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The environment plays an important role in the health of communities. However, few health 

systems exist at the state and/or local levels to efficiently track the potential health effects 

associated with environmental exposure. The objectives of this dissertation are 1) to use 

secondary data for assessing the possible associations between health outcomes and 

environmental exposure and/or hazard; 2) to explore possible methods of data linkage and 

analyses which can be used by state and local environmental health tracking agencies and 3) to 

bring positive contributions to the development of national Environmental Public Health 

Tracking Network (EPHT). In this project, the Three Mile Island (TMI) cohort data (1979-1995) 

and Pennsylvania (PA) Cancer registry data were used to evaluate the associations between 

cigarette smoking and adult leukemia.  A case-crossover analysis was performed with PA 

cardiopulmonary hospital admission data and local air pollution data to assess the health effects 

of air pollutants on cardiopulmonary disease before and after the elimination of a major point 

source of air pollution. A case-control study was also conducted to examine the associations 

between term low birth weight and particulate air pollution.  The results showed that cigarette 

smoking could increase the risk of acute myeloid leukemia (AML). In addition, particulate air 

pollution is significantly associated with cardiovascular hospitalization and low birth weight in 

term infant.  
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In conclusion, the findings suggest that environmental hazards have adverse health effects on a 

number of health endpoints. Secondary data can be a great resource for environmental public 

health tracking, which is of public health relevance. The use of existing data is an effective way 

to assess the potential health effects associated with environmental exposures after an 

appropriate study design with a feasible data linkage and correct methods of data analyses was 

developed.  
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1.0  INTRODUCTION 

The environment plays an essential role in the health of community.  An enormous number 

and variety of chemicals have been introduced into the environment with the process of 

industrialization and economic development. They have caused considerable concerns among the 

community. Exposures to environmental hazards including chemical, biological and physical 

agents have been linked to various adverse health outcomes such as cancer (Jurewicz and Hanke 

2006; Navarro Silvera and Rohan 2007), cardiovascular diseases (Delfino et al. 2005; Monarca 

et al. 2006), respiratory diseases (Kunzli and Tager 2005), adverse pregnancy outcomes (Perera 

et al. 2005; Shi and Chia 2001; Sram et al. 2005) and others in the research literature. Efficiently 

tracking potential health effects associated with environmental exposure appears important, 

urgent and necessary.  

1.1 ENVIRONMENTAL EXPOSURES AND CHRONIC DISEASES 

Most chronic diseases are caused by the interaction between gene and environment, i.e. 

diseases result from an unfavorable combination of genetics and environment(Olden and Guthrie 

2001). Population-based twin studies, which can distinguish between the contributions of 

genetics and environment, suggest that the environment plays a prominent role in disease 

development (Mucci et al. 2005; O'Brien 2000). A recent study by Lichtenstein et al found that 
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genetics only account for 21-42% of the risk for developing the 10 common cancers studied and 

shared environmental exposures could account for 58-82% of the risk (Lichtenstein et al. 2000).  

Environmental hazards are found not only in chemical agents used in agriculture and industrial 

emissions but also in household commercial products, food additives, medicine, research lab as 

well as natural events such as forest fire and volcano eruption. Scientific research has provided a 

better understanding of some environmental exposures that could cause a variety of adverse 

health outcomes such as arsenic and cancers in different systems (Ferreccio and Sancha 2006; 

Tapio and Grosche 2006), radon and lung cancer (Alavanja et al. 1994; Neuberger and Gesell 

2002; Pershagen et al. 1992), lead and cognitive function (Banks et al. 1997; Rice 1996), and 

particulate matter and cardiopulmonary diseases (Peters and Pope 2002; Pope 2000; Pope et al. 

2004). However, for many other environmental hazards, scientific evidence is less conclusive.  

Billions of pounds of toxic agents are released into the environment every year where we live, 

eat, drink, work and play. In the report of National Survey of Public Perceptions of 

Environmental Health Risks, 90% of Americans believed that environmental factors like 

pollution, waste and chemicals are important contributors to diseases 

(http://healthyamericans.org/reports/files/survey0620.pdf). To address the public concerns, it is 

very important to systematically and efficiently identify environmental hazards that cause 

adverse health conditions such as mortality or morbidity in order to remove or minimize the 

health impacts of the toxic agents in the environment.  

  2
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1.2 NATIONAL ENVIRONMENTAL PUBLIC HEALTH TRACKING NETWORK  

Health tracking systems can be classified into two categories: passive and active tracking 

system. Passive tracking systems are usually based on a registry where local health care 

providers routinely report every new-onset case of a disease.  Active tracking system mostly 

relies on population-based survey methods which include conducting personal interviews and 

reviewing medical records to collect information about personal characteristics, health conditions 

and others. Tracking in Environmental health is a strategy for the identification of hazards of the 

environment that cause death, disease, or disability, in order to facilitate the goal of prompt 

removal or reduction of exposures to the offending agents (Hertz-Picciotto 1996).  

1.2.1 THE CURRENT STATUS OF ENVIRONMENTAL HEALTH TRACKING 

SYSTEMS  

The current tracking systems in environmental health are specific only on either 

environmental hazards or health outcomes monitoring. For example, federal and state 

environmental agencies have routinely collected much environmental hazard data on air 

pollution, water pollution and others. In addition, federal, state and local public health agencies 

have developed registries focusing on health outcomes like cancer, birth defects as well as 

asthma etc. Some familiar examples of health effects datasets include the Surveillance, 

Epidemiology, and End Results (SEER) program, the Behavioral Risk Factor Surveillance 

System (BRFSS), the Iowa Birth Defects Registry, National Health Interview Survey (NHIS),  

and vital statistics data (See Appendix B: using secondary data for environmental public health 

tracking). However, few current tracking systems in environmental health can effectively 
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communicate with other tracking systems, efficiently track environmental exposures, and link 

environmental contaminants with health endpoints.  

In 2000, after 18 months of review, the Pew Environmental Health Commission stated that 

the current system does not have the capability to respond adequately to environmental threats 

and that the environmental public health system was fragmented, neglected and ineffective. The 

commission recommended establishing a national environmental public health tracking (EPHT) 

network to link information on environmentally related diseases, human exposures and 

environmental hazards (McGeehin et al. 2004). 

1.2.2 THE NATIONAL ENVIRONMENTAL PUBLIC HEALTH TRACKING 

PROGRAM 

The Centers for Disease Control and Prevention (CDC) is leading the initiative to build a 

national EPHT network which is the ongoing systematic collection, integration, analysis, 

interpretation, and dissemination of data about environmental hazards, exposure to 

environmental hazards, and health effects potentially related to exposure to environmental 

hazards (McGeehin et al. 2004).  The establishment of this network is a vital step to address the 

public health needs of the United States, track chronic diseases as well as environmental 

exposures and eventually reduce the burden of disease on the nation’s population.  

Currently there are 17 states and local health departments and four schools of public health 

funded to conduct activities that will form the basis of the tracking network.  As one of four 

academic partners funded by CDC, the University of Pittsburgh/Drexel Academic Consortium 

for Excellence in Public Health Tracking (UPACE-EPHT) is uniquely positioned to interact with 

health-related agencies in a local, state and regional initiative to facilitate environmental capacity 
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building, to evaluate existing surveillance methodologies and to develop innovative strategies 

and tools to link hazards, exposures and health effects databases and conduct demonstrative 

studies of using secondary data to assess the potential associations between environmental 

hazards and health outcomes. The purpose of the Academic Partners program is to provide 

expertise and support to the National Environmental Public Health Tracking Program (NEPHTP) 

in the development and utilization of the Tracking Network. 

1.3 PROPOSED THREE DEMONSTRATIVE STUDIES AND OBJECTIVES  

One of the important activities of the academic partners in the CDC EPHT program is to 

conduct pilot/demonstration epidemiological studies using existing hazard, exposure and health 

outcome data. The main aims of this work are to examine the potential associations between 

environmental hazards/exposures and health outcomes and to explore methods of data linkage 

and data analyses. The techniques employed in the demonstration studies will be applicable to 

state and/or local environmental health tracking agencies. In this project, three pilot studies have 

been developed using secondary data from state or local environmental public health tracking 

agencies 

1.3.1 CASE-CROSSOVER ANALYSIS OF AIR POLLUTION AND CARDIO-

PULMONARY HOSPITAL ADMISSIONS 

A case-crossover analysis is performed to assess the association between air pollution and 

cardiopulmonary hospital admissions in the  Hazelwood neighborhood of Pittsburgh, PA. The 
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case-crossover design was first proposed by Maclure in 1991(Maclure 1991). The design is an 

attractive approach to estimating the effects of triggers of acute health outcomes by 

environmental exposure. In the design, only cases are involved and the exposure of each case 

during an at-risk “hazard period” just before the event is compared with the level on one or more 

reference days when the event did not occur. This self-matching approach will control for all 

known or unknown time-invariant confounders by design. This method is an alternative to time-

series analysis in air pollution studies.  The secondary datasets used in the study included the 

hospital admission data from the Pennsylvania Health Care Cost Containment Council, the 

climatic data of Pittsburgh from the U.S. National Climatic Data Center database and the air 

pollution data (PM10 and SO2) in the Hazelwood monitor site from the Allegheny County 

Department of Health.  The objectives of this study are to assess the health effects of air 

pollution on cardiopulmonary disease hospitalizations, to evaluate the effects of elimination of a 

major point source of air pollution, i.e. the closure of LTV coke plant, on these relationships and 

to examine how the different methods of control sampling in THE case-crossover design 

influence the results (See SECTION 2).  

1.3.2 PARTICULATE AIR POLLUTION AND TERM LOW BIRTH WEIGHT IN 

ALLEGHENY COUNTY 

Low birth weight has been reported to influence the subsequent health status of individuals 

including morbidity in adulthood (Barker 1995; Hales 1997). Studies across the world have 

consistently provided evidence of the association between particulate matter and adult health 

including mortality and morbidity (Chen et al. 2007; Dockery et al. 1993; Kan et al. 2007; 

Kettunen et al. 2007; Pope 2000; Saldiva et al. 1995).  A special concern of adverse health 
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effects of particulate air pollution on fetal health is generated. This study focuses on the 

associations between exposures to particulate air pollution (PM10) and term low birth weight 

infant and further examines the effect period of particulate matter during pregnancy. The birth 

registration data from the Allegheny County Health Department and the air pollution data from 

RAND’s Center for Population Health and Health Disparities (CPHHD) are obtained in this 

study.  (See SECTION 3) 

1.3.3 CIGARETTE SMOKING AND ADULT LEUKEMIA 

Benzene, a well-established carcinogen and leukemogen, has been shown to be present in 

cigarette smoke. Wallace observed that approximately 90% of personal exposure to benzene in 

the United States is due to smoking (Wallace 1996). The study was designed to assess the 

association between cigarette smoking and leukemia, as well as its subtype, acute myeloid 

leukemia (AML) and to further examine the dose-response relationship between health endpoints 

and smoking with the number of cigarettes per day, the number of years of smoking and pack 

years. The TMI cohort, assembled by the Pennsylvania Department of Health to evaluate the 

adverse health effects of exposure of low-level radiation emitted from the TMI nuclear power 

plant accident on 28 March 1979, and the  PA cancer registry data are obtained in this study.  

The TMI cohort and PA cancer registry data was linked by the key variable of social security 

number (SSN). The records from these two databases refer to the same individual if the SSN is 

identical. This is a simple example of deterministic data linkage strategy. Due to confidentiality, 

this part of the work was done by the PA Department of Health. Survival analysis is performed 

to estimate the associations after controlling for other important confounding factors. 
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2.1 ABSTRACT  

Background: From the early 1900s until its closure in February 1998, the LTV Steel coke 

oven in Pittsburgh (Hazelwood), Pennsylvania was a key source of air pollution. A case-

crossover study was performed to assess the associations between daily air pollution and 

cardiorespiratory (ICD-9: 390-519) hospitalizations before and after plant closure and to evaluate 

how closure influenced these associations. 

Methods: Air pollution data, climatic data and cardiorespiratory hospitalizations among 

Hazelwood-area residents 65 years and older were obtained for the period of 1996 through 2000. 

Data were analyzed using a case-crossover design and conditional logistical regression. Two 

distinct referent sampling approaches were compared. 

Results: Significant associations were observed between the fourth quartile in PM10 and 

cardiorespiratory hospitalizations (OR: 1.12; 95%CI: 1.02-1.23) as well as cardiovascular 

hospitalizations only (ICD-9: 390-459) (OR: 1.13; 95%CI: 1.01-1.26) before the plant closure. 

After closure of the plant, PM10 was not significantly associated with cardiorespiratory or 

cardiovascular disease hospitalizations. Moreover, the referent sampling approaches did not 

greatly alter the estimations in the case-crossover analysis. 

Conclusion: Existing secondary data is an economical source to assess the impact of point 

source polluters on the environmental landscape. The findings suggest that closure of the LTV 

coke plant was associated with a reduction risk of the cardiorespiratory and cardiovascular 

hospitalizations.  

Key word:  Case-Crossover Analysis    Cardiopulmonary      Air Pollution  
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2.2 INTRODUCTION 

The environment plays an important role in health and human development. There are few 

surveillance systems that have the capability to adequately assess to environmental threats at the 

state or national levels in the United States. To address this gap, in 2002 the Centers for Disease 

Control and Prevention (CDC) began to establish the National Environmental Public Health 

Tracking (EPHT) Network, which is the ongoing collection, integration, analysis, interpretation, 

and dissemination of data on environmental hazards; exposure to those hazards; and related 

health effects (1). A hallmark of the Tracking Network is the use of exiting data in evaluating the 

relationships between exposures and health outcomes. In the present study, we demonstrated the 

use of data for purposes other than for which they were collected such as administrative 

purposes, applied available methods for linking and analyzing environmental and health outcome 

data, and made a positive contribution to closing gaps in methodology for conducting similar 

investigations within the context of the environmental public health tracking program.  

Epidemiological studies consistently show that air pollutants are linked to cardiovascular and 

respiratory diseases (2-5). There are several potential biological mechanisms by which air 

pollutants cause adverse health effects. One of the potential mechanisms is related to 

inflammation and oxidative stress. High concentrations of oxidants and pro-oxidants contained in 

ambient air pollution, such as transition metals, reactive organic compounds and gases such as 

ozone (O3) or nitrogen oxides (NO, NO2) can generate reactive oxygen species(ROS)(6), alter 

function of mitochondria(7) or NADPH-oxidase (8), activate inflammatory cells capable of 

generation of ROS and reactive nitrogen species(9), and promote oxidative stress and respiratory 

inflammatory responses, which lead to DNA damage(10). Studies show that air pollution can 

increase the level of blood viscosity and modify the adhesive properties of red blood cells(11), 
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increase blood pressure(12) and C-reactive protein level(13), and increase heart rate(14), which 

lead to an increased risk of cardiovascular diseases. In addition, air pollutants, interacting with 

lung receptors, can activate pulmonary neural reflexes and change the autonomic function  

resulting in an decreased heart rate variability (HRV)(15) which partly explains the observed 

cardiovascular effects. 

Coke plants produce a by-product of coal that burns more intensely and is used in the making 

of steel. These plants, as a major source of air pollution, emit gaseous air pollutants such as 

sulfur dioxide (SO2),  nitrogen oxide (NO2), carbon monoxide (CO), airborne particulate matter 

which contains organic compounds like benzo[a]pyrene (B[a]P) and other polyaromatic 

hydrocarbons (PAHs) (16, 17) and inorganic compounds like  lead and mercury as well as other 

hazardous pollutants. These emissions have been linked to cardiorespiratory diseases and 

threaten the natural environment and overall health of the human population(18, 19).  

Hazelwood is a neighborhood located in Pittsburgh, Pennsylvania. The LTV Corporation 

coke plant, a major local source of air pollution, was operational in the area for more than half a 

century. Toxic emissions from the plant led to the deterioration of the surrounding environmental 

landscape in the Hazelwood, Greenfield, and Squirrel Hill neighborhoods. On February 28, 

1998, after eighty years of operation, the LTV plant was closed. The plant's auxiliary facilities 

and much of the plant itself were demolished in early 1999. The closure of the plant provided a 

unique opportunity to conduct a “retrospective natural intervention” study to examine whether 

reductions of ambient pollution concentration related to plant emissions reduced the adverse 

cardiorespiratory health effects in the area. 

The case-crossover design was first proposed by Maclure in 1991(20). The design is an 

attractive approach to estimating the effects of triggers of acute health outcomes by 
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environmental exposure and has subsequently been widely used in air pollution studies(21-25). 

In this design, only cases of events are involved. The exposure of each case during an at-risk 

“hazard period” just before the time of the event is compared with exposure during one or more 

periods when the event did not occur (control periods). This self-matching approach controls by 

design for all known or unknown time-invariant confounders.  

In the present study, a case-crossover analysis was performed to assess the association 

between air pollution and cardiorespiratory hospital admissions before and after the closure of 

this plant among the population 65 years of age and older who lived in the Hazelwood area, and 

to evaluate how the closure of a major point source of air pollution influences the associations. 

We also compared two different strategies of selecting referent periods in the case crossover 

analysis and evaluated how the selection of referent periods influenced the results.  

Existing data used in the study included hospital admission data from the Pennsylvania 

Health Care Cost Containment Council, climatic data of Pittsburgh from the U.S. National 

Climatic Data Center Database, and a pollution monitoring data from the Allegheny County 

Health Department.  

2.3 MATERIALS AND METHODS 

2.3.1 STUDY POPULATION: 

The Pennsylvania Health Care Cost Containment Council (PHC4), Special Request Unit 

(Harrisburg, PA) provided the cardiorespiratory hospital admission data for subjects 65 years of 

age and older in Hazelwood and surrounding neighborhoods in the city of Pittsburgh, 
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Pennsylvania. The study location included all zip codes surrounding the LTV coke plant with the 

plant as the center, i.e. zip codes 15207, 15120, 15217 and 15218.  A dataset that included all 

inpatient cardiovascular and respiratory (i.e. Cardiorespiratory) hospital admissions in the 

Hazelwood area between 1996 and 2000 was created. The records contained a primary discharge 

diagnosis of the circulatory system [International Classification of Disease, 9th Revision (ICD-9) 

codes of 390-459] or respiratory system (ICD-9 codes of 460-519]. The study was limited to the 

first event for those who were hospitalized for Cardiorespiratory diseases in a one month period.  

