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PARTIAL LEAST SQUARES ON DATA WITH MISSING COVARIATES: A

COMPARISON APPROACH

Dana L. Tudorascu, PhD

University of Pittsburgh, 2009

The correlation between any two random variables can be estimated using a variety

of techniques including parametric methods based on the Pearson correlation coefficient,

nonparametric methods, and regression analysis. While these estimators have been widely

used, the computation of these estimates in the presence of missing data has not been as

widely studied. There has been some work addressing the estimation of parameters in the

presence of missing data for regression analysis; including imputation, inverse probability

weighted regression and weighted estimating equations. However, there has been little work

focused on the estimation of the correlation coefficient. To assess the usefulness of these

methods in a practical setting, we present simulation studies comparing imputation, inverse

probability weighting and complete cases and provide recommendations on the basis of these

results. Furthermore, computation of Partial Least Squares (PLS) scores with the correlation

matrix computed using the above mentioned techniques are also presented. We apply these

results in a positron emission tomography data set consisting of several different brain regions

as response variables and cognitive tasks as covariates of interest. Alzheimer’s disease is a

progressive and fatal health disease. The application presented in this work is significant for

public health since it provides us with a better understanding of variability in different brain

regions as it relates to neuropsychological tests that are helpful in diagnosis of progressive

brain disease (i.e Alzheimer’s disease).
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1.0 INTRODUCTION

Missing values in a dataset, an issue that statisticians often have to overcome, is the main

motivation of our research. Statistical inference from data with missing covariates has been

a heavily researched topic over the last two decades. Since most statistical methods were

derived for fully observed data, the impact of missing values is an issue. Missing values can

occur on independent variables (predictors) and on dependent variables (outcomes). The

goal of a statistician still remains the same with or without missing values, namely, to draw

valid and efficient inferences about the population of interest. This work is an attempt

to address the problem of missing covariates when an estimate of the covariance matrix

is desired. Furthermore, the estimated covariance matrix will further be employed in the

computation of partial least squares scores. Partial least squares (PLS) is a technique that

operates on the covariance among two or more blocks of variables and uses this information

to obtain a new set of variables, called scores, that relate the blocks using fewer dimensions.

In 1976 Rubin and Little [20] developed a terminology for different missing values pro-

cesses. The three missing data mechanisms defined by Little and Rubin are: MCAR (missing

completely at random), MAR (missing at random), and MNAR (missing not at random).

MCAR assumes that the probability that an observation zi is missing is not related to the

value of zi or to the value any other variables in the study. MAR assumes that the proba-

bility that an observation zi is missing is not related to the value of zi but could be related

to the value of other variables in the study. MNAR assumes that the missingness could be

related to the value as well as to the other variables. Throughout our work the missing at

random mechanism will be assumed.
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1.1 SUMMARY

The layout of this dissertation will be as follows. Chapter 2, entitled Background, will

provide a literature review with respect to handling data with missing covariates along with

important definitions that will be use throughout our work. Partial Least Squares is also

introduced as well in this chapter and discussed in detail. Chapter 3, entitled ”Covariance

matrix” will present the methodology that was used for estimation of the covariance matrix

in the presence of missing covariates, along with simulation studies, a positron emission

tomography example and a short discussion. Chapter 4, entitled ”Partial Least Squares”,

will present the methodology developed for computing PLS scores in the presence of missing

data. Simulation studies will be presented, along with a data example followed by a short

discussion section. Chapter 5 will conclude this work with a discussion section and further

recommendations.
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2.0 BACKGROUND

Positron Emission Tomography (PET) measures emissions from radioactively labelled

metabolically active chemicals that have been injected into the bloodstream. The emission

data are computer-processed to produce 2- or 3-dimensional images of the distribution of the

chemicals throughout the brain [16]. The labelled compound, called a radiotracer (molecule

labelled with a positron emitting isotope), is injected into the bloodstream and accumu-

lates in various regions throughout the body/brain. Sensors in the PET scanner detect the

radioactivity as the compound accumulates in various regions of the brain.

There are four important radionuclides that are used in PET to label compounds: Car-

bon (11C), Nitrogen (13N), Oxygen (15O) and Fluorine (18F ). They emit radiation that will

pass through the body and can be detected externally. The amount of tracer is small and

it does not interfere or influence in any way the activity of the compound. Based on what

they measure, PET tracers can be divided into three broad classes: metabolic, blood flow

and receptors and transporters. The first category includes tracers that provide metabolic

data such as glucose uptake and protein synthesis obtained from tracers 18−fluorine (18F ),

Carbon − 11 (11C). These biomolecules leave the bloodstream and enter cells. The second

category of compounds measure physiological activities (e.g., blood flow) and uses the tracer

Oxygen (15O). The compound remains in the bloodstream over the established study dura-

tion. The third broad category includes compounds that quantify molecular target (receptors

and transporters) and a tracer that could be used with these is Carbon− 11 (11C).

A mathematical model (kinetic model) is used to describe the kinetics of the tracer

during the biological process. The final result is a three-dimensional image of the anatomical

distribution of the biological process under the investigation. A sequence of images of tracer

activity distribution is recorded for a specified amount of time. Using a kinetic model, useful

3



information regarding the tracer uptake during the time period of interest is extracted at

the end of the process. Predefined regions of interest are placed over the organ tissue under

investigation on a specified number of slices (images), so that the activity in that region

(tracer concentration) can be tracked over time. Data obtained through the regions of

interested process of the images will produce the time activity curves for the tissue under

investigation.

PET scanning is used for diagnosis of brain disease, most notably because brain tumors,

strokes, and neuron-damaging diseases which cause dementia (such as Alzheimer’s disease)

all cause changes in brain metabolism, which in turn results in easily detectable changes

in PET scans. In PET imaging, [18F ]-2-deoxy-2-fluoro-D-glucose (FDG) can be used for

the assessment of glucose metabolism in the heart, lungs, and the brain. The fluorine in

the FDG molecule is chosen to be the positron-emitting radioactive isotope fluorine − 18,

to produce [18F ]-FDG. The isotope fluorine − 18 is clinically attached to the chemical

compound. The tracer reflects metabolic activity and most of the FDG uptake occurs within

30 minutes after it has been injected. As a glucose analog, FDG is taken up by high-glucose-

using cells such as brain, kidney, and cancer cells, where phosphorylation (the addition of

a phosphate (PO4) group to a protein or other organic molecule) prevents the glucose from

being released intact [17]. This tracer is also widely used for imaging different types of

tumors. As a result FDG-PET can be used for the diagnosis, staging, and monitoring of

cancer treatment. Some type of diseases for which PET-FDG is used include: Hodgkin’s

disease, non-Hodgkin’s lymphoma, colorectal cancer, breast cancer, melanoma, and lung

cancer as well as in diagnosing Alzheimer’s disease.

In the present study FDG is used as a tracer for the exchange of glucose between plasma

and the brain. Positron Emission Tomography with [18F ] flouorodeoxyglucose (PET-FDG)

is thought to aid diagnosis of dementing disorders. Recognizing Alzheimer’s disease is a

promising application for FDG-PET because of the sharp contrast in its pattern of glucose

hypometabolism [14].

It is well known in the neuroimaging community that the data that comes from imaging

studies is highly variable. This variability can make it very difficult to analyze data. In order

to measure the variation, we want to know how much two variables are changing together

4



or in opposition to each other. As a visualization of this concept we could refer to geometry,

thinking about each variable as a vector with a focus on the length and direction of these

vectors. Geometrically, the correlation of two variables is defined as being the cosine of the

angle formed by the two vectors. A perfect correlation of two variables will be either equal

to 1, a perfect positive correlation, or −1, a perfectly negative association.

The covariance matrix is a very useful tool in many different areas forming the basis

for a large number of statistical techniques. In this setting it is extensively used since data

are generally continuous and highly variable. When it comes to reducing dimensionality and

explaining variability in large data sets, the covariance matrix plays an extremely important

role since it forms the basis for many dimension reduction procedures.

Principal components analysis (PCA) is a technique used to describe the variation in

a set of correlated variables, x1, x2, ..., xq, in terms of a new set of uncorrelated variables

y1, y2, ..., yq each of which is a linear combination of x variables. Principal components anal-

ysis is interpreted in terms of the correlations or covariances between the original variables

and derived components. The derived components of the PCA’s are calculated from the

covariance matrix. Factor analysis is another multivariate method, mostly used in studies in

the social sciences, that uses the covariance matrix. Correlations/covariances of the manifest

(measurable) variables are central to factor analysis.

Partial Least Squares, first introduced in 1975 by Herman Wold, [25] is another method

that is used in the multivariate setting for which the covariance matrix plays a very important

role. Partial Least Squares has been used to extract new information from imaging data that

is not accessible through other univariate and multivariate image analysis tools. Brain images

are very rich data sets containing a tremendous number of temporal, spatial and statistical

signals. The general idea of PLS is to extract the latent factors accounting for as much of

the factor variation as possible while modelling the responses well. The first step of PLS

is the singular value decomposition (SVD) of the cross-block covariance matrix ΣY X . (Our

data contain missing values for some of the covariates and therefore the covariance matrix

based only on available cases will not make use of all of the data. Some of the methods that

make best use of all of the data are being investigated here.) Incorporating missing values

into the modelling process requires knowledge of the nature of the missing data mechanisms

5



as well as its implications for the statistical inference.

2.1 DEFINITIONS

Let Yn×q be a vector of response (or dependent) variables and Xn×p be a vector of inde-

pendent variables or covariates, completely observed and Zi be a covariate for which some

of the observations are missing. Let Ri, the indicator for missing status, be defined as:

Ri =





1, if zi = observed,

0, if zi = missing.

(2.1)

Throughout this work a missing at random mechanism (MAR) is assumed. We denote the

data as (X, Y, Z), where X,Y is the complete part of the data and Z is the part containing

missing values. Rubin [20] defined missing data to be MAR if the distribution of missingness

does not depend on Z, that is, if

P (R|Z) = P (R|X, Y ).

The basis of estimation discussed here comes from a multivariate normal distribution which

is defined as:

Definition 1. A random vector X ∈ Rp×1 has a multivariate normal distribution with a

nonsingular covariance matrix Σ if Σ ∈ Rp×p is a positive definite matrix and the probability

density function of X is:

f(x) = [const.]|Σ|−1/2 exp(−1

2
(x− µ)T Σ−1(x− µ)), (2.2)

where µ ∈ Rp×1 is the expected value.

6



The parameters we shall estimate are (µ, Σ), the population mean and population co-

variance, respectively. The likelihood function of the multivariate normal distribution is

given by the following expression:

L(µ, Σ) = [const.]
n∏

i=1

|Σ|−1/2 exp(−1

2
(xi − µ)T Σ−1(xi − µ)), (2.3)

or equivalently:

L(µ, Σ) ∝ |Σ|−1/2 exp(−1

2

n∑
i=1

(xi − µ)T Σ−1(xi − µ)). (2.4)

The unbiased parameter estimates for (µ, Σ) are given by the sample mean x̄ and the

sample covariance matrix S:

x̄ =
1

n

n∑
i=1

xi, (2.5)

respectively,

S =
1

n− 1

∑
i=1

(xi − x̄)(xi − x̄)T . (2.6)

Definition 2. The population covariance of two random variables X and Y with E(X) = µX

and E(Y ) = µY is defined by:

Cov(X, Y ) = E((X − µX)(Y − µY )),

where E is the expected value.

Let us consider the bivariate normal as a special case of the multivariate normal distri-

bution. Let (X, Y ) have a bivariate normal distribution with density function given by:

f(x, y) =
1

2σxσy(1− ρ2)1/2
exp{− 1

2(1− ρ2)

(((
x− µx

σx

)2 + (
y − µy

σy

)2 − 2ρ(
x− µx

σx

)(
y − µy

σy

))}

and mean vector:

E


X

Y


 =


µx

µy


 . (2.7)

7



The covariance matrix is written as:

Σ = E


 (X − µX)2 (X − µX)(Y − µY )

(X − µX)(Y − µY ) (Y − µY )2


 . (2.8)

Therefore, the estimate of the Σ matrix will be:

Σ̂ =


σ̂XX σ̂XY

σ̂Y X σ̂Y Y


 =


 σ̂2

X ρ̂σ̂X σ̂Y

ρ̂σ̂Y σ̂X σ̂2
Y


 , (2.9)

where

σ̂XX =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄) =
1

n− 1

n∑
i=1

(xi − x̄)2 = ˆV ar(X) = σ̂2
X

σ̂XY =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) = σ̂Y X = ρ̂σ̂X σ̂Y

and

σ̂Y Y =
1

n− 1

n∑
i=1

(yi − ȳ)(yi − ȳ) =
1

n− 1

n∑
i=1

(yi − ȳ)2 = ˆV ar(Y ) = σ̂2
Y .

Definition 3. The correlation coefficient ρX,Y between two random variables X and Y with

expected values µX and µY and standard deviations σX and σY is defined as:

ρX,Y =
cov(X, Y )

σXσY

=
E((X − µX)(Y − µY ))

σXσY

.

The Pearson correlation coefficient, also known as the ”sample correlation coefficient” is

the best estimate of the correlation of X and Y when both, X and Y are normally distributed.

