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ANALYSIS OF THE RELATIONSHIP BETWEEN SACRAL SKIN BLOOD FLOW 

AND TRANSCUTANEOUS OXYGENATION IN RESPONSE TO CAUSATIVE 

FACTORS OF PRESSURE ULCERS IN HEALTHY SUBJECTS 

Gregory F. Meloy 

 

 

Pressure ulcers significantly contribute to the diminished quality of life and substantial 

disability in people with spinal cord injury (SCI).  A broad consensus among clinicians and 

researchers has been reached that the best approach to reducing this burden is to implement an 

effective preventive treatment that would greatly reduce the incidence.  The preventative 

intervention should eliminate/diminish causative factors and pathways involved with pressure 

ulcer development.  The objective of this thesis is to explore the relationship between sacral skin 

blood flow and transcutaneous oxygenation in response to causative factors of pressure ulcers 

(i.e. thermal stress, mechanical stress, and sympathetic modulations) in five neurologically intact 

subjects. 

Two tests were performed to analyze the relationship between sacral skin blood flow and 

transcutaneous oxygenation.  In test 1, skin blood flow and transcutaneous oxygenation were 

measured while subjects underwent orthostatic stimulation.  Results from test 1 showed that both 

the level of heat used and the location of testing effects how skin blood flow and transcutaneous 

oxygenation respond to orthostatic stimulation.  In test 2, skin blood flow and transcutaneous 

oxygenation were measured while external pressure was applied.  Results from test 2 showed 

that a significant increase in peak skin blood flow and TcPO2 (p<0.05) occurred on average 588 

and 298 seconds, respectively, following removal of occluding pressure when the skin is heated 
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to 44 °C; however, at 37 °C, skin blood flow and transcutaneous oxygenation showed a 

significant peak increase (p<0.05) following removal of occluding pressure at 28 and 404 

seconds, respectively. 
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1.0  INTRODUCTION 

1.1 DISCUSSION OF PROBLEM 

Insufficient blood flow and insufficient oxygen during the application of prolonged 

pressure to the skin can result in cell necrosis and pressure ulcerations.1,2  Pressure ulcers 

significantly contribute to the diminished quality of life and substantial disability in people with 

spinal cord injury (SCI).  The SCI population in the United States is approximately 253,000, with 

11,000 new cases each year, and it is estimated that 50-85% will develop at least one pressure 

ulcer during their lifetimes.3,4,5  The healthcare cost associated with the treatment of pressure 

ulcers in this population exceeds $1.3 billion annually, which accounts for 25% of the total cost 

of SCI treatment. 6  A broad consensus among clinicians and researchers has been reached that 

the best approach to reducing this burden is to implement an effective preventive treatment that 

would greatly reduce the incidence.7  The preventative intervention should eliminate/diminish 

causative factors and pathways involved with pressure ulcer development.   

Spinal cord injury deprives supraspinal control over the cardiovascular system which 

causes impaired protective vasodilatory response to stress.8  For assessing microvascular 

function, laser Doppler flowmetry and transcutaneous oximetry have been used to quantify 

microvascular responses to causative factors related to pressure ulcers (e.g. pressure, shear, 

heating, and moisture).9,1,2 
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 Laser Doppler flowmetry (LDF) provides noninvasive measurements of nutritional and 

thermoregulatory skin blood flow (SBF); and the nature of increased SBF following ischemia 

reflects the severity of tissue ischemia.  Transcutaneous oximetry provides an estimation of 

arterial oxygen tension that indicates the oxygen supply to local cells.  Although proven useful to 

assess pathological changes and effectiveness of the treatment,10-13 laser Doppler skin perfusion 

and transcutaneous partial pressure of oxygen (TcPO2) have been shown to be inconsistent.14-19  

Xakellis and colleagues’ compared LDF skin blood flow and transcutaneous oxygenation with 

increasing compressive weights.14  Their findings indicate that TcPO2 values and LDF values 

responded differently to compressive weight.14  TcPO2 values decreased in a curvilinear pattern 

with increasing weight.  LDF values showed a linear decline as compressive weight increased.  

Interestingly, their findings indicate that blood flow continued to decline beyond the point where 

TcPO2 values reach zero; suggesting that tissue oxygenation reached minimum levels before 

blood flow reached biological zero.14  These findings indicate that tissue ischemia could occur 

with less external pressure required to produce biological zero blood flow. 

 Several research studies showed that a significant decrease of transcutaneous 

oxygenation occurred at a higher pressure loading while significant decrease in LDF skin blood 

flow occurred at a lower pressure.15-18  Transcutaneous oxygenation has been reported to reach a 

stable level after 20 minutes of local heating; however, after this time period skin blood flow 

continues to increase for up to 50 minutes of local heating.19,20  Moreover transcutaneous 

oxygenation has been shown to increase after removal of occluding pressure with its peak value 

showing inconsistent results: similar to the baseline value in Ubbink et al.’s study,21 and 3-5 fold  

of baseline value in Ewald and colleagues’ study.22  In addition the effects of sympathetic 

modulation on transcutaneous oxygenation are largely unknown.  .   
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Colin and Saumet investigated the influence of external pressure on TcPO2 and LDF on 

sacral skin blood flow.17  Their findings indicate that external pressure as low as 40 mmHg 

induces a significant decrease in oxygenation and that external pressure as low as 20 mmHg 

induces a significant decrease in skin blood flow.17  The external pressure needed to reach 

biological zero values of both LDF and TcPO2 were nearly identical, 90 mmHg and 100 mmHg, 

respectively.17   

Taken together, these conflicting findings hinder the clinical application of LDF and 

TcPO2.  In order to provide some insight into the relationship between transcutaneous 

oxygenation and LDF a series of experiments have been performed.  The objective is to explore 

this relationship to enhance clinical applications taken from LDF and TcPO2.   

 

1.2 OBJECTIVES AND HYPOTHESES 

 

The objective of this thesis is to explore the relationship between sacral skin blood flow 

and transcutaneous oxygenation in response to causative factors of pressure ulcers (i.e. thermal 

stress, mechanical stress, and sympathetic modulations) in neurologically intact subjects.   

Two tests were performed to achieve this goal. Test 1 was a laboratory based test in 

which sacral skin blood flow and transcutaneous oxygenation levels were measured at 37 °C and 

44 °C while subjects underwent an orthostatic stimulation.  Test 1 had three objectives: (1) to test 

the hypothesis that decreased sacral skin blood flow during an orthostatic stimulation causes a 

decrease in TcpO2, (2) to test the hypothesis that an orthostatic stimulation results in a larger 
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change of TcpO2 over the glabrous skin with abundant arteriovenous shunts (i.e. right and left 

heels) and a smaller change of TcpO2 over the non-glabrous skin with few arteriovenous shunts 

(i.e. right and left sacrum), and (3) to test the hypothesis that decreased sacral skin blood flow 

during an orthostatic stimulation is regulated by the 0.02-0.05 Hz frequency band embedded in 

skin blood flow oscillations. 

Test 2 was a laboratory based test in which sacral skin blood flow and transcutaneous 

oxygenation levels were measured at 37 °C and 44 °C while externally applied pressure was 

supplied to the subjects right sacrum.  Test 2 had two objectives: (1) to test the hypothesis that 

increased sacral skin blood flow during reactive hyperemia causes an increase in TcpO2, and (2) 

to test the hypothesis that reactive hyperemia is a local response; therefore, increased TcpO2 

during reactive hyperemia does not change TcpO2 at the skin over the left sacrum and the right 

and left heels. 