2.3.2 AIR POLLUTION AND WEATHER DATA 

Ambient air levels of specific criteria pollutants were obtained in electronic format for the 

Hazelwood monitoring site from December 1995 through January 2001. The data collected 

included 24-hour values for sulfur dioxide (SO2) and PM10. The daily minimum, maximum and 

mean values of SO2 and PM10 were computed for the present study. These daily measurements 

were assumed to represent the exposure level for the entire Hazelwood study area. 

Daily meteorological data were obtained from the U.S. National Climatic Data Center 

database from the monitoring site at the Pittsburgh International Airport, Allegheny County 

(Coopid: 366993, Wbandid: 94,823, Latitude: 40º30', Longitude:-80º14'). The information for 

daily mean temperature and daily mean relative humidity was abstracted from the database for 

the time period of 1996-2000. 
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2.3.3 DATA ANALYSIS 

Data were analyzed with the case-crossover technique which is an alternative to time-series 

analysis for assessing acute health effects of air pollution. In the design, cases serve as their own 

controls. A subject’s exposure at the time of a health event (case-period) is compared with 

exposures at previous or subsequent points of time when that subject was a non-case (control-

period). In the present study, the case-period is defined as the date of hospitalization for any 

cardiorespiratory diseases. The control periods were chosen using two methods, either the 

bidirectional control sampling approach or the time-stratified sampling approach in order to 

control relevant time-varying confounders (26). In the bidirectional control sampling approach, 

the control periods were selected as 7 and 14 days before and after the date of hospitalization in 

order to control for day-of-week effect. In the time-stratified method, the stratum is defined as 

the month of event. All other same days of week as the case period in the month were selected as 

the control periods. For example, if a case occurs in March on a Wednesday, all other 

Wednesdays in March are the control periods. 

In the bidirectional control sampling approach, the associations between air pollutants and 

hospitalization for cardiovascular diseases only or respiratory diseases only as well as both 

combined (cardiorespiratory) were estimated for the time period January 1, 1996 to February 28, 

1998 (before closure of the plant) and for the period March 1, 1998 to December 31, 2000 (after 

closure of the plant), respectively. The SAS conditional logistic regression procedure (Proc 

Phreg) was applied to estimate the associations between hospital admissions and air pollution. 

Air pollutants were fitted into the model as continuous variables or categorical variables 

(quartiles). Odds ratios (ORs) were calculated for continuous variables and the quartiles of each 
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pollutant during each time period with the first quartile as a reference after adjusting for daily 

meteorological factors including current day’s mean temperature and relative humidity. 

In the time-stratified control sampling approach, all analyses were performed with the Case-

Crossover Analysis Tool (Beta V1.1 C-CAT), developed by Apex Epidemiology Research, LLC, 

in conjunction with the New York State Department of Health, to provide an easy-to-use 

interface to SAS software that implements time-stratified case-crossover analysis. Air pollutants 

were fitted into the model only as continuous variables. The results of this approach were 

compared with the previous approach. In addition, the impact of different referent period 

selections on the results was also examined.  

2.4 RESULTS  

Among the residents of Hazelwood area who were at least 65 years of age, there were a total 

of 13,437 cardiorespiratory disease admissions (9,935 cardiovascular disease admissions and 

3,502 respiratory diseases admissions) during 1996-2000. Table 1 summarizes the number of 

admissions that had a specific diagnosis of cardiovascular disease and respiratory disease before 

and after the closure of the LTV coke plant. There were 4,491 and 5,444 cardiovascular disease 

hospitalizations before and after the closure of the plant, respectively. In addition, 1,596 and 

1,906 respiratory disease hospitalizations were respectively observed before and after the closure 

of the plant in this study.  

The distributions of air pollutants, age and meteorological variables before and after the 

closure of plant are described in Table 2-2. The distribution of age of hospitalizations is similar 

before and after the plant closure. The percentiles (10th, 25th, 50th, 75th and 90th ) of PM10 and 
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SO2 were all higher before than after the closure of the plant. The daily averages of PM10 were 

27.75 µg/m3 before and 21.96 µg/m3 after the plant closed, respectively. The average of SO2 

decreased to nearly half of the previous levels (from 16.4 ppb to 8.7 ppb) after the plant was 

closed. For considering the difference of length of time between before and after the plant 

closure, air pollutants and climatic factors are compared for two-year period before and after the 

plant closure, respectively. The results are described in Table 2-3. The change of air pollutants is 

the same regardless of the difference of length of time.   The percentiles of daily temperature and 

daily relative humidity were similar in two-year period before and after the closure of the plant.  

Table 2-4 shows the associations between quartiles of PM10 and cardiorespiratory 

hospitalizations after controlling for temperature and relative humidity. The results showed 

significant associations between the fourth quartile in PM10 and cardiorespiratory hospitalizations 

(OR: 1.12; 95%CI: 1.02-1.23) as well as cardiovascular disease hospitalization only (OR: 1.13; 

95%CI: 1.01-1.26) before the closure of the plant. Moreover, significant trends for increasing 

risks on cardiorespiratory hospitalizations (p=0.008) and cardiovascular disease hospitalizations 

(p=0.02) with increasing concentration of PM10 were observed. After the closure of the plant, the 

associations with cardiorespiratory hospitalization were no longer statistically significant. In this 

study, no significant association between respiratory disease hospitalization and PM10 was found 

either before or after the plant closure. 

The associations between SO2 and cardiorespiratory hospitalizations were illustrated in Table 

2-5. There were no significant associations between SO2 and hospitalizations of cardiovascular 

diseases only or respiratory diseases only or both combined either before or after the closure of 

the plant.  
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Table 2-6 shows the associations between PM10 and cardiorespiratory hospitalizations with 

different referent periods in the case-crossover analysis. The results from the bidirectional 

control sampling approach are similar to the results of the time-stratified control sampling 

method.  

2.5 DISCUSSION  

Few studies are currently available to assess how the addition or elimination of a single point 

major air pollution source affects the risk of adverse health effects in specific geographic area. 

This study, for the first time, used a case-crossover design to evaluate this relationship using 

existing secondary data. The case-crossover approach is a self-matched case control study, which 

has great advantages in comparison with a time series approach. This approach controls certain 

confounding factors by design rather than by modeling. With this design, personal characteristics 

such sex, age, race and time-invariant variables are controlled by the design. By using symmetric 

7 and 14 day reference periods, the case-crossover design eliminates the confounding effects of 

long-term trends, seasonality and day of week(27). Therefore, the use of a case-crossover design 

avoids common concerns about the complex mathematical modeling and adequacy of seasonal 

control.  

This study demonstrated that the levels of PM10 and SO2 decreased in Hazelwood area after 

the plant was closed.  PM10 declined an average of 6 µg/m3 and SO2 was reduced to half of the 

level when the plant was open. Significant associations between PM10 and cardiovascular 

diseases as well as cardiorespiratory disease hospitalizations were observed before the closure of 

plant. Moreover, a trend of increased risk for cardiovascular disease as well as cardiorespiratory 
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disease hospitalizations with increasing particulate matter was observed before the plant closure 

in the study. Interestingly, after the closure, the associations were no longer statistically 

significant. Sulfur dioxide did not show a significant association with any outcomes in this study 

either before or after the closure of the plant. Because sulfur dioxide, a highly soluble gas, can be 

easily and predominantly stripped out of the upper airways(28), the role of sulfur dioxide in 

developing adverse health effects is less coherent. Several case-crossover studies reported that 

there are no significant associations between sulfur dioxide and respiratory disease(22, 29) as 

well as cardiovascular disease hospitalization(30, 31). 

 The reduced health effects of PM10 after the plant closure could be due to two facts: the 

change in composition and/or concentration of particulate matter. After the elimination of the 

LTV coke plant, some toxic elements in the particulate matter associated with the plant emission 

have also been removed. The monitored data from the Allegheny County Health Department 

showed that the concentrations of benzo(α)pyrene [B(α)P], as a recognized carcinogen as well as 

respiratory, endocrine and immunological toxicant, was significantly lower after the plant 

closure. B(α)P can not however be used as a predictor in the study because it was measured 

every 7 days. Another potential fact is the reduced concentration of particulate matter in the area. 

At the low level of particulate matter, there might be no adverse health effect on 

cardiorespiratory hospitalizations or the association is too weak to be detected on this population 

sample size.    

The findings of this study support that particulate air pollution could increase the risks of 

cardiorespiratory hospitalizations before the LTV coke plant closure and an elimination of a 

major air pollution source could lead to a reduced risk of adverse health effects, which is 

consistent with other epidemiological studies. Pope et al conducted a cross-sectional study to 
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assess how the operation of a steel mill influences the association between hospital admissions 

and PM10 in Utah Valley during the period April 1985-February 1988. The results showed that 

children's hospital admissions were two to three times higher during the winters when the mill 

was open compared to when it was closed (32). The findings in this study further strengthen the 

epidemiologic evidence of acute adverse health effects of airborne particle levels.  

In this study, we also evaluated how the control sampling approaches influence the 

estimations in the case-crossover analysis. PM10 was the only pollutant used to evaluate these 

approaches because sulfur dioxide had no associations with the outcomes in this study and 

Akaike's information criterion (AIC) was increased in both methods after SO2 was fitted as a 

continuous variable, suggesting a poor model fit. The estimations from the bidirectional control 

sampling methods are similar to those from the time-stratified method. The results of the 

comparison suggested that the control sampling methods in case-crossover analysis did not alter 

the conclusion.  

A potential limitation of this study is that only one air pollution monitoring site was available 

in the Hazelwood area. Individual exposure was estimated by using the measurement from this 

fixed outdoor monitoring station. The potential misclassification of exposure due to lack of 

personal measurement can not be avoided. However, the bias might underestimate the 

association and shift the results toward the null (33, 34). In addition, we did not assess the 

promoting role of other pollutants such as nitrogen dioxide or ozone because the data of these 

pollutants from the monitor site were not available or complete. However, particulate matter is 

likely a reasonable indicator of other pollutants due to the high collinearity between particulate 

matter and other pollutants (35).  Another limitation is potential for selection bias because we 

were unable to include all cardiorespiratory disease cases in the study if unreported to the PHC4. 
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Finally, another limitation of this study is that the sample size of respiratory disease 

hospitalization might be not large enough to have sufficient power to detect a statistically 

significant difference.   

In summary, this study demonstrates the utility of secondary datasets and the methodology of 

the case-crossover approach to evaluate the associations between environmental air pollutants 

and acute health outcomes. This investigation demonstrated important strategies for using 

existing data to address different health issues and developing the methodology of data linkage 

and data analysis in conducting similar studies in an environmental public tracking program.  

Moreover, this analysis provides, for the first time, evidence of a reduction in air pollution 

resulting in a decrease in risk of Cardiorespiratory disease hospitalization using a case-crossover 

design. The findings reinforce the deleterious impact of air pollution and provide new 

epidemiologic information that the elimination or addition of a major point source of pollution 

could change a local environmental landscape and influence the health of the population living in 

the area.  Further studies are required to confirm these findings.  
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Table 2-1 Distribution of specific primary diagnoses of hospital admissions among study sample in 
Hazelwood area, Pittsburgh, PA 

Diagnosis LTV Plant open 
(1/1/1996-02/28/1998) 

LTV Plant closed 
(3/1/1998-12/31/2000) 

Total 

Cardiovascular 4,491 5,444 9,935 

Respiratory 1,596 1,906 3,502 

Combined 6,087 7,350 13,437 

 
 
 
 
 
 
 

Table 2-2 Percentiles and means of age, daily air pollutants and weather variables in Hazelwood, PA 

Variables Time periods 10% 25% 50% 75% 90% Mean 
LTV Plant open 68 72 77 83 88 77.4 

Age (years) 
LTV Plant closed 68 72 78 83 88 78.0 

LTV Plant open 13.1 17.8 24.0 35.0 46.8 27.8 
PM10, µg/m3

LTV Plant closed 10.4 13.5 19.1 27.7 37.2 22.0 
LTV Plant open 4.7 8.2 14.1 22.4 30.1 16.4 

SO2, ppb 
LTV Plant closed 3.4 5.0 7.7 11.0 15.3 8.7 
LTV Plant open 26.0 35.0 48.0 65.0 72.0 48.8 

Temperature (oF) 
LTV Plant closed 28.0 40.0 55.0 67.0 74.0 52.5 
LTV Plant open 30.0 40.0 49.0 62.0 73.0 51.1 

Humidity (%) 
LTV Plant closed 29.0 37.0 48.0 60.0 72.0 49.1 
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Table 2-3 Distribution of daily air pollutants and weather factors in two-year period before and after the 
plant closure in Hazelwood, PA 

Variables Time periods Mean 10% 25% 50% 75% 90% 
LTV Plant open 28.2 13.5 18.2 24.6 35.4 47.4 

PM10, µg/m3

LTV Plant closed 21.3 10.2 13.1 18.5 26.9 36.3 
LTV Plant open 16.1 4.5 8.1 13.8 22.2 29.5 

SO2, ppb 
LTV Plant closed 8.5 3.1 4.9 7.7 10.9 14.5 
LTV Plant open 50.4 27 37 51 66 73 Temperature 

(oF) LTV Plant closed 51.6 26 38 55 67 73 
LTV Plant open 50.5 30 40 49 61 72 

Humidity (%) 
LTV Plant closed 48.5 28 36 48 60 71 
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Table 2-4  ORs† (95% CIs) of cardiopulmonary hospitalizations for PM10 before and after the closure of  the 
plant 

 
PM10

Hospitalizations Exposure levels LTV Plant open 
(01/01/1996-
02/28/1998) 

LTV Plant closed 
(03/01/1998-12/31/2000) 

Cardiovascular and  
Respiratory diseases 

combined 
   

 <25th  percentile * 1.0 1.0 

 25th to 50th percentile 0.99 (0.91-1.08) 1.03 (0.96-1.11) 

 50th to 75th percentile 1.08 (0.99-1.18) 1.02 (0.94-1.10) 

 ≥75th percentile 1.12 (1.02-1.23) § 0.96 (0.88-1.05) 

 P for trend 0.008§ 0.61 
Cardiovascular 
diseases only    

 <25th  percentile * 1.0 1.0 

 25th to 50th percentile 1.01 (0.91-1.11) 1.09 (0.99-1.81) 

 50th to 75th percentile 1.10 (0.99-1.21) 1.04 (0.95-1.14) 

 ≥75th percentile 1.13 (1.01-1.26) § 0.94 (0.85-1.04) 

 P for trend 0.02§ 0.42 
Respiratory diseases 

only    

 <25th  percentile * 1.0 1.0 

 25th to 50th percentile 0.97 (0.82-1.39) 0.89 (0.78-1.03) 

 50th to 75th percentile 1.05 (0.89-1.24) 0.97 (0.84-1.13) 

 ≥75th percentile 1.11 (0.92-1.35) 1.03 (0.87-1.22) 

 P for trend 0.22 0.71 

* Reference group 
† Odds ratios adjusted for daily weather variables (daily mean temperature and humidity) 
§ P<0.05 
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Table 2-5  ORs† (95% CIs) of cardiopulmonary hospitalizations for SO2 before and after the closure of plant 

SO2

Hospitalizations Exposure levels LTV Plant open 
(01/01/1996-
02/28/1998) 

LTV Plant closed 
(02/28/1998-
12/31/2000) 

Cardiovascular and  
Respiratory diseases 

combined 
   

 <25th  percentile * 1.0 1.0 

 25th to 50th percentile 1.00 (0.92-1.09) 1.03 (0.95-1.11) 

 50th to 75th percentile 1.06 (0.97-1.16) 0.99 (0.92-1.07) 

 ≥75th percentile 1.01 (0.93-1.11) 1.02 (0.94-1.11) 

 P for trend 0.47 0.68 
Cardiovascular 
diseases only    

 <25th  percentile * 1.0 1.0 

 25th to 50th percentile 1.04 (0.95-1.15) 1.03 (0.96-1.12) 

 50th to 75th percentile 1.07 (0.96-1.19) 0.96 (0.88-1.05) 

 ≥75th percentile 1.05 (0.94-1.17) 0.99 (0.89-1.09) 

 P for trend 0.25 0.59 
Respiratory diseases 

only    

 <25th  percentile * 1.0 1.0 

 25th to 50th percentile 0.89 (0.75-1.05) 1.02 (0.88-1.18) 

 50th to 75th percentile 1.05 (0.88-1.24) 1.09 (0.94-1.27) 

 ≥75th percentile 0.92  (0.77-1.10) 1.12 (0.95-1.32) 

 P for trend 0.59 0.09 

* Reference group 
† Odds ratios adjusted for daily weather variables (daily mean temperature and humidity) 
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Table 2-6 ORs* (95% CIs) of cardiopulmonary hospitalizations per unit change in PM10 which is fitted as a 
continuous variable in case-crossover analyses with different control sampling approaches 

Control sampling approach 
Hospitalizations Time periods Bidirectional 

control sampling 
Time-stratified  

control sampling 
Cardiovascular and  
Respiratory diseases 

combined 
   

 LTV Plant open 1.003 (1.001-1.005) 1.002 (1.00-1.005) 

 LTV Plant closed 0.998(0.995-1.001) 0.997 (0.994-1.00) 
Cardiovascular 
diseases only    

 LTV Plant open 1.003 (1.00-1.006) 1.003(1.00-1.005) 

 LTV Plant closed 0.997 (0.994-1.00) 0.996 (0.993-1.00) 
Respiratory diseases 

only    

 LTV Plant open 1.003 (0.998-1.008) 1.001 (0.996-1.006) 

 LTV Plant closed 1.00 (0.995-1.006) 0.998 (0.992-1.004) 
* Odds ratios adjusted for daily weather variables (daily mean temperature and humidity) 
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3.1 ABSTRACT 

Introduction: Low birth weight has been associated with increased risks of mortality and/or 

morbidity in childhood and adulthood. The aim of this study is to explore the association 

between particulate matter (PM10) and term low birth weight (birth weight <2,500g). 

