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Abstract 

The Belmont Report (1979) presents ethical principles governing clinical research: respect for 

persons, beneficence, and justice. This dissertation attempts to improve beneficence, in 

particular, in early stage clinical trials, in three directions.  

First, we develop a "dose-choice control panel" (DCCP) computer program. Inputs are 

complete population information and patient utilities. DCCP produces optimal dose assignment 

decisions, and helps users to explore how the population parameters and utilities affect the dose 

recommendation. 

Second, we present a new adaptive Bayesian method for dose-finding in phase I clinical 

trials based on both response and toxicity.  Although clinical responses are rare in cancer trials, 

biological responses may be common and may help decide how aggressive a phase I escalation 

should be.  The model assumes that response and toxicity events happen depending on respective 

dose thresholds for the individual, assuming that the thresholds jointly follow a bivariate log-

normal distribution or a mixture. The design utilizes prior information about the population 

threshold distribution as well as accumulated data. The next dose is assigned to maximize 

expected utility integrated over the current posterior distribution. The design is evaluated in a 

setting inspired by the Gleevec story, with population parameters equaling estimates from early 
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Gleevec trials. This exercise provides evidence for the value of the use of the proposed design 

for future clinical trials.  

Third, we propose an adaptive Bayesian design based on a hierarchical 

pharmacokinetics/pharmacodynamic (PK/PD) model, incorporating prior knowledge and/or 

patient-specific measurements related to PK/PD processes. Because genetic variations or drug 

co-administration can lead to huge inter-individual differences in drug efficacy and toxicity, it is 

desirable to individualize chemotherapy dosage. Those factors influencing drug metabolism and 

clearance are expected to affect all PD processes downstream, leading to efficacy and toxicity 

outcomes, while other genetic variations or drug co-administration may affect only one PD 

process. Application of the design to the Gleevec and Irinotecan settings is encouraging with 

regard to patient protection and accuracy of estimates.  

This work could improve public health by providing more accurate answers quicker, and 

by encouraging accrual through explicit consideration of what is best for each individual patient. 
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1.0 INTRODUCTION

1.1 STATEMENT OF PROBLEM

Phase I clinical trials, generally defined as dose-finding trials, have their primary goal as the

discovery of the maximum tolerated dose (MTD), which is recommended for the phase II tri-

als to test efficacy. Both physicians and experiment researchers hope the agents demonstrate

some anti-tumor effects, serving as part of rational for launching phase II trials. However,

conventional clinical response is not necessarily a useful indicator of clinical benefit. Some

agents have no toxic effects at doses which provide desired biologic effects or clinical ben-

efit, while increasing the doses of some agents may not always provide additional benefit.

Traditional phase I clinical trial designs which just consider toxicity may not be effective in

exploring new, potentially beneficial anti-cancer drugs.

While biomarkers may not provide true surrogate endpoint information, they are still

useful because they may provide evidence that the drug has the hoped-for potential. Al-

though changes in biomarkers during therapeutic intervention would not assist directly in

the drug approval process, they may help justify proceeding to phase II trials. If an agent is

safe and well-tolerated, but has no any effect on biomarkers, it may be a counterindication

for phase II commitment. Consideration of toxicity alone may not be enough for dose-finding

in phase I clinical trials. Augmenting toxicity data with biological endpoint data might be

important.

Because genetic variations or drug co-administrations can lead to huge inter-individual

differences in drug efficacy and toxicity, so it is desirable to individualize therapy. Before

patient enrollment or dosage assignment, some patient specific characteristics may have al-

ready been identified to have influence on PK or PD process. These characteristics may
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not lead to a dramatic difference in response or toxicity, but at least they indicate that this

known information has some potential to protect patients if incorporated in the dose-finding

process. The consideration of known patient information is necessary for dose-finding in

phase I clinical trials. Those factors influencing drug metabolism are expected to affect all

pharmacodynamic (PD) processes downstream, including both efficacy and toxicity, while

other genetic variations or drug co-administrations may affect only one PD process. This

suggests that a hierarchical model could help in designing an improved phase I trial incor-

porating specific measurements related to PK/PD processes and prior belief. On the other

hand, phase I trials are small and may not contain enough information to support a highly

adaptive design. The question is whether such a design could be helpful.

Although the study of dose-escalation procedures that take both response and toxicity

into account is relatively new, studies of dose-escalation algorithms based only on toxicity are

plentiful. These methods are divided into two categories according to different underlying

philosophies in designing trials: rule-based algorithms [Storer (1989); Korn et al. (1994);

Goodman et al. (1995); Molley et al. (1995); Durham, Flournoy and Rosenberger (1997);

Simon et al. (1997); Leung and Wang(2001); Ivanova et al. (2003)], and model-based algo-

rithms [O’Quigley et al.(1990); Babb et al. (1998), Whitehead and Brunier(1995); Gasparini

and Eisele(2000); Potter (2002); Haines et al.(2003) ]. In general, the rule-based designs,

easy to implement, are widely used in phase I clinical trials. They produce an ad-hoc esti-

mate of the target dose, which produces a specified target toxicity probability. However, the

rule-based methods do not readily yield a measure of the target dose’s accuracy. To obtain

a measure of accuracy, model-based designs have been proposed in the past decade.

Some recent studies in phase I clinical trials focus on the consideration of both toxic-

ity and efficacy [ Gooley et al. (1994); Thall and Russell(1998); O’Quigley, Hughes, and

Fenton(2001); Braun et al.(2002); Thall and Cook (2004); Bekele and Shen (2005); Loke et

al (2006) ]. All of the model-based adaptive designs introduce specific probability models

to explain the relationship between dose and bivariate outcome, update the knowledge as

relevant response and toxicity data accumulate, and then use this information to guide the

next dose assignment. The designs are considered in the Bayesian framework, but then the

operating characteristics are evaluated and ad hoc fixes are possibly introduced. All of these

2



indicate the designs are not full Bayesian approaches which should be decision-analytic, by

combining a utility function with Bayesian posterior probabilities to form Bayesian expected

utility and then to make a Bayesian decision through the maximization of Bayesian expected

utility.

1.2 OBJECTIVE OF THE STUDY

One objective of this dissertation is to develop a ”dose-choice control panel” (DCCP) for ex-

ploring decisions based on the threshold population model, and then propose a new adaptive

Bayesian approach to jointly modeling response and toxicity in phase I dose-finding trials

based on the solid foundation of Bayesian decision theory to address ethical concerns in phase

I studies. In addition, genetic variations or drug co-administration could lead to huge inter-

individual differences in drug efficacy and toxicity, making it desirable to individualize dosage

according to patients’ specific information. Those factors influencing drug metabolism are

expected to affect all pharmacodynamic (PD) processes downstream, including both efficacy

and toxicity, while other genetic variations or drug co-administrations may affect only one

PD process. A hierarchical model is proposed to improve phase I trials by incorporating spe-

cific known information and prior belief. This dissertation is organized in three parts: one

is the development of DCCP; the second is an adaptive Bayesian approach to jointly model-

ing response and toxicity in phase I dose-finding trials, and the third is knowledge-directed

Bayesian design in phase I dose finding trials. The dissertation addresses the following main

goals:

1. To propose a new joint model for response and toxicity thresholds;

2. To develop a ”dose-choice control panel” (DCCP) for exploring decisions;

3. To develop a new adaptive Bayesian dose-finding design based on the model;

4. To compare the new design with standard designs with regard to the accuracy with

optimal dose estimate and protection of patients;

5. To extend the binary outcome case to categorical outcomes;

6. To check the design robustness when thresholds follow a mixture model;

3



7. To apply the proposed design to Gleevec data;

8. To propose a hierarchical PK/PD model incorporating patient specific measurements

related to PK/PD processes;

9. To apply this hierarchical modeling to Gleevec and Irinotecan data to check the design

performance.

4



2.0 PREVIOUS APPROACHES IN PHASE I CLINICAL TRIALS

2.1 SINGLE OUTCOME DESIGNS

Traditional phase I trials are based on the following assumptions: 1) The clinical benefit of the

drugs increases with doses increasing; 2) The toxicity of drugs increases with doses increasing;

and 3) A dose which can give maximum clinical benefit with acceptable toxicity exists.

Moreover, since clinical response in phase I trials are uncommon, traditional phase I clinical

trials just measure the toxicities and then determine the maximum tolerated dose(MTD)

which would be passed to phase II trials to test the efficacy.

Single outcome phase I trial designs based only on toxicity can be divided into two

categories according to different underlying philosophies in designing the trials: rule-based

design and model-based design. If the trials are designed assuming that the MTD could be

obtained from the real data, only the specific dose-escalation rule is required during the whole

trial and no statistical model is needed; these designs are then called rule-based designs. If

the trials are designed assuming that the MTD should be estimated from the probability

model using real data, a statistical model is required; these designs are called model-based

designs.

2.1.1 Rule-Based Designs

Rule-based designs, which only need a dose-escalation rule with no complicated statistical

modeling, are simple to understand, easy to implement, and widely used in phase I clinical

trials. The simple rule-based design is current standard design in phase I trials and is

sometimes called ”conventional design”[1].
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The standard design, was first proposed for testing explosives by Anderson, McCarthy

and Tukey[2], and then shown to have good property on the estimators of the median by

Dixon and Mood[3, 4]. It begins with the first cohort (3 patients) at a lowest dose level often

one-tenth of the LD10 (10% of lethal dose) in mice, which is expected to have no significant

toxicity. If there is no toxicity, escalation occurs; this leads to a cohort of three patients being

treated at the next higher dose level. Otherwise, an additional cohort of three patients are

treated at the same dose level. Should only one of six have toxicity, escalation continues for

the next cohort of three patients. Should at least two out of six patients experience toxicity,

or at least two out of three patients experience toxicity in the initial cohort treated, the next

three patients should be treated at the lower dose. This algorithm iterates and defines the

MTD as the highest dose in which a maximum of one out of six patients experiences toxicity,

meaning the highest dose with less than 1/3 toxicity. The data identify the MTD; with no

statistical estimation needed, the standard design is very simple to implement.

Recent literature reports that the standard design has very poor operating characteristics

[5, 6, 7, 8, 9, 10, 11, 12, 13]. One problem with the standard design is that many patients are

treated at low, possibly ineffective dose levels when the initial dose level falls far below the

true MTD. Another problem of the standard design is the large variability of the estimated

MTD around the true MTD. The major criticism of the standard design is that it has no

intrinsic property producing accurate estimates of a target quantile.

Storer compared the standard design with several simple alternatives with regard to

the conservativeness of the design and the point and interval estimation of an MTD(33rd

percentile) with small sample sizes. He also made two important modifications[11, 14]. He

initially proposed a two-stage design. The first stage escalates doses using single patients

until the first toxicity occurs; this launches second stage, which uses three-patient cohorts

beginning at the next lower dose level. The two-stage design performs better than the single-

stage designs, but the first stage using single patient cohorts is too aggressive; single-patient

designs are also considered uncomfortable because of the variability of patients in clinical

settings. Storer’s second modification defines the MTD as the dose corresponding to a pre-

specified toxicity probability Γ. In his paper, he suggested Γ = 1/3 and proposed a logistic

regression model to fit the toxicity data. The two parameters estimated from the logistic
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model then determine the MTD. Although MLEs of the logistic parameters, and hence the

MTD, have desirable large-sample properties, in small-sample settings this method is not

well-behaved.

Standard designs rely on the rules of escalation and de-escalation, but not are designed

around the target quantile. Storer’s modified designs target the quantile corresponding to

Γ = 1/3, although its intrinsic small sample properties are not desirable.

Derman (1957)[15] first demonstrated that dose levels could be centered around given

quantile by randomizing the standard designs using a biased coin. Tsutakawa(1967, 1972)[16,

17] analyzed the standard design using random walk theory. Durham and Flournoy (1994)[18]

described family designs where the patients are sequentially assigned to next higher, same,

or lower dose level with some probability depending on the previous patients’ responses.

Actually, these designs are a broad extensions of standard design. Durham, Flournoy and

Rosenberger (1997)[19] proposed an appropriate random walk rule for phase I clinical trials.

Patients are sequentially assigned to the next higher, same or next lower dose level according

to some probability distribution, which may be determined by ethical considerations as well

as the patients’ responses. For example, if patient j has been assigned to dose level xi, then

assign patient j + 1 with the following rule: If patient j experiences a toxic response, then

assign patient j + 1 to level xi−1; If patient j has no toxicity, then flip a biased coin with

probability of heads-up b; If it lands head up, assign patient j + 1 to level xi+1, but if it

lands head down, assign patient j + 1 to xi. Durham and Flournoy(1994)[18] showed that if

b = Γ/(1−Γ), the asymptotic frequency distribution of dose assignments will be unimodally

distributed around μ, with the maximum dose level deemed tolerable. For instance, to target

the 33rd percentile of the dose-response curve, select b = 1/2; to target the 25th percentile,

select b = 1/3. Durham et al. mentioned that the random walk rule is particularly attractive

for phase I trials for several reasons: 1) The designs are simple to implement; 2) Exact finite

and asymptotic distribution theory is completely worked out, allowing the experimenter to

choose design parameters for the most ethical allocation scheme; and 3) Specific designs can

allow the chosen design points to be distributed unimodally around a quantile of interest.

Simon et al.(1997)[1] proposed accelerated titration designs for phase I clinical trials in

oncology. His study evaluated four designs. Design one is a standard design using a cohort

7



of three to six patients. Design two through design four are two stage-designs that use a

single patient cohort in the first stage. Once the observation of the first dose limiting toxic

effect or two grade 2 toxic effects(during their first course of treatment or during any course

of treatment) occurs, the second stage using a standard design is launched. Design two

through four use intrapatient dose escalation if the worst toxicity is grade 0-1 in the previous

course for that patient during both stages. Moreover, Simon et al. suggested a new method

to fit the data by using the following notation: yij = log(dij + αDij) + βi + εij, where yij is

a latent variable denoting the toxicity experienced by ith patient during jth course, dij is

the received dose by ith patient during jth course, Dij is the total dose for courses previous

to j, βi is a random patient effect and εij, error term, denotes the intrapatient variability

in toxic response for ith patient during course j. If yij is less than a specified constant K1,

then patient i is considered to have experienced less than grade 2 toxicity during course j;

if K1 ≤ yij < K2, then grade 2 toxicity occurs; if K2 ≤ yij < K3, then grade 3 toxicity

occurs; if yij ≥ K3, then grade 4 toxicity occurs. α,K1, K2, K3 are estimated from the fitting

process. The accelerated titration designs have several advantages compared to standard

design: average number of patients required for phase I trials are smaller, and fewer patients

are treated at lower and untreated doses. However, accelerated titration designs are more

aggressive than standard design due to the rapid escalation in the first stage, and within

patient dose escalation may mask some treatment effects.

Leung and Wang (2001)[20]proposed a model-free design based on the assumption that

the probability of toxicity is nondecreasing with increasing dose. The isotonic regression is

fitted using cumulative subject information, and then q, the proportion of patients experi-

encing toxicity at each dose level, is estimated. The next patient is assigned to the dose at

which q is closest to the target quantile. Simulation results show this method performs much

better than commonly used methods.

Ivanova et al. (2003) [21] proposed three improved up-and-down designs using more

information than the most recent responses, two of which are based on the ”k-in-a-row” and

one of which is based on ”Narayana rule”. The proposed methods target the dose for which

τ = 1− (0.5)1/k, where k is the number of patient, defined by researchers. The ”k-in-a-row”

rule is as follows: If the last response is toxic, the next patient is assigned to the next lower
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dose level; if the k most recent patients are assigned to the same dose level and no toxicities

are observed, then the next patient is assigned to the next higher dose level; otherwise,

the next patient is assigned to the same dose level. The ”Narayana rule”, based on R and

presented by the fraction of observed toxicities at the given dose level, is as follows: If R > τ

and at least one patient has toxicity among the last k patients at the current dose level, the

next patient is assigned to the next lower dose level; if R < τ and no patient has toxicity

among the last k patients at the current dose level, the next patient is assigned to the next

higher dose level; otherwise, the next patient is assigned to the current dose level. The results

show that ”Narayana rule” has a good property because the probability of assignment tends

to zero for dose levels not closer to the target. As a result, the ”Narayana rule” is better

than the ”k-in-a-row” rule and other designs. Many other rule-based designs have already

been proposed, including the stochastic approximation methods( Robbins and Monro, 1951

[22]), but these methods are not widely used.

In general, the rule-based designs, easy to implement, are widely used in practice. Stan-

dard designs have especially become the standard methods in phase I clinical trials. Yet

the rule-based methods are not designed to produce the accurate estimate which has target

probability. In the past decade, therefore some model-based designs have also been proposed

with the intention of producing an accurate estimate of target quantile.

2.1.2 Model-Guided Designs

The MTD, defined as a dose level that has certain acceptable toxicity probability, can be

obtained by estimation. Many statistical designs for phase I trials have been proposed. For

example, Storer[11] is the first one who suggested using a logistic regression model to get the

MTD which targets the 33rd quantile, O’Quigley et al.[9] proposed a continual reassessment

method(CRM), Babb et al.[31] proposed an Escalation With Overdose Control(EWOC)

method, Gasparini and Eisele (2000)[35] proposed a curve-free CRM, and Whitehead and

Brunier(1995)[32] introduced decision theoretic approaches.

O’Quigley et al. (1990) [9] proposed the continual reassessment method(CRM), the first

one introducing Bayesian flavor to phase I clinical trials. Shen and O’Quigley(1996) [23]
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further explored some basic asymptotic characteristics. The fundamental idea in the original

CRM is to always treat patients at the dose level at which response probability, according

to current knowledge, is closest to the desired level. This method proposes a dose-response

function with one free parameter. The posterior mean of this parameter is updated using

the prior information about the parameter, prior guesses about the probabilities of toxicity

at each dose level, and all available patients’ toxicity data. Probabilities of toxicity at each

dose level are then computed and the dose at which the probability of toxicity is closest to

the target quantile is assigned to the next patient.

Much of the recent literature reports properties of CRM using simulations[24, 7, 12, 25,

26, 10]. CRM has several attractive properties. One is its quantitative explanation for the

probability of toxicity for the MTD. The second is its utilization of prior information about

the possible toxicity at each dose level. The third is its small number of patients assigned to

lower, ineffective doses. The original CRM also has several problems. One is the assignment

of initial dose level. The original CRM assigns the first patient to the dose determined by

prior information, usually above the lowest dose level. Most clinicians think that starting

above the lowest dose is somewhat aggressive and impractical. The second problem is that

the original CRM method allows the escalation of more than one dose level at a time. This

raises some concern about whether the new dose level will be too toxic, although O’Quigly et

al. suggested that this is not the case. Thirdly, because the cohort size is 1, the single patient

study would take long to complete since one needs know the responses to the assigned doses

of the previously entered patient before assigning the next patient. Korn et al. (1994) [25]

and Goodman et al. (1995)[12]made some modifications of the original CRM; they suggested

starting the study at the lowest dose level, prohibiting escalation of more than one level at

a time, and stopping when a fixed number of patients had been treated at the same dose.

They also suggested assigning one or more patients at each dose level to reduce the number

of cohorts to complete trials. These authors provided extensive simulations to compare

their CRMs to the traditional rule-based method. Concluding that two- and three-patient

designs have the advantage of less toxicity and shorter study duration, they recommended

two- and three-patient designs. The original CRM which has been criticized because it often

tends to allocate highly toxic doses to many patients, led Ishizuka and Ohashi(2001) [27] to
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propose using a mean toxicity probability Pr(toxicity|dosei) with prior density, instead of

approximate mean toxicity probabilityPr(toxicity|dosei)′ with prior mean which does not

reflect any variability in prior distribution. They did some simulations whose results show

that the first method tends to allocate a smaller number of patients to doses higher than the

maximum tolerated dose(MTD) compared with the original method.

In regard to stopping rules of CRM, Korn et al.[25] proposed terminating a trial if a pre-

specified number of patients has been treated at the same dose level. O’Quigley et al. (1998)

[28] discussed the stopping rule for the continual reassessment method based on the idea that

continuing the study would not lead to a change in recommendation with high probability.