 

1.3 ORGANIZATION OF THE THESIS 

Five chapters follow this introduction.  Chapter 2 is a review of the literature on pressure 

ulcer clinical research and the role that heat, orthostatic stimulation, and external pressure factor 

into pressure ulcer development.  Chapter 3 provides the research design and methods used in the 

study.  Chapter 4 provides the results of the experimental procedures.  Chapter 5 provides the 

discussion of these results.  Chapter 6 gives the summary, contributions, and future directions of 

the research.   
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2.0  REVIEW OF THE LITERATURE 

2.1 BLOOD FLOW REGULATION 

2.1.1 Healthy Subjects 

Blood flow regulation can be attributed to vasomotion, which is the rhythmic constriction 

and dilation of blood vessels.23-26  The dilation and constriction of blood vessels is controlled by 

central neurogenic, local myogenic and metabolic mechanisms.27-32  Vasomotion can occur 

spontaneously33,34 or in response to vasoactive stimuli.35,36  Pacemakers cells may originate the 

constriction and relaxation of the smooth muscle cells surrounding arterioles.37  Blood flow 

changes, particularly in the skin, act to meet various thermoregulatory and local nutrient 

needs.23,38-40  Wavelet analysis by Brienza and colleagues identified five frequency bands 

embedded in the laser Doppler blood flow signal which correspond to vasomotion control 

patterns.41,42     

2.1.2 Changes in Spinal Cord Injury 

Following spinal cord injury many changes occur to blood flow regulation often resulting 

in persistent hypotension and/or episodes of uncontrolled hypertension.43  Following spinal cord 

injury, the tonic activation of spinal sympathetic preganglionic neurons by descending input 
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from the supraspinal structures which regulate blood pressure, are disrupted and the spinal 

circuits become solely response for the generation of sympathetic activity.44,45  This results in 

numerous cardiovascular abnormalities which, in the acute and chronic stages of SCI, are among 

the most common causes of death in individuals with SCI.46-48   

 In neurologically intact subjects both heart rate and blood pressure are controlled by 

inputs from two components of the autonomic nervous system, the sympathetic and 

parasympathetic nervous systems.  These two components generally have opposing roles, 

depending on the needs and stresses of the individual.  The parasympathetic is predominate 

during rest and acts to decrease heart rate.  As opposed to the sympathetic nervous system which 

is largely excitatory and prepares the body for an emergency (fight or flight reaction), typically 

counteracting the parasympathetic nervous system.  Activation of the sympathetic nervous 

system results in increased heart rate, force of myocardial contractions, and peripheral vascular 

resistance, resulting in increased blood pressure.  In neurologically intact subjects the insula and 

hypothalamus contribute to the autonomic regulation of cardiovascular control.49  Spinal cord 

injury leads to disruption of the descending spinal cardiovascular pathways which leads to 

hypoactivity of the sympathetic nervous system and unopposed prevalence of the intact 

parasympathetic control.50  Thus individuals with SCI display low resting blood pressure, loss of 

regular adaptability of blood pressure, and disturbed reflex control.8   

Immediately following spinal cord injury (hours to days) there is a transient state of 

hypoexcitability of the isolated spinal cord, a condition known as spinal shock.  Spinal shock is 

associated with flaccid paralysis of the muscles, absent tendon reflexes, impairment of spinal 

autonomic function, dilation of blood vessels particularly in the skin, and profound 

hypotension.51-53  Over time the signs and symptoms of spinal shock resolve, but SCI patients are 
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often plagued with sudden falls in blood pressure during postural change or following prolonged 

periods of sitting.53,54  SCI patients can also present with sudden attacks of hypertension 

triggered by afferent stimuli below the level of the spinal cord lesion (autonomic dysreflexia), 

which causes severe headaches and upper body flushing.8   

2.2 PRESSURE ULCERS IN SCI PATIENTS 

2.2.1 Definition 

The National Pressure Ulcer Advisory Panel in 2007 revised their definition of pressure 

ulcerations as, “A pressure ulcer is a localized injury to the skin and/or underlying tissue usually 

over a bony prominence, as a result of pressure, or pressure in combination with shear and/or 

friction.  A number of contributing or confounding factors are associated with pressure ulcers; 

the significance of these factors is yet to be elucidated.”55   Pressure ulcers are commonly 

referred to as bed sores, decubitus ulcers, or pressure sores.  The skin overlying the sacrum and 

heel is most often affected, but pressure ulcers may also be observed over the occiput, elbows, 

greater trochanter, and lower extremities.56  Pressure ulcers can develop on any part of the body 

where sustained pressure and compressive forces are maintained for a sufficient period of time.56 

2.2.2 Clinical Diagnosis and Staging 

Pressure ulcers are clinically diagnosed by visual inspection and palpation.  In the United 

States, the National Pressure Ulcer Advisory Panel (NPUAP) staging system is the most 
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commonly used set of guidelines used in diagnosis.57  The NPUAP’s staging system has been 

revised throughout the years, the most recent revision (2007) accounts for deep tissue injuries.  

The European Pressure Ulcer Advisory Panel (EPUAP) has published its own staging system for 

pressure ulcers.  In a study to assess the reliability of the proper staging of pressure ulcers using 

the EPUAP definitions, there was significant confusion amongst the clinicians.58  No study to 

date has assessed the current reliability of staging pressure ulcers using the new NPUAP staging 

definitions amongst clinicians.  The NPUAP classification for stage 1 pressure ulcer  has 

changed considerably throughout the years and differs remarkably from the original 1989 

NPUAP Consensus Conference definition of, “Non-blanchable erythema of intact skin; the 

heralding lesion of skin ulceration.”59  The stage 2 definition has also changed remarkably since 

the 1989 NPUAP Consensus Conference which defined a stage 2 pressure ulcer as, “Partial-

thickness skin loss involving epidermis and/or dermis.  The ulcer is superficial and presents 

clinically as an abrasion, blister, or shallow crater.”59  Stage 3 and 4 pressure ulcers have 

undergone little to no change since their original NPUAP 1989 definitions.   Deep tissue injury 

was not recognized in the NPUAP staging system until 2007.55  The NPUAP staging system also 

allows for the classification of unstageable pressure ulcers, which present with an ulceration base 

covered by slough and/or eschar in the wound bed.55  The current NPUAP staging definitions are 

depicted in Table 1. 
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Table 1. 2007 NPUAP staging system 

Stage 2007 NPUAP Definitions 
1 Intact skin with non-blanchable redness of a localized area usually over a 

bony prominence.  Darkly pigmented skin may not have visible blanching; its 
color may differ from the surrounding area. 

2 Partial thickness loss of dermis presenting as a shallow open ulcer with a 
red pink wound bed, without slough.  May also present as an intact or 
open/ruptured serum-filled blister. 

3 Full thickness tissue loss.  Subcutaneous fat may be visible but bone, 
tendon or muscle are not exposed.  Slough may be present but does not obscure 
the depth of tissue loss.  May include undermining and tunneling.   

4 Full thickness tissue loss with exposed bone, tendon or muscle.  Slough 
or eschar may be present on some parts of the wound bed.  Often include 
undermining and tunneling.   

Suspected 
Deep Tissue 

Injury 

Purple or maroon localized area of discolored intact skin or blood-filled 
blister due to damage of underlying soft tissue from pressure and/or shear.  The 
area may be preceded by tissue that is painful, firm, mushy, boggy, warmer or 
cooler as compared to adjacent tissue.   

Unstageable Full thickness tissue loss in which the base of the ulcer is covered by 
slough (yellow, tan, gray, green or brown) and/or eschar (tan, brown or black) in 
the wound bed.  