Methods: Birth data from the Allegheny County Health Department, Pittsburgh PA and 

PM10 air data generated with inverse-distance interpolation by RAND’s Center for Population 

Health and Health Disparities, were obtained. The study population consisted of all term 

singleton live births (gestational age ≥37 weeks) born between Jan 1st, 1994 to Dec 31st, 2000. 

Infants with birth weight <2,500g were classified as LBW. Logistic regression was performed to 

estimate the association per inter-quartile range increase in PM10.  

Results: The results showed that the odds ratios of term LBW per inter-quartile range 

increase in PM10 were 1.13 (95%CI: 1.02-1.25) during the first trimester and 1.10 (95%CI: 1.00-

1.22) during the second trimester after adjusted for other important covariates, respectively.  

Conclusion: The findings of the study support that exposure to PM10 could increase risks of 

term LBW. Further studies are warrant to corroborate these findings. 

 

Keywords: LBW   PM10 air pollution   Inverse-distance interpolation 

 

  30



3.2 INTRODUCTION 

A growing body of evidence suggests that maternal exposure to air pollution is associated 

with adverse pregnancy outcomes. Studies conducted worldwide have investigated the health 

effects of air pollution on preterm delivery (PTD) (1, 2), low birth weight (3-5), intrauterine 

growth restriction (IUGR) (6, 7) and birth defects (8, 9). The air pollutants of concern in these 

studies include carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone 

(O3), and particulate matter (PM).   

Low birth weight (birth weight less than 2500 g) is comprised of the two overlapping 

etiologies of PTD as well as IUGR. Term LBW is caused by fetal growth retardation instead of 

early delivery.  LBW has been widely reported to influence the health status of individuals, 

including increased mortality and morbidity in childhood (10, 11) and an elevated risk of 

hypertension, coronary heart disease, Type II diabetes in adulthood, abnormalities of lipid 

metabolism and blood coagulation (12-15). The public health relevance on this important health 

issue is evident.  

Studies across the world have consistently provided evidence that exposure to particulate 

matter increases risks of mortality and morbidity among adults (16-23). There is a great concern 

about the association between particulate matter and fetal health outcomes, especially low birth 

weight. However, the findings of particulate matter in fetal health research are inconsistent, 

especially regarding the effect period and the strength of association of particulate matter. In 

addition, many prior studies did not account for important confounders such as maternal 

smoking, gestational age and weight gain. Previous studies have also had limited spatial 
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information on pollution sources and concentrations because the exposure mostly relied on the 

measurements at monitoring stations.  

In the present study, we investigated the possible association between particulate matter 

(PM10) and term LBW in Allegheny County, PA (USA). The specific purposes of this study are 

to use PM10 data spatially and temporally being generated with inverse-distance interpolation, to 

estimate the levels of PM10 corresponding to the first, second, and third trimesters of pregnancy, 

to evaluate the association between PM10 and term low birth weight, and to explore the possible 

techniques of data management, data linkage and data analysis for environmental public health 

tracking to evaluate these relationships.   

3.3 MATERIALS AND METHODS 

3.3.1 Live birth cohort 

All live birth data in Allegheny County, PA was obtained from the birth registry data 

maintained by the Allegheny County Health Department, PA for the period January 1, 1994 

through December 31, 2000.   The information in the database includes date of birth, birth 

weight, gestational age, parity, birth order, maternal age, education, race and geographical 

location of birth (neighborhood in the city of Pittsburgh and municipality outside the city) and 

other reproductive data. Individual data of all singleton live births to the Allegheny County 

residents were abstracted from the database and used in the present study. 
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3.3.2 Air pollution data and geographical data 

The quarterly measures of PM10 in census tracts in Allegheny County were obtained from the 

RAND’s Center for Population Health and Health Disparities (CPHHD) Data Core. The 

geographic-specific data were derived from the publicly available Environmental Protection 

Agency (EPA) Air Quality System (AQS) Criteria pollutant data with the inverse-distance 

interpolation based on the 1990 based census tracts.  The following are the basic processes used 

to construct the dataset.  

The hourly data of PM10 between 1994 and 2000 were obtained from the U.S EPA AQS. The 

data were aggregated from daily to quarterly levels for each monitor site. The quarterly PM10 

measures from the EPA monitor sites were used to estimate the levels at the centroids of census 

tracts, which represent the levels of the census tracts. All distances from the census tract centroid 

to the site locations were computed geospatially using ArcGIS (Version 9.1, ESRI Inc. Redlands, 

WA, USA). The measures from the monitor sites within 100 kilometers between the centroid and 

their locations are used to estimate the level of that census tract. The estimation involves various 

inverse distance-weighting schemes that are a function of the distance between the census tract 

centroid and the PM monitors (see Figure 1). Therefore, the sites further away will have less 

influence and thus less contribution overall to the estimation.  

3.3.3 Exposure estimation 

The quarterly PM10 data were aggregated from census tract to neighborhood in the city or 

municipality outside the city in geographical level. The average of the quarterly PM10 measures 

of all census tracts in each neighborhood or municipality was used to estimate the quarterly level 
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of that neighborhood or municipality. It assumed that all births in the same neighborhood or 

municipality had the same exposure at a single time. 

 Air pollution estimates for each individual birth were assigned using the neighborhood or 

municipality of the maternal residence at infant’s birth.  For each birth, the accumulated first 3-

month, 6-month and 9-month exposures was computed by weighting the quarterly PM10 

measures based on the mother’s residence (neighborhood or municipality), the month, quarter 

and year of birth conception. The weights of estimating the accumulated exposures are shown in 

the table 1. The date of conception was computed based on the date of birth and gestational age. 

For example, for an infant who was conceived in February 1994, the accumulated first 3-month 

exposure is two times the first quarterly PM10 measure in 1994 plus one time the second 

quarterly PM10 measure in 1994. The monthly averages of trimester-specific exposures were 

calculated based on the accumulated exposures.  

3.3.4 Statistical Analysis 

In this study, our analyses were focused on the effects of PM10 on birth weight mediated by 

reduced fetal growth as opposed to early delivery. Therefore, the study population was restricted 

to infants who were born at term with gestational age ≥37 weeks.  The relationship between 

particles and term low birth weight was evaluated using logistic regression analyses. Adverse 

pregnancy outcomes, i.e. term LBW, defined as dichotomous categories, represent dependent 

variables in the analysis. A term LBW infant is defined as a live-birth infant weighing <2,500g 

and gestational age ≥ 37 complete weeks.  

Several known risk factors for term LBW that could potentially confound the relationship 

between LBW and air pollution were also included in regression models: maternal age (<20, 20-
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29, 30-34,35-39, ≥40 years), maternal race (black, white, others), maternal education (<9, 9-11, 

12, 13-15, ≥16 years), maternal tobacco use (yes/no), level of prenatal care (none, during first 

trimester, after first trimester), history of LBW or preterm infant (one or more vs. none), parity 

(first birth vs. second or subsequent birth), birth season, infant sex, gestational age (measured in 

weeks) and maternal weight gained. 

Air pollution exposures were fitted into the logistic regression model as continuous variable. 

The odds ratios with per inter-quartile range increase in PM10, i.e. and 7 µg/m3 increase, were 

estimated for each trimester.  

3.4 RESULTS 

A total of 100,595 singleton birth records were available for Allegheny County between 1994 

and 2000. Among 92,447 singleton term births (≥37 completed weeks gestation), 47,221 were 

male births and 45,226 female births. The sex ration at birth is 104 per 100 females.  A total of 

2,058 (2.2%) low weight births occurred over the entire study period.  

The mean trimester-specific exposures and 9-month period for PM10 during the study period 

were 28.7, 28.2, 28.1 and 28.1 µg/m3 respectively. The inter-quartile range for each trimester is 

nearly 7 µg/m3 (table 3-2). 

Table 3-3 summarizes the distributions of characteristics of singleton births among term 

LBW. The results of crude estimations suggested that term LBW was significantly associated 

with maternal age, race, education, tobacco use, infant gender, previous LBW or PTD, parity, 

prenatal care, gestational age and weight gained.  For term LBW, younger (<20) and older (≥40) 

maternal age, no previous birth, low levels of education and prenatal care, tobacco use and 
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previous LBW or PTD could increase the risks of term  LBW. African-American women had a 

higher risk of term LBW than whites. Male infant sex was negatively associated with term LBW. 

Risk of term LBW decreased as the increase of gestational age and maternal weight gained (See 

Table 3-3).  

Table 4-4 illustrates the risks of term LBW associated with per inter-quartile range increase 

in exposure to trimester-specific PM10. Significant associations between term LBW and the first 

trimester exposure to PM10 was observed in the study after controlling for other covariates 

including for maternal age, maternal race, maternal education, smoking, weight gain, gender of 

infant, gestation age, parity, previous LBW or preterm birth, level of prenatal care and birth 

season. The odds ratios of term LBW for per inter-quartile range increase in PM10 were 1.13 

(95%CI: 1.02-1.25) during the first trimester and 1.10 (95%CI: 1.00-1.22) during the second 

trimester, respectively.  There is no significant association between term LBW and PM10 

exposure during the third trimester (OR=1.05, 95%CI: 0.96-1.16) and 9-month period (OR=1.07, 

95%CI: 0.99-1.14).  

3.5 DISCUSSION 

The sex ratio at birth is one of the stable parameters of a population and it should lie in a 

narrow range of 100-108 males per 100 females. In this study, the sex ratio is 104 per 100 

females, which is similar to the national level in the USA (24). We examined associations 

between term low birth weight and exposure to PM10 at various stages of pregnancy. Increased 

risks of LBW were observed for mother’s exposure to PM10 during the first trimester after 

adjusting for other important confounding factors including maternal age, race, education, 
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smoking, weight gain, infant gender, gestational age, parity, history of LBW or PTD, prenatal 

care and birth season. The findings of this study support that PM10 exposure could increase risk 

of term LBW.  

In adverse pregnancy outcome research, it is important to identify the critical time points 

during pregnancy when exposure to air pollutants might be most harmful (25). Our finding of an 

adverse effect of ambient particulates in the first trimester on pregnancy outcomes is consistent 

with some previous studies. Dejmek et al conducted a study in the Treplice District of the Czech 

Republic and revealed that exposure to PM10 during the first month was associated with 

intrauterine growth retardation (IUGR) (6). The study from Seoul found that carbon monoxide, 

nitrogen dioxide, sulfur dioxide, and total suspended particle concentrations in the first trimester 

of pregnancy period are risk factors for low birth weight (26). The finding from a study in Brazil 

also showed that exposure from the first trimester was the most important for LBW(27). 

However, other studies found that exposures during the third trimester were importantly linked 

with birth weight. Chen et al found that exposure to PM10 in the third trimester of pregnancy was 

negatively associated with birth weight in North Nevada, USA(28). Wang and colleagues 

reported that concentrations of TSP and SO2 in the last trimester of pregnancy were associated 

with low birth weight in Beijing, China(29). A study in Poland also found that PM2.5 exposure 

in the second trimester of pregnancy was negatively associated with birth weight (30). Therefore 

exposure during the earlier or later stage of pregnancy could present the possibility of 

interference with final infant weight gain.   

Although the specific biological mechanisms that may account for the association between 

ambient air pollution and adverse pregnancy outcomes are not well known, the effect of 

particulate matter exposure during pregnancy on adverse pregnancy outcomes has a plausible 
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biological basis. It has been assumed that prenatal exposure to ambient air pollution might be 

similar to maternal smoking which can result in some adverse reproductive outcomes.  The 

possible biological mechanisms of air pollution on birth weight might vary according the time of 

pregnancy, such as the implantation of the fetus and the formation of placenta during the first 

trimester as well as important weight gain during the third trimester. A study found that placental 

abnormalities due to exposure in the first trimester and complex vascular alterations in the 

second and third trimester could be the main causes of placental abnormalities and fetal growth 

retardation(31). PM10 contains many toxic elements including polycyclic aromatic hydrocarbons 

(PAHs), which could produce DNA adducts and cause DNA damage, resulting in activation of 

apoptotic pathways(32). Molecular epidemiological studies have been shown that the levels of 

DNA adducts are positively related to the risk of low birth weight(33-36). Another possible way 

is that toxic components and/or it metabolites may bind some receptors, which results in 

disruption of endocrine system and changes the placental function with decreasing exchange of 

oxygen and nutrients(37). Moreover, these toxic elements might also be able to provoke alveolar 

inflammation and release the mediators capable of increasing blood coagulability which increase 

blood viscosity (38). The change of viscosity can affect blood perfusion and have an adverse 

effect on placental functions, which may result in adverse birth outcomes. All these changes 

could result into consequent fetal growth retardation. Therefore, our finding of a significant 

effect during the first trimester is coherent with some potential mechanisms.  

There are number of strengths to our study. First, the present study had a population based 

birth data with a large sample size to assess the effects of particulate air pollution on term LBW. 

By focusing on term LBW, the effect of PM10 on fetal growth independent from the effects of 

prematurity could be examined in this study. Second, the health effects of particulate air 

  38



pollutant on birth weight were estimated after controlling for potential confounding factors in 

this study. Important known risk factors for a low birth weight baby like maternal smoking and 

maternal weight gain were also considered in this study. Most previous studies of adverse 

pregnancy outcomes did not control for the information due to unavailability (3-5, 26, 27, 29). 

Third, our study used the inverse-distance interpolation to predict the levels of particulate air 

pollutant in smaller geographical resolutions, which provided a more accurate exposure 

assessment for individual mothers. The inverse-distance interpolation, one of the popular 

methods to predict spatial distribution of air pollutants, uses real pollution measurements in the 

neighborhoods and estimates the weight average of neighboring values for un-sampled 

locations(39).  

While the findings of this study are in accordance with other previous studies, some 

methodological aspects of this study should be elucidated. A certain degree of inaccuracy of 

maternal exposure might occur due to invalid assumption, difference between monthly period 

and gestational age, and difference between personal exposure and estimated quarterly 

measurement.  For example, one assumption of this study is that mothers did not move and 

stayed most of time pregnancy in the place where they resided. However, we do not have 

information on maternal mobility during pregnancy to assess whether the assumption is true or 

not. In addition, although our analyses controlled for a number of important potential 

confounders, information on other factors such as second hand smoking, maternal occupational 

exposures and nutrition are not available in this study. Therefore, the potential confounding of 

these factors could not be controlled.  However, we adjusted for maternal weight gain in our 

analyses, which could partially control for the effects of maternal nutrition. Another issue in this 

study is that we used quarterly levels of PM10 to estimate maternal trimester-specific exposure. 
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Therefore, a certain degree of inaccuracy of maternal exposure might occur. However, such bias 

or inaccuracy would be non-differential and make the effects toward the null. Moreover, we 

applied the weight method to estimate the accumulated exposure, which could provide estimates 

very close to one based on monthly air data.  