Heyd and Karlin(1999) [29] proposed ending trials if the estimated MTD has a specified high

precision. O’Quigley (2002)[30] suggested a new simple stopping rule that terminates the

trials when the dose recommended to the next patient has already been allocated m times,

where m is a number fixed at the beginning of the trial.

Babb et al (1998)[31] suggested an escalation with overdose control(EWOC)method.

The method is fully adaptive, makes use of all the information available at the time of dose

assignment, and directly addresses the ethical need to control the probability of overdosing.

The authors introduced a logistic dose-toxicity model logit{Pr(toxicity|dose = x)} = β0 +

β1x, where x is assigned dose, β0 and β1 are unknown parameters. The posterior joint

distribution of β0 and β1 is transformed to a joint distribution of γ (MTD) and ρ0(the

probability of toxicity at the starting dose x1). The first patient receives the lowest dose,

while the dose for each subsequent patient is based on the posterior marginal probability

that the dose exceeding the MTD is equal to the feasibility bound, α, given all of the

available data. Upon completion of the trial, the MTD is estimated by minimizing the

posterior expected loss with respect to a loss function. The authors also compared EWOC

with four up-and-down designs, two stochastic methods, and CRM. The simulation results

show that relative to CRM, EWOC overdoses a smaller proportion of patients, exhibits fewer

toxicities, and estimates the MTD with slightly lower average bias and marginally higher

mean square error. Relative to non-parametric methods, EWOC treats fewer patients at

either subtherapeutic or severely toxic dose levels, but treats more patients at an optimal

dose level.
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The CRM and EWOC, two examples of Bayesian designs, are designed for different

directions. The CRM assigns the dose closest to the target quantile(MTD) to the next

cohort, while the EWOC passes the dose at which overdose probability is less than the

pre-specified level for subsequent patients.

Whitehead and Brunier(1995)[32] proposed a decision theoretic approach for phase I tri-

als. Similar to EWOC, their two-parameter model has a prior distribution on the parameters.

The dose is picked at each stage by minimizing the asymptotic variance of the maximum

likelihood estimator of MTD (μ̂). Whitehead and Williamson (1998)[33] compared the per-

formance of the minimum variance loss function with the original CRM loss function. The

simulation results show that there is little difference in the operating characteristics. How-

ever, Sun and Tsutakawa [34] reported that the decision theoretic approaches based on the

posterior variance of (μ̂) from a logistic model tend to produce larger sampling variability,

and thus the posterior variance is an undesirable criterion for design selection.

Gasparini and Eisele(2000)[35] introduced a curve-free CRM. The prior guess about the

probability of toxicity Pr[Ti] at each dose level is elicited. Statistical model θi = (1 −
Pr[Ti+1])/(1 − Pr[Ti]) is used with prior beta distribution on θi. Then θi is updated using

the cumulative data information, Pr[Ti] as well. The dose allocation rule is similar to the

original CRM. The simulation results show that a curve-free CRM tends to treat fewer

patients at excessively toxic doses than the original CRM, but is otherwise comparable.

O’Quigley(2002)[36], after comparing the curve-free CRM with the original CRM, stated

that the two methods are operationally equivalent.

Potter(2002)[37] proposed a two-stage adaptive dose finding algorithm. In the first stage,

doses are escalated by a factor of 1.5, and in the second stage doses are determined by a two-

parameter logistic dose-response model which begins at the first instance of DLT. Setting the

dose (d10) at which 10 percent of patients would experience DLT to half the dose at which

the first DLT was observed and the dose(d90) at which 90 percent would experience DLT to

ten times d10 initializes the model. The performance of the new method was compared to

that of rule-based methods.

Haines et al.(2003) [38] proposed a Bayesian design which involves constraints incorpo-

rating the optimal design points and their weights. This unified approach, which draws
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ideas from decision theoretic approach by Whitehead and Brunier(1995)[32] and EWOC by

Babb(1998)[31], addresses both the efficiency of estimation and the protection of patients

from being assigned to highly toxic doses.

The above model-based methodologies have some similar design logic. They introduce

a statistical model with some specific prior distributions on parameters, update the param-

eters using cumulative data information, and then allocate a dose according to certain loss

function.

Model-based designs, which are widely explored, have many good properties, such as

producing accurate estimates of target quantile and putting fewer patients at lower and

untreated dose level. Yet, they also have the following drawbacks: 1) Special statistical model

assumption beyond the regular assumption that dose-toxicity relationship is nondecreasing

is required. Only if the assumptions are satisfied do the model-based methods perform well;

2) Because they are involved with complicated modeling and computational challenges in

implementation, it is not easy to explain model-based designs to non-statistician researchers;

and 3) Most model-based designs incorporate prior information, creating a concern about

the elicitation of priors in the implementation of trials. In practice, the rule-based designs

still dominate in phase I trials for two main reasons: 1) They are easy to implement; 2)

No special modeling assumptions are required beyond a regular assumption that toxicity is

non-decreasing with dose increasing.

2.2 BIVARIATE OUTCOME DESIGNS

The practice of design and implementation of phase I trials widely accept traditional clinical

trial assumptions. Therefore, most statistical methods for dose-finding in phase I clinical

trials determine the MTD based on the toxicity, while ignoring the response.

Although phase I clinical trials are generally defined as dose-finding trials, both the

physicians and experiment researchers hope the agents demonstrate some anti-tumor effects

to serve as their rational for launching phase II trials. Patients who participate in anti-

cancer agent phase I trials suffer from different types of cancer; having typically exhausted
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other therapeutic alternatives, they treat this as a last resort. As a result, the design and

implementation of phase I clinical trials must take into account the patients’ vulnerability

and input.

The clinical benefit of an agent typically increases with a higher dose. While clinical

benefit rarely decreases with a dose increase, some agents do have a clinical benefit plateau.

If the clinical benefit plateau with an increasing dose is real for a particular agent, it is foolish

to still recommend the maximum tolerated dose which has the almost same clinical benefit

as the relatively lower dose. Korn [39] explored some reasons a maximum dose should not

be used in this kind of situation. He first explained that the agent might be in short supply,

although typically the shortage would probably be only a temporary problem. Korn also

stressed that some agents will require longer-term treatment. Because phase I trials typically

incorporate only short-term toxicity, long-term administration may not be required for some

agents; even if long-term administration is needed, a superior strategy might be to choose a

dose that is one or two doses levels below the maximum dose, but still sufficiently active. In

deciding the dose that would be passed to phase II trials in this situation, both toxicity and

clinical response should be taken into account.

The rapid development of molecular biology, cancer genetics, and technology makes avail-

able non-cytotoxic agents, which seem to be nontoxic at doses that achieve concentrations

with desired biologic effects. Consequently, Stadler et al. [40] suggested a dose-escalation

trial incorporating a biologic end point for the agent in addition to toxicity. Parulekar and

Eisenhauer [41], after exploring this possibility for targeted, non-cytotoxic agents, reported

the survey results of completed phase I trials using such agents. They found that in de-

termining the recommended phase II dose from phase I trials, the primary basis for the

recommendation is still toxicity in the majority of trials. Only two trials out of 60 used

a targeted endpoint or surrogate tissue finding as the primary basis for determining the

recommended phase II dose. The main reason why so few trials consider both toxicity and

non-toxicity endpoints is that it is difficult to define the desired target effect in phase I trials.

From an ethical perspective, phase I trials should consider both toxicity and response,

no matter which type of response occurs: clinical response, surrogate marker or regular

biomarkers response. For example, in a trial of bone marrow transplantation, response
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might be the nonrejection of the graft with toxicity the occurrence of graft vs.host disease.

Alternatively, response may be the occurrence of a surrogate marker that is known to relate

to a clinical benefit. Statistical methods for dose-finding that take into account both response

and toxicity have recently been proposed.

Gooley et al. (1994) [42] was the first one to consider two outcomes in phase I trials; they

also proposed the frequently used computer simulation procedure as a clinical trial design

tool.

Thall et al.’s (1998) [43] TR method is a Bayesian adaptive design incorporating both

response and toxicity outcomes. Bivariate binary outcomes (response (0, 1),toxicity(0, 1)) are

regrouped to a trinary variable(0, 1, 2) denoting three possible situations: inefficacy(denoting

no response and no toxicity), efficacy(denoting response and no toxicity), and toxicity( denot-

ing toxicity with and without response). An proportional odds logistic regression model(PO)

is then introduced, represented by logit(π2(d, θ)) = μ + βd and logit(π1(d, θ) + π2(d, θ)) =

μ+α+βd, where θ = (μ, α, β), π1 denotes probability of efficacy, and π2 denote probability

of toxicity. Standard Bayesian theory using data likelihood and prior information com-

putes posterior distribution. The acceptable dose d is such that Pr{π1(d, θ) > π1|D} > p1,

Pr{π2(d, θ) < π̄2|D} > p2, where π1 and π̄2 are fixed lower and upper limits, p1 and p2

are fixed probability cutoffs, and D is cumulative data. The authors then defined the best

acceptable dose given D as that having the highest probability of response. The TR method

provides an ethical and practical basis for dose-finding in phase I trials, but Thall et al.

[44] noted that the TR method can’t accommodate the more general setting where it should

distinguish between toxicity with and without response.

O’Quigley, Hughes and Fenton (2001)[45] proposed a two-stage dose-finding design, sim-

ilar to CRM. The first stage determines an acceptable level of toxicity, starting with a

low toxicity target that later may be increased; when the information on the rate of suc-

cess among those patients not suffering toxic effects is collected at this dose level, the sec-

ond stage uses a sequential probability ratio test to compare null and alternative values

of Pr(E and T c|x) = πE|T c(x, θ){1 − πT (x, θ)}, where E denotes efficacy, T c denotes non-

toxicity, x denotes the dose, and θ denotes the parameters. Then a decision is made as

follows: 1) A negative test result leads to the further implementation; 2) A conclusion sup-
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porting success rate larger than p1 closes this trial with the final recommendation for this

dose level, where p1 is the promising efficacy probability; and 3) A conclusion supporting

success rate less than fixed probability p0 leads to the removal of this dose level and lower

dose levels from further implementation, where p0 is the unsatisfactory efficacy probability;

at the same time, the target acceptable toxicity is increase from θ to θ + δ, and the trials

continues at the remaining dose levels.

Braun (2002)[46] extended CRM to bivariate trials in which the maximum tolerated dose

is based jointly on toxicity and disease progression. Logistic regression models with subject-

specific intercepts are used separately for two outcomes, log(p1ij/(1 − p1ij)) = −αi + β1xj

for toxicity and log(p2ij/(1 − p2ij)) = −αi + β2xj for disease progression. The likeli-

hood function includes one more parameter ψ addressing the relationship between toxi-

city and disease progression with the joint distribution of (Y, Z) defined as f(y, z|x) =

k(p1, p2, ψ)py1q
(1−y)
1 pz2q

(1−z)
2 ψyz(1 − ψ)(1−yz); y, z ∈ {0, 1}, 0 < ψ < 1, where y and z de-

note toxicity and disease progression, p1 denotes the probability of toxicity on dose x, p2

denotes the probability of progression on dose x, qi = 1 − pi,i ∈ {1, 2}, and k(.) is a nor-

malizing constant. A three-parameter (β1, β2, ψ) Bayesian model is then used; the dose is

chosen by minimizing a Euclidean or non-Euclidean distance from [E{π1(x, β1, β2, ψ)|D},
E{π2(x, β1, β2, ψ)|D}] to a fixed two-dimensional target.

Thall et al. (2004) [47] cited a major limitation of the TR method. In cases where

all doses have acceptable toxicity but higher dose levels have substantially higher efficacy,

the TR method does not guarantee escalation to the more desirable doses with high effi-

cacy. Thall et al. proposed a new Bayesian algorithm for dose-finding based on efficacy-

toxicity trade-off contours that partition the two-dimensional outcome probability domain.

For trinary outcomes in addition to the PO model, the continuation ratio(CR) model is

also considered, represented by logit(π2(d, θ)) = μ2 + β2d and logit(π1|2c(d, θ)) = μ1 + β1d,

where θ = (μ1, μ2, β1, β2), π2 denoting probability of toxicity and π1|2c denoting probabil-

ity of efficacy given non-toxicity. For bivariate binary outcomes, a bivariate binary model

is introduced in terms of marginal probability and one association parameter ψ, repre-

sented by logit(πT (x, θ)) = μT + βTd for toxicity and logit(πE(x, θ)) = μE + βE,1d + βE,2d
2

for efficacy, where θ = (μT , βT , μE , βE,1, βE,2, ψ). Then this model is written by πa,b =
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(πE)a(1 − πE)1−a(πT )b(1 − πT )1−b + (−1)a+bπE(1 − πE)πT (1 − πT )((eψ − 1)/(eψ + 1)). De-

cision rule is based on the desirability of the pair π(d, θ) in the two dimensional domain.

Simulation results show that this method has high probabilities of making correct decisions

and treats most patients at dose with desirable efficacy-toxicity trade-offs.

Bekeleet al.(2005) [49] proposed a Bayesian approach to phase I/II dose-finding oncol-

ogy trials by jointly modeling a binary toxicity(T ) and a continuous biomarker expression

outcome(W ). The joint distribution of (W ∗, T ), which is assumed to have a bivariate normal

distribution in terms of covariance parameter ρ and marginal distributions, is introduced, rep-

resented byW ∗ ∼ Normal(XiβW∗ , σ2
W∗) and Pr(Ti = 1|xi = dk) = Φ(Xiβz) = Φ(βZ,k) where

W ∗ is the transformed W . Dose dk will be acceptable if Pr(h−1(βW,k) > W ∗
min|data, nk ≥

m) > δ1 and Pr(Φ(βZ,k) < πt|data, nk ≥ m) > δ2 or Pr(Φ(βZ,k−1) < πt|data, nk < m, nk−1 ≥
m) > δ3, where m is a fixed integer between 1 and 6, nk is the number of patients evaluated at

dose dk, δ1,δ2 and δ3 are prespecified threshold probabilities, W ∗
min is the lowest biomarker ex-

pression level of clinical interest, πt is a maximum acceptable toxicity probability, h−1(βW,k)

is the biomarker expression level for the kth dose, and Φ(βZ,k) is the probability of toxic-

ity for the kth dose. The probability of allocating the next patient among the acceptable

doses is proportional to the Euclidean distance from [E(h−1(βW,k)|data), E(Φ(βZ,k)|data)] to

the optimal point(W ∗
max, 0). Extensive simulation results show that the design chooses the

preferred dose using both toxicity and expression outcomes.

To determine the optimal dose, Loke et al (2006) [50] suggested a Bayesian dose finding

design for dual endpoint that makes use of an ”implicit weights implementation method”

combined with Bayesian inference on the patient outcomes that incorporate both toxicity and

efficacy. Assuming the independence in the probability of toxicity and efficacy we model the

patient response for all four combinations of outcome, represented by y = (y1l, y2l, y3l, y4l),

where l denotes the dose level (l = 1, · · · , m). The prior of the four probabilities is as-

sumed to follow a Dirichlet distribution with random variable θ, where 0 ≤ θil ≤ 1 and∑4
i=1 θil = 1. This leads to the conjugate Dirichlet posterior distribution pl(θ|α + y) =

Γ(
∑4

i=1 αil+yil)

Π4
i=1Γ(αil+yil)

θα1l+y1l−1
1l · · · θα4l+y4l−1

4l , where α = (α1l, α2l, α3l, α4l), reflecting clinical opinion.

The form of utility weights, depending on the desired target probability value, reflects the

trade-off between toxicity and efficacy in the decision to escalate or de-escalate the dose
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level. The optimal action to be taken is the one which maximizes the expected value of the

utility with respect to the posterior distribution.

All of the above bivariate outcome designs share some commonalities: 1) As model-based

designs, they utilize different statistical models; 2) As adaptive designs, they use current

cumulative data to update underlying parameters and then, according to certain decision

rules, choose an optimal dose and assign it to the next cohort; 3) Decision rules are clearly

defined on both toxicity and response; and 4) The involvement of complicated computation

causes computational challenges in the implementation.

2.3 PHARMACOKINETIC/PHARMACODYNAMIC (PK/PD)

MODELING IN DRUG DEVELOPMENT

Pharmacokinetics considers the absorption, distribution, metabolism, and elimination of

drugs over time, describing the relationship between drug inflow and drug concentrations

at intended sites. Pharmacokinetics data consist of drug concentrations along with known

measured times and dosage regimens. Pharmacodynamics considers drug concentrations

and the corresponding responses, describing the relationship between drug concentrations

and pharmacological effects. Pharmacodynamics data consist of individual responses along

with associated drug concentrations or dosage regimen. Population PK/PD data consist of a

collection of PK/PD data on a group of individuals along with individual-specific covariates,

for example, age, sex, genotype. Pharmacokinetic/pharmacodynamic(PK/PD) modeling,

which considers the dose-exposure-effect relationship and aims to explore the within and

inter variability in PK or PD data, gained much attention in drug development in the past

decades. Exposure can be the drug concentration vs. time profile, or a summary measure

such as area under the concentration curve (AUC) or maximum concentration (Cmax). Effect

may be a pharmacological marker, a measure of efficacy or safety.

Sheiner et al. [51, 52] proposed a framework for considering the role of PK/PD modeling

in drug development and discussed its current and potential impact on that activity. Popula-

tion PK/PD model consists of two separate sub-models: a PK model for drug concentration
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as a function of time t, dose, individual random effects, and measurement error, and a PD

model for drug effect as a function of the true concentration at time t, individual random

effects, and measurement error. Hierarchical model approach has gained much popularity

among PK/PD models, establishing within-individual exchangeability, independence, and

predictiveness, by conditioning on individual-specific covariates, dosage regimens, and pa-

rameters. Thus, take PK model as an example, the minimal hierarchical model for drug

concentration Y i is:

[Y i|Xi,Di; Θ] =

∫
[Y i, θi|Xi,Di; Θ]dθi =

∫
[Y i|Di; θi][θi|Xi; Θ]dθi (2.1)

where θi is the set of PK parameters of individual i for PK model (for example, volume of

distribution, clearance), and Θ consists of not only population means of θ, but also interindi-

vidual variance and other parameters quantifying the magnitude of errors in measurement

of the PK observations in Y i.

This model is called hierarchical because at the first level, the distribution of individual

elements of Yi depends on individual-specific parameters θi and design Di (dosage, time),

whereas at the second level of the hierarchy, the distribution of θi depends on population

parameters Θ and baseline covariates Xi. A Bayesian approach adds a third level to the

hierarchy: a prior distribution on Θ has its own hyperparameters.

The PD hierarchical model is similar to the above PK hierarchical model, and the only

difference is that PK and PD models take different nonlinear functions. PK models are

typically nonlinear functions of unknown individual-specific parameters θ and defined in

terms of differential equations that describe the drug inflow rate between a sequence of

compartments that model the body. PK data would be fitted as one-compartment, two-

compartment or three compartment model. PD models are nonlinear functions of individual-

specific parameters φ and the mainstay of PD modeling is Emax model, which assumes the

following relationship exists between drug concentration(C) and drug effect(E).

E = E0 + EmaxC
γ/(Cγ + Cγ

50) (2.2)
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where E0 is the baseline effect, Emax is the maximum effect, C50 is the drug concentration

that results in 50% of the maximal effect, and γ is the slope parameter that determines the

slope of the concentration-response curve, so φi=(E0i, Emax i, C50i, γi).

It is very common to model PK/PD data from multiple individuals as a two-level hier-

archy, allowing the variability in concentration/effects to be divided into within-individual

variability and inter-individual variability. The following is the detailed interpretation for

the two-level hierarchy model in mathematical notation:

At the first level, the observations of each individual are modeled conditional on indi-

vidual specific PK and PD parameters. Let Y ij and Zij denote the observed concentration

and the observed effect of individual i at time tij. Let θi and φi denote the PK and PD

parameters of individual i. Let Dij and Xij denote the administered dose and true concen-

tration of individual i at time tij. Let fPK and fPD denote the predicted drug concentration

and response from PK and PD model, respectively. Let εPKij and εPDij denote the error

terms, which are independently and identically distributed normal random variables with

mean zero and variance depending on fPK and fPD respectively.