 

2.2.3 Etiology 

The exact etiology of pressure ulcers is not fully understood.  However, a broad 

consensus of researchers agree that prolonged exposure to high-pressure gradients cause tissue 

necrosis via occlusion of capillary blood flow.60  Pressure is defined as a perpendicular force that 

compresses tissues, typically between a bony prominence and an external surface.61  Prolonged 

pressure can thus lead to ischemia by decreased tissue profusion which denies oxygen and other 

nutrients to the cells and allows a toxic build up of cell metabolites.  An inverse relationship 

between the intensity of the external pressure and time required for ulcer formation has been 

demonstrated.62  Thus high external pressure may cause ulceration in a shorter amount of time, 

and lower pressures require a longer time to cause ulceration.  Shear forces may also play a role 
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in pressure ulcer development.  A shear force is a force parallel to the skin.  A shear force can 

compromise blood supply resulting in ischemia, cellular death, and necrosis.61  Shear forces have 

been shown to amplify the effects of pressure.63  An example of a shear force is when the head of 

the bed is titled upwards causing the weight of the upper body to produce shear forces towards 

the foot of the bed.  Shear stress is thought to impair blood flow to deeper tissues.64  Frictional 

forces are yet another force which may lead to pressure ulcers.  Friction, which resists shearing 

forces, may lead to shedding of the epidermis (top to bottom model of pressure ulcer 

development, discussed below).64   

There are primarily two theories detailing the mechanisms and progression and formation 

of pressure ulcers.  One theory states that pressure ulcers form deep in the bone and move 

outward to the skin (deep tissue injury theory).  It has been suggested that deep tissue injury 

occurs first near the bone.  If unrelieved, ischemic injury and tissue necrosis can continue in an 

outward fashion, until reaching the outer layer of the skin.61  Recent ultrasonic findings in deep 

tissue injury support this theory.61  The second theory, top to bottom model, describes pressure 

ulcer formation resulting from skin destruction that occurs at the epidermis and proceeds inward 

to deeper tissue.61  This is the less favored model based on current research61     

2.2.4 Predisposing Factors 

Due to loss of sensation, impairment of mobility, reduction of soft tissue thickness, 

decreased vasomotor tone, and incontinence people, with SCI are a high risk group for pressure 

ulcer development.65  Risk factors in the SCI population for pressure ulceration include variables 

such as injury completeness, presence of additional medical conditions, prior history of ulcers, 

advanced age, lack of high school education, unemployment, smoking, unhealthy dietary habits, 
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lack of fitness, and difficulty performing skin care procedures.66  SCI deprives supraspinal 

control over the cardiovascular and microvascular systems.65  The degree of autonomic nervous 

system impairment is dependent upon the level of injury.  SCI at T6 or above may result in low 

blood pressure, decreased heart rate, orthostatic hypotension, autonomic dysreflexia, and low 

blood flow that may predispose a person to an abnormal response to loading.65  A spinal cord 

injury below T6 allows adequate sympathetic innervation for the cardiovascular system.65 

2.2.5 Incidence and Prevalence 

The incidence and prevalence of pressure ulcers varies per setting and patient population.  

Reports estimate the prevalence of pressure ulcers in inpatient hospital patients to surpass 15% 

with over 60,000 deaths each year associated with complications from pressure ulcers.67 

Approximately 57% to 60% of pressure ulcers occur in the hospital setting within the first 2 

weeks of admission.68-70  Approximately 70% of pressure ulcers occur in individuals over the age 

of 70.71  Incidence rates in the long term care setting have been reported to be from 2.2% to 

23.9%.57  The SCI population in the United States is approximately 250,000.  It is estimated that 

50%-85% of the SCI population will develop at least one pressure ulcer during their lifetimes.57,5  

2.2.6 Financial Impact 

Although studies vary on the cost to treat pressure ulcers they are nonetheless very 

substantial.  Healthcare costs associated with the treatment of pressure ulcers in just the spinal 

cord injury population, exceeds $1.3 billion annually.6  This cost is estimated to be 25% of the 

total cost of SCI treatment.6  In 1999 Beckrich and colleagues’ reported there were 1.6 million 
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pressure ulcers developed in hospitals annually in the United States, with treatment costs 

estimated to be $2.2 to $3.6 billion annually.6  Costs of treatment for pressure ulcers is associated 

with the severity of the wound. It is estimated that each stage III or stage IV pressure ulcer can 

add $14,000 to $23,000 to the cost of patients’ care.72  Zhan and Miller report that development 

of a pressure ulcer adds $10,845 to the cost of care, prolongs hospital stays by approximately 4 

days, and increases mortality by 7.23%.73  The total cost of wound care is estimated at $125-

$451 for Stage I or II ulcers and $14,000-$23,000 for Stage III or IV ulcers.74,72   

2.3 TECHNOLOGY TO ASSESS PRESSURE ULCER RISK 

2.3.1 Interface Pressure 

Non-invasive measurements of the skin microcirculation have been used extensively in 

the field of tissue viability.  For many years, interface pressure has been used as an indicator of 

tissue loading tolerance.42  While interface pressure can identify areas of high pressure and 

evaluate the pressure distribution achieved for a particular individual using a support surface, 

physiological responses cannot be detected.42  Thirty two mmHg is traditionally used as a value 

which causes capillary closure;75 however, the range of interface pressures capable of occluding 

capillary blood flow varies widely.76  Because it is the microcirculation which actually supplies 

the skin with blood and nutrients (oxygen) it is important to have non-invasive measurements of 

the microcirculation.  Laser Doppler flowmetry and transcutaneous oxygenation provide non-

invasive means of monitoring cutaneous microcirculation. 
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2.3.2 Laser Doppler Flowmetry 

Laser Doppler flowmetry (LDF) is a noninvasive measure of microcirculatory blood 

flow.77  Monochromatic laser light is transmitted to the skin by a probe.  Although 93-97% is 

absorbed by various structures, the remaining 3-7% is reflected.  Another optical fiber collects 

the backscattered light from the tissue and returns it to the monitor, resulting in an output signal 

that is proportional to the microvascular perfusion.77  LDF measures skin blood flow at 

approximately 1 mm depth of the skin.  The area of skin sampled by LDF is small, and is 

estimated to be about 1 mm2.78  LDF requires no heating, but can be used along with heating, to 

acquire accurate measurements.  The principle method of LDF is to measure the Doppler shift by 

moving objects, such as red blood cells.77  LDF has been used in both healthy subjects and those 

thought to be at risk for pressure ulcer development during pressure, heating, postural changes, 

and the effects of various support surfaces.79,80 

2.3.3 Wavelet Analysis 

Physiological rhythms associated with blood flow control mechanisms are embedded 

within the laser Doppler blood flow signal.42  Researchers have attempted to decompose the laser 

Doppler blood flow signal using various spectral analysis techniques.  Traditionally Fourier 

transforms have been used to study the frequency components of skin blood flow.42  However, 

Fourier transforms do not provide sufficient time resolution for nonstationary signals (such as 

blood flow).81,82  A windowed Fourier transform permits time frequency analysis, but does not 

allow adequate time and frequency resolution.83  Wavelet analysis has been used to overcome 

these shortcomings.41,42  Using wavelet analysis Stefanovska and Bracic identified five frequency 
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bands in the blood flow signal, corresponding to heart rate, respiratory activity, vascular 

myogenic response, neurogenic response, and metabolic responses.84  This technique has 

subsequently been used by Geyer and colleagues to investigate the effects of heat on skin 

blood,42 by Brienza and colleagues to compare skin blood flow’s response to heating and 

indentation,41 by Jan and colleagues to overcome temporal variability in skin blood flow 

measurements85, and by Li and colleagues to compare skin blood flow oscillations in individuals 

with and without spinal cord injury.86      

2.3.4 Transcutaneous Oxygenation 

Measuring blood oxygen levels transcutaneously is possible because oxygen, as well as 

carbon dioxide, can diffuse across the skin.77 However, the skin is not very permeable to gases 

under unheated conditions.  At higher temperatures the ability of the skin to transport gases is 

greatly improved.  Transcutanous oxygenation minimally requires the skin to be heated to 37 ˚C. 