In conclusion, our findings suggested that exposure to PM10 during the first trimester of 

pregnancy is associated with an increased risk of term LBW among infants whose mothers 

resided in Allegheny County, PA, between 1994 and 2000. Further studies are required to 

elucidate this association and to corroborate the findings of potential public health significance.  
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Table 3-1 Weights for estimating the accumulated exposure during pregnancy 

Month of 
conception 

Accumulated 
Exposure first 

3 months 

Accumulated Exposure 
first 6 months 

Accumulated Exposure 
first 9 months 

 Qc Qa1 Qc Qa1 Qa2 Qc Qa1 Qa2 Qa3
1 3 - 3 3 - 3 3 3 -
2 2 1 2 3 1 2 3 3 1
3 1 2 1 3 2 1 3 3 2
4 3 - 3 3 - 3 3 3 -
5 2 1 2 3 1 2 3 3 1
6 1 2 1 3 2 1 3 3 2
7 3 - 3 3 - 3 3 3 -
8 2 1 2 3 1 2 3 3 1
9 1 2 1 3 2 1 3 3 2
10 3 - 3 3 - 3 3 3 -
11 2 1 2 3 1 2 3 3 1
12 1 2 1 3 2 1 3 3 2

   Qc : the level of PM10 during the quarter of birth conception 
   Qa1 : the level of PM10 in the 1st  quarter after the quarter of birth conception 
   Qa2 : the level of PM10 in the 2nd quarter after the quarter of birth conception 
   Qa3 : the level of PM10 in the 3rd quarter after the quarter of birth conception 
     

 

 

 

Table 3-2 Distribution of trimester-specific PM10, Allegheny County PA, 1994-2000 

Trimester (monthly average) Mean 25% 50% 75% 95% 
1st Trimester 28.7 25.1 28.3 32.2 37.4 
2nd Trimester 28.2 24.9 27.6 31.3 36.9 
3rd Trimester 28.1 24.9 27.3 31.0 36.6 
9-month period 28.1 25.8 27.8 30.1 33.5 
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Table 3-3 Distribution of characteristics of term singleton births by low birth weight  status 

Term LBW Characteristics 
CASE 

(N=2,058) 
Control 

(N=90,389) 

OR (95%CI) 

Maternal age     
 <20 307 (14.9) 7,620 (8.4) 1.69 (1.49-1.93) 
 20-29* 949 (46.1) 39,907 (44.1) 1.0 
 30-34 463 (22.5) 27,628 (30.6) 0.71 (0.63-0.79) 
 35-39 282 (13.7) 13,002 (14.4) 0.91 (0.80-1.04) 
 ≥40 57 (2.8) 2,232 (2.5) 1.07 (0.82-1.41) 
Maternal race     
 White*  1,250 (60.9) 72,087 (79.8) 1.0 
 Black 731 (35.6) 15,808 (17.5) 2.67 (2.43-2.93) 
 Other 73 (3.5) 2,392 (2.7) 1.76 (1.38-2.24) 
Maternal education      
 <9 43 (2.1) 641 (0.7) 4.51 (3.27-6.22) 
 9-11 313 (15.2) 6,662 (7.4) 3.16 (2.74-3.64) 
 12 761 (37.0) 27,512 (30.4) 1.86 (1.66-2.08) 
 13-15 425 (20.6) 20,884 (23.1) 1.37 (1.20-1.56) 
 ≥16 * 516 (25.1) 34,690 (38.4) 1.0 
Maternal tobacco use     
 Yes 879 (43.1) 16,103 (17.9) 3.48 (3.18-3.80) 
 No 1,160 (56.9) 73892 (82.1) 1.0 
Infant sex     
 Male 814 (39.6) 46,407(51.3) 0.62 (0.57-0.68) 
 Female * 1,244 (60.45) 43,982 (48.7) 1.0 
Parity     
 Second or 

subsequent birth 
1,005 (48.9) 52,856 (58.5) 0.68 (0.62-0.74) 

 First birth * 1,049 (51.1) 37,465 (41.5) 1.0 
Birth season     
 Summer (Jun-Aug)* 534 (25.9) 23,747 (26.3) 1.0 
 Autumn (Sep-Nov) 541 (26.3) 22,155 (24.5) 1.09 (0.96-1.23) 
 Winter (Dec-Feb) 503 (24.4) 21,128 (23.4) 1.06 (0.94-1.20) 
 Spring (Mar-May) 480 (23.3) 23,359 (25.8) 0.91 (0.81-1.03) 
Previous LBW or 
PTD 

    

 Yes 53 (2.6) 364 (0.4) 6.56 (4.90-8.77) 
 No 1,998 (97.4) 89,931 (99.6) 1.0 
Prenatal care     
 None  45 (2.2) 517 (0.6) 3.95 (2.91-5.38) 
 1st trimester * 1,945 (97.3) 88,347 (99.1) 1.0 
 After 1st trimester 10 (0.5) 235 (0.3) 1.93 (1.02-3.64) 
Gestational age Mean±SD 38.2±1.1 39.4±1.2 0.40 (0.39-0.42) 
Maternal weight gain Mean±SD 26.4±11.9 31.0±12.2 0.968 (0.96-0.97) 

* Reference group 
** Number of missing for each variable: maternal race (106); maternal tobacco use (413); Parity (72); Previous 

LBW or PTD (101); Prenatal care (1348) 
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Table 3-4 Risks for term low birth weight a according to trimester-specific exposure to PM10

OR (95%CI) * Exposure period 

OR 95% CI 

1st Trimester 1.13b 1.02-1.25 

2nd Trimester 1.10 1.00-1.22 

3rd Trimester 1.05 0.96-1.16 

9-month period 1.07 0.99-1.14 

* ORs were estimated by per inter-quartile range increase (per 7 µg/m3
 for trimester-

specific exposure and 4.3 µg/m3 for 9-month period) after adjustment for maternal age, 
maternal race, maternal education, smoking, weight gain, gender of infant, gestation age, 
parity, previous LBW or preterm birth, level of prenatal care and birth season  
a  All singleton births with gestational age ≥37 weeks
b P<0.05 
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4.1 ABSTRACT 

Smoking is an unconfirmed risk factor for the development of leukemia. The potential link 

was examined using data from the TMI cohort for the period of 1979 to 1995. A total of 24,539 

subjects followed up over 16 years from the TMI cohort who were 14 years or older, were 

eligible for this analysis. All incident leukemia cases were identified through the Pennsylvania 

Department of Health Cancer Registry. The Cox proportional hazards model was employed to 

evaluate the relationships. A total of 42 incident leukemia cases, including 15 AML cases, were 

observed in the cohort.  After controlling for other confounding factors, current smoking was 

associated with an increased risk of adult AML (RR=3.47; 95% CI: 1.002-11.99). A marginally 

significant linear trend of risk of AML associated with the number of years smoked was also 

observed (p=0.06).  The results from this study suggested that cigarette smoking was associated 

with an increased risk of adult AML. Further investigation is required to confirm these findings. 

Key words: Leukemia, AML, Smoking, Cohort Study. 
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4.2 INTRODUCTION  

Benzene, a well-established carcinogen and leukemogen, has typically been associated with 

acute myeloid leukemia (AML) over the past century1,2 and has been shown to be present in 

cigarette smoke. Wallace observed that approximately 90% of personal exposure to benzene in 

the United States is due to smoking. Smokers have an average benzene body burden 

approximately 6-10 times that of nonsmokers 3.  Other carcinogens including ionizing radiation 

(polonium and lead), nitrosamines, styrene, naphthalene and urethanes are also found in cigarette 

smoking4,5. Cigarette smoking has long been suspected as an etiologic factor in leukemogenesis 

6;  an association between cigarette smoking and leukemia was reported as early as 1978 7. 

Epidemiological studies to date have provided inconsistent results regarding the association 

between cigarette smoking and leukemia. Several case-control studies demonstrated an increased 

risk of leukemia among cigarette smokers8-13. However, other studies have observed no 

significant association 14,15.  

Only a few cohort studies have investigated the smoking-leukemia link because of the 

latency period associated with the development of hematological malignancies and the large 

sample size required. The conclusions from available prospective studies are inconsistent and 

some large cohort studies were unable to detect any excess risk of leukemia related to cigarette 

smoking. Adami et al reported that there was no significant association between smoking status, 

number of cigarettes smoked per day or duration of smoking and the risk of developing 

leukemias in 334,957 Swedish construction workers after following up 10 years 16. Although the 

study is large, all participants are male construction workers. The healthy worker effect cannot 

be negligible in this study. Engeland et al also found no association between smoking and 

leukemia in 28 year follow-up of 26,000 Norwegian men and women 17.  However, this study 
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failed to elucidate subtype association and the dose-response relationship of cigarette smoking. 

Moreover, this study was unable to control for some confounding factors such occupational 

radiation exposures. In summary, few cohort studies have been carried out to assess the 

association between cigarette smoking and subtypes of leukemia such as AML, which is more 

related to the exposure of benzene. 

While published evidence for leukemia and cigarette smoking is inconclusive, several case-

control studies suggest a weak association between AML and tobacco use 9,18,19. The subtypes of 

leukemia vary in histological, molecular and clinical characteristics as well as in prognosis. The 

emphasis of etiologic studies on histological subtypes must be taken into consideration.  

To further explore the role of cigarette smoking in the development of adult leukemia, we 

analyzed the risk of total leukemia and specifically acute myeloid leukemia (AML) as well as the 

dose-response relationship between cigarette smoking and adult leukemia in the large Three Mile 

Island (TMI) (Pennsylvania, U.S.A) cohort, which provided detailed information on tobacco use 

at baseline and the incidence of cancer with long-term follow-up.     

4.3  METHODS 

4.3.1 Study Population 

The TMI cohort was assembled by the Pennsylvania Department of Health (PADoH) to 

evaluate the adverse health effects of exposure of low-level radiation emitted from the TMI 

nuclear power plant accident on 28 March 1979. The cohort  consisted of 32,135 individuals in 

the 1979 TMI census 18 who were followed up from 1979 to 1995. The estimated average likely 
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and maximum gamma doses from the accident were 0.09 mSv (9 mrem) and 0.25 mSv (25 

mrem) respectively. These exposures were therefore considered overall minimal (less than the 

dose of 2-3 chest X-rays).  Previous mortality studies in these subjects also found no significant 

evidence of  the association between the level of accident radiation exposure and leukemia 

mortality risk 18,19. In this study, all analyses presented are based on cohort members aged 14 

years or older (n= 24,539). Data collected included individual information at baseline on 

smoking status, demographic characteristics (age, gender and race etc), residential history, 

background radiation exposure, previous occupational or treatment radiation exposure, and 

estimated radiation exposure from the TMI nuclear power plant accident.  

4.3.2 Smoking Information 

Data on personal smoking history was collected in 1979 at baseline. Cigarette smoking in 

individuals was assessed as never smoked, former smoker and current smoker. Former smoker 

was defined as ever smoked at least 100 cigarettes. For those who ever or currently smoked, The 

number of cigarettes smoked per day as well as total number of years smoked was also obtained. 

Based on this information, a new variable of “pack-year” was created by multiplying total 

number of years smoked with number of cigarettes smoked per day then divided by 20.  

4.3.3 Total Leukemia and AML Subtype Identification 

The TMI cohort was followed up from March 1979 through December 1995 to determine 

vital status and cancer incidence. All cases of adult-onset leukemia (International Classification 

of Diseases for Oncology, Second Edition, and Code 980-994) and AML (ICD-O-2, code 9861, 
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9864, 9866, 9867 and 9891) diagnosed between March 1979 through December 1995 were 

identified through the Pennsylvania Cancer Registry (PCR)., which is complete for those 

individuals who remain within Pennsylvania. Not Otherwise Specified (NOS) leukemia cases 

(ICD-O-2: 9800 and 9801) are further clarified as AML when subject died from AML 

(International Classification of Diseases, version 9: 205.0) in the National Death Index. The 

PADoH, along with the U.S. Postal Service, annually obtained the current addresses of persons 

to maintain follow-up of the cohort. The address confirmation was updated through December 

1995. We verified that 92.1% of subjects remained in Pennsylvania during the 1979-1995 

follow-up period.  

4.3.4 Statistical analysis 

Comparison of the distribution of demographic and other characteristics among each 

smoking status category was made using ANOVA for continuous variables and the Chi square 

test for categorical variables respectively. Total leukemia and AML were analyzed separately. 

The Cox proportional hazards model was employed to estimate Relative Risk (RR) with 95% 

Confidence Intervals (CI) for the association of adult leukemia and its subtype AML with 

cigarette smoking after controlling for potential confounding factors. Smoking status was 

assessed as a dummy variable in the model. The number of cigarettes smoked per day, number of 

years smoked and number of pack-years were also fit as ordinal categorical variables to evaluate 

the dose-response relationship between cigarette smoking and total leukemia as well as AML. 

All final models were adjusted for age, gender, race, education, background radiation exposure 

(<8 µR/hr vs. ≥8 µR/hr), occupational exposure, and estimated maxima gamma radiation and 

likely gamma radiation.  
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Subjects with missing values were excluded from relevant analyses. The statistical tests were 

two-sided with a 0.05 significant level. The SAS 8.02 software package (SAS Institute Inc., 100 

SAS Campus Drive Cary, NC 27513) was used to analyze the collected data.  

 

4.4 RESULTS 

Within the study population, 33% (n=8,083) of the individuals were current smokers, 18% 

(n=4,330) were ever smokers and 49% (11,913) were non-smokers at baseline. More than 95 

percent of subjects in the cohort are white. Table 4-1 shows the distribution of baseline 

characteristics among each group by smoking status. The results of the ANOVA and χ2 tests 

indicated that age, education level, race, occupational radiation exposure were significantly 

different among smoking groups. The percentages of female are 60% among never smokers, 

36% among former smoker and 46% among current smokers respectively. There are 5.4% 

participants among never smokers, 7.4% among former smokers and 6.8% among current 

smokers who had experience of occupational radiation. The estimated Maximum and likely 

gamma exposure emitted from the TMI nuclear power plant accident was slightly higher among 

nonsmokers than smokers. However, the distributions of background radiation exposure were 

similar among each smoking group. 

Table 4-2 describes the distributions of lymphatic and hematopoietic neoplasm incident cases 

occurred during study period. A total of 42 leukemia cases including 15 AML cases were 

observed within follow-up time period in the cohort. 
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The distributions of total leukemia among each status of cigarette smoking and risks of total 

leukemia associated with cigarette smoking are presented in table 4-3.  We found higher 

proportion of leukemia cases among the current smoker group as compared with those who had 

never smoked (table 4-3). Of these, the cumulative incidences of total leukemia are 0.21% in 

current smokers, 0.14% in former smokers and 0.16% in non-smokers respectively.  

To examine the association between dose of cigarette smoking and total leukemia, the age 

and sex adjusted model showed that a positive association between current cigarette smoking and 

total leukemia was suggestive but not statistically significant by using a dummy variable of 

smoking status (RR=1.49, 95% CI: 0.76-2.96 in current smoker). After controlling for other risk 

factors in the fully adjusted model, current cigarette smoking is still positively but not 

statistically significantly associated with total leukemia (RR=1.39, 95%CI: 0.69-2.82). 

Furthermore, a more powerful analysis using the number of cigarettes smoked per day, the 

number of years smoked and pack years of smoking was performed to provide evidence of an 

association between cigarette smoking and total leukemia. The results showed that there is no 

evidence of significant positive associations between cigarette smoking and total leukemia either 

in the age-sex adjusted model or in the fully adjusted model. 

Table 4-4 reported the results of the distribution of the subtype of leukemia, i.e.  AML 

among each cigarette smoking group and risk of AML associated with cigarette smoking.  Only 

15 AML cases were observed within follow-up time period in the cohort. The age-sex adjusted 

model indicated a significantly positive association between current cigarette smoking and AML 

using a dummy variable of smoke status (AML: RR=3.26, 95% CI: 1.05-10.17 in current 

smoker). After controlling for other risk factors in the fully adjusted model, the association 

between current cigarette smoking and AML is still significant (RR=3.47, 95% CI: 1.002-11.99). 
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An association between cigarette smoking and AML was further explored with a more powerful 

analysis using the number of cigarettes smoked per day, the number of years smoked and pack 

years of smoking. The age-sex adjusted models showed that those who smoked 11-20 pack years 

have a higher risk of AML as comparing with non-smokers (RR=4.25, 95%CI: 1.11-16.35) after 

controlling for other risk factors. In addition, there is a significant dose-response relationship 

between the number years of cigarette smoking and risk of AML (p=0.04) (see Fig 1). However, 

there is no evidence for a linear trend of risk of AML associated with the number of cigarettes 

per day as well as the pack years of smoking.  We further analyzed the risk of AML associated 

with cigarette smoking after controlling for some other potential confounders, including age, 

gender, education level, race, occupational radiation, background radiation, estimated maximum 

and likely gamma exposures. In these analyses, we found a statistically increased risk of AML 

among those who smoked 1-10 cigarettes per day or 11-20 pack years (RR=5.02, 95% CI: 1.11-

22.64; RR=5.07, 95% CI: 1.22-21.01). More interestingly, a dose-response relationship between 

the number year of smoking and risk of AML was marginally statistically significant (p=0.06).  

However, we found no evidence of any dose-response relationship between the number 

cigarettes per day or pack years of smoking and risk of AML.  

4.5 DISCUSSION 

In this large cohort study, 42 incident leukemia cases occurred during the study period. The 

Not Otherwise Specified (NOS) leukemia was further determined as its subtypes by scrutinizing 

PA Cancer Registry for cell type and death certificates for underlying cause of death (UCOD). 

Five NOS leukemia cases were determined as AML (UCOD: 205.0). A total of 15 AML cases 
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out of 42 leukemia cases were found in this study. The percentage of AML in leukemia is 35.7%, 

which is close to general population. The analyses of this study emphasized on AML because it 

had the largest number of cases in leukemia subtypes and epidemiological evidence suggested 

that AML is more likely linked to cigarette smoking.  

In this study, the age-sex adjusted model and the fully adjusted model were applied to assess 

the associations between leukemia as well as AML and cigarette smoking. The estimations from 

these two models are very similar. It suggested that age and sex are the factors which confound 

the associations between smoking and leukemia as well as AML. In this study, neither the age-

sex adjusted models nor the fully adjusted models could provide any evidence of a significantly 

positive association between cigarette smoking and total leukemia after adjusting for other 

confounders.  Indeed, significant association between current cigarette smoking and AML is 

demonstrated after controlling for other risk factors. It also suggested that there is a significant 

dose-response relationship between the number year of cigarette smoking and risk of AML 

(trend p=0.04) after adjusted for age and sex. This linear relationship between the number years 

of cigarette smoking and risk of AML are still marginally significant (p=0.06) after controlling 

for other risk factors. However, there are no statistically significant linear relationships between 

AML and cigarettes smoked per day as well as pack years. Cigarettes smoked per day, number 

years of smoked, and pack years have their own limitations and strengths when they are used to 

estimate the dose of cigarette smoking. Cigarettes smoked per day have information on daily 

consumption but does not include information on duration of smoking.  Number years of smoked 

emphasizes information on duration of smoking but neglects daily consumption. Pack years is a 

comprehensive indicator that combines information on daily consumption with duration of 

smoking. But inaccurate recalls in either cigarettes smoked per day or number years of smoked 
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could result into a misclassification of pack years. In this study, it could be possible that the 

recall of years smoked was more accurate than number of cigarettes smoked per day.   

The findings of the present study are in agreement with the results from some other studies. 

The cohort study of 34,000 Seventh-Day Adventists demonstrated that a higher risk of myeloid 

leukemia was associated with cigarette smoking (RR=2.24, 95% CI 0.91-5.53)22. Several case-

control studies reported an increased risk of AML among cigarette smokers 6,8,9,13,15,23.  

Moreover, the childhood leukemia studies also provided significant evidence of an association 

between parental smoking and childhood leukemia. Chang et al found that parental 

preconception smoking was significantly associated with an increased risk of AML (OR=3.84, 

95%:1.04-14.17) 10. Ji et al reported that paternal preconception smoking was related to a 

significantly elevated risk of childhood cancers, particularly acute leukemia and lymphoma 24. 

These data are consistent with a possible mechanism linking cigarette smoking to an increased 

risk of leukemia in human subject.  

On the other hand, a few studies reported that the risk of leukemia induced by cigarette 

smoking decreases or ceases after smoking cessation. Kane et al showed that the odds ratio was 

decreased as the number of years 'stopped smoking' increased, falling to 1.0 amongst those who 

had given up smoking for more than 10 years 25. Bjork et al found that the risk of AML declined 

in 5-10 years after smoking cessation among subjects with smoking history long enough to give 

a substantially elevated AML risk 1. These studies provided supporting evidence of an 

association between AML and cigarette smoking.  