Yij = fPK(θi, Dij) + εPKij = fPKij + εPKij (2.3)

Zij = fPD(φi, Xij) + εPDij = fPDij + εPDij (2.4)

Inter-individual variability is modeled at the second stage by assuming that individual-

specific PK and PD parameters (θi, φi) depend on population parameters (Θ, Φ) and co-

variates xi. We assume that

θi = μθ + x′iβθ + δPKi (2.5)

φi = μφ + x′′i βφ + δPDi (2.6)

where μθ and μφ are population means of θi and φi, xi denotes the covariates of the individual

i, x′i and x′′i are subsets of covariates of individual i, βθ and βφ are corresponding population

regression coefficients, μθ and μφ represent the intercept terms. Actually not all of the

PK/PD models consider the specific covariates. The random δPKi and δPDi are independent

and multivariate normally distributed with zero mean, and variance-covariance matrices Σθ

and Σφ respectively.
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Let Y and Z denote all PK and PD data. Let Θ denote (μθ, Σθ), the PK population

parameters. Let Φ denote (μφ, Σφ), the PD population parameters. The marginal likelihood

for the population parameters can be written as:

L(Θ,Φ|Y, Z) = p(Y, Z; Θ,Φ) =
∏
i

∫ ∫
p(yi; θi)p(zi; θi, φi)p(θi; Θ)p(φi; Φ)dθidφi (2.7)

For example, θi could be (CLi, Vi) and φi could be (E0i, Emax i, C50i, γi).

Joint PK/PD data may be analyzed in a number of ways. The simplest approach is to

substitute the observed concentrations into PD model without considering PK modeling. A

slightly more refined approach is to first model the PK data and then to substitute in the

fitted concentration. The drawbacks of this approach are: 1) The uncertainty in the fitted

concentrations is not considered; 2) There is no feedback from the PK model, so the PD

data will not aid in the estimation of PK parameters.

When PK/PD data are to be modeled by a nonlinear hierarchical model, there are several

challenges: 1) The choice of sampling times, number of samples, and number of individuals

still remains a challenge; 2) Prior information is required in the hierarchical model, so the

elicitation of prior is also a challenge; and 3) If specific covariates are also considered, the

choice of which elements should be included at the second stage for the modeling of θi and

φi is somewhat difficult. Now some software programs to deal with population analysis

are available and the best known software is NONMEM( Non-Linear Mixed Effect Model).

Population approach is increasingly recognized as a useful tool in PK/PD modeling[53, 54].

In oncology, the population approach has been increasingly applied both for PK and PD

models[55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].
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3.0 AN INTERFACE FOR EXPLORING DECISIONS WHEN

KNOWLEDGE IS COMPLETE

3.1 INTRODUCTION TO ”DOSE-CHOICE CONTROL PANEL” (DCCP)

The Belmont Report (1979) presents ethical principles governing clinical research: respect

for persons, beneficence, and justice. In early stage clinical trials, clinicians and researchers

should make decisions about dose assignment based on patients’ values, preferences, and first

and foremost the principle of doing what is best for patients or at least not purposefully or

knowingly doing them harm. Imagine this scenario: One patient is enrolled for the treat-

ment, and our job is to choose the dose. Suppose we have complete population information

and utilities elicited from patient representing one’s values and preferences, we could make a

decision based on complete population information and utilities. Thus we have developed a

”dose-choice control panel” (DCCP) computer program based on the above scenario. Inputs

are complete population information and patient utilities. DCCP produces optimal dose

assignment decisions, and helps users to explore how the population parameters and utilities

affect the dose recommendation. This chapter describes the population model, the utility

assumptions, and the interface. Some applications are described in which the models and

utilities were critiqued, resulting in a richer, more realistic framework. The resulting en-

hancements include new parameters added to address bimodality, treatment refractoriness,

and response-limiting event, as well as broader utility functions, which will be described

below.
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3.2 THRESHOLD-BASED POPULATION MODEL

The patient response and toxicity outcomes will be notated as follows: R=response, r=no

response, T=toxicity, t=no toxicity. Our model is based on the assumption that a particular

effect of treatment(R or T) occurs if the dose exceeds that patient’s threshold dose for that

type of effect(θR or θT ). For a particular patient who is assigned to a particular dose i, one of

the four possible outcomes (rt, rT , Rt, and RT ) could occur with corresponding probabilities

(Pr[rt|Dosei], Pr[rT |Dosei], Pr[Rt|Dosei], and Pr[RT |Dosei] ). These probabilities also

depend on the joint distribution of θR and θT , which is parameterized by a parameter ϕ.

Below, we will write this as Pr[jk|φ] when the emphasis is on ϕ, where j, k are response and

toxicity outcomes.

Different individuals have different thresholds for response and toxicity. The individual

thresholds for response (θR) and toxicity (θT ) are assumed to jointly follow a bivariate log-

normal distribution with ϕ equal to (μR,μT ,σR,σT ,ρ).

(logθR, logθT ) ∼ Normal

[⎛
⎝μR

μT

⎞
⎠ ,

⎛
⎝ σ2

R σRσTρ

σRσTρ σ2
T

⎞
⎠]

(3.1)

Because response and toxicity occur depending on their respective thresholds, for any

individual one of four possible outcomes could happen with corresponding probabilities.

The contour plot of Figure 1.A shows this (Figures and Tables are shown at the end of each

chapter).

3.3 UTILITIES BASED ON BINARY OUTCOMES

Our approach is based on Bayesian decision theory. Bayesian decision theory starts with a

valuation of all possible outcomes, represented by a utility function, which assigns a number

to each outcome. The principle of decision-making is to maximize the expected utility over

unknown parameters and future possibilities. This section introduces a utility function for
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response and toxicity outcomes. In this case, the decision to be made is the dose to be given.

Let

U(θR, θT , dose) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Urt if θR > dose, θT > dose

UrT if θR > dose, θT ≤ dose

URt if θR ≤ dose, θT > dose

URT if θR ≤ dose, θT ≤ dose

(3.2)

Note that the above utility function U is a piece-wise constant function over dose. For

example, the case θR > dose, θT > dose corresponds to the patient having no response and

toxicity rt; Urt denotes the utility given to outcome rt. We will set Urt equal to 0, as a

reference, because rt is the outcome if dose is 0 or patient is not enrolled in the trial. Table

1 demonstrates the utility function in terms of outcomes.

3.4 DOSE CHOICE

We are considering the choice of dose for a patient. Therefore, we need the probability of

each outcome for the enrolled patient as a function of dose.

EU = EθR ,θT |ϕ[U(θR, θT , dose)]

=

∫
θR

∫
θT

U(θR, θT , dose)f(θR, θT |ϕ)dθRdθT

=

R∑
j=r

T∑
k=t

UjkPr[jk|ϕ]

In the θR, θT plane, the point (dose, dose) divides the plane into quadrants, correspond-

ing to the four outcomes. Pr[jk|ϕ] is calculated by integrating the bivariate log-normal

density over the corresponding quadrant. Figure 1.B demonstrates how the corresponding

probabilities and EU change with increasing dose under fixed ϕ.

The dose assigned to the enrolled patient should be Optimal Dose (OPT ), which maxi-

mizes expected utility (EU).
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3.5 DCCP INTERFACE

The DCCP interface was developed to explore how the population parameters and utilities

affect the EU and dose recommendation. This is currently implemented with the statistical

language R, with ”live” interactive graphics using Tierney’s TKRPLOT package from the

University of Iowa.

The DCCP interface is made up of four parts, with the upper left demonstrating the

contour plot for population distribution of (θR, θT ), the lower left allowing the users to set

the population threshold parameters, the upper right displaying probabilities and EU, and

the lower right allowing the users to control the utilities. The parameters ϕ=(μR, μT , σR,

σT , ρ ) govern the joint distribution of thresholds, and in this exploratory tool the user sets

the parameters as they were known. We have added parameters (Pr(refractory), K(response-

limiting event), proportion, μratio, σratio ) to be discussed later. We consider four specific

utility functions here: simple utility function, additive utility function, aggressive utility

function, and cautious utility function. The simple utility function places positive utility

only on co-occurrence of response and non-toxicity without considering individual ethical

concern. The additive utility function assumes URT = UR + UT , where UR = URt − Urt

and UT = UrT − Urt. The aggressive utility function puts more utility on RT based on the

assumption that the badness of toxicity is tolerable if response occurs. The cautious utility

function puts negative utility on RT based on the assumption that the badness of toxicity

is intolerable even if the response does occur. Table 2 displays these utility functions.

3.6 USING DCCP TO CRITIQUE THE MODEL AND UTILITIES

Bayesian decision theory will make sense if the inputted models and utilities make sense.

On working with the DCCP interface, results that did not make sense helped us to modify

both model and utilities.
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3.6.1 Bimodality

According to the literature of pharmacokinetics and pharmacogenetics reporting the ex-

istence of multimodality among population thresholds, Proportion, μratio, and σratio are

introduced to express the bimodality of thresholds, with proportion denoting the proportion

of the second sub-population, also called minor population, and (μratio, σratio ) denoting the

ratio of means and standard deviations in two sub-populations. The screen shot in Figure

2 demonstrates the control panel under the cases that (θR, θT ) follow a mixture model with

the proportions of minor population and main population respectively 0.2 and 0.8.

3.6.2 Refractoriness and Response-limiting Event

On working with the DCCP interface, we have found that as dose increases indefinitely the

probability of response tends to 1. This does not reflect the reality in certain circumstances,

leading to the necessary modifications of the model.

Given the knowledge about refractoriness, Pr(refractory) is introduced to express a de-

gree of patient heterogeneity for pharmacodynamics, with the presence of the probability

that one’s disease is refractory (unresponsive at any dose). Because clinical practice or com-

petition of patient outcomes may lead to patient experiencing certain events which exclude

response, K(response-limiting event) is introduced to describe the dose-response parameters

for experiencing a response-limiting event(RLE), a toxicity or other event that excludes re-

sponse. Inspired by Simon’s paper (1997), θK is defined as θK = θT exp(K), where θK is

called threshold of RLE, and K is a positive number. With the introduction of K, the original

RT region is divided into two parts: RT and RLE. When θR ≤ dose and θT ≤ dose < θK,

RT occurs; when θR ≤ dose and θT ≤ θK ≤ dose, RLE occurs. The final rT region will be

made up of two parts: RLE and original rT.

Pr(refractory) and K(response-limiting event) cause tailing off of probabilities in the

right-side graph. The screen shots in the Figure 3 and Figure 4 are control panels for

exploring the above two situations. Figure 3 and Figure 4 respectively assume that the

probability of refractory is 0.3 and K(response-limiting event) is 2, addressing certain degree

of patient heterogeneity for pharmacodynamics.

26



3.6.3 Critiquing Utilities

Working on this interface, we have found that optimizing patient’s outcome on simple utility

function which places positive utility only on the co-occurrence of response and non-toxicity

leads to wrong recommendations, even it is commonly used in the literature. The difference

between simple utility function and additive utility function is the penalty for rT’s. This

is especially meaningful under the cases where responses are rare or none, however, rT’s

are fairly common. The screen shot in Figure 5 demonstrates this situation. Simple utility

function allows escalation in the face of rT’s (there is no penalty for rT’s), while additive

utility function will not (there is penalty for rT’s). Additive utility function, aggressive

utility function, and cautious utility function could address ethical concerns, making the

dose recommendations more ethical.
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Figure 1: Contour Plot, Resulting Probabilities and EU

Note: The diagonal line in the contour plot represents possible assigned
doses. Along this diagonal line, the vertical and horizontal lines divide the
whole population into four subgroups (rt, rT , Rt, and RT ). Expected Util-
ity(EU) is the expectation of utility function over the population thresholds.

Table 1: Utility Function

Outcome t T

r Urt UrT

R URt URT
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Table 2: Four Utility Functions

Usimple Uadditive Uaggressive Ucautious

Outcome t T Outcome t T Outcome t T Outcome t T

r 0 0 r 0 −1 r 0 −1 r 0 −1

R 1 0 R 1 0 R 1 1 R 1 −1

Figure 2: Interface with Bimodality

Note: Thresholds follow a bimodal log-normal distribution with a proportion of second sub-
population (minor population) 0.2. The ratios of mean and standard deviation in main and
minor populations are set as 0.7 and 0.5.
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Figure 3: Interface with Certain Probability of Refractory

Note: The probability of refractory is set as 0.3. Both Pr[R] and Pr[RT ] tail off because of
the probability of refractory.
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Figure 4: Interface with Response-Limiting Event

Note: With the introduction of K, the original RT region is divided into two parts: RT and
RLE. The final rT region will be made up of two parts: RLE and original rT. Both Pr[R] and
Pr[RT ] tail off because response-limiting event excludes certain chance of response. Pr[rt]
increases because of the addition of RLE.
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Figure 5: Interface with Simple Utility Function

Note: Simple utility function allows escalation in the face of rT’s (there is no penalty for rT’s).
Under the cases where responses are rare or none, however, rT’s are fairly common, simple
utility function could lead to wrong recommendations.
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4.0 A NEW MODEL-GUIDED PHASE I DESIGN INCORPORATING

RESPONSE INFORMATION

4.1 BACKGROUND

The usual phase I, II and III anti-cancer drug clinical trials are based on the following

assumptions: 1) The agent has toxic effects; 2) The agent shrinks the tumor; 3) Toxicity

and anti-tumor activity are dose dependent with a monotonic dose-response relationship; 4)

The agent shrinks the tumor much better under certain acceptable toxicity; 5) Shrinkage

of tumor size is generally related with prolonged life or better quality of life. The higher

the shrinkage rate, the more likely the agent will be potentially beneficial. In exploring new

anti-cancer drugs, phase I trials focus on the toxicity. The primary goal of phase I trials is

to find the maximum tolerated dose (MTD) and then recommend this dose for the phase

II trials. Phase II trials, which are performed in small number of patients, usually focus on

the efficacy measured by the percentage of tumor shrinkage. Finally, large-scale randomized

phase III trials are launched to assess the clinical benefit using endpoints like recurrence free

survival, disease free survival, or overall survival; phase III trials sometimes assess quality

of life. Because these traditional clinical trial assumptions have been widely accepted, the

above drug development scheme has been used for several decades.

Although phase I clinical trials are defined as dose-finding trials, both the physicians

and experiment researchers hope the agents demonstrate some anti-tumor effects which are

part of rationale for launching phase II trials. In general patients who participate in anti-

cancer agent phase I trials suffer from different types of cancer, have typically exhausted

other therapeutic alternatives, treat this as a last resort to their vulnerable situations, so

beneficial response should also be taken into account from the viewpoint of the patient in the
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design and implementation of phase I clinical trials. However, conventional clinical response

is not necessarily a useful indicator of clinical benefit. For example, interest in cytostatic

agents, which inhibit tumor growth or the development of metastases, has rapidly increased

as molecular biology has introduced more sophistication into anti-cancer drug development.

Some agents have no toxic effects at doses which provide desired biologic effects or clinical

benefit, while increasing the doses of some agents may not always provide additional benefit.

So for cytostatic agents traditional phase I clinical trial designs which just consider toxicity

may not be effective in exploring new potential beneficial anti-cancer drugs.

Phase I trials are often relatively small, typically 30 or fewer patients, and of a duration

too short to measure genuine clinical benefit. Often investigators measure clinical or labora-

tory markers during phase I trials with the hope of obtaining suggestive data that can help

determine if phase II trials are warranted. Recently, biomarkers have been intensely studied

to explain the results of clinical trials by relating the effects of drugs on molecular and cel-

lular pathways to clinical responses. Some special biomarkers, called surrogate biomarkers,

could be used as substitutes for clinical endpoints. Most biomarkers may not provide true

surrogate endpoint information, but are still useful because they may indicate downstream

effects consistent with the investigator’s therapeutic model, and provide confirmation that

the drug has the hoped-for potential. Although changes in biomarkers during therapeutic

intervention would not assist directly in the drug approval process, it may help justify pro-

ceeding to phase II trials. If an agent is safe and well tolerated, but has no any effect on

biomarkers, it may be a counterindication for phase II commitment. So consideration of

toxicity alone may not be enough for dose-finding in phase I clinical trials. Augmenting

toxicity data with biological endpoint data might be important.

Some recent studies in phase I clinical trials have focused on the consideration of both

toxicity and efficacy (Gooley et al. (1994); Thall and Russell (1998); O’Quigley, Hughes, and

Fenton (2001); Braun et al. (2002); Thall and Cook (2004); Bekele and Shen (2005); Loke

et al. (2006) ) [42, 43, 45, 46, 47, 49, 50]. All of the model-based adaptive designs introduce

specific probability model, such as the logistic regression model, to explain the relationship

between dose and bivariate outcome, update the knowledge as relevant response and toxicity

data accumulate, and then use this information to guide the next dose assignment. The
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designs are considered in the Bayesian framework, but then the operating characteristics are

evaluated and ad hoc fixes are possibly introduced. All of these indicate the designs are not

full Bayesian approaches which should be decision-analytic, by combining utility function

with Bayesian posterior probabilities to form Bayesian expected utility and then to make a

Bayesian decision through the maximization of Bayesian expected utility.

Only if Bayesian decision theory is correctly used and the prior distribution and the utility

function are sensible will the resulting clinical trial designs be both sensible and ethical.

We propose a new adaptive dose-finding algorithm using full Bayesian approaches to

choose the best optimal dose which would be passed to the phase II trials. As a result, we

organize chapter four as follows: 1) Section 4.2 addresses the proposed clinical trial design;

2) Section 4.3 focuses on the comparison of three computational methods, the comparison

of designs with and without incorporating toxicity, and the characteristics of ethical designs;

3) Section 4.4 presents the extension of basic bivariate binary case; 4) Section 4.5 gives the

design robustness check; 5) Section 4.6 explores some possible applications; and 6) Section

4.7 concludes with a discussion.

4.2 PROPOSED CLINICAL TRIAL DESIGN

4.2.1 The Principle

An adaptive Bayesian approach provides a framework for incorporating current cumulative

data and prior information, making decisions sequentially in implementing the whole trial.

Cumulative data should include responses and toxicities for all previous patients. While prior

information should reflect some prior beliefs about the particular drug from the researchers,

it should not be so informative as to dominate the observed data.

The correct ethical decision for each potential patient should be made to maximize the

expected utility using all prior cumulative information, the driving principle of the proposed

design.
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4.2.2 Probability Model and Posterior Distribution

Assuming individual thresholds for response and toxicity (θR, θT ) follow a bivariate log-

normal distribution, (logθR, logθT ) follow a bivariate normal distribution with five parame-

ters.

(logθR, logθT ) ∼ N

[⎛
⎝μR
μT

⎞
⎠ ,

⎛
⎝ σ2

R σRσTρ

σRσTρ σ2
T

⎞
⎠]

(4.1)

For any given dose i, four probabilities exist:

Pirt = Pr[no Response, no Toxicity] = Pr[θR > dosei, θT > dosei]

PirT = Pr[no Response, T oxicity] = Pr[θR > dosei, θT ≤ dosei]

PiRt = Pr[Response, no Toxicity] = Pr[θR ≤ dosei, θT > dosei]

PiRT = Pr[Response, T oxicity] = Pr[θR ≤ dosei, θT ≤ dosei] (4.2)

We specify the prior distributions for the parameters, with means following normal dis-

tributions and variance covariance matrix following Inverse-Wishart distribution.

μR ∼ N(μμR
, σμR

)

μT ∼ N(μμT
, σμT

)⎛
⎝ σ2

R σRσTρ

σRσTρ σ2
T

⎞
⎠ ∼ W−1

[⎛
⎝1 0

0 1

⎞
⎠ , 2

]
(4.3)

Denote by Rm the response of the mth patient where Rm = R if response occurs and

Rm = r, otherwise. Denote by Tm the toxicity of the mth patient where Tm = T if toxicity

occurs and Tm = t, otherwise. Denote by Dosem the assigned dose of the mth patient.

