIZED

KINSHIP COEFFICIENTS: AN ORDERED GENOTYPE VERSION

In this chapter we first introduce a different way for computing the 15 detailed identity

coefficients discussed in chapter 2 (Figure 2.1) by computing some modified generalized

kinship coefficients [19], [50],[51]. Then we derive a recursive algorithm for computing those

modified generalized kinship coefficient for two individuals with ordered genotypes in the

same pedigree. As an example, we apply this algorithm to compute one specific modified

generalized kinship coefficient in the pedigree discribed in Figure 3.1. Although the current

algorithm works for our example, it is incomplete and we are still trying to improve it.

Once the final algorithm is ready, recursive software implementing the algorithm will be

prepared based on the X-linked version of Affected-Pedigree-Member (APM) program for

linkage analysis [52].

3.1 INTRODUCTION

In chapter 2, we mentioned that an algorithm for computing the detailed identity coefficients

(under the assumption that the entire pedigree struture connecting the two individuals is

known) was already derived by Nadot and Vaysseix [48]. The algorithm was implemented

in a program written in computer languages ALGOL and ASSEMBLER [48]. Although the

program has been existed for a long time, it is not easy to understand by normal readers,

and is not ready for general usage because an executable code is not available anymore.

Here we introduce a different way for computing those detailed identity coefficients, which

involves modifying the definition of ‘generalized kinship coefficients’ [19] to include whether
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the sampled genes are maternal or paternal (we call them parental generalized kinship

coefficients), and developing an algorithm for recursively computing those modified kinship

coefficients.

3.2 METHODS

To describe the algorithm, we first define some necessary terms to be mentioned later (from

Weeks et al. (1995) [52]). A ‘founder’ represents a person in a pedigree who has no parents;

all founders are assumed to be noninbred and unrelated. For example, persons 1 and 2 in

Figure 3.1 are founders. “A ‘block’ represents an equivalence class of the same alleles, where

a gene (allele) picked at random from a block is identical by descent (IBD) to any other

gene (allele) picked at random from the same block; however, it is not IBD to a gene (allele)

picked at random from a different block” (page 27, [52]). Two genes (alleles) picked from

two different blocks are not IBD, but may be identical by state (IBS). In general, as shown

in chapter 5 of the book [19], with a list of four individuals i , j , k , l , if we randomly pick

one gene from each individuals, there are 15 partitions of the four sampled genes Gi, Gj, Gk,

Gl, which ranges from the block [Gi, Gj, Gk, Gl], where all of the genes are IBD, to the four

blocks [(Gi), (Gj), (Gk), (Gl)], where no genes are IBD (for a list of two individuals i and

j , if we randomly pick two alleles at one locus from one individual and pick two alleles at

the same locus from the second individual, there are still 15 partitions of the four sampled

alleles G1
i , G2

i , G1
j , G2

j). The probability of any such block, or “the probability of randomly

picking a gene at random from each individual in a list and having those genes satisfying

imposed equivalence conditions imposed by these blocks” (page 27, [52]), was defined as a

generalized kinship coefficient Φ. Consider the generalized kinship coefficient Φ[(Gi, Gj),

(Gk, Gl)]. Here Gi and Gj are in block 1 and IBD while Gk and Gl are in block 2 and IBD,

and the alleles in block 1 are not IBD to the alleles in block 2.
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3.2.1 Generalized kinship coefficients

In the chapter 2, we discussed the 15 detailed identity states of Gillois [36], Harris [45], and

Jacquard [20]. δi is defined as the probability of the ith detailed identity state. When the

maternal and paternal origins of the two pairs of alleles are ignored, the 15 detailed identity

states (Figure 2.1) collapse to 9 condensed identity states S1, S2,· · · , S9 (Figure 3.2) [19],

[36]. Let ∆k denote the probability of condensed states Sk (also called condensed identity

coefficient [19], ∆k = P(alleles of i and j are in a certain partition in state Sk)), we have,



∆1 = δ1, ∆2 = δ6

∆3 = δ2 + δ3, ∆4 = δ7

∆5 = δ4 + δ5, ∆6 = δ8

∆7 = δ9 + δ12, ∆8 = δ10 + δ11 + δ13 + δ14

∆9 = δ15

Let Ψk denote the probability of a random condensed state Sk (Ψk = P(randomly picked

alleles of i and j end up in a certain partition in state Sk), which is an integer multiple of

a generalized kinship coefficient and can be expressed in terms of the ∆k’s. Therefore, the

problem of the calculation of the ∆k’s can be solved by computing the coefficients Ψk’s, or

more specifically, by computing the generalized kinship coefficients Φ’s [19].

Without loss of generality, we denote Gm as a maternal allele and Gp as a paternal allele.

We also assume that Gm
i and Gp

i occupy the upper two allele positions and Gm
j and Gp

j

occupy the lower two allele positions within each state in Figure 2.1. Suppose we randomly

pick two alleles G1
i , G2

i from person i and two alleles G1
j , G2

j from person j (digits 1 and 2

here only represent the order of two alleles picked, so they can be either a maternal allele or

a paternal allele or both). Denote the probability of a random detailed identity state Sk by

ψk, which then is an integer multiple of a parental generalized kinship coefficient . As
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mentioned before, there are 15 possible ψks, which are listed as below,

ψ1 = Φ[(G1
i , G

2
i , G

1
j , G

2
j)], ψ2 = Φ[(G1

i , G
2
i , G

1
j), (G

2
j)]

ψ3 = Φ[(G1
i , G

2
i , G

2
j), (G

1
j)], ψ4 = Φ[(G1

j , G
2
j , G

1
i ), (G

2
i )]

ψ5 = Φ[(G1
j , G

2
j , G

2
i ), (G

1
i )], ψ6 = Φ[(G1

i , G
2
i ), (G

1
j , G

2
j)]

ψ7 = Φ[(G1
i , G

2
i ), (G

1
j), (G

2
j)], ψ8 = Φ[(G1

i ), (G
2
i ), (G

1
j , G

2
j)]

ψ9 = Φ[(G1
i , G

1
j), (G

2
i , G

2
j)], ψ10 = Φ[(G1

i , G
1
j), (G

2
i ), (G

2
j)]

ψ11 = Φ[(G1
i ), (G

1
j), (G

2
i , G

2
j)], ψ12 = Φ[(G1

i , G
2
j), (G

2
i , G

1
j)]

ψ13 = Φ[(G1
i , G

2
j), (G

2
i ), (G

1
j)], ψ14 = Φ[(G2

i , G
1
j), (G

1
i ), (G

2
j)]

ψ15 = Φ[(G1
i ), (G

2
i ), (G

1
j), (G

2
j)]

For each ψk, in the block(s) each of four alleles can be maternal or paternal, which

makes a combination of 16 possible ‘labeled IBD configurations’, each with a probability

of 1
16

. For example, for ψ15, these IBD configurations can be [(Gm
i ), (Gm

i ), (Gm
j ), (Gm

j )],

[(Gm
i ), (Gp

i ), (G
m
j ), (Gm

j )], · · · , and [(Gp
i ), (G

p
i ), (G

p
j), (G

p
j)]. We define P [()] as the probability

for a certain IBD configuration.

Theseψk’s can be expressed in terms of the δi’s by conditioning on which detailed identity

state the four original alleles of person i and person j occupy, which is a one-to-one function

mapping. For example,

ψ1 = δ1 +
1

4
δ2 +

1

4
δ3 +

1

4
δ4 +

1

4
δ5 +

1

8
δ9 +

1

16
δ10 +

1

16
δ11 +

1

8
δ12 +

1

16
δ13 +

1

16
δ14 (3.1)

Suppose the four alleles of person i and person j occur in detailed identity state S1, then

the four alleles picked at random falls in S1 with probability 1, which accounts for the first

term on the right of equation (3.1). The second term 1
4
δ2 arises because if the four alleles of

person i and person j occur in detailed identity state S2, both G1
j and G2

j must be so picked

from the lower left allele of S2 (each with a probability of 1
2
,with a total probability of 1

4
) to

achieve state S1 for the randomly selected alleles. The terms 1
4
δ3,

1
4
δ4,

1
4
δ5 are accounted for

similarly. The term 1
8
δ9 arises because if the four alleles of person i and person j occur in S9,

the four randomly sampled alleles must be drawn either from the left side of S9 or the right

side of S9. The term 1
8
δ12 is accounted for similarly, with the alleles on the two opposite

diagonal ends in S9 are IBD. The term 1
16

δ10 arises because the four randomly sampled alleles

can only be drawn from the left side of S10, where two alleles are IBD. The terms of 1
16

δ11,

1
16

δ13,
1
16

δ14 are accounted for similarly. Finally, there are no terms involving δ6, δ7, δ8, and
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δ15 because it is obvious that these states do not allow IBD between any allele of i and any

allele of person j.

Based on the same reasoning, all ψk’s in terms of the δi’s are derived as follows,

ψ1 = δ1 +
1

4
δ2 +

1

4
δ3 +

1

4
δ4 +

1

4
δ5 +

1

8
δ9 +

1

16
δ10 +

1

16
δ11 +

1

8
δ12 +

1

16
δ13 +

1

16
δ14

ψ2 =
1

4
δ2 +

1

4
δ3 +

1

8
δ9 +

1

16
δ10 +

1

16
δ11 +

1

8
δ12 +

1

16
δ13 +

1

16
δ14

ψ3 =
1

4
δ2 +

1

4
δ3 +

1

8
δ9 +

1

16
δ10 +

1

16
δ11 +

1

8
δ12 +

1

16
δ13 +

1

16
δ14

ψ4 =
1

4
δ4 +

1

4
δ5 +

1

8
δ9 +

1

16
δ10 +

1

16
δ11 +

1

8
δ12 +

1

16
δ13 +

1

16
δ14

ψ5 =
1

4
δ4 +

1

4
δ5 +

1

8
δ9 +

1

16
δ10 +

1

16
δ11 +

1

8
δ12 +

1

16
δ13 +

1

16
δ14

ψ6 = δ6 +
1

4
δ2 +

1

4
δ3 +

1

4
δ4 +

1

4
δ5 +

1

2
δ7 +

1

2
δ8 +

1

8
δ9 +

3

16
δ10 +

3

16
δ11 +

1

8
δ12 +

+
3

16
δ13 +

3

16
δ14 +

1

4
δ15

ψ7 =
1

2
δ7 +

1

8
δ10 +

1

8
δ11 +

1

8
δ13 +

1

8
δ14 +

1

4
δ15

ψ8 =
1

2
δ8 +

1

8
δ10 +

1

8
δ11 +

1

8
δ13 +

1

8
δ14 +

1

4
δ15

ψ9 =
1

8
δ9 +

1

8
δ12

ψ10 =
1

16
δ10 +

1

16
δ11 +

1

16
δ13 +

1

16
δ14

ψ11 =
1

16
δ10 +

1

16
δ11 +

1

16
δ13 +

1

16
δ14

ψ12 =
1

8
δ9 +

1

8
δ12

ψ13 =
1

16
δ10 +

1

16
δ11 +

1

16
δ13 +

1

16
δ14

ψ14 =
1

16
δ10 +

1

16
δ11 +

1

16
δ13 +

1

16
δ14

ψ15 =
1

4
δ15 (3.2)

From the equation (3.2), one can compute all the detailed identity state coefficients

δi’s by computing the coefficients ψi’s, which can be derived by computing 15 parental

generalized kinship coefficients . In the next section, we will develop the algorithm for

calculating those parental generalized kinship coefficients .
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3.2.2 Recursive computation of parental generalized kinship coefficients

A straightforward recursive algorithm for computing the generalized kinship coefficients was

described in chapter 5 of the book by Lange (2002) [19]. Weeks et al. (1995) [52], by mod-

ifying the two components of the recursive algorithm: boundary conditions and recurrence

rules, derived the X-linked recursive algorithm for computing the generalized kinship coef-

ficients between two individuals by tracking alleles picked at random from X chromosomes.

Here we use some of the definitions in [19] and [52] and define a similar algorithm for com-

puting parental generalized kinship coefficients .

Without loss of generality, throughout the following description, we assume the mem-

bers of a pedigree are numbered in an ascending order so that parents always precede their

offspring. We define new boundary conditions and recurrence rules in terms of probability of

‘labeled IBD configurations’ where every allele has an ‘m’ (maternal) or ‘p’ (paternal) label

on it. Note that there is no random sampling with replacement from each individual that is

implicit in the definition of the traditional kinship coefficients [19],[52].

3.2.2.1 Boundary conditions Boundary conditions are usually used in the static phase

of the recursive algorithm to evaluate the boundary kinship coefficients involving only ran-

domly picked alleles from founders [19]. However, here our new boundary conditions are used

to evaluate the probabilities of ‘certain labeled IBD configurations’ involving only labeled

alleles from founders. Note that the boundary condition 1 we define below actually applies

to any person including nonfounders.

Boundary condition 1: if the same (maternal or paternal) allele of a founder (i, or j )

occurs in two or more blocks, then the probability of this type of labeled IBD configurations

is equal to 0, e.g., P [(Gm
i ), (Gp

i ),(G
m
i )] = 0. The condition holds because a founder only has

two alleles at a certain autosomal locus.

Boundary condition 2: if there are two founders in the same block, then the probability

of this type of labeled IBD configurations is also equal to 0, e.g., P [(Gi, Gj),· · · ,] = 0. The

condition holds because founders are by definition unrelated and therefore their alleles are

not IBD.
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Boundary condition 3: maternal alleles and paternal alleles of a founder can not occur in

the same block, e.g., P [(Gm
i , Gp

i ),· · · ,] = 0. The condition holds because we assume founders

are noninbred, so maternal and paternal alleles of a founder are not IBD.

Boundary condition 4: if each block contains only founders and none of the above three

boundary conditions holds, then the probability of this type of IBD configurations is equal

to 1, e.g., P [certain labeled IBD configurations ]= 1.

3.2.2.2 Recurrence Rules Recurrence rules are by definition used in the recursive

phase of the recursive algorithm, in which an appropriately selected individual (nonfounder)

i in the current ‘label IBD configuration’ is replaced by his/her parent(s) (j is the mother,

k is the father), generating new IBD configurations. This replacement process travels up a

pedigree and a selected allele of i is substituted by a maternal and a paternal allele from j

or k depending on the origin of the allele to be replaced [19],[52]. The process stops when it

hits the boundary conditions defined above.

Recurrence rule 1: suppose s (s ≥ 1) same alleles G1
i , G2

i , · · · , Gs
i of a nonfounder i

occur in only one block, we have


P [(Gm

i , · · · , Gm
i︸ ︷︷ ︸

s

, · · · ), · · · , ()] = 1
2{P [(Gm

j , · · · ), · · · , ()] + Φ[(Gp
j , · · · ), · · · , ()]} 〈1〉

P [(Gp
i , · · · , Gp

i︸ ︷︷ ︸
s

, · · · ), · · · , ()] = 1
2{P [(Gm

k , · · · ), · · · , ()] + Φ[(Gp
k, · · · ), · · · , ()]} 〈2〉

〈1〉: i ’s maternal allele (m) appears in the IBD configuration s times, Gm
j is i ’s mother j ’s

maternal allele, and Gp
j is j ’s paternal allele;

〈2〉: i ’s paternal allele (p) appears in the IBD configuration s times, Gm
k is i ’s father k ’s

maternal allele, and Gp
k is k ’s paternal allele.

Recurrence rule 2: suppose that s (s > 1) alleles G1
i , G2

i , · · · , Gs
i of a nonfounder i occur

in only one block, if among those s alleles, there are n (n ≥ 1) maternal alleles and t (t ≥ 1)

paternal alleles, then we have

P [(

s︷ ︸︸ ︷
Gm

i , · · · , Gm
i︸ ︷︷ ︸

n

, Gp
i , · · · , Gp

i︸ ︷︷ ︸
t

, · · · ), · · · , ()] =
1

4

∑
l∈(m,p)

∑
r∈(m,p)

P [(Gl
j, G

r
k, · · · ), · · · , ()]
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Recurrence rule 3: suppose that a nonfounder i occurs in two blocks, with n (n ≥ 1)

maternal alleles in one block and t (t ≥ 1) paternal copies in the other block, then we have

P [(Gm
i , · · · , Gm

i︸ ︷︷ ︸
n

, · · · ), (Gp
i , · · · , Gp

i︸ ︷︷ ︸
t

, · · · ), · · · , ()] =
1

4

∑
l∈(m,p)

∑
r∈(m,p)

P [(Gl
j, · · · ), (Gr

k, · · · ), · · · , ()]

This rule holds because the paternal allele (p) and maternal allele (m) of i can not be present

in the same block under the condition that some of them are in the other block at the same

time.

Recurrence rule 4: this might not be called a recurrence rule. When either n or t (not

both) is equal to zero, recurrence rule 2 and 3 both reduce to rule 1.

3.3 SAMPLE APPLICATION

As an example of implementing above rules, we now begin to compute the 15th parental

generalized kinship coefficient ψ15, Φ[(G1
5), (G

2
5), (G

1
6), (G

2
6)] for inbred sibling 5 and 6

in Figure 3.1 as follows.