Definition 4. The Pearson correlation coefficient r, is given by

r =

∑n
i=1(yi − ȳ)(xi − x̄)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

where x̄, ȳ are the sample means of X and Y .

8



An equivalent formula for r that illustrates its mathematical relationship to the least

squares estimate of the slope of the fitted regression line is

r =
SX

SY

β̂1 (2.10)

where SX , SY are the sample standard deviations of X and Y and, as mentioned above, β̂1

is the slope of the line fitted to the data.

Also, this is equivalent to

r2
xy = 1−

S2
y|x
S2

y

, (2.11)

where S2
y|x is the square of the error of the linear regression of xi on yi determined by the

equation y = β0 + β1xi and

S2
y|x =

1

n− 1

n∑
i=1

(yi − β0 − β1xi)
2.

Note that S2
y is the variance of y:

S2
y =

1

n− 1

n∑
i=1

(yi − y)2.

2.2 MISSING DATA

In 1976 Rubin developed a framework of inference from data with missing values that

remains in use today. In 1988 Little [12] provided a review of methods that can handle missing

covariates. Little classifies the methods that can handle missing covariates into six classes.

The first class would be the complete-case (CC) analysis. In a complete case analysis all of

the observations that have missing values are eliminated from the analysis. The second class

would be the available-case (AC) methods. Available-case analysis methods uses the largest

sets of available cases for individual parameters [11]. The problem with the AC analysis is

that the estimated covariance matrix of the X ′s is not necessarily positive definite, which

leads to inferior results compared to CC analysis for highly correlated data [5]. The third

class of methods discussed by Little consists of least squares (LS) on imputed data methods.
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In this setting the missing Z ′s are imputed and a regression of Y ′s on Z ′s is performed

on the filled in data by ordinary least squares or weighted least squares regression. The

imputation methods included were: unconditional and conditional mean imputation. The

inferences based on these methods (tests and confidence intervals) appear to be biased and

imprecise. The fourth class is the class of maximum likelihood (ML) methods. In this class

a classical ML estimate for a model for the joint distribution of Y and (X,Z) would be

one approach, where the joint distribution would be multivariate normal with mean µ and

covariance matrix Σ. Another method mentioned by Little [12] would be the Expectation

Maximization algorithm (EM).

The Expectation-Maximization algorithm (Dempster, Laird and Rubin, 1977; [1]) is a

general iterative algorithm for maximum likelihood estimation in data with missing values.

The EM algorithm consists of two major steps: (1) Expectation (E-step), (2) Maximization

(M-step) [11]. The E-step consists of computing the conditional expectation of the com-

plete data log-likelihood given the observed data and the current estimated parameters and

then substitutes these expectations for the missing data. The M-step consists of comput-

ing the maximum likelihood estimates of the parameters as if there were no missing data.

Specifically, the M-step finds the parameter estimates that maximize the complete-data log-

likelihood from the E-step. Specifically, in our incomplete data setting, the distribution of

the complete data X, Y, Z could be factored as [22]:

f(X,Y, Z|θ) = f(X, Y |θ)f(Z|X,Y, θ)

and the likelihood function

L(θ|X, Y, Z) = L(θ|X, Y ) + logf(Z|X, Y, θ) + constant,

where L(θ|X, Y, Z) = logf(X, Y, Z|θ) denotes the complete data likelihood and L(θ|X, Y )

the observed data likelihood. The term f(Z|X,Y, θ) cannot be calculated because Z is

unknown, so an average over the predictive distribution f(Z|X, Y, θ(t)) is calculated (θt is a

preliminary estimate of the unknown parameter). This averaging will give [22]:

Q(θ|θ(t)) = L(θ|X,Y ) + H(θ|θ(t)) + const,
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where

H(θ|θ(t)) =

∫
logf(Z|X, Y, θ)f(Z|X, Y, θ(t))dZ.

The two steps of the EM algorithm can then be specified as follows [22]:

1. The Expectation or E-step, in which the function Q(θ|θ(t)) is calculated by averaging the

complete data likelihood L(θ|X, Y, Z) over f(Z|X,Y, θt) and;

2. The Maximization or M-step, in which θ(t+1) is found by maximizing Q(θ|θ(t+1)).

The ML class tends to perform better than the previously described classes, yielding

consistent estimates and being more efficient. The fifth class mentioned in Little’s paper

was the Bayesian methods class. The Bayesian methods seem satisfactory for small sample

inferences but they were mostly explored in the case of missing values for dependent vari-

ables and not for independent variables. With the likelihood function being very complex,

the marginal posterior distributions have to be approximated by numerical integration or

simulations which makes this method complicated to use. The last class described by Little

includes the multiple imputation (MI) methods. Rubin (1987) introduced the idea of mul-

tiple imputation (MI) in which each missing value is replaced with m > 1 simulated values

prior to analysis. This will produce m possible complete data sets that are analyzed in the

same manner as a complete data set. The results are then combined using simple computa-

tion steps to obtain the overall estimates along with their standard errors that reflect missing

data uncertainty and the sample variation. The maximum likelihood approach assumes a

specific distribution model:

f(X,Y, Z) =

∫
f(X, Y, Z|θ)f(θ)dθ,

while in the multiple imputation approach we are interested in drawing missing values from

the posterior distribution of Z|(X, Y ):

f(Z|X, Y ) =

∫
f(Z|X,Y, θ)f(θ|X, Y )dθ,

where θ is the parameter of interest. The multiple imputation procedure assumes that the

data are from a continuous multivariate distribution and that it contains missing values that

can occur on any of the variables. Each value is a conditional draw from the conditional
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distribution of the missing observations given the observed data. This is done in such a way

that the set of imputations properly represents the information about the missing value that

is contained in the observed data for the chosen model. Additionally when a Markov Chain

Monte Carlo (MCMC) or regression method is used, MI assumes a multivariate normal

distribution for the data.

MCMC methods are a class of algorithms for sampling from probability distributions

based on constructing a Markov chain long enough for the distribution of the elements

to stabilize to a stationary distribution. In simple words a Markov chain is a stochastic

process that has the Markov property, that is, the process is such that given the present

state, the future states are independent of past states. Yang C. Yuan [26] gives a very good

overview of the multiple imputation method implemented in SAS software. The MCMC

method has its origins in physics where it was used as tool for exploring the equilibrium

distributions of interacting molecules. Bayesian inference uses MCMC as a method for

exploring posterior distributions. Using MCMC one could simulate the joint distribution of

the unknown quantities and obtain simulation-based estimates of the parameters of interest.

The MCMC method has two important steps [26]: the imputation I-step and the pos-

terior P-step. The imputation (I-step) simulates the missing values for each observation

independently, with previously estimated mean and covariance matrix. Let the missing val-

ues be denoted zi and the variables with observed values by (xi, yi), then the I-step draws

values for zi from the conditional distribution of Z|(X,Y ). The P-step simulates the pos-

terior mean and covariance matrix from the complete sample and uses these new estimates

in the imputation step. The iterates have to converge to their stationary distribution and

then to simulate an approximately independent draw of the missing values. Therefore,

with the interest estimate θ(t) at the tth iteration, the imputation step will draw Zt+1 from

f(Z|(X, Y ), θ(t)) and the posterior step will draw θ(t+1) from f(θ|(X,Y ), Z(t+1)). This will

create a Markov chain long enough (Z(1), θ(1)), (Z(2), θ(2)), ..., to converge in distribution to

f(Z, θ|(X, Y )). The MI procedure uses the means and standard deviations from available

cases as the initial estimates for the EM algorithm. The MI procedure (default) uses the

MCMC method with a single chain to create five imputations, with initial estimates from

the EM and correlations set to zero. The highest observed data posterior density with a
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noninformative prior is computed from the EM algorithm and it is used as the starting value

for the chain. The MI procedure takes 200 burn-in iterations before the first imputation and

100 iterations between imputations. The MI imputation model does not make any distinc-

tions between the response (dependent) or predictor (independent) variables but treats all as

a multivariate response. The imputation model does not provide a parsimonious description

of the data nor does it represent any type of relationship between variables. Distinctions

between dependent and independent variables should be left to post imputation analysis.

The multiple imputation technique has many attractive features. It allows the user to pro-

ceed with familiar complete data analysis methods. Rubin has also shown that there is no

need for many repetitions in order to find precise estimates. The efficiency of an estimate

based on m imputations relative to one based on an infinite number is calculated using the

following formula:

(1 +
λ

m
)−1, (2.12)

where λ is the rate of missing information and m is the number of imputations. Also missing

values for each variable are predicted from its own observed values with random noise added

to preserve a correct amount of variability in the imputed data. Rubin (1987; [21]) has also

provided rules for combining the results of an analysis from all completed datasets resulting

from imputations. Multiple imputation is very useful for database construction, because

once the imputations are created, the data can be analyzed using complete data methods.

2.3 INVERSE PROBABILITY WEIGHTING

The estimation of regression coefficients from data with missing covariates has been widely

studied and a variety of methods are available. Robins et al. [18] and Zhao et al. [27] have

proposed weighted estimating equations that lead to consistent and asymptotically normal

estimators of the β′s. With weighted estimating equations, the contribution to the estimating

equation from a complete observation is weighted by the inverse of the probability of being

observed. This method has been mostly used in regression analysis, two-stage sample survey

analysis and in generalized estimating equations. The roots of inverse probability weighting
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are to be found in survey analysis [7]. In the past ten years several authors [19]; [18]; [23] have

proposed improved IPW estimates that performed theoretically more efficiently under the

MAR assumption [9]. The idea that lies behind the inverse probability weighting method is

based on weighting each observation by the inverse probability of being observed. Carpenter

and Kenward [9] present an overview of this method along with its recent developments. In

the context of linear regression, the inverse probability weighting technique would apply as

described in the following paragraph. Consider the general linear regression model:

Yi = β0 + β1Xi + εi,

where ε are independent and εi ∼ N(0, σ2), or

Y = Xβ + ε,

where Yn×1, Xn×2, β2×1 and εn×1. The residuals are ε = Y −Xβ and we need to minimize

the residuals sums of squares: εT ε = (Y − Xβ)T (Y − Xβ). Therefore, we take the deriva-

tives with respect to β from d
dβ

(Y −Xβ)T (Y −Xβ) which gives the score, or the estimating

equations:
∑n

i=1 Xi(Yi − Xiβ). In the case of a complete data set these equations are set

to zero and the parameter estimates are easily calculated. In the case of missing values the

estimates of these parameters will change. Then the observed data estimating equations can

be written [9]:

n∑
i=1

RiXi(Yi −Xiβ).

Therefore, weighting by 1
Πi

will give [9]:

n∑
i=1

Ri

Πi

Xi(Yi −Xiβ) = 0.

The IPW estimates are not as efficient as likelihood-based estimates and they are very

sensitive to the precise form of model for the probability of response.
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2.4 PARTIAL LEAST SQUARES

Partial least squares is a technique that extends multiple linear regression without impos-

ing the restrictions that discriminant analysis, principal components regression, and canon-

ical correlation do. Principal components, discriminant analysis and canonical correlation

allow factors to be extracted from either XT X or Y T Y as opposed to partial least squares

which would allow the factors to be extracted from the cross-product matrices, (i.e. XT Y

or Y T X). In partial least squares, prediction functions are represented by factors extracted

from the Y T XXT Y matrix, where Y is the matrix of dependent variables and X is the

matrix of independent variables. The number of such prediction functions that can be ex-

tracted typically will exceed the maximum of the number of Y and X variables. The use

of traditional multivariate methods is limited, especially when there are fewer observations

than there are predictor variables which makes the use of the partial least square a desirable

technique in this situation. The goal of PLS is to predict Y from X and, at the same time,

to describe the common structure [13]. PLS searches for a set of components called latent

vectors that performs a simultaneous decomposition of X and Y and explain, at the same

time, as much as possible of the covariance between X and Y . PLS decomposes Xn×p and

Yn×q as a product of a orthogonal factors and a set of specific loadings. The matrix of inde-

pendent variables, X is decomposed as X = TP T with T T T = I, with I being the identity

matrix. Tn×r is called the X-score matrix and Pp×r is called the loading matrix. Similarly,

Yn×q is estimated as Y = BQT where Bn×r is the Y -scores matrix and Qq×r is the loading

Y matrix.

Each extracted x-score is a linear combination of X. The first extracted x-score t of X

is of the form t = Xv, where v is the eigenvector corresponding to the first eigenvalue of

XT Y Y T X. Similarly, the first y-score of Y , b, is of the form b = Y u where u is the eigenvector

corresponding to the first eigenvalue of Y T XXT Y (i.e note that XT Y is the Cov(X, Y )). The

first step of the partial least squares is to compute the singular value decomposition of the

cross-block covariance matrix, Cov(X, Y ) = ρσXσY . Let us denote this covariance matrix

by Σ. In order to perform a singular value decomposition on Σ we need to find the matrices
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U, S and V such that

Σn×p = Un×nSn×pV
t
p×p, (2.13)

where U tU = In×n and V tV = Ip×p.The columns of V are actually the eigenvectors of ΣtΣ

and the columns of U are the eigenvectors of ΣΣt. To compute the eigenvectors of a matrix

we use the following definition:

Definition 5. Let us denote ΣΣt = W . For an n× n matrix W , a nonzero vector x is the

eigenvector of W if:

(W − λI)x = 0,

for some scalar λ and I being the n × n identity matrix. Then the scalar λ is called an

eigenvalue of Σ, and x is said to be an eigenvector of Σ corresponding to λ.