The data after observation of n patients is Dn = {(Dosem, Rm, Tm), m = 1, 2, · · · , n} and

the likelihood function of (μR,μT ,σR,σT ,ρ) given Dn is

L(μR, μT , σR, σT , ρ|Dn) =
n∏
i=1

R∏
j=r

T∏
k=t

Pijk
nijk (4.4)
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We incorporate prior information about μR,μT ,σR,σT and ρ through a prior density

function π(μR, μT , σR, σT , ρ) defined as

π(μR, μT , σR, σT , ρ) = π(μR)π(μT )π(σR, σT , ρ) (4.5)

Through the application of Bayesian theorem the joint posterior distribution of (μR, μT ,

σR, σT , ρ) given Dn is :

π∗(μR, μT , σR, σT , ρ) ∝ L(μR, μT , σR, σT , ρ|Dn)π(μR, μT , σR, σT , ρ)

=

n∏
i=1

R∏
j=r

T∏
k=t

Pijk
nijkπ(μR, μT , σR, σT , ρ) (4.6)

4.2.3 Decision Rule

Because dose-finding trials are based on toxicity alone, the decision rule is to choose the

dose for which the probability of toxicity is closest to the target toxicity quantile. For the

dose-finding trials which incorporate both toxicity and response, the commonly used decision

rule is to select the dose for which the probability of response and probability of toxicity

are closest to the target response and toxicity quantile. For the proposed adaptive Bayesian

method for dose-finding, a full Bayesian decision-analytic approach is used. Upon completion

of updating cumulative patient outcome information, we can estimate the optimal dose by

maximizing the Bayesian expected utility with the choice of utility function U .

The general Bayesian expected utility is defined as the expectation of utility function

with respect to the posterior distribution, i.e, Eθ[U(θ, a)] =
∫
Θ
U(θ, a)f(θ|x)dθ. The utility

function U(θ, a) represents the utility by the decision maker if the action a ∈ A is taken and

the real state of nature is θ ∈ Θ. The clinical researchers determine utilities based on the

drugs and the goals of the trials. f(θ|x) represents the posterior distribution of θ.

For each trial, experimenters have different standards about how to define the response,

toxicity, and optimal dose. Moreover, different experimenters have varying opinions on

the choice of a design. Some prefer the designs that put patients at considerable risk but

maximize the probability of response, while others think the study should be a conservative

one based on ethical concerns with a design that avoid treatment at toxic doses. Aggressive
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trials make it possible to give more utility to RT . For example, patients enrolled in phase

I cancer trials consider participating in the study as the last resort, after they have failed

all conventional therapy. In this case, patients prefer to get the relatively aggressive dose

which may have a better response. Conservative trials, giving more utility to rt, possibly

avoid treatment at excessively toxic doses. If pharmaceutical companies sponsor a trial, the

utilities may simply focus on Rt, the most desirable outcome.

Let θ denote (θR, θT ), ϕ denote (μR, μT , σR, σT , ρ), and Dn denote the data observed to

the current time, then the Bayesian expected utility for the next patient is:

E(U |Dose) = Eϕ[Eθ|ϕ[U(θ, dose)]]

=

∫
ϕ

∫
θR

∫
θT

U(θR, θT , dose)f(θR, θT |ϕ)π∗(ϕ|Dn)dθRdθTdϕ

=

∫
ϕ

R∑
j=r

T∑
k=t

UjkPjk(Dose|ϕ)π∗(ϕ|Dn)dϕ

=
R∑
j=r

T∑
k=t

Ujk

∫
ϕ

Pjk(Dose|ϕ)π∗(ϕ|Dn)dϕ

=
R∑
j=r

T∑
k=t

UjkEϕ[Pjk(Dose|ϕ)] (4.7)

A Bayes action is an action which maximizes Bayesian expected utility. For the above

equation, the Bayesian action is best dose choice for the next patient.

The optimal dose OPTn is estimated by maximizing E(U |Dose), Hence the (n + 1)th

patient (∀n = 1, 2, · · · , N) receives the dose

OPTn = arg max
dose

E(U |Dose)

= arg max
dose

R∑
j=r

T∑
k=t

UjkEϕ[Pjk(Dose|ϕ)] (4.8)

Calculating the multiple integrations Eϕ[Pjk(Dose|ϕ)] over ϕ is very complicated. Three

practical approaches are available to deal with the multiple integrations over ϕ.

The first is to substitute the posterior mean ϕ̂ from MCMC sample for ϕ.

Êϕ[Pjk(Dose|ϕ)] = Pjk(Dose|ϕ̂) = Pjk(Dose|
Z∑
z=1

ϕz/Z) (4.9)
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where ϕ1, ϕ2, · · · , ϕZ are i.i.d samples from the posterior distribution of π∗(ϕ|Dn). Be-

cause there is no closed form for this posterior distribution, the MCMC sample draws are

used instead of the exact samples.

The second one is to use the Monte Carlo sampling to estimate Eϕ[Pjk(Dose|ϕ)]. The

Monte Carlo method approximates Eϕ[Pjk(Dose|ϕ)] as

Êϕ[Pjk(Dose|ϕ)] =
1

Z

Z∑
z=1

Pjk(Dose|ϕz) (4.10)

where ϕ1, ϕ2, · · · , ϕZ are i.i.d samples from the posterior distribution of π∗(ϕ|D).

The third approach is to use importance sampling to estimate Eϕ[Pjk(Dose|ϕ)].

Êϕ[Pjk(Dose|ϕ)] =

Z∑
z=1

wz[Pjk(Dose|ϕz)]/
Z∑
z=1

wz (4.11)

where ϕ1, ϕ2, · · · , ϕZ are i.i.d samples from sampling distribution I(ϕ), g(ϕ) is the true

posterior distribution of ϕ up to constant and wz = g(ϕz)/I(ϕz).

4.2.4 Calculation of the Posterior

4.2.4.1 MCMC The Bayesian approach can combine the information from the data

and prior, so the Bayesian statistical inference should be based on the posterior, but deal-

ing with the posterior distribution directly is often problematic. In the past twenty years

Markov Chain Monte Carlo(MCMC) methods have been widely used to deal with posterior

distribution. The principle of MCMC is to construct a Markov Chain and it has a specified

equilibrium distribution π that is the joint posterior probability distributions of the param-

eters of the model. The parameters are assigned arbitrary initial values, and the chain is

simulated until its distribution appears to converge, and then, once it converges, the simu-

lated observations can be used as the observations from the posterior distributions, and then

make inference about the parameters.

There are two popular methods for setting up Markov Chain: the Gibbs sampler algo-

rithm and Metropolis-Hastings algorithm.

The Gibbs sampler algorithm requires directly generating sample values from the full

conditional distributions p(ϕi|ϕj �=i, y), i = 1, · · · , k, and it does produce a Markov chain with
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the joint posterior density as its stationary distribution. The advantages of Gibbs sampler

are that it is easy to implement numerically and the convergence to target distribution

is guaranteed as long as the full conditional distributions are correctly defined. But the

potential problem with Gibbs sampler is that if the model is complicated it is not easy to

figure out the full conditional distributions. The Gibbs sampler requires the conditional

distributions.

The most general MCMC approach is the Metropolis-Hastings algorithm and in fact

Gibbs sampler is just a special case of Metropolis-Hastings algorithm. The Metropolis-

Hastings algorithm has one major advantage over the Gibbs sampler that the full conditional

distributions are not required. But the trade-off of this method are that it is inefficient

compared to Gibbs sampler for which the acceptance rate is 1, and the convergence is not

guaranteed. The MH algorithm is based on proposing a new candidate point according to

an arbitrary proposal density function and then accepting this proposed candidate according

to the particular acceptance probability that depends on the current point, candidate point,

proposal density and target density( true joint posterior density). Suppose we wish to

simulate from the multivariate posterior p(ϕ|x)( target density function). Let q(ϕ, ϕcan) be

an arbitrary proposal probability density function that describes the probability of proposing

ϕcan given that the current point is ϕ. The following are basic ideas and steps for Metropolis-

Hastings algorithm:

1. Let the current point be ϕl.

2. Generate a new candidate ϕcan from the proposal density q(ϕl, ϕcan).

3. Generate uniform variable U from Uniform(0,1).

4. Calculate acceptance rate α,

α = min

(
1,
p(ϕcan|x)q(ϕcan, ϕl)
p(ϕl|x)q(ϕl, ϕcan)

)
(4.12)

5. If U ≤ α then set

ϕl+1 = ϕcan

else set

ϕl+1 = ϕl
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6. Repeat the previous steps to obtain the sequence ϕ0, ϕ1, ϕ2, ϕ3 · · · , where ϕ0 denotes

an arbitrary starting value.

7. Discard the burn-in values (up to ϕm) obtained before algorithm converges. Then ϕm+1,

ϕm+2 · · · is a correlated sequence from the required posterior distribution p(ϕ|x).

After getting ϕm+1, ϕm+2, · · · , ϕm+L, the random sequence

ḡ(ϕL) =
1

L

L∑
l=1

g(ϕm+l) (4.13)

converges almost surely to Eπg(ϕ) as L→ ∞. As long as L is large enough, 1
L

∑L
l=1 g(ϕm+l)

can be a good estimator for Eπg(ϕ). Because it is difficult to know exactly how large a value

of L should be used, intuition usually determines its value. Moreover, the mean square error

of this estimator can also be estimated. That is,

ˆMSE = E[
1

L

L∑
l=1

g(ϕm+l) −Eπg(ϕ)]2 (4.14)

The acceptance probability α is in the form of a ratio that includes p(ϕcan|x)/p(ϕl|x).
Thus, the big advantage of the Metropolis-Hastings algorithm is that even if the posterior is

known only up to a constant, the algorithm can still be used because the constant cancels

out. In general, any proposal density q(ϕ, ϕcan) can be used, but if the proposal density is

chosen naively, the efficiency of the chain may be poor. A popular implementation is the

Random Walk sampler where the proposal distribution is symmetric with respect to ϕl:

ϕcan = ϕl + ε

where ε ∼ Distribution(0, σ2). For example:

ϕcan ∼ Normal(ϕl, σ
2)

or

ϕcan ∼ Uniform(ϕl − Δ, ϕl + Δ)

The parameters σ2 or Δ are tuning parameters and can be chosen to achieve the desired

acceptance rate.
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For the proposed method, the joint posterior distribution is :

π∗(μR, μT , σR, σT , ρ|Dn) ∝ L(μR, μT , σR, σT , ρ|Dn)π(μR, μT , σR, σT , ρ)

=
n∏
i=1

R∏
j=r

T∏
k=t

Pijk
nijkπ(μR, μT , σR, σT , ρ)

The following basic steps implement MCMC to get the simulated samples:

1. To simplify the computation procedures, the symmetric proposal distributions q() are

used at (l + 1)th iteration,

μRcan ∼ Normal(μRl
, σμR

) (4.15)

μTcan ∼ Normal(μTl
, σμT

) (4.16)

σRcan ∼ Normal(σRl
, σσR

) (4.17)

σTcan ∼ Normal(σTl
, σσT

) (4.18)

ρcan ∼ Uniform(ρl − σρ, ρl + σρ) (4.19)

2. Generate uniform variables U from Uniform(0,1).

3. If U ≤ α then set

ϕsl+1 = ϕscan

else set

ϕsl+1 = ϕsl

where

α = min

(
1,
π∗(ϕscan|ϕ−s,Dn)

π∗(ϕsl |ϕ−s,Dn)

)
(4.20)

Note 1: ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = (μR, μT , σR, σT , ρ)

Note 2: ϕs is the sth element of ϕ, where s = 1, 2, · · · , 5
Note 3: π∗(ϕ|Dn) : posterior distribution of π∗(μR, μT , σR, σT , ρ|Dn)

4. Repeat the previous steps to obtain the sequence ϕ0, ϕ1, ϕ2, ϕ3 · · · , where ϕ0 denotes

an arbitrary starting value and then discard burn-ins.
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In implementing MCMC, the standard deviations of the five parameters are chosen so

that the acceptance rate is around 20 − 40%.

4.2.4.2 Importance Sampling

Importance sampling is a technique for numerically approximating an integral. Consider

the following integral

J(y) = Exf(y|x) =

∫
f(y|x)g(x)dx (4.21)

It is assumed to sample directly from g(x). Importance sampling is used when direct

sampling from g(x) is not possible. Let I(x) be a density that is easy to sample from and

approximates g(x). Importance sampling approximates J(y) as:

1. Draw x1, x2, · · · , xZ from I(x);

2. Ĵ(y) =
∑Z

z=1 wzf(y|xz)/
∑Z

z=1 wz.

where wz = g(xz)/I(xz).

If the support of I(x) includes the support of g(x), the tail of I(x) does not decay faster

than the tail of g(x) and J(y) exists and is finite, then Ĵ(y)
a.s.−−→ J(y).

For the proposed adaptive Bayesian design,

Eϕ[Pjk(Dose|ϕ)] =

∫
ϕ

Pjk(Dose|ϕ)π∗(ϕ|Dn)dϕ

∝
∫
ϕ

Pjk(Dose|ϕ)π(ϕ)L(ϕ|Dn)dϕ

=

∫
ϕ

Pjk(Dose|ϕ)π(ϕ)
n∏
i=1

R∏
j=r

T∏
k=t

Pijk(ϕ)nijkdϕ (4.22)

True distribution g(ϕ) could be defined as:

g(ϕ) = π(ϕ)
n∏
i=1

R∏
j=r

T∏
k=t

Pijk(ϕ)nijk (4.23)

Sampling distribution I(ϕ) could be defined as:

I(ϕ) = π(ϕ) (4.24)
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Draw ϕ1, ϕ2, · · · , ϕZ from I(ϕ), then

Êϕ[Pjk(Dose|ϕ)] =
Z∑
i=1

wz[Pjk(Dose|ϕz)]/
Z∑
i=1

wz (4.25)

where

wz = g(ϕz)/I(ϕz)

= π(ϕz)
n∏
i=1

R∏
j=r

T∏
k=t

Pijk(ϕz)
nijk/π(ϕz)

=
n∏
i=1

R∏
j=r

T∏
k=t

Pijk(ϕz)
nijk (4.26)

4.2.5 Choice of Prior

One of the important steps in dose-finding trials is to elicit the hyperparameters before

implementing trials. The hyperparameters should reflect some prior beliefs about the partic-

ular drug from the researchers, but should not be so informative as to dominate the observed

data information. The vague prior information should be combined with the individual data

to estimate parameters.

The choice of prior is very debatable. Most statistical frequentists and clinicians think it

is impractical and aggressive to assign the first patient to a dose determined by prior, unless

that dose is the lowest, which is often one-tenth of LD10 in mice. Statistical Bayesians hold

different opinions; they think the prior should be from the pre-clinical information. Before

implementing phase I trials, the experimenter should already have enough information about

the pre-selected dose levels from the animal studies and previous studies, to provide the guess

of the probabilities of toxicity and response.

This proposed method assumes that μR and μT follow normal distributions and that

hyperparameters are from the prior information. The variance-covariance matrix is assumed

to follow the Inverse-Wishart(R, ρ) distribution. To represent vague prior knowledge, the

degree of freedom ρ for this distribution should be as small as possible(i.e. 2, the rank of Σ).

The scale matrix R, which is specified as

⎛
⎝1 0

0 1

⎞
⎠, represents an assessment of the order of
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the magnitude of covariance matrix. Except for cases with very few individuals, the choice

of R has little effect on the posterior estimate of Σ.

4.3 RESULTS

To ensure the appropriateness of the dose-finding algorithm, before implementing trials sim-

ulation studies should be conducted to check the operating characteristics. Only after sim-

ulations show satisfactory results should the proposed algorithm be applied to real trials.

All of the simulations are run using R on the Opteron Cluster machine in the Pittsburgh

Supercomputing Center.

4.3.1 Comparison of Three Computational Methods

Because three methods are proposed for the calculation of expected utility, the most impor-

tant step in the implementation of the proposed design, it is necessary to make a comparison

for future recommendations.

Assuming individual thresholds for response and toxicity (θR, θT ) follow a bivariate log-

normal distribution, (logθR, logθT ) follow a bivariate normal distribution with five parameters

(μR, μT , σR, σT , ρ). N individual response and toxicity thresholds are generated from the log-

bivariate-normal distribution with the above five given parameters and in these simulations

N is set as 50.

Before implementing trials, we collect some pre-clinical information about these five

parameters. Prior information should be vague enough to not dominate the dose assignment.

Its influence on dose assignment should decrease as more subjects are enrolled in the trials

because the data should speak louder than the prior information. The prior should also

be clearly and sufficiently defined so that it takes power to determine the first several dose

assignments, especially the first dose assignment.

Mean of response threshold(μR) and mean of toxicity threshold(μT ) are assumed to

independently follow a normal distribution. Standard deviation of response threshold(σR),
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standard deviation of toxicity threshold(σT ) , and correlation of the two thresholds(ρ) are

assumed to follow an inverse-Wishart distribution with scale matrix R which is specified as⎛
⎝1 0

0 1

⎞
⎠ and degree of freedom ρ which is specified as 2.

With no data available for the first dose assignment, the prior determines the optimal

dose. The likelihood for ϕ (μR,μT ,σR,σT ,ρ) after n patients have been observed is denoted

as L(ϕ|Dn). The likelihood L(ϕ|Dn) and prior distribution π(ϕ) are used to compute the

posterior distribution π∗(ϕ|Dn) via standard Bayesian theory. The optimal dose optn is

estimated by maximizing E(U |Dose), and then ˆoptn is assigned to the (n + 1)th patient,

whose outcome depends on the following rules:

1. If the individual response threshold θRn+1 is less than optimal dose ˆoptn, response occurs;

2. If the individual toxicity threshold θTn+1 is less than optimal dose ˆoptn, toxicity occurs.

The simple study design considered here repeats the above process until 50 patients

have been observed. The final recommended optimal dose should be the last optimal dose;

moreover, it should be compared with the true optimal dose and optimal dose range. The

approach described here can be used to guide study design choices, but this topic is beyond

the scope of this section.

Three different methods are explored to calculate Eϕ[Pjk(Dose|ϕ)]: MCMC with poste-

rior mean, MCMC with MCMC sample, and importance sampling. For MCMC methods,

the length of chain is 5000, the burn-in is 3000, and the thinning is 10 for every patient in

this adaptive simulation. The burn-in is chosen as 3000 because the chain appears to reach

equivalence before this point. Importance sampling draws 1000 independent samples ϕi from

the prior distribution π(ϕ), and the corresponding weights wi are the corresponding ratios

of π∗(ϕ|Dn)/π(ϕ).

Three scenarios are constructed for the comparison, while for simplicity the simple utility

function which only focuses on the co-occurrence of response and non-toxicity is used. Table

3 demonstrates the OPT, corresponding Pr[Rt] and OPT range under different scenarios. To

test the robustness of the proposed design against priors, Table 4 constructs several different

prior guesses. All possible combinations of different scenarios and different priors run 100

simulations. For all of the three different computational methods, simulation results are
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Table 3: Scenarios for Comparison of Three Computational Methods

Scenario μR μT σR σT ρ OPT Pr[Rt] OPT range

1 3.5 4.5 1 1 0 54.60 0.478 39.80 ∼ 74.90

2 4 6 2 2 0.5 148.41 0.419 76.74 ∼ 287.02

3 3 9 1 1.5 0.8 244.87 0.984 92.17 ∼ 837.45

Note: OPT range is defined as the doses for which the expected
utility exceeds 95% of the maximum EU.

similar. As more patients are enrolled in the trial, optimal doses approach the true optimal

dose range. For example, the true optimal dose, which is based on the underlying parameters

of scenario 1, is 54.60 with corresponding probability of response and non-toxicity 0.478, and

the true optimal dose range is 39.80 ∼ 74.90. Three different priors test the robustness of

proposed design, with the first producing the first dose assignment 665.18, the second yielding

the first dose assignment 244.64 and the third creating the first dose-assignment 311.09. As

more patients are enrolled in the trial, optimal doses approach the true optimal dose range

39.80 ∼ 74.90, although different priors produce different first dose assignments. Table 5

summarizes the estimated optimal doses for scenario 1 based on 100 simulations.

