
 

 

SURROGATE SEARCH: A SIMULATION OPTIMIZATION METHODOLOGY FOR 

LARGE-SCALE SYSTEMS  

by 

Jyh-Pang Lai 

BS in Industrial Engineering, Tunghai University, 2000 

MS in Industrial Engineering, University of Pittsburgh, 2003 

 

Submitted to the Graduate Faculty of 

the School of Engineering in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

University of Pittsburgh 

 

2006 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12207895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH 

SCHOOL OF ENGINEERING 

This dissertation was presented 

 

by 

 

Jyh-Pang Lai 

It was defended on 

May 1, 2006 

and approved by 

Dissertation Director: Larry J. Shuman, Professor, Industrial Engineering Department 

Dissertation Co-Director: Bopaya Bidanda, Professor, Industrial Engineering Department 

Matthew D. Bailey, Assistant Professor, Industrial Engineering Department 

Calvin C. Lai, PhD, FedEx Ground 

Bryan Norman, Associate Professor, Industrial Engineering Department 

Randall P. Sadowski, PhD, Rockwell Software 

 

 ii 



Copyright © by Jyh-Pang Lai 

2006 

 iii 



 

SURROGATE SEARCH: A SIMULATION OPTIMIZATION METHODOLOGY FOR 

LARGE-SCALE SYSTEMS  

Jyh-Pang Lai, PhD 

University of Pittsburgh, 2006

For certain settings in which system performance cannot be evaluated by analytical methods, 

simulation models are widely utilized.  This is especially for complex systems.  To try to 

optimize these models, simulation optimization techniques have been developed.  These attempt 

to identify the system designs and parameters that result in (near) optimal system performance.  

Although more realistic results can be provided by simulation, the computational time for 

simulator execution, and consequently, simulation optimization may be very long.  Hence, the 

major challenge in determining improved system designs by incorporating simulation and search 

methodologies is to develop more efficient simulation optimization heuristics or algorithms.   

This dissertation develops a new approach, Surrogate Search, to determine near optimal 

system designs for large-scale simulation problems that contain combinatorial decision variables.  

First, surrogate objective functions are identified by analyzing simulation results to observe 

system behavior.  Multiple linear regression is utilized to examine simulation results and 

construct surrogate objective functions.  The identified surrogate objective functions, which can 

be quickly executed, are then utilized as simulator replacements in the search methodologies.  

For multiple problems containing different settings of the same simulation model, only one 

surrogate objective function needs to be identified.  The development of surrogate objective 

functions benefits the optimization process by reducing the number of simulation iterations.   

Surrogate Search approaches are developed for two combinatorial problems, operator 

assignment and task sequencing, using a large-scale sortation system simulation model.  The 
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experimental results demonstrate that Surrogate Search can be applied to such large-scale 

simulation problems and outperform recognized simulation optimization methodology, Scatter 

Search (SS).  This dissertation provides a systematic methodology to perform simulation 

optimization for complex operations research problems and contributes to the simulation 

optimization field.   

Keywords: Automatic material handling system, heuristics, simulation optimization, Surrogate 

Search. 
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1.0  INTRODUCTION 

1.1 PROBLEM STATEMENT 

The difficulties of determining near optimal system designs using simulation approaches include 

long computational times and lack of effective methods to search the solution space.  Because 

simulation captures the stochastic nature of the system, the performance of one scenario is 

typically unknown until it is simulated; further, multiple simulation replications are required for 

each simulated scenario.  Although the goal of optimizing simulation results is to identify the 

optimal system design of the simulation model, obtaining the optimal design may require 

evaluating a large number or all system designs through simulation.  In practice, the optimal 

system designs cannot be obtained for a large portion of simulation problems due to the long 

CPU time required to evaluate alternative system designs.  In this dissertation, simulation 

optimization is defined as those methodologies that determine near optimal solutions of 

simulation models by evaluating a small number of solutions obtained through simulation.   

Meta modeling is one simulation optimization method that utilizes mathematical 

functions to represent the relationship between independent and dependent variables of a 

simulation.  By optimizing the simulation meta model, near optimal solutions can be identified in 

a relatively short amount of time without being restricted by unrealistic assumptions.  For 

problems in which the relationship between independent and dependent variables cannot be 

determined, methodologies to identify near optimal solutions include mathematical programming 

 1 



or meta heuristics that utilize simulation models as objective functions.  In general, these 

methodologies require more simulation runs than simulation meta modeling to determine near 

optimal solutions.  Hence, the major issue for simulation optimization using mathematical 

programming or meta heuristics is that a large number of simulation runs is required, which may 

result in long computation times.   

For complex optimization problems in which objective functions cannot be identified, it 

is necessary to utilize a simulation model as the objective function.  However, the number of 

solutions that can be examined by simulation models may be relatively small due to the long 

CPU time required for the simulation runs.  This dissertation develops a new methodology, 

Surrogate Search, for simulation optimization.  Surrogate Search utilizes an objective function 

identified by analyzing simulation results.  Prior to simulation execution, a large number of 

system designs are evaluated by the surrogate objective function.  By utilizing the surrogate 

objective function approach, solutions leading to statistically significant improvements can be 

determined in a relatively small number of iterations when compared to other simulation 

optimization techniques.   

In this study, we investigate the methodology of utilizing simulation results to improve 

system settings.  For the case study, a detailed simulation model for a complex Automatic 

Material Handling System (AMHS) based sortation system is built, a method for optimization is 

proposed that uses a surrogate objective function approach, and several problems are solved.  

The sortation system is one of the largest such systems in the U.S. and is owned by one of the 

major companies in the distribution industry.  This system involves both continuous and 

combinatorial optimization problems; the continuous problems include system parameter settings 

and operating policies; the combinatorial problems include assignment and scheduling problems. 
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In summary, this dissertation research addresses the problem of utilizing heuristics to 

identify near optimal simulation results. The identified surrogate objective functions can 

effectively direct search procedures to identify improved solutions.  

1.2 CHALLENGES OF SIMULATION OPTIMIZATION 

For large-scale systems, it is difficult to evaluate performance by deterministic approaches, 

which do not have the ability to capture stochastic factors and the interactions among factors.  As 

a result, modelers have turned to simulation.  However, to accurately simulate complex systems, 

detailed operations must be programmed into the models.  Simulation is widely used to analyze 

complex systems, since it’s one of the methods that generate the most realistic results.  Although 

more realistic results can be generated by complex simulation models, the CPU time needed to 

execute a large simulation is typically quite long.  In contrast, Linear Programming (LP) and 

Mixed Integer Programming (MIP) can evaluate a large number of solutions within a short 

amount of time.  For problems that contain a relatively small number of variables, LP and MIP 

can identify the optimal solutions relatively fast.  The weakness of LP and MIP is that their 

formulations cannot represent the interactions among factors due to the resultant assumptions, 

which could lead to infeasible solutions for implementation.  In addition, MIP may require 

substantially long CPU time to solve certain large-scale problems. 

To capture the stochastic nature of systems, Stochastic Programming (SP) is designed to 

incorporate uncertainties in the problem formulation.  Although SP presents probabilities of 

events using constraints and optimizes the expected objective values, the objective functions and 

relationships among variables still need to be determined.  For large-scale systems, the objective 
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functions and relationships among variables often cannot be observed from the real system and 

may require utilizing simulation models to predict interactions.  

Simulation models provide the functionality to replicate the real system and generate 

more information than simply a measure of the objective value.  The information includes 

resource utilization, system breakdowns, process time, waiting time, and queue length.  

Additional information can be gathered by simulating different values for independent variables 

(e.g., system parameters and designs).  An advantage of utilizing simulation models is the 

relatively low cost to change system designs.  Adjusting system parameters and designs for a 

validated simulation model can be completed in a short amount of time without the cost of 

changing the real system and the risk of system failure.  In addition, the required computational 

time is typically much shorter than the operating time for the real system.  Hence, it requires less 

time and lower cost to observe system behavior utilizing simulation compared to changing the 

real system.   

A major issue with utilizing simulation models to evaluate system performance is that 

they do not have the ability to improve system designs; rather they simply evaluate a given 

scenario.  Consequently, developing a methodology to determine improved system designs using 

simulation is one of the most popular topics among simulation researchers, and a number of 

methodologies have been proposed.   

The major challenge in determining improved system designs through simulation is the 

large number of iterations required for the optimization process.  As noted, for complex 

simulation models, the computational time for execution may be very long.  Consider a 

simulation model that requires one hour of CPU time for each execution.  If there are three 

factors that each have ten possible values, the total number of possible settings would require 
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1,000 hours to determine the optimal system setting (10 × 10 × 10 × 1 hour = 1000) if all 

possibilities are evaluated.  This doesn’t consider the necessary replications which could add 

another order of magnitude to the CPU time.  In addition, the simulation results are only 

validated to specified simulation model inputs, which may be changed regularly.  By the time 

that large-scale simulation models are optimized, the associated system inputs may no longer 

exist and the optimal system settings may be impractical.  Consequently, large-scale simulation 

models that require long CPU times frequently cannot be optimized unless there are methods that 

can identify improved solutions relatively quickly.   

Although simulation models generate a large amount of data, typical simulation 

optimization techniques only record and utilize the predefined result as objective values.  For 

large-scale simulation models, detailed operations are programmed into the models in order to 

generate realistic results.  When executing the simulation model, measures for all these 

operations can be obtained.  However, the existing techniques do not fully utilize these 

simulation results.  In contrast, these simulation results can be utilized by Surrogate Search to 

determine surrogate objective functions.  Although approaches that utilize alternative formulas 

(e.g., linear relaxation for Integer Programming [1] and surrogate state for Stochastic Integer 

Programming [2]) have been developed by simplifying the problem structure, this dissertation 

focuses on observing system behavior and does not consider those approaches. The process of 

identifying surrogate objective functions may require a long time.  If simulation models can be 

executed relatively fast, near optimal system designs can be identified by other existing 

methodologies without investing the large amount of time needed up front for surrogate search.  

Consequently, there is no need to analyze simulation results for these simulation problems since 
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the time to identify surrogate objective functions can be longer than solving these problems by 

other existing methodologies.   

1.3 OVERVIEW OF THE DISSERTATION 

Chapter 2 presents a literature review that includes the discussion of deterministic approaches, 

simulation modeling techniques, and simulation optimization methodologies.  The advantages 

and disadvantages of deterministic and simulation optimization methodologies are presented. 

In Chapter 3, the sortation system for the case study is introduced and the modeling 

approaches are presented.  In Chapter 4, regression meta modeling is applied to two problems.  A 

major cause of regression meta modeling failures is presented.  These regression meta modeling 

failures provided the motivation to develop search methodologies to effectively identify 

improved system designs using simulation models.   

In Chapter 5, Surrogate Search, a systematic approach that utilizes simulation results and 

then incorporates those results into current search methodologies is presented.  Two types of 

problems that contain combinatorial decision variables in the sortation system simulation model 

are utilized as test problems.  In Chapter 6, Surrogate Search is applied to solve assignment 

problems.  In Chapter 7, Surrogate Search is applied to solve a task sequencing problem.  These 

two chapters address the benefits of utilizing a Surrogate Search approach.  Chapter 8 contains 

the summary and conclusion of this dissertation.  Contributions and future research directions are 

also discussed.   
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2.0  LITERATURE REVIEW  

In this chapter, literature related to simulation optimization and Automatic Material Handling 

System (AMHS) are discussed.  Section 2.1 describes deterministic optimization methodologies, 

which includes mathematical programming and heuristics.  In section 2.2, simulation modeling 

approaches for large-scale manufacturing and distribution systems are presented. These include 

the subsystem modeling and the flexibility to modify operating policies.  In section 2.3, 

simulation optimization methodologies that utilize multiple linear regression, Artificial Neural 

Networks (ANN), and heuristics are discussed.  Section 2.4 summarizes common meta heuristics 

that are applied to solve simulation problems. 

2.1 DETERMINISTIC OPTIMIZATION METHODOLOGIES 

Deterministic optimization methodologies, including optimization and heuristics, can be used to 

solve a variety of problems that contain only deterministic parameters.  Linear Programming 

(LP) is typically utilized to determine optimal solutions of problems that are formulated using 

continuous variables and linear functions.  Mixed Integer Programming (MIP) is a methodology 

developed to solve problems that contain both discrete variables and linear functions.  For 

problems that contain nonlinear formulations or cannot be effectively solved by MIP due to their 

size, heuristics are commonly utilized to identify near optimal solutions.    
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For deterministic problems, a large number of solutions can be evaluated rapidly based 

on several assumptions.  These assumptions are the additivity assumption, divisibility 

assumption, and certainty assumption [3].  The additivity assumption requires the objective 

function to be a linear function.  The divisibility assumption allows fractional values for decision 

variables.  The certainty assumption uses exact coefficients and parameters in the constraints and 

objective function.  LP is based on these three assumptions.  MIP is based on the additivity and 

certainty assumptions.  For heuristics that are designed to solve deterministic problems, only the 

certainty assumption needs to be applied.  This section describes deterministic optimization 

applications; more details and the theories underlying these methodologies can be found in [4] 

and [1]. 

The strength of LP and MIP is that they guarantee to find an optimal solution for the 

problem of interest.  Although the certainty assumption enables deterministic optimization 

methodologies to solve problems quickly, large-scale combinatorial problems still pose a major 

challenge for optimization techniques, because a large number of feasible solutions need to be 

evaluated in order to find the optimal solution.  

The major advantage of applying heuristics to nonlinear and combinatorial problems is 

that relative good solutions can be found when only a fractional portion of all of the solutions are 

evaluated.  Consequently, the required CPU time to execute heuristics is relatively short in 

comparison to executing optimization techniques on the same problems. Although there are 

proofs that certain heuristics can identify global optimum by evaluating a finite number of 

solutions, the required long computational time is the major constraint to identify the global 

optimum in practice.  In this dissertation, heuristics refer to search methodologies that can 

identify near optimal solutions by evaluating a small portion of solutions. 
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Holmberg and Hellstrand [ 5 ] developed a heuristic method based on Lagrangean 

relaxation to find the exact solutions for network problems without capacity constraints.  

However, their one origin and destination assumption limits the types of problems that can be 

solved by this method.  Beschorner and Gluer [6] modeled an AMHS as a maximum flow 

problem.  The upper and lower limits of the network problem are given by the AMHS’s capacity.  

This technique provides a quick method to examine the AMHS’s design and to initialize the 

AMHS’s input parameters.  The maximum flow model can react to the AMHS’s failures and 

generate new optimal designs.  Luna and Mahey [ 7 ] presented an approach for 

telecommunications and computer network expansion problems.  The non-linear cost function in 

their model provides a better cost estimation than linear cost functions. 

As noted, deterministic optimization methodologies are capable of evaluating and 

identifying improved solutions quickly.  However, parameters (coefficients) for the models 

sometimes cannot be easily estimated.  Simulation is one of the techniques to generate more 

realistic parameters for deterministic models.  For example, Watson and Ter-gazarian [ 8 ] 

optimized a renewable electrical power system by combining simulation and deterministic 

planning models.  The power plant operations and population’s demand for electrical power were 

simulated on an hour-by-hour basis.  The model was validated by comparing results to observed 

data.  The deterministic model divides the power supply system into a network with demand and 

capacity constraints based on the simulation results.  The optimal fuel cost is generated by 

solving the deterministic model.   Bai, Bobba, and Hajj [9] optimized a power distribution circuit 

by determining the optimal locations for decoupling capacitances.  The maximum voltage drop 

(input parameter) in the complex power distribution network was estimated using steady-state 

simulation.  Accurate estimates of parameters for the deterministic model could be predicted by 
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simulating the power distribution circuit.  In a similar manner, the failure rate function for an 

AMHS can be estimated by simulating the number of packages in each location and then fitting 

the results to a formula using multiple linear regression.  This will be done in the sortation 

system simulation model described in Chapter 3. 

Heuristics are designed to solve problems that cannot be easily solved by traditional 

optimization techniques.  Most heuristics utilize certain properties of the problem structure in 

order to identify solutions, but their performance is limited to specified problem types.   

Heuristics that are designed to address a wide range of problem types are called meta heuristics.  

Meta heuristics are generally utilized to determine approximate solutions to complex problems 

since they are not limited by problem structure.  Common meta heuristics include Simulated 

Annealing (SA), Genetic Algorithm (GA), Evolutionary Strategies (ES), Tabu Search (TS), and 

Scatter Search (SS).  

For a variety of problem types, meta heuristics can identify improved solutions in a short 

amount of time.  However, when only a fractional portion of the solutions are evaluated, there is 

no guarantee of solution quality.  Further, performance varies among different meta heuristics.  

Lee compared the performance of GA, SA, and TS on multi-machine two-stage scheduling 

problems [ 10 ].  His results found that the TS could determine better solutions with less 

computational time then GA and SA. 

Teghem, Tuyttens, and Ulungu [ 11 ] developed a SA based method to solve multi-

objective combinatorial problems by assigning different weights to each objective function.  Yip 

and Pao developed guided evolutionary SA that solves combinatorial problems [12].  Their 

algorithm utilizes the temperature mechanism to control SA population selection in an 
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Evolutionary Algorithm by the improvement of solution values.  Their approach had better 

performance than SA for solving traveling salesman problems.   

Chakraborty and Chakraborty solved network problems with budget constraints by GA 

and SA [13].  Their empirical results show that SA outperformed GA. Ohkura et al.  developed a 

GA approach to solve newspaper advertising problems [14].  A concern with their study is the 

assumption that the proportion of people who notice the advertisement can be accurately 

formulated.  Chen developed a SA approach to model turning operations and determine the 

optimal parameter setting [ 15 ].  Although the deterministic assumption for deterministic 

optimization methodologies may be unrealistic in many cases, Computer Numerical Control 

(CNC) machines can provide deterministic processing times.  With the non-linear objective 

function and combinatorial constraints, Scatter Search (SS) was utilized to solve this type of 

problem.   

2.2 SIMULATION MODELING 

Simulation models are built to generate realistic results relative to actual systems.  System 

failures, detailed operations, and uncertainties can be built into simulation models without 

resorting to unrealistic assumptions.  In general, the more detailed models require relatively 

longer CPU time, but provide more realistic results.  Consequently, the number of solutions that 

can be evaluated by simulation is reduced, and the time to determine an improved solution can 

be extremely long.  The disadvantages of developing detailed simulation models are that modeler 

effort will be more time-intensive and the long computational time will reduce the number of 

solutions that can be examined by simulation models.  In this section, techniques to develop 
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large-scale simulation models and their applications are discussed.  A more comprehensive 

description of the theories and techniques related to simulation are presented in [16] and [17].  

Simulation models are utilized because the complexity of systems cannot be described by 

formulas.  For large-scale systems, techniques to develop flexible simulation modules are 

critical.  By developing system components as modules, the simulation models of similar 

systems can be developed using the same modules with simple modifications.  Hofmann 

summarized the major benefits of component-based simulation models [18]: 

• An increase in the range of manageable complexity in system design and analysis. 

• An increase in the model reliability by using validated simulation components. 

• An accelerated model development process. 

• Improved model maintainability. 

Koopman discussed and categorized modeling decomposition approaches into strategies 

of structure, behavior, and goals [19].  The decomposition rules will help for model debugging 

and modification in large-scale system modeling. 

Applications of utilizing flexible simulation modules include manufacturing facilities, 

military operations, and electrical systems [ 20 ].  For example, LeBaron and Hendrickson 

evaluated different scheduling policies in wafer fabrication facilities by utilizing a simulation 

module called “cluster tool,” which simulates several machining processes and AMHS [21].   

Cardarelli and Pelagagge [ 22 ] determined the relationship between delay time and 

utilization of a material handling and storage system.  The system factors, and their interactions 

were analyzed by simulating the system.  However, Cardarelli and Pelagagge used average delay 

time and utilization for the measures in this study.  It would have been helpful if the variance 

were provided to show that the system had a stable process with small variance.  Weigl [23] 
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measured the utilization of individual elements of a large-scale brewery distribution system by 

simulation.  Here, the detailed simulation of the AMHS provides accurate results for alternative 

system designs.  However, the author claimed that the simulation results, compared to the real 

output, were “100 percent accurate” without providing the necessary statistical analyses to justify 

this.  Smith and Medeiros [24] simulated different control strategies for manufacturing systems.  

By separating the system into physical and control subsystems, the flexibility of the control 

strategies can be quickly and easily changed.  However, this paper does not provide an actual 

case study.  It would have been helpful if the authors had used their technique in modeling 

complex system. 

Nazzal and Bodner [25] presented a simulation-based framework for AMHS facility 

design.  In this paper, the AMHS modeling is completed by specifying the physical and logical 

AMHS subsystems.  The modeling technique gives the flexibility to build alternative AMHS 

models by modifying the logical subsystem.  The modeling technique to simulate the alternatives 

is fairly easy to implement.  However, this paper did not provide methods to optimize the 

AMHS.  Meinert, Taylor, and English [26] presented a modular simulation approach for the 

evaluation of an AMHS.  A high-level modular simulator of alternative AMHS designs was 

completed by identifying possible types of material handling hardware, buffering strategies, and 

demand profiles of the AMHS.   

Harit and Taylor [27] developed a simulation model of the controllers of large-scale 

material handling system.  To keep the systems point of view, modeling was completed without 

simplifying assumptions or decomposing into sub-problems.  Wang, Fuh, and Yee [ 28 ] 

presented an approach for AMHS based manufacturing system design.  Their approach 

incorporates simulation and queueing network models.  The major strength of their approach is 
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the queueing network model can eliminate potentially bad solutions from being evaluated by 

simulation.  Although the experimental results showed improved system designs can be 

identified by their approach, the paper did indicate that statistical analysis were performed to 

determine differences among alternative solutions.  Wu and Caves [29] simulated the rotation of 

aircraft in multiple airports.  The detailed aircraft ground operations are modeled using 

Markovian concepts.  In this paper, the simulated aircraft rotation problem is analogous to the 

AMHS simulation due to the network structure of both problems.   

To utilize simulation as real time decision tool, Yaun, Carothers, Adali, and Spooner [30] 

developed a controlling logic that ran a simulator in parallel with real system to dynamically 

change the cache size for users.  The simulator utilized the real-time data as the simulation input.  

The authors pointed out that it is critical to have fast simulation models when they are utilized as 

controlling logic in computer systems.  The simulation result shows that significant 

improvements could be obtained by running such a parallel simulation.  Shi, Watson, and Chen 

[31] developed a simulation model that captures the random cache memory demand of World 

Wide Web (WWW).  The main purpose of their study is to determine a cache removal policy and 

associated system parameters that result in fast response to users.   