The number of cigarettes per day, the number of years smoked and pack years of cigarette 

smoking have been previously used to evaluate the dose-response relationship for leukemia and 

AML. Our study found no evidence of a trend in risk with number of cigarettes smoked per day 
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and pack years, which was similar to the majority of studies9,14,26 . A number of studies reported 

that there were significant increasing trends in risk with increasing number of years smoked 13,22. 

These findings were consistent with the results from our study, which provided additional 

support for an association between cigarette smoking and leukemia.  

The mechanism by which cigarette smoking increases risk of leukemia or AML are 

unknown. Cigarette smoke contained some known or suspected leukemogens, including 

benzene3, ionizing radiation5 and other carcinogens (nitrosamines, styrene, naphthalene and 

urethanes) 4,27. It was reported that the level of trans, trans-muconic acid (t,t-MA), a urinary 

benzene metabolite, were about 3 times higher than those in nonsmokers28. Other studies found 

higher level of polonium and lead in tissues from smokers29.  In addition, chromosomal defects 

in the peripheral blood were also observed to be increased in smokers 30,31. All these findings 

suggested a possible leukemogenic effect of cigarette smoking. 

There are several strengths to the study. First, the study was considered noteworthy, as it 

included a large sample size of cohort and a relatively long period of follow-up, i.e. over 16 

years complete follow-up. Second, the rate of loss of follow-up is low in this study. Ninety three 

percent of participants in the cohort were verified for leukemia outcome using the population-

based Pennsylvania Cancer Registry system. Third, we assessed the risk of AML among 

cigarette smokers and further evaluated the dose-response relationship between cigarette 

smoking and outcomes, as this form of leukemia has more specifically been linked to benzene 

exposure in occupational and community setting. In addition, personal information about natural 

background radiation, TMI accidental exposure and previous occupational radiation was 

collected in the study and was able to be included in the final statistical models. 
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One of the limitations of our study lies in the fact that the baseline cigarette smoking 

information was only able to obtain in 1979. Any changes in smoking status during the follow-up 

(1979-1995) were not available. This could result into some misclassification bias in the analyses 

based on duration of smoking and pack-years of smoking. Second, an additional 12 years of 

follow up would be very beneficial and improve the power of the study if the cohort could be 

followed up until now. However, formal follow up of the cohort ceased in l995 when the PA 

Department of Health ceased funding formal follow up through post offices of the cohort. Thus, 

there would no longer be complete ascertainment of the denominator of the population. Third, 

the analysis was based on leukemia cases identified through the Pennsylvania Cancer Registry 

(PCR), 1979-1995. Only individuals who remained in Pennsylvania were included in the case 

ascertainment. In this study, 1,960 cases (7.9%) left the state and lost to follow-up during the 

study period. The cigarette smoking status and mortality experience were assessed among these 

individuals of loss follow-up. The distributions of smoking status among these cases are 34% 

current smokers, 17% former smokers and 49% non-smokers, which is similar to the 

distributions of the cohort. Moreover, 179 deaths among 7.9% loss follow-up were identified and 

only one case that died from myeloid leukemia in current smoking group by scrutinizing death 

certificate for diagnostic code. This result suggested that the study could potentially 

underestimate the association between cigarette smoking and leukemia. Fourth, although there 

was a large cohort in this study, only a few new AML cases (n=15) were identified during the 

follow-up time period because of the low incidence of AML, i.e. 1 to 15 cases per 100,000 

persons in the general population32. It resulted into a wide range of 95% Confidence Interval of 

hazard ratios. However, we had statistical power to detect the risk difference among cigarette 

smoking groups. Finally, information regarding other potential risk factors of leukemia, such as 
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diet and medicine, was not obtained in the study. Thus, their potential confounding effects could 

not be ruled out.   

In conclusion, the present study suggests that cigarette smoking is associated with AML. 

Moreover, the risk of AML was observed to be increased with the increasing number of years 

smoked. Further well-designed studies are needed to support the establishment of causal 

association between cigarette smoking and AML.
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Table 4-1 Distribution of baseline characteristics among smoking groups 

 Never smoked 
 

(n=11,913) 

Former 
smoker 

(n=4,330) 

Current 
smokier 

(n=8,083) 

P-value 

Age (Χ ±SD) 40.60 ± 20.73 46.55 ± 17.33 38.43 ± 15.52 <0.001 
Gender     

Male (%) 4,746 (39.84) 2,770 (63.97) 4,382 (54.21) 
Female (%) 7,167 (60.16) 1,560 (36.03) 3,701 (45.79) <0.001 

Education level     
≤9 yr (%) 2,019 (17.39) 795 (18.51) 1,233 (15.42) 

10-12 yr (%) 7,037 (60.62) 2,587 (60.25) 5,615 (70.24) 
>12 yr (%) 2,553 (21.99) 912 (21.24) 1,146 (14.34) 

<0.001 

Race     
White 11,621 (97.55) 4,227 (97.62) 7,836 (96.94) 

Non-white 292 (2.45) 103 (2.38) 247 (3.06) 0.016 

Occupational 
radiation 

    

Yes 642 (5.39) 321 (7.41) 555 (6.87) 
No 11,271 (94.61) 4,009(92.59) 7,528 (93.13) <0.001 

Background 
radiation 

    

<8 mrem 9,039 (76.12) 3,331 (77.11) 6,191 (76.85) 
≥8 mrem 2,836 (23.88) 989 (22.89) 1,865 (23.15) 0.30 

Maximum gamma 
exposure 
(Χ ±SD) 

25.59±22.08 24.70±21.85 24.67±21.75 0.005 

Likely gamma 
exposure 
(Χ ±SD) 

10.93±10.40 10.61±10.14 10.58±10.25 0.04 

Note: χ2 test for the categorical variables and ANOVA test for the continuous variables 
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Table 4-2 Distribution of lymphatic and hematopoietic neoplasm incident cases occur during study period 
(1979-1995) 

Types of Cancer Number ICD-O-2 
Leukemia 42 980-994 

Acute myeloid leukemia(AML)* 15 9861, 9864, 9866, 
9867 and 9891 

Chronic lymphocytic leukemia(CLL) 11 9823 
Chronic myeloid leukemia (CML) 7 9863 

Other leukemia 9 - 
Mutiple Myeloma 12 9732 

Other Lymphatic Neoplasm 3 - 
Total 57 C42.1 

* Leukemia NOS (ICD-O-2: 9800, 9801) cases are clarified with death index (ICD-9:205.0) 
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Table 4-3 Distribution and risk of total leukemia among each status of cigarette smoking 

Leukemia  
 

 Total 
No. 

No. % 

Adjusted  
RR1 

(95% CI) 

Adjusted  
RR2 

(95% CI) 
Smoking status      

Never smoked (%) 11,913 19 0.16 1.0 1.0 
Former smoker (%) 4,330 6 0.14 0.60 (0.23-1.54) 0.58 (0.22-1.50) 
Current smoker (%) 8,083 17 0.21 1.49 (0.76-2.96) 1.39 (0.69-2.82) 

Number cigarettes per day      
0  11,913 19 0.16 1.0 1.0 

<10 1,749 4 0.23 1.37 (0.46-4.05) 1.42 (0.48-4.20) 
10-19 2,843 7 0.25 1.61 (0.67-3.86) 1.62 (0.67-3.93) 
>=20  7,821 12 0.15 0.84 (0.39-1.78) 0.73 (0.34-1.60) 

P value for trend test     0.79 0.57 
Number of years smoked      

0 11,913 19 0.16 1.0 1.0 
1-19 yrs 7,608 5 0.07 0.55 (0.20-1.52) 0.56 (0.20-1.55) 

20-29 yrs 2,015 8 0.40 1.76 (0.76-4.10) 1.73 (0.74-4.07) 
>=30 yrs 2,790 10 0.36 1.29 (0.58-2.88) 1.11 (0.48-2.57) 

P value for trend test    0.33 0.53 
Pack-Year *      

0 11,913 19 0.16 1.0 1.0 

≤10 5,897 7 0.12 0.998 (0.41-
2.43) 

1.02 (0.42-2.50) 

11-20 2,358 7 0.30 1.74 (0.72-4.22) 1.74 (0.71-4.27) 
>20 4,158 9 0.22 0.88(0.39-2.0) 0.73 (0.31-1.74) 

P value for trend test    0.98 0.73 
Note: *  “Pack-year” is 20 cigarettes per day for one year.  

1. “Adjusted RRs” were derived from Cox proportional hazards model after controlling 
for age and gender.  
2. “Adjusted RRs” were derived from Cox proportional hazards model, adjusting for 
age, gender, education level, race, occupational radiation, background radiation, 
estimated maximum and likely gamma exposures.  
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Table 4-4 Distribution and risk of AML among each status of cigarette smoking 

AML 
 

 Total 
No. 

No % 

Adjusted  
RR1 

(95% CI) 

Adjusted  
RR2 

(95% CI) 
Smoking status      

Never smoked (%) 11,913 5 0.04 1.0 1.0 
Former smoker (%) 4,330 1 0.02 0.48 (0.05-4.20) 0.54 (0.06-4.98) 

Current smoker (%) 8,083 9 0.11 3.26 (1.05-10.17) 3.47 (1.002-
11.99) 

Number cigarettes per day      
0  11,913 5 0.04 1.0 1.0 

<10 1,749 3 0.17 4.13 (0.98-17.42) 5.02 (1.11-22.64)
10-19 2,843 3 0.11 2.77 (0.65-11.75) 3.31 (0.73-14.99)
>=20  7,821 4 0.05 1.26 (0.32-4.90) 1.07 (0.23-5.01) 

P value for trend test     0.67 0.82 
Number years of smoking      

0 11,913 5 0.04 1.0 1.0 
1-19 yrs 7,608 2 0.03 0.79 (0.15-4.27) 0.91 (0.16-5.19) 

20-29 yrs 2,015 3 0.15 3.03 (0.71-12.98) 3.79 (0.82-17.61)
>=30 yrs 2,790 5 0.18 3.58 (0.95-13.50) 3.64 (0.80-16.49)

P value for trend test    0.04 0.06 
Pack-Year*       

0 11,913 5 0.04 1.0 1.0 
≤10 5,897 3 0.05 1.67 (0.38-7.27) 1.95 (0.42-9.03) 

11-20 2,358 4 0.17 4.25 (1.11-16.35) 5.07 (1.22-21.01)
>20 4,158 3 0.07 1.44 (0.33-6.30) 1.11 (0.19-6.36) 

P value for trend test    0.32 0.45 
Note: *  “Pack-year” is 20 cigarettes per day for one year.  
1. “Adjusted RRs” were derived from Cox proportional hazards model after controlling for 

age and gender.  
2. “Adjusted RRs” were derived from Cox proportional hazards model, adjusting for age, 

gender, education level, race, occupational radiation, background radiation, estimated 
maximum and likely gamma exposures.  
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Figure 4-1 the association between risk of AML and the number years of smoking 
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5.0  SUMMARY AND CONCLUSIONS 

The project has been developed to explore the associations between environmental exposures 

and chronic diseases based on existing data. It has been segmented into three complementary 

topics as following:  

1. Risk of cardiopulmonary diseases with exposure to air pollution 

2. Risks of term LBW with exposure to particulate air pollution 

3. Risk of leukemia and cigarette smoking 

5.1 ASSOCIATION OF RISK OF CARDIOPULMONARY DISEASE AND AIR 

POLLUTION 

A link between respiratory disease and air pollution has been well established in earlier air 

pollution studies (Holland et al. 1979; Logan 1953; Logan 1956). Recent short-term and long-

term epidemiological studies across the world further showed that air pollution exposure is 

associated with increase risks of cardiopulmonary mortality and morbidity (Daggett et al. 2000; 

Dockery et al. 1993; Gehring et al. 2006; Katsouyanni et al. 1997; Krewski et al. 2005; Kunzli 

and Tager 2000; Nyberg and Pershagen 2000; Pope et al. 1995; Pope et al. 2002; Rosenlund et 

al. 2006; Wietlisbach et al. 1996).  Pope et al found that each 10 mg/m3 elevation in fine 

particulate air pollution was associated with approximately a 6% increased risk of 
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cardiopulmonary mortality (Pope et al. 2002). Cohen and his colleagues conducted a risk 

assessment of the global burden of disease attributable to urban ambient air pollution and showed 

that ambient air pollution, in terms of fine particulate air pollution, causes about 3% mortality 

from cardiopulmonary disease and about 1% mortality from acute respiratory infections in 

children under 5 years worldwide (Cohen et al. 2005).  

In this study, we also found that exposure to particulate matter is associated with an increased 

risk of cardiopulmonary diseases before the LTV coke plant closure, which is consistent to the 

findings of previous studies.  

Studies of cigarette smoking found that the cessation of smoking could result into reduction 

of health risks (Andrews and Tingen 2006; Bosetti et al. 2006; Krall et al. 2006).  However, few 

air pollution studies have been conducted to assess how elimination or addition of a major point 

source of air pollution in an area affects the health among people who live there. In this study, 

we found that the elimination of a major point source of air pollution could reduce health risks in 

the area. This reduction of risk could possibly be explained by the declination of air pollution 

concentration and the change of components of particulate matter after the removal of the major 

point source of air pollution.  

The studies across the world provided consistent and coherent toxicological and epidemiological 

evidence indicating that air pollution exposure is associated with cardiopulmonary disease.  

Further study might be focused on elucidating the biological mechanism, which is not yet clear. 
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5.2 ASSOCIATION OF RISK OF TERM LBW AND PARTICULATE AIR 

POLLUTION 

Study of particulate matter on fetal health is an emerging area. Fetuses, a susceptible 

subgroup of population, are thought to be vulnerable to the effects of air pollution. Birth weight 

is one of the widely-used adverse pregnancy outcomes in fetal health air pollution studies. The 

findings of previous studies are not consistent and provide a mixed picture about the association 

between particulate matter and birth weight. Some studies reported a negative association over 

some exposure period (Ha et al. 2001; Lee et al. 2003; Mannes et al. 2005; Parker et al. 2005; 

Rogers and Dunlop 2006; Wang et al. 1997; Wilhelm and Ritz 2005; Yang et al. 2003) and 

others reported no evidence of an association between particulate matter and low birth weight 

(Chen et al. 2002; Dugandzic et al. 2006; Maisonet et al. 2001).   

Birth weight is sensitive to many factors such as gestational age, maternal age, race, 

education, maternal weight gain during pregnancy, prenatal care level, smoking, infant sex, 

parity and others. Without adequate control for confounders, the association between low-level 

particulate matter and low birth weight might be difficult to quantify. In this study, we found that 

the odds ratios of term LBW per inter-quartile range increase in PM10 were 1.13 (95%CI: 1.02-

1.25) during the first trimester and 1.10 (95%CI: 1.00-1.22) during the second trimester after 

adjusting for other important covariates, respectively.  

Further studies with more refined methodological designs such as high-quality exposure data, 

advanced methods of exposure assessment, and high-quality covariate information, are needed to 

clarify the adverse effect of particulate air pollution on fetal health.  
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5.3 ASSOCIATION OF RISK OF LEUKEMIA AND CIGARETTE SMOKING  

Cigarette smoking is associated with many health outcomes such as chronic obstruction 

pulmonary disease (Davis and Novotny 1989; Kalucka 2006; Lee et al. 1990), cardiovascular 

disease (Cook et al. 1986; Lapidus et al. 1986; Milei et al. 1986), lung cancer(Benhamou et al. 

1985; Kestner 1985; La Vecchia 1985), nasopharyngeal cancer (Mabuchi et al. 1985), bladder 

cancer (Marrett et al. 1985; Rebelakos et al. 1985), and adverse pregnancy outcomes(Weisberg 

1985).  Cigarette smoking has not classically been linked with leukemia until a few 

epidemiological studies reported an increased risk of leukemia among cigarette smokers 

(Brownson 1989; McLaughlin et al. 1989; Severson et al. 1990; Spitz et al. 1990). Several case-

control studies suggested an association that is most pronounced for acute myeloid leukemia 

(AML) and provided evidence of a dose-response relationship between cigarette smoking and 

AML (Chelghoum et al. 2002; Kasim et al. 2005; Sandler et al. 1993).  

In this study, we used a population based cohort to evaluate the association between 

leukemia as well as AML and cigarette smoking. The results showed that cigarette smoking is 

significantly associated with AML after controlling for other important risk factors. In addition, a 

dose-response relationship between cigarette smoking and AML, which represents additional 

evidence that cigarette smoking is an etiological factor of AML, was also observed.  The finding 

in this cohort study is consistent with the results of previous case-control studies.  

One of the strengths of a cohort study, as compared with a case-control study, is that the true 

risk of disease can be estimated in the study. A major limitation of cohort study for rare disease 

like AML is that the study sample size should be very large to detect significant associations for 

rare diseases like AML. Therefore, a few AML cases observed during the study period could 
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limit the value of this study. This might explain the wide range of risk estimation although there 

is not small population with 16 year follow-up in the study.  

The epidemiological evidence concerning the possible etiologic role of cigarette smoking in 

leukemia as well as AML are few and controversial.  A well designed cohort study could be 

more valuable than case-control study in establishing a relationship of causality between 

cigarette smoking and leukemia. Further studies could be improved by using less biased 

information of cigarette smoking, high quality covariate data, accurate classification of leukemia 

subtypes and a larger study sample size.  

The findings of studies of cigarette-related leukemia could reinforce tobacco control 

including preventing initiation, promoting cessation, reducing exposure to cigarette smoking and 

finally reducing the health burden of cigarette-related diseases in the population.  