More specifically, the columns of the matrix U : u1, u2, ..., un, n ∈ N, from the SVD

represent the eigenvectors of the decomposition of the product of the covariance matrix and

its transpose, ΣxyΣ
T
xy and will be used to calculate the X − scores. The columns of V , with

columns v1, v2, ..., vp, p ∈ N, represent the eigenvectors corresponding to the eigenvalues of

the product ΣT
xyΣxy and will be used to calculate the Y − scores. The matrix of X− scores,

T , is composed of columns, t1, ..., ti, where i represents the number of scores one would like

to calculate. Each of these columns is computed as:

t1j = Xu1j, j = 1, ..., i.

The same process is employed to calculate the matrix of Y − scores, B, b1, ..., bj, where

j represents the number of Y − scores to be extracted. The first computed Y − scores will

be:

b1 = Y v1.

The diagonal matrix, D from the SVD algorithm is the matrix of singular values. The sum

of the squared singular values is equal to the sum of the squared cross covariances. More

specifically, the diagonal matrix D is given by: D = diag(d1, d2, d3, ..., dn) and the sum of

squared singular values is given by:
n∑

i=1

d2
i . The ratio, (

d2
i

n∑
i=1

d2
i

), is ”the proportion of the
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summed squared cross-block covariance accounted for by the singular vectors”. This matrix

will give the percentages of variability that are explained by the PLS scores after performing

the described calculations.

2.5 PARTIAL LEAST SQUARES SCORES FROM DATA WITH MISSING

VALUES

Calculation of PLS scores from data with missing values has not received much attention

in the literature. PLS has been extensively used in the chemometrics field, but until recently,

the missing data problem has not been investigated. Some work has been done with respect

to missing values in PCA. P.Ho and Silva [6] used multiple imputation to create m data

sets and performed PCA on each data set and the scores were averaged over the m data

sets to produce the overall score estimates. Walczak and Massart [24] use the iterative

algorithm (IA) to deal with the missing data problem in PLS and PCA. Each iteration of

the IA algorithm consists of two steps. In the first step, estimation of the model parameters

is performed as if there were no missing data. The second step consists of computation of

the conditional expectation of the missing elements given the observed data and the current

estimated parameters. The elements are replaced with the expected values calculated as the

mean of the corresponding row and column mean. Another way to calculate initial estimates

that is described in the paper is by use of the matching procedure. In the proposed matching

procedure, the missing elements for the i − th object are replaced with the corresponding

values observed for the most similar object from the studied data set. The so called IA

(iterative algorithm) that Walczak and Massart [24] describe is basically the EM algorithm.

The IA is summarized as follows [24]: (1) fill in missing elements with their initial estimates

for factors (1:A); (2) calculate the mean of X and of Y ; (3) center X and Y ; (4) calculate

weights, scores and loadings; (5) substract the predicted X and Y from the original X and

Y and go to step (4); (6) reconstruct X with the actual set of scores and loadings(and

A factors); (7) fill in missing elements in X with their estimates and go to step (2) until

convergence.
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Nelson, Taylor and McGregor [15] provide a comparison of the single component projec-

tion method derived from the NIPALS (nonlinear iterative partial least squares) algorithm

and conditional mean replacement for dealing with the missing problem in PLS. NIPALS is

the algorithm developed by H. Wold [25] in the late sixties for the econometrics field and

adopted later in chemistry. Various versions of the NIPALS algorithm have been developed

and used in different areas since then. The NIPALS algorithm was first used for PCA and

later for PLS. The NIPALS algorithm is an alternative way to compute the singular value

decomposition of a covariance matrix for calculating eigenvectors, and can be applied to PLS.

The PLS-NIPALS algorithm with missing values can be associated with a simple imputation

method where the missing data are estimated using simple regression. In every iteration

for calculation of principal components or latent variables, the residuals for the missing el-

ements in the least square function are set to zero or the missing values are replaced by

their minimum distance projection onto the current estimate of the loading and score vector

[15]. Nelson et. al have shown that this works well when the percentage of missing data is

no higher than 20%. Furthermore, they have shown that data replacement by conditional

mean, single component projection (derived from the NIPALS algorithm) and a method of

simultaneous projection to the model plane performed well with no more than 20% missing

data. The NIPALS algorithm is usually recommended only when the missing data pattern

is random rather than structured. The single projection method consists of applying the

NIPALS missing data model building algorithm to each dimension separately. It treats the

missing data separately in the calculations of each latent dimension. The projection method

based on the projection to the model plane is a complicated and computationally intensive

algorithm. This method consists of calculating all of the scores at once by projecting onto

the hyperplane formed by the loading vectors (p′is) [15]. The missing data replacement using

conditional mean replacement is computed in the expectation step of the EM algorithm.

This method is used after the construction of the PLS model, so the interest lies only in

the handling of the missing data in future multivariate observations since the estimates of

the mean and covariance matrix are already available from the modelling step. All of these

methods performed well for a small amount of missing data (20%) although there were issues

with all of them. These issues include: (1) collinearity of the loading vectors after loadings
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for the missing measurements; (2) similarities of the magnitudes of the scores (in single com-

ponent projection); (3) underestimating the dimensionality of the data and (4) noise (with

the simultaneous projection method). The expected mean replacement method was superior

when compared to the other two [15].
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3.0 COVARIANCE MATRIX

3.1 INTRODUCTION

Most of the datasets that statisticians use in different areas of research contain missing

values. Depending on the goal of the study the researcher chooses to replace the missing

values using different techniques or to drop the observations from the analysis and use only

complete cases for further investigation. Completely deleting cases with missing values leads

to potential bias in the estimates and affects inferences drawn from the data. Our research

questions have arisen from a dataset with missing values. The goal of our study was the

estimation of the correlation/covariance matrix when some covariates are not completely

observed. The estimation of correlation/covariance matrix in the presence of missing data

has not received a lot of attention in the statistical literature. In general, maximum likelihood

methods have been used to estimate the covariance/correlation.

Dempster, Laird and Rubin [1] proposed a general approach to iterative computation of

maximum-likelihood estimates for data with missing values, the expectation maximization

algorithm (EM). Dixon (1983) mentioned four methods that could be used to calculate the

correlation matrix: listwise, pairwise, allvalue and samemean methods which were discussed

in further detail by Javaid Kaiser in 1994, [8]. Rubin (1976) developed a framework of infer-

ence from data with missing values that remains in use today. Little (1992) provided a review

of methods that can address missing covariates. Little classifies the methods that can handle

missing covariates into six classes (complete-case (CC), available-case (AC), Least Squares

(LS) on imputed data methods, maximum likelihood (ML) methods (i.e. EM algorithm),

Bayesian methods and multiple imputation methods.

Multiple imputation was first introduced by Rubin in 1987 and has become very popular

20



and widely used in recent years. The idea that lies behind multiple imputation (MI) is the

replacement of each missing value with m simulated values, (m > 1), prior to analysis. This

will produce m possible data sets with no missing values that are analyzed in the same

manner as a complete data set. The results are then combined to obtain overall estimates

along with their standard errors that reflect missing data uncertainty as well as the sample

variation. The multiple imputation technique has many attractive feature since it allows the

user to proceed with familiar complete data analysis methods. Rubin has also shown that

there is no need for many repetitions in order to find precise estimates. Multiple imputation

is very useful for database construction since once the imputations are created, the data can

be analyzed using complete data methods.

In recent years weighted statistical methods, (i.e. inverse probability weighting, weighted

estimating equations) have become of greater interest in the statistical community facing

datasets with missing observations. The roots of inverse probability weighting (IPW) method

can be found in survey sampling techniques, [7] and over the last decade several authors

[19]; [18]; [23] have proposed improved inverse probability weighting (IPW) estimates. With

weighted estimating equations, the contribution to the estimating equation from a complete

observation is weighted by the inverse of the probability of being observed. This method has

been mostly used in regression analysis, two stage sample surveys and generalized estimating

equations. The inverse probability weighting method could be easily implemented since many

statistical routines include an option for weighting, which makes it very attractive.

The inverse probability weighting method is a new approach used in this specific context

for reconstructing a covariance matrix from data with missing covariates. The technique

consists of calculating the probability of being observed for each record in the dataset for

the variable with missing values and then performing a weighted regression analysis with

the weights given by the inverse probability of being observed. The covariance matrix is

then reconstructed from estimated pairwise correlations between two variables by weighted

linear regression. A comparison of the weighted method with the covariance calculated using

multiple imputation and complete cases is presented. This new approach provides a useful

technique without the burden of exhaustive computation or technicalities. The robustness of

the method is somewhat limited by the missing data model specification, since the missing
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data model needs to be correctly specified for unbiased estimates.

In the present work two different techniques for calculating the covariance matrix from

data with missing covariates; namely multiple imputation and inverse probability weight-

ing are compared to covariance matrix calculation based on complete cases. Complete case

analysis consists of deleting all observations with missing values and performing the calcula-

tions only on those cases that are completely observed. In the multiple imputation case the

missing values are imputed based on a specified multiple imputation method, in this case a

Markov Chain Monte Carlo and then computing the covariance matrix as if there were no

missing data.

In our context, the implementation is performed under the assumption of data missing at

random (MAR) as defined by [20]. In addition, we assume that missing values occur only in

the covariate data. A detailed description of these methods and their implementation in our

context is presented in section two of this chapter. Simulation studies have been conducted

for assessing the theoretical properties of the covariance matrix estimates obtained from the

above mentioned techniques. A description of simulation studies along with their results are

given in the third section of present chapter. An application of these methods is illustrated

in a Positron Emission Tomography (PET) study conducted at University of Pittsburgh,

PET Center. A discussion, along with related results is presented in section four of this

chapter. The conclusions of our findings and further recommendations are discussed in the

fifth section entitled ”Discussion”.

3.2 METHODS

Consider estimating the correlation/covariance matrix from a dataset (X, Y ) where X rep-

resents the vector of covariates, xi, that are always observed, a covariate zi, that is missing

for some subjects, and Y , the vector of responses, yi, in this case completely observed. An

indicator variable, Ri is created and it is defined as follows:
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Ri =





1, if zi = observed,

0, if zi = missing,

where zi is the covariate with missing values previously introduced. The complete case

analysis method uses available cases for each available pair of observations with all other

observations dropped from analysis. Each entry of the estimated covariance matrix, Sn×n,

is calculated using the classic formula:

sij =
1

N − 1

N∑

k=1

(xij − xi)(yjk − yj), (3.1)

where i = 1, ..., n, j = 1, ..., n. The advantage of this method is its simplicity, since stan-

dard statistical methods can be applied for statistical inference. The main disadvantage of

complete cases is the loss of information that results from discarding all cases with missing

values. Complete-case analysis makes no use of cases with missing values when estimating

the covariance between the given variable and the other variable of interest.

The method of multiple imputation, introduced first in 1976 by Rubin, [20] is a very

useful technique that is often used when missing observations are present in datasets under

investigation. Implementation of multiple imputation in standard statistical computer pack-

age routines (i.e. SAS PROC MI) makes it easy to apply, further increasing use in a data

analysis. In the multiple imputation case, each missing value is replaced by m simulated val-

ues, (m > 1), prior to performing the data analysis, resulting in the creation of m complete

data sets. The analysis results are then combined to obtain overall estimates along with

their standard errors that reflect missing data uncertainty as well as the sample variation.

In the multiple imputation approach, we are interested in drawing missing values from the

posterior distribution of Z|(X,Y ):

f(Z|(X,Y )) =

∫
f(Z|(X, Y ), θ)f(θ|X,Y )dθ,

where θ is the parameter of interest.

The main attractive feature of multiple imputation is the fact that after performing

the imputations, the complete data sets are analyzed by standard statistical techniques.
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Rubin [21] has also shown that there is no need for many repetitions in order to find precise

estimates. The efficiency of an estimate based on m imputations relative to one based on an

infinite number is calculated using the following formula:

(1 +
λ

m
)−1, (3.2)

where λ is the rate of missing information and m is the number of imputations (i.e. 20%

missing information, m = 5 efficiency is 1
1.04

= 96%). Also missing values for each variable

are predicted from its own observed values with random noise added to preserve a correct

amount of variability in the imputed data. Rubin (1987), [21] has also provided rules for

combining the results of the m complete datasets resulting from imputations. In our context,

let Σ denote the population parameter that we would like to estimate, in this case the ij entry

of the sample covariance matrix, S, and let se denote the standard error of this estimator.

Since m = 5 data sets are created using MI and for each data set we will have one estimate of

our parameter of interest, ŝij, the overall estimate will be simply: sij = (1
5
)

5∑
m=1

ŝ
(m)
kl . Also, the

uncertainty in sij contains the average of the within imputation variance, se = (1
5
)

5∑
m=1

se(p)

and the between-imputation variance B = (1
4
)

5∑
m=1

[ŝ
(m)
ij − sij]

2. The total variance will be a

modified sum of the two variance components, T = se + (1 + 1
5
)B, and the square root of T

is the overall standard error. Multiple imputation is useful for dataset reconstruction, since

once the imputations are created, the data can be analyzed using complete data methods.