Discrete event simulation is widely applied to supply chain design and evaluation.  Lee, 

Cho, and Kim developed a supply chain simulation framework for operation, tactical, and 

strategic levels [ 32 ].  By combining continuous equations in the simulation model, both 

continuous and discrete processes in the supply chain can be presented in the same simulation 

model.  Lendermann et al. developed the framework of supply chain simulation by simulating 

the operations in each facility and the transportation between facilities [33].  Each facility has 
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one simulation model and shares information using the Internet.  A case study of a 

semiconductor supply chain is provided in the paper.   

Simulation models can also be utilized as environment generators for training tools.  For 

complex systems that have high operating costs or hazardous environments, experienced 

operators are typically required to avoid operating errors and injuries.  To develop the training 

programs for inexperienced operators, simulation models are used to generate different events 

without affecting the real system or exposing operators in an unsafe environment [34,35].   

Shikalger, Fronckwiak, and MacNair developed a detailed simulation model for a 300 

millimeter wafer fabrication line [36].  Their simulation model includes several different types of 

tool processes linked by an AMHS.  In a following paper, model refinements included several 

cluster tools that determined different production batch sizes [ 37 ].  The objective of their 

research is to determine the operating policies that result in a relatively small average work in 

process (WIP).  However, the authors did not specify the system operating rules.  Their results 

would be easier to appreciate if operator assignments and operational rules had been described in 

their study.  In the paper, the authors mentioned that the average CPU time to complete one 

simulation run is 24 hours.  As noted, the long CPU time is the major difficulty of simulation 

approaches for large-scale systems. 

2.3 SIMULATION OPTIMIZATION 

Accurate simulation models can generate realistic results when correct inputs are provided [38].  

In contrast, simulation models are descriptive and cannot find optimal or improved solutions by 

themselves.  The simulation running time for one replication is much longer than calculating one 
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objective value (iteration) in mathematical programming.  In addition, to evaluate one alternative 

with a simulation model requires multiple replications.  To search for improved solutions, 

simulation optimization methodologies have been developed to determine the designs that will 

give the optimal (best) performance.  As noted, simulation optimization methodologies cannot 

guarantee to obtain optimal solutions for all problem types.  The goal of simulation optimization 

is to determine near optimal solutions by simulating a relatively small number of scenarios 

instead of simulating all or nearly all scenarios.  Even with these techniques, identifying 

improved optimal solutions for simulation models still requires a relatively large number of 

iterations.  In practice, a significant improvement in system performance may not be found 

before the decision needs to be made for the real system.  The development of optimization 

modules for simulation software has became one of the more popular and important topics in the 

discrete system simulation research area [39, 40].   

Sadoun identified optimal operating strategies for traffic intersections by simulating the 

traffic system [41].  For these strategies, the optimal timing for traffic lights was solved by an 

analytical model and evaluated by a simulation model.  In this paper, the author tested strategies 

that can stop vehicles from making left turns, but the simulation modeling approach to capture 

the interactions among vehicles moving in different directions was not specified.  In addition, the 

traffic light timing was solved by an analytical model without explaining why the timing is an 

optimal or near optimal solution for the simulation model. 

Lee and Chi applied the symbolic Discrete Event Specification (DEVS) simulation to the 

traffic light timing problem [42].  This DEVS simulation model was built by dividing the traffic 

system into two layers: vehicles on a road network and traffic light control devices.  A case study 
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with two traffic intersections was provided in the paper.  Similar to other traffic system 

simulation papers, the case study did not allow vehicles to make left turns in the traffic system. 

Generally, there are two directions for simulation optimization.  If the response of the 

simulation models can be estimated by a formula, the formula will be utilized for the simulation 

meta model.  If the response cannot be estimated, simulation models are utilized as the objective 

function for heuristics or optimization techniques.  Common simulation optimization 

methodologies include: i. Multiple linear regression, ii. Artificial Neural Networks (ANN), and 

iii. Heuristics. 

2.3.1 Multiple linear regression 

Multiple linear regression is a technique that analyzes the relationship between independent 

(decision) variables and dependent variables (objective values) [43].  The certainty assumption 

in mathematical programming assumes that objective functions are known and the parameters 

are deterministic.  With a deterministic objective function, the optimization problem can be 

solved by identifying the decision variable values that results in the optimal objective value.  Due 

to the stochastic nature of real world problems, the certainty assumption is not valid for the 

majority of complex problems.  Instead of having the exact objective function, multiple linear 

regression can be applied to estimate the surface of the objective function based on a number of 

observations from the simulated system.  If validated regression models are obtained, they can 

estimate the dependent (objective) variable’s value for specified independent variable values 

within a predefined range. 

For problems in which exact or approximate objective functions cannot be obtained, 

simulation models can be utilized as the objective function since they can capture the stochastic 
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behavior of the real system.  For certain of these problems, multiple linear regression can be 

applied to analyze the simulation results with different independent variable values.  If validated 

regression models are found, then the dependent variable values corresponding to input variables 

can be estimated.  The ultimate objective of utilizing multiple linear regression is to develop a 

function that can replace the simulation model.  The validated regression model based on the 

simulation results is an estimation model for the simulation model and called a simulation meta 

model [44]. 

Mackulak and Savory [45] applied simulation meta modeling and experimental design 

methods to optimize the performance of two AMHS systems in a semiconductor fabrication 

facility.  The result showed that significant improvements were obtained by optimizing a meta 

model which has five factors (area and equipment utilization, processing time for two stations, 

and vehicle speed in the facility) for each of the AMHS systems.  Durieus and Pierreval [46] 

developed a regression meta model for an AMHS in a manufacturing system.  The regression 

analyses detected the significant factors of the AMHS.  The optimal AMHS design is then 

determined by optimizing the regression model.  However, the generic manufacturing processes 

in this paper are over-simplified by assuming there are no failures and no lack of parts to be 

processed.  These assumptions may have a significant effect on the simulation results.   

Irizarry, Wilson, and Trevino [47 ] developed a generic simulator that is capable of 

modeling various types of machines in cells.  A general method to simulate cell manufacturing 

systems is developed in order to evaluate the manufacturing-cell design.  In this paper, a generic 

cell simulator contains a number of machines arranged in a U-shape.  The simulator allows 

personnel in the cell to operate multiple machines.  Complex operations can be processed in a 

cell.  In addition, response surface meta models based on the simulation results were applied to 
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optimize the manufacturing design [48 ].  Bose and Pekny [ 49 ] provided a framework for 

forecasting, optimization (Mixed Integer Programming), and simulation aspects of the supply 

chain.  The optimization module provides the schedule for the simulation modules’ input.  

However, the long computational time limits the number of tasks that can be scheduled by MIP.  

Dengiz and Akbay [ 50 ] compared the performance of push and pull systems for a PCB 

production line by simulation.  In the pull system, batch size is optimized by building a 

regression model using the simulation results. 

For certain simulation problems, system constraints can be related to dependent variables.  

Yang, Kuo, and Chou [51] developed a dual-response method to estimate multiple simulation 

dependent variables.  The method categorizes dependent variables into primary and secondary 

responses.  The primary response is the objective function, and the secondary response is the 

system constraints.  Since the dependent variables’ values cannot be obtained until a number of 

simulation runs are completed and the dependent variables are random variables, the primary and 

secondary responses are estimated based on simulation results for a number of simulation 

scenarios.  Good estimation of primary and secondary responses can predict near optimal 

solutions in the feasible region.  In the case study, the dual-response method found a near 

optimal solution based on a small number of samples compared to a commercial simulation 

optimization package called OptQuest®.   

Multiple linear regression meta modeling can determine improved or near optimal 

solutions for a simulation model using a relatively small number of scenarios, but the solution 

quality is not guaranteed.  A generation, evaluation, and selection of alternatives via simulation 

methodology that identifies near optimal solutions was developed by Otamendi [ 52 ].  By 

running a large number of scenarios and reducing the region of feasible solutions, the 
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methodology can identify optimal solutions by simulating less then 3.5 percent of the total 

feasible solutions.  Although the optimal solution for a case study was found by the method, the 

author specified that it cannot be applied to large-scale simulation models due to the extremely 

long CPU time.  In addition, complex simulation models with more constraints may require 

simulating a larger proportion of feasible solutions to determine the optimal solution.   

2.3.2 Artificial neural networks 

Like linear regression, Artificial Neural Networks (ANN) are widely applied in simulation 

optimization.  The ANN is a network constructed by multiple layers of nodes.  In ANN, there are 

input, hidden, and output layers connected with directed arcs.  A validated ANN is developed by 

using one data set to train the ANN and another data set to test it.  ANNs are suitable for 

problems with characteristics of noise, poorly defined characteristics, and changing 

environments [53].  Simulation models are utilized to generate data for training and testing 

ANN.  The simulation meta models formed by ANN have the potential to accurately predict the 

simulation results for new scenarios.  Kilmer developed a baseline ANN meta model approach 

that can predict mean values and variances for simulation scenarios in three phases [54].  These 

phases are: determining the simulation results for input information, backpropagation for ANN 

training, and evaluating the trained ANN.  Backpropagation is divided into two stages.  The first 

stage processes the training data in the ANN and results in target and error values.  The second 

stage adjusts parameters in ANN to reduce the total squared error of the network [55]. 

Barton discussed existing techniques for forming meta models [56].  ANN is one of the 

techniques that is utilized to compute model coefficients.  In this paper, all existing techniques 

were designed for problems with continuous variables.  Laguna and Martí [57] compared online 
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training procedures: backpropagation algorithm, Simulated Annealing, Genetic Algorithm, Tabu 

Search, and Scatter Search.  Of the six problems tested, five had only continuous values and one 

had absolute values.  The empirical results show that Scatter Search outperformed other methods 

by having accurate predictive ability and using shorter CPU time. 

Lee, Gupta, and Amar [58] developed a multi neural network approach to simultaneously 

solve lot sizing and sequencing problems for a job shop simulation.  The results show that a 

multi neural network can determine better solutions than a Random Search or a neural network 

that only solves sequencing problems.  In this paper, it is not clear how much data are required 

for the neural network training.  Further, the simulation model only uses uniform distributions.  It 

would have been more convincing if the authors had applied the technique to benchmark 

problems in order to compare it to other methodologies.   

An approach that utilizes GA and ANN for simulation optimization was investigated by 

Caskey [59].  ANN analyzes the population generated by GA to determine an improved solution.  

Although the result in the case study showed the approach can identify good solutions, there is 

no comparison to other simulation optimization techniques.  In addition, the paper did not 

specify the number of simulation runs for the test problems. 

2.3.3 Heuristics 

A heuristic is defined as a technique to search for near optimal solutions at a reasonable 

computational cost without being able to guarantee either feasibility or optimality [ 60 ].  

Heuristics are generally applied to real world problems where the computational time to solve 

them by optimization techniques are longer than the time needed for a decision. 
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The motivation for utilizing heuristics to identify near optimal solutions for simulation 

models is to reduce the number of simulation runs, resulting in shorter total CPU times.  

Azadivar and Lee developed a procedure that utilizes simplex and complex search techniques to 

explore feasible regions for simulation problems [61].  The procedure can be applied to problems 

with continuous and discrete decision variables, but combinatorial problems were not discussed 

in this paper.  Andradóttir modeled discrete event systems by a Markov chain and then utilized 

gradient estimation to optimize the performance of the Markov chain [62].  In the later paper, a 

local search methodology that provides an “almost surely” local optimum was developed by 

Andradóttir [63].  The approach estimates the improving direction for a solution in a predefined 

neighborhood.  The weakness of the approach is that formulas to model the system can be 

limited and the case study utilized formulas with random variables as the test problem instead of 

a simulation model.   

A two-phased strategy for simulation optimization was developed by Bowden and Hall 

[64].  Their strategy utilizes a search method that changes one variable at a time to identify 

possible improved solutions based on solutions found by an evolutionary strategy.  Although this 

approach determined good solutions for the case study, the size of the problem and required CPU 

time were not mentioned.   

Arsham [65] presented a method for the detailed design, analysis, and operation of 

incorporating algorithms with discrete event system simulation results.  Eight algorithms are 

discussed in this study that provides sensitivity information under the assumption that well built 

simulation models are available.  However, these approaches did not present a justification for 

the necessary simulation runs.  Hutchison and Hill [66] used gradient estimation and simulation 
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to minimize airline delays (20 percent of the delay time was reduced by introducing penalty 

functions into the model).   

There are also project management decision making tools that utilize simulation.  

Subramanian, Pekny, and Reklatits developed a framework for research and the development of 

pipeline management [ 67 ].  The computing architecture “Sim-Opt” repeats the process of 

utilizing MIP and heuristics to solve stochastic programming problems and then simulates the 

next stage.  In a following paper [68], heuristics designed for knapsack problems were utilized to 

resolve the capacity conflicts in the schedule.  Nandi and Rogers developed simulation models to 

train operating rules for acceptance/rejection decisions for manufacturers’ make orders [69].  

The simulation model uses the current manufacturer’s operations as the initial condition and then 

simulates the future operations for both acceptance and rejection decisions to determine if 

accepting the order can have positive contributions to the manufacturer.  Instead of using the 

revenue of the decisions (acceptance or rejection) as the selection rule, the authors defined the 

selection rule for the order to be accepted when the total revenue for accepting an order exceeds 

a specified proportion of total revenue for rejecting the order. 

For multi-criteria simulation optimization, there are three different structures based on the 

time to collect the required information.  These structures can operate prior to the optimization, 

during the optimization, and after the optimization [ 70 ].  Pukkala and Miina developed a 

simulation optimization approach on stand management (forest products industry) [71].  Their 

approach applies a nonlinear programming algorithm to multi-objective simulation problems.  

No detailed discussion about the algorithm or the simulation model data was presented in the 

paper.   
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Heuristics combined with simulation are also utilized to solve production scheduling 

problems.  Backward simulation approaches for component release [72] and order release were 

developed by Watson, Medeiros, and Sadowski [73].  By starting from the final state, the 

simulation model can identify the time to release components and orders.  Similar to the critical 

path method, backward simulation examines schedule feasibility by incorporating randomly 

distributed setup, processing, and move times.  A bi-directional simulation algorithm that 

combines forward and backward simulation was developed for order release planning [74].  In 

each iteration, the algorithm runs one forward and one backward simulation with a local search 

to improve the order release plans.  The forward and backward simulations provide the feedback 

of the current solution in order to determine the solution for the next iteration.  The case study in 

the paper shows that significant improvements can be obtained by the bi-directional simulation 

algorithm. 

Job shop schedules are commonly evaluated by simulation models.  A simulation 

optimization approach was developed to identify job shop schedules by testing scheduling rules 

based on due date, lead time, and machine utilization [75].  The approach can evaluate different 

scheduling rules based on an evaluation function that uses lead time and machine utilization as 

elements.  One issue with this approach is that certain potentially good solutions will not be 

considered due to scheduling rules blocking them. 

Turki, Andijani, and Shaikh developed scheduling rule for stochastic single-machine 

scheduling problem [76].  By estimating the time allowance for each job, the simulation results 

show that the both mean and variance of job completion time can be reduced.  However, the 

defined measurements in this paper are not clearly explained and the rule is only validated for 

single-machine scheduling.   
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2.4 SIMULATION OPTIMIZATION USING META HEURISTICS 

As noted, heuristics are search methodologies that find near optimal solutions.  Meta heuristics 

are designed to solve broad classes of problems that include simulation optimization problems.  

In simulation optimization, each objective value calculation requires multiple simulation runs.  

The required CPU time for obtaining objective values through simulation is much longer 

compared to using deterministic objective functions for deterministic optimization problems.  

For simulation optimization techniques, problems with continuous values can typically be 

simplified into meta models that can be used to predict simulation results.  For combinatorial 

problems, meta heuristics are widely used to identify good solutions.  Two meta heuristics, 

Random Search and SA, are frequently utilized to solve combinatorial simulation optimization 

problems [77].  Since the relationship between decision variables and the objective value is 

unknown, the heuristics select solutions with certain probabilities and record the best solution 

found during the search process. 

Applying meta heuristics to identify improved designs for simulation problems does not 

guarantee solution quality.  The advantages of utilizing meta heuristics are that they can be 

applied to various types of problems, and improvements are found by evaluating only a small 

portion of all solutions.  In contrast, methodologies that provide performance guarantees require 

large computational efforts that cannot be implemented for large-scale simulation models [78].  

Banks et al. pointed out that common techniques to optimize simulation results by choosing 

system parameters include Genetic Algorithm, Tabu Search, and Random Search Algorithms 

[ 79 ].  Simulated Annealing and Scatter Search are meta heuristics frequently utilized for 

optimizing simulation results as well.  The simulation model is utilized as the evaluation 

(objective) function in these heuristics.  The major strengths of meta heuristics in simulation 
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optimization are that they can be used on a large set of problems and they don’t require 

knowledge of anything in the simulation model [80].  The next sections describe certain of these 

meta heuristics. 

2.4.1 Simulated Annealing 

The concept of Simulated Annealing (SA) was first published in 1953 by Metropolis et al.  

Annealing is a material cooling process that first heats the material to melting point and then 

decreases the temperature.  Material can be formed into the preferable structure by controlling 

the temperature change during the cooling process.  SA is a variant of a local search that solves 

optimization problems using the same concept.  SA gives flexible search directions by first 

assigning higher temperature and then reduces the flexibility to identify preferable solutions by 

decreasing the temperature.  The SA algorithm for minimization problems is stated as follows 

[60]: 

 Select an initial solution s0; 

 Select an initial temperature t0 >0; 

 Select a temperature reduction function α; 

 Repeat 

  Repeat 

   Randomly select )( 0sNs∈ ; 

   δ = f (s)-f (s0); 

   If δ<0; 

   Then s0 = s 

   Else 
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   Generate a random number x uniformly in the range (0, 1); 

   If x < e (-δ/t), then s0 = s; 

  Until iteration number = nerp; 

  Set t = α (t); 

 Until stopping condition = true. 

  Output the best found solution s0. 

Empirical experiments show that near optimal results for both linear and non-linear 

problems can be found by SA; more detailed discussion of SA is given in [81] and [82].  A SA 

algorithm approach for simulation optimization was developed by Alrefaei and Andradóttir [83].  

The methodology approximates the objective function of a simulation model and solves the 

objective function by the SA algorithm.  In their papers, the underlining assumption is that the 

system can be modeled as a stochastic function or a Markov chain.  However, one of the major 

reasons that simulation models are developed is because the system cannot be simply modeled 

by other techniques. 

Handock and Mitenthal developed an SA approach for simulation optimization [84].  The 

paper demonstrated that SA can solve simulation problems with integer variables.  In the case 

study, a flexible manufacturing system design problem was solved.  However, the CPU time for 

large problems can be extremely long.  Alkhamis et al. developed a modified SA algorithm that 

can converge to the global optimum when applied to simulation optimization [85].  Their proof 

shows that the global optimum can be reached using their SA approach with a finite number of 

iterations.  However, the number of iterations to obtain the global optimum can be extremely 

large and cannot be achieved for many simulation problems. 
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Wieland and Holden developed a SA approach to solve aviation delay problems [86].  

Although the approach can determine improved solutions, the simulation models in the paper 

were simplistic Monte Carlo simulation models that were built using deterministic functions and 

random variables following a normal distribution.  In addition, the number of iterations required 

for this approach is large even though the simulation models were simple.  For more detailed 

simulation models, the required computational time to determine an improved solution will be a 

major problem. 

2.4.2 Genetic Algorithm 

Genetic Algorithm (GA) is a meta heuristic that solves problems based on recombining solutions 

and assigning mutations to new solutions.  It was developed by Holland and associated 

researchers in the 1960s and 1970s.  The concept of GA originally comes from biology where 

offspring of plants and animals have a greater chance of survival due to certain desirable genes 

from parents.  To present the structure of GA, a problem solution is encoded into components as 

genes of plants or animals.  GA combines components of existing solutions to create new 

solutions in searching for characteristics that result in good solution quality [60].  The framework 

of GA is stated as follows: 

Generate a population of solutions. 

Generate offspring by combining components of existing solutions. 

Perform mutation to offspring. 

Evaluate fitness (objective) values of offspring. 

If a better solution is found, record it. 

Add offspring to population and delete a portion of population with worse fitness values. 
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Repeat until terminating condition occurs 

GA starts by creating a group of solutions (population) that contain diversified decision 

variable values.  The offspring (new) solutions are then generated by randomly recombining and 

modifying solutions in the population.  At the end of a generation (iteration), the solutions that 

are associated with better objective values will remain in the population for next generation.  

After a number of generations, near optimal solutions will be identified.  GA typically requires a 

fast method to evaluate the solution since the objective values for the population in every 

generation need to be collected.  For a more detailed discussion of GA, one can refer to [87] and 

[88]. 

GA is one of the methodologies utilized in simulation optimization, where the evaluation 

function is replaced by the simulation model.  Yunker and Tew [89] demonstrated the use of GA 

as a simulation optimization technique.  A parameter setting problem of a university time-shared 

computer system is used as the case study.  The authors concluded that GA can perform better 

than a local search and multiple linear regression.  However, the size of the computational task 

for the case study was not mentioned, and the GA used approximately ten times the amount of 

CPU time as the other methods.  A GA based simulation optimization method was developed by 

Al-Aomar [90].  It is intended to solve parameter design problems for production lines and 

business systems.  The method combines the solution mean and variance as one of the measures.   

The advantage of using GA for simulation optimization is that it can solve combinatorial 

problems.  Azadivar and Tompkins developed a GA approach for production line design 

problems [91].  The results show that GA can perform better than a Random Search in terms of 

solution quality.  However, the GA was required to evaluate a relatively large number of 

solutions, and this would be the major difficulty for large-scale simulation models. 
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GA approaches have been developed for distribution and manufacturing problems.  For 

AMHS, developing effective operating rules is often a major challenge.  Feyzbakhsh et al. 

developed a parameter setting approach for AMHS based production systems that allow 

operators to wait for incoming items before the next process starts [92].  A GA was utilized as 

the benchmark method to solve the simulation problem.  However, only a single station 

simulation without breakdowns was considered.   

Kochel and Nielander developed an approach that utilizes GA to optimize simulation 

problems related to Kanban manufacturing systems [93].  One concern in this paper is that the 

measurement is obtained by using steady-state simulation.  For most manufacturing 

environments, it is hard to reach steady-state.   

Another example of a distribution center scheduling problem solved by a GA based 

simulation approach is given by McWilliams et al. [ 94 ].  The decision variables in the 

scheduling problem are the job input sequences.  Even with only 18 jobs in the problem, the 

number of possible solutions can be greater than 1010.  In the study, simulation results show that 

improved solutions can be determined by the GA approach.  The major issue with this approach 

is that population needs to be evaluated by simulation for every generation.  For large-scale 

simulation models, this requires an extremely long CPU time. 