The TcPO2 monitor has a Clark polarographic electrode that has been modified to include a 

heating element.  The electrode tip is covered with a thin membrane which oxygen diffuses 

through to the cathode where a reduction of oxygen occurs as a result: O2 + 2H2O + 4e-  4 OH. 

At the anode the following reaction takes place: 4Ag + 4Cl-  4AgCl + 4e-. The reduction of 

oxygen at the electrode’s cathode generates a current that is converted into a voltage and 

digitized.  This digitized signal is then passed to the microcomputer where it is reconverted to 

display pO2 in mmHg.   

 Heat causes three effects on the skin’s surface oxygen tension, thus making measurement 

of TcPO2 possible.  First, heating the stratum corneum beyond 40 ˚C changes its structure, which 

allows oxygen to diffuse faster.  Secondly, heat causes the oxygenation dissociation curve to 
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shift to the right, thus more oxygen is released from hemoglobin.  Lastly, dermal capillary 

hyperemia is induced by the heat.77 

Clinically TcPO2 has been used extensively in neo-natal care due to the thin epidermis of 

the infant, allowing easier diffusion of gases through the skin.87  Arterial blood oxygen values 

are well correlated to TcPO2 values in infants, making TcPO2 a valuable, non-invasive tool for 

monitoring respiratory gas status.88  It has also been used extensively to estimate surgical 

amputation levels.89  Upon review of the literature Wutschert concludes that 20 mmHg should be 

the cutoff value in determining amputation level.89  TcPO2 has been used to determine patients 

that would benefit from hyperbaric oxygen therapy,90and is used extensively in the diagnosis and 

prognosis of peripheral vascular disease.21,91-96 

TcPO2 has been used to predict wound healing following surgical wounds.97  TcPO2 has 

also been used as a measurement technique in pressure ulcer research.  Several researchers have 

investigated TcPO2 levels on externally applied pressure,98 the effects of various support 

surfaces,80,76 and in the differences between healthy and pressure damaged skin .19  Sacral TcPO2 

values have been shown to be lower in SCI patients than in neurologically intact patients.11   

2.4 TEMPERATURE IN PRESSURE ULCER DEVELOPMENT 

Local heating produces vasodilation which is regulated by both neurogenic and locally 

released metabolic mechanisms.96  The complex interaction of these mechanisms is very poorly 

understood and research has shown inconsistent findings because of the different temperatures 

used, length of heat applied, and rate of heat application.20  Minson described the response of 

skin blood flow to heat as a biphasic response.  Local heating initially produces a rapid increase 
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in skin blood flow, followed by a brief nadir, and then a slowly increasing secondary dilation 

until it plateaus.20  Minson and colleagues concluded that the initial vasodilation is 

predominantly mediated by an axon reflex mechanism and the secondary vasodilation until a 

plateau is reached is attributed to the release of nitric oxide.20  The metabolic response to heat 

has been further studied by Brienza and colleagues which determined that increased skin blood 

flow was in the metabolic frequency band of .008 to .02 Hz when using wavelet analysis to 

analyze the skin blood flow signal.41    

Shear stress is the primary stimulus which regulates the release of nitric oxide.100  

However, by blocking the axon reflexes during heating Minson and colleagues found that the 

secondary rise to plateau phase of skin blood flow was not altered.20  Geyer and colleagues did 

not observe a typical biphasic response to heat, but rather only the secondary peak.42  They 

attributed this to the slower rate of heating used to achieve maximum vasodilation.42  This peak 

extended into the post-heating recovery period.  Geyer and colleagues’ heating protocol used a 

very different rate of heating than Minson.  In Geyer’s study, blood flow was monitored for 10 

minutes without heat, followed by 3 minutes at 35 ˚C followed by an increase of 1˚C per minute 

for 9 minutes, and a final period of 3 minutes at 45 ˚C with a 10 minute post-heating period.  

Minson and colleagues used a much faster rate of heating.  Skin blood flow was monitored for 30 

minutes unheated followed by a rise of 0.5 ˚C every 5 seconds to a temperature of 42 ˚C and held 

constant for 50 to 80 minutes. 

The measurements of skin blood flow and transcutaneous oxygenation in response to 

heating have shown mixed results.  Shubert found a biphasic response of skin blood flow during 

heating while the TcPO2 showed a gradual increase throughout the heating protocol.19  However, 

Ewald et al found that TcPO2 values mirrored trends in skin blood flow, however the TcPO2 
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values were delayed.22  Very little literature exists examining the relationship between skin blood 

flow and transcutaneous oxygenation during a heating protocol. 

2.5 ORTHOSTATIC MODULATION ON SKIN BLOOD FLOW 

In 1953 Gaskell, based on Girling’s work on rats, suggested that postural vasoconstriction 

in human limbs was due to a local “veno-vasomotor” reflex.101  Hassan used laser Doppler 

flowmetry and local anesthesia to conclude that posture induced vasoconstriction was mediated 

mainly by sympathetic efferent nerves.102  Mayrovitz studied if the effects of posture induced 

vasoconstriction were transient or maintained, and concluded that posture induced 

vasoconstriction is maintained throughout the entire time of gravity dependent posture, and that 

no vasodilator escape was observed.103  Mayrovitz also concluded that the magnitude of the 

response is somewhat dependent on anatomical site, suggesting that sites with more 

arteriovenous shunts respond more to postural changes.103 

Postural changes stimulate a change in intravascular blood volume and pressure which 

produces vascular responses.104  Postural changes force the distal vasculature to compensate and 

respond to the subsequent increase in volume and pressure.103  Normally, in unheated skin, 

individuals free of distal vasculature problems, show a decrease in blood perfusion when in a 

dependent position.101  The physiological mechanisms associated with causing a decrease in skin 

blood flow in the dependent position have been described as local neurogenic reflexes with 

smaller contributions of local myogenic and central effects,102 although controversy exists on the 

exact mechanism.  Abnormalities in skin blood flow’s response to dependency have been 

reported in diabetics105 and in peripheral vascular disease.106,16   
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Reduction in the postural vasoconstriction response at elevated temperatures in healthy 

subjects has been reported by Rendell and colleagues.104  Complete elimination of the postural 

vasoconstriction response is a clinical evaluation tool for those with peripheral vascular disease.  