As we mentioned before, ψ15 is a combination of 16 states with probabilities from

P [(Gm
5 ), (Gm

5 ), (Gm
6 ), (Gm

6 )], P [(Gm
5 ), (Gp

5), (G
m
6 ), (Gm

6 )], · · · , to P [(Gp
5), (G

p
5), (G

p
6), (G

p
6)].

Because of boundary condition 1, 12 of 16 states for ψ15 have a probability zero because two

or more same alleles occurring in different blocks (e.g. P [(Gm
5 ), (Gp

5), (G
m
6 ), (Gm

6 )]). The only

state that has its probability coefficient (1
4
) great than zero is P [(Gm

5 ), (Gp
5), (G

m
6 ), (Gp

6)]. So

the problem of computing ψ15, Φ[(G1
5), (G

2
5), (G

1
6), (G

2
6)], ends up with calculating

P [(Gm
5 ), (Gp

5), (G
m
6 ), (Gp

6)], which we show as follows,

(a) By recurrence rule 3,

P [(Gm
5 ), (Gp

5), (G
m
6 ), (Gp

6)] =
1

4
{P [(Gm

4 ), (Gm
3 ), (Gm

5 ), (Gp
5)] + P [(Gm

4 ), (Gp
3), (G

m
5 ), (Gp

5)]

+P [(Gp
4), (G

m
3 ), (Gm

5 ), (Gp
5)] + P [(Gp

4), (G
p
3), (G

m
5 ), (Gp

5)]}

(3.3)
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(b) Again by recurrence rule 3,

P [(Gm
4 ), (Gm

3 ), (Gm
5 ), (Gp

5)] =
1

4
{P [(Gm

4 ), (Gm
3 ), (Gm

4 ), (Gm
3 )] + P [(Gm

4 ), (Gm
3 ), (Gm

4 ), (Gp
3)]

+P [(Gm
4 ), (Gm

3 ), (Gp
4), (G

m
3 )] + P [(Gm

4 ), (Gm
3 ), (Gp

4), (G
p
3)]}

(3.4)

(c) The first three terms of right side of the equation (3.4), P [(Gm
4 ), (Gm

3 ), (Gm
4 ), (Gm

3 )],

P [(Gm
4 ), (Gm

3 ), (Gm
4 ), (Gp

3)], and P [(Gm
4 ), (Gm

3 ), (Gp
4), (Gm

3 )] are equal to 0. The reason is

that for those three IBD configurations next recursive step would proceed by replacing alleles

in them by maternal and paternal alleles from either founder 1 or founder 2, which results

in founder 1 or founder 2 being involved in three or more blocks. By boundary condition 1,

those probabilities are equal to 0. Then the equation (3.4) reduces to

P [(Gm
4 ), (Gm

3 ), (Gm
5 ), (Gp

5)] =
1

4
P [(Gm

4 ), (Gm
3 ), (Gp

4), (G
p
3)]

=
1

4
× 1

4
{P [(Gm

4 ), (Gm
2 ), (Gp

4), (G
m
1 )] + P [(Gm

4 ), (Gm
2 ), (Gp

4), (G
p
1)]

+P [(Gm
4 ), (Gp

2), (G
p
4), (G

m
1 )] + P [(Gm

4 ), (Gp
2), (G

p
4), (G

p
1)]} (3.5)

(d) By recurrence rule 3, and then boundary condition 1 and 3,

P [(Gm
4 ), (Gm

2 ), (Gp
4), (G

m
1 )] = 1

4
P [(Gp

2), (G
m
2 ), (Gp

1), (G
m
1 )] = 1

4
× 1 = 1

4

P [(Gm
4 ), (Gm

2 ), (Gp
4), (G

p
1)] = 1

4
P [(Gp

2), (G
m
2 ), (Gm

1 ), (Gp
1)] = 1

4
× 1 = 1

4

P [(Gm
4 ), (Gp

2), (G
p
4), (G

m
1 )] = 1

4
P [(Gm

2 ), (Gp
2), (G

p
1), (G

m
1 )] = 1

4
× 1 = 1

4

P [(Gm
4 ), (Gp

2), (G
p
4), (G

p
1)] = 1

4
P [(Gm

2 ), (Gp
2), (G

m
1 ), (Gp

1)] = 1
4
× 1 = 1

4

So the equation (3.5) reduces to

P [(Gm
4 ), (Gm

3 ), (Gm
5 ), (Gp

5)] =
1

4
× 1

4
× (4× 1

4
) =

1

16

(e) Repeat similar procedures within (c) to (d), we can derive that

P [(Gm
4 ), (Gp

3), (G
m
5 ), (Gp

5)] = P [(Gp
4), (G

m
3 ), (Gm

5 ), (Gp
5)]

= P [(Gp
4), (G

p
3), (G

m
5 ), (Gp

5)]

= P [(Gm
4 ), (Gm

3 ), (Gm
5 ), (Gp

5)]

=
1

16
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So the equation (3.4) reduces to,

P [(Gm
5 ), (Gp

5), (G
m
6 ), (Gp

6)] =
1

4
× 1

16
× 4 =

1

16

That is, ψ15 = 1
16
× 1

4
= 1

64
. From the equation (3.2), the detailed identity state coefficient

δ15 is

δ15 = 4×ψ15 = 4× 1

64
=

1

16

3.4 DISCUSSION

In this chapter, we generalized the methods described in Karigl (1981) [50], Karigl (1982) [51],

and chapter 5 of the Lange’s book [19] and introduced a new algorithm for computation of the

detailed identity state coefficients, which opens up the possibility of calculating covariances

between even inbred relatives. To illustrate the algorithm, we applied it to calculate the

coefficient for one detailed identity state for one inbred sibling pair. However, further work

is still needed to test the algorithm.
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Figure 3.1: A Brother-Sister Mating (after Lange (page 72, [19])).
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Figure 3.2: The nine condensed identity states (after Lange (page 74, [19])).
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4.0 GENOME-WIDE SCAN FOR ADIPOSITY-RELATED PHENOTYPES

IN ADULTS FROM SAMOAN ARCHIPELAGO

This chapter reports linkage results from a NIH funded project “Genome-Scan for Obesity

Susceptibility Loci in Samoans” (R01-DK59642, PI: Dr. Stephen T. McGarvey from Brown

University). Two manuscripts out of this chapter are being submitted for peer review [53],

[54] with the one summarizing American Samoan results is accepted by Int J Obes [54]. Under

the supervision of Dr. Daniel E. Weeks, I carried out the primary statistical analyses of the

data and wrote much of the manuscripts. Dr. Stephen T. McGarvey is the corresponding

author of the manuscripts. For issues related to the copyright of the manuscripts, please

contact either Dr. Stephen T. McGarvey or Dr. Daniel E. Weeks for more information.

4.1 INTRODUCTION

Overweight and obesity have reached epidemic proportions on a global scale and are asso-

ciated with economic modernization and the concomitant changes in physical activity and

diet [55],[56],[57]. Obesity, body mass index (BMI) ≥ 30 kg/m2, in the U.S. has become a

major public health problem, affecting ∼33% of adults in 2002. The prevalence of obesity

is much higher in U.S. minority ethnic groups, including Pacific islanders, and in those with

low education [58]. Estimates based on National Health and Nutrition Examination Survey

(NHANES) data show a marked increase in age-adjusted prevalence of obesity in US adults

over years, from 13.4% in 1960-1962 to 30.5% in 1999-2000 [55],[58]. All these data also

show significant disparities among racial groups with higher prevalence of both obesity and

overweight among the minorities.
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Compared to the US and most other populations, levels of overweight and obesity are

remarkably high in Samoan adults and children residing in American Samoa and the in-

dependent nation of Samoa, and are strongly associated with measures of modernization

[59], [60],[61],[62],[63]. In 2002 in American Samoa 89% and 92% of adult men and women,

respectively, had BMI > 26 kg/m2 and in 2003 in Samoa 68% and 84% of adult men and

women, respectively, had BMI >26 kg/m2 [63]. (Body composition studies of Polynesians

indicate that the criteria of BMI > 26 kg/m2 be used for overweight and BMI > 32 kg/m2

for obesity [64]).

Obesity is a complex phenotype resulting from interactions of multiple factors including

genetic, environmental, cultural, nutritional, and life-style factors. Therefore, identification

of underlying susceptibility genes and genetic variants associated with obesity has been dif-

ficult. Nonetheless, numerous studies using candidate gene approach and linkage analysis

have identified genes and/or chromosomal regions that might harbor susceptibility genes,

some of which have been replicated across studies and populations [57],[65]. With a reduced

level of genetic variation, populations of recent ancestry that have remained isolated since

their founding are likely to provide added advantage in understanding the genetic basis of

complex phenotypes [66]. Samoans, with an evolutionary history of approximately 3000

years, relative isolation, large family sizes and their recent exposure to rapid modernization

and the nutrition transition, offer an important opportunity for undertaking genetic studies

in obesity related traits [59], [63], [67], [68], [69].

Due to its unique history of ancestry, allele frequencies at many loci in the Samoan

population are significantly different from those in other population [70], therefore poten-

tial susceptibility loci to several obesity phenotypes are likely to be different than those in

other populations. The primary purpose of our project was to identify the location of poten-

tial obesity susceptibility loci in two Samoan populations (American Samoa and (Western)

Samoa). This research is of particular value in light of understanding the full picture of

genetics of human obesity, that is, if the linkage results for obesity susceptibility loci are

similar for both isolated groups (like Samoan population here) and cosmopolitan outbred

human groups, then it offers hope for broad applicability of proteomic and drug discovery

for future interventions of obesity; On the contrary, if there are considerable differences in
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genetic influences of obesity across different populations, these differences must be taken into

account in practice [69],[71].

We used maximum likelihood-based multipoint variance components linkage analyses to

locate genes influencing complex adiposity-related phenotypes, which consists of BMI, ab-

dominal circumference (ABDCIR), percent body fat (%BFAT, as measured by bioelectrical

impedance), and fasting serum leptin and adiponectin. We also tested for linkage to some

adjusted phenotypes, leptin and ABDCIR adjusted for BMI and %BFAT. Due to the com-

plex role of genetic factors in common obesity, it is possible that these phenotypes might be

under the influence of trait-specific genes, or shared single major genes (pleiotropic effects).

In this study we resorted to the bivariate multipoint linkage analysis method to simultane-

ously examine linkage between genetic markers and two quantitative traits, a way to test for

the pleiotropic effects of a single major gene. To investigate the sensitivity of linkage results

to different pedigree structures, we also performed linkage analyses using nuclear pedigrees

from breaking up the connections of higher generations in our original pedigree structures.

4.2 SUBJECTS AND METHODS

4.2.1 Study Population

As mentioned above, our study populations derive from both the U.S. territory of American

Samoa and the less modernized independent country of (Western) Samoa, which is located

just 100 km from American Samoa. In 2000, the population of American Samoa was 57,291,

of which 88.2% are ethnic Samoans [62], [72] (57,794 by July 2006, estimated from CIA

World Factbook). In 2001, the population of Samoa was 177,714, of which 92.6% are eth-

nic Samoans [73] (176,908 by July 2006, estimated from CIA World Factbook). American

Samoa has higher levels of education, a higher proportion of adults in wage and salary occu-

pations and higher economic and material lifestyle indicators than Samoa [59],[60],[62],[68].

For example, in 2000 52% of American Samoan adults were employed in the paid labor force,
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while only 6.7% of adults participated primarily in subsistence activities. On the contrary,

by 2001 only 36% of Samoan men and 26% of women were in wage or salary jobs [73].

All participants took part in the Samoan Family Study of Overweight and Diabetes in

2002-03. Recruitment in American Samoa in 2002 was based on random selection of probands

seen in the 1990-94 cohort study in American Samoa [68],[71] and the presence of at least

two adult siblings alive and residing in American Samoa. Participants in the 1990-94 cohort

(which was originally designed as a longitudinal study of blood pressure change over time)

had to (1) not have a medical diagnosis of hypertension or type 2 diabetes (based on doctor’s

report or current use of medications for either), and (2) self-report that all four grandparents

were Samoan. In American Samoa we collected data from 1,311 individuals, including 755

adults, age ≥ 18 years, and 556 children in 212 households.

Recruitment in Samoa was from Feb-Sept 2003 and was first based on finding individuals

in Samoa who were members of American Samoan pedigrees who had been recruited in 2002.

We then selected villages throughout the nation to assess geographic and economic diversity,

and chose families based on available number of adult siblings. In Samoa, we studied 1,465

individuals, 957 adults and 508 children from 96 households. This included 395 individuals

who were members of 15 different families seen in American Samoan sample recruited in

2002.

Probands and families were unselected for obesity or related phenotypes. We did not

recruit individuals who indicated at enrollment they wanted to participate because they had

obese, diabetic or hypertensive members. Standard methods were used in the communi-

ties for collection of pedigree information [74]. Protocols for this study were approved by

the Brown University Institutional Review Board, American Samoan Institutional Review

Board, and the Government of Samoa, Ministry of Health, Health Research Committee.

Written informed consent was obtained from all participants.

4.2.2 Pedigree information

After cleaning the pedigree structures constructed from our field work, there are 34 original

pedigrees with a total of 1,968 individuals. Table 4.1 and Table 4.2 show for each original
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pedigree the number of adults with phenotypic and genotypic data. The average family size

is 57.88 with a range from 3 to 719 individuals (median 10) and an average of 3.71 generations

(range 2 to 8). Some of our original pedigree structures are a bit larger than might be truly

needed to connect only the American Samoans or Samoans, as some pedigree structures were

constructed so as to connect members from both American Samoa and (Western) Samoa.

Many of the upper generation connections are made through ungenotyped individuals, so

relationship testing cannot be used to directly verify these untyped connections.

4.2.2.1 American Samoan pedigrees Intermediate American Samoan only pedigree

structures were constructed using the PEDSYS database system (PEDSYS, Southwest Foun-

dation for Biomedical Research): we first kept only phenotyped adults from American Samoa

using the SUBSET command and then ran the INDEX command to construct pedigree

structures (PEDTRIM command can do the same job). This procedure generated larger

pedigree structures than the component nuclear pedigrees. In brief, 34 intermediate pedi-

grees (Table 4.1) were derived (190 nuclear pedigrees were also derived from breaking these

intermediate pedigrees). The average intermediate family size is 45.94 with a range from

3 to 604 individuals (median 10) and an average of 3.57 generations (range 2 to 8). The

average nuclear family size is 4.23 with a range from 3 to 8. In 34 intermediate pedigrees,

there were ≥ 1, 483 relative pairs (trait leptin) that are useful and informative for linkage

analysis, including ≥ 237 phenotyped sib pairs, ≥ 368 cousin pairs, and ≥ 302 avuncular

pairs (Table 4.3).

4.2.2.2 Samoan pedigrees 46 intermediate Samoan pedigrees (Table 4.2) and 196 nu-

clear Samoan families were derived from breaking up our original pedigrees (using PEDSYS).

The average intermediate family size is 35.09 with a range from 3 to 222 individuals and an

average of 4.28 generations (range 2 to 8). In these 46 intermediate pedigrees, there were

≥ 1, 633 relative pairs (trait %BFAT) that are useful and informative for linkage analysis,

including ≥ 251 phenotyped sib pairs, ≥ 503 cousin pairs, and ≥ 439 avuncular pairs (Ta-

ble 4.4). The average nuclear family size is 4.61 with a range from 3 to 14.

47



In order to investigate the sensitivity of linkage results to different pedigree structures, we

performed genome scans in both American Samoan and Samoan sample, using both larger

intermediate pedigrees as well as smaller nuclear pedigrees. However, unless stated otherwise

about the pedigree structures used in linkage analyses, the autosomal linkage results we

discussed later in this chapter are derived using the samples of intermediate pedigrees, with

comparisons to those linkage results derived using nuclear pedigrees.

4.2.3 Genotyping

Buffy coats were prepared from 10 ml of EDTA blood samples in the field, kept at -40oC

in American Samoa and then shipped on dry ice to the laboratory at Cincinnati. Genomic

DNA was isolated using the Puregene Kit (Gentra Systems Inc., Minneapolis, MN) and

quantitated, diluted to 20 ng/ml and arrayed in 96 well microtitre plates. The ABI PRISM

Linkage Mapping Set MD10 (Applied Biosystem Inc., Forrest City, CA) consisting of 10

cM panels of microsatellite markers was used. We adopted a multiplex PCR (three to five

markers) scheme developed in our laboratory. PCR was performed in 96-well plates and in

each plate a sample of known genotype (CEPH DNA 1347-02) was used in two wells as a

positive control and distilled water in one well as a negative control. PCR products from four

96-well plates were then assembled in one 384-well plate for analysis in the DNA sequencer.