The inverse probability weighting method was also used to reconstruct the correla-

tion/covariance matrix. The inverse probability weighting method has been applied pri-

marily to linear and logistic regression estimates with one continuous covariate missing or

more than one covariate missing for the categorical case. Carpenter and Kenward (2006)

present a nice overview of this method along with its recent developments as they apply

to the estimation of coefficients in a linear regression problem with one missing covariate

and compare it with multiple imputation. In our context, the inverse probability weighting

method is used for calculating the pairwise correlations of any two variables by using a linear

regression with weights given by the inverse probability of being observed. The probabilities
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of being observed (Π) are estimated from a logistic regression model with Ri, previously de-

fined, as the dependent variable and all y′is and x′is are introduced into the model along with

interaction terms of interest. Note that incorrect specification of the logistic model might

result in inconsistent estimates of the probabilities of being observed. Once the estimated

Π̂i have been calculated from:

Πi = Pr(zi = observed|xi, yi) =
exp(−β0 − βixi − βjyi)

1 + exp(−β0 − βixi − βjyi)
, (3.3)

the weights are then calculated as 1

Π̂i
and used in further analysis. In the present case

these were used as weights in a linear regression model, where each dependent variable was

regressed on each independent variable and the pairwise correlation was calculated from
√

R2

and used to reconstruct the corresponding entries of the correlation/covariance matrix when

the covariates involved had missing values. In this case, given that weighting is performed

using the inverse probability of being observed, the sum of squares will incorporate weights

as well. Therefore the sum of squares will be,

S2
X =

1

n− 1

n∑
i=1

1

Π̂i

(xi − x̄)2, (3.4)

S2
Y =

1

n− 1

n∑
i=1

1

Π̂i

(yi − ȳ)2, (3.5)

and the estimate of the slope, β̂, will be

β̂ =

n∑
i=1

1

Π̂i
(xi − x̄)(yi − ȳ)

n∑
i=1

1

Π̂i

(xi − x̄)2

. (3.6)

Substituting in rxy = Sx

Sy
β̂ we will have the following equation for the estimate of rxy:

r̂xy =

√
n∑

i=1

1

Π̂i

(xi − x̄)2

n∑
i=1

1

Π̂i

(yi − ȳi)
2

n∑
i=1

1

Π̂i

(yi − ȳi)
2

n∑
i=1

1

Π̂i

(xi − x̄)(yi − ȳ)

n∑
i=1

1

Π̂i

(xi − x̄)2

. (3.7)

In the next section we present our simulation studies and results along with a discussion

section and future recommendations.

25



3.3 SIMULATIONS

In this work, several simulation studies have been conducted to examine the performance

of the methods in practice. Covariance matrices were created under different structures

and each covariance structure was used as the starting matrix for the simulations. Several

datasets were created with different percentages of missing values (i.e. 20%, 30%, 50%). Also,

a variety of missing data scenarios were explored as well. The missing values were created so

that they depend on either the x′is or the y′is or neither xi or yi. Model misspecifications were

explored for some of the simulations for both multiple imputation and inverse probability

weighting.

Each dataset, (X,Y ), X, Y vectors, was simulated from a multivariate normal distribu-

tion, MV N(µ, Σ). The first set of simulations consisted of 1000 simulated data sets of 100

observations each. The simulations were conducted using R software. We have simulated

20%, 30% and 50% missing values for each data set. We have simulated datasets with 50 and

200 observations and examined the performance of our employed methods. In the simulated

datasets, the outcome variable, Y had no missing values. Also, some of the X ′s were fully

observed covariates while some had missing observations.

Let us denote our observed data set by X and partition it into (X, Z), where X contains

the covariates with fully observed values while Z contains the covariates for which some of

the values are missing. For any data set with missing values one could define an indicator

variable, Ri, that will define the missingness process in the following way:

Ri =





1, if zi = observed,

0, if zi = missing,

where, Ri ∼ Bernoulli(Π).

In our simulations the missing values were created based on a logistic regression model.

We have calculated the probability of each record in the data set being observed based on

the logistic regression model:

Πi = Pr(zi = observed|xi, yi) =
exp(−β0 − βixi − βjyi)

1 + exp(−β0 − βixi − βjyi)
. (3.8)

We fixed the logistic regression coefficients so that we could create roughly 20%, 30%

and 50% of the data with missing values. The indicator variable Ri has been simulated
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from a binomial distribution with probability of success (Ri = 1) being equal to Πi. If the

missingness is ignorable then Πi does not depend on the zi. We assumed a MAR missing

data mechanism in which Πi does not depend on the zi. We have first calculated correlation

coefficients using only complete cases, therefore all of the missing observations were excluded

from the analysis (each pairwise correlation was calculated based on the available cases). For

each data set the correlation of any pair of two variables (Xik, Xjk) is calculated and denoted

by rijk, (where k corresponds to the data set). The overall correlation coefficient for any pair

for all of the simulated data sets was calculated as r̄ =
∑p

k=1 rijk, where k = 1, ..., p datasets

are used. Also, the bias and mean square error were calculated.

The second method performed was multiple imputation where values where imputed for

the missing covariates and the correlation for each data set was calculated as if the dataset

were complete. In the multiple imputation model, all variables that were used to generate the

data as MAR as well as variables that were further employed in the analysis were included in

the model. PROC MI in SAS was used for the computations. By default this procedure uses

the MCMC method with a single chain to create m = 5 imputations. The EM algorithm is

used to compute the starting value for the chain. The MI procedure performs 200 burn-in

iterations before the first imputation and 100 iterations between imputations. PROC CORR

was used to calculate the pairwise correlations. Since 5 data sets were created using MI and

for each data set one estimate for each pairwise correlation of our parameter of interest was

calculated denoted as r̂i, the overall estimate was: r = (1
5
)

5∑
i=1

r̂(i). Also, the uncertainty in

r contains the average of the within imputation variance, S = (1
5
)

5∑
i=1

S(i) and the between-

imputation variance B = (1
4
)

5∑
i=1

[r̂(i) − r]2. The total variance will be a modified sum of the

two variance components, T = S +(1+ 1
5
)B, and the square root of T is the overall standard

error.

The third method used was the inverse probability weighted method. The first step

was a linear regression (yi = β0 + β1xi + ε, ε ∼ N(0, σ2)) with weights 1
Πi

. The estimated

probability of being observed (Πi) was calculated for each record using a logistic regression.

Each outcome was regressed on each covariate and the correlation was calculated as r =
√

R2
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or r = SX

SY
β̂1 given by equation 3.7.

3.3.1 Results with correct models

For the results that are discussed in this section we have used correct models for both the

multiple imputation and inverse probability weighting methods. More specifically, when the

missing observations were dependent on any of the x′s or the y′s , the variables were kept

in the model when estimating the probability P (Ri = 1), i.e., the probability of observing

the i′th subject’s covariate in that specific case. In the first set of simulations, we performed

1000 simulations and each dataset had 100 observations. The probability of being observed

did not depend on any of the x′s or the y′s and the coefficients of the logistic model were

(β0, β1, β2) = (ln 4, 0, 0). Even though the missing values were not dependent on any of the

y′s or the x′s, the probability of being observed was still estimated using a stepwise logistic

model with the constraint that a variable was kept in the model if p = .20. The weights

were calculated based on the estimated model in all cases. The estimated logistic regression

coefficients were almost the same or very close in value to the true logistic coefficients for all

models.

The results for the first set of simulations are presented in Table 1 along with the

associated bias and mean square error. Note that only one row of the correlation matrix is

presented due to the fact that missing data affect only one covariate. The estimated logistic

regression coefficients for estimating the probability of being observed for the covariate with

missing values were very close to the true coefficients with the true values being:(β0, β1, β2) =

(ln 4, 0, 0), and the estimated values being:(β0, β1, β2) = (ln 4, 0.007, 0). The percentage of

missing values in Table 1 is 20%.

The crude bias was calculated as E(r̂) − r and the mean square error as V ar(r̂) +

(Bias(r̂))2. Different percentages of missing values were also investigated and the results are

reviewed in the Discussion section. We also used a different random correlation matrix and

new simulations were performed under different scenarios of missingness. In this case the

missing values were created based on a logistic model with the probability of being observed
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Table 1: Correlations from MI, IPW and CC when the missing data is independent of both

x and y

Name y1 y2 y3 x2 x3

true value 0.337 -0.228 -0.411 -0.260 -0.591

method

CC 0.333 -0.225 -0.410 -0.259 -0.590

MI 0.334 -0.226 -0.408 -0.261 -0.590

IPW 0.333 -0.227 -0.410 -0.260 -0.590

Bias

CC -0.004 0.003 0.001 0.001 0.001

MI -0.003 0.002 0.003 -0.001 0.001

IPW -0.004 0.001 0.001 -0.000 0.001

MSE

CC 0.010 0.011 0.009 0.011 0.006

MI 0.008 0.010 0.008 0.010 0.005

IPW 0.009 0.010 0.009 0.010 0.005

depending on none or depending on the y′s. The coefficients of the logistic regression models

used to create the missing observations were (β0, β1, β2, β3) = (ln(4),−.7, 1,−.3) when the

missing values were dependent on the values of y′s. Also, the multiple imputation model

contains all of the variables that were used to create the missing at random data (y1, y2, y3).

The results for 20% missing data, when the probability of missing is dependent on y′s and

for a sample size of 100 are presented in table 2. Also, for the second covariance structure,

the results for the case where missing values were not dependent on x′s or y′s are presented

in the discussion section.

The results for the third covariance structure with 20% of the data missing, where

missing data values were created dependent on some of the x′s, are presented in Table 3.
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Table 2: Correlations from MI, IPW and CC, when the missing data depend on y

Name y1 y2 y3 x2 x3

true value -0.548 -0.390 0.216 -0.578 0.140

method

CC -0.555 -0.375 0.275 -0.568 0.107

MI -0.542 -0.386 0.214 -0.573 0.136

IPW -0.548 -0.385 -0.245 -0.574 0.142

Bias

CC -0.007 0.015 0.059 0.010 -0.033

MI 0.006 0.004 -0.002 0.005 -0.004

IPW 0.000 0.005 0.029 0.004 0.002

MSE

CC 0.007 0.011 0.016 0.007 0.014

MI 0.008 0.010 0.007 0.006 0.012

IPW 0.008 0.009 0.010 0.006 0.008

Additional results for 30% percent of missing values for this scenario are presented in the

Appendix section. The coefficients of the logistic regression models used to create the missing

observations were (β0, β1, β2, β3) = (ln(4),−1, 1) when the missing values were dependent on

the values of x′s.
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Table 3: Correlations from MI, IPW and CC when the missing data is dependent on x

Name y1 y2 y3 x2 x3

true value -0.436 0.583 0.294 0.518 0.538

method

CC -0.447 0.578 0.302 0.538 0.570

MI -0.434 0.576 0.288 0.512 0.536

IPW -0.442 0.578 0.298 0.515 0.542

Bias

CC -0.011 -0.005 0.008 0.020 0.032

MI -0.002 -0.007 0.005 -0.006 -0.002

IPW -0.006 -0.005 0.005 -0.003 0.004

MSE

CC 0.010 0.013 0.012 0.008 0.009

MI 0.008 0.011 0.007 0.007 0.012

IPW 0.008 0.011 0.006 0.006 0.008

3.3.2 Results with incorrect models

In this section, using some of the simulated data sets we explored the possibility of

estimating the covariance matrix when the models for the probability of being observed

were not correctly specified (some of the key variables were not included in the model)

and also when the imputation models do not contain all of the variables. For the second

covariance structure, with results presented in Table 4, the missing values were dependent

on y′s and the correct model for estimating probability of missingness had the coefficients:

(β0, β1, β2, β3) = (ln(4),−.7, 1,−.3). In this case we have run simulation studies without

including the variable y2 in the multiple imputation model or in the inverse probability

weighted model. The results are presented in Table 4.
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Table 4: Correlations from MI, IPW and CC when missing data is dependent on y and the

model is misspecified

Name y1 y2 y3 x2 x3

true value -0.548 -0.390 0.216 -0.578 0.140

method

MI -0.576 -0.322 0.242 -0.556 0.115

IPW -0.551 -0.365 0.285 -0.561 0.128

Bias

MI 0.011 0.069 0.026 0.023 -0.025

IPW -0.027 -0.025 0.069 0.017 0.012

MSE

MI 0.009 0.021 0.018 0.010 0.017

IPW 0.009 0.012 0.018 0.008 0.009

Under the incorrect model, with estimates computed using multiple imputation and

inverse probability weighting, the bias is obvious for both methods. As mentioned before,

both the multiple imputation and inverse probability weighting are sensitive to the mis-

specification of the model of missingness. The bias is larger when compared to the bias

obtained with correct models and also, the mean square errors are larger under misspecifi-

cation. The mean square errors for the inverse probability weighting method, seem to be

either equal to the multiple imputation ones or smaller, indicating that inverse probability

weighting performs better than multiple imputation under this misspecification. The bias

of the estimates is comparable between the two; some variables have smaller bias for inverse

probability weighting and some have a little smaller bias for the multiple imputation.
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3.4 DISCUSSION

The most important thing we would like to point out is that in the case where the missing

values are not dependent on either x′s or y′s, all three methods give very similar results. The

percentages of missingness were varied for some of the simulations, i.e. 30%, 50% missing

values were also considered for some cases, and some of the results are presented below. Only

one table is included due to the fact that a similar trend was observed across the simulations.