Similar to GA, Evolutionary Algorithm (EA) uses concepts of recombining and changing 

solutions.  In general, EA emphasizes the process of randomly changing partial solutions 

(mutation) to determine improved solutions.  Pierreval and Tautou developed a simulation 

optimization method that utilizes an EA for the optimization process [ 95 ].  A production 

planning problem is provided for the case study.  The problem was sequentially solved by 

utilizing deterministic and stochastic simulation models.  The solutions for both the deterministic 
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and stochastic simulation models had no statistically significant differences.  Although the 

deterministic simulation models can reduce the number of replications to one, the deterministic 

simulation models cannot accurately represent random events such as system breakdowns or 

production failures.   

Most simulation optimization methods are focused on parameter tuning.  Pierreval and 

Paris determined the near optimal system configuration by an evolutionary simulation 

configuration method [96].  The method applies the EA to the simulation model.  In this paper, 

an example of cell manufacturing system design is presented.  The case study shows that the 

number of stations and the lot size for each station can be determined by the evolutionary 

simulation configuration method. 

2.4.3 Tabu Search 

Tabu Search developed by Glover is a variant of local search with the ability to solve nonlinear 

and combinatorial problems [97].  TS identifies solutions by evaluating a portion or all solutions 

in the neighborhood and tracking the solution’s moving history.  The general TS algorithm is 

given as follows [98]: 

Initialization: 

 Select a starting solution xnow∈X 

Define neighborhood N(H, xnow) for current solution xnow,  

Define subset of neighborhood,  candidate_N(xnow), that will be evaluated.  

Record the current best known solution by setting xbest = xnow  

Define best_cost = c(xbest). 

Choice and termination: 
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Determine candidate_N(xnow) as a subset of N(H, xnow).  Select xnext from 

Candidate_N(xnow) to minimize c(H, xnow) over this set.  (xnext is called a highest 

evaluation element of Candidate_N(xnow).) Terminate by a chosen iteration cut-

off rule. 

Update 

 Reset xnow = xnext

If c(xnow) < best_cost, xbest = xnow and best_cost = c(xbest). 

Update the history record H. 

Empirical experiments show that TS can perform well for both deterministic and 

stochastic problems with combinatorial decision variables.  Details of TS variants are described 

in [99] and [100].  Dengiz and Alabas applied TS to optimize buffer size in Kanban-controlled 

systems [101].  The case study showed that TS can determine better solutions compared to a 

Random Search algorithm.  In this paper, the authors found that the TS approach becomes very 

time consuming when problems contain too many decision variables.  Problems containing many 

decision variables will result in a large number of solutions in a predefined neighborhood that 

cannot be effectively evaluated by TS approach.   

Jacobson and Yuesan discussed issues of TS and SA for both deterministic optimization 

and simulation problems [ 102 ].  The authors proved that the methods for searching in a 

predefined solution neighborhood (neighborhood search) are NP-hard, which is the major reason 

why a large proportion of work on TS and SA performance evaluation are based on empirical 

tests.   

A simulation optimization method that combines partitioning, selection procedure, and 

local improvement techniques was developed by Pichitlamken and Nelson [103].  The method 
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includes provable convergences and quality empirical results.  However, this paper did not 

provide a comparison with other existing techniques, and the number of simulation replications 

appeared to be large.  The experimental results show that 10,000 replications were carried out for 

both test examples. 

2.4.4 Scatter Search 

Scatter Search (SS) has been developed by Glover, Laguna, and Marti, the outline of it is as 

follows [104]:  

1. Randomly generate a set of diversified trial solutions and select a subset as reference set. 

2. Divide solutions into subsets and apply heuristics to determine improved solutions for 

each subset. 

3. Collect best solutions in subsets as reference sets and generate new solutions by 

combining subsets in reference solutions.  The combinations are 

a. Create feasible and infeasible solutions. 

b. Repair functions 

4. Update the reference set by replacing old solutions in reference sets with best solutions 

found.  Repeat 3 and 4 until reference set is not improving.   

5. Restart from beginning until predefined iteration number is reached. 

Scatter Search utilizes heuristics to improve solutions quickly and avoid local optimum 

by using a group of solutions, restarting step 1, and using penalty functions for infeasible 

solutions.  Empirical tests show that Scatter Search can find improved solutions with a lower 

number of iterations compared to other existing meta heuristics.  The comprehensive description 

of SS can be found in [105].  
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Martí, Lourenço, and Laguna [106] utilized Scatter Search to solve assignment problems 

with the objective of balancing the workload and fitting available time periods for school 

teaching assistants.  However, the paper only compares SS with MIP optimization software, 

Cplex 6.5.  It would be easier to assess the SS performance if other meta heuristics had used to 

solve the same test problems.   

Even with the fewer number of required iterations in SS, the number of required 

simulation runs might still be large.  As with to other meta heuristics, SS needs a relatively fast 

evaluation function to calculate objective values.  For the simulation optimization that utilizes 

SS, simulation is still used as a “black box” that generates objective values [107].  As the size of 

the simulation increases, the run time will become a major constraint.   

SS requires a large number of evaluations for each step.  Campos, Glover, Laguna, and 

Martí used SS to solve linear ordering problems [ 108 ].  In this paper, there were ten 

diversification generators; a diversity measure is developed to evaluate the performance of these 

generators.  These generators combine multiple Random Search and local search strategies 

including Greedy Randomized Adaptive Search Procedures (GRASP), random generator, and 

Tabu Search. 

OptQuest®, a commercial optimization software package utilizes SS as its underlying 

algorithm.  OptQuest is developed to solve nonlinear and combinatorial problems and 

incorporated in the commercial simulation software Arena® to solve simulation problems.  

Several studies have utilized the OptQuest in Arena as the bench mark simulation optimization 

algorithm for comparison purposes [40, 51, 109].   

For simulation optimization, some meta heuristics use simulation meta models in the 

optimization process to eliminate solutions that meta model predicts to be bad [110].  The meta 
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heuristics are utilized to search for improved solutions and to maintain feasibility of the solution, 

while the simulation meta model is developed to identify bad solutions.  The number of 

simulation runs can be reduced by combining the simulation meta model and meta heuristics.  

However, a valid simulation meta model is required to determine the solution quality of the meta 

heuristics.  In general, meta heuristics are applied to simulation optimization because the 

problem structure is complex, and valid simulation meta models are hard to construct.  Applying 

meta models that do not yield accurate predictions will lead to the risk of eliminating “good” 

solutions.   

2.5 SUMMARY 

A review of the subjects associated with this research has been presented.  The topics discussed 

include simulation modeling, mathematical programming, and simulation optimization 

methodologies.  The major challenges and strengths of deterministic approaches based on 

mathematical programming were discussed.  Meta heuristics designed to solve combinatorial 

problems including Simulated Annealing, Genetic Algorithm, Tabu Search, and Scatter Search 

were introduced.  The techniques of large-scale simulation modeling and laws of system 

decomposition were shown to simulate complex systems without making unrealistic 

assumptions.  To obtain more realistic simulation results, more details must be incorporated into 

the simulation models.  In contrast, the CPU times to execute complex simulation models are 

relatively long.  This limits the number of system designs that can be evaluated by simulation 

models in a specified time period.  Methodologies for utilizing optimization techniques to solve 

simulation problems were introduced.  To solve simulation problems with continuous decision 
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variables, simulation meta modeling and ANN were presented.  The major challenges of 

simulation problems with combinatorial decision variables were introduced.  The advantages of 

dominant meta heuristics that incorporate simulation were discussed.  Finally, the limitations of 

utilizing heuristics on simulation optimization support the needs of developing improved 

methodology. 
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3.0  SORTATION SYSTEM 

In this dissertation, we research a sortation system in a distribution center that uses an Automatic 

Material Handling System (AMHS).  This system is one of the largest sortation systems in the 

U.S. owned by a major company in the distribution industry.  The system flow chart is shown in 

Figure 3-1.   

 

System Input 

Conveyors 

System Output 

Package Flow 
Controllers (PFCs) 

Task Input Sequence 

Ready for Shipment 

Barcode Rework 

Task Arrival 

 

Figure 3—1 AMHS flow chart 
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3.1 SORTATION OPERATIONS 

In the sortation system, tasks are defined as trailers loaded with packages.  In the system input, 

packages in trailers are unloaded manually and put onto conveyors then transferred to the system 

output.  In the system output, loaders load the sorted packages onto another group of trailers for 

different destinations.   

In a typical shift, 80 to 85 tasks arrive at the system for processing.  Each task contains 

between 750 and 900 packages that are assigned to 136 different destination load doors in the 

system output area.  The number of packages assigned to each load door is unique for each task.   

In the system input area, there are 20 to 23 unloaders working simultaneously to unload 

packages into the sortation system.  Each unloads an individual task and no more than 32 tasks 

can be processed at the same time.  Before tasks are processed, each of them is assigned a 

priority by facility management in order to determine the task input sequence for the unloading 

operation.   

The Package Flow Controller (PFC) provides the controlling logic in the system 

monitoring the number of packages in certain conveyor segments.  If there are too many 

packages in the system, the PFC will give feedback (warnings) to adjust the conveyors’ speeds.  

One warning, the Chute Full (CF) signal, is defined as a load door in the system output that is 

fully occupied by packages.  The duration of each warning condition is recorded as a measure of 

effectiveness.   

The packages unloaded in system input area are transferred to the system output area by 

conveyors and then manually processed by loaders. The system output area contains eight 

physical subareas each with 14 to 17 load doors.  The load doors in a subarea are divided into 
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two groups and each group is handled by a team of loaders.  In the sortation system, there are 16 

teams of loaders and the total number of loaders ranges from 65 to 75.   

The sortation system overall performance for a shift is measured by the makespan which 

is defined as the time between when the first package is unloaded and the last package is loaded.  

Because a major portion of the operational cost is labor, the common goal for sortation system 

operations is to process tasks within the shortest makespan time.   

3.2 SIMULATION MODELING 

To simulate the distribution center, the sortation system is first analyzed and decomposed into 

subsystems.  After the subsystem modules are developed, the full scale simulation model is 

constructed by combining the subsystem modules.  The structure of the general distribution 

system simulation models includes five types of modules: system input module, system output 

module, conveyor module, operator module, and system breakdown module. 

The system input and system output modules simulate the package unloading and loading 

processes.  In both the unloading and loading processes, the processing times change based on 

the number of packages in the tasks.  In order to accurately simulate distribution centers, system 

input and output modules must utilize actual operator assignments and operating policies which 

are modeled in the operator module.  The input and output simulation modules also provide the 

function of tracking the number of packages in each task; i.e., counters are utilized to track the 

number of packages in each task and thus reduce the number of entities that represent packages 

in the simulation model.  Consequently, the reduced number of entities in the simulation model 

will result in a shorter simulation run times. 
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The conveyor module transfers the packages from system input to system output at 

constant speeds (determined by the controllers).  The function of re-directing packages due to 

system breakdowns is built into the conveyor module.  The operator module controls the number 

of operators in the system input and output modules.  Although it is difficult to modify system 

designs (the facility layout), operating rules and number of operators are easily changed.  To 

provide the ability to efficiently modify operator assignments, the operator module is separated 

from the system input and output modules.  The input and output modules will reference the 

operator module while executing the simulation.  Most studies of large-scale facilities, both 

deterministic and simulation approaches, have not incorporated operator travel time into the 

model.  The operator module in this study introduces operator moving time (i.e., delays) with 

predefined travel time functions.   

In a distribution system, every subsystem has the potential of breaking down (jam).  While 

breakdowns cannot be predicted, the possibility of system breakdown is a function of the number 

of packages on the conveyors.  The system breakdown module simulates the PFC system 

warnings and breakdowns by monitoring every conveyor segment.  All simulation modules have 

to frequently check the breakdown module. If a breakdown occurs in a certain location, the 

corresponding input (output) module and operator module will stop the current operations until 

the breakdown is cleared.   

For the test problems in this study, the objective is to identify near optimal system designs 

for the AMHS sortation system through the simulation model.  Due to the complexity of the 

system, the full scale simulation model requires 30 minutes of CPU time (on a Pentium IV, 3.0 

GHz computer) to simulate one replication*.  In practice, the system inputs change periodically, 

                                                 
* Models used for later Chapters are modified to require only 20 minutes of CPU time. 
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and because of the relatively long simulation run time, it is prohibitive to simulate all possible 

scenarios.  Consequently, it is necessary to determine an improved design within a short amount 

of time.   

3.3 SUMMARY 

In this chapter, general sortation systems that utilize AMHS were introduced.  These sortation 

systems are designed for distribution industry usage.  The detailed operations in sortation 

systems including system input and output were discussed.  An overview of the simulation 

modeling approach is given.  The sortation system simulation model is based on subsystem 

modules.  These provide the flexibility for expanding simulation models and modifying 

operating policies.  The operator module in the simulation model provides the ability to simulate 

operators’ traveling time penalty which has not been found in previous research.  Finally, the 

overall performance measure of sortation systems is defined as the makespan, which will be used 

for test problems in this dissertation. 
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4.0  REGRESSION META MODELING 

As noted, multiple linear regression is one of the simulation meta modeling techniques that 

utilizes simulation results as samples [111].  Although simulation models have the ability to 

estimate the impact of changing system designs, the number of alternative system designs can be 

extremely large and therefore cannot be simulated within a reasonable time.  Multiple linear 

regression can be utilized to analyze the relationship among decision variables and objective 

values of simulation problems.   

Regression models that contain k independent variables have the follow format: 

∑
=

++=
k

i
ii xy

1
0 εββ       (4–1) 

Independent variables (predictor/regressor) are represented as xi and the dependent 

(response) variable is represented as y; ε  is the measurement error, representing the stochastic 

nature of the system that cannot be captured by the regression model, where the expected value 

of ε  is zero.  Hence, for the expected value of y,ε  will not be shown in the model.  Regression 

models can be fitted to analyze the relationship between xi and y.  Given a number of samples of 

independent variable settings xi and the response y in the system, a regression model can be 

formed to represent the system response by determining each independent variable’s contribution 

(β value) to the response.  The objective of regression is to predict the y values for the xi for 

which we do not have samples within a predefined range of xi.   
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Hence, a validated regression meta model can predict the simulator’s output.  The 

ultimate goal of utilizing multiple linear regression is to develop a function that can replace the 

simulation model.  The regression meta model can predict dependent variable values without 

executing the simulation.  The major strength of this technique is that a large portion of the 

computational tasks required for simulation can be reduced.  In terms of computational efforts, 

the CPU time to run a simulation model is much longer than solving a regression model, 

although the meta model still requires a number of simulation runs for fitting.   

Since the regression meta models are multiple linear regression models, the criteria to 

determine their predictive ability of regression meta models are the same as for regression 

models.  Validated regression models are evaluated by: 1.) significance of regression, 2.) 

significance of coefficients, and 3.) R2 values. 

Significance of regression determines if there is a linear relationship between the response 

y and each xi.  If the regression is significant, at least one independent variable xi has a linear 

relationship with y.  Significance of coefficients can identify the contribution of xi given the 

other independent variables in the model.  R2 is called the coefficient of determination.  The 

proportion of variance in the system that can be explained by the regression model is determined 

by R2.  In practice, regression models are good predictors when coefficients are statistically 

significant and R2 is high (i.e., close to 1). 

4.1 ESTABLISHING SYSTEM PARAMETER SETTINGS  

In the sortation system, the Package Flow Controllers (PFC) monitor the number of packages in 

the conveyors and load doors (chutes) and then give feedback to control the conveyors’ speeds.  
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If the AMHS has too many packages, the risk of system failure will increase.  When the AMHS 

has more packages than the predefined warning parameters, the PFC will receive warning signals 

and then reduce or stop the speeds for unloading operations’ conveyors.  Not until packages on 

the AMHS are loaded and the number of packages becomes less than the warning parameters, 

will the PFC warning signals be cleared and unloading operations’ conveyors will be increased 

to full speeds.  The warning parameters include local warning parameters, global warning 

parameters, and the chute full percentage.  The local warning parameters limit the number of 

packages that can be unloaded in a time period.  PFC receive warning signals when the number 

of packages that have been unloaded during a time period for each unloading area exceeds local 

warning parameters.  The global warning parameters control the number of packages that can be 

sorted in the recirculation sorter (system buffer).  If the recirculation sorter has more packages 

than the global warnings parameters, the PFC will receive warning signals.  The chute full 

percentage is the portion of the doors that are fully occupied by packages.   

4.1.1 Regression meta model development 

For the AMHS in this study, there are four unloading areas, one recirculation sorter, and 136 

load doors (chute full parameter) that are monitored by the PFC.  The number of PFC parameters 

in the unloading areas and recirculation sorter are eight (two warning levels for each unload area) 

and two (two warning levels for the sorter) respectively.  For the chute full warning, there are six 

parameters for the portion of the overall load doors that are fully occupied.  If we used all PFC 

parameters as independent variables to fit a regression model, the regression would include 16 

variables (x1 to x16).  In addition, to fit a validated regression model, it is common to include the 
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second order and interaction terms among these independent variables.  A regression model for 

this PFC parameter setting is shown as follow: 

y: total processing time (makespan). 

x1 to x8: unloading area parameters. 

x9 and x10: recirculation parameters. 

x11 to x16: chute full parameters. 

εβββ +++= ∑∑∑
= ≥=

16

1

1616

1
0

j ji
jiij

i
ii xxxy     (4–2) 

If all variables are accepted in the regression model, the total number of independent 

variables in the regression model including second order and interaction terms can be as large as 

152.  It is highly likely that this will result in an over-fitted model.  In practice, regression 

models have a high risk of prediction failure when there are more than ten variables. To maintain 

the predictive ability of regression meta models, the number of variables needs to be reduced to a 

controllable level. 

One search methodology to solve problems with too many variables is to fix the values of 

most variables and change only a portion of variables in each iteration [64,66].  Because only 

one variable value is changed in each iteration, the result can only give an improving direction 

for the specified variable and the interactions among different variables cannot be captured.  The 

major issue with this search methodology is that it does not guarantee the solution quality and 

there is no predictive ability.   

Another approach to handle problems with too many variables is to reduce the number of 

variables by batching and using multipliers.  One technique is to multiply current values of a 

variable set that have similar functions by a continuous variable multiplier.  The benefit of 

introducing multipliers into the regression model is that the number of variables can be reduced 
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to a manageable size.  The tradeoff is that the values of each variable set have to move in the 

same direction as the specified multiplier.  Consequently, the multipliers might not be able to 

find a setting that is as good as if all variables were considered independently. 

For the PFC parameter settings, three multipliers are introduced into the regression.  The 

PFC local warning multiplier combines eight parameters in unload areas (x1 to x8).  The PFC 

global warning multiplier combines two parameters in the recirculation sorter (x9, x10).  Lastly, 

the chute full warning multiplier combines six parameters in the chute full warning (x11 to x16).  

After reducing the number of variables, the regression model is stated as follows: 

Variables  

XF1: PFC global warning multiplier. 

  XF2: PFC local warning multiplier.   

  XF3: Chute full warning multiplier.   

Regression model 

εβββ +++= ∑∑∑
= ≥=
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33
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jiij

i
i XFXFXFy    (4–3) 

To utilize multipliers in the PFC control logic, warning parameters are set using default 

values (constants) and then multiplied by a multiplier according to the parameter type.  For 

example, PFC control logic utilizes x1(XF2) to x8(XF2) as local warning parameters instead of x1 

to x8, where the x1 to x8 are constants and XF2 is a continuous variable.  If XF2 is set as 1.2, all 

PFC local warning parameters in PFC will be increased by 20 percent. 

After introducing multipliers into the model, the maximum number of variables in this 

regression model is nine.  That is, although the multipliers limit the values of parameters, the 

number of variables in the regression model is reduced from 152 to nine, a manageable level. 
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In a pilot simulation, we investigated two types of system designs related to task input 

sequences.  The first type randomly selected task input sequences.  The result showed that the R2 

value (0.40) for the regression model was low.  For complex systems, it is common that a certain 

portion of the variance cannot be explained by regression models.  For the AMHS in this study, 

one of the major causes of variance is the task input sequence.  To identify the variance caused 

by the task input sequence, the second type of experiments fixed the task input sequence in the 

simulation model.  The pilot simulation results show that the R2 is increased to 0.66 and the 

standard deviation of total processing time is reduced by 59 percent.  The regression model is: 

Y = 6.915-1.274XF1-1.996XF2+0.323XF1
2+0.718XF2

2   (4–4) 

Although the task input sequences vary in different sorting operations, the experiment 

shows that fixing the task input sequence can increase the R2 values.  In later chapters, 

methodologies for developing the task input sequence that result in short makespan and small 

variances are discussed.  The optimal solution of the regression model is XF1 = 1.6, XF2 = 1.389.  

By simulating the optimal solution of the regression model, the total processing time is reduced 

by 14.1 minutes, from the original simulation time of 4 hour 33 minutes.  For the remaining test 

problems in this chapter, task input sequences are randomly generated.   

4.1.2 Computational results 

In order to identify the performance of regression meta modeling in predictive ability, six PFC 

parameter sets were utilized as test problems.  These test problems contain different number of 

loading operators and tasks.  The settings for these problems are listed below in Table 1: 

 

 

 47 



Table 1 Scenarios for PFC parameter setting problem 

Problem Number of loaders Number of tasks 

1 85 84 

2 85 75 

3 85 95 

4 69 84 

5 69 75 

6 69 95 

 

In Table 1, the problems are designed using two sets (69 and 85) of loaders and three sets 

(75, 84, and 95) of incoming tasks.  As noted, task input sequences are different everyday.  To 

determine the near optimal PFC settings for a range of events, task input sequences were 

randomly generated for the test problems.  For each test problem, each multiplier had continuous 

values between 0.9 and 1.7.  For problems with continuous variables, the total number of 

possible settings is infinite.  To simulate samples for regression meta modeling, each multiplier 

uses the value of 0.9, 1.3, and 1.7.  With three multipliers in the test problems, there were 27 

scenarios that needed to be simulated.  The list of scenarios is stated as follows in Table 2: 

 

Table 2 PFC parameter samples for regression meta modeling 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

XF1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.3 1.3 1.3 1.3 1.3 

XF2 0.9 0.9 0.9 1.3 1.3 1.3 1.7 1.7 1.7 0.9 0.9 0.9 1.3 1.3 

XF3 0.9 1.3 1.7 0.9 1.3 1.7 0.9 1.3 1.7 0.9 1.3 1.7 0.9 1.3 

Scenario 15 16 17 18 19 20 21 22 23 24 25 26 27 

XF1 1.3 1.3 1.3 1.3 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

XF2 1.3 1.7 1.7 1.7 0.9 0.9 0.9 1.3 1.3 1.3 1.7 1.7 1.7 

XF3 1.7 0.9 1.3 1.7 0.9 1.3 1.7 0.9 1.3 1.7 0.9 1.3 1.7 

 

Problems 1 and 4 were first tested for regression meta modeling.  After fitting the 

simulation results into regression models, valid regression meta models were found.  For both 
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problems, 20 replications were simulated for each scenario.  Although the large number of 

samples can lead to validated regression models, it is computationally expensive to replicate 

large numbers of samples for each problem.  The average CPU time to simulate one replication 

is approximately 30 minutes.  Simulating 540 samples (27×20) for regression meta modeling 

requires more than 11 days of CPU time.   