4.3.2 Comparison of Designs with and without Incorporating Response Infor-

mation

An important goal of phase I trials is to find the appropriate dose which would be passed

to phase II trials for the test of efficacy. In the case of cytotoxic chemotherapy agents, it is

usually assumed that higher doses are the most effective and the toxicity is the surrogate for

efficacy. The dose-response and dose-toxicity curves are closer to each other and mono-tonic.

The dose at which 33 % of patients experience toxicity, the usual threshold for an acceptable

level of toxicity, must be considered optimal: raising the dose leads to a significant increase

in toxicity; lowering the dose leads to a large decrease in response. Based on the above
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Table 4: Priors

Prior μμR
μμT

σμR
σμT

1 5 8 3 3

2 3 9 3 3

3 4 8 3 3

Note: Three priors are very
vague in order not to dominate
the dose assignment.

assumption, phase I cancer clinical trials commonly use the standard MTD design.

For cancer vaccines, cytostatic agents and some herbal medications, the toxicity rate is

very low, while the response rate is somewhat high. The dose corresponding to a 33% toxicity

rate is far from optimal: the dose can be substantially decreased without a significant effect on

response. Moreover, the response of agent could be maximized almost without toxicity. This

poses challenges for the standard MTD design. This study proposes an adaptive Bayesian

approach to jointly model response and toxicity, with the process of continually examining

the cumulative data, updating current knowledge about parameters, and modifying optimal

dose by maximizing Bayesian expected utility. Adaptive Bayesian design with cohort size

3, compared to adaptive Bayesian design with cohort size 1, provides an opportunity of

speeding up the trials.

This Bayesian approach, due to its complexity, also necessitates some novel, easier to

implement non-parametric designs considering both response and toxicity. The goal is to

choose OPT maximizing utility.

Up-down design is based on commonly-used standard MTD design. Since toxicity is also

considered in the next dose assignment, it could be called Up-down design (3+3,R’s and T’s).

Three patients are treated at one dose level, and the next dose assignment is based on the

current cohort outcomes. Four possible outcomes are given different dose-increment values.

rt, rT, Rt, RT are respectively assigned to 1,−1, 0,−1. If the summation of dose-increment

48



values is greater than 0, then the next cohort of three patients is treated at the next higher

dose. If the summation of dose-increment values is less than 0, then the next cohort of three

patients is treated at the next lower dose. If the summation of dose-increment values is 0,

then the next cohort of three patients is treated at the same dose level. The optimal dose

OPT is the dose maximizing U(dosem)

OPT = arg max
dosem

U(dosem)

= arg max
dosem

R∑
j=r

T∑
k=t

Ujknmjk
/nm (4.27)

where nm denotes the number of patients assigned to dose m, nmjk
denotes the number

of patients experiencing jk at dose m, and Ujk denotes the utility for patient outcome jk.

Accelerated design (1+3, R’s and T’s) is a modification of the above up-down design(3+3,

R’s and T’s). Accelerated design treats one patient per dose level until the first toxicity oc-

curs; the above up-down design , which treats three patients per dose level, is then launched.

At the acceleration stage, the following rule applies: if rt occurs, the next patient is treated

at the next higher dose. If Rt occurs, the next patient is treated at the same dose. This

design provides the opportunity of speeding up the trial and reduce the number of patients

assigned to lower doses. The determination of OPT for accelerated design is the same as

the above up-down design.

To evaluate the proposed Bayesian adaptive design as compared to three non-parametric

designs with regard to accuracy of optimal dose estimate and protection of patients, a series

of simulation studies from a wide range of scenarios are performed. For any particular

scenario and design, 500 simulations are conducted to reliably assess the performance of

these designs.

In order to make the simulations more well-grounded the true parameters μT and σT

are from Dr. Richard Simons paper. Figure 6 displays functions of Pr[R] and Pr[T ] over

doses under different scenarios. To make plots more readable, the dose in the plots are

rescaled with the original dose divided by the starting dose. The right panel has a bigger

μR compared to the left panel and the lower panel has a bigger μT compared to the upper

panel.
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For the adaptive Bayesian design, individual thresholds for response and toxicity are

generated from bivariate log-normal distribution with given parameters under different sce-

narios. The prior distributions for the parameters of interest are specified as follows. μR

and μT are assumed to follow independently normal distributions with mean μμR
=5, μmuT

= 8, and standard deviation σmuR
= 3, σmuT

= 3. The process of updating knowledge of

parameters and maximizing Bayesian expected utility is repeated until all the pre-specified

patients have been observed. For three other designs, including standard MTD design (3+3,

T’s only), accelerated design (1+3, R’s and T’s), and up-down design (3+3, R’s and T’s), 20

fixed dose levels are pre-specified according to the modified Fibonacci series, with the first

dose levels the tenth of LD10. In the design simulations considered here, sample size is fixed

as 30 and simple utility function focusing on response and non-toxicity is used.

Adaptive Bayesian designs produce continuous OPT through maximization of Bayesian

expected utility; three alternative designs recommend one of the fixed dose levels at the

end of each simulation. The comparison of five designs with regard to the accuracy of

estimate and patient protection is based on 500 simulation results. Figure 7 demonstrates

the accuracy of estimates among the five designs. These plots show that the CDF curves

of adaptive Bayesian designs always cross true OPT lines and are steeper than three other

curves, implying that the final recommended OPTs are always closer to the true OPTs.

However, alternative designs starting dosage and pre-specified dose levels play an important

role in the final recommendations. For example, in scenarios 5 and 6, a starting dose, 10th

of LD10, much lower than true OPTs, and a fixed sample size (30) are not enough to locate

the OPT.

Figure 8 demonstrates the patient protection among the five designs. The bars represent-

ing adaptive Bayesian designs corresponding to Rt, the desirable outcome, are always higher

among these five designs, with the bar representing adaptive Bayesian design with cohort

size 1 reaching the highest. The bars representing adaptive Bayesian designs corresponding

to rt, the undertreated outcome, are always lower among these five designs, with the bar

representing adaptive Bayesian design with cohort size 1 reaching the lowest. These simula-

tion results show that the Bayesian adaptive design, compared to three alternative designs,

is helpful in protecting patients. Sometimes, standard MTD design protects patients.
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4.3.3 Ethical Designs (Exploring Priors and Utilities)

The proposed adaptive Bayesian design uses full Bayesian decision analysis, in the sense of

combining utility function and Bayesian posterior probability to form Expected Utility and

taking Bayesian action by maximizing EU. Only if Bayesian decision theory is correctly used

and the prior distribution and the utility function are sensible will the resulting clinical trial

designs be both sensible and ethical; otherwise, the designs may be suboptimal or could lead

to wrong conclusions.

Six scenarios, combinations of three response rates and two correlations, are constructed

with μT = 4.7 and σT = 0.18 using the real trial information from Dr. Simon’s paper.

Three response levels are high, good, and poor, respectively, denoting that the marginal

probabilities of response at the dose level with Pr[T ] = 0.33 are 90%, 50%, and 20%. The

two types of correlation are zero correlation and positive correlation with ρ equal to 0.9.

Figure 9 shows the contour plots of the six scenarios.

This study constructs four priors with the goal of identifying the role of prior information

in the ethical and optimal designs, as shown in Table 6. The four priors are combinations of

different μμT
and different σμR

and σμT
. The first two priors represent vague prior information

with bigger σμR
and σμT

, the third prior represents optimistic prior information with a bigger

μμT
and smaller σμR

and σμT
, while the fourth prior represents pessimistic prior information

with a smaller μμT
and smaller σμR

and σμT
.

Four types of utility functions address ethical considerations: Usimple, Uadditive, Uaggressive,

and Ucautious. Figure 10 demonstrates four utility curves over dose under six scenarios. EU

are the Expected Utilities given the true five parameters. Under high response scenarios,

the shapes of four EU are similar with narrow concave-down areas; under good response

scenarios, the shapes of four EU are different, with EUsimple concave-down and three other

EU irregular and flat; Under poor response scenarios, the EUsimple is very flat, and three

other EU are convex-up. The underlying reasons for these discrepancies include: 1) Ex-

pected Utility assigns four utilities to four different outcomes depending on the comparison

of thresholds and assigned dose; and 2) The shapes of four probability curves over dose vary

on the underlying parameters.
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Three criteria summarized the operating characteristics of six scenarios based on 500 sim-

ulations: final recommended OPT, number of patients experiencing four different outcomes,

and the EU at final recommended OPT. The following are simulation results:

1) Under high response scenarios, the optimal dose ranges, at which EU exceeds 95% of

the maximum of EU , are narrow, while under poor response scenarios, optimal dose ranges

are broad because of the broad and irregular EU shapes. The recommended optimal doses

under poor response scenarios have greater variations when compared to those under high

response scenarios.

2) Different utility functions, which are used to address different ethical concerns in the

trials, lead to different final OPT recommendations. The OPTs from additive utility function

are smaller than those from aggressive utility function, but larger than those from cautious

utility function. These properties show very well, especially under the high response and

good response scenarios.

3) The final OPT recommendations have little difference under four priors which test

the sensibleness of the designs; even the third prior distribution is narrow. These properties

show very well, especially under the high response and good response scenarios. However,

the distribution of patient outcomes under prior 3 varies from those under other priors. For

example, when cautious utility function is used, the means (standard deviations)of number

of patients experiencing (rt, rT, Rt, RT) are 2.83(1.1),0(0),23.43(1.87),3.73(0.94) under prior

3 and 5.96(2.46),0(0),21.81(2.87),2.22(0.64) under prior 1 based on fixed sample size 30.

4) As far as patient protection is concerned, more patients experience RT for Uaggressive

usage and more patients experience rt for Ucautious usage. Under poor response scenarios,

simple utility function could lead to negative patient experience, with more patients experi-

encing rT , the worst desirable outcome. Additive utility function, aggressive utility function,

and conservative utility function addressing different ethical concerns could improve patient

experience with fewer patients experiencing rT and more patients experiencing rt or RT .

5) The EU at the final recommended OPT is closer to the max(U)with good accuracy.

Factorial analysis was used to test the main effects and interaction effects of four variables

including response(three levels), correlation(two levels), prior (four types), and utility func-

tion(four types). Factorial MANOVA was used to determine whether or not four categorical
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variables and their interactions significantly affect the linear combinations of the number

of patients experiencing four different outcomes. The EU at final recommended OPT and

final recommended dose used factorial ANOVA to determine which of the variables and their

interactions have significant effects on them. For the numbers of patients experiencing four

different outcomes, all of the main effects and their interactions are significant with p ≤ 0.01,

same for the EU at final recommended OPT and final recommended OPT. These results

demonstrate that different response levels, correlations, priors, and utility functions have

significant effects on the number of patients experiencing four different outcomes, final rec-

ommended OPT, and the corresponding EU . Moreover, the effect of one variable on the

dependent variables (number of patients, EU and OPT ) varies according to other variables.

4.4 EXTENSION OF BINARY CASE TO CATEGORICAL CASE

The above binary outcome model now extends to a categorical outcome model. A toxicity is

defined as an adverse event that is possibly, probably or definitely related to the treatment.

The ”Common Terminology Criteria for Adverse Events”(CTCAE) v3.0 grades toxicities

with the following rule: 0=no toxicity, 1=mild, 2=moderate, 3=severe, 4=life-threatening

or disabling, 5=death. Most phase I trials define ”toxicity” as the toxicity grade equal to

or greater than 3. Although convenient to reduce the ordinal scale of toxicity to a binary

variable for which grades 0, 1 or 2 are ”no toxicity” and grades 3 or 4 are ”toxicity”, doing

this potentially discards useful information. It is assumed that the probability of toxicity

increases with dose increasing; therefore, grade 2 toxicity should provide different information

about dose-escalation from grade 0 toxicity. If grade 2 toxicity occurs at dose level i, it gives

a warning that the toxicity may occur at the next higher dose level. Distinguishing between

grade 0, 1 or 2 toxicity rather than combining them would make the dose-escalation more

reliable.

Assume there are three different toxicity levels: T0(toxicity grade≤ 1), T1(toxicity grade=

2), and T2(toxicity grade≥ 3). The response variable is still divided into two levels, r(no

response) and R(response).
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Assume that every individual has two different toxicity thresholds(θT1,θT2), the first for

T1, the other for T2. Moreover, because the two thresholds follow log-normal distributions

with the same standard deviation but different means (similar to Simon et al’s paper, 1997),

the following occurs: log(θT1) ∼ Normal(μT , σT ) and log(θT2) = KT + log(θT1), where KT is

the difference of log(θT1) and log(θT2).

At any given dose i, if θT1 > dosei, then T0 occurs ; if θT2 > dosei and θT1 ≤ dosei, then

T1 occurs; if θT2 ≤ dosei, then T2 occurs. Let θT2 = θT1 exp(KT ), then the following rules

exist: 1) If θT1 > dosei, then T0 occurs; 2) If dosei exp(−KT ) < θT1 ≤ dosei, then T1 occurs;

and 3) If θT1 ≤ dosei exp(−KT ), then T2 occurs.

We can model the categorical outcome case by not only using the bivariate normal

distribution of (logθR, logθT1) but also introducing one more parameter KT , which is used to

distinguish the threshold of T1 and T2. Figure 11 demonstrates the contour plot of (θR, θT1)

and possible patient outcomes given the assigned dose.

We model the probability of response (R) and toxicity(T ) at given dose i based on the

above assumptions. For any given dose i, there exist six probabilities:

PirT0 = Pr[θR > dosei, θT1 > dosei]

PirT1 = Pr[θR > dosei, dosei exp(−KT ) < θT1 ≤ dosei]

PirT2 = Pr[θR > dosei, θT1 ≤ dosei exp(−KT )]

PiRT0 = Pr[θR ≤ dosei, θT1 > dosei]

PiRT1 = Pr[θR ≤ dosei, dosei exp(−KT ) < θT1 ≤ dosei]

PiRT2 = Pr[θR ≤ dosei, θT1 ≤ dosei exp(−KT )] (4.28)

The data after observation of n patients is Dn = {(Dosem, Rm, Tm), m = 1, 2, · · · , n},
and the likelihood function of (μR,μT ,σR,σT ,ρ,KT ) given Dn is

L(μR, μT , σR, σT , ρ,KT |Dn) =
n∏
i=1

R∏
j=r

T1,T2∏
k=T0

Pijk
nijk (4.29)
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Through the application of Bayesian theorem, the joint posterior distribution of (μR, μT ,

σR, σT , ρ, KT ) given Dn is :

π∗(μR, μT , σR, σT , ρ,KT |Dn) ∝ L(μR, μT , σR, σT , ρ,KT |Dn)π(μR, μT , σR, σT , ρ,KT )

=
n∏
i=1

R∏
j=r

T1,T2∏
k=T0

Pijk
nijkπ(μR, μT , σR, σT , ρ,KT ) (4.30)

By letting θ denote (θR, θT ), ϕ denote (μR, μT , σR, σT , ρ,KT ), and Dn denote the data

observed to the current time, Bayesian expected utility for the next patient is:

E(U |dose) = Eϕ[Eθ|ϕ[U(θ, dose)]]

=

∫
ϕ

∫
θR

∫
θT

U(θR, θT , dose)f(θR, θT |ϕ)π∗(ϕ|Dn)dθRdθTdϕ

=

∫
ϕ

R∑
j=r

T1,T2∑
k=T0

UjkPjk(ϕ)π∗(ϕ|Dn)dϕ

= Eϕ
[ R∑
j=r

T1,T2∑
k=T0

UjkPjk(ϕ)
]

=
R∑
j=r

T1,T2∑
k=T0

UjkEϕ[Pjk(ϕ)] (4.31)

E(U |dose) is then maximized to get the optimal dose optn. Hence, the (n+ 1)th patient

(∀n = 1, 2, · · · , N) receives the dose

OPTn = arg max
dose

E(U |dose) (4.32)

= arg max
dose

R∑
j=r

T1,T2∑
k=T0

UjkEϕ[Pjk(ϕ)]

The categorical outcome model which considers the grades of toxicity is an extension of

the bivariate binary model by introducing one more parameter KT that distinguishes the

threshold of T1 and T2. The optimal dose is calculated by maximizing the expected utility

which gives certain utilities to PirT0, PirT1, PirT2, PiRT0, PiRT1 and PiRT2.

Six scenarios are constructed, with Table 7 showing the corresponding simulation results

based on 100 simulations. Columns 2-7 give the underlying parameters, and column 8 is

the utility function that introduces three different utility functions. Columns 9 and 10 list
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the corresponding true OPT and OPT range. The last column is the mean and standard

deviation of the final recommended OPT, which shows that the estimate of OPT has good

accuracy(mean close to true OPT and small SD).

4.5 ROBUSTNESS OF DESIGN PERFORMANCE TO MODEL

MISSPECIFICATION

Drug response and toxicity within population are determined by a number of polymorphisms

in genes encoding drug metabolism enzymes. Population studies typically reveal either a

unimodal or bimodal distribution in the activity of these enzymes. A unimodal population

distribution occurs when the population only has polymorphisms causing small variations

in the activity of drug-cleaning enzymes. A bimodal population distribution occurs when

a subset of population possesses mutations or polymorphisms eliminating or dramatically

decreasing the activity of drug metabolism enzymes, whereas most other have polymorphisms

causing slighter variations in activity [76]. Based on the study of population polymorphisms,

thresholds for response and toxicity might follow a unimodal distribution for most agents

and a bimodal distribution for some agents. Figure 12 clearly demonstrates population

distribution in the activity of drug metabolism enzymes and corresponding distribution of

thresholds.

The proposed adaptive Bayesian approach assumes that thresholds for response and

toxicity follow a bivariate log-normal distribution for a therapeutic agent. This may not be

applicable for some agents because of some unknown genetic variations which are related

with changes of thresholds for response and toxicity. The whole population may be made up

of several sub-populations following different density functions; the thresholds for response

and toxicity in the whole population might follow a mixture model for some specific agents.

Figure 13 explicitly shows the distribution of thresholds for response and toxicity. The whole

population is made up of two sub-populations, with 10% following the first density function

f1(θR, θT ) and 90% following the second density function f2(θR, θT ). Thresholds for response
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and toxicity may thus follow a mixture model that is:

(θR, θT ) ∼ p ∗ f1(θR, θT |ϕ1) + (1 − p) ∗ f2(θR, θT |ϕ2) (4.33)

where p is the proportion of first group, ϕ1 and ϕ2 are the underlying parameters for the

two sub-populations.

Appendix A gives a detailed mathematical description of the two models with one based

on the Gaussian distribution and the other on the mixture model. Simulations should be

conducted to check the robustness of proposed method when the basic model assumptions

are violated. Individuals with specific thresholds should be sampled from a known mixture

model and then assigned to the estimated current optimal doses which maximize expected

utility based on the bivariate log-normal distribution assumption. A comparison of the

assigned doses to patients’ thresholds generates the outcomes of patients. The true optimal

dose should be based on a mixture model assumption whose four probabilities, Pirt, PirT ,

PiRt, and PiRT , are mixtures of two parts: p∗Pijk(ϕ1)+(1−p)∗Pijk(ϕ2), ∀j = r, R, k = t, T ,

where Pijk(ϕ1) is the probability for the first distribution, and Pijk(ϕ2) is the probability for

the second distribution.

To simplify the simulations, assume that the means of thresholds have the same ratio for

two subpopulations as well as standard deviations of thresholds. Therefore, ϕ2 is (μR, μT ,

σR, σT , ρ) and ϕ1 is ((μR ∗ μratio), (μT ∗ μratio), (σR ∗ σratio), (σT ∗ σratio), ρ). Different ρ and

p construct six scenarios with Figure 14 demonstrating the corresponding contour plots.