5.4 STRENGTH AND LIMITATIONS OF SECONDARY DATA  

 

Environmental public health tracking might cover a large population with a long time period 

in a region. Primary data gathering for environmental health tracking is unrealistic and 

inefficient. A variety of secondary data including environmental hazard, exposure and health 

outcomes is readily available in federal, state and local environmental and health agencies. It is a 

great source for environmental public health tracking. The review of three types of data 

including environmental hazard, environmental exposure and health outcomes is discussed in the 

section of Appendix B. Therefore, secondary data could provide an excellent and economical 

source for environmental public health tracking in comparison with collecting primary data. 
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Using secondary data might be an effective and quick way to identify health problems related to 

environmental exposure in a region.  

However, there are a number of limitations when using secondary data for environmental 

public health tracking. The availability of information and data structure in secondary data 

heavily influence the study design and data analyses. There is often no way to validate the 

quality of secondary data because of lack of information about problems of sampling, method of 

data collection, response rates, data coding and others. We may lack information about the 

strengths and weaknesses of secondary data which are used in environmental public health 

tracking.  The validity and reliability of results based on these data are difficult to assess. 

Although secondary data is readily available, the accuracy and completeness may also vary. 

Therefore, some data issues including completeness of data, accuracy of information collected, 

registration period, data format, data accessibility and availability and possibilities of linkage 

with other data sources should also be aware of when secondary data are used in environmental 

public health tracking (See Appendix B). 

Overall, the limitations of secondary data can not be avoided because it is usually collected 

for purposes other than for environmental public health tracking. However, secondary data is a 

valuable source and still attractive to environmental public health tracking agencies.  

5.5 OVERALL SUMMARY AND CONCLUSION 

The overall objectives of this project is to demonstrate how to using secondary data to link 

environmental exposures to chronic disease, to evaluate the possible associations between 

environmental exposure and health outcome and to explore the methodology of study design, 
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data linkage and data analyses. In this project, we succeeded in linking a variety of health 

outcome data including hospital admission data, birth registry data and research cohort data, with 

environmental exposures and examining the potential associations between environmental 

exposures and chronic diseases with appropriate methods of study design and data analyses. The 

techniques used in this project could be applicable to state or local environmental health tracking 

agencies for conducting similar studies.  
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APPENDIX A 

RISK OF ADVERSE PREGNANCY OUTCOMES AND AIR POLLUTION 

The study of adverse pregnancy outcomes is an emerging field of environmental 

epidemiology. Studies of air pollution on adverse pregnancy outcomes have been performed 

since the late 1990s. Low birth weight (birth weight less than 2500 g), as one of impaired birth 

outcomes, has been reported to influence the health status of individuals, including increased 

mortality and morbidity in childhood (1, 2) and an elevated risk of hypertension, coronary heart 

disease, type II diabetes in adulthood, abnormalities of lipid metabolism and blood coagulation 

(3, 4). Low birth weight is a heterogeneous outcome which could be caused by early delivery and 

fetal growth retardation and is associated with many factors. The early delivery due to premature 

rupture of the membranes and placenta abruption may result into a low birth weight infant. Some 

other maternal prenatal factors such as maternal diseases, maternal weight gain and maternal 

smoking could also be associated with a low birth weight baby. In addition, malformation may 

also increase the risk of low birth weight infant (5).  There is still a limited literature regarding 

the effects of air pollution on birth weight. This appendix reviewed previous studies that have 

linked maternal exposure to ambient air pollution to birth weight. 

  77



  78

We searched all publications included in the electronic databases PubMed and Ovid Medline 

with the combination of key words “air pollution” with any following: “birth weight”, “low birth 

weight”, “LBW”, “very low birth weight” or “VLBW”. Eighteen studies of assessing the 

relationship between birth weight and ambient air pollution were identified (6-23). These studies 

were summarized in Table 2. The air pollutant assessed in the studies included total suspended 

particles (TSP), PM10, PM2.5, SO2, O3, CO, NO2 and NOx. The estimations of an association 

between low birth weight and air pollutants reported in these studies ranged approximately from 

1.01 to 1.5(Table 2). The strengths that these studies shared include trimester-specific exposure 

estimations which could show the effect periods of air pollution on birth weight during 

pregnancy, standard definitions of adverse birth outcomes and adjustment for other important 

risk factors of low birth weight. However, the findings from these studies are inconsistent, 

especially regarding the effect period and the strength of association of particulate matter. In 

addition, many of these studies didn’t account for important confounders such as maternal 

smoking, gestational age and weight gain. Previous studies have also had limited spatial 

information on pollution sources and concentrations because the exposure mostly relied on the 

measurements at monitoring stations.  This study, while not capable of clearing up all previous 

questions, could provide additional evidence regarding the health effects of particulate matter on 

LBW.  



Table A-1 Results of studies of ambient air pollutants and LBW and VLBW 

Reference      Design Pollutants Outcomes Results Covariates/stratified variables

SO2(per 
100µg/m3) 

1.11 (1.06-1.16) Wang X et al 
1997 

Cohort study 
(Beijing, China) 

TSP(per 
100µg/m3) 

LBW 

1.10 (1.05-1.14) 

Gestational age, residence, year of 
birth, maternal age, and infant 
gender 

TSP(per 
50µg/m3) 

1.04 (0.96 -1.12) 

SO2(per 
50µg/m3) 

1.10(1.02- 1.17) 

Bobak M and 
Leon DA 
1999 

Ecological study  
(Czech Republic) 

NOx(per 
50µg/m3) 

LBW 

1.07(0.98- 1.16) 

socioeconomic factors (mean 
income, car ownership, divorce 
rate, etc) 

TSP(50µg/m3) LBW: 1.15[1.07-
1.24] 1ST  Trimester 

Bobak M 
2000 

Case-control study 
(Czech Republic) 

SO2(50µg/m3) 

LBW 

LBW: 1.20[1.11-
1.30] 1ST  Trimester 

Maternal sex, parity, age, 
education, marital status and 
month of birth. 

2.88[1.16-7.13] for 
>95th percentile 

Rogers JF 
2000 

Case-control study 
(Georgia, U.S.A) 

Sum of TSP and 
SO2 (µg/m3) 

VLBW 
(<1,500g) 

1.27[0.68-2.37] for 
>75th to 95th 
percentile 

Maternal race, age, education, 
smoking, medicine, weight gain, 
alcohol, stress and infant sex 

 Ritz B and  
Yu F 
1999 

Cohort study (South 
California, U.S.A) 

CO (>5.5 ppm 
3-month 
average) during 
the last 
trimester 

LBW  1.22(1.03-1.44) Commuting habits, infant sex, 
prenatal care, maternal age, 
ethnicity, and education  
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Reference Design     Pollutants Outcomes Results Covariates/stratified variables

Pollution index  
1 (low)  

2 3.9(24.8) 
3  -55.7(26.7)

Bobak M 
2001 

Cross-sectional study 
(Britain) 

4(high) 

Birth weight 

-81.4(29.4) 

Gender, parental social class, 
maternal education, region, birth 
order, quality of house 

CO (1ppm) 1.31[1.06-1.62] 
SO2   

25th to 50th  1.18[1.12-1.25] 
50th to 75th 1.12[1.07-1.17] 

Maisonet M 
2001 

Case-control study 
(Six cities, U.S.A) 

75th to 95th 

LBW 

1.13[1.05-1.22] 

Maternal age, education, race, 
smoking, alcohol, marital status, 
weight gain, previous termination, 
infant sex, gestational age, season 
of birth, firstborn, prenatal care.  

CO 1.08[1.04-1.12] 
NO2 1.07[1.03-1.11] 
SO2 1.06[1.02-1.10] 
TSP  1.04[1.00-1.08]

Ha EH 2001 Case-control study ( 
Seoul, South Korea) 

O3 

LBW 

1.09[1.04-1.14] 

Gestational age, maternal age, 
education, parity, infant’s birth 
order and sex.  

Chen L 2002 Cross-sectional study 
(Northern Nevada, 
U.S.A) 

PM10(per 
10µg/m3) 

Reduction of 
Birth weight 

11 [2.3, 19.8] Maternal age, race, education, 
smoking, drug, alcohol, prenatal 
visits, weight gain, residential city, 
infant sex, gestational age 

ORmed. 1.86 [1.10-
3.16] 

Formaldehyde 

ORhigh 1.84 [1.12-
3.03] 

Maroziene L 
2002 

Case-control study 
(Kaunas, Lithuania) 

NO2 

LBW 

ORhigh 1.64 [1.04-
2.58] 

Maternal age, parity, marital 
status, education, season of birth 
and smoking 

Table A-1 continues
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Reference      Design Pollutants Outcomes Results Covariates/stratified variables

PM10 1.03 [1.00-1.07]  

CO  1.04 [1.01-1.07] 

PM10   1.04 [1.00-1.08]

CO   1.03 [1.00-1.06]

SO2   1.06 [1.02-1.11]

Lee BE  
2003 

Case-control 
study 
(Seoul, Korea) 

NO2 

LBW 

1.03 [1.01-1.06] 

Maternal age, education, infant 
sex, order, gestational age and date 

PM10 β 0.52 [0.19-0.85] Yang CY 
2003  
 

Cross-sectional 
study(Kaohsiun
g, China) SO2 

Birth weight 

β 0.52 [0.09-2.63] 

Maternal age, education, marital 
status, season of delivery and 
infant sex 

Liu S 2003 Case-control 
study 
(Vancouver, 
Canada) 

SO2 (5 ppb) LBW 1.11 [1.01-1.22] Maternal age, parity, infant sex, 
gestational age and season of birth 

PM10(per 
10µg/m3) 

-13.7[-27.0, -0.4] Gouveia N 
2004 

Cross-sectional 
study 
(Sao Paulo, 
Brazil) 

CO (per 1ppm) 

Change of birth 
weight 

-23.1 [-41.3, -4.9] 

Maternal age, education, parity, 
antenatal care, gestational age 

PM2.5 (per 
10µg/m3) 

β -29.3g [-42.2, -
16.4g] 

CO 

Birth weight 

β -38.2g [-54.9, -
21.6g] 

PM2.5(per 
10µg/m3) 

AOR 1.20[1.07-1.37] 

Parker JD 
2005 

Cross-sectional 
study 
(California, 
U.S.A) 

CO (per 0.5ppm) 

SGA  

AOR 0.89[0.77-1.03] 

Maternal race, age, education, 
parity, marital status, season of 
delivery and co-pollutant 

Table A-1 continues
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 PM10 1.02 [.01-1.03] 
PM2.5 1.03 [.01-1.05]  
CO 1.10 [0.96-1.27]  
NO2 1.14 [1.07-1.22]  

Mannes T 
2005 

Cohort study 
(Sydney, 
Australia) 

O3 

Small for 
gestational age 
& birth weight 

1.01 [1.00-1.01] 

Infant sex, gestational age, 
maternal age, race, SES and 
season birth 

CO LBW: 1.36[1.04-1.76] 3rd 
trimester 

Wilhelm M 
2005 

Case control study 
(Los Angeles, CA) 

PM10 

LBW 

LBW: 1.48[1.00-2.19] 3rd 
trimester 

Infant sex, gestational age, maternal age, 
race, education, prior stillbirth, PTD, 
parity and birth season, other pollutants 

PM10 RR 1.33 [1.02-1.74] >75th 
percentile, 1st trimester 

SO2 RR 1.36 [1.04-1.78] >75th 
percentile, 1st trimester 

Dugandzic R 
2006 

Retrospective 
cohort study 
(Nova Scotia, 
Canada) 

O3 

LBW 

RR 1.16 [0.88-1.53] 25th 
to 50th percentile, 1st 
trimester 

Gender of infant, gestation age, maternal 
age, parity. Smoking, weight change, 
prior neonatal deaths, stillbirth and LBW, 
and neighborhood family income 

  

Table A-1 continues
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APPENDIX B 

USING SECONDARY DATA FOR ENVIRONMENTAL PUBLIC HEALTH 

TRACKING: SOURCES, METHODS, AND ISSUES 

The environment plays an important role in human health. In the 20th Century, the growing 

population and industrialization have adversely impacted the natural environment. Many studies 

have reported an association between chemical, physical and biological environmental exposures 

and adverse health effects. Adverse health effects related to chemical agents previously were the 

focus of studies primarily of the occupational environment. However, an enormous number and 

variety of chemicals have been introduced into the environment in the last decades and 

communities are now at the core of investigational efforts. 

Chemical agents can enter human body through food, drinking water, air and skin contact. 

There is a considerable concern about the health effects of these agents on the general 

population. Certain specific environmental hazards have been linked with chronic diseases in the 

research literature. For instance, epidemiological studies have reported association between 

chlorinated water consumption and increased risk of various cancers, including cancers of the 

bladder, rectum, pancreas, kidney, stomach and lymphatic system (1-7). Air pollutant exposures 

have been associated with increased morbidity and/or mortality of cardiopulmonary disease (8-
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11), asthma exacerbation (12-14) and adverse reproductive health outcomes (15-18).  Benzene is 

well recognized as an etiological risk factor for leukemia(19, 20). Toxic effects related to metal 

or metal compounds have also been identified. For instance, exposure to arsenic has been linked 

with cancers of the skin(21-24) , lung(25), urinary bladder(26), kidney(25) and liver(27), as well 

as non-cancer diseases such as peripheral vascular disease(28),  cardiovascular and 

cerebrovascular disease(29), diabetes(30), and adverse reproductive outcomes(31, 32).  Lead 

exposure has been associated with mental retardation(33-35).  Physical environmental factors 

such as noise, extreme weather conditions, low-level radiation exposure and electromagnetic 

exposure, have also generated great concern in communities.  Extremes of temperature has been 

reported to be associated with short-term increases in daily mortality(36, 37).  Residential 

exposure to radon has been reported to cause lung cancer in human(38, 39). Several studies has 

linked exposure to electromagnetic fields with increased risk of cancer(40-42).  There is little 

debate that agents in environment could cause adverse health effects in human. A systematic 

surveillance (e.g. tracking system) for environmental public health is clearly a necessary, rational 

and appropriate response to community, academic and governmental concerns about 

environmental exposures. 

In 2000, the Pew Environmental Health Commission at the Johns Hopkins School of 

Hygiene and Public Health recognized that the environmental public health system was 

fragmented, neglected and ineffective in the United States (43). Under the recommendations of 

the Pew Environmental Health Commission, the Centers for Disease Control and Prevention 

(CDC) established the National Environmental Public Health Tracking (EPHT) Program, which 

is the ongoing collection, integration, analysis, interpretation, and dissemination of data on 

environmental hazards; exposure to those hazards; and related health effects (44). Its goal is to 
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provide information that can be used to plan, apply, and evaluate actions to prevent and control 

environmentally related diseases.  

Thacker (1996) presented a useful framework of a “hazard-exposure-outcome” axis for 

conducting environmental public health tracking. It outlined the steps in the process of how an 

environmental agent produces adverse health outcomes (see figure B-1)(45). CDC applied the 

conceptual model proposed by Thacker to design the national EPHT network, which will meld 

data related to hazards, exposure and health outcomes into a network of standardized, distributed 

electronic data systems and will provide valid scientific information on environmental exposures 

and adverse health effects and the possible spatial and temporal relations between them (46).  

 

Figure B-1 Environmental agent and adverse health outcomes 

 (SO: Am. J. Public Health, 1996, 86(5): 633-638) 

In this review, aspects related to the use of existing data for conducting environmental public 

health tracking will be discussed, including the availability of existing data, the strategy of data 
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linkage, statistical framework, issues related to the use of existing data for conducting 

environmental public health tracking. 

B.1 OVERVIEW OF AVAILABLE EXISTING DATA SYSTEMS 

The data on hazards, exposures and health outcomes are three types of data in the process by 

which an agent in the environment can produce adverse health effects in a host. The availability 

of these data is important for conducting environmental public health surveillance. Data on 

hazards, exposures, outcomes and spatial data have been collected at the national, regional or 

local levels as well as in scientific research studies. Much of the data has not been well utilized 

or never analyzed or interpreted in a way that could address other environmental issues or ever 

released to the public. A brief description of existing data on environmental hazards, exposures, 

health outcomes and geospatial field is presented in the following section. 

B.1.1  HAZARD DATA  

A hazard can be any chemical, physical or biological environmental agent which has a 

potential for adverse health effects. Information on the presence and quantity of contaminants in 

environmental media is systematically collected by various organizations. Most hazard data is 

collected by federal and state agencies and is mandated by legislation, such as Clean Air Act or 

Clean Water Act (1970). The U.S. Environmental Protection Agency (EPA) was established to 

consolidate in one agency a variety of federal research, monitoring, standard-setting and 
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enforcement activities to ensure environmental protection on December 2, 1970. Many hazard 

databases on air and water have been routinely established and maintained by EPA.  

Air 

The EPA Air Quality System (AQS) is a database containing hourly and daily measurements 

of criteria air pollutants and hazardous air pollutants from monitors across the United States. 

Detailed data from 1994 to the present can be downloaded from the EPA website 

(http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm). The EPA National 

Emissions Inventory (NEI) database includes estimates of annual pollutant emissions from point, 

non-point and mobile sources for 50 states, Washington DC, Puerto Rico and the Virgin Islands.  

Data drawn from the NEI and AQS databases consist of the EPA AirData/AIRS database. Theses 

data are available from 1971 to the present.  

Toxic Release Inventory (TRI) is an EPA database containing estimated information about 

the amount of chemicals annually released to air, water, and land by the manufacturing industry. 

Any facility meeting established criteria (ref for criteria: 

http://epa.gov/tri/guide_docs/2001/brochure2000.pdf ) is required to report annual releases of 

nearly 600 chemical compounds.  The data are available from 1987 to the current time.  

Water 

EPA maintains two data management systems containing water quality information for the 

nation's waters: the Legacy Data Center (LDC), and STORET. The LDC is a static, archived 

database and STORET is an operational system actively being populated with water quality data. 

The LDC contains historical water quality data dating back to the early part of the 20th century 

and collected through the end of 1998. STORET contains data collected beginning in 1999.  