In order to reduce CPU time, it is critical to reduce the number of samples without 

decreasing the performance of the regression model.  From the simulation results for problems 1 

and 4, we selected five replications of each scenario as samples to fit into regression models.  

The regression models with 135 samples were similar to those that have 540 samples.  For 

problem 2, 3, 5, and 6, each scenario was simulated for five replications.  The experimental 

results for regression meta modeling are shown in Table 3 below:  

 

Table 3 Regression meta modeling results of PFC parameter settings problem 

Problem 
Sample size of 

regression model R2

S. D. 
(minutes) 

Significant Value of 
Regression 

1 540 0.661 5.7 < 0.000 

2 135 0.125 3.8 < 0.000 

3 135 0.382 6.6 < 0.000 

4 540 0.216 8.5 < 0.000 

5 135 0.203 6.8 < 0.000 

6 135 0.251 10.9 < 0.000 

Problem 
Predicted optimal 

objective value  
Simulated Optimal 

objective value  
Sample size 
of simulation 

Best solution found 
by OptQuest 

1 3:55:19 3:57:18 20 3:56:24 

2 3:33:50 3:49:37 5 3:48:36 

3 4:31:01 4:27:47 5 4:35:20 

4 4:18:00 4:17:38 20 4:19:37 

5 3:52:01 3:49:52 5 3:51:40 

6 5:01:23 4:58:34 5 4:59:17 
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Table 3 lists the results of regression meta modeling for the six test problems.  The 

sample size of regression is the total number of samples utilized in the regression model.  There 

were 27 scenarios simulated in the six test problems and the number of replications was 20 for 

problems 1 and 4 and five for other problems.  The resultant number of samples for the 

regression models is 540 for problems 1 and 4 and 135 for other problems.   

As noted, the R2 value is the proportion of variance in the system that can be explained 

by the regression models.  Due to uncontrollable factors (e.g., task input sequence) in the 

sortation system, the R2 values of the regression models are relatively low as shown in Table 3.  

Even with the low R2 values, the computational results still showed that the regression meta 

models predict makespan times for PFC parameter settings problems as discussed below.   

The optimal values of the regression meta models for test problems are also given in 

Table 3.  The independent variable values associated with the optimal objective values were then 

simulated and presented in the section of simulated optimal objective values.  The results in 

Table 3 show that the objective values obtained by simulation are relatively close to the optimal 

objective values of regression meta models (i.e., within ± 3.5 minutes) except for problem 2, 

which has the lowest R2 value (0.125) among test problems. 

For comparison purposes, these six testing problems were solved by OptQuest in Arena.  

Each test problem was solved for 30 iterations in OptQuest.  OptQuest has the advantage of 

using more simulation output to find improved solutions by executing 30 iterations (27 scenarios 

for regression meta modeling).  The results for OptQuest are also presented in Table 3.  After 

performing statistical tests to the six test problems, OptQuest did not find significantly improved 

solutions compared to best solutions of regression modeling.  In comparing the best solutions 

found by regression meta modeling and OptQuest, five of the test problems had differences that 
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are less than 2 minutes.  For problem 3, the best solution found by regression meta modeling is 

7.6 minutes less than the OptQuest solution.  In addition, the best solution found by OptQuest for 

problem 2 (lowest R2 value) is close to the solution found by regression meta modeling (the 

difference is one minute).   

4.2 LOADING POLICY PROBLEM 

For the loading operations, each operator has an assigned coverage.  Because the input tasks 

contain different numbers of packages for each load door, it is common for loaders to have no 

packages to load during certain time periods and too many packages during other phases of the 

operation.  In order to reduce the makespan, the simulated operating rules allow loaders to help 

load adjacent doors (±1) with a travel time penalty of ten to fifteen seconds.  Even though the 

loaders’ utilization can be increased by helping at adjacent doors, moving loaders too often will 

increase the total travel time for loaders.  Consequently, the total time loaders spend in loading 

will be reduced. 

In the sortation system, loading policy determines the conditions for loaders to move to 

adjacent doors and to go back to their coverage doors by utilizing the information about the 

number of packages at each load door.  Since the package volume for each door is different, each 

of the load doors could have different conditions.  However, the package volume and task input 

sequence change on a daily basis.  To determine the improved performance by utilizing this 

information, a general policy for every loader is needed.  The goal is to develop a general 

loading policy that results in a shorter makespan.  
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The loading policy problem has a structure similar to that for the “cycle stealing” 

problems, which are problems for determining computer network station operational rules for 

underutilized stations to process jobs for stations that are highly utilized.  For the one-way cycle 

stealing problem with unlimited buffer size, near exact solutions of job waiting time can be 

approximated.  After discussing this problem with Takayuki Osogami, a PhD candidate in the 

Computer Science Department at Carnegie Mellon University, whose research is on cycle 

stealing problems [112, 113, and 114], it was verified that there are no techniques to determine 

the exact solution or to approximate the solution without oversimplifying this loading policy 

problem.  To approximate the solution for the loading policy, we have to assume that a loader 

can help at other doors with a given probability regardless of the number of packages in the 

loader’s coverage doors and outgoing trailers.  Another difficulty in approximating the solution 

lies in how to include the system breakdowns and trailer switching process into the model. 

4.2.1 Current loading policy 

For the sortation system, loaders have a ten to fifteen second travel time when switching among 

load doors.  In order to reduce the travel time, loaders cannot leave their assigned doors until 

there are no packages at the door.  The loading policy is based on the available information at the 

load doors.  In this study, the available information is the number of packages at each load door.  

The loading policy problem is defined as follows: 

Assignment doors: Loader’s assigned coverage doors. 

Adjacent doors: Load doors next to a loader’s assignment doors. 

XL1: Number of packages in adjacent doors for loaders to move from assignment doors to 

an adjacent door.  XL1 must be an integer. 
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XL2: Number of packages in adjacent door for loaders to go back to assignment door.  

XL2 must be an integer.   

Y: Total processing time. 

Current loading policy  

1. For a loader who does not have any package at the assignment door and an adjacent door 

(± 1) has more than XL1 packages, go to help. 

2. For a loader who is working at an adjacent door with the assigned loader, if there are less 

than XL2 packages, the loader will go back to the assignment door.  

Constraints 

XL1, XL2 ≤20 (physical constraint) 

XL2 <XL1 (operating constraint) 

Regression model 
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The loading policy defines the conditions when loaders should help at other load doors.  

Once the conditions are no longer existing, loaders will switch back to their assigned doors.  In 

the second part of the loading policy, the variable XL2 is applied to load doors that are operating 

under double loading conditions.  For an adjacent door with only one loader working, moving 

the loader to his assignment door will have a travel time cost.  For a loader working alone at an 

adjacent door, the loader will go back to his assignment door when there are no packages left in 

the adjacent door.   

The physical constraint represents the maximum number of packages that can be 

contained at a load door, which is 20.  The operating constraint eliminates the situation in which 

loaders move between assignment and adjacent doors without processing any packages (e.g., if 
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XL2 is greater than XL1, a loaders will go to an adjacent door based on the first part of loading 

policy and then immediately move to the assignment door following the second part of loading 

policy).  Note that there can be two adjacent doors for a loader.  To implement the loading policy 

in the simulation model, each load door is prioritized for a loader to sequentially search for an 

adjacent door to work at.  To identify the efficiency of the loading policy, two simulation 

problems with different numbers of loaders were utilized to construct a regression meta model.  

The independent variables are XL1 and XL2.  The dependent variable Y is the total processing 

time (makespan).  The experimental result is shown in Table 4 below: 

 

Table 4 Regression meta models for current loading policy 

Problem Sample size R2

S. D. 
(minutes) 

Significant Value 
of Regression 

85 Loaders 200 0.172 5.7 < 0.000 

69 Loaders 200 0.026 8.7 0.024 

Problem 
Optimal objective 
value: regression 

Optimal objective 
value: simulation 

Best Sample 
found 

85 Loaders 4:05:13 4:05:17 4:04:08 

69 Loaders N/A N/A N/A  

 

The result shows that R2 values for both problems are relatively low.  Although the 

optimal solution predicted by the regression is similar to the simulation output for the 85 loaders 

problem, it does not guarantee the regression meta model can predict well for other independent 

variable values.  For the problem with 69 loaders, the low R2 value (0.026) indicates that only a 

small portion of variation in the system can be explained by the regression model; hence, the 

regression model is not considered as a valid model. 
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4.2.2 Alternative loading policies 

One of the most important functions in simulation is determining the system performance for 

new system designs.  Currently, the loading policy allows loaders to work at the adjacent doors 

next to the assignment doors, and the available information is the number of packages at the load 

doors.  Two alternative approaches were investigated for the loading policy problem:  

1.) Increase loaders’ adjacent doors to ± 2 doors, from the current assignment doors. 

2.) Utilize the information on the number of packages coming into doors.   

To identify the system performance, simulation models and meta models for both 

alternatives need to be constructed. 

The current operating rules in the sortation system limit the loaders so that they can only 

help at adjacent doors (±1).  In order to identify the effect of increasing this, a simulation model 

that allows loaders to help at additional load doors (±2) is utilized as a test problem.  To 

determine the performance with an increased number of adjacent doors, the parameters in the 

new loading policy that incorporated additional adjacent doors also must be determined.  The 

new loading policy problem is defined as follows:  

Assignment doors: Loader’s assigned coverage doors. Multiple doors can be assigned to 

one loader. 

Adjacent doors ± 1: Load doors that are next to a loader’s assignment doors. 

Adjacent doors ± 2: Load doors that are next to a loader’s adjacent doors ± 1, exclude 

assignment doors. 

The relationships among assignment doors, adjacent doors ± 1, and adjacent doors ± 2 are 

illustrated in Figure 4-1 below: 
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Figure 4—1 Loader-door relationship 

 

In the figure, loader L’s assignment doors are k-1, k, and k+1.  The adjacent doors ±1 for 

loader L are doors k-2 and k+2, and adjacent doors ± 2 are doors k-3 and k+3. 

Variables 

XL1: Number of packages in adjacent doors ± 1 for loaders to move from assignment 

doors to adjacent doors ± 1, XL1 must be an integer. 

XL2: Number of packages in adjacent doors (± 1 or ± 2) for loaders to go back to 

assignment doors, XL2 must be an integer.   

XL3: Number of packages in adjacent doors ± 2 for loaders to move from assignment 

doors to adjacent doors ± 2, XL1 must be an integer. 

Constraints 

XL1, XL2, XL3 ≤20 (physical constraint) 

XL2 <XL1 (operating constraint) 

XL2 <XL3 (operating constraint) 
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Increased adjacent door loading policy  

1. For a loader who is working at his assignment door: 

If there are no packages in the loader’s assignment door and adjacent doors (± 1) 

have more than XL1 packages, go to help. 

If there are no packages in the loader’s assignment door and adjacent doors (± 2) 

have more than XL3 packages, go to help. 

2. For a load door that has two loaders (one is working at assignment door and the other is 

helping), the loader who is working at an adjacent door (± 1 or ± 2) needs to stop helping 

and then go back to his assignment door when there are less than XL2 packages. 

For the increased adjacent door loading policy, each loader can have multiple adjacent 

doors (± 1 and ± 2).  In the simulation model, each adjacent door is prioritized for loaders to first 

search for adjacent doors ± 1 and then adjacent doors ± 2.  The pilot simulation utilized for 

regression meta modeling contained 69 loaders.  The samples generated through simulation show 

that allowing double loading at ± 2 doors can reduce the total time by eight to eleven minutes.  

The regression model is stated as follows: 

Y = 4.759-0.021XL1+0.046XL2-0.035XL3+0.0018XL1
2+0.0014XL2

2+  

      0.0022XL3
2-0.0025XL1XL2 - 0.0016XL2XL3-0.0004XL1XL3  (4–6) 

Given the loading policy that loaders can help other loaders only when there are more 

than two packages in adjacent doors and XL2 must be less than XL1 and XL3, the regression 

model shows that minimum values occur when we set XL1 = 3, XL2 = 2, XL3 = 3.  This regression 

model was fitted using 860 samples.  However, the R2 is still low (0.346), even though all 

variables are significant.  By simulating the optimal solution of the regression model, the average 

total processing time is 4:02:24, which is close to the best solution found in current loading 

policy (4:05:17).  Another approach to develop an alternative loading policy is discussed below. 
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The sortation system has the ability to monitor the number of packages coming to the 

doors within a given period of time.  In the current operations, the only information available to 

loaders is the number of packages at each of the load doors.  An alternative approach is to utilize 

the information on the number of packages that will be coming into the load doors within a 

certain time period.  The objective is to minimize the makespan by moving loaders among doors 

more efficiently based on this additional information.  The loading policy problem with this 

additional information is defined as follows:  

Assignment doors: Loader’s assigned coverage door. 

Adjacent doors ± 1: Load doors next to a loader’s assigned door. 

Adjacent doors ± 2: Load doors next to a loader’s adjacent doors ± 1. 

Variables 

XL1: Number of packages in adjacent doors ± 1 for loaders to move from assigned door to 

adjacent doors ± 1, XL1 must be an integer. 

XL2: Number of packages in adjacent doors (± 1 or ± 2) for loaders to go back to assigned 

doors, XL2 must be an integer.   

XL3: Number of packages in adjacent doors ± 2 for loaders to move from assigned door to 

adjacent doors ± 2, XL3 must be an integer. 

XL4: Number of incoming packages for adjacent doors (± 1 or ± 2) for loaders to go back 

to assigned door, XL4 must be an integer. 

XL5: Number of incoming packages for adjacent doors (± 1 or ± 2) for loaders to move 

from assigned door to adjacent doors (± 1 or ± 2), XL5 must be an integer. 

Constraints 

XL1, XL2, XL3 ≤20 (physical constraint) 
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XL2 < XL1 (operating constraint) 

XL2 < XL3 (operating constraint) 

XL4 < XL5 (operating constraint) 

Additional information loading policy  

1. For loaders who are working at assigned doors with no packages: 

If the number of packages waiting at an adjacent door (± 1) is greater than XL1 or the 

number of incoming packages is greater than XL5, go to help. 

If the number of packages waiting at an adjacent door (± 2) is greater than XL2 or the 

number of incoming packages is greater than XL5, go to help. 

2. For loaders who are working at adjacent doors (± 1 or ± 2) and there are two loaders 

working at the same door.  If the number of packages waiting is less than XL2 and the 

number of incoming packages is less than XL4, the loader needs to stop helping and then 

go back to the assigned door.  

The inclusion of variables XL4 and XL5 into the loading policy reduces the loader travel 

time.  Because the incoming package information for each door is utilized, a loader will not leave 

a door that has a large amount of incoming packages to process few packages in adjacent doors.  

Consequently, the lower loader travel frequency will result in shorter total loader travel time.  

There are four loading policy problems utilized as test problems for regression meta modeling.  

These problems are:  

a. 84 loaders with adjacent doors ± 1 and ± 2. 

b. 84 loaders with adjacent doors ± 1. 

c. 69 loaders with adjacent doors ± 1 and ± 2.   

d. 69 loaders with adjacent doors ± 1.   

 59 



The scenarios settings for XL1 to XL5 values to simulate regression samples are listed in 

Tables 5 and 6 below: 

Table 5 Scenarios for loading policy problems a.  and c. 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

XL1 2 2 2 2 2 7 7 7 15 15 15 16 16 16 16 16 16

XL2 1 1 1 18 18 5 5 5 5 10 10 5 5 5 5 5 5 

XL3 2 2 2 2 2 7 7 7 15 15 21 7 7 7 7 16 16

XL4 1 1 25 1 25 7 7 19 10 10 15 7 7 19 19 7 7 

XL5 2 30 30 30 30 9 23 23 20 15 20 9 23 9 23 9 23

Scenario 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

XL1 16 16 16 16 16 16 18 19 20 20 20 20 20 20 20 20 15

XL2 5 5 14 14 14 14 5 15 1 1 1 1 1 1 1 1 10

XL3 16 16 16 16 16 16 18 19 2 2 2 2 20 20 20 20 15

XL4 19 19 7 7 19 19 5 5 1 1 25 25 1 1 25 25 50

XL5 9 23 9 23 9 23 15 10 2 30 2 30 2 30 2 30 50

 

Table 6 Scenarios for loading policy problems b.  and d. 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

XL1 4 4 4 4 4 4 11 11 11 11 11 11 11 11 11 11 11 11

XL2 2 2 2 2 2 2 2 2 2 2 2 2 9 9 9 9 9 9 

XL4 2 2 2 9 9 15 2 2 2 9 9 15 2 2 2 9 9 15

XL5 5 13 21 13 21 21 5 13 21 13 21 21 5 13 21 13 21 21

Scenario 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

XL1 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

XL2 2 2 2 2 2 2 9 9 9 9 9 9 15 15 15 15 15 15

XL4 2 2 2 9 9 15 2 2 2 9 9 15 2 2 2 9 9 15

XL5 5 13 21 13 21 21 5 13 21 13 21 21 5 13 21 13 21 21

 

Tables 5 and 6 provide the parameter settings for test problems a, b, c, and d.  To develop 

these scenarios, each of the independent variables was first assigned several predefined values 

and then all possible scenarios were listed.  Among these possible scenarios, constraints in 

loading policies were applied to remove infeasible scenarios.   
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For scenarios in Tables 5 and 6, a large number of samples were simulated to develop 

regression meta models for the test problems. The results of regression meta models are listed in 

Table 7 below: 

Table 7 Experiment results of loading policy problems. 

Problem Sample size R2

S. D. 
(minutes) 

Significant Value 
of Regression 

a 510 0.841 7.5 < 0.000 

b 720 0.691 7.1 < 0.000 

c 510 0.630 6.9 < 0.000 

d 720 0.574 8.4 < 0.000 

Problem 
Optimal objective 

value of regression 
Optimal objective 

value of simulation 
Best Sample 

found 

a 3:53:46 4:24:32 4:02:24 

b 4:00:40 4:05:02 4:05:02 

c 4:12:22 4:34:48 4:19:48 

d 4:24:14 4:26:17 4:26:17  

 

In Table 7, the R2 values are higher than previous regression meta modeling experiments 

(PFC parameter setting problem).  As previous noted, regression models can explain variances in 

systems better when R2 values are high.  However, as explained below these regression models 

cannot predict well with these high R2 values.  Among these test problems, regression meta 

models for problems a and c failed to predict optimal solutions.  To further investigate problems 

a and c, OptQuest models were developed for these two problems.  Each of the problems was 

solved for 60 iterations.  The best solutions determined by OptQuest for the two test problems 

are relatively close to their best regression samples as given in Table 7.  For the OptQuest 

solutions, the makespan times for problems a and c are 4:01:21 and 4:19:10, respectively. 
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4.3 RESTRICTIONS OF REGRESSION META MODELING 

As mentioned earlier, regression meta models are multiple linear regression models that utilize 

simulation results.  Montgomery et al. list reasons why regression coefficients have the wrong 

sign (fail to predict) [115].  These reasons are: 1. Ranges of some regressors are too small, 2. 

Important regressors are not included in the model, 3. Multicollinearity is present, and 4. 

Computational errors have been made.   

In this study, there are six regression meta models (as shown in Table 3) constructed for 

PFC parameter settings and eight for loading policy.  These fourteen regression meta models are 

developed following the same procedure.  The ranges of the samples are defined as the ranges of 

predictive solutions prior to regression meta model fitting.  To identify valid regression models, 

regressors (independent variables) and their interactions are examined using both forward and 

backward variable selection methods.  Among the regression meta models, only two failed to 

predict primarily because of reason 3; here reasons 1, 2, and 4 are less likely to occur.  

Multicollinearity, therefore, appear to be the potential cause of regression model failures.  The 

primary sources of multicollinearity were discussed by Montgomery et al.  These sources are:  

1. Data collection method. 

2. Constraints of population/model. 

3. An overdefined model (too many variables). 

Multicollinearity is the near-linear dependency among independent variables.  In the 

loading policy problem, there are constraints among the independent variables.  These 

constraints can cause dependency among the independent variables.  One common indicator to 

examine multicollinearity is the Variance Inflation Factors (VIF) of regressors [ 116 ].  In 

practice, the regression coefficients are poorly estimated due to multicollinearity if VIF values 
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exceed ten.  To identify the cause of regression meta model failures, the VIF value of each 

independent variable in loading policy problems a and c were examined.  The results show that 

VIF values for all independent variables in both models are higher than 20.  It is concluded that 

there are near-linear dependencies among independent variables. 

In this study, we demonstrated that regression meta modeling can solve certain 

simulation optimization problems for complex systems by predicting near optimal solutions.  A 

number of experimental results show that regression meta models successfully predict the near 

optimal settings for the sortation system.  Although regression meta modeling can solve complex 

simulation problems, the methodology is limited to problems with a small number of decision 

variables that are independent of each other.  For problems with combinatorial decision 

variables, regression meta modeling cannot be applied due to the large number of variables and 

dependencies among variables.  For simulation problems with combinatorial decision variables, 

validated regression models cannot be built, and other simulation optimization methodologies are 

required.  In the next chapter, search methodologies for simulation optimization are discussed. 

4.4 SUMMARY 

In this chapter, there were two types of problems solved by the regression meta modeling 

methodology.  The first type is the system parameter setting problem.  A variable reduction 

technique is applied to maintain the predictive ability of the regression models.  The second type 

is the loading policy problem.  After identifying the loading policy for the current system design, 

two further variants of the loading policy problem, increased coverage and additional 
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information, were investigated. The reasons for the failures of regression modeling cases were 

identified. 

One of the major challenges of regression meta modeling is that the number of 

independent variables is relatively large for many real world problems.  A combinatorial problem 

with ten binary variables can result in 65 variables where the interactions among variables are 

considered.  The regression cannot predict well when the number of variables is greater than ten.  

For combinatorial problems, it is common to have potentially hundreds of binary variables.   

Another challenge of regression modeling is created by the dependency among 

independent variables.  One assumption in multiple linear regression is that independent 

variables (regressors) are independent to each other.  However, a large portion of real world 

systems have constraints.  Although these constraints can be solved by other techniques, the 

constraints will lead to near linear dependency among variables.  Once complex constraints are 

introduced into the problems, the multicollinearity will become the major reason that regression 

fails.   