Table 8 demonstrates the simulation results using additive utility function. Columns 2-8

give the underlying parameters and column 9 is the proportion of first group. Columns 10

and 11 list the corresponding true OPT and OPT range. The last column, the mean and

standard deviation of the final recommended OPT, shows that the estimate of OPT has

good accuracy(mean close to true OPT and small SD).
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Table 5: Results of Scenario 1 for Comparison of Three Methods

M Prior opt10th(sd) opt20th(sd) opt30th(sd) opt40th(sd) opt50th(sd) opt opt range

1 1 77.12(18.02) 72.23(12.38) 67.34(10.37) 62.3(9.31) 56.43(8.23) 54.60 39.80∼74.90

2 75.56(19.32) 65.23(13.45) 60.18 (8.34) 58.12(9.39) 57.22(5.62) 54.60 39.80∼74.90

3 68.56(20.47) 62.34(12.97) 63.45(9.98) 58.45(8.23) 58.26(5.39) 54.60 39.80∼74.90

2 1 77.20(22.34) 58.49(14.28) 55.34(13.28) 56.72(9.37) 54.32(5.23) 54.60 39.80∼74.90

2 68.29(19.7) 62.34(12.82) 58.23(9.26) 58.19(8.12) 56.34(6.16) 54.60 39.80∼74.90

3 89.23(25.4) 67.87(14.27) 63.28(10.26) 59.23(9.24) 56.87(4.12) 54.60 39.80∼74.90

3 1 71.34(19.23) 59.21(12.31) 58.98(9.51) 58.23(8.24) 56.39(4.23) 54.60 39.80∼74.90

2 82.83(22.94) 64.29(10.27) 60.23( 9.14) 61.34(8.17) 58.32(6.21) 54.60 39.80∼74.90

3 71.93(17.8) 62.19(13.4) 65.75(12.73) 58.12(9.32) 54.23(6.23) 54.60 39.80∼74.90

Note:

Method 1 (M1): MCMC with posterior mean

Method 2 (M2): MCMC with MCMC sample

Method 3 (M3): Importance sampling

opt: Optimal dose

opt range: Optimal dose range

optith(sd)(∀i = 10, 20, 30, 40, 50) : The average of estimated optimal doses and corresponding

standard deviation of the estimated optimal doses assigned to ith patient.
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Figure 6: Probabilities under Six Different Scenarios

Note: The right panel has a bigger μR compared to the left panel and the lower panel has
a bigger μT compared to the upper panel.
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Figure 7: Comparison of Accuracy of Estimates among Five Designs

Note: The CDF curves of adaptive Bayesian designs always cross true OPT
lines and are steeper than three other curves, implying that the final recom-
mended OPTs are always closer to the true OPTs.
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Figure 8: Comparison of Patient Protection among Five Designs

Note: The bars representing adaptive Bayesian designs corresponding to Rt, the
desirable outcome, are always higher among these five designs; The bars repre-
senting adaptive Bayesian designs corresponding to rt, the undesirable and under-
treated outcome, are always lower among these five designs.

Table 6: Priors for the Ethical Designs

Prior μμR
μμT

σμR
σμT

Vague prior 5 8 3 3

Vague prior 5 4 3 3

Optimistic and narrow prior 5 8 1 1

Pessimistic and narrow prior 5 4 1 1
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Figure 9: Contour Plots of Six Scenarios

Note: Three response levels are high, good, and poor, respectively, denoting that the
marginal probabilities of response at the dose level with Pr[T ] = 0.33 are 90%, 50%,
and 20%. The two types of correlation are zero correlation and positive correlation with
ρ equal to 0.9.
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Figure 10: Four EUs under Six Scenarios

Note: Under high response scenarios, the shapes of EU are similar with narrow concave-
down areas; under good response scenarios, the shapes of EU are different, with EUsimple
concave-down and three other EU irregular and flat; Under poor response scenarios, the
EUsimple is very flat, and three other are convex-up.
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Figure 11: Distribution of Thresholds (θR,θT1)

Note: The diagonal line in the contour plot represents possible assigned
doses. Along this diagonal line, the vertical and horizontal lines divide the
whole population into six subgroups (rT0, rT1, rT2, RT0, RT1 and RT2).
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Table 7: Simulation Results for Categorical Outcome Model

Scenario μR μT σR σT ρ Kt Utility OPT OPT range optest(SD)

1 4 4.5 0.18 0.18 0 0.2 (0.2,0,0,0.3,0.3,0.2) 78.08 63.66 ∼ 94.87 77.23(5.81)

2 4 4.5 0.18 0.18 0 0.2 (0.1,0,0,0.6,0.3,0) 71.86 65.20 ∼ 79.35 72.38(3.82)

3 4 4.5 0.18 0.18 0 0.2 (0,0,0,0.5,0.5,0) 77.48 69.20 ∼ 86.75 80.38(4.36)

4 4 5.8 0.68 0.68 0.3 0.7 (0.2,0,0,0.3,0.3,0.2) 192.00 94.39 ∼ 387.68 182.18 (37.87)

5 4 5.8 0.68 0.68 0.3 0.7 (0.1,0,0,0.6,0.3,0) 146.94 103.00 ∼ 210.42 132.92( 22.84)

6 4 5.8 0.68 0.68 0.3 0.7 (0,0,0,0.5,0.5,0) 190.57 128.05 ∼ 283.61 178.26 (32.91)

Note: Kt is the difference between θT1 and θT2 . OPT is the true OPT and OPT range is the
doses at which EU exceeds 95% of maximum of EU. optest(SD) denotes the mean and standard
deviation of the final recommended OPT, implying the estimate of OPT has good accuracy(mean
close to true OPT and small SD).
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Figure 12: Population Distribution in the Activity of Drug Metabolism Enzymes and Corre-

sponding Thresholds (θR,θT )
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Figure 13: Distribution of Thresholds (θR,θT )

67



Figure 14: Scenarios for Robustness Check

Note: The contour plots of six scenarios, which are combinations of correlation ρ and
proportion p
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Table 8: Different Scenarios and Simulation Results for Mixture Model

Scenario μR μT σR σT ρ μratio σratio p OPT OPT range optest(sd)

C0P0.1 4.0 4.7 0.18 0.18 0 0.8 0.8 0.1 78.89 66.79 ∼ 93.95 85.92(4.31)

C0P0.2 4.0 4.7 0.18 0.18 0 0.8 0.8 0.2 78.82 66.00 ∼ 94.59 79.95(3.94)

C0P0.3 4.0 4.7 0.18 0.18 0 0.8 0.8 0.3 78.72 64.85 ∼ 95.38 85.98(4.47)

C+P0.1 4.0 4.7 0.18 0.18 0.9 0.8 0.8 0.1 78.89 66.79 ∼ 93.95 84.61(5.38)

C+P0.2 4.0 4.7 0.18 0.18 0.9 0.8 0.8 0.2 78.82 66.00 ∼ 94.59 83.26(4.83)

C+P0.3 4.0 4.7 0.18 0.18 0.9 0.8 0.8 0.3 78.72 64.85 ∼ 95.38 81.21(5.86)

Note: The six scenarios are combinations of correlation ρ and proportion p. The
estimate of OPT has good accuracy(mean close to true OPT and small SD).

4.6 APPLICATION

Clinical protocols for cancer vaccines present a case where, based on previous experience,

toxicities are usually not expected to be severe, and dose-seeking is often strongly motivated

by the need to identify a dose that may plausibly lead to a clinically meaningful benefit

in subsequent studies. Under such circumstances, there is a motivation to bypass phase I

trials. Since vaccines have occasionally had unexpected severe toxicity, caution needs to

be built into the experimental design. Previous studies indicate that clinical response is

associated with ”determinant spreading” (Ribas 2003)[74], providing a potential indication

of clinical potential with higher frequency than clinical response. The approach here, based

on expected utility, can help guide dosage choices by taking into account such a biological

measurement. Another area of application is the study of agents whose clinical benefits may

not be associated with traditional clinical responses at all: agents which induce cytostatic

behavior over extended time periods. In this case, with no timely clinically observed end-

point, the availability of indicators of biological activity from ancillary laboratory studies
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can augment such a trial usefully. For example, apoptosis in post-treatment bone marrow

biopsies has been studied in the treatment of patients’ myelodysplastic syndromes with the

anti-angiogenic agent Thalidomide (Bouscary 2005)[75].

Gleevec(Imatinib), a relatively specific inhibitor of the BCR-ABL tyrosine kinase, is the

first successful cytostatic agent for CML. The initial phase I dose-escalation study showed

that Gleevec is well tolerated and has significant antileukemic activity in patients with CML,

demonstrating the potential of development of anticancer drugs based on the specific molec-

ular abnormality [77]. The five-year follow-up study showed that Gleevec as initial therapy of

treatment of chronic-phase CML, was found to induce a durable response in a high proportion

of patients with estimated rates of complete hematologic response 98%, major cytogenetic

response 92%, complete cytogenetic response 87%, event-free survival 83%, progression 7%,

and overall survival 89% [78]. In the case of Gleevec, there is minimal toxicity, high response

and a strong relationship between response and survival. Such a circumstance, which we hope

will be increasingly more common in the future, would be the most promising for achieving

benefit from the proposed design incorporating both response and toxicity, in comparison to

phase I dose-finding trials based solely on adverse effects.

From the published data, the toxicity and hematologic complete response curves were

estimated from the bivariate unimodal threshold model, via maximum likelihood (Figure 15

A). Simulations based on this fit and both proposed and standard designs were conducted

to investigate the criteria of patient protection and accuracy of the optimal dose estimate.

Table 9 shows the comparison among the results of the original paper, the simulation av-

erage for the standard MTD design, and the simulation average for the proposed design

incorporating both response and toxicity. The latter was repeated with several utility func-

tions (simple, additive, cautious, aggressive). The proportions of outcomes varied across the

designs. Because the design used in the original paper was a somewhat modified standard

MTD design that did not exactly follow the dose-escalation rules in standard MTD design,

the proportions of outcomes from the simulated standard MTD design differed from those

of the original paper. The original design and the standard MTD design had more patients

with neither response nor toxicity. In the original paper of 83 patients, 19 patients (23%)

were undertreated, experiencing rt, while less than 20% of the patients experienced rt under
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the guidance of proposed design with four different utilities. Excluding the proposed design

with aggressive utility function usage, the percentage of overtreated patients did not vary

significantly across the designs. Moreover, the final recommended doses based on the pro-

posed design approximate the recommended dosage in the original paper except under the

aggressive utility usage. This provides evidence about the importance of the choice of utility

function.

It is of interest to know whether or not the larger proportion of ”undertreated” patients

with the original design is due to appropriate cautiousness which would be beneficial had

the drug been more toxic. Therefore, we reran the comparison using a threshold distribution

for toxicity centered at a much lower value. Figure 15 B demonstrates the toxicity curve

and hematologic complete response curves, and Table 9 shows the simulation results. Com-

pared to the results based on the curve A, the percentages of undertreated and overtreated

patients are higher. Furthermore, except under the aggressive utility usage, the percentages

of undertreated patients under proposed designs are closer to those from the original paper,

lending support to the original design with appropriate cautiousness about the more toxic

guess leading to the larger percentage of ”undertreated” patients.

The aggressive utility function usage leading to obviously undesirable patient experience

and dose recommendation, further support the importance of the choice of utility function

with only sensible and ethical utility function leading to more ethical designs. Moreover, the

underlying reasons also could be that: When the assigned dose is greater than threshold of

response, the patient may not react to the higher assigned dose level due to severe toxicity,

withdrawal from the study, death, etc, which exclude response.

71



Figure 15: Assumed Toxicity and Hematologic Response Curves for Gleevec

Note: Figure A is estimated from the original paper; Figure B assumes worse
toxicity.
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Table 9: The Application of Gleevec Data

Assumed Source or Percentage of Patients Outcome Recommended Patients

Toxicity Designs U rt rT Rt RT Dose(mg/m2) Enrolled

Model mean (sd) mean(sd) mean

Original paper - 23 0 66 11 400 83

Estimated Standard design - 33(8) 0(0) 59(10) 8(3) 500(100) 42

Proposed design Usim 11(5) 0(0) 78(8) 11(6) 390 (80) 30

Uadd 12(6) 0(0) 76(9) 12(6) 370(67) 30

Uagg 0(0) 0(0) 72(10) 28(10) > 1200(380) 30

Ucau 16(7) 0(0) 74(10) 10(4) 340(72) 30

More toxicity Standard design - 57(10) 0(0) 30(5) 13(4) 200(40) 27

Proposed design Usim 15(6) 0(0) 62(10) 23(8) 350(60) 30

Uadd 22(9) 0(0) 53(12) 25(6) 275(60) 30

Uagg 5(5) 0(0) 10(10) 85(15) > 1200(> 500) 30

Ucau 49(12) 0(0) 38(10) 13(7) 185(50) 30

Note: The proportions of outcomes from the simulated standard MTD design differed from those
of the original paper because the design used in the original paper did not exactly follow the
dose-escalation rules in standard MTD design. The percentages of rt and RT are higher under
more toxicity assumption(Curve B) compared to those under estimated toxicity model(Curve A).
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4.7 DISCUSSION

Although the primary goal of phase I trials is to find the maximum tolerated dose to pass to

phase II trials for further investigation of efficacy, with the emergence of cytostatic agents

and vaccine, in which the toxicity rate may be very low, finding a promising therapeutic dose

might be a better goal. Responses are rare in phase I cancer trials. But ” biological responses”

may be common. Most biomarkers may not provide true surrogate endpoint information,

but provide confirmation that the drug has the hoped-for potential. Augmenting toxicity

data with biological endpoint data might be important in phase I trials. In phase I cancer

clinical trials, the chance of benefit and risk of toxicity are uncertain; this leads to tough

ethical problems, especially at the beginning stage of trials and the first-in-human trials.

What dose should be assigned to the next patient is the key decision in the implementation

of trials.

We have proposed an adaptive Bayesian dose-finding algorithm that incorporates both

response and toxicity under the assumption that thresholds of response and toxicity follow a

bivariate log-normal distribution. In an ideal decision theory framework, the choice of dose

for each successive patient would incorporate what is best for the patient, together with the

value of the information to be obtained for the trial. However, to explicitly evaluate the latter

would be computationally difficult. For simplicity, we restrict attention to the probability of

each outcome for the next patient only. The model assumes that response and toxicity events

happen depending on the respective thresholds for response and toxicity, and it provides a

framework for incorporating prior information about the population threshold distribution

as well as accumulated data. The next dose can be assigned to maximize expected utility,

which assigns certain utilities to all possible outcomes. The most impressive advantage

of the proposed adaptive Bayesian design is to address ethical considerations through full

Bayesian decision analysis, combining utility and Bayesian posterior distribution to take a

Bayesian action by maximizing expected utility. Moreover, Bayesian expected utility could

be expressed as a function of dose and population threshold parameters; therefore, adaptive

Bayesian design has some ability to fully explore dose response and toxicity curves, providing

useful information for the future dosage modification in subsequent phase II trials.
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In either the standard non-parametric or some parametric dose-finding designs, patients

are allocated to the pre-specified doses, thereby posing many problems. Berry discussed this

in detail. When the study results become known, the investigators usually regret not having

assigned patients in some other fashion. Perhaps the dose-response curve seems to shift to

the left or right from the anticipated curve. If so, then assignment of patients on one end

or the other of the dose range was wasted. Perhaps the slope of the dose-response seems to

be steeper than anticipated in a narrow interval. In this case, the patients assigned to the

flat regions of the curve would have been more informative had they been assigned doses in

the region with steeper slope[80]. A better strategy to avoid the above results is to proceed

adaptively using cumulative information to assign to continuous doses, not pre-fixed doses.

Extensive simulations are conducted to assess the design performance with regard to the

accuracy of estimate and patient protection under high response scenarios. The adaptive

Bayesian design incorporating both response and toxicity and using continuous adaptive

doses based on the maximization of Bayesian expected utility is more effective in identifying

the right dose; and it usually identifies the right dose with small sample size in comparison

with alternative designs with or without incorporating toxicities and using pre-specified fixed

doses. Moreover, the adaptive Bayesian design considering both response and toxicity could

lead to more patients experiencing desirable outcome Rt and fewer patients experiencing

undertreated outcome rt compared to standard MTD design and two other non-parametric

designs. This provides evidence incorporating response has potential to improve early clinical

trials.

The proposed adaptive Bayesian design, a full Bayesian approach combining utility func-

tion and Bayesian posterior probability, provides an opportunity to run more ethical and

informative trials by taking into account priors and utilities that balance the value of knowl-

edge with what benefits patients. However, only if Bayesian decision theory is correctly used

and the prior distribution and the utility function are sensible will the resulting clinical trial

designs be both sensible and ethical; otherwise, the designs may be suboptimal, sometimes

leading to wrong conclusions. Four priors and four utility functions address the design per-

formance under different scenarios, combinations of three types of response and two types of

correlation with regard to the final recommended OPT, number of patients experiencing four
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different outcomes, and the EU at final recommended OPT. In this design, μR and μT are

assumed to follow normal distributions with prior information, and the variance-covariance

matrix Σ is assumed to follow the Inverse-Wishart(R, ρ) distribution with vague information,

which has little effect on the posterior estimate of Σ. When the prior guess about threshold

mean is far from true value and the distribution is narrow, cumulative patient information

still dominates the final conclusions. The final recommended optimal dose is still closer

to the true value, but the distribution of patient outcomes under optimistic or pessimistic

prior differs from that under vague prior guesses. We could conclude that when the prior

distribution is too optimistic or pessimistic, the designs may be suboptimal. To avoid the

suboptimal trials, the best strategy is to use vague prior information when prior information

from previous trials or pre-clinical trials is uncertain.

Simple utility function just putting positive utility on co-occurrence of response and non-

toxicity, is dangerous especially under the cases where responses are rare. Under the high

response scenarios, different utility functions lead to different final OPT recommendations.

The OPTs from additive utility function are smaller than those from aggressive utility func-

tion, but larger than those from cautious utility function. Under poor response scenarios, the

EU curves are flat and irregular depending on the assigned utilities, meaning that given the

pre-specified utility, the optimal dose range is broad. Moreover, the introduction of utility

could lead to more patients experiencing desirable outcomes corresponding to the specified

utilities, therefore protecting patients.

The application of the proposed design to Gleevec data is successful, even though the

original Gleevec phase I dose-finding trial focuses solely on toxicity. This provides strong

evidence not only for the feasibility of the application of new designs to the future real trials

but also for the importance of the choice of utility function.

Before implementing the trials, the relationship of toxicity and response curves is not

clear. Figure 16 Case A demonstrates cases where the dose-response curve is suddenly steep

around the dose level with Pr[T ] = 0.33, however, the dose-toxicity curve is flat. Raising the

dose leads to a significant increase in response; lowering the dose leads to a large decrease

in response, but the changes of dosage around MTD have little influence on toxicity. Under

these circumstances, good response should cause a trial to push the dose higher based on
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Figure 16: Possible Relationship of Response and Toxicity Curves

the great gain on response without significantly jeopardizing toxicity. Moreover, patient

preference about the trade-off of response and toxicity must also be incorporated. Under

the cases where the dose-response curve is much flatter than the dose-toxicity curve, Figure

16 Case B demonstrates this clearly. The MTD corresponding to the pre-specified target

toxicity may lead to poor response. If an agent is safe and well-tolerated but has little

effect on response, it may be a counter-indication for phase II commitment. Under these

circumstances, low response should cause a trial to stop earlier based on the potential poor

benefit on response. This requires the incorporation of both response and toxicity in dose-

seeking process. An expected utility curve that is flat or irregular signals that the optimal

dose range is wide and the investigator could decide the optimal dose and the termination

of the trials.

Although the proposed dose-finding algorithm is involved with more complicated mod-

eling and computation than regular dose-finding algorithms, it still has several advantages:

1) It introduces a new concept that dose-finding could be solved in term of thresholds for re-
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sponse and toxicity determining the occurrence of response and toxicity; and 2) Full Bayesian

decision-analytic approach is used, therefore taking into account both scientific and ethical

concerns with the goals to identify the right dose as effectively as possible and to treat more

patients as ethically as possible.