However, this response has been reported in healthy subjects who are subjected to orthostatic 

stimulation with skin heating.107 

The effects of orthostatic stimulation on transcutaneous oxygen have not been studied 

extensively.  Caspary took separate measurements of LDF and TcPO2 in patients with peripheral 

arterial occlusive disease during an orthostatic stimulation.  He concluded that during an 

orthostatic stimulation, patients with peripheral arterial occlusive disease will notice a reverse 

effect of increasing blood flow and increasing TcPO2 when changed to a gravity dependent 

position.16  However, he observed that some patients will only increase TcPO2 and not LDF, and 

some will increase LDF and not TcPO2.  He did see a significant difference in patients showing a 

rise in TcPO2 but not in LDF.16  The sitting/supine ratio values of LDF and TcPO2 were 

significantly larger for TcPO2.16 Ubbink reported TcPO2 to be a valid measure of peripheral 

vascular disease at 37°C but not at 44°C.107 

Although posture induced vasoconstriction is often used clinically, the exact 

physiological mechanism is not fully understood.  Vasoconstriction appears to be induced mainly 

by local neurogenic reflexes101 with smaller contributions of local myogenic and central 

effects.102  It has been proposed by investigators that both cardiopulmonary and arterial 

baroreceptors play an important role in cutaneous adjustments to upright posture. 108 However, 

Vissing et al. conclude that baroreceptors do not initiate cutaneous vasoconstriction, but rather 

activation of a local neurogenic, presumably veno-arteriorlar, reflex is responsible mechanism 

triggering cutaneous vasoconstriction in dependent limbs.109  The exact mechanism of the local 
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veno-arteriorlar reflex is not known, Vissing et al. hypothesized that a local neural impulse 

travels in the axonal sympathetic fibers in response to increase vascular transmural pressure.109  

The myogenic response may also contribute to the changed in systemic vascular resistance 

during orthostasis110-113 and to vasoconstriction during limb dependency.114-116   

As previously noted, there is a strong connection between SCI and orthostatic 

hypotension.  As many as 74% of SCI patients were clinically diagnosed with orthostatic 

hypotension while performing orthostatic maneuvers during physical therapy.117  The precise 

mechanisms responsible for orthostatic hypotension in SCI patients are still uncertain.43  Lesions 

above T6 disrupt supraspinal control of the splanchnic bed, predisposing them to orthostatic 

instability.  In addition, the disruption of spinal sympathetic pathways would likely affect the 

vascular resistance responses to orthostasis.43  In addition to a dysfunctional sympathetic nervous 

system, SCI patients also have altered baroreflex function, lack of skeletal muscle pumping 

activity, cardiovascular deconditioning, and altered salt and water balance which result in 

orthostatic instability.43   

2.6 EXTERNAL PRESSURE IN PRESSURE ULCER DEVELOPMENT 

Many factors contribute to the production of pressure ulceration; however, most 

researchers agree that prolonged, unrelieved pressure can reduce blood flow, causing ischemia 

and subsequent pressure ulceration. Landis, in 1930, found the average pressure in the fingernail 

capillary bed was 32 mmHg.75  Kosiak, in 1961, demonstrated that roughly 80 percent of 

externally applied pressure is transmitted to the skin microvasculature.118  Therefore, 

manufactures of support surfaces have focused on keeping interface pressure values below 40 
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mmHg.  However, when using physiological measures, such as skin blood flow and 

transcutaneous oxygenation, the amount of pressure to occlude blood flow varies.76  Moreover, 

in support of physiological measures over interface pressure Frantz and Xakellis conclude that, 

“by using perfusion as the assessment parameter, variation in individual physiological response 

to compressive surface pressure could be identified more accurately and high risk conditions 

averted.”119  

Pressure induced reduction of skin blood flow affects the skin breakdown process in 

numerous ways, dependent upon the tissue’s tolerance for pressure.120 An inverse relationship 

between the intensity of the external pressure and the time required for ulcer formation has been 

demonstrated by Dinsdale62 and supported by Kemp who reported patients with longer surgical 

procedures were more likely to develop pressure ulcers.120  Both normal forces as well as shear 

forces can contribute to pressure ulceration.121  Dinsdale found a lower pressure was sufficient to 

cause ulceration in animals when pressure was combined with shear than compared to pressure 

alone.122 Laser Doppler Flowmetry has been used extensively to study the effects of compressive 

loading on skin blood flow.119,79,17,123  

Clinically, a common intervention to prevent pressure ulcers in bedridden patients is to 

turn the patients every 2 hours.  In addition provocation of the blanching response is clinically 

used in the diagnosis of pressure ulcers.  Subsequently, many research studies have examined 

what effect this pressure relieving maneuver has on skin blood flow. A rapid reduction or 

elimination of ischemia inducing external pressure results in a transient increase in skin blood 

flow, an event termed reactive hyperemia.41 The assessment of reactive hyperemia can provide 

insight into changes in microcirculation affecting either reduced vasodilator bioavailability or 
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enhanced vasoconstriction in response to hypoxia.124  In addition endothelial damage may be 

indicative of a reduced hyperemic response.125  

 Reactive hyperemia is mediated mainly by local control mechanisms with evidences 

occurring in denervated tissue.126  Brienza and colleagues concluded that the myogenic response 

causes an increase in skin blood flow both during loading  (pressure induced vasodilation) and 

after loading (reactive hyperemia).41  Bayliss, in 1902, characterized the myogenic response as a 

decrease in vessel diameter after an increase of transmural pressure, and by an increase in vessel 

diameter after a decrease of transmural pressure.127  Both the magnitude and duration of the 

reactive hyperemia has shown to be related to the magnitude and duration of the external 

pressure.128  The transient increases in skin blood flow seen during reactive hyperemia is 

considered to be a protective response by numerous researchers.129-131   

Several animal studies report on the effect of occlusion time on the hyperemic 

response.132,133  Using occlusion times of 1, 2, or 3 minutes, Tee et al. had similar results of 

occlusion time affecting the hyperemic response.  Their results support that the magnitude of 

reactive hyperemia is dependent on the occlusion duration.124 

As previously noted, there is evidence of reactive hyperemia in denervated tissue.126  

Hagisawa et al. found no significant difference in peak blood flow between able bodied and SCI 

subjects during reactive hyperemia.134  Other research studies have supported these results;135-136 

however, Shubert and Fagrell found a dimished reactive hyperemia in SCI subjects.137   

Age also has an effect on the hyperemic response.138  The aging process causes changes 

in the quality of collagen and a decrease of elastin and ground substance in the skin.139  Pressure 

damage is thus more likely because these changes allow more direct transfer of mechanical load 

to the underlying tissue.138  In addition there is also a modest reduction of subcutaneous tissue in 
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the ages skin, resulting in less resistance to mechanical load.139  A decrease in maximum flow 

during reactive hyperemia in older subjects has been reported by investigators.138   

The myogenic response has been found in a variety of vessels, including vein, arteries, 

and arterioles.140-143  Most studies have focused on small arteries and arterioles because of their 

importance in blood flow distribution.  Vessels of very large and very small diameters have the 

weakest myogenic response, while intermediate size vessels have the largest myogenic 

response.144  Upon a review of the literature Shubert concludes that the existence of the 

myogenic response is well established in a variety of vessels from different vascular beds, but the 

strength of the myogenic response varies.31 

Numerous theories exist on the mechanism of the myogenic response.  There is some 

evidence that the pressure induced alteration of vessel wall tension, and not the pressure induced 

cell length or the pressure itself is the stimulus for the myogenic response.145  This evidence has 

support based on intracellular calcium concentration and the level of myosin light chain 

phosphorylation are significantly correlated with vessel wall tension and not with vessel 

diameter.146   

 Many researchers believe that the myogenic response has sensor elements which detects 

the stimulus, and initiates the myogenic response.31  This theory is tested frequently with stretch-

activated cation channels, but direct experimental evidence for this theory is lacking.   