More specifically, the conclusions are very similar regarding the percentage of missing values

(see Table number 5). Also, as expected, not much difference has been observed between

estimates obtained with 20% missing data as compared to those obtained when 30% percent

of the data are missing (i.e Table 5 and Table 6). When the percentage of missing is roughly

around 50%, the estimates are more biased as compared to previously discussed cases (20%,

30%).

Across all of the simulation studies, a similar trend was observed, with an increase in

the percentage of missingness (i.e. 50%), correlation coefficient estimates tend to be more

biased and have higher mean square errors. The complete case analysis results are similar

to the other two methods, when missingness does not depend on any other variable in the

dataset. In the case where the missing values are dependent on either of the x′s or of the

y′s, the complete case analysis tends to be more biased when compared to inverse probabil-

ity weighting and multiple imputation. The mean square errors of the inverse probability

weighting were generally of equal or smaller values as compared to those of multiple imputa-

tion across simulations. The estimates of the correlation for complete cases are close to those

computed using multiple imputation and inverse probability weighting, especially when the

missing data does not depend on any other variable. In the case where the missing values are

dependent on either some of the x′s or some of the y′s the complete case estimates are more

biased when compared to those obtained from multiple imputation and inverse probability

weighting.

One advantage of the inverse probability weighting method is that is less computational

than multiple imputation. In addition, inverse probability weighting is easier to implement

in any software, as opposed to multiple imputation which is easiest to implement in SAS.
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Furthermore, the inverse probability weighting method relies on fewer assumptions as com-

pared to multiple imputation. This work shows that the specification of the missing model

plays a trivial role for both multiple imputation and inverse probability weighting. A down-

side of multiple imputation is that the data should be missing at random. If the data is not

missing at random, this will impact the estimates. When a combination of discrete and or-

dinal variables are included in the model multiple imputation can be difficult to implement.

In addition, the joint distribution, (f(Z,X, Y )) should be correctly specified or the estimates

will be biased and inconsistent. The inverse probability weighting method is preferred since

it does not require all of these assumptions and also performs as well as multiple imputation.

Furthermore, the inverse probability method is not imputing any value in the dataset, but

it is computing the best estimates making use of the available information at hand. The

multiple imputation method creates values that are based on several assumptions established

prior to analysis, and this method is not always well received because of the scepticism that

the imputed values are just a ” sophisticated guess”.

3.5 POSITRON EMISSION TOMOGRAPHY EXAMPLE

The Mini Mental State Examination is a tool that can be used to asses mental status. The

MMSE is effective as a screening instrument to separate patients with cognitive impairment

from those without it. The MMSE is a 30 point questionnaire that is used to screen for

cognitive impairment. An MMSE score above 27 is considered to be normal; between 20

and 26 indicates mild cognitive impairment; between 10 and 19 indicates moderate cognitive

impairment, and below 10 indicates severe cognitive impairment (Folstein et al., 1975).

Some experiments have found that individuals with Alzheimer’s disease (AD) show increased

activity in the prefrontal cortex compared to control subjects during some cognitive tasks

[10].

A Positron Emission Tomography research study was conducted at the University of

Pittsburgh Medical Center and one of the questions of interest was to explore the connec-
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tion that exists between the increased activity in some of the brain regions and cognitive

tasks. Each subject underwent a PET scan where FDG ([18F ]-2-deoxy-2-fluoro-D-glucose)

was used as a imaging tracer. The FDG tracer (a radioactive form of sugar) is used to assess

glucose metabolism in the brain. The regions-of-interest (ROI) measurements or normalized

functional image data under investigation are: Frontal Cortex (FRC), Lateral Temporal

Cortex (LTC), Mesial Temporal Cortex (MTC), Dorsal Frontal Cortex (DFC), Parietal

(PAR), Occipital (OCC), Anterior Cingulate Gyrus (ACG). The ROI’s are predefined prior

to analysis and the accumulation of the tracer is evaluated using Positron Emission Tomog-

raphy imaging. The accumulation of the FDG tracer is calculated by averaging across all

voxels within that specific region, resulting in a continuous measurement for each of the brain

regions under investigation. In subjects in whom some mild or severe cognitive impairment

is suspected, low levels of accumulations of the compound are expected to be seen in certain

parts of the brain.

The research study included 111 subjects classified into three different groups. The three

groups were healthy subjects (Control or non-disease group), the Alzheimer disease (AD)

and the mild cognitive impairement (MCI) group. The control group consists of 67 subjects,

22 males (age 74±10) and 45 females (age 71±9). In the MCI group the number of subjects

was 25 with 19 males (age 71 ± 8) and 6 females (age 67 ± 7) and the AD group consists

of 19 subjects, 14 males (age 70 ± 10) and 5 females (age 72 ± 8.3). Additionally, a set

of covariates were measured for each of the subjects including: age, gender and cognitive

status (i.e. Mini Mental State Examination, abbreviated MMSE). Several MMSE tests were

performed. Some of the MMSE values are missing. The MMSE score measurements for each

group divided by gender class is presented in table 5.

The correlation matrix calculated using only complete cases was performed in SAS using

PROC CORR and results are provided in Table 6. The pairwise correlation coefficients were

calculated using the following formula:

r =

n∑
i=1

(yi − ȳ)(xi − x̄)

√
n∑

i=1

(xi − x̄)2

n∑
i=1

(yi − ȳ)2
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Table 5: Mini Mental State examination

Group Gender MMSE MMSE7 MMSEW

AD(19) M(14) 22.41±3.82 22.42±3.32 23.92±3.51

F(5) 21.33±3.78 21.4±3.84 24.4±2.7

MCI(25) M(19) 26.75±2.8 27.05±2.8 27.15±2.5

F(6) 27.8±0.44 28.16±0.75 28.6±1.03

Controls(67) M(22) 27.8±2.27 27.8±1.9 27.8±1.73

F(45) 28.9±1.27 28.86±1.48 29.2±0.83

where x̄, ȳ are the sample means of X and Y .

Table 6: Correlations for complete cases

Name DFC FRC LTC MTC OCC PAR ACG

AGE .261 .279 .187 .399 .219 .297 .175

MMSE7 .131 .151 .484 .068 -.132 .245 -.036

MMSEW .170 .183 .477 .043 -.154 .247 -.062

MMSE .220 .237 .486 .148 -.23 .254 -.046

We applied multiple imputation to this data set. The covariate that had missing values

was the MMSE score. A Markov Chain Monte Carlo (MCMC) method was used for the

multiple imputation. The MCMC method assumes that data come from a multivariate

distribution and that the values are missing at random (MAR) in the sense defined by

Little and Rubin[11]. The multiple imputation model contains all of the variables in the

data set since all of them will be used in further analysis. The multiple imputation model

should contain all variables that will be further employed in the analysis. The maximum and
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minimum value for imputed variables was specified in the multiple imputation procedure.

Those values were previously calculated from the available cases in the data. The average,

maximum, minimum and standard deviation for each variable with missing values were

calculated before and after each imputation by group status. The results are discussed here

and additional tables are provided in the Appendix section.

In the AD group the minimum value of the MMSE before imputation was 16 and max-

imum before imputation was 29 with an average of 22.2 and a standard deviation of 3.74.

The average value of MMSE for the first imputation was 22.87 with a standard deviation

of 3.87, for the second imputation it was 22.30 with a standard deviation of 3.54, for the

third imputation 22.63, standard deviation 3.63, fourth imputation 22.72, standard deviation

4.07, and fifth imputation 22.70 with a standard deviation of 3.89. For each imputation the

minimum and maximum values were 16.00 and 29.00 respectivelly. Similarly, for the con-

trol group, the minimum value of MMSE was 24.00 while maximum value was 30.00, with

an average of 28.6 and a standard deviation equal to 1.68. For each imputation, the aver-

age values of MMSE were: 28.53, 28.56, 28.58, 28.65, 28.51 and the standard deviations were

1.54, 1.49, 1.54, 1.56, 1.60 respectively for the first, second, third, fourth and fifth imputation.

In the same manner, for the MCI group the MMSE minimum was 20.00 and maximum was

30.00. The average value before imputation was 27.00 with a standard deviation equal to

2.56. The average values for each imputation were 26.85, 27.21, 27.24, 27.04, 27.03 with the

following standard deviations 2.52, 2.39, 2.39, 2.31, 2.31 for imputation one, two, three, four

and five.

In the multiple imputation case, all of the correlations will stay the same, the only

one that is changing is the correlation between MMSE and all of the other variables since

MMSE is the variable with missing values. The correlation matrix between covariates and

brain regions obtained from the multiple imputation method is presented in Table 7.
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Table 7: Correlations for all covariates with brain regions-MI

Name DFC FRC LTC MTC OCC PAR ACG

AGE .261 .279 .187 .399 .219 .297 .175

MMSE7 .131 .151 .484 .068 -.132 .245 -.036

MMSEW .170 .183 .477 .043 -.154 .247 -.062

MMSE .200 .214 .454 .150 -.171 .220 -.013

3.5.1 Inverse probability weighting

The inverse probability weighting method has also been investigated for this example. The

estimated probability of being observed has to be calculated for each of the covariates with

missing values. The regression models were constructed to extract the correlation between

the covariate with missing values and the response variables. These models use the inverse

estimated probabilities as weights. An indicator variable, R is created where R defines the

missing process as follows:

R =





1, if MMSE = observed,

0, if MMSE = missing.

A logistic regression model with R as the response variable and all other variables

as predictors is fit to the data. The predictor variables include all seven brain regions

(ACG, DFC,FRC, LTC, MTC, OCC, PAR), group, gender, and the other two MMSE scores

(MMSE7 and MMSEW ). A stepwise logistic regression model was performed with a se-

lection entry equal to selection stay with a value of .25. The best fitting model had only

two of the predictors based on the criteria mentioned above namely: MTC and DFC. The

estimates of the logistic regression are presented in Table 8. The correlation between each

covariate and region-of-interest using inverse probability weighting is also computed. The

correlation values are presented in Table 9.
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Table 8: Logistic regression parameter estimates

Name Parameter Estimate St. error p-value

Intercept 2.27 3.04 0.454

DFC 4.45 2.76 0.106

MTC -8.00 4.18 0.056

Table 9: Correlations for all covariates with brain regions-IPW

Name DFC FRC LTC MTC OCC PAR ACG

AGE .261 .279 .187 .399 .219 .297 .175

MMSE7 .131 .151 .484 .068 -.132 .245 -.036

MMSEW .170 .183 .477 .043 -.154 .247 -.062

MMSE .225 .242 .490 .151 -.228 .250 -.045

3.6 ADDITIONAL TABLES FOR THE DATA EXAMPLE

Additional tables with summary statistics for the covariate with missing values (MMSE)

in this case are provided in the first part of this Appendix. Table 10 is for the AD group,

Table 11 is for the Control group and Table 12 is for the MCI group, along with the statistics

for the data set prior to imputations. Table 13 provides the correlation estimates for each

multiple imputation between MMSE and each brain region.
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Table 10: Summary statistics for MMSE before and after imputations for AD group

Variable Imputation Minimum Maximum Average Standard

status Deviation

MMSE Before

Imputation 16.00 29.00 22.2 3.74

Imputation 1 16.00 29.00 22.87 3.87

Imputation 2 16.00 29.00 22.30 3.54

MMSE Imputation 3 16.00 29.00 22.63 3.63

Imputation 4 16.00 29.00 22.72 4.07

Imputation 5 16.00 29.00 22.70 3.89

Table 11: Summary statistics for MMSE before and after imputations for Control group

Variable Imputation Minimum Maximum Average Standard

status Deviation

MMSE Before

Imputation 24.00 30.00 28.6 1.68

Imputation 1 24.00 30.00 28.53 1.54

Imputation 2 24.00 30.00 28.56 1.59

MMSE Imputation 3 24.00 30.00 28.58 1.54

Imputation 4 24.00 30.00 28.65 1.56

Imputation 5 24.00 30.00 28.51 1.60
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Table 12: Summary statistics for MMSE before and after imputations for MCI group

Variable Imputation Minimum Maximum Average Standard

status Deviation

MMSE Before

Imputation 20.00 30.00 27.00 2.56

Imputation 1 20.00 30.00 26.85 2.52

Imputation 2 20.00 30.00 27.21 2.39

MMSE Imputation 3 20.00 30.00 27.24 2.39

Imputation 4 20.00 30.00 27.04 2.31

Imputation 5 20.00 30.00 27.03 2.31

Table 13: Correlations for MMSE with each brain region for each imputation

Name Imputation DFC FRC LTC MTC OCC PAR ACG

MMSE Imputation 1 .217 .230 .441 .173 -.158 .218 -.017

MMSE Imputation 2 .194 .210 .475 .127 -.176 .241 -.010

MMSE Imputation 3 .209 .223 .469 .143 -.175 .229 -.011

MMSE Imputation 4 .194 .208 .430 .162 -.156 .202 -.006

MMSE Imputation 5 .185 .200 .453 .145 -.191 .212 -.020

MMSE Average .200 .214 .454 .150 -.171 .220 -.013
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4.0 PARTIAL LEAST SQUARES

4.1 INTRODUCTION

Partial least squares (PLS) was first introduced in 1960’s by Herman Wold [25] and used

in the Economics field. PLS has been widely used in chemometrics, econometrics and more

recently in neuroimaging due to its dimension reduction capability. It was first introduced to

neuroimaging in 1996 by A.R. McIntosh et. al, [13] and has received a lot of attention lately

in the neuroimaging community. Partial least squares (PLS) is a technique which is based on

a singular value decomposition of the covariance matrix between two blocks of variables and

uses the extracted information to obtain a new set of variables that optimally relate the blocks

using the fewest dimensions. The neuroimage datasets are very rich databases containing

a substantial amount of temporal, spatial and statistical signals. PLS is a technique that

provides the researcher with a comprehensive tool capable of explaining the factor variation

and models the responses well at the same time.