The proposed model assumes that patients experience response and toxicity according

to their specific thresholds following a bivariate log-normal distribution. However, some

potential drawbacks exist. First, our model assumes that if threshold is less than or equal

to the assigned dose, event occurs; this means only if the assigned dose is equal to or greater

than the patients’ specific threshold dose event occur. This is not true for agents. When

the assigned dose is greater than threshold of response, the patient may not react to the

higher assigned dose level due to severe toxicity, withdrawal from the study, death, etc.

We could use ”response-limiting event” to denote these possible reasons. In addition, some

patients are refractory to specific agents, meaning that their threshold of response is closer to

infinity. To eliminate the above two drawbacks, the model should be modified by introducing

response-limiting toxicity threshold and probability of refractory. TKRPLOT has explored

some properties about the model incorporating the above two factors. The results seem

encouraging, but given the relatively small size of phase I study, it is not feasible to apply

the fully developed model to real trials.
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5.0 KNOWLEDGE-DIRECTED BAYESIAN ADAPTIVE DESIGN IN

PHASE I TRIALS

5.1 INTRODUCTION

Pharmacogenetics and pharmacogenomics gained much popularity to elucidate the genetic

basis for interindividual difference in drug efficacy and toxicity commonly observed in all

therapeutic areas. Pharmacogenetics (PG) is the study of the relationship between an indi-

vidual’s genetic makeup and the response to drugs, whereas pharmacogenomics investigates

a large number of clinically important genes and their expressions that underlie the re-

sponse to the drugs. PG variations lead to the changes of drug absorption, distribution,

metabolism, excretion, drug-target interaction, and finally have an important impact on the

drug response through pharmacokinetics(PK) and pharmacodynamics(PD). PK effects are

due to the inter-individual differences in absorption, distribution, metabolism, or excretion

of the drug, which influence the final drug concentration at intended sites. For example,

PK genetic variation resulting in loss or increase of drug metabolizing enzyme (DME) ac-

tivity, and then the change of clearance rate can have profound effects on the relationship

between drug dosage and observed plasma concentrations[69, 70, 91, 92]. PD effects are due

to the functional difference of receptor or serum binding proteins. For example, the polymor-

phisms of genes encoding transporters or receptors are likely to affect the efficacy of cancer

treatment, either by directly affecting antitumor efficacy or by influencing the likelihood of

unacceptable adverse effects[82, 83, 84, 85, 86].

PK/PD modeling, which considers the dose-exposure-effect relationship, gained much

attention in drug development in the past decades. Exposure can be the drug concentration

vs time profile, or a summary measure such as area under the concentration curve(AUC)
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or maximum concentration(Cmax). Effect may be a pharmacological marker, a measure of

efficacy or safety. The introduction of PK/PD modeling to the drug development process has

provided a vital tool that facilitates the drug approval process by providing individualized

dose-exposure-effect predictions. To date, however, the potential of this tool has not been

widely used in practice. In 1986, Collins et al[93] proposed the ”Pharmacokinetically guided

dose-escalation(PGDE)”. This approach assumes that interspecies variability in toxicity is

largely due to interspecies differences in drug metabolism, elimination and binding. The

difference between LD10 in mice and the MTD in humans was huge, but the AUC at the

LD10 in mice was of the same order of magnitude as the AUC at the MTD in men. Therefore,

it was suggested that AUC be used as a target of dose-escalation in phase I studies.

Genetic variations related with changes drug concentration at intended sites or response

targets which finally have an influence on the drug response have been widely explored, and

some of them have already been used in clinical practice. For example, three genotypes of

TPMT have dramatically different effects on AUC through the PK process, while no evidence

supports the effects on PD process. Patients who carry TPMT mutations are at risk for severe

hematologic toxicities when treated with 6-MP because these mutations lead to a decrease in

the rate of 6-MP metabolism [67, 68]. Appropriate 6-MP dose reductions for TPMT-deficient

patients have allowed for similar toxicity and survival outcomes as patients with normal

TPMT levels[69, 70]. TPMT testing is now being used for dose optimization in children

with ALL before 6-MP is initiated[72]. Irinotecan, an anticancer drug, metabolized by

UGT1A1, is associated with severe diarrhea and neutropenia. In vivo research demonstrated

an association between UGT1A1*28 and toxicity with Irinotecan treatment [91, 94, 95, 96, 97,

98, 99]. One of the most important studies related with the labeling change for Irinotecan is

a prospective study of 66 patients with advanced malignancies refractory to other treatments

receiving Irinotecan 300mg/m2 every three weeks[91]. The prevalence of grade 4 neutropenia

was 9.5%. Of the six homozygous (7/7) patients, three developed grade 4 neutropenia with

prevalence of 50%. In contrast, only three of twenty-four patients with 6/7 genotype and

none of twenty-eight patients with 6/6 genotype developed grade 4 neutropenia, respectively

with prevalence of 12.5% and 0%. Patients with 7/7 genotype had a 9.3-fold higher risk of

developing grade 4 neutropenia than patients with 6/6 and 6/7 genotypes. FDA updated
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the Irinotecan label in 2005 to provide pharmacogenetic information, recommending a dose

reduction of Irinotecan for patients known to be homozygous for the UGT1A1*28 allele

because of the increased risk of neutropenia[100]. In addition, the labeling cautions that

patients who are UGT1A1*28 heterozygous may also have an increased risk of developing

neutropenia, although no dosage reduction is required.

Ramchandani et al[101] conducted the regression analysis of the combined data from

Innocenti et al[91] and Iyer et al[95] with the goal to more reliably estimate the influence

of UGT1A1*28 polymorphism on toxicity. Variations of UGT1A1 have been linked with

elevated and prolonged levels of SN-38 AUC. An increase of both SN-38 AUC and UGT1A1

7/7 genotype were significantly associated with a lower absolute neutrophil count nadir. The

effect of UGT1A1 7/7 genotype was found to be significant in addition to the effect of SN-38

exposure, suggesting that the impact of genotype extended beyond the increased exposure.

This lends support to the conclusion that genotypes of UGT1A1 have significant effects on

PD process in addition to the PK process.

Single agents currently cure few cancers. Because most cancer chemotherapies are com-

binations of multiple drugs, drug co-administration raises a lot of attention. Gleevec is a

good case in point. Response is strongly related with drug exposure, proportional to the

assigned dose[88]. However, when EIAED or other CYP3A4 substrate or inducer drug is

concomitant with Gleevec, exposure to Gleevec decreases by 70%, unable to reach the thresh-

olds of response[89, 90]. Cytochrome P450 enzymes might be responsible for activation or

inactivation of antitumor drugs, and the CYP3A P450s account for approximately half of

the metabolism carried out by cytochrome P450 enzymes. Drug co-administrations motivate

researchers to recognize the necessity of incorporating known information which may have

effects on the PK/PD process.

Since genetic variations or drug co-administrations can lead to huge inter-individual dif-

ferences in drug efficacy and toxicity, it is desirable to individualize chemotherapy. Before

patient enrollment or dosage assignment, some patient specific characteristics may have al-

ready been identified to have influence on the PK or PD process. These characteristics

may not lead to dramatic difference in response or toxicity, but at least they indicate that

this known information has some hoped-for potential to protect patient if incorporated in

81



the dose-finding process. So without consideration of known patient information may not

be enough for dose-finding in phase I clinical trials. Those affecting drug metabolism are

expected to affect all PD processes downstream, including both efficacy and toxicity, while

other genetic variations or drug co-administrations may affect only one PD process. This

suggests that a hierarchical model could help in designing an improved phase I trial incor-

porating specific suspicious information and prior belief. On the other hand, phase I trials

are small and may not contain enough information to support a highly adaptive design. The

question is whether such a design could be helpful.

We propose an adaptive Bayesian design based on a hierarchical PK/PD model incorpo-

rating patient response, toxicity, genotype/co-administration information and prior belief.

Moreover, we compare this design with those without incorporating known information with

regard to patient protection and accuracy of final estimates with the following two goals:

1) Determine if incorporating specific information and prior belief has potential to improve

early clinical trials; 2) Provide further information about this specific information in order

to early identify subset to individualize dosage according to specific characteristics.

5.2 METHODS

The PK/PD model, used to address the dose-exposure-effect relationship, consists two sep-

arate sub-models: a PK model for drug concentration as a function of drug metabolism

constant, dose, genetic makeup, and individual random error; a PD model for drug effect as

a function of concentration, genetic makeup, and individual random error. The hierarchi-

cal model approach has gained much popularity among PK/PD models by conditioning on

individual-specific covariates, dosage, and parameters. The following presents the detailed

interpretation for the hierarchical model in mathematical notation:

Stage I: PD model is used to describe the relationship between drug concentration (C)

and effect(response and toxicity) through the comparison of C and individual thresholds

(θcR, θ
c
T ), which are assumed to follow a bivariate log-normal distribution conditional on
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specific characteristic γ:

(logθcR, logθ
c
T )|γ ∼ N

[⎛
⎝μcR + βcRγ

μcT + βcTγ

⎞
⎠ ,

⎛
⎝ σc

2

R σcRσ
c
Tρ

σcRσ
c
Tρ σc

2

T

⎞
⎠]

(5.1)

where γ denotes patient specific covariate, βcR and βcT are the coefficients of γ, representing

the effects of γ on θcR and θcT , μcR and μcT are the means of θcR and θcT without specific

characteristic, σcR and σcT are standard deviations of θcR and θcT , and ρc is correlation.

For patient i with specific γ there exist four probabilities,

Pirt = Pr[θcR > Ci, θ
c
T > Ci] (5.2)

PirT = Pr[θcR > Ci, θ
c
T ≤ Ci] (5.3)

PiRt = Pr[θcR ≤ Ci, θ
c
T > Ci] (5.4)

PiRT = Pr[θcR ≤ Ci, θ
c
T ≤ Ci] (5.5)

Stage II: PK model is used to describe the relationship between dosage and drug con-

centration C :

log(C|γ) = α + βγ + log(dose) + ε (5.6)

where α is the constant for PK model, β is the coefficient of γ, describing the effect of γ

on C, and ε is the random error.

Stage III: Assume γ follows a Bernoulli distribution and random error ε follows a normal

distribution.

γ ∼ Bernoulli(Pγ) (5.7)

ε ∼ N(0, σ2) (5.8)

Stage IV: Prior distributions on μcR, μcT , σcR, σcT , ρc, βcR, βcT , α, β, σ2 and Pγ are specified

with their own hyperparameters. Let Σ denote the var-cov of (θR, θT ), and μc denote (μcR, μ
c
T ),

the detailed information for priors is listed as follows:
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Σ ∼ W−1

[⎛
⎝1 0

0 1

⎞
⎠ , 2

]
(5.9)

μc ∼ N(μ0,Σ/n0) (5.10)

βcR ∼ U(βcRl
, βcRu

) (5.11)

βcT ∼ U(βcTl
, βcTu

) (5.12)

α ∼ U(αl, αu) (5.13)

β ∼ U(βl, βu) (5.14)

σ2 ∼ Inv − χ2(s0, υ0) (5.15)

Pγ ∼ Beta(Pα, Pβ) (5.16)

The above is general mathematical notations for the hierarchical PK/PD modeling when

we suspect PK/PD process, for example, the possible existence of bimodality, but γ and Pγ

are unknown. Given the availability of data, the above general modeling could be reduced

to the following three cases:

1) Scenario 1: Some preclinical data support that a particular gene plays an influence

on PK/PD process. The frequency of genotype γ is known; but patient specific γ is not

measured.

2) Scenario 2: Pγ is known; moreover, patient specific γ is measured.

3) Scenario 3: γ is a vector of multiple genes instead of single genotype, and many

genotypes are determined.

For now, we restrict our attention to scenario 2 to illustrate the implementation of this

hierarchical modeling in phase I clinical trials, including the cumulative data, posterior

distribution, calculation of OPT, and independent draws from posterior distribution. For

simplicity, γ is assumed to only have effect on PK process.

After observing the results of n patients, there exist assigned dosages, response and tox-

icity outcomes as well as specific patient covariate. Given data Dn = {(Dosem, Rm, Tm, γm),
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m = 1, 2, · · · , n}, the joint likelihood function of ϕ for (μcR, μcT , σcR, σcT , ρc, α, β, σ2,C) is

L(ϕ|Dn) = L(μcR, μ
c
T , σ

c
R, σ

c
T , ρ

c, α, β, σ2, C|Dn)

=
n∏
i=1

R∏
j=r

T∏
k=t

[Pijk|(μcR, μcT , σcR, σcT , ρc, Ci)]nijk

n∏
i=1

f(Ci|α, β, σ2) (5.17)

We incorporate prior information about μcR, μcT , σcR, σcT , ρc, α, β, and σ2 through prior

density function π(ϕ) defined by

π(ϕ) = π(μcR, μ
c
T , σ

c
R, σ

c
T , ρ

c, α, β, σ2)

= π(μcR, μ
c
T )π(σcR, σ

c
T , ρ

c)π(α)π(β)π(σ2) (5.18)

Through the application of Bayesian theorem, the joint posterior distribution of ϕ given

Dn is :

π∗(ϕ) ∝ L(ϕ|Dn)π(ϕ)

=
n∏
i=1

R∏
j=r

T∏
k=t

[Pijk|(μcR, μcT , σcR, σcT , ρc, βcR, βcT , Ci)]nijk

n∏
i=1

f(Ci|α, β, σ2)π(μcR, μ
c
T )π(σcR, σ

c
T , ρ

c)π(α)π(β)π(σ2) (5.19)

The proposed adaptive Bayesian method for dose-finding uses a full Bayesian decision-

analytic approach. Upon completion of updating cumulative patient outcome information,

we can estimate the optimal dose by maximizing the Bayesian expected utility with the

choice of utility function U , determined by the investigators and patients based on the drugs

and goals of the trials. The proposed adaptive Bayesian design defines the utility function

as before:

U(θcR, θ
c
T , C) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Urt if θcR > C, θcT > C

UrT if θcR > C, θcT ≤ C

URt if θcR ≤ C, θcT > C

URT if θcR ≤ C, θcT ≤ C
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As a result, Bayesian expected utility for the next patient is:

E(U |Dose) = Eϕ[Eθ|ϕ[U(θcR, θ
c
T , C)]]

=

∫
ϕ

∫
θc
R

∫
θc
T

U(θcR, θ
c
T , C)f(θcR, θ

c
T |C)

π∗(ϕ|Dn)dθ
c
Rdθ

c
Tdϕ

=

∫
ϕ

R∑
j=r

T∑
k=t

UjkPjk(C|ϕ)π∗(ϕ|Dn)dϕ

=

∫
ϕ

R∑
j=r

T∑
k=t

UjkPjk(h(Dose)|ϕ)π∗(ϕ|Dn)dϕ

= Eϕ
[ R∑
j=r

T∑
k=t

UjkPjk(h(Dose)|ϕ)
]

=
R∑
j=r

T∑
k=t

UjkEϕ[Pjk(h(Dose)|ϕ)] (5.20)

where h(Dose) = exp(α+ βγ + log(Dose) + ε).

ÔPT n+1 is estimated by maximizing E(U |Dose), hence the (n + 1)th patient with γ

(∀n = 1, 2, · · · , N) receives the dose

ÔPT n+1 = arg max
dose

E(U |Dose)

= arg max
dose

R∑
j=r

T∑
k=t

UjkEϕ[Pjk(h(Dose)|ϕ)] (5.21)

It is very complicated to calculate the multiple integration Eϕ[Pjk(h(Dose)|ϕ)] over ϕ.

A practical approach is available to deal with multiple integrations over ϕ: substitute the

posterior mean ϕ̂ from MCMC sample for ϕ.

Êϕ[Pjk(h(Dose)|ϕ)] = Pjk(h(Dose)|ϕ̂)

= Pjk(h(Dose)|
Z∑
z=1

ϕz/Z) (5.22)

where ϕ1, ϕ2, · · · , ϕZ are i.i.d samples from the posterior distribution of π∗(ϕ|Dn). Because

this posterior distribution has no closed form, MCMC sample draws are used instead of the

exact samples.
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After each patient’s outcomes are observed, we use a MCMC algorithm to update the

posterior distributions of unknown parameters. At the nth stage, the full conditional distri-

butions of the log θcR, log θcT , and ϕ are given as follows:

1. Conditional on Dn, generate (log θcR, log θ
c
T ) using truncated normal distributions. For

individual i, if event occurs, the right truncated normal distribution with the point of

truncation of assigned OPTi is used; otherwise, the left truncated normal distribution

with the point of truncation of assigned OPTi is used.

2. Conditional on Dn and log θc, generate Σ and μ using Inverse-Wishart and normal dis-

tributions.

Σ|Dn,Σ
(−) ∼ W−1(I + nS + (nn0/(n+ n0))(log θc − μ0)(log θc − μ0)

′,

n + 2) (5.23)

μ|Dn, μ
(−) ∼ N((nlog θc + n0μ0)/(n + n0),Σ/(n + n0)) (5.24)

where log θc denotes (log θcR, log θ
c
T ), log θc denotes the mean of log θc, I denotes the

identity matrix, nS denotes the variance-covariance of log θc, n0 and μ0 denotes the prior

belief for log θc.

3. Conditional on Dn, generate σ2, α, and β using inverse-chi-square and normal distribu-

tions.

σ2|Dn, σ
2(−) ∼ Inv − χ2((n− 2)S + s0, υ0 + (n − 2)) (5.25)

α, β|Dn, (α, β)(−) ∼ N((α̂, β̂), σ2Vα,β) (5.26)

where S, the residual sum of squares, is equal to
∑n

i=1(logCi− log dosei − (α+ βγ))2, α̂

and β̂ are least square estimates, and Vα,β is the variance of estimates.

4. Based on the hierarchical modeling the full conditional distribution of C is straightfor-

ward as shown below:

logC|Dn, C
(−) ∼ N(α + log(dose) + βγ, σ2)
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The above proposed adaptive Bayesian design based on hierarchical PK/PD model-

ing, incorporating response, toxicity, patient specific covariate, and prior belief, provides

opportunities to improve phase I dose-finding trials, identify subset early, and develop an

individualized dosing strategy. Under the circumstances where βcR, βcT , and β are equal to

0, the design is reduced to an adaptive design based on a PK/PD model without patient

specific covariate, while it will be reduced to an adaptive design based on a simple PD model

without patient specific covariate under the cases of βcR, βcT , α, β, and σ equal to 0.

For PD modeling, threshold in terms of dose (θd) follows a log-normal distribution, while

for PK/PD modeling with or without incorporating γ, θd also follow a log-normal distribution

under the transformation of θd, θc, and C . Appendix B shows the detailed mathematical

interpretation.

5.3 APPLICATIONS AND SIMULATIONS

The adaptive Bayesian designs incorporating both response and toxicity in phase I trials

assume that thresholds of response and toxicity follow a bivariate log-normal distribution.

Patients outcomes are determined by the comparison of individual specific thresholds with

assigned dosage or drug exposure depending on the underlying model. The model which takes

into account thresholds of response and toxicity, assigned dose, and patient outcome, without

considering the underlying algorithm of drug concentration, is a simple PD modeling. This

PD modeling is reasonable, especially when the underlying drug-metabolism is unknown.

However, it is not ideal because it ignores individual variability in drug concentrations, which

play a more important and direct role in determining drug response/toxicity than assigned

doses. The model taking into account thresholds based on drug exposure through PK/PD

processes may provide a more reasonable way to address dose-seeking process. Incorporating

known information into phase I trials through hierarchical PK/PD modeling may have the

potential to improve early stage trials and identify subset early.

To ensure the appropriateness of the adaptive designs through the PK/PD processes,

simulation studies should be conducted before implementing trials to check the operating
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characteristics. Only after simulations show satisfactory results should the proposed design

be applied to real trials.

To make simulation results closer to real studies the underlying parameters are roughly

generated from the published data of real trials based on the three-level hierarchical model.