Thus, there were eight wells in the 384-well plate containing the CEPH sample with known

genotype. In addition to serving as a positive control, this protocol ensured consistency of

genotype data. Further, we used a Biomek FX liquid handling station to eliminate errors

associated with manual handling of samples. Amplified products were separated on two au-

tomated DNA sequencers (Applied Biosystems)-3100 Genetic Analyzer that uses the POP4

polymer and internal size standard ROX400, and 3130XL Genetic Analyzer that uses POP7

polymer and internal size standard 500LIZTM. Raw genotype data generated in the two

machines was transferred to a separate analysis computer for assigning individual genotypes

using GeneMapper V4.0 software, which were manually checked by two persons ensuring

correct calling of genotypes.
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4.2.4 Phenotypes

Standard anthropometric techniques and measurements were used to measure stature,weight,

skinfold thickness, and circumferences, and to calculate BMI [75]. Abdominal circumference

was used as the primary measure of central fat distribution. Bioelectrical impedance mea-

sures of resistance were obtained with the RJL Systems, Inc. BIA-101Q device (Clinton,

MI 48035), using standard procedures. These measures were then used to calculate fat-free

mass and body fat percentage using equations established from body composition studies in

Samoans [62],[64]. Fasting blood specimens were drawn after a 10-hour minimum overnight

fast into Vacutainers, separated with a portable field centrifuge and stored in plastic stor-

age tubes at 40 oC in local freezers. Serum was shipped on dry ice to Providence and the

following assays were completed: serum leptin by radioimmunoassay (RIA) using a kit from

ALPCO (Windham NH); serum insulin using standard RIA kits from Diagnostic Products,

Inc; serum glucose using an automatic analyzer, Beckman CX4; serum adiponectin using

RIA kits from Linco, Inc. (St. Charles, MI).

Interviews were used to collect information on years of education, occupation and physi-

cal activity from farm work. Farm work activity was coded as a dichotomous variable based

on self-reported physical work at the farms (and in a few cases fishing) regularly each week or

if subsistence work was the primary occupation [62]. Cigarette smoking data were collected

by interview and coded as a dichotomous variable based on current smoking status.

These phenotypes were checked for data entry mistakes and for outliers. A power trans-

formation was applied to the phenotypes that were not normally distributed [76],[77]. The

power coefficients are phenotype-specific, but transformation for each phenotype was same

in both American Samoan sample and Samoan sample.

4.2.5 Statistical Analyses: Error Checking and Data handling

Our analyses involved several steps, with a strong emphasis on validation of our data for

consistency and integrity. Our genotyping data were subjected to several quality checks

in order to help ensure accurate genotyping. First, we compared the heterozygosity rates

observed with the rates expected on the basis of the estimated allele frequencies to assay
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the quality of our genotyping panel data. We also performed checks for ’reasonable’ allele

sizes, numbers of alleles, and frequencies. Then, we used the relationship-inference program

RELPAIR v2.0.1 [78],[79],[80] to check the accuracy of our self-reported pedigree relation-

ships (after checking for internal consistency of ages). The relationship checking results were

used to double-check our field-collected pedigrees, as well as to conservatively adjust the

pedigree structure for maximal reduction of pedigree structure errors. Misclassification of

half siblings as full siblings, unrelated persons as parent-offspring, and cousins as full siblings

were identified and resolved. A total of 93 relationships were changed, with 13 individuals

added as connecting parents. There was one coding error that was inconsistent with the field

notes.

Another relation-estimation program PREST [81],[82] was also used concurrently to as-

sess consistency of allele-sharing pattern with the specified relationship. No families were

removed as a result of relationship inconsistency. Unresolved relationship errors led to the

removal of the questionable subjects from the study. We also excluded from analysis two

individuals who were each part of a monozygotic twin pair.

We used PEDCHECK [83] to check genotypes at each locus for Mendelian inconsisten-

cies; for the analyses on the nuclear families this information was used to zero out families

containing Mendelian inconsistencies at a specific marker. For the larger pedigree structures,

LOKI [84] was used to remove a minimal set of genotypes so as to generate an internally

consistent set of genotypes for all family members.

The PEDSYS database system (PEDSYS, Southwest Foundation for Biomedical Re-

search) was used to prepare the pedigree structure file. Mega2 [85] and the statistical soft-

ware R (The R Project for Statistical Computing) were used interactively to set up the other

files for the analyses performed in this study.

4.2.6 Allele Frequency Estimation

Our planned analyses are sensitive to allele frequency estimates, and we have previously

shown that Samoans have allele frequencies at microsatellite loci that differ from European-

derived populations [67] on whom most allele frequency estimates in current databases are
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based. Therefore, we estimated marker allele frequencies from our pedigree data, while tak-

ing the pedigree structure into account using LOKI [84] and simultaneously estimating the

identity-by-descent (IBD) sharing matrices. Using LOKI in this manner has the advantage

of properly modeling the variability in the estimates of the allele frequencies [86],[87]. For

verification, we compared LOKI-derived estimates to those derived by the new BLUE algo-

rithm of McPeek et al. (2004) [88]; this algorithm is particularly useful for large complex

pedigrees like some of ours for which MLE calculation is computationally impractical. Tests

of fit to Hardy-Weinberg expectations, including tests for excess homozygosity, were used to

confirm the quality of the data.

4.2.7 Genetic Map

Our Kosambi genetic map was taken from the Rutgers Combined Linkage-Physical Map of

The Human Genome [89]. Linear interpolation was used to predict the genetic position of

polymorphic markers that were not present in the Rutgers map. However, please note that

in the figures the genomic locations of all genetic markers were based on a Haldane map scale.

4.2.8 Multipoint Linkage Analysis

4.2.8.1 Autosomal Univariate Multipoint Linkage Analysis A multipoint vari-

ance components (VC) approach was used to test for linkage between marker loci and the

adiposity-related phenotypes. In this approach, the phenotypic and genetic information from

all the pedigree members is considered simultaneously, and the expected genetic covariances

between relatives are specified as a function of the observed IBD at a given genetic position

as estimated from the marker data [5].The multipoint IBD matrices were estimated by LOKI

and were imported into SOLAR [6], in which the VC models were fit by simultaneously es-

timating the trait mean µ (as a function of the covariates), three variance components σ2
q

(additive genetic variance due to the major locus), σ2
g (variance due to residual additive

genetic effects), and σ2
e (variance caused by random environmental effects) using maximum-
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likelihood techniques. This approach allows for locus-specific effects, residual effects, covari-

ates, epistasis, multivariate phenotypes, and random environmental effects.

For a given phenotype, a likelihood-ratio test for linkage was carried out by testing

whether the additive genetic variance due to the QTL σ2
q was significantly different from 0

by comparing the likelihood of the general model, in whichσ2
q is estimated, with that of the

restricted model, in which σ2
q is constrained to 0. Twice the difference of the ln likelihoods

of these two models yields a test statistic that is asymptotically distributed as a 1/2:1/2

mixture of a χ2
1 and a point mass at zero [21]. The classical LOD scores are obtained by

converting the statistic into values of log to the base 10. LOKI uses a stochastic approxima-

tion algorithm, which can result in minor variation in the LODs from run to run. Thus the

reported LODs are the average of maximum LODs obtained from ten runs; ranges of those

scores are also reported.

Violations of multivariate normality assumptions variance component approach can lead

to non-robust results, e.g., excessive Type I errors when the distribution of the trait is

markedly leptokurtic [90]. To account for possible deviations of trait distributions from mul-

tivariate normality, we transformed our phenotypes to approximate normality prior to linkage

analyses (See Phenotypes section). We also routinely used the multivariate t-distribution in

SOLAR to guard against possible non-normality for each phenotype after transformation,

which is more robust than using SOLAR’s default multivariate normal distribution [6]. A

LOD score ≥ 3.3 was taken as evidence of significant linkage, which is equivalent to a P

value of .0001 or less. A LOD score ≥ 1.175 and LOD score ≥ 1.9 were considered to show

potential linkage and evidence of suggestive linkage, respectively [91].

Three sets of multipoint linkage analyses were performed; these analyses differed in terms

of which covariates were included in the mean model. In the first set of linkage analyses,

only the age and sex effects were screened for statistical significance while modeling familial

relationships using SOLAR, and only covariates with significant effects at the P -value ≤ 0.10

level were retained for the subsequent analyses. In the second set of linkage analyses, the

individual environmental exposures farm work, smoking, and years of education, in addition

to age and sex effects, were screened for inclusion in the statistical model. Since the power of

the variance component linkage analysis approach is proportional to heritability, one might
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increase power by reducing the environmental variance of the phenotype by adjusting for

covariates [92]. Comparison of these two sets of analyses may help reveal genes that control

the residual variation after the effects of behavioral or environmental covariates have been

removed. The kurtosis of residuals of above phenotypes after adjusting for significant co-

variates was within normal range (< 0.8). Finally, in the third set of analyses, in order to

search for genes influencing the propensity to deposit fat in the abdominal region, we ana-

lyzed ABDCIR after removing the effects of BMI or %BFAT, in addition to other covariates;

we also tested for linkage to BMI (%BFAT)-adjusted leptin concentrations. The kurtosis

of residuals of adjusted ABDCIR and leptin levels after adjusting for significant covariates

were above normal range (> 1.5). These residuals were standardized.

4.2.8.2 Autosomal Bivariate Multipoint Linkage Analysis For linkage analyses

performed with related traits, it is important to differentiate between pleiotropic effects and

co-incident linkage when two or more traits show linkage to the same region, which can

be done using bivariate linkage analysis approach [22]. In this approach, the trait-specific

estimates of the mean, variance-components σ2
q (major gene effects), σ2

g (residual additive ge-

netic effects), and σ2
e (random environmental effects) as well as three associated correlations

ρq (correlation caused by a major gene), ρg (correlation caused by residual additive genetic

effects), ρe (correlation caused by random environmental effects) are estimated simultane-

ously using maximum likelihood techniques. The hypothesis of no linkage for either trait

(i.e., σ2
q1

= σ2
q2

= 0 ) was tested using likelihood-ratio tests, in which the log-likelihood of

the restricted model was compared with that of the model in which trait-specific σ2
q was es-

timated. The likelihood ratio statistic is asymptotically distributed as a 1/4χ2
2:1/2χ2

1:1/4χ2
0

mixture distribution [22],[21]. For ease of interpretation, the bivariate LOD score can be

adjusted to a univariate-equivalent LOD score, LODeq, which has an equal asymptotic P -

value as the bivariate LOD.

In bivariate linkage analysis, likelihood-ratio tests for pleiotropy or coincident linkage

were made at the chromosomal location where the highest linkage peaks reside. To test

pleiotropy (i.e., the same major gene affects the two phenotypes) or coincident linkage (i.e.,

a set of clustered genes, each influencing a particular trait), the likelihood for the model
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in which ρq was estimated was compared with the likelihood of the model in which ρq was

constrained to 0 (coincident linkage) or ρq constrained to 1 or -1 (complete pleiotropy). For

the test of complete pleiotropy, because ρq being constrained to 1 or -1 involves a boundary

condition, twice the differences in likelihoods is distributed as a 1/2:1/2 mixture of a χ2
1

and a point mass at zero [21]. When testing for coincident linkage, twice the difference in

likelihoods is distributed as a χ2 distribution with one degracccee of freedom. A chi-square

P -value of 0.05 was suggested as a sufficiently conservative cut-off for the rejection of either

pleiotropy or coincident linkage [22], however, one must remain aware that linkage disequi-

librium within a region can reduce the power to reject pleiotropy [22], and that power of

bivariate analyses to detect linkage is highest when the trait locus and the environment in-

duce phenotypic covariation in opposite directions [97],[98].

At this time, covariate screening in bivariate models is not supported in SOLAR and

researchers are expected to do covariate screening in univariate models first by including

them in trait-specific analysis. This has been shown to improve both the power to detect

susceptibility loci and precisely localize mapping of correlated traits to the same chromoso-

mal region [22],[23]. For our bivariate analyses, the individual environmental exposures farm

work, smoking, and years of education, in addition to age and sex effects, were screened for

inclusion. Almasy et al. (1997) [22] also recommended that strong pleiotropy must be scru-

tinized for confounding linkage disequilibrium in the region, which should not be a problem

for our 10 cM genome scan.

4.2.8.3 X-linked Multipoint Linkage Analysis The current version of SOLAR does

not carry out correct X-linked variance components analysis, as it does not yet support fit-

ting of the proper variance component models [93],[94]. Recently, Lange and Sobel (2006)

[95] discussed a new model for mapping X-linked quantitative trait loci (QTLs), which is

incorporated in latest version of the genetic analysis program Mendel [96], with which we

performed X-linked QTL analysis. A plethora of model options in Mendel allowed us to try

different genetic models in our X-linked analysis, in which different combinations of covari-

ate sets, X-linked QTL, autosomal additive polygenic, X-linked additive polygenic, random

environmental variance components were modeled assuming our traits follow multivariate t
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distributions. However, since Mendel cannot handle our intermediate pedigrees, so we used

our nuclear families in these analyses.

4.3 RESULTS

4.3.1 Results from American Samoan sample

We genotyped 377 autosomal microsatellite markers with an intermarker average spacing of

9.79 (8.36-12.16) cM (Haldane map), and 18 microsatellite markers on the X chromosome,

in 580 American Samoan adults (247 males and 333 females).

Table 4.5 displays the phenotypic characteristics of the adult participants. The large

BMI, %BFAT and ABDCIR values indicate the high levels of overweight and obesity among

American Samoans and are characteristic of modern Polynesians. Our five ‘primary pheno-

types (BMI, %BFAT, ABDCIR, leptin, and adiponectin) are highly heritable with heritabil-

ity ranges from 0.41 to 0.62, adjusted for different sets of significant covariates (Table 4.6).

Four adjusted traits (BMI or %BFAT adjusted ABDCIR and leptin) also have medium her-

itability estimates in the range 0.31 to 0.45. These estimates indicate a major role of genes

in the control of adiposity in the American Samoan population.

Univariate linkage analyses were performed on all the phenotypes with adjustment for

the indicated covariates listed in Table 4.6. For BMI- or %BFAT-adjusted ABDCIR and

leptin, we standardized the their residuals (with high kurtosis above normal (> 0.8)) before

linkage analysis. The chromosomal regions with (average) maximum multipoint LOD scores

≥ 1.5 (based on 10 runs) are presented in Table 4.7. In addition, the ranges of the locations

(cM) of the maximum LOD scores are also displayed. These show that as the LOD score

gets higher, the maximum LOD score tends to occur in the same position from run to run,

even though it may vary slightly in magnitude.

Figure 4.1 shows the univariate multipoint results of one single SOLAR/LOKI run for

chromosomes 6, 13, and 16 where we observe maximum LOD scores greater than 2.30, or

observe clustering of linkage peaks in the same regions for multiple traits. The results of the
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multipoint genome scan for susceptibility loci of five ‘primary’ adiposity-related traits are

plotted in Figure 4.2 and Figure 4.3.

The highest multipoint LOD score was 3.83 for leptin, close to marker D6S262 located

in 6q23.2. The region harboring a putative QTL is broad, and the 1-LOD support interval

surrounding the peak extends from 137.0 to 155.2 cM (Figure 4.1). The second strongest

evidence for linkage was also for leptin with a LOD of 2.98 in 16q21 at location 91.0-91.9 cM

near marker D16S503. Suggestive linkage, LOD ≥ 1.9, was detected for 13 other trait/region

pairs including both %BFAT and leptin at D12S86 in 12q24.23. There were 7 other unique

trait/region pairs with 1.5 ≤LOD< 1.9, including both BMI and %BFAT at 14q12-q13.1.

Adjusting for environmental covariates (e.g., farm work, education, and cigarette smok-

ing) led to larger LOD scores for leptin at 6q23.2 and 16q21, for %BFAT at 16q12-q21,

for adiponectin at 13q33.1, and for %BFAT-adjusted ABDCIR at 1q31.1, 3q27.3-q28, and

12p12.3 (Table 4.7).

There is co-localization of linkage signals for phenotypes BMI, %BFAT, leptin, and AB-

DCIR to the same region involving markers D16S415-D16S515 (Table 4.7 & Figure 4.1). The

bivariate analyses indicate that there are significant genetic and environmental correlations

between pairs of four phenotypes (Table 4.8). Results of bivariate linkage analyses of the

selected phenotype pairs for chromosome 16 are reported in Table 4.9 and the equivalent-

univariate LODeq scores are plotted in Figure 4.4. The maximum bivariate LOD scores

with 2-df vary from 2.13 for BMI-ABDCIR pair to 2.98 for %BFAT-leptin. Likewise, the

LODeq scores range from 1.68 to 2.48. All linkage peaks in Table 5 overlap the region

16q21 at 90.9-91.9 cM, except for the ABDCIR-%BFAT pair (the second highest peak for

the ABDCIR-%BFAT pair was detected on 16q21 at 90.9 cM with a LODeq of 2.23). Since

the bivariate linkage analyses are computationally intensive, Table 4.9 and Figure 4.4 only

display results from one single run. However, similar variations of LODeq scores as seen in

univariate LOD scores (Table 4.7) would be expected should multiple analyses be performed.