A first step in PLS is the computation of the covariance matrix for which a Singular

Value Decomposition (SVD) is performed. The matrices obtained from the SVD will then

be used in calculation of the PLS scores which are the final product of the analysis. The

final product of the technique is one, or more, PLS scores for each individual which are

computed using one of the resulting matrices from SVD and the value of each variable from

the dataset. Thus, missing data in any of these variables is a serious limitation in achieving

the final goal of the PLS; computing the scores. The present work will provide a method

for computing the PLS scores in the presence of missing data. The complete case analysis

technique will result in the elimination of subjects from the analysis and the PLS scores will

not be available for subjects with missing data due to elimination of these subjects in the
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first place. This is a serious limitation of the complete cases analysis since one will never be

able to compute the actual values of the scores due to missing data. To date, there is almost

no existing published literature involving calculation of PLS scores resulting from data with

missing values. Also, the inverse probability weigthing method cannot be used due to a

similar limitation, there will be no data available on subjects with missing observations in

order to compute PLS scores. Therefore, only the multiple imputation technique will be

able to provide scores for all subjects due to the imputation of the missing values, which

will result in complete observations for all subjects. The multiple imputation procedure will

provide all of the information needed to arrive at the final product of PLS and it is the only

approach to handling missing data that addresses this issue.

An interesting approach that we present here is a combination of inverse probability

weighting and multiple imputation. Explicitly, the covariance matrix used as input for the

singular value decomposition is calculated using the reconstruction proposed in chapter 3,

from the inverse probability weights. We will then use a complete dataset from one of the

datasets created using multiple imputation, so that all of the variables will have complete

observations. This matrix and the dataset are then used to compute the scores.

A methods section with detailed information regarding the mentioned techniques is

presented in section two. Section three consists of a description of simulation studies, section

four presents an example using PLS scores obtained from the above mentioned methods and

section five presents a short discussion along with further recommendations.

4.2 METHODS

The main step of partial least squares is the computation of a singular value decomposition

of the covariance matrix. The singular value decomposition algorithm takes a rectangular

matrix of data, Σ(n×p), and finds U,D and V such that:

Σn×p = Un×nDn×pV
t
p×p, (4.1)
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where U tU = In×n and V tV = Ip×p.The columns of V are actually the eigenvectors of ΣtΣ

and the columns of U are the eigenvectors of ΣΣt. To find the eigenvectors of a matrix we

use the following definition:

Definition 6. Let us denote ΣΣt = W . For an n× n matrix W , a nonzero vector x is the

eigenvector of W if:

(W − λI)x = 0,

for some scalar λ and I being the n × n identity matrix. Then the scalar λ is called an

eigenvalue of Σ, and x is said to be an eigenvector of Σ corresponding to λ.

The singular value decomposition computed for each of the covariance matrices derived

by complete cases, multiple imputation and the inverse probability weighted method. The

dataset is composed of two matrices, one matrix consisting of independent variables, denoted

X, and one matrix consisting of dependent variables, denoted Y . The covariance matrix of X

and Y , Σxy, is computed to be used in the analysis. The singular value decomposition is then

performed on Σxy = Cov(X, Y ). The SVD will return three different matrices, U , D, V such

that Σ = UDV T . The goal of the PLS is to find the matrix of X−scores, T , and Y −scores,

B, which are computed using the original dataset combined with the matrices calculated by

the SVD algorithm. More specifically, the columns of the matrix U , u11, u12, ..., u1n, from

the SVD represent the eigenvectors from the decomposition of the product of the covariance

matrix and its transpose, ΣxyΣ
T
xy, and will be used to calculate the X−scores. The columns

of V , denoted v11, v12, ..., v1p, represent the eigenvectors corresponding to the eigenvalues of

the product ΣT
xyΣxy and will be used to calculate the Y − scores. The matrix of X− scores,

T , with columns, t1, ..., ti, where i represents the number of scores one would like to calculate,

is computed as follows:

t1 = Xu11,

and the process is continued until all of the desired scores are calculated. The same process

is employed to calculate the matrix of Y −scores, B, b1, ..., bj, where j represents the number

of Y − scores to be extracted. The first computed Y − score will be:

b1 = Y v11.
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The diagonal matrix, D from the SVD algorithm is the matrix of singular values. The

diagonal matrix D is given by: D = diag(d11, d22, d33, ..., dnn) and the sum of squared singular

values is given by:
∑n

i=1 d2
ii. The ratio of a squared singular value, d2

ii divided by the above

sum, (
d2

ii∑n
i=1 d2

ii
), is ”the proportion of summed squared cross-block covariance accounted for by

the singular vectors”. This matrix will give the percentages of variability that are explained

by the PLS scores after performing the described calculations.

4.2.1 PLS using complete cases

In the complete cases scenario, only cases where all the variables are observed are used in

calculations. More specifically, each entry of the cross-correlation matrix is calculated using:

sij =
1

N − 1

N∑

k=1

(xij − xi)(xjk − xj), (4.2)

where i = 1, ..., n, j = 1, ..., n. then the SVD algorithm is applied to the specified covariance

matrix and the U,D and V matrices are obtained from the SVD. The X − scores are

obtained by multiplying the matrix of independent variables with the U matrix obtained

from SVD. The number of scores to be calculated is given by the percentage of variability

explained by the singular vectors. For each subject, one PLS score will be calculated as

follows: X scorei = uiX, where ui represents the first column of the matrix U . The subjects

for which some of the observations are missing (xij) will result in a missing PLS score.

Therefore, in this case only subjects with complete observations will have a corresponding

PLS score.

4.2.2 PLS using multiple imputation

Partial least squares is performed on the covariance matrix calculated from data with

missing values which were filled in using the multiple imputation method previously de-

scribed. In this case, a number of m = 5 imputations were performed for each covariate with

missing values. Therefore, instead of one dataset there will be 5 datasets and the covariance

matrix, Σm, m = 1, ..., 5, will be calculated separately for each dataset. Note that the upper

subscript denotes the imputation number, m. The SVD will be performed on each covariance
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matrix, Σm, and 5 different sets of singular values will be obtained. Each covariance matrix

will be decomposed into Σn×p = Un×nDn×pV
t
p×p using the SVD algorithm, and the resulting

matrices, U ,D,V will be used in further calculations of the scores.

In this case, for each complete dataset, a set of scores will be calculated using the

corresponding matrix from the SVD decomposition. More specifically, for the first impu-

tation, m = 1, with the corresponding covariance matrix Σ1 with the SVD decomposition,

Σ1 = U1D1V 1t
, the first corresponding X− score will be t11 = u1

11X, where X represents the

data matrix with all covariates and u1
11 is the first column of matrix U1 (the columns of the

matrix U1, uij, represent the eigenvectors corresponding to the eigenvalues of the covariance

matrix, Σ1). In the case where more than one score will be needed, similar calculations will

be performed, the only change being the column of U1 that will be used in the specified

calculation (i.e. t12 = u1
12X).

Similarly, the covariance matrix corresponding to the second imputation, m = 2, Σ2,

is calculated and the SVD is applied to this matrix as well, resulting in U2, D2, V 2 and the

corresponding first X − score, t21 = u2
11X. Also, if more than one score is desired, through

similar calculations, the second X − score is computed, t22 = u2
12. This algorithm is repeated

for all m = 5 completed datasets. Thus a total of 5 sets of one X−score, t11, t21, t31, t41, t51 will

be calculated, one for each imputation. An average of all scores for all m = 5 imputations

could also be computed for the X−scores resulting in only one set of averaged scores for X.

Specifically, tmean = 1
m

5∑
m=1

(tm1 ) will denote the average of the resulting scores using multiple

imputation.

4.2.3 PLS using inverse probability weighting

Inverse probability weighting is a new approach used in this context for calculation of

PLS scores in the presence of missing data. The covariance matrix is calculated using inverse

probability weighting and it is further used in singular value decomposition algorithm. Let

us consider the cross-covariance matrix of X and Y where X represents the data matrix con-

sisting of all independent variables and Y is the matrix consisting of all dependent variables,
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and let X1 be the covariate with missing values:

Σ =




Cov(X1, Y1) Cov(X2, Y1) Cov(X3, Y3)

Cov(X1, Y2) Cov(X2, Y2) Cov(X3, Y3)

Cov(X1, Y3) Cov(X2, Y3) Cov(X3, Y3)


 . (4.3)

The entries of the covariance matrix Σ will be calculated using the inverse probability weight-

ing technique since the variable X1 is not fully observed. Therefore, each entry will be

calculated using the estimated correlations described in Chapter 3:

r̂xy =

√
n∑

i=1

1

Π̂i

(xi − x̄)2

n∑
i=1

1

Π̂i

(yi − ȳi)
2

n∑
i=1

1

Π̂i

(yi − ȳi)
2

n∑
i=1

1

Π̂i

(xi − x̄)(yi − ȳ)

n∑
i=1

1

Π̂i

(xi − x̄)2

. (4.4)

The SVD is performed on this covariance matrix, Σ, resulting in the U , D and V

matrices that will further be used in calculations of the scores. The first X − score will be:

X−score = uiX, where ui is the first column of matrix U (the columns of matrix U , are the

eigenvectors corresponding to the eigenvalues of the decomposition of the covariance matrix,

Σ). Similarly, the first Y −score could also be calculated as: Y −score = viX, where vi is the

first column of the matrix V (the columns of matrix V , are the eigenvectors corresponding to

the eigenvalues of the decomposition of the covariance matrix, Σ). The PLS scores computed

here in this dissertation were only the X − scores since those were the scores involving the

covariate with missing values. As already described in the context for the complete cases

and multiple imputation, the ratio of a squared singular value, d2
ii divided by the above

sum,(
d2

ii∑n
i=1 d2

ii
), is ”the proportion of summed squared cross-block covariance accounted for

by the singular vectors” is valid here as well. This matrix will give the percentages of

variability that is explained by the PLS scores after performing the described calculations.

An interesting combination that was performed here was the combination of the cross-

correlation matrix calculated using the inverse probability method and then computation

of the scores, using this matrix for the SVD and using one dataset with all of the obser-

vations completed resulting from the multiple imputation. The SVD is performed on the

cross-correlation computed using inverse probability weighting. Since the inverse probability
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weighting will not substitute any value in the dataset, in order to have complete observations

for all subjects, one dataset with imputed values obtained by performing multiple imputation

was used in the computation of scores.

The cross-correlation is computed using formula 4.4 from this chapter and then the SVD

is performed on this matrix. The resulting U , D and V matrices are computed along with

the percentages of variability explained by the singular vectors that results from (
d2

ii∑n
i=1 d2

ii
).

The first X − scores will be then calculated as: ti = uiX
j, where ui represents the first

column of the matrix U and Xj represents the vector of covariates with missing observations

substituted by imputation, (j represents the imputation index). In this work, even though

5 imputations were performed, the IPWMI scores were calculated using only one of the

datasets from the imputation.

In order to quantify the agreement between all of the methods (complete cases, mul-

tiple imputation, inverse probability weigthing and inverse probability weighting combined

with multiple imputation) used for computing the scores, Kendall’s concordance coefficient,

denoted by W was computed. The mathematical formula used for computing Kendall’s

concordance coefficient (W ) is given by the following expression [2]:

W =

n∑
i=1

(Ri − k(n + 1)

2
)2

n∑
i=1

(ik − k(n + 1)

2
)2

,

where k represents the technique (i.e. CC, MI, IPW, IPWMI), n represents the objects that

are ranked, (i.e. PLS scores), and Ri represents the sum of the ranks given to the specific

objects by the k techniques.