The failure of regression meta modeling demonstrated the needs of developing better 

simulation optimization methodologies.  In the next chapter, a simulation optimization 

methodology, Surrogate Search, is introduced as a way to solve these problems. 
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5.0  SURROGATE SEARCH 

In this study, a systematic approach called Surrogate Search is developed.  Surrogate Search is 

designed to utilize simulation models to understand system behavior and search for improved 

system designs.  The system behavior observed by analyzing simulation results is formulated 

into deterministic functions and then utilized as surrogate objective functions to replace the 

evaluation function, i.e., the simulation model.  Because the surrogate objective functions can be 

rapidly evaluated by search methodologies, a large number of solutions can be evaluated using 

heuristics prior to making the simulation runs.  The best solutions for the surrogate objective 

functions are then evaluated by simulation to obtain accurately estimations.  In addition, for 

simulation problems utilizing the same model, only one surrogate objective function needs to be 

identified.  

5.1 THE SURROGATE SEARCH ALGORITHM 

For simulation models that can be executed relatively quickly, a large number of solutions can be 

evaluated by existing search methodologies.  However, for large-scale simulation models, the 

number of solutions that can be evaluated is small and existing search methodologies may not be 

able to find solutions within an acceptable time period.  Surrogate Search is developed to solve 
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simulation problems that require a long computational time to execute the model and contain 

combinatorial decision variables.   

The major strength of using Surrogate Search is that the number of iterations to obtain 

improved solutions can be reduced compared to other simulation optimization methodologies.  

The Surrogate Search algorithm is stated as follows: 

1. Define  

X: Decision variable set. 

Z: Objective function. 

Yd: Dependent variable set 

Yc: A set of dependent variables that are correlated to Z, Yc⊂  Yd.

Zs: Surrogate objective function. 

2. Simulate a number of scenarios as samples. 

3. Search for dependent variables Yc among Yd that are correlated to Z. 

a. Determine the relationships among X, Yc, Z, and Zs. 

b. If relationships are found such that Z is proportional to f (Yc) and Yc is 

proportional to g (X) in the same or opposite directions, define Zs= f (Yc), Yc = 

g (X) and go to 5. Else, go to 3. 

c. Determine stopping conditions and initial solutions for local search. 

d. Conduct a local search to find X that can optimize Zs. 

4. Update the local search parameters and execute the local search to determine an 

improved solution for Zs. 

a. Evaluate the local search solution by simulation. 

b. If an improved Z is found, record Z and the associated X. 
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c. If the stopping conditions are reached, go to 5. Else, go to 4. 

5. Stop and output the best solution Z and X. 

The stopping conditions in step 4 need to be defined prior to initiating the local search 

procedure.  These can be a predefined number of iterations, predefined computational time 

length, or a number of non-improving iterations.  Note that the local search in step 4 is utilized to 

identify solutions for a surrogate objective function.  Because the surrogate function uses only 

deterministic parameters, a large amount of solutions can be quickly evaluated by local search 

prior to the simulation runs.  The flow chart of the Surrogate Search algorithm is given in Figure 

5-1 below: 
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Figure 5—1 Surrogate Search flow chart 

 

It is generally difficult to determine the relationship between the decision (independent) 

variables and the objective (Z) for simulation optimization problems with combinatorial 

variables.  By observing the simulation results, dependent variables that are related to the 

objective can be identified.  For dependent variables that are related to the objective and for 

which the relationship to the decision variables can be determined, improving directions can be 
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found by optimizing those dependent variables (surrogate objective).  Consequently, improved 

objective values will be identified in the process of optimizing the surrogate objective values.   

The simulation output provides the information to identify the surrogate objective.  The 

major difference between Surrogate Search and other simulation optimization techniques is that 

the Surrogate Search observes and understands the system behavior by determining Zs in step 3, 

and this occurs before the optimization process.  By utilizing simulation results to understand 

system behavior, improved solutions can be found with fewer simulation runs than other 

simulation optimization approaches for the problems tested.   

Similar to other simulation optimization methodologies, a difficulty in Surrogate Search 

is maintaining solution feasibility.  The local search in step 4 provides a mechanism for 

maintaining solution feasibility and diversifying the search directions.  Assuming that a good Zs 

is found, the problem structure is similar to mathematical programming problems.  Feasibility 

constraints are developed in order to determine feasible solutions.  Besides maintaining solution 

feasibility, local search methods also provide the ability to avoid cycling during the optimization 

process.  To illustrate the Surrogate Search, two example simulation problems, production line 

balancing and an inventory system, are given below: 

5.1.1 Surrogate Search example 1: Production line balancing 

For multiple station production lines where the objective is to maximize the throughput given a 

number of resources, the relationship between the number of resources at each station and 

throughput is unclear.  The typical approach is to identify system bottlenecks by finding stations 

with high resource utilization.   
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In a multiple station production line simulation model, it is not straightforward to develop 

the operators’ assignments that result in maximum throughput given stochastic system 

breakdowns, transportation times, and processing times.  Instead of using the real objective, 

maximizing throughput, a surrogate objective would be to balance the capacity in each station by 

minimizing the utilization deviation from average among stations.  That is, to reduce the total 

difference between utilization at each station and the mean utilization of all stations.  After 

simulating an initial solution, the assignment could be improved by re-assigning operators from 

lower to higher utilization stations.  Near optimal solutions could be identified when assignments 

that result in less deviation of utilization from the mean are found. 

5.1.2 Surrogate Search example 2: Inventory system 

Simulation models are also utilized to estimate an inventory system’s performance.  For 

inventory systems that are required to satisfy customer demands, the most common objective is 

to minimize the total cost.  The challenge is in identifying relationships among such variables as 

the reorder point, the order batch size, and the total cost.  By listing all components related to the 

total cost including ordering frequency, size of order, average inventory levels, and frequency of 

shortage, the contribution to the total cost of each component can be clearly observed.   

Instead of using the real objective, minimizing the total cost, a surrogate objective 

function would be to minimize the difference between shortage cost and holding cost.  The 

relatively low total cost can be obtained by minimizing the surrogate objective.   
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5.2 EXISTENCE OF SURROGATE OBJECTIVE FUNCTIONS 

In general, simulation problems can be represented as several inputs that have to go through a 

number of processes.  An objective value is calculated by using dependent variable values.  The 

general structure of simulation models is shown in Figure 5-2. 
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Figure 5—2 General description of simulation models 

 

As shown in Figure 5-2, simulation models contain multiple levels of processes in order 

to model system events and their interactions.  At the end of the simulation run, the objective 

value is calculated using values from the simulation results.  As the number of processes and 

levels increase, there will be more entities in the simulation model and the computational time to 

execute the simulation model will become longer. 

For any simulation problem, inputs are typically defined as independent variables and 

when processed each will generate dependent variable values at the end of the simulation.  The 
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objective values are calculated using formulas that contain certain dependent variables.  The 

relationships among objective values, independent, and dependent variables are shown in Figure 

5-3.  
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Figure 5—3 Relationships of general simulation models 

 

Figure 5-3 shows the elements of the simulation models.  In general, solving simulation 

problems is defined as determining the optimal or near optimal objective values for simulation 

models by changing specified independent variables.  Because there is no direct relationship 

between independent variables and objective values, objective values cannot be obtained without 

running simulation models.   

A large volume of results that contain all dependent variables are generated at the end of 

a simulation run.  Instead of discarding these results, Surrogate Search utilizes the large amount 

of dependent variables (Yd) generated by the simulation model in order to identify the surrogate 

objective function Zs.  Although the process for identifying a surrogate objective function can be 
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time consuming, only one surrogate objective function needs to be determined for simulation 

problems that utilize the same model and different input data. 

It cannot be proved that surrogate objective functions can be found for every type of 

simulation problem.  Most simulation problems that do not have a surrogate objective function 

are the type of problems which the independent variables only have direct impact on objective 

values.  The general structure of simulation models that the independent variables only have 

direct impact on objective values is illustrated in Figure 5-4 below:   
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Figure 5—4 Direct impact structure of simulation model 

 

There is only one level of processes existing in the simulation model because the 

independent variables have direct impact on objective values.  That is, the independent variables 

are utilized by processes that do not relate to other processes and the objective values are 

calculated using the dependent variables generated by these processes.  Although the relationship 

among independent variables, dependent variables, and objective values can be determined for 
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this type of simulation problem, the relationship will be a function that only contains 

independent (input) variables. 

The simulation model is directly formulated by multiple random variables and a small 

number of processes.  The structure of these simulation models is relatively simple and can be 

executed in a short amount of time.  Therefore, these problems can be effectively solved by 

search methodologies without using surrogate objective functions.   

5.3 IDENTIFY SURROGATE OBJECTIVE FUNCTION  

In simulation optimization, simulation models are utilized to generate an objective value, which 

is defined as a formula containing one or more dependent variables from the simulation results.  

Although a large amount of data (dependent variables) are also generated when executing 

simulation models, existing simulation optimization techniques typically do not utilize them.  To 

identify dependent variables that are correlated to objective values, step 3 of the Surrogate 

Search procedure is designed to determine relationships among the independent variables, 

dependent variables, and predefined objective. 

 To identify surrogate objective functions, multiple linear regression is utilized.  As noted 

in the previous chapter, multiple linear regression is designed to determine relationships between 

response and independent variables.  For Surrogate Search, linear regression can examine 

variables that are correlated with the objective values and form the surrogate objective functions.  

The procedure for identifying surrogate functions is as follows. 

1. List all dependent variables in set Yd and objective (Z). 

2. Develop regression models using Z as the response. 
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a. Construct regression models with one variable in Yd as the independent variable. 

b. Construct regression models that contain multiple independent variables.  The 

independent variables can be formulas containing multiple variables in Yd if 

physical meanings can be given to these formulas. 

c. Construct regression models using backward variable selection.   

i. Insert all variables in Yd and Z into the regression model as independent and 

dependent variables, respectively.   

ii. Delete insignificant variables from the regression model one at a time until a 

validated regression model is constructed. 

d. Record validated regression models and insert their independent variables into Yc. 

3. Conduct pilot simulations to identify the surrogate objective function (Zs) among the 

recorded regression models. 

The procedure above describes how multiple linear regression can be utilized to identify 

surrogate objective functions.  For simulation problems, it is possible that validated regression 

models cannot be constructed due to the problem’s complexity.  In step 2.a, regression models 

are developed for individual dependent variables in Yd.  If simulation problems are complex and 

validated models cannot be constructed, step 2.b combines multiple dependent variables in Yd to 

further investigate simulation results.  If surrogate objective functions still cannot be obtained, it 

will require additional system expertise to identify the objective function.  The process to 

identify surrogate objective functions using system knowledge is as follows: 

1. List and interpret all variables in Yc. 

2. Determine impact (increase or decrease) on objective values of changing independent 

variable values by interviewing system experts. 
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3. Conduct pilot simulations based on system experts’ recommendations. 

4. Identify and define the variable to be used as a surrogate objective function to 

improve objective values. 

Due to the large number of dependent variables in simulation results, it is impractical to 

examine every dependent variable.  In the process of developing regression models, a number of 

independent variables already have been examined to determine their significance levels.  

Although there is no linear model that can be developed, the significance levels provide a list of 

candidate dependent variables that can be defined as surrogate objective functions.  By 

interviewing system experts and conducting pilot simulations, the dependent variables and 

improving directions should be identified to formulate surrogate objective functions.  Improving 

the objective functions is effected by increasing or decreasing surrogate variable values.  These 

directions provide feasible regions with better solution quality. 

When a surrogate objective function is determined, the surrogate objective values and 

objective values will be updated during the process of executing the local search and simulation.  

Based on problem structures, appropriate heuristics or searching algorithms will be developed 

for the optimization process.  For the optimization process, there are two types of local searches 

based on feedback from the simulation results.  The first type of local search can receive 

feedback from the simulation results to adjust the surrogate objective functions’ coefficients.  

The second type of local search determines the next iteration solution without analyzing 

simulation results from the previous iteration.  

In terms of local search performance, the first type of local search can determine 

improved solutions more frequently in earlier iterations of the search.  Because simulation results 

provide feedback for the next iteration’s solution by updating the surrogate objective functions’ 
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coefficients, the first type of local search tends to investigate neighborhoods of the current 

solution.  For the second type of local search, surrogate objective functions are utilized without 

updating coefficients, solutions that result in relatively good surrogate objective values are 

identified by local searches.  Hence, the moving path for the second type of local search does not 

follow a specified pattern.  For the second type of local search, Surrogate Search can be 

performed on parallel computers.  Each computer can execute a Surrogate Search independently 

by assigning different random number strings because the solution for the next iteration does not 

require feedback from the current iteration simulation results.  

5.4 SURROGATE SEARCH APPLICATION FIELD 

Although it cannot be concluded that Surrogate Search has the ability to solve all simulation 

problems, there are several problem types that have surrogate objective functions.  These types 

of simulation problems are listed in Table 8, which gives the surrogate objectives for general 

simulation models found in the archived literature.  

 

Table 8 Surrogate objectives of simulation problems 

Problem types Real objective Surrogate objective 

Vehicle assignment problem [117]      

 

Max number of 

transported loads 

Max vehicle utilization/ Min vehicle 

waiting time 

Assignment problem [118] Min labor cost Remove low utilization laborers 

Inventory problem [119] Min Cost Balance holding and shortage costs 

Flow shop capacity designs [120] Max throughput Balance Machine utilization 

 

For the types of problems listed in Table 8, surrogate objectives can be identified based 

on knowledge of the system.  For the vehicle assignment (e.g., dump truck) problems, if the 
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objective is to maximize the number of loads in a defined period, the surrogate objective can be 

to maximize the vehicle’s utilization or minimize the vehicle’s waiting time.  For assignment 

problems where the objective is to minimize the labor cost, the surrogate objective is to remove 

laborers (resources) that have low utilization.  Although Table 8 does not list all types of 

simulation problems, one can still consider applying Surrogate Search for other types of 

problems.   

Surrogate Search is designed for large-scale simulation problems that require a relatively 

long run time, since the process of searching surrogate objective functions is time consuming.  

For simulation problems that can be run quickly, the process of searching for a surrogate 

objective may take more time than using other methods to solve these problems.   

The surrogate objective function is formed by understanding the system behavior.  The 

behavior can be observed from either the system outputs of the real system or sample simulation 

runs.  The real system should provide the most accurate estimate of the effects of changing 

parameter settings and system design.  However, experimenting with the real system is typically 

expensive and may not be feasible. 

5.5 ASSESSING SURROGATE SEARCH 

Two typical measures used to evaluate the performance of optimization and heuristic 

methodologies are solution quality and computational efficiency.  To evaluate the performance 

of the Surrogate Search approach, the same measures will be used to compare it with other 

search methodologies.   

 78 



Solution quality relates to the best solution found by the methodology.  For optimization 

methodologies, LP and MIP provide optimal solutions to the model.  Although there are 

mathematical proofs for some heuristics that they will converge to optimal solutions, obtaining 

the optimal solutions is constrained by the long computational time in practice.  Solution quality 

of heuristics is taken to be the difference between the best solution found and the optimal 

solution.  If the optimal solution for the problem is not known, approximation techniques that 

relax certain constraints are often applied.  To approximate optimal objective values for 

simulation problems, deterministic mathematical models can be utilized. 

In terms of computational efficiency, the more effective methodologies will find 

improved solutions with less CPU time.  For optimization methodologies, the time complexity 

analysis (i.e., determine the number of required iterations to obtain the optimal solution) is 

generally applied.  For heuristics, the computational efficiency is the comparison of the number 

of iterations that will be required to obtain a solution with the same solution quality.  

Alternatively, the computational efficiency can be the comparison of the solutions’ quality for a 

given number of iterations. 

Large-scale simulation problems that cannot be solved by Surrogate Search, have neither 

clear objective functions that can be written directly nor indicators (from dependent variable 

values) to determine improved solutions.  For these problems, it is obvious that Surrogate Search 

cannot find improved solutions based on surrogate objective values.  Heuristics (and meta 

heuristics) are the current methods to solve these problems since no knowledge of the system is 

required.  If Surrogate Search fails to replicate system behavior, it cannot be applied; other 

heuristics (search methodologies) are more appropriate to determine improved system designs 

for these problems.   
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For comparison, OptQuest in Arena which utilizes Scatter Search as the underlying 

algorithm was applied to solve the same problem set in this study.  From the pilot simulations, it 

is found that both Surrogate Search and Scatter Search can identify the solution for the next 

iteration within a short amount of time (within 30 seconds).  In this dissertation, both 

methodologies utilize the same simulation model that requires two hours (six replications) of 

CPU time to evaluate one solution, the computational time for both methodologies is referred as 

the number of iterations (simulation runs).   

The test problems in this dissertation are solved by both Surrogate Search and Scatter 

Search.  Note that Scatter Search is given the advantage of executing more iterations than 

Surrogate Search for all test problems.  As noted, the two measures to determine the Surrogate 

Search performance are the solution quality and the computational efficiency.  The solution 

quality is the best solution found.  The computational efficiency is the number of iterations for 

both methods to identify relative good solutions.   

5.6 SUMMARY 

In this chapter, the Surrogate Search algorithm was introduced and details were discussed.  

Surrogate Search is designed to solve large-scale simulation problems effectively.  The existence 

of surrogate objective functions for most general simulation problems was proposed.  Simulation 

structures for which surrogate objective functions cannot be identified were discussed.  These 

simulation models are simple simulation models that can be executed quickly.   

A two-step approach to identify surrogate objective functions was investigated.  First, 

multiple linear regression identifies significant dependent variables in the simulation results; 
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next, system expertise can be utilized.  The Surrogate Search application to existing simulation 

problems in the literature was discussed.  Two performance measures, solution quality and 

computational efficiency, are proposed for evaluating simulation optimization approaches. 
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6.0  AMHS WORK BALANCING PROBLEM 

The sortation system output contains the loading operation described earlier.  There are multiple 

loaders performing the loading operation in different loading areas.  To obtain the shortest 

makespan, loaders must be assigned in a manner that results in balanced workloads.  If certain 

loaders are assigned a heavier workload, they will require longer time to finish their work while 

other loaders are idle.  

6.1 PROBLEM STATEMENT 

For the sortation system in this study, there are eight loading areas, each divided into two 

subareas operated by a team of loaders.  Each of the load doors is assigned to a specified loader 

on the team.  For the operating constraints, each loader is assigned between one and three load 

doors, based on the distance between doors and the projected workload 

Even if the work balancing problem is simplified by assuming that the number of loaders 

in each loading area is fixed, the problem of assigning load doors to loaders is still difficult to 

solve.  For the case where every loading area has the same number of loaders, the number of 

feasible solutions for a loading area that has 17 load doors and nine loaders is 2,907.  This is 

calculated by first dividing doors by loaders and then identifying the total number of 

combinations. 
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For all eight loading areas in the sortation system, the total number of feasible solutions 

will be the multiplication of the number of feasible solutions in all stations, which is 5.099x1027 

(i.e., by changing loader assignments in one loading area, the total number of feasible 

assignments will be 2,907 to the power of eight since there are eight loading areas) in this case.  

However, the assumption that each loading area has the same number of loaders is unrealistic.  It 

will dramatically increase the problem size to incorporate the number of loaders in each load 

area as decision variables.  To reduce the number of feasible solutions to a solvable level, this 

chapter utilizes the assumption that a team of loaders will work in a subarea where every load 

door can be worked by any loaders on the team. 

In the case study, the number of loaders ranges between 65 and 75.  These loaders are 

divided into 16 teams.  Each team cannot have more than nine or less than three loaders 

according to operational rules.  The objective of the work balancing problem is to determine the 

number of loaders assigned to each team that result in the shortest makespan.   

6.2 PROBLEM COMPLEXITY 

To determine the optimal team assignment, one possible approach is to simulate all feasible 

assignments.  The approach can be implemented by starting with a lower bound assignment (e.g., 

three loaders on each team) and add one loader at a time until all loaders are assigned to a team.  

For the case where 70 loaders need to be assigned to 16 teams, the lower bound assignment will 

assign 48 loaders to 16 teams.  For the rest of the 22 loaders, there are 16 required scenarios (16 

teams) to be simulated in order to determine the optimal assignment each time a loader is added.  

To find the optimal assignment for the 70 loaders, it will require at least 352 (16×22) scenarios. 
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If the optimal solution cannot be identified, it may be necessary to simulate all possible 

scenarios, which would be the worst case in determining the optimal assignment.  The total 

number of feasible solutions does not have a closed form solution due to the constraint that each 

team has between three to nine loaders.  Since each team has at least three loaders, the problem 

now becomes how to assign 22 loaders to 16 teams.  To calculate the number of feasible 

solutions for the total of 70 loaders assigned to one of the sixteen teams where each team has 

between three to nine loaders, a C program was written.  The result shows there are 6.94 x 109 

feasible assignments.  If each solution takes one hour (only three replications) to simulate, it 

would require 792,237 years to simulate all solutions. 

The Surrogate Search approach was developed for the AMHS problem which utilizes the 

sortation system simulation model discussed in Chapter 3.  Note the simulation model utilized in 

Chapters 6 and 7 has different inputs (operator assignments and incoming tasks) then the model 

in Chapter 4.  It would be inappropriate to compare the makespan time in Chapters 6 and 7 to 

Chapter 4.  For the simulation model in Chapters 6 and 7, the CPU time for each simulation 

replication was approximately 20 minutes.  The details of Surrogate Search approaches for 

AMHS work balancing problem will be discussed in the next section.  

Further, a variance reduction technique, antithetic variates, was applied to investigate the 

possibility of reducing the number of simulation replications for the work balancing problem.  

The preliminary experimental results showed that the variance can be reduced by assigning 

antithetic variates to task input sequences.  After simulating 600 replications, it could not be 

demonstrated that antithetic variates reduced the variance by a factor that is greater than the 

square root of two.  Since the variance of the sample mean is divided by the number of 
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replications (samples), it was concluded that assigning antithetic variates to task input sequences 

cannot significantly reduce the number of simulation replications. 

6.3 SURROGATE SEARCH APPROACH – WORK BALANCING 

The objective of the work balancing problem is to minimize the makespan by developing (near) 

optimal loader assignments.  For this problem, the direct relationship between the number of 

loaders on each team and makespan cannot be determined.  While increasing loaders on certain 

teams can reduce their long queue lengths, other teams might increase the makespan due to lack 

of loaders.  This indicates that the interactions among different team assignments cannot be 

determined without executing the simulator. 