As shown in Table 4.9, the ρqs, the correlations between pairs of adiposity phenotypes

due to major gene effects are quite high, ranging from 0.97 to 1.00. Coincident linkage

hypothesis was strongly rejected in favor of pleiotropy, and none of the tests for complete

pleiotropy rejected the hypothesis that the locus-specific genetic correlation (ρq) was equal
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to 1, indicating that variations in the given pair of phenotypes are mediated by common

genetic factors (e.g., a putative common QTL).

Results of our univariate VC linkage analyses using the 190 nuclear families are summa-

rized in Table 4.10. Maximum LOD scores ≥ 1.5 (one run) were observed for only 8 putative

QTLs, and a comparison of Table 4.10 to Table 4.7 shows that only two linkage peaks iden-

tified using the original pedigrees show suggestive linkage using the nuclear families (linkage

of %BFAT to 12q24.23-q24.23 with LOD 2.17, and linkage of ABDCIR to 2p11.2 with LOD

2.09).

We performed X-linked variance components analyses incorporating different genetic

models (Table 4.11) with no maximum LOD scores > 1.3 observed anywhere on the X

chromosome for the primary phenotypes BMI, %BFAT, leptin and ABDCIR, except for the

phenotype adiponectin. When an X-linked polygenic component was not modeled (models

1, 4 in Table 4.11), we detected elevated LOD scores to adiponectin across the entire X

chromosome (Figure 4.2 , Figure 4.3). Instead, after an X-linked polygenic component was

modeled (models 2,3,5,6, in Table 4.11), no linkage was detected for adiponectin with a mere

maximum LOD score of 0.70 (data not shown). Modeling X-linked polygenic and autosomal

polygenic backgrounds together or only an X-linked polygenic component in our X-linked

analysis only gave marginal changes in the LOD scores (model 2 vs. model 3; model 5 vs.

model 6, Table 4.11). Likewise, adjusting for environmental covariates or not gave marginal

changes in the maximum LOD scores across the X chromosome (data not shown).

4.3.2 Results from Samoan sample

In total 378 autosomal microsatellite markers with an average intermarker spacing of 9.51

(8.06 -12.54) cM (Haldane), and 14 microsatellite markers on the X chromosome with an

average intermarker spacing of 12.25 cM, were typed for 572 Samoan adults (278 males and

294 females) that were analyzed in this study.

Table 4.12 displays the phenotypic characteristics of the adult participants. The high

mean values for BMI, %BFAT and ABDCIR are remarkable, as are the low serum adiponectin

levels. Females tend to have higher leptin levels than males, which is similar to what we
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observed in our previous study of American Samoans. All mean phenotype levels in males

are lower than those in females, which might be partially due to the fact that over 80% of

men in Samoa participate in farm work and participating in farm work is associated with

lower adiposity [62]. The heritability estimates range from 0.26 to 0.43 for the traits included

in this study (Table 4.13). Note that about 30% of the subjects have %BFAT record missing

due to unexpected failure of the instrument used during fieldwork.

The univariate multipoint linkage results with (average) maximum multipoint LOD

scores (≥ 1.5) are presented in Table 4.14. Figure 4.5 displays results (one run) for chro-

mosomes 4, 7, 9, and 13 where we observed average maximum LOD scores that reached the

suggestive linkage level (LOD ≥ 1.9). Multipoint LOD scores for primary traits are plotted

in Figure 4.6 and Figure 4.7. As shown in Table 4.14, the highest (average) LOD score that

we observed was 2.30 for leptin, close to marker D13S265 in 13q31.3. Linkages of BMI (LOD

2.09), %BFAT (LOD 1.62) and ABDCIR (LOD 1.66) were also mapped to 13q31.3.

Suggestive linkage (LOD ≥ 1.9) was detected for five other trait/region pairs including,

%BFAT (LOD 2.09) near marker D4S414 in 4q22.1, %BFAT (LOD 2.19) near D7S484 in

7p14.3, ABDCIR (LOD 2.14) near D9S285 in 9p22.3-p22.2, adiponectin (LOD 1.96) near

marker D2S160 on 2q13, and BMI-adjusted leptin in 19q12-q13.13 (LOD 2.03). Similar

as found in American Samoan sample, adjusting for environmental covariates such as farm

work, education, and cigarette smoking improved our ability to detect linkage to some phe-

notypes (e.g., BMI, ABDCIR, and leptin in 13q31.3, to adiponectin at 2q13 and 18q22.3,

and to ABDCIR at 9p22.3-p22.2, Table 4.14, Figure 4.5). However, the impact of adjusting

for these covariates on linkage signals varies from trait to trait.

Similar as observed in American Samoan sample, significant genetic correlations exist

between phenotypes BMI, %BFAT, ABDCIR and leptin (Table 4.15). For the combination

adiponectin-ABDCIR we observed significant negative genetic correlation. Since genetic cor-

relation is a measure of the extent to which same major genes affect two traits, the existence

of significant genetic correlations suggest that there might be common genes influencing the

variation between these correlated phenotypes.

A bivariate LOD score of 3.10 (P -value 2.9× 10−4) was obtained for %BFAT-ABDCIR

in 9p22.2-p21.3. In this region BMI-%BFAT obtained a bivariate LOD score of 2.79 and
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BMI-ABDCIR a score of 1.88 (Table 4.16). On chromosome 13q31.3 bivariate LOD scores

ranged from 1.96 to 2.69 for the trait combinations of BMI, %BFAT, ABDCIR and leptin.

All bivariate LOD scores were converted to the “equivalent-univariate” LOD scores (LODeq)

so as to be comparable to univariate LOD scores. The LODeq scores are plotted for chro-

mosome 9 and 13 in Figure 4.8. Notably, all linkage peaks on chromosome 13q31.3 are right

at marker D13S365.

In chromosome 13q13.3 and 9p22.2-p21.3 no tests for complete pleiotropy, but all tests

for coincident linkage were strongly rejected for phenotype pairs displayed in Table 4.16. In

addition, the correlations between phenotype pairs due to QTL effects (ρq) range from 0.95

to 1.00, which is highly significant different from zero. These results are strongly in favor of

pleiotropic effects between the respective phenotype pairs.

Table 4.17 presents the results (LOD ≥ 1.5) of our autosomal genome scan using Samoan

nuclear pedigrees. We detected two QTLs with suggestive linkage for %BFAT on chromo-

some 11q13.2 (LOD 2.22) and 12q23.1 (LOD 2.18) as well as a QTL for ABDCIR (LOD

1.99) on 9p22.2-p21.3. No multipoint LOD scores >1.0 were detected anywhere across the

X chromosome using nuclear families. Modeling either X-linked polygenic and autosomal

polygenic backgrounds or only the latter in X-linked analysis as well as adjusting for environ-

mental covariates or not gave only marginal changes in the LOD scores (Data not shown).

X-linked linkage results (from using model 4 in Table 4.11) were plotted in Figure 4.6 and

Figure 4.7.

4.4 DISCUSSION

In this chapter we discussed our genome scan study for obesity susceptibility loci in Samoans

(American Samoans vs. Samoans). The American Samoan polity and the Samoan polity

have a common population history but have recently been differently influenced by mod-

ernization which partly is reflected in differences in phenotypes (Table 4.7 vs. Table 4.14).

In general, BMI, %BFAT, ABDCIR and serum leptin levels tend to be lower and serum

adiponectin levels tend to be higher in the individuals from Samoa. The Samoan popula-
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tion, which is less influenced by modernization, tends to perform more farm work and smoke

less than American Samoans. These environmental factors might partly be involved in the

physical differences observed.

4.4.1 Genome scan of American Samoans

In our genome-wide scan for adiposity-related phenotypes in adults from American Samoa

consisting of 34 pedigrees containing 578 genotyped members, we detected linkage at sev-

eral chromosomal regions: the principal regions with evidence of suggestive linkage (LOD

≥ 1.9) indicated by our univariate linkage analyses were 12q24.23-q24.32 and 16q12.2-q21

for %BFAT; 1q42.2, 5q11.2, 6q23.2, 12q24.23, 16q12.2-q21, and 19p13.3 for leptin; 14q12

for %BFAT-adjusted leptin; 2p13.1-p11.2 and 16q23.1 for ABDCIR; 1q31.1, 3q27.3-q28, and

12p12.3 for %BFAT adjusted ABDCIR; and 13q33.1 for adiponectin. Far fewer linkage sig-

nals were detected using nuclear pedigrees instead. To our knowledge, this genome scan and

our accompanying scan in Samoans are the first genome-wide studies of adiposity-related

traits in the population from the Samoan islands.

The strongest linkage signal, average LOD = 3.83, was found for leptin in 6q23.2 near

marker D6S262. This is near the obesity candidate gene detected in French adults and chil-

dren, ENPP1 (ectonucleotide pyrophosphate phosphodiesterase, OMIM 173335), an inhibitor

of insulin receptor tyrosine kinase activity [99],[100]. Several other genome-scan studies have

reported QTLs in the 6q region for type 2 diabetes, obesity, and metabolic syndrome in

Mexican Americans [101],[102], Finns [103],[104], and French [99],[105],[106]. Given the high

levels of adiposity in the adult American Samoans, it is noteworthy that one study reporting

linkage of leptin to 6q24 took place among French nuclear families with severe adult obesity

[99].

The second highest linkage signal, average LOD = 2.98, was for leptin in 16q21 near

marker D16S503 (the same chromosomal region appears to harbor putative susceptibility loci

for other phenotypes BMI, %BFAT and ABDCIR). This 16q21 region has been implicated

by multiple other studies [107],[108],[109] and contains the candidate gene AGRP (Agouti-

related protein) or ART (Agouti-related transcript) (OMIM 602311), which regulates body
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weight via central melanocortin receptors. We also detected linkage between leptin and

chromosome 5q11.2 near marker D5S407 (LOD = 2.08). The ISL1 gene (insulin-enhancer

binding protein 1, OMIM 600366), a transcription factor involved in pancreas development

and insulin production, has been mapped to this chromosomal region [110]. Evidence of link-

age for adiponectin was observed with a LOD of 2.41 on chromosome 13q33.1 near marker

D13S158, a region identified in other recent genome scan studies [111],[112].

Suggestive linkage with both %BFAT and leptin were detected in the region 12q24.23-

q24.32 between the markers D12S86-D12S324, similar to what were found in a genome-

scan study in European-American families [113]. Important candidate genes within the

1-LOD support region are the transcription factor TCF1 (OMIM 142410) and MODY3

(OMIM 600496), whose mutant variants are associated with maturity-onset diabetes [114],

[115],[116],[117],[118]. The region may harbor a putative major gene that exhibits pleiotropic

effects for correlated traits %BFAT and leptin.

We adjusted ABDCIR for %BFAT, in order to analyze a phenotype that isolates spe-

cific fat in the abdominal depots or locations that are assessed indirectly with circumference

from the overall influence of total adiposity. This may allow for detection of novel QTLs,

as suggested by Norris et al. [119]. We detected three chromosomal regions with average

LOD scores > 2.0 for %BFAT-adjusted ABDCIR at 1q31.1, 3q27.3-q28, and12p12.3, which

were different from the linkages detected to unadjusted ABDCIR. The 1-LOD support region

for %BFAT-adjusted ABDCIR at 1q31.1 near marker D1S238 contains a possible candidate

gene FCAMR (Fc fragment of IgA and IgM receptor, OMIM 605484), which plays important

roles in host immunity, allergy, and autoimmunity, with elevated total IgM and IgA-levels

have been observed in type-2 diabetes [120],[121]. However, our findings should be taken

cautiously since the kurtosis of residuals of %BFAT-adjusted ABDCIR after adjusting for

significant covariates were too high (>1.5), although procedures have been taken to alleviate

possible false positives due to violations of normality assumption.

In a genome-wide scan of obesity in the Old Order Amish, Hsueh et al. (2001) [122]

demonstrated the high heritability of BMI-adjusted leptin for the first time, and mapped

the trait to chromosome 10p region (LOD 2.73). In our study, suggestive linkage to %BFAT-

adjusted leptin was detected at 14q12 region, which was not identified for either leptin, or

61



%BFAT alone or BMI-adjusted leptin. Further work is needed to explore genetic and en-

vironmental influences on such adjusted leptin phenotypes as they may represent specific

adiposity or obesity susceptibility phenotypes.

Significant genetic correlations between phenotypes BMI, %BFAT, ABDCIR, and leptin

suggest that there might be common genes influencing their variations. We demonstrated

by bivariate analyses that the region 16q21 near marker D16S503 harbor a putative suscep-

tibility locus that may simultaneously affect these correlated phenotypes. Although all the

LODeq scores were less significant than the peak univariate LOD score we observed for leptin

alone (LOD 3.83), some of the LODeq scores were higher than the univariate LOD scores ob-

tained for BMI, %BFAT, and ABDCIR alone. This is consistent with the finding of Almasy

et al. (1997) [22] that, when analyzing a ‘weaker’ trait and a ‘stronger’ trait together in the

presence of pleiotropy, the bivariate power is usually no more than the univariate power for

the stronger trait. Because our phenotypes are genetically correlated, we made no attempt

to correct for multiple testing.

Our genome scan on autosomal chromosomes was carried out by the VC approach imple-

mented in SOLAR. Another genetic package LOKI was used to calculate the multipoint IBD

matrix that was input into SOLAR to test linkage. As discussed earlier, using LOKI has

the advantage of properly modeling the variability in the estimates of the allele frequencies.

However, we found that the LOKI multipoint IBD matrix varies depends on the initial ran-

dom seed, which results in variation of the LOD scores SOLAR later estimated. Therefore,

this provides a range of LOD scores, which as we described becomes narrower as the LOD

score increases.

Our univariate linkage analyses implicated a common chromosomal region at 16q12.2-

q21, influencing the phenotypes BMI, %BFAT, ABDCIR, and fasting serum leptin. We

also showed that there are significant genetic correlations between pairs of these four traits,

suggesting that these traits might have common genes influencing their variability. Our

subsequent bivariate linkage analyses implied that the region 16q21 near marker D16S503

harbors a putative susceptibility locus that simultaneously affects all four of these adiposity

related phenotypes. Although all of the bivariate LODeq scores were less significant than

the maximum LOD score we observed for the phenotype leptin alone, some of the bivariate
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LODeq scores were higher than those univariated LOD scores obtained for BMI, %BFAT,

and ABDCIR alone.

Significant linkage to Xq24 has been detected in a genome scan of Finnish population

[123]. Later the positional candidate gene SLC6A14 was reported to show association with

obesity in Finnish population [124],[57]. In contrast, our X-linked analyses detected no strong

evidence of linkage anywhere on the X chromosome. One possible reason for the observed

chromosome-wide elevated LOD scores for adiponectin under some models might be driven

by the fact that male variance of it is higher than its female variance although the difference

is very small. By taking the safeguards suggested in Lange and Sobel [95], the spurious

linkage dropped. In contrast to autosomal results, we did not observe large changes in the

linkage signals of putative QTLs when we adjusted for environmental covariates in the X-

linked analyses. In X-linked analyses, we did not screen for significant covariates; however,

this choice would not affect the resulting LOD scores that much because the likelihood of the

model that includes extra nonsignificant covariates approximates that of the model without

those extra covariates.

For a complex trait that is determined by multiple genetic and environmental factors

such as diet, physical activity, and smoking, careful adjustment for significant environmental

effects may increase signal-to-noise ratio in linkage analysis by decreasing the proportion of

the residual phenotypic variation attributable to these adjusted factors [125]. In our genome

scan, we compared the analyses with and without adjustment for significant environmental

effects (e.g., farm work activity, education, cigarette smoking), by which some putative genes

may be identified regarding their direct importance for the adiposity trait per se or indirect

importance via the influence on the covariates only. Notably, most of the genetic regions

identified for significant or suggestive linkage were detected only when certain environmen-

tal effects had been adjusted for in our linkage analyses. For example, the highest linkage

to leptin was observed on chromosome 6q23.2, LOD = 3.83, after adjusting for significant

covariates of sex, farm work, education and cigarette smoking; When only smoking and sex

effects were accounted for, the highest linkage to leptin still was observed on chromosome

6q23.3 with a LOD score of 2.52 (not shown in Table 4.7). However, when only a sex ef-

fect was accounted for, the LOD score dropped to 1.82. These results also imply a possible
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genotype-by-smoking interaction for leptin levels, which has been reported in the San Anto-

nio Family Heart Study [126], [127].

Finally, we emphasize that our findings of linkage derived from a study population char-

acterized by excessive adiposity. Therefore, the regions reported here may or may not be

identified in multiple independent studies elsewhere [65]. Our similar ongoing studies on

adults from less economically developed Samoa may also yield different findings due to the

lower adiposity levels and less altered nutritional environments.

4.4.2 Genome scan of Samoans

In our study of 572 genotyped adults (46 intermediate pedigrees) from Samoan polity, we

have detected six chromosomal regions, 2q13, 4p22.1, 7p14.3, 9p22.3-p22.2, 13q31.3 and

19q12-q13.13, with suggestive LOD scores (LOD ≥ 1.90) for adiposity-related traits. When

those pedigrees were divided into 196 nuclear families to repeat linkage analyses, only three

chromosomal regions with suggestive LOD score were detected, which are 9p22.2-p21.3,

11q13.2 and 12q23.1.