4.3 SIMULATIONS

In this case, partial least squares was performed using datasets previously created to

compute covariance matrices. Some of the covariance matrices simulated under scenarios

described in chapter three, were used in the singular value decomposition. For the first
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set of simulations, each dataset had a sample size equal to 100 and we simulated 1000

datasets. The covariance matrices previously calculated were based on different percentages

of missingness (i.e. 20%, 30%, 50%), therefore the same percentages of misingness will be

used in this context. Calculations of the PLS scores were performed using the methods

previously described: complete cases, multiple imputation, inverse probability weighting

and inverse probability weighting combined with multiple imputation. For the complete

case method, for each dataset the covariance matrix was calculated and then SVD was

performed on each covariance matrix of the 1000 simulations, resulting in one set of scores

for each dataset. Therefore, a total of 100 scores were calculated for each dataset and the

estimated PLS score was the average of the 1000 datasets. Therefore for each subject, the

average PLS score will be:

X scoreavg−cc =
1

1000

1000,100∑

i,k=1

X scoreik, (4.5)

where i represents the dataset and k represents the subject index, i = 1, ..., 1000, k =

1, ..., 100. In the case of multiple imputation, for each imputation one set of scores will be

calculated for each dataset, that is one set of averaged scores for each imputation. Mathe-

matically, this could be written as:

X scorej
mi =

1

1000

1000,100∑

i,k=1

X scorej
ik, (4.6)

where the subscript i represents the dataset, k the subject index and j represents the im-

putation, here j = 1, ..., 5. If an averaged score across imputations was needed it would be

calculated using:

X scoreavg−mi =
1

5

5∑
j=1

X scorej
avg−mi. (4.7)

The averaged scores across imputations were not computed here. The scores computed

in this dissertation were obtained from each imputation separately and were not combined

in an average score across the multiple imputations. The third method, inverse probability

weighting is similar to complete cases when calculating the PLS scores. The only difference

between the two is the calculation of the covariance matrix. In this case the covariance matrix
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is calculated by weighting each observation by the inverse probability of being observed, as

previously described. Therefore, the scores will be calculated using the following formula:

X scoreavg−ipw =
1

1000

1000,100∑

i,k=1

X scoreik. (4.8)

The last method used to calculate scores was inverse probability weighting combined

with multiple imputation. The only difference between inverse probability weighting and this

method is the use of one of the datasets with missing values substituted using imputation.

Mathematically, scores will be calculated using the following formula:

X scoreavg−ipwmi =
1

1000

1000,100∑

i,k=1

Xj scoreik, (4.9)

In this case, the subscript j denotes the imputation dataset that was used.

4.3.1 Simulation results

The SVD was computed for the each of the cross-correlation matrices obtained using

complete cases, multiple imputation and inverse probability weighting. As previously de-

scribed, the diagonal matrix, D from the SVD algorithm is the matrix of singular values.

The ratio of a squared singular value, d2
ii divided by sum,(Vi =

d2
ii∑n

i=1 d2
ii
), gives the percentages

of variability that are explained by the singular values. For the first set of simulations, the

averaged percentages of variability computed by each method are presented in Table 14. In

this case scenario, 20% of the data was missing for one covariate.

The most important thing that we would like to mention in this case, is the fact that

the resulting scores are the averaged scores for each subject across all simulations. When

only one dataset is available, such computations are not possible for complete cases and

inverse probability weighting, and in that case (as we will further describe using the dataset

example) not all of the scores for all subjects can be computed. The missing percentage of

scores for each subject was roughly 20%. Also, since only 64% of variability is explained

by the first set of x-scores, it is necessary to compute the second set of x-scores. The PLS

scores for the situation when the percentages of missingness were 30% and 50% percent
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Table 14: Variability accounted for by the singular values, 20% missing

Method/Percent V1 V2 V3

Percent (%) true 64.32 26.61 9.07

Percent (%) CC 64.11 26.71 9.18

Percent (%) MI1 64.08 26.72 9.18

Percent (%) MI2 64.09 26.72 9.18

Percent (%) MI3 64.09 26.71 9.19

Percent (%) MI4 64.04 26.77 9.18

Percent (%) MI5 64.10 26.70 9.19

Percent(%) IPW 64.06 26.75 9.17

respectively were computed for this scenario and the percentages of variability explained by

singular values for each method are displayed in Tables 15 and 16.

Kendall’s concordance coefficient was calculated to measure the agreement between the

first set of x-scores obtained using complete cases, multiple imputation, inverse probability

weighting, inverse probability weighting combined with multiple imputation and the true

scores. The computed value of Kendall’s concordance coefficients are presented in Tables

17 − 19. All of the corresponding p-values were < .01. We can conclude that there is

strong agreement between the scores calculated using the above mentioned techniques. Also,

the agreement between all of the imputations was measured using Kendall’s concordance

coefficient (W ) and the value was .99. This was expected since the variability explained by

the singular vectors using multiple imputation are very close to each other. Furthermore,

the agreement between multiple imputation and the true values of the PLS scores was also

investigated. The Kendall’s computed values were above .80 for all percentages of missing

values (20%, 30%, 50%).

Another scenario that we have considered was the computation of all PLS scores for

all datasets together. More specifically, the computed score for each subject, X − scoreikj

(where i represents the dataset, k represents the subject index and j represents number of
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Table 15: Variability accounted for by the singular values, 30% missing

Method/Percent V1 V2 V3

Percent (%) true 64.32 26.61 9.07

Percent (%) CC 63.91 26.92 9.15

Percent (%) MI1 63.88 26.94 9.16

Percent (%) MI2 63.89 26.95 9.16

Percent (%) MI3 63.91 26.92 9.16

Percent (%) MI4 63.88 26.94 9.16

Percent (%) MI5 63.89 26.94 9.16

Percent(%) IPW 63.83 27.02 9.13

Table 16: Variability accounted for by the singular values, 50% missing

Method/Percent V1 V2 V3

Percent (%) true 64.32 26.61 9.07

Percent (%) CC 64.27 26.48 9.23

Percent (%) MI1 63.91 26.91 9.16

Percent (%) MI2 63.92 26.91 9.17

Percent (%) MI3 63.90 26.92 9.16

Percent (%) MI4 63.94 26.87 9.17

Percent (%) MI5 63.90 26.92 9.16

Percent(%) IPW 64.10 26.69 9.19

the imputation, i = 1, ..., 1000, k = 1, ..., 100, j = 1, ..., 5), using the multiple imputation

method was compared with the X − scoreik computed from the dataset before creating the

missing values.

In this case, the inverse probability weighting method and complete cases could not
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Table 17: Kendall’s W for averaged scores across simulations for MI and truth

missing Kendall’s W Kendall’s W

percentage first x− score second x− score

20% .97 .98

30% .92 .90

50% .81 .80

Table 18: Kendall’s W for averaged scores across simulations for CC and truth

missing Kendall’s W Kendall’s W

percentage first x− score second x− score

20% .70 .70

30% .62 .60

50% .47 .48

Table 19: Kendall’s W for averaged scores across simulations for IPW and truth

missing Kendall’s W Kendall’s W

percentage first x− score second x− score

20% .70 .71

30% .64 .63

50% .52 .48

be evaluated due to observations with missing values in the computed scores from each of

these two methods. As described before, a combination of inverse probability and multiple

imputation is also evaluated. Since multiple imputation provides a dataset with no missing

values, we have combined one multiple imputation dataset and singular value decomposition
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performed on the correlation matrix computed using inverse probability weighting.

To evaluate the agreement between multiple imputation, inverse probability weighting

combined with multiple imputation and a dataset without missing observations, Kendall’s

concordance coefficient (W ) was calculated. The Kendall’s concordance correlation coeffi-

cients, W ′s, and their associated p-values for this case scenario are presented in Table 22.

Table 20 provides the results associated with this scenario, with 20% missing data. Addi-

tional tables with percentages of missingness equal to 30% and 50% percent are presented

in Table 21.

Table 20: Variability explained by the singular vectors, second scenario, 20% missing

Method/Percent V1 V2 V3

Percent (%) no missing 61.13 38.00 .84

Percent (%) MI1 60.96 38.18 .80

Percent (%) MI2 60.92 38.23 .84

Percent (%) MI3 60.91 38.23 .80

Percent (%) MI4 60.98 38.13 .85

Percent (%) MI5 61.10 38.00 .80

Percent (%) IPWMI1 61.20 38.00 .80
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Table 21: Variability explained by the singular vectors, second scenario, 30%, 50% missing

Method/Percent V1 V2 V3

Percent (%) no missing 61.13 38.00 .84

Percent (30%) MI1 61.05 38.10 .84

Percent (50%) MI1 61.05 38.20 .86

Percent (30%) MI2 61.09 38.04 .85

Percent (50%) MI2 61.07 38.05 .86

Percent (30%) MI3 60.94 38.20 .84

Percent (50%) MI3 61.09 38.05 .85

Percent (30%) MI4 60.98 38.14 .85

Percent (50%) MI4 61.07 38.06 .86

Percent (30%) MI5 61.10 38.21 .84

Percent (50%) MI5 61.03 38.10 .86

Percent (30%) IPWMI1 61.26 37.90 .82

Percent (50%) IPWMI1 61.60 37.60 .80

Table 22: Kendall’s W for multiple imputation and data with no missing values

missing Kendall’s W Kendall’s W

percentage first x− score second x− score

20% .955 .918

30% .958 .901

50% .948 .878

55



4.4 DISCUSSION

The most important observation that we can make here is the fact that when 20% of

the data is missing, the percentages of variability explained by the singular values computed

using complete cases, multiple imputation and inverse probability weighting are very similar.

Each method gives the same percentage of variability, therefore in this case we could certainly

conclude, as expected, that there is not much difference between the three methods. When

the percentages of missingness increase a similar trend is observed as well, the agreement is

a little lower when 50% of the values in the dataset are missing as opposed to when only

20% or 30% are missing. Since the cross-correlation matrices were very similar, we expected

to see these results.

In the first case scenario when the average score is computed across simulations for

complete cases, inverse probability weighting and true value, the Kendall’s concordance

coefficient is smaller (.72, respectively .74) when compared to the situation where no average

is performed. This is explained by the fact that we are comparing the averaged scores across

simulations, and in the case of complete cases and inverse probability weighting there are

20%, 30% and 50% missing values for the averaged score. These values are expected given

the presence of missing values in our scores.

The second case scenario where the scores across all simulated datasets were computed

using multiple imputation and compared with the scores obtained before deleting the data,

we observed a very good agreement, above .90, which was also expected. In this case,

complete cases and inverse probability weighting was not investigated since the missing values

would have been present. As an alternative, the inverse probability weighting combined

with multiple imputation was examined. Good agreement was also observed when this was

included in the calculation of Kendall’s concordance coefficients. This did not come as a

surprise either, since one of the multiple imputation datasets was used to compute the scores

and the singular values from the SVD performed on the cross-correlation were obtained from

inverse probability weighting.

As a conclusion to our research, our recommendation would be to use the multiple

imputation method to calculate PLS scores, since it is the only available option. The inverse
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probability method is a nice alternative if no more than variability percentages are required

by the researcher. The combination of the two, is an interesting thing that was explored

here, but it does not provide any additional benefits since it uses both multiple imputation

and inverse probability weighting. While multiple imputation is an intensive computational

technique, it is still the only candidate for handling missing data in this setting.

Histogram plots for each subject across simulations are attached in the appendix. Only

25 subject plots were included for illustration, since the plots are similar across simulations.

The percentages of missing values were roughly 20% for each subject for the plots presented

in the Appendix section of this chapter.
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4.5 POSITRON EMISSION TOMOGRAPHY EXAMPLE; TRAILS

The relationship between brain metabolism and performance on the Trail Making Test

(TMT) was examined in our studied population in order to detect an indication of cognitive

dysfunction. The TMT test explores visual-conceptual and visual-motor tracking [3]. The

TMT test was first developed in 1944 for the War Department of the US Army and has

been widely used as a neuropsychological test consisting of two parts. Part A consists of

connecting consecutive numbered circles by the subject going under examination. Part B

of the test consists of alternatively connecting numbered and lettered circles. The score of

the test is recorded as the number of seconds it takes to the subject to perform the required

task. The block of dependent variable consists of several brain region-of-interest, all of them

completely observed. A region-of-interest is a selected subset of samples within a dataset.

In this example a region-of-interest represents a specific region of the brain. The regions are

identified prior to analysis. The regions-of-interest (ROI) under investigation are: Frontal

Cortex (FRC), Lateral Temporal Cortex (LTC), Dorsal Frontal Cortex (DFC), Parietal

(PAR), Occipital (OCC), Anterior Cingulate Gyrus (ACG).

4.5.1 Methods

The research study under investigation included 111 subjects classified into three different

groups. Some of these subjects had values missing for the Trail A test. It has been shown

that there is a relationship between cerebral impairment and Trail A test results [4]. The

three groups were the healthy control group (Control or non-disease group), the Alzheimer

disease (AD) group and the mild cognitive impairement (MCI) group. The control group

consists of 67 subjects, 22 males (age 74±10) and 45 females (age 71±9). In the MCI group

the number of subjects was 25 with 19 males (age 71 ± 8) and 6 females (age 67 ± 7) and

the AD group consists of 19 subjects, 14 males (age 70 ± 10) and 5 females (age 72 ± 8.3).

A summary of the Trail A measurements divided by subject groups is provided in Table 23.