Both databases contain raw biological, chemical, and physical data on surface and ground water 
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collected by federal, state and local agencies, Indian Tribes, volunteer groups, academics, and 

others. 

EPA also maintains several databases on drinking water. For example, the Safe Drinking 

Water Information System - Federal version (SDWIS/FED) database includes information about 

the nation's 160,000 public water systems and violations of drinking water regulations. The 

National Contaminant Occurrence Database (NCOD) contains occurrence data from both Public 

Water Systems (PWSs) and other sources (like the U.S. Geological Survey National Water 

Information System) on physical, chemical, microbial and radiological contaminants for both 

detections and non-detects. The Unregulated Contaminant Monitoring Rule (UCMR) database is 

collected to evaluate and prioritize contaminants on the Drinking Water Contaminant Candidate 

List, which could be possible new drinking water standards. The Federal Reporting Database 

System (FRDS) is a centralized database for information on public drinking water supplies. It is 

maintained by the EPA Office of Drinking Water. FRDS contains approximately 12 million 

records. 

In addition, other organizations and institutions maintain nation wide hazard databases. For 

instance, the U.S. Geological Survey (USGS) created a National Water Information System 

(NWIS) database which provides access to water-resources data collected at approximately 1.5 

million sites in all 50 states, plus border and territorial sites. There are nearly 70 million water-

quality results from about 4 million water samples collected at hundreds of thousands of sites. 

The data are from as early as 1899 to the present. 

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 

1991 to develop long-term, consistent and comparable information on streams, rivers, ground 
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water, and aquatic systems. It includes 162 sample sites in 51 of the nation's river basins and 

aquifers.  

Climate 

The National Climate Data Center (NCDC) maintains the world’s largest active archive of 

weather data. The NCDC’s database provides a national resource for climate information from 

1985 to present. The data include hourly temperature, wind, rain, pressure, clouds and snow in 

national or global scale.  

Agriculture 

The National Agricultural Statistics Service (NASS) database is maintained by the United 

States Department of Agriculture (USDA). The NASS conducts hundreds of surveys every year. 

It provides information about U.S. agricultural chemical use, agricultural-production and 

supplies of food and fiber, prices paid and received by farmers, farm labor and wages, farm 

finances, and changes in the demographics of producers. The available data are from 1867 to the 

present. 

Moreover, some environmental hazard data were created in large national-wide survey 

studies. For example, the U.S EPA conducted a five-year study entitled National Pesticide 

Survey (NPS) in 1988. It provided information on specific contaminants, pesticides and nitrates 

in drinking water from groundwater supplies such as community water system wells and rural 

domestic wells.   

The National Atrazine Occurrence Monitoring Program was conducted under the joint 

sponsorship of the Association Water Works Association’s (AWWA) Water Industry Technical 

Action Fund (WITAF) and the American Water Works Association Research Foundation 
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(AwwaRF). It is a study to characterize atrazine occurrence patterns across the United States. 

Forty-seven drinking water plants were included in this study. 

B.1.2 EXPOSURE DATA 

Exposure data include bio-monitoring for the presence and the quantity of a compound or its 

metabolites in human tissues or biologic samples such as fat, blood, hair and urine. Tracking 

actual exposure to hazards is frequently the missing link in evaluating the risk of environmental 

hazard. Exposure data are usually monitored at the individual level. However, little individual 

level exposure data currently exist in accessible datasets.  

The National Human Adipose Tissue Survey database is a nation wide exposure data set. It 

provides information on 54 chemicals in human adipose tissue in three different age groups and 

in nine different geographic regions in the United States. The database contains results of 

analyses of human tissue samples collected between 1967 and 1990.  

Biomonitoring measurements were also made in samples from participants in the National 

Health and Nutrition Examination Survey (NHANES) since 1999. More than 100 chemicals or 

their metabolites were measured in blood and urine samples from a subsample of participants 

from NHANES conducted by CDC’s National Center for Health Statistics. 

The National Human Exposure Assessment Survey (NHEXAS), sponsored by the U.S EPA 

in 1994, is a pilot and long-term study of the ways that humans are exposed to potentially toxic 

chemicals in the environment.  The environmental chemicals include lead and arsenic, benzene 

and related volatile organic compounds, and various pesticides. The field of study covers the 

counties in Minnesota, Wisconsin, Illinois, Indiana, Ohio, and Michigan(47).  
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Some exposure data are available from investigation studies. For example, several studies 

tested urinary dimethylthiophosphate(DMTP) to evaluate organophosphorus(OP) pesticide 

exposure. These studies have provided information of OP pesticide exposure in apple 

thinners(48), children of agricultural pesticide applicators(49), children living in a large 

metropolitan area(50), living in an agricultural community(51), and living in farmworker 

households(52).  

Because exposure data are limited, levels of exposure are often estimated through 

sophisticated modeling. The Hazardous Air Pollutant Exposure Model, Version 4 (HAPEM4) is 

such a type of model and has been used by the U. S. EPA to estimate inhalation exposure of air 

toxics for specified population groups. The National-Scale Air Toxics Assessment (NATA) 

database were developed with this exposure modeling and provides information about exposure 

concentration estimates of the 33 air pollutants at the census-tract, as well as county/state level. 

The goal of the national-scale assessment is to identify those air toxics which are of greatest 

potential concern, in terms of contribution to population risk. Currently, however, only two years 

of data are available, i.e. 1996 and 1999.  

B.1.3 HEALTH OUTCOME DATA 

Health outcomes of interest can include any outcomes along the timeline for the development 

natural history of a disease from preclinical measurements to death. These outcomes of interest 

are in the effort to link an environmental hazard or exposure with them in human beings. Sources 

of existing health outcome data include national, state and local level disease registries, vital 

statistics data, nation-wide health surveys, administrative data systems and large epidemiological 

cohort studies.  
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a). Centers for Disease Control and Prevention (CDC) Databases 

The Centers for Disease Control and Prevention (CDC), as the lead federal agency for 

protecting the health and safety of people, has housed health data from birth and death records, 

medical records, interview surveys, through direct physical exams and laboratory testing. These 

databases maintained by the CDC could serve as valuable sources of health outcomes for the 

Environmental Public Health Tracking.  

The National Vital Statistics System in the CDC’s National Center of Health Statistics 

(NCHS) is one of the oldest and most successful databases. The database provides information 

about all vital events including births, deaths, marriages, divorces, and fetal deaths in the 50 

States, 2 cities (Washington, DC, and New York City), and 5 United States territories (Puerto 

Rico, the Virgin Islands, Guam, American Samoa, and the Commonwealth of the Northern 

Mariana Islands).   

The National Health and Nutrition Examination Survey (NHANES) is a major effort of the 

National Center for Health Statistics (NCHS) to assess the health and nutritional status of adults 

and children in the United States. The NHANES program began in the early 1960s and collects 

data on a nationally representative sample of about 5,000 persons each year. This survey consists 

of individual information on demographics, socioeconomics, dietary intake, and health. A 

physical examination conducts, which consists of medical and dental examination, physiological 

measurements, and laboratory tests administered by highly trained medical personnel. 

The National Health Interview Survey (NHIS) is a multipurpose health survey conducted by 

the CDC’s NCHS. The NHIS has been an important source of information about health and 

health care in the United States since it was first conducted in 1957.  
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The National Health Care Survey (NHCS) of the CDC’s NCHS includes a series of health 

care provider surveys. These surveys provide information about the facilities that supply health 

care, the services rendered, and the characteristics of the patients served. This family of surveys 

includes National Ambulatory Medical Care Survey (NAMCS), National Hospital Ambulatory 

Medical Care Survey (NHAMCS), National Survey of Ambulatory Surgery (NSAS), National 

Hospital Discharge Survey (NHDS), National Nursing Home Survey (NNHS), National Home 

and Hospice Care Survey (NHHCS), National Employer Health Insurance Survey (NEHIS), and 

National Health Provider Inventory (NHPI). The detailed information of each survey refers to the 

CDC’s NCHS website (http://www.cdc.gov/nchs/nhcs.htm).  

The CDC’s State and Local Area Integrated Telephone Survey (SLAITS) collects important 

health care data at State and local levels. It supplements current national data collection 

strategies by providing in-depth State and local area data to meet various program and policy 

needs in an ever-changing health care system. The SLAITS data included the Iowa and 

Washington State Health data (1997), Texas and Minnesota Child Well-Being and Welfare data 

(1997), National Survey of Early Childhood Health data (2000), National Survey of Children 

with Special Health Care Needs (2000-02, 2005-06), National Asthma Survey (2003), and 

National Survey of Children's Health (2003-2004).  

The Longitudinal Studies of Aging (LSOAs) is a collaborative project between CDC’s 

NCHS and the National Institute on Aging (NIA). The project consisted of four surveys: the 

1984 Supplement on Aging, the 1984-1990 Longitudinal Study of Aging (LSOA), the 1994 

Second Supplement on Aging (SOA II), and the 1994-2000 Second Longitudinal Study of Aging 

(LSOA II). The purpose of the project is to measure changes in the health, functional status, 
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living arrangements, and health services utilization among Americans of 70 years of age and 

over as they move into and through the oldest ages. 

The CDC’s National Program of Cancer Registries (NPCR) has been funding 45 states, 

District of Columbia and 3 U.S. territories to collect population-based cancer incidence data 

since 1994. The database provides information about patient demographics, tumor 

characteristics, state at diagnosis and first course of treatment. NPCR has four products for data 

release: U.S. Cancer Statistics (USCS), U.S. County Cancer Incidence Dataset, USCS Expanded 

Dataset, and USCS Restricted Access Datasets. 

b). Other agency and institute databases  

In addition, there are many databases of health outcomes maintained by other agencies and 

organizations. The following review provides a brief description of the most frequently assessed 

databases available from other agencies excluding CDC.  

The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer 

Institute (NCI) is a comprehensive source of population-based information on cancer incidence 

and survival in the United States. The program began in 1973 and collected data from 

population-based cancer registries covering approximately 26 percent of the US population. It 

provides information about stage of cancer at the time of diagnosis and patient survival data. 

The Agency for Toxic Substances and Disease Registry (ATSDR) has maintained an active, 

state-based Hazard Substances Emergency Event Surveillance (HSEES) since 1990. This system 

provides the information of the public health consequences associated with the release of 

hazardous substances. It includes 15 participating states(53).  

The American Association of Poison Control Centers (AAPCC) maintains the Toxic 

Exposure Surveillance System (TESS), which is the comprehensive poisoning surveillance 
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database and covered the entire population of the 50 states, the District of Columbia, and Puerto 

Rico in the United States.  TESS is a valuable resource for environmental public health 

tracking.  It provides information on the patient, the caller, the exposure, the substance(s), 

clinical toxicity, treatment, and medical outcome. Developed in 1983, TESS contains detailed 

toxicological information on 36.2 million cases reported to U.S. poison centers through 

2003.  That includes more than 2 million reports to poison centers for 2000 alone, an estimated 

96% of all poison exposures reported to poison centers in the U.S (54, 55). 

 The National Cancer Database (NCDB) was established by the American Cancer Society 

(ACS) and the American College of Surgeons (ACoS) in 1989. The database served as a 

comprehensive clinical surveillance resource for cancer care in the United States. It captures 

75% of all newly diagnosed cancer cases in the United States annually and contains over 15 

million cases of reported cancer diagnoses for the period 1985 through 2002. The database 

provides information about patient characteristics, tumor staging and histology characteristics, 

type of first course treatment administered, disease recurrence, and survival information. 

c). Large research cohort study databases 

Large cohort studies are other potential valuable sources of existing data for environmental 

public health tracking. Data collected in cohort studies are at the individual level. Detailed 

individual information such as contact information and address, lifestyle information like 

smoking and diet, and other individual factors are usually available in the data of cohort studies. 

A brief introduction of some well-documented cohort studies will be given in the following 

section. 
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The Framingham study, directed by the National Heart, Lung, and Blood Institute (NHLBI), 

is designed to identify the common factors or characteristics that contribute to CVD among 

5,209 participants, their offspring and third generation. The study lasted over 50 years(56). 

The Nurse’s Health Study, sponsored by the National Institutes of Health., is the largest 

prospective investigation of risk factors for major chronic diseases in women. The study included 

Nurses' Health Study and the Nurses' Health Study II. The Nurses' Health Study began in 1976 

and approximately 122,000 nurses aged 30 to 55 from the 11 most populous states participated in 

the study(57). The Nurses' Health Study II began in 1989 and a total of 116,686 women between 

the ages of 25 and 42 years are involved in the study(58, 59).  

The California Teachers Study, sponsored by the State of California, is a prospective study of 

133,479 current and former public school teachers or administrators who participate in the 

California State Teachers Retirement System (STRS).  The purpose of the study is to identify the 

risk factors associated with breast cancer research. The study began in the fall of 1995 (60).

The Agricultural Health Study was sponsored as a joint collaboration between the National 

Institutes of Health and the Environmental Protection Agency in 1994. Over 89,000 farmers as 

well as their families and commercial pesticide applicators from North Carolina and Iowa states 

participated in the project. The Study is designed to identify occupational, lifestyle, and genetic 

factors that may affect the rate of diseases in farming populations (61). 

The American Cancer Society Cancer Prevention Study includes the Cancer Prevention 

Study I and the Cancer Prevention Study II. The Cancer Prevention Study I was a prospective 

mortality study and began in 1959. Over 1 millions participants were recruited into the study in 

twenty-five states and followed up through September 1972(62). The Cancer Prevention Study II 

(CPS II) includes the CPS II Baseline Cohort, CPS II Nutrition Cohort and CPS II Biospecimen 
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Repository. The Cancer Prevention Study II is to examine the impact of environmental and 

lifestyle factors on cancer etiology. Approximately 1.2 million men and women in 50 states, the 

District of Columbia, and Puerto Rico participated in the CPS-II Baseline Cohort in 1982. The 

data have been examined extensively in relation to cancer mortality(63, 64). The CPS-II 

Nutrition Cohort was established in 1992 and 1993 as a subgroup of the larger CPS-II Cohort. A 

total of 184,194 men and women in middle-aged to elderly living in 21 states in the United States 

participated in the cohort. The study is designed to evaluate the associations between dietary as 

well as other risk factors and cancer incidence (65).  The CPS-II Biospecimen Cohort was 

initiated to obtain blood samples from 40,000 surviving members of the CPS-II Nutrition Cohort 

in 1998.  

The Women’s Health Initiative (WHI) Observational study was established by the National 

Institutes of Health (NIH) to address cardiovascular disease, cancer, and osteoporosis among 

women with age 50-79 years old. A total of 93,676 women were enrolled in this study (66). 

The Cardiovascular Health Study (CHS) sponsored by the National Heart, Lung, and Blood 

Institute (NHLBI), is a population-based, longitudinal study of risk factors for the development 

and progression of CHD and stroke in the U.S. adults over the age of 65 years. The study stated 

in 1989 and will end in 2009. There are 5,201 participants in this study (67).  

The Alameda County Study began in 1995 and is designed to examine the risk factors 

associated with health and mortality among 6928 adults living in Alameda County, California. 

The last update of this study occurred on 1997(68).  
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B.1.4  SPATIAL DATA  

Geospatial data has been increasingly used in public health research. Many agencies or 

organizations provide geospatial databases. Some of these databases are now readily available 

free of charge on the internet. In the following section, sources of spatial data available that are 

potentially useful for environmental public health tracking are briefly described.  

The U.S. Geological Survey (USGS) has long been a source of geospatial data. Most of these 

data are now available in digital formats. The Digital Cartographic Data products provided by 

USGS include Digital Orthophoto Quadrangle (DOQ),  Digital Raster Graphics(DRG), Digital 

Elevation Models (DEMs), Digital Line Graphs (DLGs) and National Hydrography Dataset 

(NHD). The Digital Line Graphs data set provides information on transportation lines, 

hydrography, political boundaries, and elevation contours, vegetable surface cover, manmade 

features, non-vegetative features as well as township, range, and section lines. The National 

Hydrography Dataset (NHD) is a comprehensive set of digital spatial data that contains 

information about surface water features such as lakes, ponds, streams, rivers, springs and wells. 

The U.S. Census Bureau provides a number of spatial datasets. The Topologically integrated 

Geographic Encoding and Referencing (TIGER) system released by the U.S. Census Bureau 

contains information on street, railway, political boundaries of census, and major hydrographic 

features. It covers the 50 states, the District of Columbia, Puerto Rico, the Virgin Island and the 

outlying area of pacific area. The Cartographic Boundary Files are selected generalized extracts 

from the Census Bureau's TIGER geographic database and are designed for use in a Geographic 

Information System (GIS) or similar mapping system. The files are available in three formats: 

ARC/INFO EXPORT (.e00) format, ArcView Shapefile (.shp) format and ARC/INFO 
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Ungenerate (ASCII) format. The spatial resolutions in the file include census tract, block, 

division, region, zip code and metropolitan Areas etc.  

The Environmental Systems Research Institute (ESRI) specializes in geographic information 

systems (GIS) software. The spatial datasets provided by ESRI include the StreetMap data, 

Community Data, Basemaps and census data. The StreetMap Pro and StreetMap Premium 

enhanced street datasets provide routing, geocoding, and high-quality cartographic display for 

the entire United States. The ESRI Community Data encompasses a variety of datasets that help 

companies and organizations analyze markets, profile customers, evaluate competitors, and 

more. ESRI software users can access most of these datasets at on additional cost.  

B.2 STRATEGIES OF DATA LINKAGE 

Data linkage is the task of accurately identifying records corresponding to the same entity 

from one or more data sources and the methodology for joining together corresponding records 

from two or more databases. The entity in public health studies usually refers to individual, 

family or geographical region etc. Using existing data for evaluating possible associations 

between environmental hazard or exposure and health outcome, linkages of these types of data 

are the intermediate and important step.  

B.2.1 DATA LINKAGE 

Linking health outcome with data of environmental hazards or exposures depends on 

following aspects: purpose of study, study design and nature and structure of available data. The 
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general steps involved in computer-based linkage procedures for two or more databases are 

shown as the following scheme (Fig B-2).  