The American Samoan polity and the Samoan polity have a common population history

but have recently been differently influenced by modernization which partly is reflected in

differences in phenotypes measured in our two samples. In general, BMI, %BFAT, ABDCIR

and serum leptin levels tend to be lower and serum adiponectin levels tend to be higher in

the individuals from Samoa. The Samoan population, which is less influenced by modern-

ization, tends to perform more farm work and smoke less than American Samoans. These

environmental factors might partly be involved in the physical differences observed.

The strongest univariate linkage signal, LOD = 2.30, was found for leptin near marker

D13S265 in 13q31.3, after adjustment of environmental effects, as well as age and sex effects.

When only age and sex effects were adjusted for, a lower signal (LOD =1.47) was detected

(Figure 4.5, solid line), which is consistent with the fact that carefully adjusting for environ-

mental effects can increase “signal-to-noise ratio” in genetic linkage analysis [125]. We also

observed evidence of linkage for BMI and %BFAT in this chromosomal region. This region

in 13q31.3 and its 1-LOD-drop support interval has been reported in other recent studies
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[65], [128], [129]. For example, a genome-wide parent-of-origin linkage analysis by Dong et

al. (2005) [129] found strong evidence (LOD of 3.72 for BMI) for an obesity susceptibility

locus with paternal effect in 13q32 in an European American sample. Yet no specific gene

variant has been found to be associated with obesity-related traits in the region 13q31.3.

One of the chromosomal regions that appears to be suggestively linked to %BFAT (LOD

2.19) in this study is located near marker D7S484 in 7p14.3. Additional evidence for linkage

has previously been found between D7S484 and the serial changes of BMI from childhood

to adulthood [112]. The neuropeptide Y gene (NPY) (7p15.1, MIM 162640) (which is im-

plicated by supporting evidence to work synergistically with leptin in regulating body fat

utilization and storage as well as hormone release [130]) located in this region has been re-

ported to be linked [131] and associated[132] with both obesity and other obesity-related

traits in Mexican Americans, yet its role in etiology of common forms of obesity in this

population is unclear. In addition, in the flanking 7p15.3 region a suggestive linkage for

fat-free mass (LOD 2.7) was detected at marker D7S1808 in the Quebec Family Study [133].

Another possible positional candidate gene, glucokinase (GCK) (MIM 138079), has been

shown to be linked with maturity-onset diabetes of the young (MODY) [134], and mutations

of the GCK gene have been detected in French MODY families [135].

The second chromosomal region exhibiting suggestive linkage (LOD 2.09) to %BFAT

is near marker D4S414 in 4q22.1. In addition, there is a weaker linkage peak (LOD 1.85,

Figure 4.5) between markers D4S412 and D4S2935 in 4p16.2-p16.1. Linkage of obesity phe-

notypes to this region or its 1-LOD-drop support region has been reported in recent stud-

ies [65],[136],[137]. It is worthwhile to note that two positional candidate genes, cholecys-

tokinin A receptor (CCKAR) (MIM 118444) and peroxisome proliferative activated receptor

(PPARGC1A) (MIM 604517) are located near this region; both genes have major roles in

the development of obesity [137].

Suggestive linkage to ABDCIR (LOD 2.14) and potential linkage to %BFAT (LOD 1.76)

were detected in 9p22.2-p21.3, where strong evidence of linkage (LOD = 3.4) to high density

lipoprotein (HDL-C) levels has been found in Mexican Americans [137] and it is known that

obesity is associated with lower HDL-C levels. The genomic region 2q13 may contain a

QTL for the variation of adiponectin, with a LOD score of 1.96 near marker D2S160. At the

65



flanking 2q14 region, Deng et al. (2002) [125] obtained a maximum LOD score (MLS) of 4.44

for BMI in their genome-wide linkage scan for quantitative trait loci for obesity phenotypes.

There is evidence of linkage for adiponectin (LOD 1.87) and BMI-adjusted leptin (LOD

2.03) in the 19q12-q13.3 region, where Saar et al. (2003) [138] detected a peak LOD score for

obesity in German children and adolescents. The nearby 19q13 region contains two promi-

nent candidate genes for obesity: apolipoprotein E precursor (APOE) (MIM 107741) and

transforming growth factor, beta 1 (TGFB1) (MIM 190180). APOE codes a glycoprotein

that plays a central role in lipid metabolism and several studies have reported positive asso-

ciations of APOE with obesity phenotypes [139],[140],[141],[142]; The TGFB1 peptide is a

multifunctional cytokine with roles in cell differentiation, and immune modulation in many

cell types including adipocyte precursor cells [143],[144]. TGFB1 has been reported to be

closely associated with BMI in human adipose tissue during morbid obesity [145]. In addi-

tion, one polymorphism (T29C) in the TGFB1 gene was recently reported to be associated

with abdominal obesity in Swedish men [146]. Recently Long et al. (2003) [144] reported

positive associations between APOE and TGFB1 and obesity phenotype variation in a large

sample of white Europeans, which adds new evidence of suggesting the possible effects of

the two genes on obesity.

In the present study as well as in our similar study in American Samoa polity, we show

that there are significant genetic correlations between all of the pair-wise combinations of

BMI, %BFAT, leptin and ABDCIR (Table 4.15); this implies that there might be genes in

common that influence the variation of these traits. Additional support for such pleiotropic

effects is given by the bivariate results from both of our studies which suggest promising

susceptibility loci for adiposity-related traits on chromosome 9p and 13q in Samoa and on

16q in American Samoa. However, also the environmental correlations between the traits

are statistically significant, which supports the well-known fact that environmental factors

are of great importance for the variation of obesity-related traits. Furthermore, despite the

overall genetic homogeneity in the population from the Samoan islands, there is considerable

variation in environmental exposures (e.g., diet, exercise, etc) across the population (“west-

ernized” American Samoa vs. rural Samoa). In the two genome-wide studies, we attempted

to adjust for such environmental factors by including environmental covariates in the statisti-
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cal models. In both studies, we detected varying linkage signals in the same genomic regions

when environmental effects were adjusted for vs. unadjusted for. This further suggests that

gene by environment interactions potentially could be detected using more elaborate sets of

behavioral and environmental exposure variables not currently available for these datasets,

such as dietary factors, general physical activity or even psychosocial stress factors. How-

ever, the covariates that turned out to be significant differed between the two sample sets,

for the majority of phenotypes. It is therefore possible that adjustment for environmental

variance of adiposity phenotypes was not equally successful in the two studies. Further more,

it is possible that this environmental variation will fluctuate the genetic effect and result in

varying disease penetrance, which in turn could be of major importance for the minimal

overlap seen between the linkage results found in the Samoa and the American Samoa.

Another possible reason for the lack of reproducibility seen in Table 4.14 between the two

sample sets from the Samoan islands could be due to genetic heterogeneity. However, since

previous studies have shown that there is no evidence of population substructure [70] in the

population from the Samoan islands, this is improbable. Finally, the relatively larger family

size in the American Samoan study vs. the Samoan study might play a role in explaining

the lack of reproducibility as an effect of variation in statistical power.

Pooling data across studies is one way to increase power in linkage analysis of complex

disease [91],[107]. We are currently carrying out a genome-wide linkage scan for adiposity

phenotypes based on a combined sample set of both the Samoan families and the American

Samoan families. Some chromosomal regions of linkage evidences identified here have been

confirmed by our preliminary analysis on the combined sample (Data not shown). However,

because two genotyping platforms were used respectively for American families and Samoan

families, several families have members from both polities, how to efficiently align alleles still

remains challenging.
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4.5 CONCLUSIONS

In summary, here we report the results from our genome-wide linkage scans to search for

susceptibility loci for adiposity-related phenotypes in adults from both American Samoa and

(Western) Samoa. Our linkage analyses reveal several chromosomal regions with suggestive

linkage (significant linkage at 6q23.2) that may harbor genes for adiposity. Our studies

show strong support for different chromosomal regions, respectively, that appear to harbor a

gene that has significant pleiotropic effects on multiple adiposity traits. However, due to the

uniqueness of the studied groups, its population history and potential natural selection, these

susceptibility loci for adiposity found in the population from the Samoan islands may or may

not be identified in multiple independent studies elsewhere [65]. Furthermore, the sample

set from the Samoan islands with its homogenous population history but with its hetero-

geneous environmental settings offers an unique possibility to study gene by environmental

interaction that should be taken advantage of. Further linkage and association studies of the

susceptibility loci found in our studies may allow for identification of candidate genes and

pathways that are of strong importance for variation in adiposity phenotypes.
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Table 4.1: Description of American Samoan Families-Original Pedigrees and Intermediate

Pedigrees.

Original Pedigrees Intermediate Size Pedigrees

ID Size Genotyped Phenotyped∗ ID Size Genotyped Phenotyped∗

1 553 208 211 1 531 208 211

2 20 4 4 2 12 3 3

3 719 204 206 3 604 203 205

4 55 4 4 4 11 4 4

5 36 4 4 5 26 4 4

6 47 4 4 6 35 8 8

7 78 8 8 7 19 4 4

8 127 14 14 8 34 14 14

9 96 26 26 9 57 26 26

10 9 3 3 10 22 8 8

11 22 8 8 11 7 4 4

12 7 4 4 12 8 4 4

13 8 4 4 13 9 5 5

14 9 5 5 14 13 5 5

15 13 5 5 15 4 2 2

16 4 2 2 16 14 11 10

17 14 11 10 17 8 2 2

18 8 2 2 18 10 4 3

19 10 4 3 19 19 7 7

20 19 7 7 20 8 2 2

21 8 2 2 21 13 5 5

22 13 5 5 22 4 2 2

23 4 2 2 23 7 2 2

24 7 2 2 24 5 3 3

25 7 4 4 25 7 4 4

26 10 4 4 26 10 4 4

27 5 2 2 27 5 2 2

28 6 2 2 28 6 2 2

29 4 2 2 29 4 2 2

30 26 6 6 30 26 6 6

31 13 9 9 31 13 9 9

32 5 4 4 32 5 4 4

33 3 2 2 33 3 2 2

34 3 3 3 34 3 3 3

Total 580 583 578 581

∗: Phenotype is BMI. 69



Table 4.2: Description of the Samoan Families- 46 original Pedigrees and 47 intermediate

Pedigrees.

Original Pedigrees Intermediate Size Pedigrees

ID Size Genotyped Phenotyped∗ ID Size Genotyped Phenotyped∗

1 553 9 12 1 12 4 5

2 20 4 5 2 28 7 8

3 719 42 49 3 40 27 30

4 28 7 8 4 32 13 13

5 55 27 30 5 4 3 3

6 36 13 13 6 52 16 18

7 4 3 3 7 58 21 26

8 52 16 18 8 42 14 17

9 58 21 26 9 58 21 26

10 47 14 17 10 15 4 4

11 78 21 26 11 12 3 3

12 15 4 4 12 57 16 20

13 12 3 3 13 43 21 24

14 57 16 20 14 36 16 22

15 43 21 24 15 16 2 4

16 36 16 22 16 18 6 9

17 16 2 4 17 40 10 12

18 18 6 9 18 22 9 11

19 40 10 12 19 10 3 6

20 22 9 11 20 9 3 3

21 10 3 6 21 19 7 10

22 9 3 3 22 44 11 13

23 19 7 10 23 53 21 26

24 44 11 13 24 47 17 24

Note.-The table is continued on the next page.
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Table 4.2: Continued.

Original Pedigrees Intermediate Size Pedigrees

ID Size Genotyped Phenotyped∗ ID Size Genotyped Phenotyped∗

25 53 21 26 25 18 6 8

26 47 17 24 26 58 24 26

27 18 6 8 27 80 21 22

28 59 24 26 28 49 27 33

29 127 34 37 29 49 9 12

30 96 27 33 30 56 28 28

31 57 28 28 31 22 13 15

32 74 18 20 32 73 18 20

33 57 15 16 33 222 42 49

34 43 16 20 34 56 15 16

35 37 24 23 35 43 16 20

36 9 2 3 36 36 24 23

37 3 2 2 37 6 2 3

38 14 7 8 38 3 2 2

39 12 5 6 39 12 7 8

40 11 3 5 40 12 5 6

41 26 13 13 41 10 3 5

42 39 13 14 42 25 13 13

43 3 2 2 43 38 13 14

44 3 2 2 44 3 2 2

45 5 3 3 45 3 2 2

46 3 2 2 46 5 3 3

47 3 2 2

Total 2787 572 669 1649 572 669

∗: Phenotype is BMI.
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Table 4.3: Pairwise relationships in 34 intermediate pedigrees, used in SOLAR/LOKI anal-

yses of adults from American Samoa.

Number of pairs counted

Phenotyped relative pairs BMI %BFAT Leptin ABDCIR Adiponectin

Parent-Offspring 306 304 299 309 285

Siblings 250 250 237 252 233

Half-Siblings 72 72 71 72 69

1st Cousins 391 391 368 391 377

Grandparent-Grandchild 33 33 32 33 33

Avuncular 309 309 302 315 298

Half-Avuncular 122 122 122 122 119

Great-Avuncular 55 52 52 52 51

Total 1538 1533 1483 1546 1465
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Table 4.4: Pairwise relationships in 46 intermediate pedigrees, used in SOLAR/LOKI anal-

yses of adults from Samoa

Number of pairs counted

Phenotyped relative pairs BMI %BFAT∗ Leptin ABDCIR Adiponectin

Parent-Offspring 442 283 425 448 422

Siblings 365 251 349 365 338

Half-Siblings 42 16 37 42 37

1st Cousins 667 503 602 667 583

Grandparent-Grandchild 82 49 77 83 77

Avuncular 636 439 584 636 572

Half-Avuncular 69 31 68 70 66

Great-Avuncular 112 61 108 112 108

Total 2415 1633 2250 2423 2203

∗: Large number of missing values for the phenotype (broken measurement kit).
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Table 4.5: Characteristics of study participants from American Samoa.

Males Females

Characteristics N = 249 (42.7%) N = 334 (57.3%)

Age(years) 43.50± 16.79 43.07± 16.13

Body mass index (BMI) (kg/m2) 33.45± 7.59 36.64± 8.50

Percent body fat (%BFAT) 33.62± 6.51 41.61± 6.41

Leptin(µ/ml) 11.36± 9.76 30.19± 16.10

Abdominal circumference (ABDCIR) (cm) 107.70± 16.22 111.35± 16.70

Adiponectin (mg/ml) 8.40± 6.45 11.10± 10.02

Education (years) 11.72± 2.34 11.93± 2.45

Smokinga 0.39 (0-1) 0.21 (0-1)

Farm work activityb 0.51 (0-1) 0.24 (0-1)

Note. - Data are mean ± s.d., unless otherwise indicated. Phenotypes were not transformed.

aMean(range), 0 = no cigarette smoking, 1= cigarette smoking.

bMean(range), 0 = no farm work, 1= farm work.
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Table 4.6: Residual heritability of adiposity-related phenotypes in adults from American

Samoa, adjusted for different covariates.

Phenotype Na h2
r (s.e.) Variance explained

by covariates (%)

Significant Covariatesb

BMI 581 0.50 (0.10) 4.1 S

558 0.41 (0.11) 7.7 S, F, E

%BFAT 580 0.60 (0.10) 31.6 A, S

557 0.52 (0.11) 32.5 A, S, F, E

Leptin 571 0.62 (0.09) 40.4 S

516 0.52 (0.10) 45.9 S, F, E, C

569 0.31(0.01) 55.8 BMI, S

536 0.36 (0.10)) 57.0 BMI, S, F, C

566 0.42 (0.01) 34.2 %BFAT, A, S

533 0.45 (0.10)) 32.4 %BFAT, A, S, C

ABDCIR 583 0.50 (0.09) 4.4 A, S

560 0.42 (0.10) 6.6 A, S, F, E

581 0.32 (0.09) 25.0 BMI, A, S

581 0.33 (0.09) 22.9 BMI, A, S, F

580 0.45 (0.10) 20.3 %BFAT, A, S

547 0.44 (0.10) 20.9 %BFAT, A, S, C

Adiponectin 569 0.55 (0.09) 15.7 A, S

547 0.54 (0.09) 23.3 A, S, F, E

Note. - All heritability estimates are significantly different from zero at P -value < 10−4.

aNumber of total phenotyped individuals in the heritability analysis.

bSignificant covariates (P -value < 0.1) kept in polygenic model. A=age, S=sex, F=farm

work, E=education, C=cigarette smoking.
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Table 4.7: Summary of SOLAR/LOKI multipoint linkage analyses for adiposity-related phenotypes in adults from American

Samoa (with max LOD score ≥ 1.5).