The cross-correlation matrix was computed using the method of multiple imputation,

inverse probability weighting and complete cases and the results are presented in Table 24.
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Table 23: Trail Making Test A summary by group and gender

Group Gender Age Trail A missing

AD(15) M(12) 69.9±10.61 48.72±16.58

F(3) 71.8±8.31 42.33±10.06 4

MCI(23) M(17) 70.9±8.70 37.35±16.24

F(6) 67.16±6.36 26.83±4.62 2

Controls(61) M(19) 73.5±10.01 34.78±11.24

F(42) 70.53±9.19 28.04±9.47 6

The cross-correlation will be used in PLS. To calculate the probability of being observed a

logistic model was fit to the data and variables with a p-value less than .20 were kept in

the model. In this case, three variables were selected, age, FRC (Frontal Cortex) and LTC

(Lateral Temporal Cortex) in the final model Pr(R = 1)=−3.05 + .05 ∗Age− 5.52 ∗FRC +

7.9 ∗ LTC. No other variable met the selection criteria.

Table 24: Correlations of Trail A with each region-of-interest

Name ACG DFC FRC LTC OCC PAR

CC Trail A .115 −.108 −.121 −.245 .067 −.142

MI Trail A .110 −.108 −.120 −.243 .067 −.144

IPW Trail A .112 −.110 −.122 −.246 .066 −.144

A summary of the multiple imputation for the Trails A given in Table 25. The mini-

mum and maximum values for the Trail A variable remained the same before and after the

imputation for each group. The minimum value for the Trail A variable for the AD group

was equal to 26 before imputation and after imputation and maximum value was equal to
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Table 25: Average values for multiple imputation for Trail A variable

Imputation by MI1 MI2 MI3 MI4 MI5 mean

Group before

AD 45.47 45.54 47.02 47.68 47.68 47.35

Control 30.68 30.67 30.27 30.46 30.11 30.14

MCI 34.09 34.58 34.59 34.10 35.00 34.60

83 before and after imputation. The minimum value for the Trail A variable for the Control

group was equal to 13.85 before and after imputation and a maximum equal to 60.06 before

and after imputation. Also, for the MCI group, the minimum of 21 and maximum of 72

before imputation remained unchanged after imputation.

The singular value decomposition was applied to the cross-correlation matrix between

age, Trail A and all regions-of interest. The partial least squares scores were computed using

the cross-correlation calculated using complete cases, multiple imputation and inverse prob-

ability weighting. The scores calculated using complete cases and the inverse probability

weighting method were compared using the Kendall’s correlation (τ = .98). The Kendall’s

concordance coefficient value was computed to verify agreement between all multiple impu-

tation and multiple imputation combined with inverse probability weighting and the value

was W=.99 with a p-value < .00001.

The inverse probability method, is then combined with one of the multiple imputation

datasets and therefore the scores will no longer have missing values. Table number 26

provides the percentages of variability explained by the singular vectors.

The variability is very similar across all methods. Since the proportion of the summed

squared cross-correlation accounted for by the first singular vector is higher than 83%, only

one x − score is needed. The matrix of singular vectors related to the covariates that is

computed from the singular value decomposition is very similar across the methods. The

singular vectors are the columns of the matrix V from the singular value decomposition
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Table 26: Variability explained by singular vectors for Trail A example; all methods

Method V1 V2

CC 83.88% 16.11%

IPW 84.15% 15.84%

MI1 83.05% 16.9%

MI2 83.15% 16.84%

MI3 83.85% 16.14%

MI4 84.37% 15.62%

MI5 84.20% 15.79%

(SV D = UDV T ). These vectors indicate the covariates that are most related to the singular

values. In this case, the covariate age (average value of the singular value across methods

equal to −.97), is more related to the first singular value and Trail A is most related to the

second singular value (average value of singular vector across methods equal to .98).

Similarly, the singular vectors that will give an indication of which region-of-interest

is most related to the singular values are the columns of the matrix U from the singular

value decomposition (SV D = UDV T ). The higher the value (referred also as weight) in

that specific column of the matrix, the stronger the relationship between that specific region

and the singular values. In this example, the variable that was most related to the the first

singular value was the parietal (average value of singular vectors across methods equal to

−.52), followed by frontal cortex (−.48). Since this singular value is most related to age as

well, the interpretation would be that these are the regions that differ most with age.

The region-of-interest with the highest value (weight) in the second column of the ma-

trix U computed using SVD was anterior cingulate gyrus (.62) followed by occipital (.62).

Therefore these regions differ most for the Trail A. The graphs that are included here rep-

resent the scores computed using complete cases and inverse probability weighting plotted

versus Trail A test values for each group (figure 1, 3, 5). Similarly, figures with plots of the
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scores computed using multiple imputation and inverse probability weighting and multiple

imputation versus Trail A test values are provided as well (figure 2, 4, 6).

4.6 ADDITIONAL TABLES FOR TRAILS A DATA EXAMPLE

Figure 1: X-scores for AD group using MI and IPWMI method
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Figure 2: X-scores for Control group using MI and IPWMI method
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Figure 3: X-scores for MCI group using MI and IPWMI method
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Figure 4: X-scores for AD group using CC and IPW method
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Figure 5: X-scores for Control group using CC and IPW method

66



Figure 6: X-scores for MCI group using CC and IPW method
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Figure 7: First X-score set: 25 subjects
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5.0 DISCUSSION AND FUTURE WORK

The methods for the estimation of the cross-correlation matrix and partial least squares

(PLS) scores presented in this dissertation were developed in the presence of one covariate

with missing values. The problem is partially solved at the level of one covariate with missing

values, in the continous case under the assumption of multivariate normality of the dataset

under investigation. Extensions of this methodology, inverse probability weighting, in the

case when more than one covariate with continuous measurements is missing would be the

next step. The development of such an extension has came to our attention while working

on these problems. To extend the present technique to more than one covariate with missing

values requires further investigation.

The first step considered would be the estimation of the probability of missingness and

then the computation of cross-correlation from a linear regression with weights based on

the estimated probabilities of being observed, when these probabilities can no longer be

computed from a Bernoulli distribution. To estimate the probability of missing values for

only one missing covariate in the continuous case, one establishes an indicator function, as

defined previously, Ri, that can only take two values, either a 0 or a 1, corresponding to

either observed (i.e 0) or missing (i.e 1). Thus, via classical logistic regression with the

indicator variable Ri as response variable, the estimated probabilities of being observed are

computed. This will have to be adapted for the case of more than one missing covariate. More

specifically, let us briefly introduce the missing scenario for two continuous covariates. Let us

consider X = (Xcomplete, Z), where Xcomplete consists of variables that are completely observed

and Z = (Z1, Z2) that are not always observed. Obviously, different possibilities ought to be

considered; one possibility would be for (Z1, Z2) to be either missing or observed at the same

time; another possibility would be for (Z1, Z2) to have missing values alternatively, with no
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obvious pattern or for (Z1, Z2) to have missing values based on a specific pattern.

Let Rj be the indicator variable, which in this case will no longer have a Bernoulli

distribution but a multinomial distribution with four parameters that need to be estimated,

p1, p2, p3, p4. The indicator variable would be defined as follows:

Ri =





1, if Z1&Z2 = observed,

2, if Z1 = missing&Z2 = observed,

3, if Z2 = missing&Z1 = observed,

0, if Z1&Z2 = missing.

In this case, a multinomial logistic regression would be used to estimate each possible prob-

ability. The probability of being observed for each of the Z ′
is is estimated based on a

conditional probability function. The probability of being observed will be of this form,

Pr(Z1 = 1|Z2, X) = Pr(Z1|Z2 = 1, Z2 = 3, X) as opposed to the case of only one covariate

missing when Pr(Z1) = Pr(Z1|X). Once the probabilities of being observed are calculated,

the weights would be computed as well and the methodology presented should be adapted ac-

cordingly to the statistical analysis. Also, another possibility will arise from the mechanism

of the missing data. Throughout this work, the missigness mechanism, (Πi) considered was

an ignorable missing mechanism. When an ignorable missing mechanism is considered, the

missing values for that specific variable are independent of the values that the variable could

take. In the case of a non-ignorable missing mechanism, a specific mathematical model for

the missing data mechanism has to be considered while performing the statistical analysis.

This work should also be extended to the longitudinal case scenario. Many of the

neuroimaging studies are performed over an extended period of time and covariates as well

as response variables are measured over time. It would be interesting to adapt the method

to the longitudinal case and to study its behavior.
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APPENDIX

ADDITIONAL SIMULATION TABLE

The cross-correlation matrices are calculated using complete cases, inverse probability

weighting and multiple imputation. These matrices are for the first case scenario of simu-

lations where missingness is independent of x and y, 20% of the data points are missing.

The difference between the true correlation matrix entries and the entries of the matrices

computed using complete cases, inverse probability weighting and multiple imputation for

the covariates that did not have any missing values is small. Their values are identical for

almost all of the entries in the matrix. For the entries where there is some difference, the

magnitude of the difference is very small (i.e. .001).
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Table 27: Correlations from MI, IPW and CC when the missing data is independent of x

and y, first correlation structure

Name y1 y2 y3 x2 x3

true value 0.337 -0.228 -0.411 -0.260 -0.591

method

CC 30% 0.335 -0.231 -0.408 -0.259 -0.585

MI 30% 0.338 -0.230 -0.407 -0.260 -0.589

IPW 30% 0.336 -0.227 -0.409 -0.261 -0.586

CC 50% 0.335 -0.221 -0.403 -0.258 -0.585

MI 50% 0.338 -0.229 -0.406 -0.260 -0.589

IPW 50% 0.336 -0.229 -0.403 -0.261 -0.587

Bias

CC 30% -0.002 -0.003 0.003 0.001 0.006

MI 30% -0.003 0.002 0.004 -0.000 0.002

IPW 30% -0.001 0.001 0.002 -0.001 0.005

CC 50% -0.002 0.007 0.009 0.002 0.006

MI 50% -0.001 0.001 0.006 0.001 0.002

IPW 50% -0.001 0.001 0.008 -0.001 0.004

MSE

CC 30% 0.012 0.013 0.010 0.013 0.007

MI 30% 0.011 0.011 0.006 0.010 0.006

IPW 30% 0.012 0.012 0.007 0.010 0.007

CC 50% 0.016 0.019 0.013 0.018 0.010

MI 50% 0.010 0.012 0.012 0.013 0.006

IPW 50% 0.012 0.012 0.009 0.013 0.007
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Table 28: Correlations from MI, IPW and CC, when the missing data is independent of x

and y, second correlation structure

Name y1 y2 y3 x2 x3

true value -0.548 -0.390 0.216 -0.578 0.140

method

CC 20% -0.546 -0.391 0.214 -0.572 0.141

MI20% -0.546 -0.390 0.213 -0.577 0.140

IPW20% -0.548 -0.391 0.216 -0.579 0.141

CC 30% -0.549 -0.391 0.213 -0.579 0.142

MI 30% -0.547 -0.390 0.212 -0.576 0.141

IPW30% -0.549 -0.391 0.216 -0.579 0.143

CC 50% -0.544 -0.380 0.222 -0.573 0.132

MI 50% -0.543 -0.376 0.217 -0.572 0.132

IPW 50% -0.544 -0.382 0.220 -0.573 0.133
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Table 29: Bias, MSE from MI, IPW and CC, when the data is independent of x and y,

second correlation structure

Name y1 y2 y3 x2 x3

Bias

CC 20% 0.002 -0.001 -0.002 0.006 0.001

MI 20% 0.002 0.000 -0.003 0.001 0.000

IPW 20% 0.000 -0.001 0.000 -0.001 0.001

CC 30% -0.001 -0.001 -0.003 0.001 0.002

MI 30% 0.001 0.000 -0.004 -0.000 0.001

IPW 30% -0.001 0.001 0.000 0.001 0.000

CC 50% 0.004 0.010 0.006 0.005 -0.008

MI 50% 0.005 0.014 0.001 0.006 -0.008

IPW 50% 0.004 0.008 0.004 0.005 -0.007

MSE

CC 20% 0.007 0.010 0.011 0.006 0.012

MI 20% 0.006 0.010 0.009 0.006 0.012

IPW 20% 0.006 0.009 0.010 0.006 0.008

CC 30% 0.007 0.010 0.013 0.006 0.014

MI 30% 0.008 0.011 0.013 0.007 0.014

IPW 30% 0.007 0.010 0.011 0.006 0.010

CC 50% 0.010 0.017 0.020 0.010 0.020

MI 50% 0.009 0.012 0.014 0.010 0.014

IPW 50% 0.010 0.016 0.016 0.010 0.011
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Table 30: Correlations from MI, IPW and CC when the missing data is dependent on x,

30% missing values

Name y1 y2 y3 x2 x3

Bias

CC (30%) -0.010 -0.006 0.011 0.023 0.034

MI (30%) 0.000 -0.007 -0.005 -0.006 -0.003

IPW (30%) -0.001 -0.005 0.003 0.001 0.006

MSE (30%)

CC (30%) 0.009 0.008 0.013 0.008 0.009

MI (30%) 0.008 0.007 0.011 0.007 0.007

IPW (30%) 0.007 0.007 0.010 0.006 0.005
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