The vessel wall has three components which are exposed to differences in transmural 

pressure; endothelial cells, smooth muscles cells, and nerve endings in the adventia.31  Based on 

studies in which the nerve endings are blocked with numerous drugs, Shubert concluded that the 

myogenic response is not mediated by these nerve endings.31   
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Some controversy exists on what the role of the endothelium has on the myogenic 

response.  Some studies have shown altered myogenic response with the removal of the 

endothelium, and others have shown that the endothelium has no influence on the myogenic 

response.147  However, this may have been due to the methods in which endothelial regulation 

has been removed.147  Engelke et al. demonstrated that blocking endothelial NO release does not 

eliminate the maximal vasodilation during reactive hyperemia.148  Brienza and colleagues found 

that metabolic control (release of nitric oxide by endothelial cells) has a minor role in skin blood 

flow’s response to mechanical stress, thus supporting Engelke’s work.41 

Numerous animal studies have shown that an increase in transmural pressure produces a 

membrane depolarization of the smooth muscle cells.149-155  The exact mechanism for this 

membrane depolarization in response to an increase in transmural pressure is not known; 

however, several theories exist involving stretch activated channels,156,157 calcium activated 

potassium channels,155,158,159 chloride channels,160 calcium channels,161 intracellular calcium 

concentration,162 and intracellular secondary messengers.163   

The myogenic response is demonstrated in both reactive hyperemia and pressure induced 

vasodilation (non-occluding pressure).39,41,164    Abraham et al. demonstrated that non-occluding 

local pressure leads to a slow developing and long lasting pressure induced vasodilation in the 

hand.164  

 Studies on transcutaneous oxygenation following occluding pressures have had mixed 

results.  In general transcutaneous oxygenation has been shown to increase following removal of 

pressure, with peak values mixed.  Ubbink et al. showed that transcutaneous oxygenation post 

occlusion values were similar to pre-occlusion values.21  However, in Ewald and colleagues 

study post occlusion transcutaneous oxygenation values were three to five times the value of pre-
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occlusion transcutaneous oxygenation values, and delayed by 10 to 20 seconds compared to the 

laser Doppler blood flow values.22  In another study by Ewald transcutaneous oxygenation 

showed a transient increase following removing of occluding pressure while performed at 

temperatures between 35-37 °C; however, at higher temperatures, >39 °C, Ewald reported 

transcutaneous oxygenation levels to return to baseline levels only .165   

The use of cyclic loading patterns has also been studied.  Bader studied cyclic loading in 

SCI and healthy subjects and concluded that cyclic loading enhances sacral oxygenation levels in 

healthy subjects, but not in SCI subjects.76 Using laser Doppler flowmetry, Mayrovitz et al. 

demonstrated enhanced heel skin blood flow under cyclic loading in elderly women but not in 

healthy subjects.166  Jan demonstrated that LDF skin blood flow was enhanced under cyclic 

loading as compared to constant loading.167 
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3.0  RESEARCH DESIGN AND METHODS 

3.1 SUBJECTS 

Five neurologically intact subjects (4 males, 1 female) were recruited into this study.  The 

demographic data were as follows (values are mean + SD): age 22.4 + 1.5 years, height 177.4 + 

14.2 cm, weight 75.16 + 16.1 kg, BMI 23.8 + 3.9 kg/m2.  The following conditions constituted 

exclusion criteria: diabetes, vascular disease, hypertension, the presence of pressure ulcers on the 

sacrum or heels, use of vasoactive medication, BMI >30, or BMI <20.   

3.2 RESEARCH DESIGN 

Informed consent approved by the University of Pittsburgh Institutional Review Board 

was obtained from each subject prior to testing.  All tests were performed in the Tissue Integrity 

Management Laboratory at the University of Pittsburgh.  Subjects were acclimated to room 

temperature for at least 20 minutes prior to testing to achieve a steady baseline blood flow.   

The test subjects lay prone on a standard treatment table.  Blood pressure and heart rate 

were recorded prior to the start of testing and at the end of testing.  With subjects lying prone, a 

laser Doppler flowmetry (LDF) probe was adhered to the right sacrum with a double sided 

adhesive ring.  TcPO2 probes were calibrated before use, according to manufacturer’s guidelines. 
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Four transcutaneous oxygenation probes were then connected to the subject. One TcPO2 probe 

was adhered to the right sacrum, another to the left sacrum, and one each to the left and right 

heels (see Figure 1). Often calibration failed on the TcPO2 unit.  All recommendations by the 

manufacturer were followed, such as replacing the membrane on the probe.  However, if re-

membraning the electrode failed twice to produce a positive calibration, then that probe was 

dropped from the test, resulting in some subjects having fewer than 4 probes placed on them. 

TcPO2 probes were held in place using adhesive fixation rings supplied by the manufacturer.  

Contact liquid supplied by the manufacturer was placed between the skin/probe interface, 

according to manufacturer’s guidelines.  Temperature on the LDF and TcPO2 probes was set at 

37 °C.  Skin blood flow and TcPO2 levels were recorded for 10 minutes.  At the end of the ten 

minute period subjects would switch from a prone position to a seated position on the edge of the 

treatment table (see Figure 2).  The maneuver took approximately 30 to 60 seconds to complete 

for each subject.  Skin blood flow and TcPO2 were then recorded for an additional 10 minutes in 

the seated position.   

After a 20 minute washout period, this test was repeated at 44 °C.  The same testing 

procedures were followed: subjects lay prone for 10 minutes while LDF skin blood flow was 

recorded on the right sacrum.  TcPO2 was measured on the left and right sacrum and the left and 

right heel.  After 10 minutes the subjects changed posture to a seated position in which skin 

blood flow and TcPO2 were recorded for an additional 10 minutes.   
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Figure 1. Subject before orthostatic stimulation (left) and after orthostatic stimulation (right) 

 

Upon a second day of testing, subjects underwent an occluding pressure protocol to test 

the hyperemic response.  After being acclimated to room temperature for at least 20 minutes to 

achieve a steady baseline blood flow, subjects lay prone on a standard treatment table.  A 

combined laser Doppler flowmetry and a transcutaneous oxygenation probe was designed for the 

study (see Figure 3). A custom-designed, computer-controlled indenter was used to apply 

loading pressure on the skin over the sacrum (see Figure 4). The laser Doppler flowmetry probe 

and the transcutaneous oximetry probe were incorporated into a rigid indenter with features 
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similar to those described by Bader,76 Schubert and Fagrell,137 and Herrman et al.126 including a 

force transducer to control loading pressure with simultaneous measurements of skin blood flow 

and oxygenation.  The LDF and TcPO2 probes had a diameter of 19 mm and 22 mm, 

respectively. The distance between the measure sites of the two probes was separated by 17 mm.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Combined indenter head (left) on computer controlled indenter (right) 

 

Additional transcutaneous oxygenation probes were attached to the left sacrum, and the 

left and right heels.  All transcutaneous oxygenation probes were calibrated according to 

manufacturer’s guidelines.  Transcutaneous oxygenation probes were held in place using 

adhesive rings supplied by the manufacturer, and contact liquid was placed between the 

skin/probe interface, according to manufacturer’s guidelines.  Temperature on all four 

transcutaneous oxygenation probes and the LDF was held constant at 37 °C. The combined 
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indenter was held onto the right sacrum with slight pressure (3 mmHg). Ten minutes of baseline 

data was recorded at this pressure.  After 10 minutes, the computer controlled indenter increased 

the pressure to 150 mmHg.  This pressure was held for 5 minutes.  Skin blood flow and 

transcutaneous oxygenation were then recorded for an additional 15 minutes following the high 

pressure phase, in which pressure was held at 3 mmHg.   

 After a 30 minute washout period, this testing protocol was repeated; however, the heat 

for the LDF and the transcutaneous oxygenation was set at 44 °C.  All other aspects of the test 

were identical to the previous test. 

Local pressure and local heating were utilized in this study.  Pressure ulcers are 

considered a local phenomena, in which local effects lead to the formation of pressure ulcers.  

Other investigator have used indirect heating and indirect pressure while studying skin blood 

flow and transcutaneous oxygenation.  Because pressure ulcers are considered to be caused by 

local stimulus, local heating and local pressure were utilized in this thesis.   