Trait cytogenetic position Flanking marker/s Range(cM)a LOD score (range)b Covariatesc

14q12-q13.1 D14S275, D14S70 17.8-19.7 1.47 (1.36-1.52) S, F, E
BMI

16q21 D16S503 91.0-105.9 1.57 (1.47-1.70) S

8p22-p21.3 D8S549, D8S258 34.7-35.7 1.82(1.75-1.86) A, S, F, E

12q24.23-q24.32 D12S86, D12S324 162.4-163.4 1.96 (1.94-1.98) A, S, F, E
%BFAT 20.7-23.6 1.63 (1.51-1.72) A, S

14q12-q13.1 D14S275, D14S70
15.8-19.8 1.55 (1.50-1.61) A, S, F, E

87.9-88.9 2.24 (2.16-2.34) A, S
16q12.2-q21 D16S415, D16S503

88.9-89.9 1.56 (1.50-1.61) A, S, F, E

1q42.2 D1S2800, D1S2785 271.8-276.8 1.97 (1.94-2.00) S, F, E, C

5q11.2 D5S407 77.3 2.08 (1.87-2.22) S, F, E, C

3.83 (3.81-3.84) S, F, E, C
6q23.2 D6S262 150.5

2.06 (2.04-2.07) S

12q24.23 D12S86 154.4 2.06 (2.03-2.08) S, F, E, C
Leptin

13q14.2-q22.1 D13S153, D13S156 71.7-73.8 1.77 (1.68-1.87) S

16q21 D16S503 90.9-91.9 2.98 (2.92-3.03) S, F, E, C

16q12.2-q21 D16S415, D16S503 85.9-86.9 1.99 (1.94-2.03) S

19p13.3 D19S209, D19S216 11.9 2.05 (2.02-2.07) S, F, E, C

Leptin, 2.01 (1.92-2.16) A, S, F, E, C

adjusted by %BFAT
14q12 D14S275 16.8-17.8

1.70 (1.63-1.82) A, S

Note. - Table continued on the next page.
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Table 4.7: Continued.

Trait cytogenetic position Flanking marker/s Range(cM)a LOD score (range)b Covariatesc

2p13.1-p11.2 D2S286, D2S2333 116.4 1.92 (1.88-1.96) A, S, F, E

6q23.2 D6S262 150.5 1.55 (1.54-1.56) A, S
ABDCIR

12p13.33 D12S352 0 1.82 (1.80-1.85) A, S, F, E

102.6 1.95 (1.92-1.98) A, S, F, E
16q23.1 D16S515, D16S516 103.6 1.95 (1.87-2.03) A, S

215.3-217.3 1.71 (1.63-1.85) A, S
1q31.1 D1S238

215.3-219.3 2.36 (2.29-2.50) A, S, C

ABDCIR, 1.68 (1.64-1.71) A, S

adjusted by %BFAT
12p12.3 D12S310 41.4

2.22 (2.20-2.24) A, S, C

226.3-227.3 1.60 (1.55-1.68) A, S
3q27.3-q28 D3S1262, D3S1580

227.3-228.3 2.04 (2.03-2.08) A, S, C

2.41 (2.36-2.51) A, S, F, E
Adiponectin 13q33.1 D13S158 110.8-111.8

2.23 (2.18-2.31) A, S

Note. - LOD scores (mean, range) are derived from 10 independent Solar/Loki runs. Regions showing significant (LOD ≥ 3.3)

or suggestive (LOD ≥ 1.9) linkage are highlighted in bold.

a Range of the locations of the maximum LOD scores in centimorgans (Haldane) from p terminus.

b Mean of maximum LOD scores and their ranges.

c Significant covariates adjusted before linkage analysis. A=age, S=sex, F=farm work, E=education, C=cigarette smoking.

∗ Out of 10 separate analyses, highest LOD scores observed 2 times at 105.9 cM, 1 time at 91.0 cM, 7 times at 91.9 cM.
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Table 4.8: Genetic (ρg) and environmental (ρe) correlations between selected adiposity-

related phenotypes in adults from American Samoa.

Phenotype pairs ρg ± s.e ρe ± s.e

BMI-%BFAT 0.89± 0.03 0.90± 0.03

BMI-ABDCIR 0.94± 0.02 0.86± 0.03

BMI-Leptin 0.85± 0.06 0.63± 0.08

ABDCIR-%BFAT 0.85± 0.04 0.79± 0.05

ABDCIR-Leptin 0.78± 0.07 0.58± 0.08

%BFAT-Leptin 0.78± 0.06 0.64± 0.08

Note. - BMI was adjusted for sex; %BFAT was adjusted for age and sex; ABDCIR was

adjusted for age, sex, farm work, and education; Leptin was adjusted for sex, farm work,

education, and cigarette smoking. All correlations are significant at P -value < 10−5.
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Table 4.9: Multipoint bivariate linkage analyses of pairs of adiposity-related phenotypes in adults from American Samoa.

Phenotype pairs cytogenetic

position

cMa Closest

marker

Bivariate

LOD score

P -valueb LODc
eq

score

ρd
q P -valuee P -valuef

BMI-%BFAT 16q21 91.9 D16S503 2.41 0.00753 1.94 0.99 0.2721 < 10−6

BMI-ABDCIR 16q21 91.0 D16S503 2.13 0.00717 1.68 1.00 0.5000 < 10−6

BMI-leptin 16q21 89.9 D16S503 2.82 0.00080 2.32 1.00 0.5000 < 10−6

ABDCIR-%BFAT∗ 16q23.1 101.7 D16S515 2.74 0.00130 2.25 0.97 0.2356 < 10−6

ABDCIR-leptin 16q21 91.9 D16S503 2.94 0.00063 2.44 1.00 0.5000 < 10−6

%BFAT-leptin 16q21 89.9 D16S503 2.98 0.00082 2.48 1.00 0.5000 < 10−6

Note. - BMI was adjusted for sex; %BFAT was adjusted for age, sex; and ABDCIR were adjusted for age, sex, farm work, and

education; Leptin was adjusted for sex, farm work, education, and cigarette smoking; Results are based on one particular run.

a Distance in centi Morgans (Haldane) from p-terminus.

b Asymptotic P -value, under the null hypothesis that the likelihood-ratio statistic (2ln10*bivariate LOD score) is distributed

as 1
4
χ2

2 : 1
2
χ2

1 : 1
4
χ2

0 mixture.

c LODeq is the equivalent univariate LOD score (df =1) corresponding to the reported bivariate LOD score with 2 df.

d ρq is the correlation due to QTL effects.

eP -value of the test for complete pleiotropy, for which the likelihood for the linkage model in which ρq was estimated was

compared with that of the model in which ρq was constrained to 1 or -1.

f P -value of the test for no coincident linkage, for which the likelihood for the linkage model in which ρq was estimated was

compared with that of the model in which ρqs was constrained to 0.

∗ Second highest LODeq score was 1.97, occurring on 16q21 at 90.9 cM for trait pair ABDCIR-%BFAT.
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Table 4.10: Summary of multipoint linkage results of adiposity-related phenotypes using nuclear pedigrees, American Samoa

(with max LOD score ≥ 1.5).

Structure Trait cytogenetic position Flanking marker/s Genomic location

(cM)a

Maximum

LOD score

Covariatesb

Nuclear BMI 3q29 D3S1311 251.7 1.74 S

1.65 A, S, E
8q12.2 D8S260 86.2

1.64 A, S, E

155.4 1.90 A, S, E
%BFAT 12q24.23-q24.32 D12S86, D12S324

157.4 2.17 A, S

16p13.13 D16S3075 32.6 1.52 A, S

2.09 A, S, E
ABDCIR 2p11.2 D2S2333

120 1.77 A, S
3q29 D3S1311 251.7 1.83 A, S

1p36.22 D1S450 10.6 2.32 A, S, E
Adiponectin

9q34.3 D9S1826, D9S158 174.7 1.61 A, S

Note. - LOD scores were derived from one particular SOLAR/LOKI run. Regions showing suggestive (LOD ≥ 1.9) linkage are

highlighted in bold.

a Genomic location of the maximum LOD score in centi Morgan (Haldane) from p terminus.

b Covariates included in the model: . A=age, S=sex, F=farm work, E=education, C=cigarette smoking.
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Table 4.11: Genetics models in X-linked variance components linkage analysis.

Variance Components

Model Predictor∗ Standardize trait

within sex groups

X-QTL Autosomal additive X-poly additive Environmental

Model1 Yes Yes Yes Yes

Model2 Yes Yes Yes Yes

Model3 Yes Yes Yes Yes Yes

Model4 Yes Yes Yes Yes Yes

Model5 Yes Yes Yes Yes Yes

Model6 Yes Yes Yes Yes Yes Yes

∗ Two sets of covariates were adjusted for in all models: one set includes sex and age; the other includes sex, age, education,

farm work and cigarette smoking.
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Table 4.12: Characteristics of phenotyped participants from Samoa.

Males Females

Characteristics N = 331 (49.3%) N = 341 (50.7%)

Age(years) 41.39± 16.27 45.56± 17.36

Body mass index (BMI) (kg/m2) 28.91± 5.46 32.91± 7.53

Percent body fat (%BFAT) 28.33± 7.22 39.19± 6.70

Leptin(µg/ml) 6.43± 6.89 23.76± 13.70

Abdominal circumference (ABDCIR) (cm) 95.88± 15.14 106.73± 16.11

Adiponectin (mg/ml) 9.99± 7.85 12.83± 8.29

Education (y) 9.73± 3.40 10.04± 3.00

Smokinga 0.43 (0-1) 0.16 (0-1)

Farm work activityb 0.83 (0-1) 0.31 (0-1)

Note. - Data are mean ± s.d., unless otherwise indicated. Phenotypes are not transformed.

aMean(range), 0 = no smoking, 1= smoking.

bMean(range), 0 = no farm work, 1= farm work.
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Table 4.13: Residual heritability of adiposity-related phenotypes in adults from Samoa,

adjusted for different covariates

Phenotype Na h2
r (s.e.) Variance explained

by covariates (%)

Significant Covariatesb

BMI 669 0.43 (0.08) 12.4 A, S

662 0.43 (0.07) 13.5 A, S, E

%BFAT 414 0.38 (0.10) 46.3 A, S

Leptin 642 0.38 (0.08) 52.2 A, S

534 0.27 (0.10) 54.5 A, S, E, C

539 0.26 (0.10) 58.8 BMI, S, F, C

638 0.38 (0.09) 55.9 BMI, S

ABDCIR 671 0.40 (0.08) 29.1 A, S

662 0.39 (0.08) 30.4 A, S, E

669 0.42 (0.07) 35.4 BMI, A, S

Adiponectin 639 0.35 (0.09) 10.1 A, S

538 0.30 (0.09) 6.9 A, S, C

∗Note.- All heritability estimates are significantly different from zero at P -value < 10−5.

a Number of total phenotyped individuals in the heritability analysis.

b Significant covariates (P -value < 0.1) kept in polygenic model. A=age, S=sex, F=farm

work, E=education, C=cigarette smoking.
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Table 4.14: Summary of SOLAR/LOKI multipoint linkage analyses for adiposity-related phenotypes in adults from Samoa

(with max LOD score ≥ 1.5).

Trait cytogenetic position Flanking marker/s Range(cM)a LOD score (range)b Covariatesc

1.87 (1.81-1.95) A, S
BMI 13q31.3 D13S265 91.8

2.09(2.03-2.17) A, S, E

4q22.1 D4S414 115.3-116.3 2.09 (2.03-2.19) A, S

7p14.3 D7S484 60.0 2.19 (1.92-2.24) A, S
%BFAT

9p22.2-p21.3 D9S157, D9S171 46.1 1.76 (1.74-1.79) A, S

13q31.3 D13S265 91.8 1.62 (1.59-1.64) A, S

Leptin 13q31.3 D13S265 91.8 2.30 (2.23-2.37) A, S, E, C

175.5-177.5 1.58 (1.53-1.61) A, S
6q24.1-q25.2 D6S308, D6S441

175.5-176.5 1.55 (1.51-1.58) A, S, E

D9S285, D9S157 38.3 1.83 (1.80-1.85) A, S
9p22.3-p22.2

D9S285 33.4-34.4 2.14 (2.10-2.18) A, S, E
ABDCIR

21.3-22.3 1.66 (1.65-1.68) A, S
12p13.31 D12S99

15.2-16.3 1.55 (1.57-1.60) A, S, E

92.8-93.8 1.54 (1.48-1.74) A, S
13q31.3 D13S265

91.8-92.8 1.66 (1.61-1.87) A, S, E

2q13 D2S160 134.4-135.2 1.96 (1.92-2.00) A, S, C

8q12.2 D8S260 88.9 1.87 (1.85-1.89) A, S
Adiponectin

18q22.3 D18S1161 121.0 1.81 (1.78-1.84) A, S, C

1.87 (1.80-1.91) A, S
19q12 D19S414 59.3 1.72 (1.64-1.77) A, S

Note. - Table continued on the next page.
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Table 4.14: Continued.

Trait cytogenetic position Flanking marker/s Range(cM)a LOD score (range)b Covariatesc

Leptin,

adjusted by BMI 19q12-q13.13 D19S414, D19S220 63.4-64.4 2.03 (2.00-2.05) A, S

ABDCIR,

adjusted by BMI 3q21.1 D3S1267 146.3-147.3 1.50 (1.49-1.51) A

Note. - LOD scores (mean, range) are derived from 10 independent Solar/Loki runs. Regions showing suggestive (LOD ≥ 1.9)

linkage are highlighted in bold.

a Range of the locations of the maximum LOD scores in centimorgans (Haldane) from p terminus.

b Mean of maximum LOD scores and their ranges.

c Significant covariates included in the linkage model. A=age, S=sex, F=farm work, E=education, C=cigarette smoking.
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Table 4.15: Genetic (ρg) and environmental (ρe) correlations between selected adiposity-

related traits in adults from Samoa

Trait pairs ρg ± s.e ρe ± s.e

BMI-%BFAT 0.87± 0.04 0.92± 0.02

BMI-ABDCIR 0.91± 0.02 0.92± 0.01

BMI-Leptin 0.87± 0.05 0.76± 0.04

%BFAT-ABDCIR 0.85± 0.05 0.86± 0.03

%BFAT-Leptin 096± 0.08 0.71± 0.05

ABDCIR-Leptin 0.82± 0.07 0.72± 0.04

Adiponectin-ABDCIR −0.48± 0.15 −0.27± 0.09

Adiponectin-Leptin −0.31± 0.22∗ −0.23± 0.10

Adiponectin-%BFAT −0.42± 0.22∗ −0.22± 0.12

Adiponectin-BMI −0.37± 0.16∗ −0.36± 0.09

Note. - BMI, %BFAT and adiponectin were adjusted for age and sex; ABDCIR was adjusted

for age, sex, and education; Leptin is adjusted for age, sex, farm work, education, and

cigarette smoking.

∗ Not significantly different from zero at P -values > 0.05.
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Table 4.16: Summary of bivariate multipoint linkage analyses for chromosomes 9, and 13 and selected pairs of adiposity-related

phenotypes in adults from Samoa.

Phenotype pairs cytogenetic

position

cMa Closest

marker

Bivariate

LOD score

P -valueb LODc
eq

score

ρd
q P -valuee P -valuef

BMI-%BFAT 9p22.2-p21.3 46.1 D9S171 2.79 5.7× 10−4 2.30 0.99 0.42 5.6× 10−3

BMI-ABDCIR 9p22.2-p21.3 41.2 D9S157 2.35 1.5× 10−3 1.88 1.00 0.50 2.4× 10−3

%BFAT-ABDCIR 9p22.2-p21.3 43.2 D9S157 3.10 2.9× 10−4 2.59 0.95 0.13 1.1× 10−3

BMI-%BFAT 13q31.3 91.8 D13S265 2.64 7.8× 10−4 2.15 0.97 0.16 < 10−6

BMI-ABDCIR 13q31.3 91.8 D13S265 1.96 4.0× 10−4 1.52 1.00 0.50 2.6× 10−3

BMI-Leptin 13q31.3 91.8 D13S265 2.58 9.2× 10−4 2.10 0.98 0.31 8.8× 10−4

ABDCIR-%BFAT 13q31.3 91.8 D13S265 2.53 1.0× 10−4 2.05 0.99 0.40 1.3× 10−3

ABDCIR-Leptin 13q31.3 91.8 D13S265 2.33 1.6× 10−4 1.87 0.99 0.43 1.9× 10−3

%BFAT-Leptin 13q31.3 91.8 D13S265 2.69 7.4× 10−4 2.21 0.95 0.35 1.9× 10−3

Note. - BMI and %BFAT were adjusted for age and sex; ABDCIR was adjusted for age, sex, and education; Leptin is adjusted

for age, sex, education, and cigarette smoking. Results are based on one particular run.Results are based on one SOLAR/LOKI

run.

a Distance in centi Morgans (Haldane) from p-terminus.

b Asymptotic P -value, under the null hypothesis that the likelihood-ratio statistic (2ln10*bivariate LOD score) is distributed

as a 1
4
χ2

2 : 1
2
χ2

1 : 1
4
χ2

0 mixture.

c LODeq is the equivalent univariate LOD score (df =1) corresponding to the reported bivariate LOD score with 2 df.

d ρq is the correlation due to QTL effects.

e P -value of the test for complete pleiotropy.

f P -value of the test for no coincident linkage.
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Table 4.17: Summary of SOLAR/LOKI multipoint linkage results using nuclear pedigrees for adiposity-related phenotypes in

adults from Samoa (with max LOD score ≥ 1.5).