6.3.1 Identify surrogate objective function 

To solve the work balancing problem by Surrogate Search, dependent variables that are 

correlated to the real objective need to be identified.  To observe the system behavior, 15 

randomly generated assignments were simulated, and the simulation results were fitted as 

independent variables into a regression model.  These input variables are: 

J1: Frequency of system breakdowns. 

Fk: Package Flow Controllers (PFC) total time for predefined warning level k, k = 1 to 6 

(PFC provide six warning levels based on the number of packages on conveyors).  

SCF: Sum of total chute full time in sortation system. 

LTi: Number of loaders/chute full time per team coverage, i = 1 to 16. 

TLi: Chute full time/number of loaders per team coverage, i = 1 to 16. 
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iTLTLST : Sum of squares of TLi.  This is to determine the deviation among teams. 

Dependent variable: 

Z: Makespan. 

 

Table 9 Regression models of independent and dependent variables 

Model # Independent variables Dependent variables Significant level R2

1 SCF Z 0.315 0.017

2 LTi Z <0.000 0.836

3 TLST Z <0.000 0.811

4 LTST Z <0.000 0.602

5 TLT, TLT2 Z <0.000 0.736

6 TLST, TLST2 Z <0.000 0.842

7 LTT, LTT2 Z <0.000 0.716

8 LTST, LTST2 Z <0.000 0.769

9 Fk Z <0.000 0.946

 

From the list of independent and dependent variables in Table 9, there are several factors 

correlated to the total processing time.  Model 9 has the highest R2 value, and can explain the 

system variance well.  However, the impact to Fk values by having different loader assignments 

cannot be accurately estimated.  Among these variables, a linear relationship between TLST2 

(interaction) and Z is found with R2=0.842.  The regression model is Z = 4.623 + 0.005(TLST2) 

where the time unit for Z is in hours.  The interpretation of this regression model is that good 

assignments result in short makespan, which can be identified by developing assignments with 

low TLST2 values.  That is, the sum of square of chute full time per loader for 16 teams.   
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The TLST and TLST2 simulation results can determine which sorters need additional help.  

The chute full time is a simulation output that will not be zero for all teams without having 

additional operators.  The best strategy to obtain low TLST values with a given number of 

loaders in the sortation system is to balance the chute full time among the teams. 

For the work balancing problem, X, Yc, and Zs are team assignment, makespan, and PFC 

chute full warning time respectively.  The chute full time per loading team (TLi) can be 

interpreted as the time period that a team receives more packages than it can load.  A large TLi of 

a specified team collected from the PFC indicates that more loaders are needed on that team; it 

can be reduced by re-assigning loaders from other teams that have smaller TLi values.  To 

illustrate how the chute full time is related to the makespan, a simplified example is given below: 

6.3.1.1 Work balancing problem: Two-team example 

Assume that a sortation system contains only one loading area operated by two teams.  The total 

number of loaders is ten and each team has five loaders.  After simulating the loader assignment, 

the following result is found: 

Table 10 Initial assignment simulation result 

Variable Team 1 Team 2 

Finishing Time  3:15:00 5:01:05 

Chute Full time  9:54:10 33:42:00 

Number of Loaders 5 5 

TLi 1:58:50 6:44:24

 

The objective here is to minimize the longer finishing time between Team 1 and 2 

because the makespan is ended when the last package is processed.  From the simulation result, 

the objective Z is 5:01:05 (Team 2 finishes at time 5:01:05) and Team 1 has 1:46:05 of idle time 

(after 3:15:00).  The chute full time for Team 1 and 2 is 9:54:10 and 33:42:00, respectively.  The 
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TLi values indicate that each loader in Team 2 has a heavier workload on average compared to 

Team 1.   

According to the first iteration of the Surrogate Search, Team 2 requires additional 

loaders from Team 1.  Since the total workload for each team is fixed, it is clear that sending one 

loader from Team 1 to Team 2 will reduce the finishing time for Team 2 and increase the 

finishing time for Team 1.  After re-assigning loaders, the new assignment is simulated and the 

result is given in Table 11: 

 

Table 11 New assignment simulation result 

Variable Team 1 Team 2 

Finishing Time  4:11:06 4:32:53 

Chute Full time  15:04:07 25:50:40 

Number of Loaders 4 6 

TLi 3:46:02 4:18:27

 

The result showed that the new assignment leads to a smaller makespan (4:32:53).  In 

terms of chute full time and TLi, the difference between Team 1 and 2 is less than the initial 

assignment.   

If the chute full time were fixed for each team, the loading team assignment would be a 

simple MIP to solve.  However, chute full time is a simulation result (dependent variable) that is 

not constant and cannot be found until the assignment is simulated.  Note that in the two-team 

example the chute full time does not change linearly with the number of loaders.   
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6.3.2 Local search approaches 

Although chute full time changing directions (increasing or decreasing) for new assignments can 

be predicted, it is possible that the new assignments for certain teams can move from the upper 

bound to the lower bound during the optimization process.  To prevent cycling, a local search 

with a predefined neighborhood is necessary for the optimization process because the 

interactions of chute full time and team assignments cannot be captured without a large number 

of simulation runs.  The chute full time for a small number of simulation replications can be 

utilized to predict the direction of improvement within the neighborhood.  For local search 

approaches for the work balancing problem, the neighborhood is defined as the current number 

of loaders on each team ± 1 with the constraint that the total number of loaders is given.  The 

new assignments developed by local search will be simulated in order to observe the chute full 

time and makespan. 

In this study, four local search approaches for the work balancing problem have been 

researched.  Due to the large computational tasks involved, these local searches are implemented 

to the level where they can be executed automatically.  Local searches 1 and 2 utilize MIP and 

were implemented using Microsoft Excel Solver and local searches 3 and 4 utilize Tabu Search 

and were implemented using Arena’s Visual Basic for Applications (VBA) interface.   

Local searches 1 and 2 use the MIP formulation, which can be solved to determine the 

optimal solution within the neighborhood.  The objective of local search 1 is to minimize the 

sum of the total warning time per loader by removing loaders from certain teams and adding to 

other teams.  The notation is given as follows: 

Parameters 

n: Total number of teams.  There are 16 teams in the case study simulation model. 
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i: Team index number.  i = 1,…, n.   

TCi: Total chute full time for team i.   

LSi: Number of loaders in team i.   

TLi: Chute full time per loader for team i.  Where 
i

i
i LS

TC
TL =  

Decision variables 

Xi1 = 1, if team i needs to add one loader; 0, otherwise. 

Xi2 = 1, if team i needs to reduce one loader; 0, otherwise. 

The objective of local search 1 is to minimize the sum of TLi for all i.  The neighborhood 

of local search 1 is defined as ±1 from the current solution.  The formulation is stated: 

Minimize  ∑
= −+

n

i ii

i

XXLS
TC

i1 21

       (6–1) 

s. t.    .,121 iXX ii ∀≤+        (6–2) 

( ) 0
1

21 =−∑
=

n

i
ii XX        (6–3) 

.,321 iXXLS iii ∀≥−+       (6–4) 

.,921 iXXLS iii ∀≤−+       (6–5) 

The number of loaders on one team can vary from three to nine.  This is given by the 

facility’s physical constraints. Local search 1 is implemented in Microsoft Excel since the 

problem structure is relatively simple to solve using Excel Solver.   

However, local search 1 is a non-linear problem due to the objective function.  In order to 

reformulate it as a linear problem, local search 2 replaces (6-1) with a new objective 

function∑ .  W
=

n

i
iW

1
i is the number of loaders for the next iteration for team i divided by TCi.  

Although solving the local search 1 formulation by evaluating all feasible solutions is relatively 
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fast, the linear formulation in local search 2 can be solved by most existing MIP software 

packages.  The formulation of local search 2 is stated below: 

Minimize           (6–6) ∑
=

n

i
iW
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.,321 iXXLS iii ∀≥−+       (6–10) 

.,921 iXXLS iii ∀≤−+       (6–11) 

By introducing Wi into the model, the problem has a linear formulation.  Note that local 

search 2 is a minimization problem, which is the same as local search 1.  Because assigning too 

many loaders to one team will result in a small TCi and a large Wi, minimizing (6-6) in local 

search 2 can remove loaders from teams that have too many operators and reassign them to 

teams that require additional help.   

The results for local searches 1 and 2 indicate that cycling can occur after a number of 

iterations since there is no mechanism to prevent it.  Local searches 3 and 4 utilize tabu lists to 

diversify search directions and prevent cycling.   

Local searches 3 and 4 analyze the situation that a loading team can request a loader, 

provide a loader, or keep the same number of loaders.  At the end of each iteration, 16 teams are 

divided into two lists: Type A list (need additional loaders) and type B list (need to reduce 

loaders).  Each team is assigned to one of the two lists based on its TLi.  The Tabu Search 

restricts a team from adding or removing loaders continuously.  For example, if team 15 goes to 
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seven loaders from six for this iteration, then team 15 cannot move to eight loaders for a 

specified number of iterations.  The local search 3 algorithm is as follows: 

Type A list: The list of teams that need help with TLi in descending order.   

Type B list: The list of teams that can provide help with TLi in ascending order. 

1. Calculate the TLi for each team.   

2. Store eight teams with higher TLi in type A in ascending order.   

3. Store eight teams with lower TLi in type B in descending order. 

4. Move loaders by: 

a. If list A or B is empty, stop.   

b. Remove the first team j in list A until a team with less than nine loaders and 

not tabu from adding loaders is found. 

c. Remove the first team k in list B until a team with more than three loaders and 

not tabu from removing loaders is found. 

d. If 
k

k

j

j

k

k

j

j

LS
TC

LS
TC

LS
TC

LS
TC

+<
−

+
+ 11

, remove team j and k from type A and B 

after setting Xj1 = 1 and Xk2 = 1.  Go to a. 

5. Update the tabu list based on Xi1 and Xi2. 

In local searches 1 and 2, one type of constraint is that a team cannot both add and 

remove loaders ( ).  In local search 3, the solution feasibility is handled by 

splitting teams into two groups of lists.  Since a team can be on only one of the two lists, the 

situation that both X

.,121 iXX ii ∀≤+

i1 and Xi2 are one will never happen.  In step 5, the tabu list is updated using 

the solution for the current iteration.  For one of the teams in the sortation, if Xi1 = 1 (Xi2 = 1) for 
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the current iteration, the tabu list will block the solution that Xil = 1 (Xi2 = 1) for a number of 

iterations. 

Local search 3 was first implemented in C.  The result showed that these improved 

solutions are as good as solutions found by local searches 1 and 2.  By applying tabu lists, local 

search 3 provides a number of alternative solutions that have similar makespan times and can be 

utilized as alternative solutions for adjusting assignment in practice.   

Similar to local search 3, the Tabu Search in local search 4 prevents a team from moving 

back to the previous solution after a move is made.  In step 5 of local search 4, the tabu list 

update is modified as follows: 

If a team has Xi1 = 1 (Xi2 = 1) for the current iteration, the tabu list will block the solution 

Xi2 = 1 (Xi1 = 1) for a number of iterations. 

To obtain further diversified solutions by local search, another concept, simulated 

annealing, that accepts solutions with a specified probability is utilized.  In local search 4, the 

step 4 of the local search 3 algorithm is changed to: 

If 
k

k

j

j

k

k

j

j

LS
TC

LS
TC

LS
TC

LS
TC

+<
−

+
+ 11

, remove team j and k from type A and B and 

then set Xj1 = 1 and Xk2 = 1 with a 0.2 probability.  Go to a. 

The pilot simulation results showed both local searches 3 and 4 could determine 

improved solutions within a small number of iterations.  Once a good surrogate objective for a 

specified problem type is identified by Surrogate Search, the same surrogate objective can be 

applied to solve similar problems with different inputs.  In the next section, a series of instances 

is solved by Surrogate Search.   
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6.4 COMPUTATIONAL RESULTS 

A set of instances that includes different numbers of loaders and packages for work balancing 

problems have been solved by the four local searches discussed above.  For comparison 

purposes, OptQuest models were built to solve the work balancing problem.  Scatter Search is 

implemented in the commercial software OptQuest, which can utilize a simulation package, 

Arena [121], to calculate objective values. 

Figure 6-1 compares the best solutions found by OptQuest and local search 1 for the 

instance of 69 loaders over 125 iterations (see Table 12).  It shows local search 1 can determine 

better solutions with the same number of iterations executed by OptQuest.  In addition, Surrogate 

Search found solutions that are substantially better than OptQuest in the first 20 iterations.  Over 

these 125 iterations, OptQuest did not identify a solution that is better than the best solution 

found by local search 1 after the first ten iterations. 
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Figure 6—1 Best solutions found by OptQuest and local search 1  
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To determine the Surrogate Search performance, five instances with different numbers of 

loaders and package volumes were solved by OptQuest and the four local searches.  The number 

of loaders and packages of test instances are listed in Table 12 belows: 

 

Table 12 Scenario designs for work balancing problem 

Instance Number of loaders Avg. package volume 

1 69 64,800 

2 64 64,800 

3 74 64,800 

4 69 48,600 

5 69 81,100 

 

The test instances in Table 12 are designed using different numbers of loaders and 

average package volumes.  The numbers of loaders are 64, 69, and 74.  The average package 

volumes for test instances are 48,600, 64,800, and 81,100.   

The five test instances listed by Table 12 were solved by local searches 1 to 4 and 

OptQuest.  Each of the search methods were executed for an average of 97 iterations.  The 

experimental results are given in Table 13 below: 
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Table 13 Comparison of local search methods and OptQuest. 

Instance 1 (Lower bound 3:38:24) 

Search method 1 2 3 4 OptQuest 

Replications 4 4 4 4 4 

Number of iterations 95 65 93 93 125 

Best solution (hr) 4:31:48 4:29:24 4:30:36 4:30:00 4:43:48 

Instance 2 (Lower bound 3:52:48) 

Search method 1 2 3 4 OptQuest 

Replications 4 4 4 4 4 

Number of iterations 100 98 89 86 117 

Best solution (hr) 4:43:12 4:30:36 4:33:36 4:36:00 5:25:12 

Instance 3 (Lower bound 3:25:48) 

Search method 1 2 3 4 OptQuest 

Replications 4 4 4 4 4 

Number of iterations 125 43 91 90 131 

Best solution (hr) 4:28:48 4:28:48 4:30:00 4:29:24 4:35:24 

Instance 4 (Lower bound 2:52:48) 

Search method 1 2 3 4 OptQuest 

Replications 4 4 4 4 4 

Number of iterations 124 64 90 88 178 

Best solution (hr) 3:34:12 3:34:12 3:33:00 3:34:12 3:35:24 

Instance 5 (Lower bound 4:24:00) 

Search method 1 2 3 4 OptQuest 

Replications 4 4 4 4 4 

Number of iterations 90 60 90 89 101 

Best solution (hr) 5:34:48 5:23:24 5:25:48 5:28:48 5:55:12 

 

In Table 13, the best solutions found by local searches 1 to 4 have less makespan times 

than the best solutions found by OptQuest.  Even with more iterations than the Surrogate Search 

approaches, OptQuest cannot identify a better solution for all instances.  By re-running the best 

solutions for 20 replications, the largest standard deviation is 4.2 minutes.  After performing 

paired T tests (common random numbers are used with paired replications) to compare the 
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difference between makespan times determined by Surrogate Search and OptQuest, it was found 

that the best solutions identified by Surrogate Search are significantly less for instances 1, 2, and 

5.  This indicates that the Surrogate Search can be utilized as a simulation optimization 

methodology.   

In Table 13, the numbers of iterations vary (from 43 to 178) for each instance solved by 

the different search methods.  Although the ideal strategy to compare performance among 

different methods is to execute a large number of iteration for each method, the amount of 

computational time is the major constraint here.  The total number of executed iterations in Table 

13 is 2,415, which utilized 134 days of CPU time (i.e., 2,415 iterations× 4 replications× 20 

minutes simulation time per replication.) 

Note that the surrogate objective functions for local searches were identified through the 

pilot simulation.  The local searches utilized the same surrogate objective functions to solve the 

test instances.  The results show that the same surrogate objective function for a simulation 

problem can be utilized to solve different instances of the same simulation model without the 

need to identify new surrogate objective functions. 

Simulation optimization methodologies do not guarantee that the optimal solution will be 

found because the large amount of possible scenarios cannot be completely simulated.  To 

understand the solution quality of the best solutions found, an approximating approach to 

calculate lower bounds is utilized.  The lower bounds are calculated by a deterministic approach.  

Assuming all packages for each load door are available at the beginning of the sort and there are 

no system breakdowns, the loaders have a constant loading rate with a 10 percent estimated time 

penalty for loaders to travel between doors in the sortation system.   
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Among the five test instances, the best solution of instance 2 found by Surrogate Search 

is 55 minutes less than the best solution of OptQuest.  To evaluate the performance of Surrogate 

Search, the best solutions of instance 2 found by both methods is shown in Figure 6-2 below: 
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Figure 6—2 Best found solutions of instance 2 (OptQuest and local search 2) 

 

Figure 6-2 compares the best solutions of instance 2 found by OptQuest and Surrogate 

Search over 90 iterations.  It is shown that the best makespans found by Surrogate Search are 

substantially less than OptQuest solutions after the first five iterations.  For instances 3 and 4, the 

best solutions found by both OptQuest and Surrogate Search are relatively close (differences 

within 10 minutes).  The best found solutions of these two instances are given in Figures 6-3 and 

6-4 below: 
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Figure 6—3 Best found solutions of instance 3 (OptQuest and local search 3) 
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Figure 6—4 Best found solutions of instance 4 (OptQuest and local search 4) 
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As shown in Figures 6-3 and 6-4, although the surrogate solutions have shorter makespan 

times, the best solutions found by OptQuest and surrogate become closer as the number of 

iterations increased.  Similar to instance 2, Surrogate Search identified relatively good solutions 

after the first five iterations for both instances 3 and 4.  For OptQuest, it required twenty and ten 

iterations for instances 3 and 4 respectively to determine relatively good solutions. 

6.5 SUMMARY 

In this chapter, it is shown that a Surrogate Search can identify improved solutions from 

empirical experiments.  Four local search methods were investigated to solve a relatively 

complex problem set.  The tests indicate that these four methods can result in statistically 

significant improved solutions over a commercial package using Scatter Search.  The fairly 

straightforward local search methods that utilize the surrogate objective functions have better 

performance than Scatter Search.  Furthermore, local searches are implemented to the level 

where they can automatically search through the neighborhood. 

In summary, Surrogate Search solves simulation problems by utilizing surrogate objectives 

to find improving directions for solutions in a predefined neighborhood.  The major difference 

between Surrogate Search and other simulation optimization methodologies is that Surrogate 

Search identifies surrogate objectives by observing the simulation output prior to the 

optimization process.  Once surrogate objectives are identified, similar problems can be solved 

using these surrogate objectives.  The local search methods maintain the solution feasibility and 

avoid cycling in order to optimize the surrogate objective function.  By applying a tabu list (short 

term memory) in Tabu Search, different search directions can be explored.  There is no 
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additional computational cost to collect surrogate objective values since simulation results 

contain all required system information.   
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7.0  TASK INPUT SEQUENCING PROBLEM 

In sortation system operations, each incoming task contains from 750 to 900 packages that are 

assigned to 136 load doors representing different destinations.  For each of the incoming tasks, 

the number of packages assigned to each destination load door has a unique distribution.  The 

package contents information (number of packages that will go to each load door) in each task is 

defined as Package Destination Distributions (PDDs).  Ideally, if the PDDs are the same for all 

incoming tasks, loader assignments can easily be constructed, and the task input sequences will 

have no impact on system performance.  However, the PDDs for incoming tasks cannot be 

controlled since they are based on customer demand.   

As mentioned in the previous section, loader assignments cannot be easily developed due 

to system breakdowns and unbalanced workloads.  For the system breakdowns, there is no 

available method that can predict the location and duration of the breakdowns.  The major cause 

of the unbalanced workloads is that the packages in each task have different destinations.   

The objective for the task input sequencing problem is to develop a methodology to 

identify task input sequences that result in short makespans.  The task input sequence needs to be 

determined for every shift in the operation.  The current unloading sequence is determined by 

task priorities (service types).  Tasks that have a higher priority are more likely to contain more 

packages and need to be dispatched earlier, based on the decision maker’s experience.  By 

operating the current unloading sequence, the makespan often exceeds the planned time, and the 
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facility cannot reach its designed productivity.  For the sortation system in this study, there are 

typically 80 to 85 tasks that need to be processed in one shift.  Hypothetically, a short makespan 

can be obtained by utilizing the task content information to develop the task unloading sequence.   

7.1 PROBLEM STATEMENT 

In the sortation system, since all incoming tasks cannot be processed at the same time they need 

to be sequentially unloaded.  If a large amount of packages for certain load doors are unloaded at 

the beginning of the operation, the loaders at these specified load doors will receive too many 

packages while other loaders will be idle.  At the end of the operation, loaders that are over 

utilized at the beginning will be idle since most packages in the incoming tasks are already 

processed.  Consequently, desired makespan times will be extended due to the large amount of 

idle time.   

The objective of the task input sequencing problem is to develop waves of incoming tasks 

that result in the shortest makespan based on the total number of tasks and their PDDs.  A wave 

is defined as a group of incoming tasks that will be unloaded in the same period of time.  It is 

assumed that the total number of packages contained in each of the incoming tasks follow the 

same uniform distribution.  In the unloading operation, the maximum number of tasks that can be 

unloaded at the same time is limited by the number of unloaders and operating policies.  If 20 

tasks are unloaded at the same time (i.e., a wave), there will be four waves of 20 tasks for a total 

of 80 tasks.  The procedure of unloading task waves starts with the first wave.  At the beginning, 

all first wave tasks are unloaded.  Once a task is processed, a task in the second wave will be 
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randomly selected to replace the processed task.  After all second wave tasks are selected, the 

next task that will be selected is in the third wave.   

Although the PDDs for all trailers can be obtainable prior to the sort operation, current 

unloading sequences are not developed based on the task’s package content information.  The 

facility’s major difficulties in utilizing PDDs include the scale of the computation and the lack of 

an objective function.  To formulate the unloading sequence by MIP with 80 tasks assigned to 80 

positions, the formulation can contain 6,400 binary variables (i.e., each of the 80 tasks has 80 

binary variables to determine its position).  In addition, each binary variable will have 136 

parameters (i.e., one parameter for each load door) in the objective function to determine the 

impact a task will have on all 136 load doors.  Even if MIP can solve the large problem, there is 

no objective function that clearly represents the relationship among unloading sequences and 

makespan. 