3.3 INSTRUMENTATION 

The Laserflow (Blood Perfusion Monitor 2; Vasamedics, Eden Prairie, MN, USA) and 

Softip pencil probe (P-435; Vasamedics) were used to measure capillary blood perfusion (ml/min 

per 100 g tissue).  The light source of the Laserflow is the Helium-Neon laser with wavelength of 

760-800 nm.  This wavelength is minimally absorbed by melanin, and can be used to measure 

blood flow in individuals with a variety of skin colors.  A temperature control module (TCO; 

Vasamedics) with heater probe (P-422; Vasamedics) was used to heat the skin to 37 and 44 °C.  

Laser Doppler skin blood flow signal was sampled at 20 Hz throughout testing.  Real time 
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recording of the data was achieved using the LabVIEW Software 7.1 (National Instruments, 

Austen, TX, USA) 

The TCM 400 Transcutaneous pO2 Monitoring System (Radiometer Medical, Denmark) 

was used to measure transcutaneous oxygenation.  The TCM 400 Transcutaneous pO2 

Monitoring System allows 1 to 6 probes to be used to measure TcPO2.  All probes were 

calibrated according to manufacturer’s recommendation.  The TCM 400 Transcutaneous pO2 

Monitoring System contains a built in barometer which affords the user to calibrate the probes to 

room air. Each probe contains a heating element which allows for temperatures to be set between 

37 °C to 45 °C in increments of 0.5 °C, with accuracy better than + 0.1 °C. The skin is not very 

permeable to gases under unheated conditions.  At higher temperatures the ability of the skin to 

transport gases is greatly improved.  Heat causes three effects on the skin’s surface oxygen 

tension, thus making measurement of TcPO2 possible.  First, heating the stratum corneum 

beyond 40 ˚C changes its structure, which allows oxygen to diffuse faster.  Secondly, heat causes 

the oxygenation dissociation curve to shift to the right, thus more oxygenation is released from 

hemoglobin.  Lastly, dermal capillary hyperemia is induced by the heat.76 

The TCM 400 monitor has a Clark polarographic electrode.  The electrode tip is covered 

with a thin membrane which oxygen diffuses through to the cathode where a reduction of oxygen 

occurs as a result: O2 + 2H2O + 4e-  4 OH-.  At the anode the following reaction takes place: 

4Ag + 4Cl-  4AgCl + 4e-. The reduction of oxygen at the electrode’s cathode generates a 

current that is converted into a voltage and digitized.  This digitized signal is then passed to the 

microcomputer where it is reconverted to display pO2 in mmHg.  The TCM 400 takes a 

recording every 10 seconds, and stores this information on the machine, which can then be 

exported to an external PC.   
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 The left and right sacrum and the left and right heel were chosen as testing sites to 

monitor systemic changes in TcPO2.  These two sites, sacrum and heel, have high incidence of 

pressure ulcerations and different microvasculature.  Glabrous skin, such as the heel, contains 

many arteriovenous shunts, whose main role is that of thermoregulation.104  Non-glabrous skin, 

such as the sacrum, contains fewer arteriovenous shunts and its blood supply is mainly nutritive 

in nature. 

3.4 WAVELET ANALYSIS 

Wavelet analysis was performed on the skin blood flow data measured at 20 Hz.  Wavelet 

analysis provides a multi-resolution, time-frequency analysis of sacral skin blood flow. Wavelet 

transform decomposes a signal (i.e. sacral skin blood flow) over dilated and translated 

wavelets.168  Continuous wavelet transform of a signal f(u) was defined as:169  
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A family of time-frequency wavelets is obtained by scaling function ψ  by parameter s (scale 

factor) and translating it by t (time factor). Continuous wavelet transformed data are easier to 

interpret and/or are amenable to pattern recognition because their complete scales tend to 

reinforce the traits and make all information more visible than data from discrete wavelet 

transform.170  

 31 



The Morlet wavelet model was used to perform wavelet transform analysis. Morlet 

wavelet is a Gaussian function defined as follows:  
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π
ψ ,  (Equation 3) 

where ωo will be designated as 2π.85 The relative contribution of each frequency band will be 

used to determine the dominant control mechanism.42 Matlab 6.0 and Wavelet Toolbox (The 

MathWorks Inc., Natick, MA) was used to perform wavelet transforms and normalization. 

The characteristic frequency bands associated with the individual control mechanisms are 

as follow: endothelial nitric oxide (0.008-0.02 Hz), neurogenic (0.02-0.05 Hz), myogenic (0.05-

0.15 Hz), respiratory (0.15-0.4 Hz), and cardiac (0.4-2.0 Hz).  The rationale for designation of a 

frequency range for each characteristic frequency band’s control mechanism is described in 

previous work.42  

 The power of each of the five frequency bands was averaged from the 2 minute to the 10 

minute period.  The first two minutes were eliminated to diminish any edge effects.  The change 

in posture took anywhere from 30 to 60 seconds for each subject.  Wavelet analysis was then 

performed on the 8 minutes following complete change in posture, with the last two minutes not 

used to eliminate any edge effects.   

3.5 STATISTICAL ANALYSIS 

Skin blood flow data was re-sampled from 20 Hz to 0.1 Hz by averaging the data over 

this time period to match the sampling of the TcPO2. A Shapiro-Wilk test was performed to 

check the normality of the data.  A Spearman’s rho test of correlation was subsequently 
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performed to get correlation coefficients between right sacral skin blood flow and right sacral 

transcutaneous oxygenation.  A two-tailed t-test was performed to see if the correlation was 

significant.  A Wilcoxon Signed Ranks Test was performed to see if skin blood flow and 

transcutaneous oxygenation values before and after orthostatic stimulation and occlusion were 

significantly different.  
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4.0  RESULTS 

4.1 ORTHOSTATIC STIMULATION AT 44 °C 

Skin blood flow data over the right sacrum and transcutaneous oxygenation data over the 

right sacrum, both at 44 °C, was plotted against time for each subject (Figures 3-7).  Skin blood 

flow data was reduced from 20 Hz to 1 data point for every 10 seconds by averaging the blood 

flow data over this time period.     
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Figure 3. Subject 1, skin blood flow and TcPO2 during orthostatic stimulation at 44 °C 
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Figure 4. Subject 2, skin blood flow and TcPO2 during orthostatic stimulation at 44 °C 
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Figure 5. Subject 3, skin blood flow and TcPO2 during orthostatic stimulation at 44 °C 
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Figure 6. Subject 4, skin blood flow and TcPO2 during orthostatic stimulation at 44 °C 
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Figure 7. Subject 5, skin blood flow and TcPO2 during orthostatic stimulation at 44 °C 

A nonparametric test of correlation, Spearman’s rho, was performed on each subject’s 

right sacrum skin blood flow and transcutaneous oxygenation data.  Correlation coefficients were 

obtained and a two tailed t-test was performed for significance; results are depicted in Table 2.  

The average correlation coefficient between the five subjects was 0.661.  
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Table 2 Orthostatic stimulation correlation coefficients 

Subject Correlation Coefficient Significance level 
1 0.539 .01 

2 0.949 .01 

3 0.635 .01 

4 0.525 .01 

5 0.657 .01 

Average 0.661 --- 

 

Skin blood flow data at 44 °C for each subject was then averaged before orthostatic 

stimulation and after orthostatic stimulation.  The period of time in which subjects changed 

posture was eliminated from analysis because of the artifact that was created in the laser Doppler 

skin blood flow signal. The percent differences between the two were then calculated.  Results 

are depicted in Table 3. 