The accuracy of data linkage greatly depends on the linkage strategy, methodology and 

quality of data. The first step of data linkage is to be familiar with the databases and to determine 

data fields or variables in each database to be studied. Therefore, some nuisance data fields can 

be eliminated from databases. This process makes the databases to be linked more compact. The 

next step is to identify the key variables across the different databases. These key variables are 

used as linkage variables, which should exist in each database to be linked. The selections of key 

variables are vital to successful data linkage. The quality of these key variables such as missing 

values and typographic errors can heavily influence the accuracy and quality of linked dataset. 

Standardization of key variables is another vital process for data linkage. Without 

standardization, many truly matched records might result in unmatched records. Standardization 

includes converting common words into standard spelling, for example “road” or “street” in an 

address is converted into “Rd” or “St” for each database, using the same system of unit, and 

applying the same coding system for same variables etc.  
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Determine the data variables 

or fields to be studied 

Identify key variables 

for data linkage 

 

 

 

 

B.2.2  METHODS OF DATA LINKAGE 

The linkage of routinely collected data is a relatively cheap and readily available method of 

obtaining data for monitoring population health and for research purpose. With increasing 

capacity of data storage and development in data linkage techniques, there has been substantial 

Develop the strategy for match-merge 

Restructure datasets and standardize the key variables 

Make a program and start data linkage 

Evaluate the linked dataset 

Improve the program and run again 

Repeat 

Create the linked dataset 

Figure B-2  The general procedure of data linkage 
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increase in linking existing data to obtain information on large population in research or health 

surveillance. There are two main types of data linkage methods: deterministic data linkage and 

probabilistic data linkage(69). 

a. Deterministic linkage 

Deterministic linkage, also called exact linkage, is the ability to link records from different 

databases that exactly match on error-free identifying fields or variables. Such identifying fields 

should be precise, robust, stable over time and highly available. Deterministic linkage can be 

used if a unique identifier is available in the record fields of all the dataset to be linked. 

However, in individual level datasets, the identifiers to be used in deterministic linkage usually 

are confidential information, such as Social Security Number (SSN), name and date of birth in 

health dataset. It is clear that such linkage of two or more datasets can infringe on individual 

privacy. For datasets aggregated in geographic regions or time dimensions, the issue of a breach 

in confidentiality or privacy is less problematic. The key variables for these type datasets might 

usually be the variables of geographic region such as zip code, county and state or time such as 

day, month, and year. For example, in a time series study of air pollution, the linkage of 

monitored air pollution data with the number daily hospital admissions (counts) data on a given 

day is based on the key variable of calendar day and not any individual level data element (70, 

71). 

Several studies have been conducted to evaluate the performance of deterministic linkage on 

health data with different combinations of key words. Herman et al used deterministic linkage 

methods to link birth registry data with infant mortality and morbidity surveillance data sets from 

the United States (Georgia, Missouri, Utah and Washington State), Israel, Norway, Scotland and 
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Western Australia in 1997. A unique identifier, national identification numbers, were available 

for these datasets. The study reported that the methodology was highly successful (72).  

Li et al completed data linkage with the population registry, hospital discharge and Vital 

Statistics registry datasets using deterministic linkage with a combination of key variables 

surname, sex and date of birth. This study found that the combination of surname, sex and date 

of birth appears to be optimal using deterministic linkage(73). 

Simon et al merged records of young women with invasive breast cancer identified through 

three population-based cancer registries, to state birth certificate records with deterministic 

linkage. The performance of data linkage with different combinations of key variables was 

compared. The study found that SSN appears to be fairly accurate for linkage for linking cancer 

registries to other data sources (74).  

The deterministic data linkage method is simple and easier to interpret. Deterministic data 

linkage can be accomplished with standard statistical software packages such as SPSS and SAS. 

However, deterministic linkage can be very time-consuming and very practitioner-dependent. In 

addition, it can not handle partial agreements easily, which may lead to false negative 

matching(75). 

 

 

 

b. Probabilistic linkage  

Data linkage is inevitably probabilistic in nature. Deterministic linkage is an extreme 

example of probabilistic linkage in that it is 100% certain that records of different databases, 

exactly matched on key variables, indeed refer to the same entity. However it may not true due to 
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duplication of identifiers and errors in creating or transmitting records. Thus deterministic 

linkage does not adequately reflect the uncertainty that may exist for some potential links. 

Moreover, unique and reliable identifiers may not be available in the databases to be linked in 

many situations. It is desirable that different linkage strategy should be developed to address 

these issues. Probabilistic linkage is the alternative to deterministic linkage and is developed 

when the rules of classic probability theory have been applied in data linkage.  

The method of probabilistic linkage is defined as record linkage of two or more files that 

utilizes the probabilities of agreement and disagreement between a range of matching variables 

(69). Newcomber et al first reported the possibility of probabilistically linking records and 

provided crucial insights that led to computerized approaches to record linkage in the absence of 

unique identifiers(76). Subsequently, Fellegi and Sunter introduced the mathematical and 

statistical foundation to formalize the theory of probabilistic data linkage, building on the 

concept provided by Newcomber (77). The basic principle of probabilistic linkage is to use the 

probability of a true match (m(γ)) and the probability of a true non-match (u(γ)) based on 

matching variable to determine its (dis)agreement weight. The (dis)agreement weights for all 

matching variables were determined by the same strategy. The total weight for a given record 

link is simply the sum of the (dis)agreement weights for each matching variables. If all or most 

matching variables agree, the total weight will be a large positive number; otherwise, it is a small 

positive number. By comparing the total weight with threshold values, a true match, possible 

match or true non-match is determined (69, 75).  

Probabilistic data linkage is commonly used in health research studies. Several studies have 

evaluated the accuracy of probabilistic linkage in matching records of health databases. Newgard 

et al evaluated the accuracy of using probabilistic linkage for matching de-identified ambulance 
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records to a state trauma registry. It found that probabilistic linkage is a valid method for 

matching ambulance records to a trauma registry without the use of patient identifiers but the 

accuracy is related to the selection of common variables included in the analysis (78). 

Nitsch et al assessed the validation of probabilistic record linkage to identify births to a 

cohort of women by linking the females in the cohort to birth records held by the Scottish 

Maternity Record System (SMR 2) based on surname, maiden name, initials, date of birth and 

postcode. It concluded that probabilistic record linkage to routine maternity records applied to 

population-based cohort can have high specificity, and as such may be reliably used in 

epidemiological research(79). 

A few studies have been conducted to compare deterministic and probabilistic method on 

their performance of data linkage. Tromp M et al used the Dutch National Midwife Registry, the 

Dutch National Obstetrics Registry and the Dutch National Pediatrics Registry to compare 

probabilistic and deterministic record linkage techniques. The study reported that Probabilistic 

linkage identified 80% more links than a full deterministic linkage approach. External validation 

revealed an error rate of less than 1% (80). 

Roos and Wajda compared deterministic and probabilistic methods and found that 

probabilistic linkage had great advantages in those situations where only a moderate amount of 

extra information was available(81).  

Therefore, many studies have applied the deterministic and probabilistic linkage strategies to 

combine health data across the world. After a comprehensive review of these studies, it might 

provide some clues of data linkage in using secondary data for environmental public health 

tracking.  

  107



B.3 STATISTICAL METHODS 

The relationship between environmental exposure and health outcomes is complex. For 

example, multiple relationships between environmental exposures and health outcomes often 

exist, as multiple environmental factors may contribute to a single disease. On the other hand, a 

single environmental factor may contribute to many diseases (82). The type of statistical model 

that is used to evaluate this possible association requires a careful consideration. The selection of 

a statistical model is much dependent on the purpose of study, study design and the availability 

of dataset.  

Mather et al organized the statistical models for the analysis of environmental and health data 

as well as the environment and health relationship into three groups. The first group is composed 

of descriptive analyses which describes trends, generates baselines and compare temporal and 

spatial changes of health and environmental data.  The second group is an ecologic analysis 

which uses aggregated health and environmental data to provide information on the relationship 

between hazards and health outcomes. The third group consists of etiologic research to test the 

relationships between environmental factors and health outcomes (83). Following the statistical 

framework proposed by Mather, statistical methods are organized into two categories: 

descriptive analysis and etiologic analysis.  A variety of available statistical methods which are 

appropriate for the analysis of environment and health data has been reviewed based on these 

two categories.   
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B.3.1 DESCRIPTIVE ANALYSIS 

Descriptive analysis often represents the first step in describing or investigating a new event 

or condition. It can be used to monitor the trends in hazards, exposures and health outcomes and 

to search for clues of cause of disease.  

Time trend: Trend analysis of environmental hazards is important for environmental public 

health tracking to characterize the background and changes in environmental contaminants. In 

addition, Kyle et al suggested that for cases where associations between environmental hazards 

and health outcomes have been well studied and established, it may be more relevant to focus on 

tracking environmental contaminants (82). In such cases, trend analysis of environmental 

hazards can provided information for planning and action of prevention of diseases.  Examining 

time trend of health outcomes is helpful to understand the temporal variation of disease and to 

identify disease time clustering. Statistical approaches for detection of clustering over time 

include scan statistic which is the maximum number of observed cases in an interval of pre-

selected length, as the interval is allowed to scan, or slide along, the time frame of interest (84), 

and Ederer-Myers-Mantel test in which the test statistic, m1 will be large when cases are clusted; 

otherwise,  m1 will be small when cases occur uniformly through time(85, 86). 

Disease cluster or clustering: Disease cluster or clustering is useful to highlight areas at 

apparently high risk and to provide useful etiologic clues to disease origins. Many methods have 

been proposed to detect disease cluster or clustering. The methods include nearest neighbor test 

or Cuzick-and-Edwards’test (87) that compare the distance between cases to expected 

distance(88), spatial autocorrelation which summarizes the degree to which similar observations 

tend to occur near each other(89) , and spatial scan statistic which identifies the collection of 
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diseases least consistent with the null hypothesis and provides a significance value representing 

the detected cluster’s “unusualness” (90).  

Visual analysis (mapping): Mapping is a technique to provide insight into spatial and 

spatial-temporal variation in exposure and disease risk. In public health, disease mapping has a 

long history. The earliest example is Snow's famous cholera map in the mid-19th century. 

Disease mapping has been widely applied in the field of health studies and was often used in 

cancer studies (91-93).  

For a fair comparison, the rates from map are required to be adjusted for potential 

confounders such as age, sex and race. Standardization methods include direct standardization 

and indirect standardization. With indirect standardization, disease maps typically show 

standardized mortality or morbidity ratios (SMRs or SIRs). With direct standardization, the 

adjusted rate was used to map.  

The disease rate based on a large population may be a better estimator. However, the rates 

from small population are likely to be elevated artificially, which reflect lack of data rather than 

true elevated risk. Spatial smoothing is one method for reducing the noise in rates associated 

with geographic region. Common approaches to spatial smoothing include locally weighted 

average in which a smoothed value is obtained by averaging the values associated with 

neighboring regions, empirical Bayes smoothing which use a Bayesian approach to define the 

analytic form of the compromise estimator(47), and kernel smoothing in which a kernel function 

and a defined bandwidth are used to controls the amount of smoothing (94)  

Ecological analysis: In ecological analysis, the purpose is to evaluate temporal and/or 

geographic variations in exposure to environmental factors across population groups in relation 

to health outcomes measured on time and/or geographic scale. The approach is easily adapted to 
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use data which are routinely collected. The major limitation of the approach is ecologic fallacy, 

which is that an association between exposure and health outcome observed at aggregated group 

level may not validate at the individual level. For this reason, ecological analysis can be useful to 

generate but not confirm a hypothesis for the causality of disease. 

Temporal ecological analysis has been applied to evaluate data aggregated in time scale such 

as daily, weekly, monthly or yearly. It has been widely used in air pollution studies. Time-series 

analysis of air pollution is this type of study, which assess the association between daily variation 

of air pollutants and daily count of health outcomes after controlling for climatic factors, 

seasonality and secular trend.  The major two statistical methods of time-series analysis are 

generalized linear model (GLM) with parametric natural cubic splines (95, 96) and generalized 

additive models (GAM)(97, 98). 

Geographic ecological analysis to evaluate the correlation between aggregate exposure and 

aggregate health outcome in geographical unit is usually defined by administrative boundary 

such as city, county and states. Traditional statistics such as linear, Poisson and logistic 

regression may not be appropriate for spatial data analysis without incorporating the information 

on neighborhood relationships and spatially correlated error terms. Spatial autoregressive models 

are developed by treating observations of the outcome variable at other locations as additional 

covariates in the model with associated parameters defining spatial association(99). The 

generalized linear mixed model is another method for modeling regional counts and rates 

developed by introducing random effects and hierarchical modeling into models (100).Bayesian 

models are developed to fit very complicated hierarchical models including those with spatially 

correlated random effects. The basic idea of this model is that of using the data to define a 

probability distribution for each of the model parameters, then using these distributions to draw 
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inference. Several studies report that Bayesian models offer dramatic improvements in statistical 

accuracy over conventional statistical methods(101, 102). 

B.3.2 ETIOLOGICAL ANALYSIS 

Etiological analysis usually uses exposure/hazard and health outcome data at the individual 

level. The most common study designs to evaluate the possible association between health 

outcomes and environmental hazards/exposures consist of a cohort study and a case-control 

study including a case-crossover study. 

The strength of association between environmental factors and health outcome is not usually 

high. In addition, the association between environmental factors and health outcomes is 

complicate. The ability to detect an association is influenced by many factors. Lack of validity of 

testing can be expected if there are unidentified confounding factors, if confounding factors are 

measured with errors or if controlling for confounding factors is inadequate(103). Therefore, the 

use of appropriate statistical models is important to detect an association between environmental 

factor and health outcome. 

In cohort study, survival analysis such as Cox proportion hazard model was often applied to 

estimate the relative risk. In a case-control study, the statistical method is logistic regression, 

which is used to estimate odds ratios. Conditional logistic regression is required to estimate odds 

ratios in paired case control study or case-crossover study, which we will discuss later (see 

proposed demonstrative studies). 
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B.4 ISSUES OF USING SECONDARY DATA FOR ENVIRONMENTAL PUBLIC 

HEALTH TRACKING  

B.4.1 DATA ISSUES 

Using secondary data for environmental public health tracking is promising and feasible. 

Development of the EPHT program depends on the availability, quality, timeliness, compatibility 

and utility of existing data. However, secondary data collected for specific aims may not be 

sufficient for environmental public health tracking. A few publications discussed about the 

strengths and limitations of using secondary data for epidemiologic studies (104-106). Sorensen 

et al provided a comprehensive review of issues of using secondary data sources for 

epidemiologic research, which include completeness of data, accuracy of information collected, 

registration period, data format, data accessibility and availability and possibilities of linkage 

with other data sources(107).   

Completeness of data is concerned with the function of registry system and data quality. 

Cases can be missed even in the best registration system. Improving the registry system may 

enhance completeness of data. On the other hand, completeness of data is also related to the 

completeness of information on subjects collected in the system. Significant missing or 

incomplete data can negate the value of a secondary data source. Completeness of data can also 

refer to time dimension. For example, many EPA monitors operate for only short periods of time 

or have intermittent periods with no data collection. It yields gaps in the data. This compromises 

the value of the data.  

Accuracy of information collected reflects data quality as well. Incorrect information in 

secondary data may come from incorrect data entry or lack of entry of available information and 
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errors of measurement, i.e. information which may not reflect the true condition or characteristic 

of an individual or condition. It is very difficult or impossible to evaluate the accuracy of 

information in secondary data. 

Data from different time periods have some potential issues. The issues are related to 

something changing over time in the data collection process. For example, in the NEI database, a 

different method for estimating emissions will be applied. Data produced at different periods of 

time might not be comparable. For a disease registration system, disease definition, assess to 

care, diagnostic technology, and disease reporting can change over time (108). 

Data accessibility and availability and data format are the issues related to data sharing, data 

delivery and data application. If these issues are not well addressed, it might be very difficult or 

time and labor consuming to make use of secondary data.  

B.4.2 ISSUES OF ACCURATELY IN ASSESSING ENVIRONMENTAL EXPOSURE 

Accurately assessing environmental exposure is a major issue in environmental public health 

tracking. As mentioned before, available data systems lack adequate measures of human 

exposure. Many environmental agent exposures have not identified the specific and effective 

biologic indices. Assessment of human exposure will continue to be critical in environmental 

public health tracking. However, even if exposure data are available, these data usually provide 

information of intensity of exposure at single point of time, i.e. time of sample collection. To 

accurately assess environmental exposure, the data need to capture the duration, frequency and 

intensity of exposure over a specified time period. Moreover, timing of exposure is another 

import factor which could influence the correct estimation of exposure level. Rothman presented 

a useful structure to reveal the relation between timing exposure and the occurrence of disease. It 
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suggested that there would be a specific time period during which a given exposure is causally 

related to disease, i.e. time window of exposure. The exposure before or after the etiologically 

important time window might not be a good measurement of disease relevant exposure (109). 

Several publications reported the importance and methods for considering the time of period of 

exposure in addition to the dose of exposure in evaluating the effect of exposure on onset of 

diseases (110-112).  

B.4.3 ISSUES OF CONFIDENTIALITY AND PRIVACY 

Confidentiality and privacy are barriers to secondary data accessibility and availability. 

Health data usually include personal data information, which is important information for data 

linkage. Using these data might be an invasion of privacy and confidentiality. Moreover, it is 

difficult and potentially impossible to secure informed consent from individuals in identified in 

population-based administrative and registry data. Therefore, it is very important to clarify who 

has the right to use specific data and which authorities should approve the use of the data for 

environmental public health tracking. The strategies to address these issues should be developed 

in the future for balancing between the protection of privacy as well as confidentiality and data 

accessibility and availability.  

In a word, all the above issues should be carefully considered when secondary data are used 

for environmental public health tracking. 
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