The problem of sequencing incoming tasks in sortation facilities was introduced by 

McWilliams, Stanfield, and Geiger [122] and called “Parcel hub scheduling problem.”  In their 

paper, the authors developed a Genetic Algorithm (GA) approach that utilizes a simulation 

model to evaluate system performance.  Similarly, the performance measurement is the time 

span to process all inbound trailers.  Although the paper showed that the GA approach can 

provide relatively good schedules, as discussed below, there are two weaknesses in the paper: An 

over-simplified simulation model and limitation of GA in simulation optimization.   

In their study, there are a number of assumptions that might lead to inaccurate simulation 

results.  These assumptions are as follows: 1.) Trailers can be instantaneously replaced, 2.) 

Trailers are processed with equal and constant service rates, and 3.) All inbound trailers are fully 
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loaded.  Although using these assumptions enable simulation models to be executed within a 

short amount of time, these assumptions are unrealistic for sortation operations.   

The major challenge of the GA approach in simulation is the required long computational 

time to evaluate populations by simulation.  In their paper, the population size was set at 50 and 

the GA was executed for 100 generations.  To evaluate all solutions by simulation, there are 

5,000 scenarios that need to be simulated.  In their study, the computational time to solve one 

problem is from 20 to 360 minutes depending on the problem size.  This relatively low time is 

because the required simulation time in their paper is relatively short.  In contrast, if the CPU 

time to run one replication using a complex simulation model is 20 minutes, it would require 70 

days of CPU time to simulate one replication for 5,000 scenarios.   

7.2 PROBLEM COMPLEXITY 

To develop a methodology to form the task input sequences that result in short makespans, it is 

necessary to consider the size of the computational tasks by calculating the number of possible 

solutions.  Assuming that all 84 tasks are available at the beginning of the operation, and there is 

no constraint to limit the selection of the task unloading sequence, there are two possible 

approaches: 1) develop the exact task input sequence for 84 tasks, or 2) divide 84 tasks into four 

waves. 

To determine the exact task input sequence of 84 tasks, 21 tasks will be selected for the 

first wave, and one task will be selected from the remaining tasks once a task is completely 

unloaded.  The total number of the possible sequences is 106104869.6!63
!63!21

!84
×=×  based on 

this method.  

 105 



Hence, the 84 tasks are divided into four waves of 21 tasks each. Tasks in the same wave 

will have the same priority and probability of being processed.  If 21 out of 84 tasks are selected 

as the first wave, the second wave will be formed by selecting 21 tasks out of the remaining 63 

tasks.  The total number of combinations to develop four waves from 84 tasks will 

be 47108642.4
!21
!21

!21!21
!42

!42!21
!63

!63!21
!84

×=××× .  The number of feasible solutions using the wave 

approach is substantially lower compared to developing the exact task input sequence (6.4869 ×  

10106). 

Due to the lack of an objective (evaluation) function, meta heuristics and MIP cannot be 

directly applied to the task input sequencing problem.  Hence, the objective function needs to be 

replaced by a simulation model.  Utilizing simulation models as objective functions allow only a 

relatively small number of scenarios to be searched in the same amount of CPU time compared 

to deterministic approaches.  For the simulation model in this study, each replication requires 

approximately 20 minutes of CPU time.  Consequently, it requires two hours of CPU time to 

evaluate one solution for six replications using simulation.  The simulation model will require 

200 hours of CPU time to evaluate 100 solutions.  In contrast, deterministic approaches typically 

evaluate thousands of solutions in one second of CPU time. 

Intuitively, the approach that determines the exact unloading sequence can result in a 

lower objective value with smaller variance due to more control and less randomness in the 

system.  The task wave approach has randomness built in when selecting the next task.  

However, the large problem size makes the task input sequencing problem extremely difficult 

even for the four task waves approach.  In this study, the task wave approach will be applied to 

the problem stated at the beginning of this chapter. 
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7.3 SURROGATE SEARCH APPROACH 

To identify surrogate objective functions, a Random Search algorithm is applied to the 

simulation model in order to generate samples.  The algorithm randomly generates feasible task 

input waves (each task is assigned to one wave and each wave has 21 tasks) and then simulates 

four replications for each sequence.  The average and best makespans of the Random Search 

results are shown in Figure 7-1 below.   
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Figure 7—1 Simulation result of Random Search 

 

Figure 7-1 is the Random Search for results of 93 iterations.  Although 93 iterations is 

relatively small compared to the total number of solutions (4.86× 1047), the long CPU time 

required for simulation limits the number of iterations that can be executed.  For the Random 

Search, the CPU time required for 93 iterations in Figure 7-1 is approximately five days.  Figure 
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7-1 shows that by developing task input waves, a 33 minute difference in average makespan 

between the best and worst task input waves found.   

The simulation outputs were analyzed to identify the surrogate objective function.  Chute 

full time and unbalanced package flow for each door were identified as two types of dependent 

variables based on the data for 372 samples (93 iterations, replicated four times each).  To utilize 

these two as independent variables in the multiple linear regression, the chute full time (CFi) is 

divided into four different periods corresponding to each task wave.  Unbalanced flow (FLi) is 

defined as the difference between actual package flow in each wave and designed loading 

capacity.  Although linear regression models with relatively high R2 values (from 0.39 to 0.7) 

were identified, the pilot simulations that utilize these regression models as surrogate objective 

functions did not show consistent improvements.   

In order to collect further samples for constructing surrogate objective functions, three 

scenarios were simulated.  The first scenario utilizes the actual Package Destination Distribution 

(PDD) collected in the facility with the task input sequences randomly generated.  For the second 

scenario, the PDDs are generated using the average package volumes for all incoming tasks.  The 

third scenario uses the PDDs that match load door capacity.  That is, for each task in the third 

scenario, the portion of packages assigned to each load door is the same as the load door’s 

portion of overall loading capacity.  The difference between scenarios 2 and 3 is that scenario 3 

has the PDDs match the load door capacity, which is not the same as average package volumes 

for incoming tasks. 

For scenarios 2 and 3, the PDD is the same for every task, and there is no difference 

when using any task input sequence.  The direct impact of using different task input sequences 
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for the system is the number of packages that will be processed during different time periods of 

the operation.  The simulation results are given in Table 14 below.   

 

Table 14 Simulation results of different PDDs 

Makespan Scenario 1 Scenario 2 Scenario 3 

Sample Mean 4:48:58 4:45:47 4:35:06 

S. D.  (minutes) 9.54 10.26 4.56 

Number of Replications 280 30 30 

 

From the simulation output, it is found that the sortation system has the best performance 

when package flows are the same as designed loading capacities.  Although tasks’ PDDs cannot 

be controlled, similar conditions can be obtained by developing task waves that provide package 

flows close to designed loading capacity.  The surrogate objective function is defined as 

minimizing the difference between the average PDD of task waves and load door designed 

capacity. 

7.3.1 Local search: problem constraints 

To optimize the surrogate objective value, Surrogate Search requires local search methods to 

determine improved solutions.  For different local search approaches, the problem structure 

provides the same types of constraints.  The variables and constraints are defined as follows. 

Parameters 

i: task serial number, i = 1 to 84 (There are 84 tasks assigned to four waves). 

 j: wave number, j = 1 to 4. 

Variable 

Tij = 1 if task number i is selected for wave j, otherwise 0.   
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Constraints 

   (Each task is assigned to one wave) iT
j

ij ∀=∑
=

,1
4

1

jT
i

ij ∀=∑
=

,21
84

1

  (Each wave has 21 tasks) 

For the task input sequencing problem, there are two types of constraints.  The first type 

of constraint assigns each task to one of the four waves, and the second type of constraint 

requires each wave to contain 21 different tasks.   

7.3.2 Local search approaches  

In the pilot simulation results, it was found that the sortation system can obtain short makespans 

when the unloading package flows match the load door designed capacity.  The task input 

sequencing problem can be modeled in a MIP format by minimizing the largest package flow 

that exceeds load door capacity.  Although the MIP formulation cannot handle a situation where 

certain load doors do not receive sufficient packages, minimizing package flow that exceeds the 

designed capacity for each of the load doors can reduce the unbalanced workloads.  The MIP 

formulation of the task input sequencing problem is given below: 

Parameters: 

i: number of tasks, i = 1, 2,…,84.   

j: number of groups, j = 1, 2, 3, 4.   

k: number of load doors, k = 1, 2,…, 136.   

Pik : Portion of packages in task i to door k.   

Ck : Designed loading capacity in door k (portion of total loading capacity).   
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Decision variables:   

Tij = 1 if task i is assigned to group j, otherwise 0.   

G: the maximum package flow that exceeds designed capacity. 

 

Minimize G         (7–1) 

s. t.            (7–2) ∑
=

∀=
84

1
,21

i
ij jT

∑
=

∀=
4

1

,1
j

ij iT         (7–3) 

        (7–4) ( ) kjGTCP
i

ijkik ,,
84

1
∀≤−∑

=

In the problem formulation, the variable G is created to measure the maximum overflow 

load door.  By optimizing the problem, task waves that can result in the minimum G can be 

identified.  The advantage of formulating the problem in a MIP format is that the there are 

existing methodologies that can be utilized to solve it.  The weakness of the formulation is that 

only the largest package flow that exceeds designed capacity will be considered in the problem.  

The MIP formulation cannot detect load doors that are underutilized.  In the study, optimization 

software, called Cplex 9.0, is utilized to solve the task input sequencing problem.   

The pilot experiments contain two test problems utilizing different PDD data sets.  The 

results show that the gap to lower bound is 20 percent for the problem that contains more 

unbalanced PDD data.  For the problem that has more balanced PDD data, the gap is 0.07 

percent.  The empirical tests show that determining the optimal solutions requires more than one 

week of CPU time for Cplex.  Although the MIP formulation can be solved faster than heuristics, 

Cplex cannot determine the optimal solutions in a reasonable amount of time.  The major 

difficulty in determining the optimal solution is the large number of feasible solutions for the 
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problem.  In the MIP formulation, each of the four waves gives equal contributions to the 

objective values.  For any feasible solution, there will be 24 solutions that result in the same 

objective values.  The MIP formulation is modified to eliminate the issue of symmetric solutions.  

There are three types of constraints added into the formulation.  These constraints are stated as 

follows: 

Type 1: ∑    
=

=∀≥
l

i
li lTT

1
21 22,...,2,1,

Type 2: ∑  
=

=∀≥
m

i
mi mTT

1
32 43,...,2,1,

Type 3: ∑  
=

=∀≥
n

i
ni nTT

1
43 64,...,2,1,

 Because each of the four waves makes equal contribution to the objective function, a 

feasible solution can result in 24 symmetric solutions by rearranging the order of waves.  These 

three types of constraints are utilized to form the waves in a certain order.  Type 1 constraints 

force wave 1 to contain more tasks in the first 22 tasks than wave 2.  Type 2 constraints force the 

wave 2 to contain more tasks from the first 43 tasks than wave 3.  Finally, type 3 constraints 

force wave 3 to contain more tasks from the first 64 tasks.  By implementing these constraints 

into the problem formulation, the symmetric solutions generated by of rearranging the order of 

waves for a feasible solution will result in infeasible solutions. 

The symmetric solutions are eliminated by these constraints, and the number of feasible 

solutions is reduced by a factor of 24.  However, the optimal solution still required substantial 

CPU time (more than 24 hours).  The Cplex results were utilized as simulation input data and the 

result did not show significant improvement over the Random Search solution.   
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The surrogate objective function, determined by Surrogate Search, is to provide package 

flows that match the designed loading capacity.  In the MIP approach, the objective function is 

replaced by G in order to maintain the linearity in the problem formulation.  The surrogate 

objective function is a nonlinear function with dependent variables that are identified using 

simulation outputs.  For problems with 336 binary variables, the surrogate objective function 

requires a large amount of computational efforts to solve it.  For the local search approach 1, 

Cplex cannot solve the optimal solution within 24 hours.  For nonlinear objective functions, there 

is no standard method to determine the optimal solution except to evaluate every feasible 

solution.  In this study, heuristics are developed to identify improved solutions in a short amount 

of time.  For local searches 2 and 3, Random Search and Tabu Search are utilized as underlying 

algorithms.  The formulation to determine the waves for the task input sequences is stated as 

follows: 

Parameters: 

i: number of tasks, i = 1, 2,…,84.   

j: number of groups, j = 1, 2, 3, 4.   

k: number of load doors, k = 1, 2,…, 136.   

Pik : Portion of packages in task i to door k.   

Ck : Portion of overall designed loading capacity in door k.   

Decision variables:   

Tij = 1 if task i is assigned to group j, otherwise 0.   

Minimize       (7–5) ( )∑∑ ∑
= = =

⎟
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⎞
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 The surrogate objective function minimizes the deviation of package flows provided by 

task waves and designed loading capacity.  Although the square term in the objective function 

could be replaced by an absolute value function, that would make it difficult to solve the 

problem.   

For the problem of minimizing the deviation of the difference between package flows and 

designed capacity, there is no efficient methodology that can be applied.  Local search 2 utilizes 

a Random Search algorithm to determine improved solutions of task waves.  Because package 

flows are the results of task waves, the surrogate objective value can be identified when the 

waves are constructed.  Local search 2 repeats the process of randomly generating and evaluating 

task waves.  The algorithm for local search 2 is stated as follows. 

1. Randomly generate a number of task waves and calculate the objective values using a 

surrogate objective function. 

2. Simulate the solution associated with the best objective value in step 1 for a specified 

number of replications. 

3. If a better makespan is found through simulation, record it.   

4. Repeat steps 1 to 3 until the maximum number of iterations is reached. 

The Random Search algorithm is utilized to generate diversified solutions to explore 

different search directions.  Since the surrogate objective function can be evaluated 

deterministically, thousands of solutions can be evaluated before the simulation model is 

executed.  After a predefined number of solutions are evaluated, the performance of the best task 

waves will be determined by simulation.  The moving path for local search 2 is given in Figure 

7-2 below: 
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Figure 7—2 Local search 2 moving path 

 

In pilot simulation runs, three variants were tested.  These variants evaluate 1,000, 5,000, 

and 10,000 random solutions in step 1.  Among these three variants, the best solutions and 

average solution qualities are very similar (the difference is within three minutes).  One issue 

with local search 2 is that similar solutions were found once we increased the number of 

iterations.  It is possible that the Random Search can get trapped in local optimums and cannot 

reach better solutions.  Because the Random Search algorithm in local search 2 does not provide 

a mechanism to break away from the local optimum, the Random Search will be stopped at local 

optimums and cannot be improved.  In local search 3, the mechanism of short term memory in 

Tabu Search is implemented in the algorithm to identify improved solutions.  The algorithm is 

listed below. 

Step 0.   Define the maximum number of iterations, and the number of replications. 

1. Randomly generate a number of solutions with wave 1, 2, 3, and 4.   
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2. Calculate objective function values for solutions in step 1 using the surrogate 

objective function. 

3. Apply Tabu Search to the best solution found in step 2 to improve solution quality. 

4. Select the solution with the best objective value in step 3 and simulate the solution for 

a specified number of replications. 

5. If a better makespan is found in the simulation result, record it.   

6. Repeat steps 1 to 5 until the maximum number of iterations is reached. 

In local search 3, steps 1 and 2 that randomly generate feasible solutions are the same as 

for local search 2.  In step 3, Tabu Search is utilized to improve the best solutions found by 

Random Search.   

In the local search 3 pilot simulations, several settings for the Random Search and Tabu 

Search iterations in steps 1 to 3 were tested.  The results show that local search 3 can identify 

task waves with short makespan times in the first 20 iterations.  The moving path of local search 

3 is shown in Figure 7-3 below: 
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Figure 7—3 Moving path of local search 3 

 

Figure 7-3 is the pilot simulation results for local search 3.  Because local search 3 

calculates the surrogate objective values prior to simulation executions and does not collect 

feedback from the simulation results, the moving path for local search 3 does not follow any 

pattern.  For Surrogate Search approaches that receive simulation results as feedback, their 

moving paths will show more improved solutions more frequently. 

In the pilot simulations, local search 3 identified task waves that led to an average 

makespan time of 4:36:36 when the number of Tabu Search iterations (prior to simulation runs) 

is greater than 100.  The best and average makespan times are both less than those for local 

searches 1 and 2.  The advantage of using the unbalanced flows as the surrogate objective 

function is that the objective values can be determined prior to simulation runs.   

The major difference between local search 1 and local searches 2 and 3 is that local 

search 1 utilizes MIP to solve the problem and optimal solutions can be obtained.  For local 
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searches 2 and 3, heuristics are utilized to determine improved solutions and there is no 

guarantee of the solutions’ optimality.  Although local searches 2 and 3 cannot determine 

optimal solutions, the near optimal solutions provided by local searches 2 and 3 can be 

determined within 300 iterations using the surrogate objective function, which requires less than 

3 minutes of CPU time.  In contrast, it would require longer than 24 hours to determine the 

optimal solutions by local search 1. 

In the pilot simulation results for the three local searches, the best solution found is seven 

minutes less than the best solution found by randomly generating task input sequences.  In 

addition, the average makespan time for multiple iterations by these three local searches are 

lower than randomly generated sequences.  This suggests that the Surrogate Search can identify 

solution regions that have better solution quality, and improved solutions can be identified faster.   

One remaining issue of the task input sequencing problem is that there are 24 symmetric 

solutions for any feasible solution due to the symmetric structure in the problem.  Although these 

24 solutions have the same objective values for surrogate objective function, the makespan times 

cannot be obtained until the simulation is executed.  The estimated computational time to 

simulate 24 scenarios is 48 hours.  In this study, the local searches utilize the strategy that only 

one solution will be simulated in order to explore more diversified solutions in the limited time. 

7.3.3 Scatter Search approach 

To evaluate the Surrogate Search performance, the task input sequencing problem is also solved 

by Scatter Search.  As noted, Scatter Search is implemented in the software package OptQuest in 

Arena.  For this study, the OptQuest model is developed for the task input sequencing problem 

given the same types of feasibility constraints.  Each scenario is simulated for multiple 
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replications (four to six), and the average makespan is defined as the objective value.  The 

example of the Scatter Search moving path is given in Figure 7-4 below.   

 

4:36

4:39

4:42

4:45

4:48

4:50

4:53

4:56

4:59

5:02

5:05

5:08

0 10 20 30 40 50 60 70 80 90 1

Iterations

M
ak

es
pa

n

00

Current solution
Best solution

 
Figure 7—4 Scatter Search example 

 

From the OptQuest results, the best found solution is 4:39:00 for the makespan.  This is 

slightly longer than local searches 2 and 3.  To compare the performance among local searches 

and OptQuest, a series of task input sequencing problems was designed.  In the next section, the 

experimental results are discussed. 
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7.4 COMPUTATIONAL RESULTS 

To evaluate Surrogate Search performance, multiple input data sets (PDDs) are utilized in test 

problems.  For this study, there is only one PDD set collected from the facility.  Although more 

data sets could be collected in the sortation system, the facility currently does not have an 

efficient method to collect PDD data sets.  In addition, the data collected by the facility over a 

short time period (days or weeks) are similar and would not provide a variety of input ranges to 

test the various possibilities.  In order to evaluate the Surrogate Search performance under 

different input data ranges, four additional problems were artificially generated for experiments. 

To generate task PDDs for the experiment, the total package volumes for all load doors in 

the collected data were first calculated.  A simulator was developed to generate task PDDs in this 

study.  The packages for each of the load doors are randomly re-assigned to a specified number 

of tasks.  For example, if the total number of packages for a load door is 1,000, these 1,000 

packages would be re-assigned to five tasks with equal probability.  The number of tasks that 

packages for a load door will be re-assigned determines the ranges of the input data.  If the 

packages for a load door can only be re-assigned to five tasks, the PDD for each of the tasks will 

be relatively unbalanced compared to re-assigning packages to all tasks (84 tasks).  In the study, 

four sets of task PDDs were generated by assigning packages in each of the load doors to 5, 20, 

30, and 60 tasks.  To guarantee the feasibility of the generated data, no more packages would be 

re-assigned to a trailer once it reaches the maximum package capacity.  This decision rule is 

programmed into the PDD simulator. 

In the experiment, there are five sets of task PDDs utilized to evaluate Surrogate Search 

performance.  To further test the sortation system performance, there are two package volumes, 

the current package volumes and 125 percent package volumes, utilized in the test problems.  
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Hence, there are ten testing problems (five PDD sets and two package volumes).  The method of 

generating PDDs ensures the feasibility and variety of the generated PDD sets.  The settings of 

these ten testing scenarios are listed in Table 15 below: 

 

Table 15 Scenario settings for experiment 

Scenario # 1 2 3 4 5 

PDD data Actual data Generated #1 Generated #2 Generated #3 Generated #4

Package Volume 65,000 65,000 65,000 65,000 65,000 

Scenario # 6 7 8 9 10 

PDD data Actual data Generated #1 Generated #2 Generated #3 Generated #4

Package Volume 84,000 84,000 84,000 84,000 84,000 

 

From the pilot simulations for the four local searches, it is found that local search 3 can 

identify improved solutions faster than the other two local searches.  Although they also 

determine improved solutions, local searches 1 and 2 cannot be easily applied.  For local search 

1, the required CPU time to solve the MIP formulation is longer than one day.  For local search 

2, cycling problems can occur due to the lack of a mechanism to break away from local optima.  

Hence, for the experiments in this study, Surrogate Search will utilize only local search 3, which 

combines Random Search and Tabu Search.   

The most problematic element of the experiment is the long CPU time to execute 

Surrogate Search.  For the experiment, each of the ten test problems is solved by Surrogate 

Search for 100 iterations.  For the problem with a large number of feasible solutions (4.68x1047), 

100 iterations is relatively small.  However, the simulation model in this study requires 20 

minutes to execute one replication, and there are multiple (four to six) simulation replications 

executed for one iteration.  The CPU time to execute 100 iterations using Surrogate Search is 

longer than eight days.  In addition, Scatter Search is also utilized to solve these ten scenarios 
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with the advantage of executing more iterations than Surrogate Search.  The advantage of 

executing more iterations is that additional solution regions can be explored, and there is a 

greater chance of finding a better solution.  The tradeoff is that more CPU time is required due to 

the additional iterations.  The computational results are listed in Table 16 below: 

 

Table 16 Computational results of ten scenarios 

Scenario # 1 2 3 4 

Search method Surrogate  Scatter Surrogate Scatter Surrogate Scatter  Surrogate Scatter 

Number of iterations 75 88 126 229 101 139 101 141 

Replications 6 6 4 4 4 4 4 4 

Makespan (Avg) 4:45:36 4:46:48 5:04:48 5:19:12 4:49:12 4:52:48 4:46:48 4:49:12

Makespan (Best) 4:36:36 4:39:36 4:53:24 4:58:12 4:38:24 4:40:12 4:34:12 4:38:24

Scenario # 5 6 7 8 

Search method Surrogate  Scatter Surrogate Scatter Surrogate Scatter  Surrogate Scatter 

Number of iterations 105 145 60 70 137 303 80 107 

Replications 4 4 6 6 4 4 4 4 

Makespan (Avg) 4:45:00 4:45:00 5:42:36 5:46:48 6:20:24 6:36:36 5:51:36 5:57:00

Makespan (Best) 4:35:24 4:35:24 5:33:00 5:34:12 6:06:00 6:13:12 5:37:48 5:42:36

Scenario # 9 10     

Search method Surrogate  Scatter Surrogate Scatter     

Number of iterations 80 109 100 110     

Replications 4 4 4 4     

Makespan (Avg) 5:46:48 5:50:24 5:42:36 5:45:00     

Makespan (Best) 5:33:36 5:36:00 5:33:00 5:34:48     

 

For the computational results, the average makespan is defined as the average value of all 

solutions found by the search methods.  For the search methodologies, the performance 

measurement is typically focused on the best solution found when a large number of iterations 

are executed.  In this study, the largest number of iterations executed by Scatter Search is 303 

(scenario 7).  The average makespan can indicate the solution quality of the search methods.   