Structure Traits cytogenetic position Closest marker cMa Maximum multipoint

LOD score

Covariatesb

Nuclear 11q13.2 D11S987 87.4 2.22 A, S
%BFAT

12q23.1 D12S346 126.3 2.18 A, S

41.2 1.99 A, S
9p22.2-p21.3 D9S157

40.2 1.92 A, S, E
ABDCIR

88.6 1.67 A, S
13q31.3 D13S265

90.8 1.71 A, S, E

19q12 D19S414 59.3 1.71 A, S
Adiponectin

20p13 D20S889 12.7 1.64 A, S

Note. - LOD scores were derived from one particular SOLAR/LOKI run. Regions showing suggestive (LOD ≥ 1.9) linkage are

highlighted in bold.

a Genomic location of the maximum LOD score in centi Morgan (Haldane) from p terminus.

b Significant covariates included in the linkage model. A=age, S=sex, F=farm work, E=education, C=cigarette smoking.
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Figure 4.1: The multipoint LOD score results for chromosome 6 (top), chromosome 13 (mid-

dle) and chromosome 16 (bottom) for adiposity-related phenotypes (American Samoa). In

graphs on the left, BMI and leptin were adjusted for sex; %BFAT, ABDCIR and adiponectin

were adjusted for age and sex. In graphs on the right, BMI was adjusted for sex, farm work,

and education; %BFAT, ABDCIR and adiponectin were adjusted for age, sex, farm work

and education; leptin was adjusted for sex, farm work, education and smoking.
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Figure 4.2: Results of genome scan for five adiposity-related phenotypes (American Samoa).

For chromosomes 1-22, BMI and leptin were adjusted for sex; %BFAT, ABDCIR and

adiponectin were adjusted for age and sex; for the X chromosome, results from Model 1

were plotted (see Table 4.11), and all phenotypes were adjusted for age and sex.
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Figure 4.3: Results of genome scan for five adiposity-related phenotypes (American Samoa).

For chromosomes 1-22, BMI was adjusted for sex, farm work, and education; %BFAT, AB-

DCIR and adiponectin were adjusted for age, sex, farm work and education; leptin was

adjusted for sex, farm work, education and smoking; for the X chromosome, results from

Model 1 were plotted (see Table 4.11), and all phenotypes were adjusted for age, sex, edu-

cation, farm work and smoking.
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Figure 4.4: The bivariate LODeq score profiles of adiposity-related phenotype pairs for chro-

mosome 16 (American Samoa). BMI was adjusted for sex; %BFAT was adjusted for age, sex;

and ABDCIR were adjusted for age, sex, farm work, and education; Leptin was adjusted for

sex, farm work, education, and cigarette smoking.
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Figure 4.5: The multipoint linkage results from one single SOLAR/LOKI run for chromosome

4, 7, 9, and 13 for five ‘primary’ adiposity-related phenotypes (Samoa). In graphs on the left,

all phenotypes were adjusted for age and sex. In graphs on the right, BMI and ABDCIR were

adjusted for age, sex, and education; %BFAT was adjusted for age and sex; Adiponectin was

adjusted for age, sex, and smoking; Leptin was adjusted for age, sex, education and smoking.
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Figure 4.6: Genome scan results for five adiposity-related phenotypes from one single SO-

LAR/LOKI run (Samoa). For the X chromosome, results from Model 3 (see Table 4.11)

were plotted. All phenotypes were adjusted for age and sex.
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Figure 4.7: Genome scan results for five adiposity-related phenotypes from one single SO-

LAR/LOKI run (Samoa). For chromosome 1-22, BMI and ABDCIR was adjusted for age,

sex, and education; %BFAT was adjusted for age and sex; Adiponectin were adjusted for

age, sex, and smoking; Leptin was adjusted for age, sex, education and smoking; for the X

chromosome, results from Model 4 were plotted (see Table 4.11), and all phenotypes were

adjusted for age, sex, education, farm work and smoking.
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Figure 4.8: The LODeq scores of selected pairs of adiposity-related phenotypes from one single

SOLAR/LOKI run for chromosome 9 and 13 (Samoa). BMI and %BFAT were adjusted for

age and sex; ABDCIR was adjusted for age, sex, and education; Leptin is adjusted for age,

sex, education, and cigarette smoking.
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5.0 SEX-SPECIFIC LINKAGE ANALYSIS: SEX-AVERAGED GENETIC

MAPS VS. SEX-SPECIFIC GENETIC MAPS

In this chapter, we carry out a preliminary simulation study to investigate the bias of multi-

point linkage analysis arising from map misspecification. We also report sex-specific suscep-

tibility loci for adiposity-related phenotypes from our linkage analyses of sex-specific subsets

of our American Samoan and Samoan data.

5.1 INTRODUCTION

In the past decade, genomewide linkage analysis has been widely used in identifying the ge-

netic variation underlying single-gene disorders, common human diseases, and other complex

traits in which multiple genetic and environmental factors interact to influence disease risk

[147]. Typically genome scans in the literature have been pursued in combined-sex samples

assuming there are common susceptibility loci segregating in both sexes, however, few scans

have been pursued in sex-specific subsets. One possible reason is that limiting the compu-

tation to same-sex pairs in linkage analysis would cause a large reduction in power [149].

However, failing to model the sex-specific architecture in genome-wide screens might hamper

detection of susceptibility loci for complex traits [148]. Without modeling for sex-specific

differences, autosomal genes that have sex-specific action or interaction may be hard to de-

tect in the regular genome scans [41].

In the Framingham study, Atwood et al. (2006) [149] found that sex-specific effects of

chromosomal regions on BMI are common. A few other research groups have also reported

significant linkage signals in their linkage analyses of sex-specific subsets [41], [150]. Despite
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different types of traits (quantitative or qualitative) being investigated, these reports share

similar findings, that is, they all observed more significant linkage signals in the sex-specific

subsets, and less or modest signals in the larger combined-sex data sets. For example, in their

genome-wide linkage scan for 17 quantitative traits in the Hutterites, Weiss et al. (2006)

[41] reported that only two of 12 total sex-specific significant linkage signals were detected in

their combined analysis. All those findings are reasonable under the strong assumption that

if there is a sex-specific effect, it will have to be quite strong to be detected in a relatively

small subset [149].

Despite their important implications for mapping complex trait (sex-specific) genes,

strong conclusions made by those studies might be weakened by their use of sex-averaged

maps instead of sex-specific maps in their multipoint linkage analyses. It is known that

recombination rates differ between male and female meiosis and on average the genetic map

of females is about 90% longer than that of males, although in some regions of the genome

recombination rates in male meiosis exceed those in female meiosis [151]. Since multipoint

linkage analysis usually assumes a known genetic map, map misspecification might compro-

mise the estimation and testing procedures in the linkage analysis [38], [39], [40].

In the following section, we begin to introduce a preliminary simulation study to inves-

tigate the bias of multipoint linkage analysis arising from map misspecification.

5.2 METHODS

5.2.1 Disease model and data

We first assume a biallelic dominant model at the disease locus, and the disease-causing allele

D is very rare with frequency q (the frequency of d is p). The probability of the disease in an

individual with i copies of the D allele is denoted by penetrance parameter fi, for i = 0, 1, 2.

The population risk (prevalence) is given by K = f0p
2 + 2f1pq + f2q

2. We also assume

differential sex-specific penetrances between males and females, that is, fmale = Rffemale, so
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the population prevalence in males is proportional to the population prevalence in females

with the same coefficient of R (Kmale = RKfemale).

We assume two markers (M1, M2) unlinked with a trait locus (d) with fully informative

meioses. The recombination rate between M1 and locus d is 0.5 in both females and males,

with sex-specific recombination rates between M1 and M2 (θmale vs. θfemale, Figure 5.1).

Haldane’s map function was used convert between recombination rates and map distances.

Sex-average map distance was calculated by average two sex-specific map distances in males

and females.

5.2.2 Simulation procedure

The purpose of our simulation is to compare the false-positive rates of multipoint qualitative

linkage analysis using sex-specific genetic maps to those using sex-averaged maps. Our

simulation work follows a step-wise procedure (10,000 iterations):

1. Set up replicate(s) with four types of nuclear family in ratios of R3 : R0 : R1 : R2. (Fig-

ure 5.2). The power coefficient is equal to the number of affected males in each family.

One typical replicate in our simulation work consists of 64 : 1 : 4 : 16 of those four

families from left to right.

2. Use SLINK [152] to simulate two markers under sex-specific maps (Figure 5.1). Different

recombination ratios between females and males (θfemale : θmale) are assumed. A female-

to-male distance ratio of 8.68 was used in the simulation.

3. Use Merlin [153] to analyze the whole data set, male-only subset, and female-only subset,

respectively (Sall, Spair statistics [154]), using both sex-averaged maps and sex-specific

maps. In each category, we record the total number of LOD scores that are great than

1, 2, and 3, which will be used to calculate the probability P(LOD > 1, 2, 3).
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5.3 RESULTS

5.3.1 Simulations

Table 5.1 displays the false positive rates calculated by Sall statistic using sex-specific maps

and sex-averaged genetic maps. Table 5.2 displays the false positive rates calculated by Spair

statistic using sex-specific maps and sex-averaged genetic maps. Two statistics Spair and

Sall give very similar results in different situations. The false positive rates (within each

cell) calculated from using sex-specific genetic maps are pretty similar to those from using

sex-averaged maps. When sample size is small (e.g., one replicate of 85 families simulated,

tables 5.1, 5.2), the false positive rates in female subset are much less than those in male

subset. However, when sample size is increased (4 replicates simulated), most of them are

pretty similar to each other, as well as what are seen in whole date set (tables 5.1, 5.2).

5.3.2 Sex-specific susceptibility loci for adiposity related phenotypes in adults

from Samoan archipelago

We performed autosomal variance component linkage analyses on sex-specific subsets of

American Samoan sample and Samoan sample, respectively. The approach to sex-specific

genome scans is simple, the phenotype values for individuals of the opposite sex were set

as missing data. Sex-average genetic maps were used in all analyses. We did not perform

X-linked variance components analyses on sex-specific subsets as we did before in chapter 4.

Before linkage analyses, we screened for significant covariates (P -value < 0.1) to be con-

tained the linkage model and estimated sex-specific heritability for five adiposity traits BMI,

%BFAT, ABDCIR, leptin, and adiponectin, which are summarized in both table 5.3 and

table 5.4. From table 5.3 we can see that in the American Samoan sample, female-specific

heritability of leptin is about ∼1.5 times of that estimated in male subset; in the Samoan

sample, male-specific heritability of BMI is about ∼2 times of that estimated in female sub-

set (table 5.4). At present, it is too early to conclude whether or not those differences are

significant. Further statistical testings are thus needed.
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Table 5.5 displays all maximum lodscores greater than 1.5 from the sex-specific genome

scans on American Samoan sample, in which we identified 13 sex-specific susceptibility loci

of suggestive linkage (LOD ≥ 1.90). 5 sex-specific linkage signals (highlighted in red and

underline, table 5.5) were detected in our combined analyses discussed in chapter 4. Ta-

ble 5.6 displays all maximum lodscores greater than 1.5 from the sex-specific genome scans

on Samoan sample, in which we observed only 4 sex-specific susceptibility loci of sugges-

tive linkage (LOD ≥ 1.90), of which one region (4q22.1) was also detected in our combined

analyses.

5.4 DISCUSSION

In this chapter we first discussed some simulations regarding bias in linkage analysis arising

from genetic map misspecification. If there were substantial difference in the number of

informative male and female meioses, previous studies have found that using sex-averaged

map in place of the biologically more plausible sex-specific maps could lead to increased false

positive rates [40]. However, our results did not indicate inflated false positive rates from

using sex-averaged genetic maps instead of sex-specific maps. One possible reason is that

the female:male map distance ratio was not substantially misspecified in our simulations,

which make it unable to detect modestly increased false-positive rates [39]. We also should

have simulated a large number of replicates as in previous studies [39],[40].

In the real data section, we reported a few chromosomal regions with suggestive linkage

that may harbor sex-specific genes for adiposity related phenotypes in Samoans (American

Samoans vs. Samoans). Some chromosomal regions (e.g., 4q35.1 and 8q12.2 in table 5.5)

might harbor a gene that has significant pleiotropic effects on multiple adiposity traits. Some

sex-specific linkage regions (highlighted in red and underline, table 5.5 and table 5.6) were

previously detected in our combined analyses discussed in chapter 4. For possible positional

candidate genes harbored by these chromosomal regions, please refer to the discussion part

of chapter 4.
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5.5 FUTURE WORK

We have not had time to test whether the heritabilities of adiposity traits in one sex are

significantly different from those in the other sex. We will work on this issue soon. We

will also prepare sex-specific genetic maps for all the markers typed in our study, and then

perform genome-wide screens for our phenotypes using those maps. In doing so, we would

be able to assess how much the use of sex-averged genetic maps instead of sex-specific maps

would change the linkage signals in our real data.
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Table 5.1: Empirical false-positive rates using Spair statistic

Statistic Threshold1 All2 Male3 Female4

Spair R1 1 0.0341 (0.0325) 0.0347 (0.0331) 0.0009 (0.0021)

2 0.0038 (0.0030) 0.0041 (0.0031) 0.0000 (0.0000)

3 0.0000 (0.0000) 0.0001 (0.0001) 0.0000 (0.0000)

Spair R4 1 0.0331 (0.0304) 0.0319 (0.0304) 0.0402 (0.0379)

2 0.0029 (0.0024) 0.0037 (0.0031) 0.0012 (0.0018)

3 0.0004 (0.0006) 0.0003 (0.0004) 0.0000 (0.0000)

Spair R1 Half 1 0.0340 (0.0306) 0.0324 (0.0304) 0.0000 (0.0004)

2 0.0029 (0.0031) 0.0027 (0.0030) 0.0000 (0.0000)

3 0.0004 (0.0002) 0.0002 (0.0002) 0.0000 (0.0000)

Spair R4 Half 1 0.0293 (0.0275) 0.0290 (0.0264) 0.0341(0.0326)

2 0.0039 (0.0037) 0.0031 (0.0028) 0.0002 (0.0006)

3 0.0006 (0.0010) 0.0003 (0.0003) 0.0000 (0.0000)

Note.- Simulation was repeated 10000 times. In each cell, false positive rates in (out of) the parenthesis were calculated

using sex-specific (sex-averaged) maps. R1: one replicate (85 families) was simulated. R4: four replicates (340 families) were

simulated. Half: missing genotypes for one parent, father or mother depending on which sex-specific subset was being analyzed.

1 Threshold LOD scores are 1, 2, and 3.

2 Whole simulated data set.

3 Male subset.

4 Female subset.
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Table 5.2: Empirical false-positive rates using Sall statistic

Statistic Threshold1 All2 Male3 Female4

Sall R1 1 0.0324 (0.0293) 0.0333 (0.0294) 0.0011 (0.0022)

2 0.0032 (0.0023) 0.0032 (0.0024) 0.0000 (0.0000)

3 0.0003 (0.0004) 0.0004 (0.0002) 0.0000 (0.0000)

Sall R4 1 0.0301 (0.0273) 0.0296 (0.0263) 0.0359 (0.0380)

2 0.0025 (0.0020) 0.0021 (0.0019) 0.0010 (0.0016)

3 0.0002 (0.0003) 0.0004 (0.0005) 0.0000 (0.0000)

Sall R1 Half 1 0.0291 (0.0257) 0.0289 (0.0250) 0.0001 (0.0004)

2 0.0029 (0.0023) 0.0026 (0.0029) 0.0000 (0.0000)

3 0.0001 (0.0001) 0.0002 (0.0004) 0.0000 (0.0000)

Sall R4 Half 1 0.0280 (0.0258) 0.0266 (0.0231) 0.0336 (0.0337)

2 0.0029 (0.0026) 0.0020 (0.0017) 0.0003 (0.0003)

3 0.0003 (0.0002) 0.0002 (0.0001) 0.0000 (0.0000)

Note.- Simulation was repeated 10000 times. In each cell, false positive rates in (out of) the parenthesis were calculated

using sex-specific (sex-averaged) maps. R1: one replicate (85 families) was simulated. R4: four replicates (340 families) were

simulated. Half: missing genotypes for one parent, father or mother depending on which sex-specific subset was being analyzed.

1 Threshold LOD scores are 1, 2, and 3.

2 Whole simulated data set.

3 Male subset.

4 Female subset.
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Table 5.3: Sex-specific heritability of adiposity-related phenotypes in adults from American Samoa, adjusted for different

covariates.