Gleevec(Imatinib) is the first successful cytostatic agent for CML. Plasma drug exposure

was directly related to hematologic response; concomitant administration of drugs inducing

CYP3A4 could lead to low and ineffective levels of Imatinib[88]. In the case of chemotherapy

for cancer treatment, few single agents could be a cure, making multiple drug coadminis-

trations very common. Moreover, cytostatic agents, such as Gleevec, may become more

widespread. Such circumstances would be the most promising for achieving benefit from the

proposed design incorporating response, toxicity, and known drug coadministration infor-

mation, in comparison to phase I dose-finding trials ignoring response and patient specific

information. Irinotecan, metabolized by UGT1A1, genotypes of which have significant effects

on PD process in addition to the PK process, is another good case in point that emphasizes

the importance of incorporating PG into the PK/PD modeling process.

The published data of Gleevec and Irinotecan estimated the underlying parameters for

response and toxicity thresholds in terms of dose and drug exposure from a bivariate uni-

modal model via maximum likelihood; the relationship between dose and C was also explored

using a power model. Figure 17 shows the contour plots of thresholds and the relationship

between dose and C with/without CYP3A4 inducer. Figure 18 demonstrates the relationship

between dose and C and the contour plot in terms of C based on the Irinotecan.

The proposed adaptive Bayesian design uses a full Bayesian decision analysis by com-

bining utility function and Bayesian posterior probability to form Expected Utility and by

taking Bayesian action to maximize EU. Four different types of utility functions address

ethical considerations: Usimple, Uadditive, Uaggressive and Ucautious. Different utility functions

and designs conduct 100 simulations to reliably assess the design performance. The length

of MCMC chain is 10000, the burn-in is 5000, and the thinning is 10 for every patient in

this adaptive process. The burn-in is chosen as 5000 because the chain appears to reach

equivalence before this point. For the design simulations considered here, sample size is

fixed as 30 given the relatively small size of phase I studies.
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Figure 17: Contour Plots of Thresholds and Relationship between Dose and AUC Based on

Gleevec Data
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Figure 18: Relationship between Dose and AUC and Contour Plot of Thresholds Based on

Irinotecan Data
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5.3.1 Comparison of PK/PD Modeling with PD Modeling

The adaptive Bayesian design could be modeled through PK/PD modeling or just PD mod-

eling. The design based on PD modeling focuses on the relationship between dose and

outcome. The design based on PK/PD modeling could address the relationship of dose,

exposure, and outcome, while it also introduces more variability. It is necessary to evaluate

both models with regard to patient protection and accuracy of estimates under the circum-

stances of genotype or other patient characteristics unknown before patient enrollment.

Figure 19 shows the comparison of PK/PD modeling with PD modeling with regard

to accuracy of estimate and patient protection based on the Gleevec data. The left panel

demonstrates the accuracy of estimates between the two designs under four utility functions.

These plots, showing that the CDF curves always cross true OPT lines and curves from

PD models are steeper than those from PK/PD models, imply that the final recommended

OPTs are always closer to the true OPTs, but the variations from PK/PD models are larger.

In addition, the recommended OPTs from PK/PD models are greater than those from PD

models. For PK/PD modeling, pre-specified utility function plays an important role in the

final dose recommendations. For example, aggressive utility function could lead to wrong

dose recommendation, such as an extremely high dose recommendation. The right panel

demonstrates patient protection between the two designs. The bars corresponding to Rt,

the desirable outcome, are always higher among PD models, while the bars corresponding

to rt and RT, the undesirable outcomes, undertreated or overtreated, are always higher

among PK/PD models. Moreover, under the aggressive utility function usage, more patients

experience RT because of extremely high dose recommendation. These simulation results

show that PD modeling is helpful in protecting patients compared to PK/PD modeling

when genotype or other patient characteristics is unknown before patient enrollment. The

underlying reason is that AUC is proportional to dose, with both strongly related to response;

Therefore, the introduction of two more parameters to explain the relationship of AUC and

dose could not help the design.
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Figure 19: Comparison of PK/PD Modeling with PD Modeling with Regard to Accuracy of

Estimate and Patient Protection

Note: The vertical lines represent the true optimal doses given models. The CDF curves always
cross true OPT lines and curves from PD models are steeper than those from PK/PD models,
implying the final recommended OPTs are always closer to the true OPTs, but the variations
from PK/PD models are larger. The bars corresponding to Rt, the desirable outcome, are always
higher among PD models, while the bars corresponding to rt and RT, the undesirable outcomes,
are always higher among PK/PD models. Moreover, under the aggressive utility function usage,
more patients experience RT because of extremely high dose recommendation.
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5.3.2 Comparison of Designs Utilizing Three Model Assumptions under the

Case of Known Determinant Having Influence on PK Process

The huge availability of PG information and routine practice of multiple drug combinations

for cancer chemotherapy provide a opportunity to improve early stage trials by incorporating

known information which may have influence on drug concentration into the phase I dose-

finding process through PK/PD modeling. A comparison was made with regard to patient

protection for three designs: PK/PD model incorporating known information, PK/PD model

ignoring known information, and PD model. The most important part of the PK/PD model

incorporating known information is that posterior belief about this known information could

be provided to guide the future trials.

Figure 20 demonstrates patient protection for three types of designs under the circum-

stance that 50% of the enrolled patients are on another CPY3A4 inducer, which dramati-

cally decreases drug exposure by 70%, while another 50% are on a single agent. The bars

corresponding to Rt, the desirable outcome, are always highest among PK/PD models in-

corporating known information, while the bars corresponding to rt and RT, the undesirable

outcomes, undertreated or overtreated, are always lowest. These simulation results sug-

gest that PK/PD model incorporating known information is helpful in protecting patients

compared to those models without considering genotype or other patient characteristics.

Moreover, for PK/PD modeling, pre-specified utility function plays an important role in the

final dose recommendations and patient experience. For example, aggressive utility function

could lead to extremely high dose recommendations, therefore causing more patients expe-

riencing RT. Figure 21 demonstrates the posterior distribution of the coefficient β under

additive utility function usage. The underlying true parameter β is −1.2, and the posterior

distribution of β based on simulation results is bell-shaped with a posterior mean −1.17,

standard error 0.145, and 95% credibility interval −0.87 ∼ −1.45. This suggests that γ is a

statistically significant factor in predicting drug concentration, therefore further confirming

the correctness of the incorporation of known γ into the phase I trials. In addition, this also

provides evidence that patient covariate γ could be used to guide the dose recommendation

for future trials in order to maximize benefit.
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Figure 20: Comparison of Designs with Regard to Patient Protection

Note: More patients experience desirable outcome (Rt) and less patients experience unde-
sirable outcomes (rt, RT) in the PK/PD model incorporating known information.
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Figure 21: Posterior Distribution of the Coefficient β

Note: β is the log of concentration ratio (γ=1 vs. γ=0). The underlying true
parameter β is −1.2, and the posterior distribution of β based on simulation
results is bell-shaped with a posterior mean −1.17, standard error 0.145, and
95% credibility interval −0.87 ∼ −1.45.
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5.3.3 Comparison of Designs Utilizing Three Model Assumptions under the

Case of Known Determinant Having Influence on Both PK and PD Pro-

cesses

Some pre-identified characteristics have influence on both PK and PD processes; Irinotecan

is a case in point. Comparison was also made with regard to patient protection for three

approaches: PK/PD modeling with and without incorporating known information and PD

modeling. The simulation results were similar to the cases of known determinant having

effects only on PK process. More patients experience desirable outcomes. Posterior belief

about this known determinant is provided, serving as a guide for future trials.
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5.4 DISCUSSION

Genetic variations or drug co-administration can lead to huge inter-individual differences

in drug efficacy and toxicity, making it desirable to individualize therapy. Those affecting

drug metabolism are expected to affect all pharmacodynamic (PD) processes downstream,

including both efficacy and toxicity, while other genetic variations or drug-coadministration

may affect only one PD process. This suggests that a hierarchical model could help in

designing an improved phase I trial incorporating specific information and prior belief. On

the other hand, phase I trials are small and may not contain enough information to support

a highly adaptive design. The question is whether or not such a design could be helpful. We

propose an adaptive Bayesian design based on a hierarchical PK/PD model, incorporating

patient response, toxicity, genotype or drug co-administration, and prior belief.

The model assumes that response and toxicity events happen depending on the respec-

tive thresholds and the drug exposure determined by the underlying drug metabolism. This

model provides a framework for incorporating prior information about the population thresh-

old distribution, suspicious patient characteristics which may have influence on drug expo-

sure, and accumulated data. The next dose can be assigned to maximize expected utility,

which assigns certain utilities to all possible outcomes. The proposed design provides an op-

portunity to improve phase I clinical trials by incorporating known information which may

have influence on drug exposure. One of the most impressive advantages of the proposed

adaptive Bayesian design is to address ethical considerations through a full Bayesian decision

analysis, combining utility and Bayesian posterior distribution to take a Bayesian action by

maximizing expected utility.

Extensive simulations based on Gleevec and Irinotecan data were conducted to assess

the design performance with regard to the accuracy of estimate and patient protection when

genotype or drug co-administration is known before patient enrollment. Moreover, four

utility functions are used to address the ethical concern and its influence on the design

performance. Under the cases of patient specific PG or other information unknown before

implementation of trials, the adaptive Bayesian design could be modeled through PK/PD

modeling or just PD modeling. The final recommended optimal dosage is always close to
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the true optimal dosage, but the variation from PK/PD modeling is greater than that from

PD modeling. In addition, PD modeling leads to more patients experiencing Rt, the desir-

able outcome, and fewer patients experiencing rt and RT, the undertreated or overtreated

outcomes. This suggests that PD modeling is helpful in protecting patients compared to

PK/PD modeling when genotype or other patient characteristics is unknown before patient

enrollment. Under the cases of patient specific determinant having effects on PK/PD pro-

cess known before implementation of trials, PK/PD modeling with the incorporation of

information has the potential to improve phase I trials compared to PK/PD modeling and

PD modeling ignoring this known information, with more patients experiencing desirable

outcomes and smaller variations of recommended dose. In addition, posterior belief about

patient specific covariate is also provided, serving to subset identification for future phase II

trials. For PK/PD modeling, pre-specified utility function plays an important role in the fi-

nal dose recommendations. For example, aggressive utility function could lead to wrong dose

recommendation, an extremely high dose recommendation, therefore creating more patients

experiencing response and toxicity.

Although the proposed dose-finding algorithm involves more complicated modeling and

computation than regular dose-finding algorithms, it still has two advantages. First, the

incorporation of pharmacogenetic information or other known patient characteristics which

may have influence on drug metabolism into phase I dose-finding trials has the potential to

improve phase I trials and provide further confirmation about the belief of known informa-

tion, useful for the subset identification. In addition, using a full Bayesian decision-analytic

approach takes into account both scientific and ethical concerns with the goals to identify

the right dose as effectively as possible and to treat more patients as ethically as possible.
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6.0 CONCLUSION

According to the ethical principles governing clinical research, in phase I clinical trials deci-

sions about dose assignment should be based on patients’ values, preferences, and first and

foremost the principle of doing what is best for patients.

We develop a ”dose-choice control panel” (DCCP) computer program to explore how the

population parameters and utilities affect the dose recommendation. The models and utilities

were critiqued, resulting in a richer, more realistic framework. The resulting enhancements

include new parameters added to address bimodality, treatment refractoriness, and response-

limiting event, as well as broader utility functions.

We present a new adaptive Bayesian method for dose-finding in phase I clinical trials

based on both response and toxicity under the assumption that the thresholds of response

and toxicity jointly follow a bivariate log-normal distribution. The model assumes that

response and toxicity events happen depending on the respective dose thresholds for the

individual, and provides a framework for incorporating prior information about the popu-

lation threshold distribution, as well as accumulated data. The next dose can be assigned

to maximize expected utility. We conducted extensive simulations to assess the design per-

formance with regard to the accuracy of estimate and patient protection under different

scenarios, priors, and utility functions. The adaptive Bayesian design incorporating both

response and toxicity and using continuous adaptive doses based on the maximization of

Bayesian expected utility is more effective in identifying the right dose in comparison with

alternative designs that consider only toxicity and use pre-specified fixed doses. Moreover,

the adaptive Bayesian design combining ethical considerations through the introduction of

ethical utility function could lead to more patients experiencing desirable outcomes corre-

sponding to the specified utilities, therefore protecting patients. We could conclude that
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incorporating response has the potential to improve phase I trials, especially under the high

response cases. Moreover, the introduction of utility function and prior information provide

an opportunity to run more sensible and ethical trials. Simple utility function just putting

positive utility on co-occurrence of response and non-toxicity, is dangerous especially under

the cases where responses are rare. The application of Gleevec data to the proposed design is

very encouraging. These provide evidence for the feasibility of the application of new designs

to the future real trials.

Those affecting drug metabolism are expected to affect all PD processes downstream,

including both efficacy and toxicity, while other genetic variations or drug-coadministration

may affect only one PD process. We propose an adaptive Bayesian design based on a

hierarchical PK/PD model, incorporating patient response, toxicity, genotype or drug co-

administration information, and prior belief. The proposed design provides opportunity to

improve phase I clinical trials by incorporating known information which may have influence

on drug exposure. We conducted extensive simulations based on Gleevec and Irinotecan

data to assess the design performance with regard to the accuracy of estimate and patient

protection. Simulation results show that PK/PD modeling with incorporation of known

information has the potential to improve phase I trials compared to PK/PD modeling and

simple PD modeling without incorporating it, with more patients experiencing desirable

outcomes, smaller variations of recommended dose. In addition, posterior belief about patient

specific covariate is also provided, helpful to subset identification for future phase II trials.

For PK/PD modeling pre-specified utility function plays an important role in the final dose

recommendations.

This work attempts to improve beneficence in early stage clinical trials and could im-

prove public health by providing more accurate answers quickly, and by encouraging accrual

through explicit consideration of what is best for each individual patient.
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7.0 APPENDIX A: THE UNIMODAL AND BIMODAL DISTRIBUTION

A): The distribution of thresholds (θR, θT ) based on the unimodal Gaussian assumption is:

(logθR, logθT ) ∼ N

[⎛
⎝μR
μT

⎞
⎠ ,

⎛
⎝ σ2

R σRσTρ

σRσTρ σ2
T

⎞
⎠]

Letting θJ represent either θR or θT for event J ∈ (R, T ),

log θJ = μJ + δJ

δJ ∼ N(0, σ2
J )

f(log θJ) = fN (log θJ − μJ , 0, σ
2
J)

E(log θJ) = μJ

var(log θJ) = σ2
J

cov(log θR, log θT ) = σRσTρ

Pr[eventJ ] = Pr[θJ ≤ dose] = Φ((log(dose) − μJ)/σJ )

B): The distribution of thresholds (θR, θT ) based on the mixture assumption is:

(logθR, logθT ) ∼ pN1

[⎛
⎝μR1

μT 1

⎞
⎠ ,

⎛
⎝ σ2

R1 σR1σT 1ρ1

σR1σT 1ρ1 σ2
T 1

⎞
⎠]

+

(1 − p)N2

[⎛
⎝μR2

μT 2

⎞
⎠ ,

⎛
⎝ σ2

R2 σR2σT 2ρ2

σR2σT 2ρ2 σ2
T 2

⎞
⎠]

where p is the proportion of the first density function.
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Letting θJ represent either θR or θT as above,

f(log θJ) = pfN1(log θJ − μJ1, 0, σ
2
J1) + (1 − p)fN2(log θJ − μJ2, 0, σ

2
J2)

E(log θJ) = pμJ1 + (1 − p)μJ2

var(log θJ) = pσ2
J1 + (1 − p)σ2

J2 + p(1 − p)(μJ1 − μJ2)
2

cov(log θR, log θT ) = pσR1σT 1ρ1 + (1 − p)σR2σT 2ρ2 + p(1 − p)(μR1 − μR2)(μT 1 − μT 2)

Pr[eventJ ] = Pr[θJ ≤ dose]

= pΦ((log(dose) − μJ1)/σJ1) + (1 − p)Φ((log(dose) − μJ2)/σJ2)
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8.0 APPENDIX B : PK/PD MODELING

A): The model which incorporates PD directly is:

(logθdR, logθ
d
T ) ∼ N

[⎛
⎝μdR
μdT

⎞
⎠ ,

⎛
⎝ σd

2

R σdRσ
d
Tρ

d

σdRσ
d
Tρ

d σd
2

T

⎞
⎠]

where (θdR, θ
d
T ) denote the thresholds in terms of dose.

Letting θdJ represent either θdR or θdT for event J ∈ (R, T ),

log θdJ = μdJ + δdJ

δdJ ∼ N(0, σd
2

J )

Pr[eventJ ] = Pr[θdJ ≤ dose] = Φ(log(dose) − μdJ )/σ
d
J)

f(log θdJ ) = fN (log θdJ − μdJ , 0, σ
d2

J )

E(log θdJ ) = μdJ

var(log θdJ ) = σd
2

J

cov(log θdR, log θ
d
T ) = σdRσ

d
Tρ

d

B): The model which incorporates both PD and PK hierarchically is:

PD (logθcR, logθ
c
T )|γ ∼ N

[⎛
⎝μcR + βcRγ

μcT + βcTγ

⎞
⎠ ,

⎛
⎝ σc

2

R σcRσ
c
Tρ

c

σcRσ
c
Tρ

c σc
2

T

⎞
⎠]

PK log(C)|γ ∼ N [α+ βγ + log(dose), σ2]

γ ∼ Bernoulli(Pγ)

where (θcR, θ
c
T ) denote the thresholds in terms of a summary of drug concentration C , such

as AUC, and γ is a binary indicator for a genetic variant.

104



Letting θcJ represent either θcR or θcT as above,

log θcJ = μcJ + βcJγ + δcJ

δcJ ∼ N(0, σc
2

J )

logC = α+ βγ + log(dose) + ε

ε ∼ N(0, σ2)

Assume C⊥θcJ,

Pr[eventJ ]

= Pr[log θcJ ≤ logC ]

= Pr[((log θcJ − μcJ − βcJγ)/σ
c
J)σ

c
J − ((logC − α − βγ − log(dose))/σ)σ

≤ log(dose) − μcJ − βcJγ + α + βγ]

= Φ(
log(dose) − μcJ − βcJγ + α+ βγ√

σc
2

J + σ2

)

The probability of event could be expressed in another way,

Pr[eventJ ]

= Pr[θcJ ≤ C ]

= Pr[exp(μcJ + βcJγ + δcJ) ≤ dose exp(α+ βγ + ε)]

= Pr[exp(μcJ + βcJγ + δcJ − α− βγ − ε) ≤ dose]

Let probability of event using both models be equal, the following equation exists:

θdJ = exp(μcJ + βcJγ + δcJ − α− βγ − ε)

In other mathematical notation,

log θdJ = μcJ + βcJγ + δcJ − α− βγ − ε

As a result, the marginal distribution of log θdJ is:
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f(log θdJ) = PγfN(log θdJ − μcJ − βcJ + α + β, 0, (σ2 + σc
2

J ))

+(1 − Pγ)fN(log θdJ − μcJ + α, 0, (σ2 + σc
2

J ))

with the mean, variance, and covariance of the θd as following:

E(log θdJ ) = μcJ − α + Pγ(β
c
J − β)

var(log θdJ ) = σc
2

J + σ2 + Pγ(1 − Pγ)(β
c
J − β)2

cov(log θdR, log θ
d
T ) = σcRσ

c
Tρ

c + σ2 + Pγ(1 − Pγ)(β
c
R − β)(βcT − β)

For the PK/PD modeling without incorporating γ, θd would be reduced to

log θdJ = μcJ + δcJ − α− ε

with the following marginal distribution, mean, variance, and covariance:

f(log θdJ) = fN(log θdJ − μcJ + α, 0, (σ2 + σc
2

J ))

E(log θdJ) = μcJ − α

var(log θdJ) = σc
2

J + σ2

cov(log θdR, log θ
d
T ) = σcRσ

c
Tρ

c + σ2

From the above three marginal distributions of θd, we can conclude the following: 1) θd

follows a mixture distribution based on PK/PD modeling with the incorporation of patient

covariate γ; 2) θd follows a log-normal distribution based on PK/PD modeling without incor-

porating patient covariate γ; 3) θd follows a log-normal distribution based on PD modeling;

and 4) When γ is unknown and unmeasured, the PK/PD modeling and simple PD modeling

are same under certain transformation.
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