 122 



In Table 16, Surrogate Search found better solutions for nine of the ten scenarios for both 

average and best makespans.  Of these ten scenarios, eight of them utilize PDDs that were 

artificially generated.  The advantage of generating PDDs is that the level of the unbalanced 

tasks can be controlled as input data.  For the test problems with the most unbalanced input data 

(scenarios 2 and 7), simulation results indicate that the largest difference in makespan occurred 

between Surrogate and Scatter Search.  The solutions for scenario 2 and 7 found by Surrogate 

Search are 14.4 and 16.2 minutes less, respectively, compared to the best solutions found by 

Scatter Search.  For scenario 5, which has the most balanced input data, the difference between 

makespan times found by the two search methods is less than 0.5 minutes.   

Another measurement to evaluate the Surrogate Search performance is the best solutions 

found during the search process, which can be utilized as an indicator of the speed of identifying 

improved solutions.  If the best solutions found by a search method show that near optimal 

solutions can be found in the first 20 iterations, similar types of problems can be solved for a 

small number of iterations using the same method.  The best solutions found by Surrogate Search 

and Scatter Search within the first 100 iterations for scenario 2 (most unbalanced) is shown in 

Figure 7-5 below: 
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Figure 7—5 Best found solutions of scenario 2 

 

Figure7-5 illustrates that Surrogate Search quickly found better solutions than Scatter 

Search solutions as indicated by the best solution paths.  The best makespan times found by 

Surrogate Search is 4:54:00, while the best solutions found by Scatter Search is close to 5:06:00 

hours.  In addition, solutions found by Surrogate Search have makespan times that are close to 

4:54:00 hours in the first 10 iterations.  For scenario 5, which has the most balanced PDDs, the 

best solutions of surrogate and Scatter Search have similar makespan times.  The scenarios 5 best 

found solutions are shown in Figures 7-6.  Figure 7-6 shows that the best solutions for scenario 5 

found by both surrogate and Scatter Search are similar after 80 iterations.  Compared to the best 

solutions found in the earlier iterations, Surrogate Search reached solutions that have shorter 

makespan times than Scatter Search solutions after 20 iterations.  In addition, Scatter Search did 

not identify solutions better than Surrogate Search solutions between iterations 20 and 75. 
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Figure 7—6 Best found solutions of scenario 5 

 

The major difference between scenarios 2 and 5 is the tasks’ PDDs.  The task PDDs for 

scenario 2, which is the most unbalanced, is generated by re-assigning packages to five tasks.  

The task PDDs in scenario 5, which is the most balanced, are generated by re-assigning packages 

to 60 tasks.  For the task input sequencing problem, Surrogate Search performed better than 

Scatter Search when the task PDDs were more unbalanced.   

The sortation system processes all tasks in a short amount of time when all load doors can 

receive packages in proportion to their designed loading capacities.  When task PDDs are more 

balanced, it is easier to develop task waves that result in shorter makespan times.  A large portion 

of task waves that are arbitrarily generated by Scatter Search can have short makespan times 

because the balanced PDDs can provide package flows that are closer to the load doors’ designed 

capacities.  If task PDDs are extremely unbalanced, most of the feasible task waves will result in 

longer makespan times. Further, Scatter Search requires more iterations to determine solutions 
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that have the same makespan times as solutions found by Surrogate Search.  The surrogate 

objective function can determine task waves that result in short makespan times by providing 

package flows that are close to the load doors’ designed capacities. 

7.4.1 Task input sequencing problem using imperfect information 

In the previous section, it is demonstrated that Surrogate Search can identify task input 

sequences using tasks’ PDD data set.  Surrogate Search is utilized under the assumption that the 

PDD data set is 100 percent accurate (perfect information).  As noted, one of the reasons that 

PDD data sets were artificially generated is because the facility cannot effectively collect the 

PDD data for trailers.  In addition, Surrogate Search was executed for 97 iterations on average 

for each test problem, which requires more than five days of CPU time.   

The goal of developing Surrogate Search approaches for the task input sequencing 

problem is to implement it as a decision tool for facility.  To utilize Surrogate Search approaches, 

there are a number of issues that need to be addressed: 

1. Will the facility be capable of collecting task PDD data sets prior to sort operations? 

2. Will the PDD data set collected in the facility be 100 percent accurate? 

3. Will there be enough time between when the PDD data set is collected and when the sort 

operations must start to solve the model? 

For the issues listed above, the facility currently does not have the ability to provide the 

100 percent accurate PDD data set within the time allowance prior to the actual start of 

operations.  To resolve these issues, an alternative approach is to utilize historical PDD data.  In 

the previous section, the experiments were conducted using historical and artificially generated 

PDD data sets.  By using historical data, the PDD data set can be collected prior to the actual 
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operations and there will be sufficient time to use the Surrogate Search approach.  That is, if the 

Surrogate Search approach requires the PDD data set 60 hours prior to the actual operations, the 

PDD historical data for the previous 20 days can be utilized.  By using the historical data, the 

only issue left is that the historical PDD data set will not be 100 percent accurate.  The PDD 

historical data is defined as imperfect information for task input sequencing problem. 

A method to determine the impact of using imperfect information is to simulate the 

sortation system and determine the makespan time.  For this research, a series of test problems 

were designed to evaluate the performance when using historical data in Surrogate Search.  

These test problems were designed by multiplying uniformly distributed random variables with 

the PDD data sets of scenarios 2, 3, and 4.  Different levels of accuracy of the PDD data set can 

be generated by using different ranges for the uniform distribution.  The test problems are listed 

below: 

1. Original problem: test problems from previous section where the input sequence is solved 

based on 100 percent accurate PDD data. 

2. 95 percent problem: problems where 95 percent of the PDD data are the same as in the 

original problem. 

3. 87 percent problem: problems where 87 percent of the PDD data are the same as in the 

original problem. 

4. 80 percent problem: problems where 80 percent of the PDD data are the same as in the 

original problem. 

The PDD data set contains the probabilities for packages in each task going to each 

destination load door where the total probability for one task is one.  To generate a 95 percent 

problem, the probabilities for each task from the original problem were first multiplied by 
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uniformly distributed random numbers within the range of 1 to 1.1.  The probability for each 

destination load door was then normalized to match to the criteria that the summation of all load 

door probabilities in a task equals to one.  The maximum package volume change for a 

destination load door can be as much as 10 percent by multiplying random numbers with PDD 

data.  Based on an empirical test of modifying PDD data for 10,000 tasks, the largest difference 

for one destination load door between the original and the 95 percent problem is 5.7 percent.  For 

the PDD data of the 95 percent problem, the error of a task’s package volume to each destination 

door is within 5 percent. 

 Scenarios 2, 3, and 4 are utilized because there are different levels of imbalance in their 

PDD data.  Among these three scenarios, scenario 2 has the most imbalanced PDD data set (only 

five incoming tasks contain packages for a specified load door) and scenario 4 has the most 

balanced PDD data set (20 incoming tasks contain packages for a specified load door). 

To determine the performance of task input sequences based on imperfect information, 

the input sequences determined in the original problems will be utilized as input sequences for 

the 95, 87, and 80 percent problems.  The approach to evaluate task input sequences is given as 

follows: 

1. Determine the task input sequence of the original problem. 

2. Simulate the 95, 87, and 80 percent problems using the task input sequence of original 

problem. 

3. Determine the task input sequences for the 95, 87, and 80 percent problems using 

accurate PDD data. 

4. Simulate the 95, 87, and 80 percent problems using their associated task input sequences 

found in step 3. 
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5. Determine the difference in makespan between the results of step 2 and step 4. 

The test problems (95, 87, and 80 percent) will first utilize the input sequences 

determined by imperfect information (using original problems) and then use the sequences 

determined by Surrogate Search using there accurate PDD data.  In step 3, the input sequences of 

the 95, 87, 80 percent problems are determined using their accurate PDD data sets.  These PDD 

data sets were recorded during the process of generating the test problems.  The Surrogate Search 

approach was executed for 100 iterations for each of the test problems. 

For steps 2 and 4, each test problem was simulated for 20 replications.  The experimental 

results are listed in Table 17 below: 

 

Table 17 Computational results of imperfect PDD data 

Scenario 2 Scenario 3 

Problem  Original 95% 87% 80% Original 95% 87% 80% 

Task input sequence of original problem Task input sequence of original problem 

Avg. makespan 5:01:48 5:09:00 5:10:12 5:04:12 4:51:36 4:48:00 4:51:00 4:48:36 

SD (minutes) 13.8 10.8 12.6 10.2 10.8 8.4 10.2 9.6 

Task input sequence of each problem Task input sequence of each problem 

Avg. makespan 5:00:00 5:03:00 5:04:48 4:51:00 4:54:00 4:45:36 

SD (minutes)   10.2 8.4 8.4   9.6 10.2 10.2 

Scenario 4     

Problem  Original 95% 87% 80% 

Task input sequence of original problem 

Avg. makespan 4:48:36 4:47:24 4:44:24 4:48:00     

SD (minutes) 9 9 9 10.8     

Task input sequence of each problem     

Avg. makespan 4:45:00 4:43:12 4:49:48     

SD (minutes)   7.8 4.8 8.4     
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 In Table 17, each of the test problems was simulated for 20 replications.  For these test 

problems, they were first simulated using the task input sequences of the original problems and 

then simulated using the input sequences determined by Surrogate Search.  For 95, 87, and 80 

percent test problems, the percentages only indicate that the amount of PDD data (95, 87, and 80 

percent) can be accurately predicted by original problems.  It is not guaranteed that 80 percent 

problems will always have longer makespan time then 95 percent problems.  By changing the 

PDD data, test problems can result in shorter makespan time.  For problems in scenarios 3 and 4, 

the difference of average makespan time between using task input sequences and their associated 

sequences are relatively small (within ± 3 minutes).   

Among the test problems, scenario 2 test problems had the most unbalanced PDD data 

set.  For the 95 and 87 percent problems in scenario 2, there were 9 and 7.2 minute 

improvements in average makespan time respectively by using individual task input sequences.  

For scenario 2 test problems, statistically significant differences were found by performing 

paired T tests (common random numbers are assigned to simulation model) to compare the 

difference between using the original problem sequence and the sequences based on actual PDD 

data (95 and 87 percent problems).  Although there are only two instances that show significant 

difference in makespan when using imperfect information, these two instances are both in 

scenario 2 problem set, which has the most unbalanced PDD data.  The results indicate that 

larger error for makespan time might occur when the PDD data is more unbalanced. 

The simulation results indicate that it is feasible to use historical PDD data sets in 

determining the task input sequences.  In terms of the PDD data quality, even when the data is 

only 80 percent accurate, the average makespan time can still be relatively close to the result of 

using 100 percent data.   
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7.5 SUMMARY  

In this chapter, Surrogate Search approaches were developed for the task input sequencing 

problem.  The task input sequencing problem is defined as constructing task waves for the 

sortation system input process.  The experiments to obtain surrogate objective functions were 

based on the knowledge of sortation system operations.  The surrogate objective function was 

identified by simulating package flows matched to designed capacity.  For the optimization 

process, three local searches were researched.  Surrogate Search utilizes Tabu Search to 

determine improved solutions.  For nine of the ten test problems, Surrogate Search determined 

solutions that had better quality than the bench mark methodology, Scatter Search.  Another set 

of test problems was designed to identify the possibility of using historical package destination 

distribution data for the task input sequencing problem.  The result showed historical data can be 

utilized even when the data is only 80 percent accurate. 
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8.0  SUMMARY AND CONCLUSIONS 

The Surrogate Search approach has been developed and demonstrated in this dissertation.  

Surrogate Search has been shown to be an effective and practical methodology to identify 

improved system designs for sortation system simulation problems.   

8.1 SURROGATE SEARCH APPROACH 

The AMHS sortation system simulation model discussed in Chapter 3 has been utilized as a 

large-scale simulation case study for this dissertation.  Experiments for regression meta modeling 

were discussed in Chapter 4.  When decision variables are not related (or constrained) to each 

other, near optimal solutions for simulation problems can be predicted and simulation models 

can be replaced by regression meta model under certain circumstances.  It was shown that 

complex constraints contained within these systems are a major challenge for regression meta 

modeling.   

The failure of regression meta modeling in Chapter 4 provided the motivation for 

developing Surrogate Search.  The concept of Surrogate Search is to identify correlated 

information from simulation results to improve the effectiveness for optimizing large-scale 

problems by heuristics.  The existence of surrogate objective functions is demonstrated for a 

variety of large-scale simulation problems.   
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The Surrogate Search approach is presented and discussed in Chapter 5.  There are two 

major steps in Surrogate Search: identify surrogate objective functions and optimize surrogate 

objective values.  The approach to identify surrogate objective functions is to utilize multiple 

linear regression to analyze simulation results.  If multiple linear regression cannot provide a 

validated regression model as a surrogate objective function, it requires additional efforts to 

determine surrogate objective functions utilizing system knowledge. 

Once surrogate objective functions are identified, the step of optimizing objective values 

needs to be developed.  The optimization step first executes simulation models to generate 

system performance and surrogate objective values, and then utilizes local searches to determine 

the next solution that can improve surrogate objective values.  A variety of methodologies can be 

used for the local searches to improve surrogate objective values.  In the study, MIP, Random 

Search, and Tabu Search are used. 

The use of multiple regression to define a surrogate objective function is described in 

Chapter 6 for determining operator assignments.  In the optimization step, four local search 

procedures were researched for identifying improved solutions.  The local searches analyze 

simulation results to provide feedback to adjust surrogate objective function parameters.  They 

often provide consistent improvement in solution quality. 

In Chapter 7, the Surrogate Search approach was investigated to solve the task input 

sequencing problem.  In the process of identifying surrogate objective functions, linear 

regression failed to determine a formula that could be utilized to improve solution quality.  

However, a result of linear regression was a list of significant variables from the simulation 

results. These variables were further researched based on knowledge of the system to construct a 

surrogate objective function.  With the identified surrogate objective function, three local 
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searches were developed to identify improved sequences.  The local searches provide sequences 

that resulted in relatively good surrogate objective values prior to simulation execution.  The 

sortation system simulation problem shows Surrogate Search is an effective methodology to 

identify improved system designs.   

8.2 PERFORMANCE OF SURROGATE SEARCH 

Surrogate Search experiments are presented in Chapters 6 and 7 using sortation system 

simulation models.  The results of the operator assignment problem and task input problem 

showed that Surrogate Search consistently found solutions associated with good quality.  The 

OptQuest module in Arena, which utilizes Scatter Search methodology as an underlying 

algorithm, is used to solve the same problems for comparison purposes.  For the majority of 

tested instances, Surrogate Search outperformed Scatter Search by identifying solutions with the 

same quality in fewer iterations or found better solutions with the same number of iterations.  

This suggests that the process of searching for improved system designs can be dramatically 

shortened by identifying surrogate objective functions from the simulation results. 

Although identifying surrogate objective functions is a time consuming process, the 

surrogate objective functions found can be applied to a series of problems based on the same 

simulation model.  The objective function doesn’t need to be re-defined when solving multiple 

instances of a simulation problem.  For simulation problems in Chapters 6 and 7, the surrogate 

objective functions are identified through pilot simulations.  The rest of the instances were 

solved using the same surrogate functions without re-running the pilot simulations.   
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Surrogate Search is flexible in terms of selecting search procedures.  A variety of 

heuristics and optimization techniques can be used for the local searches in Surrogate Search.  

The local searches in Surrogate Search systematically find improved solutions.  Multiple 

heuristics and optimization methodologies were utilized in both Chapters 6 and 7 to solve the 

same problem sets. The computational results showed that improved solutions could be obtained 

by multiple local searches when the same surrogate objective functions are utilized. 

Although it is shown that surrogate objective functions exist for variety of simulation 

problems, an issue for Surrogate Search is the difficulty in identifying surrogate objective 

functions.  While linear regression is utilized to examine significant level of dependent variables 

and to construct surrogate objective functions, there is not sufficient evidence to guarantee that 

surrogate objective functions can be found for all types of problems. 

8.3 MAJOR CONTRIBUTIONS OF THE DISSERTATION 

The major contribution of this study is the development of the Surrogate Search approach.  

Surrogate Search provides the framework for identifying surrogate objectives and constructing 

search procedures to solve large-scale simulation optimization problems.  The methodology can 

be utilized by researchers interested in simulation optimization as a comparison methodology for 

new simulation optimization procedure developments.  This contribution is needed in the field 

because the number of large-scale simulation models of real systems has dramatically increased 

and most of the existing methodologies are not designed for large-scale simulation optimization. 

Another contribution of the dissertation is the simulation of a sortation system.  The 

unique constrains and structure of sortation systems involves a series of problems in operations 
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research.  This dissertation developed Surrogate Search approaches to research problems of 

system parameter setting, operational policy, operator allocation, and task scheduling.  The 

simulation problems in this study utilized simulation models of one of the most complex AMHS 

sortation systems in the US.   

Finally, this dissertation provides detailed Surrogate Search approaches to hub scheduling 

problem, which was introduced by McWilliams et al. [122].  The Surrogate Search approach is 

an alternative method to solve this problem. The computational results show that good solutions 

can be found in a small number of iteration (less than 100 scenarios) compared to the existing 

GA approach (5,000 scenarios).  This methodology can be employed by operations research 

analysts who focus on distribution centers.  This contribution is needed because distribution 

center operations managers typically have a short allowance time to determine solutions after the 

task information is available. 

8.4 FURTURE RESEARCH DIRECTIONS 

In this dissertation, the Surrogate Search approach is developed as the simulation optimization 

methodology that utilizes simulation results to formulate an objective function.  There are a 

number of new research issues raised with the experiments performed in this study.  These 

research issues can be divided into three areas: Improve the procedure to identify surrogate 

objective functions, develop surrogate constraints, and further applications on Surrogate Search. 
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8.4.1 Improve methods to identify surrogate objective functions 

The process for identifying surrogate objective functions utilizes multiple linear regression and 

system knowledge.  For this research, the variable selection of the linear regression approach was 

manually processed.  One of the future research directions is to develop a general procedure for a 

linear regression approach to construct surrogate objective functions.  The procedure can be 

developed using the measures of regression models include R2 values, significance of regression 

model, and significance of coefficient.   

For those simulation problems where surrogate objective functions cannot be determined 

by linear regression, methods to collect system knowledge such as interviewing field experts can 

be time consuming.  The process of identifying surrogate objective functions involves 

understanding system behavior.  Currently, there are a number of existing methodologies that are 

designed to analyze system behavior.  These methodologies include data mining, artificial 

intelligence, and artificial neural networks.  For large-scale simulation models, system behavior 

can be generated by simulating diversified scenarios.  The surrogate objective functions can be 

identified by using methodologies that analyze the resultant system behavior. 

One of the most important reasons that simulation is utilized as an objective function is 

the realistic results generated by simulation models.  Surrogate Search provides a methodology 

to construct surrogate objective functions based on validated simulation models.  By a more in 

depth analysis of system behavior, we would hope to develop methods to identify surrogate 

objective functions using less simulation runs, and that predict improved solutions more 

accurately.  
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8.4.2 Develop surrogate constraints 

Another of the topics that require further investigation is to develop constraints using simulation 

results.  In this dissertation, Surrogate Search developed surrogate objective functions to replace 

actual objectives.  The same concept could be utilized to artificially construct constraints for 

simulation optimization problems.  The major challenges of large-scale simulation optimization 

problems are the large number of feasible solutions and long computational time to execute 

simulation models.  We want to research the approach for developing effective constraints for 

simulation problems to reduce the number of feasible solutions.   

8.4.3 Further applications on Surrogate Search 

An extension of Surrogate Search application is to convert simulation models into decision tools.  

As a result of Surrogate Search, improved system designs can be identified within a shorter 

amount of time.   

The objective of large-scale simulation applications is to evaluate different system 

designs.  Although the simulation models can provide detailed system information, the long 

computational time does not allow simulation models to determine optimal system designs for 

operational levels.  Rather, these simulation applications can only be utilized for long term 

planning.   

The goal of Surrogate Search is to identify improved solutions using a reasonable amount 

of computational time for large-scale simulation problems.  For simulation models that can be 

executed relatively fast, Surrogate Search can be utilized to identify surrogate objective functions 

to enable these simulation models to be utilized as real time decision tools.   
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Another application is to develop common surrogate objective functions for a class of 

simulation problems.  In the experiments, the process to identify surrogate functions has only 

been performed for the pilot simulation.  Once a surrogate objective function is found, it can be 

repeatedly used for different instances.  For a class of problems that have similar systems, 

common surrogate objective functions could be constructed and utilized by that class of 

problems.  The common surrogate objective functions will benefit simulation problem by 

simplifying the process of identifying surrogate objective functions.   

8.5 SUMMARY 

The Surrogate Search approach is designed to optimize large-scale simulation models that 

contain combinatorial decision variables.  The surrogate objective functions are identified by 

analyzing simulation results to observe system behavior.  The development of surrogate 

objective functions can benefit the optimization process by reducing the number of simulation 

iterations.  The experimental results showed that Surrogate Search performed well for complex 

sortation system simulation problems.  This dissertation utilized the simulation model of a 

sortation system to demonstrate that Surrogate Search can be applied to large-scale simulation 

problems and contribute to the simulation optimization field.  The Surrogate Search approaches 

and the experimental results are discussed.  The dissertation contributions include the Surrogate 

Search framework for simulation optimization and approaches to solve sortation system 

simulation problems.  Finally, future research directions for improving the method of identifying 

surrogate objective functions, developing surrogate constraints, and common surrogate objective 

function are discussed in this Chapter. 
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