Male Female

Trait N1 h2 (s.e.) Variance (%)2 Covariates3 N h2 (s.e.) Variance (%) Covariates

BMI 234 0.30∗ (0.27) 6.2 F, C 316 0.46 (0.18) 1.6 E

2484 0.50 (0.25) N/A N/A 333 0.49 (N/A) N/A N/A

%BFAT 234 0.27∗ (0.22) 40.1 A, F, C 315 0.55 (0.17) 3.4 A, F, E

248 0.57 (0.21) 3.5 A 3324 0.61 (0.15) 0.2 A

Leptin 227 0.35∗ (0.30) 11.8 A, F, C 313 0.77 (0.14) 5.5 F, E

242 0.55 (0.25) 1.0 A 329 0.86 (0.13) 1.7 A

ABDCIR 249 0.56 (0.24) 8.1 A, F 315 0.49 (0.18) 6.9 A, C

249 0.66 (0.23) 3.3 A 334 0.58 (0.17) 1.9 A

Adiponectin 239 0.46 (0.19) 5.0 A 311 0.39 (0.19) 29.8 A, E

239 0.46 (0.19) 5.0 A 328 0.44 (0.19) 13.8 A

Note.- N/A: not applicable or none or no convergence.

∗: Heritability estimates are NOT significantly different from zero, other heritability estimates are significantly different from

zero at P -value < 0.05.

1Number of total phenotyped individuals in the heritability analysis.

2Variance explained by significant covariates.

3Significant covariates (P -value < 0.1) kept in polygenic model. A=age, F=farm work, E=education, C=cigarette smoking.

4 Kurtosis is above normal (>0.8).
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Table 5.4: Sex-specific heritability of adiposity-related phenotypes in adults from Samoa, adjusted for different covariates.

Male Female

Trait N1 h2 (s.e.) Variance (%)2 Covariates3 N h2 (s.e.) Variance (%) Covariates

BMI 330 0.64 (0.16) 7.9 A 339 0.32 (0.14) N/A A

330 0.64 (0.16) 7.9 A 339 0.32 (0.14) N/A A

%BFAT 180 0.58 (0.24) 17.9 A, C 204 0.124 (0.20) 1.3 A

210 0.60 (0.20) 19.8 A 204 0.12(0.20) 1.3 A

Leptin 279 0.64 (0.16) 21.9 A, E, C 326 0.204 (0.15) 0.5 A

316 0.64 (0.13) 17.1 A 326 0.20 (0.15) 0.5 A

ABDCIR 328 0.61 (0.15) 29.9 A, E 340 0.24 (N/A) 15.5 A

331 0.63 (0.15) 28.8 A 340 0.24 (N/A) 15.5 A

Adiponectin4 315 0.32 (0.19) N/A N/A 258 0.39 (0.23) 4.4 C

315 0.32 (0.19) N/A N/A 324 0.42 (0.17) 5.0 A

Note.- N/A: not applicable or none or no convergence.

∗: Heritability estimates are NOT significantly different from zero, other heritability estimates are significantly different from

zero at P -value < 0.05.

1Number of total phenotyped individuals in the heritability analysis.

2Variance explained by significant covariates.

3Significant covariates (P -value < 0.1) kept in polygenic model. A=age, E=education, C=cigarette smoking.

4 Kurtosis is above normal (> 0.8).
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Table 5.5: Sex-specific susceptibility loci with suggestive linkage (LOD score ≥ 1.50) in adults from American Samoa.

American Samoa

Cytogenetic Male Female

Trait Closest marker position LOD Covariatesa LOD Covariatesa

BMI D4S1535 4q35.1 1.68 N/A

D6S460 6q14.1 1.75 N/A

D7S513 7p21.3 1.60 N/A

D7S640 7q32.3 1.94 N/A

D8S260 8q12.2 2.01 (2.70) E (N/A)

D9S175 9q21.13 1.87 E

D16S515 16q23.1 1.91 (1.91) E (N/A)

%BFAT D4S1535 4q35.1 1.56 (1.86) A, E, F (A)

D8S260 8q12.2 1.88 (2.84) A, E, F (A)

D9S175 9q21.13 1.52 A, E, F

D11S4046 11p15.5 2.04 A

D16S3103 16p12.3 2.12 A

D16S503 16q21 1.60 A

Leptin D6S1574 6p25.1 1.60 A

D6S292 6q23.3 1.95 F, E

D12S1659 12q24.32 1.70 A, F, C

D19S209 19p13.3 2.65 (1.74) F, E (A)

D22S283 22q12.3 1.90 (2.19) A, F, C (A)

Note.- The table is continued on the next page.
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Table 5.5: Continued

American Samoa

Cytogenetic Male Female

Trait Closest marker position LOD Covariatesa LOD Covariatesa

ABDCIR D1S206 1p21.2 1.51 (1.91) A, C (A)

D7S513 7p21.3 1.87 (1.91) A, C (A)

D12S352 12p13.33 1.54 (1.90) A, C (A)

Adiponectin D4S1572 4q24 1.78 A

D4S406 4q25 1.66 A, E

D5S416 5p15.1 1.67 A

D13S158 13q33.1 1.97 A

D13S285 13q34 1.58 A

Note. - LOD scores were derived from one particular SOLAR/LOKI run. Regions showing suggestive (LOD ≥ 1.90) linkage are

highlighted in bold. Region(s) found in whole sample including males and females are highlighted in and underline (see chapter

4).

a Covariates included in the model: A=age, F=farm work, E=education, C=cigarette smoking.

N/A: no significant covariates included in the model.
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Table 5.6: Sex-specific susceptibility loci with suggestive linkage (LOD score ≥ 1.50) in adults from Samoa.

Samoa

Cytogenetic Male Female

Trait Closest marker position LOD Covariatesa LOD Covariatesa

BMI D6S1581 6q25.3 1.93 A

%BFAT D4S414 4q22.1 2.06 A, C

D7S519 7p13 2.04 A

D10S1686 10q23.1 1.51 A, C

D12S364 12p13.1 2.02 A

ABDCIR D6S1581 6q25.3 1.74 A, E

Adiponectin∗ D5S407 5q11.2 1.56 A

D10S217 10q26.2 1.65 C

Note. - LOD scores were derived from one particular SOLAR/LOKI run. Regions showing suggestive (LOD ≥ 1.90) linkage

are highlighted in bold. Region(s) found in whole sample including males and females are highlighted in red and underline (see

chapter 4).

a Covariates included in the model: A=age, E=education, C=cigarette smoking.

∗ Kurtosis is above normal (> 0.80).
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d                                M1                  M2

θ                 0.5              θmale

d                                 M1                                           M2

θ                 0.5                     θfemale

Figure 5.1: Unlinked case. The recombination rates between marker 1 (M1) and disease

locus (d) in males and females are 0.5, the recombination rate between marker 1 (M1) and

marker 2 (M2) is sex-specific (θmale vs. θfemale).
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Figure 5.2: Four types of nuclear family in a simulated replicate. Capital D represents a

rare disease-causing allele.
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6.0 DISCUSSION AND FUTURE WORK

6.1 CONCLUSION

The proposed methods in the first part of this dissertation extend previous work in the fol-

lowing two aspects: 1) we extended the Li and Sacks (1954) [33] ITO method to ordered

genotypes and expanded the application of the method to more contemporary genetic models

such as those involving genomic imprinting. 2) we derived a general equation for calculating

any relative-to-relative covariance. Our equation makes it possible to extend the variance

components linkage analysis to model genomic imprinting in even inbred population.

Obesity is a typical multi-factorial disease with overwhelming evidence of genetic com-

ponent effects, yet the role of genetics in obesity is complex, e.g., multiple genes, gene x gene

interventions. Given the fact that over 200 obesity QTLs have been reported to be linked

with numerous obesity-related phenotypes [65], the genome scan results of adiposity-related

traits described in the second part of my dissertation are not novel, however, it still pro-

vides novel insights about how different and rapidly changing environments would affect two

culturally isolated Samoan populations with a homogenous genetic background. More im-

portantly, our 10 cM linkage analysis in our Samoan pedigrees narrows down the promising

chromosomal regions for fine mapping and paves the way for our future association study.

A comparison between genetic risk factors for obesity in Samoan populations with those

identified in cosmopolitan outbred human groups would help answer the question whether

obesity susceptibility genes distribute at similar frequencies across all human groups, which

in turn would provide scientists a more broad picture of the genetics of human obesity.
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6.2 ISSUES RAISED FROM DATA ANALYSES

There are several theoretical issues raised by our analyses of Samoan data, which consist of:

1. How to efficiently select a list of covariates and adjust for their effects before doing linkage

analysis?

In our study, adjusting for the effects of certain covariates intacting with potential suscep-

tibility genetic loci have resulted in increased linkage signals. However, we only considered

simple covariates like age, gender and a few other environmental measurements, further in-

vestigations of interactions between these effects might be needed. In the research of genetic

component of complex disease like obesity here, more “accurate” environemental measure-

ments are needed to help not only more accurately localize the casual genes but also clarify

the complex network of gene-environmental interactions underlying the diseases. Since in

large genetic epidemiological studies, there are often hundreds or thousands of phenotypic

measurements, an efficient agorithm for selection of covariates for study of traits of interest

would be highly beneficial.

2. Multivariate linkage analysis for dissection of complex disease.

In our study, several correlated traits have been collected and analyzed independently

or at most analyzed in bivariate analyses, which may cause a potential loss in power [155].

Furthermore, any single trait might not explain all the phenotypic variation of the disease

and how to best adjust for multiple testing of correlated traits remains a challenge because

Bonferroni corrections are obviously overconservative when number of independent tests are

large. Critical questions and futher complications also arise when to inteprete the univariate

linkage analysis of different phenotypic measurements (e.g., how to explain linkage to the

same region with different but correlated traits?) [156].

As an alternative to univariate analysis, many research groups have performed link-

age analyses using some composite phenotypes constructed by principle component analysis

(PCA) or factor analysis of multiple phenotypic measurements. However, these composite

scores were constructed without consideration of the genetic relationship of these measure-

ments, and were fixed throughout the genome, which can not be justified in many situations.
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Actually PCA approach is not optimal and has been found to be outperformed by multi-

variate analysis on a genomewide scale [156].

Extensions of the univariate variance component (VC) model to multivariate models have

been described in the literature [22], [23] but have not been applied beyond the bivariate

applications [156]. The full multivariate approach proposed by Marlow et al. (2003) [156]

shows promise, as it may aid in identifying susceptibility genes in many complex traits on

a genomewide scale. However, how can their approach be computationally implemented in

pedigrees beyond nuclear families remains a question. Meanwhile, their approach shares the

drawback of all multivariate VC linkage methods, which is that all of them are subject to the

inherent assumption of multivariate normality [90], which can not be guaranteed in practice

(nonnormality of some quantitative traits (like adiposity measurements in our study) are

obvious). Very recently a robust regression based method for multivariate linakge analysis

was proposed by Wang and Elston (2007) [157]. This model-free method is not subject to

normality assumption and its statistic does not follow a complex mixture distribution as

some VC-based statistics follow [157].

Although theoretically their method can be applied for any type and any number of traits

and any type of pedigree data, Wang and Elston (2007) [157] only evaluated the empirical

type I error of their method in a bivariate simulation study (in nuclear families) and then il-

lustrated the use of their method by performing trivariate linkage analysis in nuclear families

from the Beaver Dam Eye Study, so it raises the question how this method would perform

in dealing with multiple traits in extended pedigrees. Furthermore, it is worth to note that

in practice, as in any multivariate linkage analysis, the gains of power by this method will

still vary depending on the specific temporal patterns of correlation between multiple traits

and sources causing the correlation [97], [156], [157]. Thus further investigations are needed

for fully exploring the phenotypic correlations between multiple traits as well as the source

of these correlations.

3. Extensions to handle genomic imprinting in variance components linkage analyses. Is

there a need for a whole genome-wide scan that takes imprinting in certain chromosomal

regions into account?
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Because so far only 1% of genes are currently known to be imprinted, Shete and Amos

(2002) [28] recommended that one should usually perform genome scans with the usual

variance-components method and test for imprinting only if significant evidence for linkage

was observed. However, this may reduce the power to detect those genes that are strongly

imprinted [28].

6.3 FUTURE WORK

6.3.1 Bayesian linkage analysis of Samoan data

Bayesian analysis has been proposed by many authors for human linkage and association

analysis [84], [158]. Compared to traditional genetic analysis methods, Bayesian analysis

provides a versatile framework to implementing and interpreting multilocus models, and a

natural way to use prior information from other studies. Bayesian analysis also was highly

recommended to be applied to avoid problems of model misspecification [159].

In future we will perform a Bayesian genome scan for susceptibility loci of adiposity-

related traits in adults from American Samoans and Samoans, which is also our attempt to

replicate our initial findings discussed in chapter 4. The computer program LOKI will be

used to carry out similar linkage analyses summarized in a recent PNAS paper (Shmultewitz

et al. 2006 [160]). Note that linkage results are now expressed as Bayes factors, or odds

of posterior probability divided by prior probability [84], [161], [162]; no formal statistical

significance like LOD score will be provided. To explain any future linkage signals from

our Bayesian analysis of Samoan data using LOKI software, a L-score (i.e., a Bayes factor

calculated in 1-cM intervals) ≥ 20 will be considered as a strong evidence for linkage, with

a L-score ≥10 considered as a suggestive evidence for linkage.

6.3.2 A recursive software for computing detailed identity coefficients

The recursive algorithm discussed in the chapter 3 so far does not work for all the detailed

identity states. We are still testing new boundary conditions and recursive rules to have
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a final functional algorithm. Once it is ready, an accompanying recursive software will be

developed and be available by request.
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APPENDIX

COVARIANCE BETWEEN INDIVIDUALS I AND J UNDER IMPRINTING

Let the kth allele has population frequency pk and the ordered genotype k|l has trait value

wk|l, then we can write

wk|l = αk + βl + δk|l,

where αk is the additive impact of the maternal allele, βl is the additive impact of the

paternal allele, and δk|l is the residual departure from additivity. Under imprinting, the

identity wk|l = wl|k does not necessarily hold. No generality is lost if we take the trait mean∑
k

∑
l

wk|lpkpl = 0

To minimize ∑
k

∑
l

δ2
k|l =

∑
k

∑
l

(wk|l − αk − βl)
2pkpl

the partial derivative with respect to αk was taken, which gives

−2
∑

k

∑
l

(wk|l − αk − βl)pkpl = −2
∑

k

∑
l

δk|lpkpl = 0

which is only true if 
∑

k δk|lpk = 0,
∑

l δk|lpl = 0∑
k αkpk = 0,

∑
l βlpl = 0
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Using the above facts and because

0 =
∑

l

δk|lpl

=
∑

l

wk|lpl −
∑

l

αkpl −
∑

l

αlpl

=
∑

l

wk|lpl − αk

we can conclude that αk =
∑

l wk|lpl. Similarly, βl =
∑

k wk|lpk also holds.

If Xi and Xj are traits of individuals i and j, since E(Xi) = E(Xj) = 0, then the covariance

is

Cov(Xi, Xj) = E(Xi, Xj)

= δ1

∑
k

(αk + βk + δk|k)
2pk + δ2

∑
k

∑
l

(αk + βk + δk|k)(αk + βl + δk|l)pkpl

+δ3

∑
k

∑
l

(αk + βk + δk|k)(αl + βk + δl|k)pkpl

+δ4

∑
k

∑
l

(αk + βl + δk|l)(αk + βk + δk|k)pkpl

+δ5

∑
k

∑
l

(αk + βl + δk|l)(αl + βl + δl|l)pkpl

+δ6

∑
k

∑
l

(αk + βk + δk|k)(αl + βl + δl|l)pkpl

+δ7

∑
k

∑
l

∑
m

(αk + βk + δk|k)(αl + βm + δl|m)pkplpm

+δ8

∑
k

∑
l

∑
m

(αk + βl + δk|l)(αm + βm + δm|m)pkplpm

+δ9

∑
k

∑
l

(αk + βl + δk|l)
2pkpl

+δ10

∑
k

∑
l

∑
m

(αk + βl + δk|l)(αk + βm + δk|m)pkplpm

+δ11

∑
k

∑
l

∑
m

(αk + βl + δk|l)(αm + βl + δm|l)pkplpm

+δ12

∑
k

∑
l

(αk + βl + δk|l)(αl + βk + δl|k)pkpl
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+δ13

∑
k

∑
l

∑
m

(αk + βl + δk|l)(αm + βk + δm|k)pkplpm

+δ14

∑
k

∑
l

∑
m

(αk + βl + δk|l)(αl + βm + δl|m)pkplpm

+δ15

∑
k

∑
l

∑
m

∑
n

(αk + βl + δk|l)(αm + βn + δm|n)pkplpmpn

= (δ1 + δ2 + δ4 + δ9 + δ10)
∑

k

α2
kpk + (δ1 + δ3 + δ5 + δ9 + δ11)

∑
k

β2
kpk

+(2δ1 + δ2 + δ3 + δ4 + δ5 + 2δ12 + δ13 + δ14)
∑

k

αkβkpk

+(2δ1 + δ2 + δ4)
∑

k

αkδk|kpk + (2δ1 + δ3 + δ5)
∑

k

βkδk|kpk

+δ1

∑
k

δ2
k|kpk + δ6

∑
k

∑
l

δk|kδl|lpkpl

+δ9

∑
k

∑
l

δ2
k|lpkpl + δ12

∑
k

∑
l

δk|lδl|kpkpl
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