Table 3 44°C orthostatic stimulation skin blood flow 

Subject Skin Blood Flow Pre-Orthostatic 
Stimulation 

Skin Blood Flow Post 
Orthostatic 
Stimulation 

% 
Difference 

1 16.29 31.79 95.09 
2 14.31 33.80 136.17 
3 39.96 49.83 24.72 
4 18.08 48.95 170.62 
5 6.31 22.58 

 
257.65 

 
Average 18.99 37.39 96.86 

 

 

Skin blood flow at 44 °C following orthostatic stimulation shows a remarkable increase, 

as compared to pre-orthostatic stimulation skin blood flow values.  On average, skin blood flow 

increased by 96.86% following orthostatic stimulation.  A nonparametric test of significance, 

Wilcoxon Signed Ranked Test was performed and this difference is statistically significant        
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(p<0.05).  Following orthostasis skin blood flow values either remained elevated or slightly 

decreased throughout the seating period; however, skin blood flow values remained significantly 

higher than pre-orthostatic values.   

Transcutaneous oxygenation at 44 °C over the right sacrum was averaged for each 

subject both before and after orthostatic stimulation.  The transitional time period from prone to 

seated position was eliminated from the data analysis.  The results are depicted in Table 4.  

Table 4. 44°C orthostatic stimulation TcPO2 

Subject TcPO2 Pre-Orthostatic 
Stimulation 

TcPO2 Post Orthostatic 
Stimulation 

% Difference 

1 35.19 63.77 81.18 

2 18.36 38.55 110 

3 48.60 72.45 49.07 

4 32.52 42.49 30.64 

5 2.7 24.85 802.38 

Average 27.48 48.42 76.16 

 

In general, TcPO2 values over the right sacrum showed a significant increase after change 

in posture.  On average, TcPO2 values increased 76.16 % after orthostasis.  A nonparametric test 

of significance, Wilcoxon Signed Ranks Test, was performed and this difference is statistically 

significant (p<0.05).  TcPO2 values appear to be delayed by 20 seconds in response to orthostatic 

stimulation.   

Transcutaneous oxygenation values over all 4 sites (left/right sacrum and left/right heel) 

were plotted against time for each subject (Figures 8-12).  In certain instances all 4 probes could 

not be calibrated.  In this case the left heel was not used as a test site.  If two probes could not be 

calibrated both the left heel and the left sacrum were not tested.  This allowed for comparison of 

glabrous (heel) versus non-glabrous (sacrum) skin.   
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Figure 8. Subject 1, TcPO2 during orthostatic stimulation at 44 °C 
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Figure 9. Subject 2, TcPO2 during orthostatic stimulation at 44 °C 
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Figure 10. Subject 3, TcPO2 during orthostatic stimulation at 44 °C 
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Figure 11. Subject 4, TcPO2 during orthostatic stimulation at 44 °C 

 40 



0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400
Time (s)

Tr
an

sc
ut

an
eo

us
 O

xy
ge

na
tio

n 
(m

m
H

g)
Right Sacrum Left Sacrum

Right Heel Left Heel

Orthostatic Stimulation

 

Figure 12. Subject 5, TcPO2 during orthostatic stimulation at 44 °C 

Visual inspection of the data shows that sacral TcPO2 values tended to mirror each other 

throughout testing.  Heel TcPO2 values also shared similar characteristics throughout the testing 

protocol for all subjects.  Sacral TcPO2 values were on average 20 seconds delayed following 

orthostasis.  Heel TcPO2 values were delayed on average 10 seconds following orthostasis. 

However, sacral TcPO2 values responded in greater magnitude to the orthostatic stimulation.  

Each subjects’ average TcPO2 values at each test site was plotted both before and after 

orthostatic stimulation (Figures 13-16).   
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Figure 13. Right sacrum orthostatic stimulation at 44 °C 
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Figure 14. Left sacrum orthostatic stimulation at 44 °C 
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Figure 15. Right heel orthostatic stimulation at 44 °C 
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Figure 16. Left heel orthostatic stimulation at 44 °C 
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All of the subjects showed an increased in average transcutaneous oxygenation over their 

left and right sacrum following orthostatic stimulation.  However, over the left and right heels, 

the opposite is true.  All data for the left and right heels shows a decrease in average 

transcutaneous oxygenation following orthostatic stimulation, except for subject 5’s right heel, 

which shows an increase.  Only the right sacrum data shows a significant difference between pre 

and post TcPO2 levels (p < 0.05) using a Wilcoxon Signed Ranks Test. This is summarized in 

Table 5. 

Table 5. 44°C orthostatic stimulation TcPO2 at each anatomical site 

 Pre 
RS 

Post 
RS 

% 
Diff 

Pre 
LS 

Post 
LS 

% 
Diff 

Pre 
RH 

Post 
RH 

% Diff Pre 
LH 

Post 
LH 

% 
Diff 

1 35.19 63.77 81.18 18.10 52.57 190.48 69.61 66.33 -4.74 80.67 72.43 -10.22 
2 18.36 38.55 110 ------ ------ -------- 54.30 47.82 -11.93 ------ ------ ------ 
3 48.60 72.45 49.07 46.95 54.05 15.11 96.26 71.18 -26.06 83.23 74.07 -11.01 
4 32.52 42.49 30.64 24.39 61.61 152.55 53.31 44.75 -16.05 ------ ------ ------ 
5 2.7 24.85 802.38 6.00 38.16 536.06 47.28 59.02 24.83 63.26 50.52 -20.13 
Avg 27.48 48.42 76.16 23.86 51.60 116.24 64.15 57.82 -9.87 75.72 65.67 -13.27 

Abbreviations: Pre = TcPO2 before orthostatic stimulation; Post = TcPO2 after orthostatic 
simulation. RS = Right Sacrum; LS = Left Sacrum; RH = Right Heel; LH = Left Heel 

 

Wavelet analysis was performed on the skin blood flow data for each subject.  The power 

was normalized and averaged for all five subjects, the results of which are depicted in Figure 15.  

No significant increase or decrease in power was detected (p < 0.05).   
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Figure 17. Normalized power comparison of the five characteristic frequency bands 

4.2 ORTHOSTATIC STIMULATI ON AT 37 °C 

Skin blood flow data over the right sacrum and transcutaneous oxygenation data over the 

right sacrum, both at 37 °C, was plotted against time for each subject (Figures 18-22).  Skin 

blood flow data was reduced from 20 Hz to 1 data point for every 10 seconds by averaging the 

blood flow data over this time period.     
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Figure 18. Subject 1, skin blood flow and TcPO2 orthostatic stimulation at 37 °C 
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Figure 19. Subject 2, skin blood flow and TcPO2 orthostatic stimulation at 37 °C 
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Figure 20. Subject 3, skin blood flow and TcPO2 orthostatic stimulation at 37 °C 
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Figure 21. Subject 4, skin blood flow and TcPO2 orthostatic stimulation at 37 °C 
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Figure 22. Subject 5, skin blood flow and TcPO2 orthostatic stimulation at 37 °C 

A nonparametric test of correlation, Spearman’s rho, was performed on each subject’s 

right sacrum skin blood flow and transcutaneous oxygenation.  Correlation coefficients were 

obtained and a two tailed t-test was performed for significance; results are depicted in Table 6.  

The average correlation coefficient between the five subjects was 0.423.  

 

Table 6. 37°C orthostatic stimulation correlation coefficients 

 

Subject Correlation Coefficient Significance level 
1 -.244 .01 
2 .710 .01 
3 .390 .01 
4 .650 .01 
5 .610 .01 

Average .423 --- 
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Skin blood flow data at 37 °C for each subject was then averaged before orthostatic 

stimulation and after orthostatic stimulation.  The period of time in which subjects changed 

posture was eliminated from analysis because of the artifact that was created in the laser Doppler 

skin blood flow signal. The percent differences between the two were then calculated.  Results 

are depicted in Table 7. 

Table 7. 37°C orthostatic stimulation skin blood flow 

 

Subject Skin Blood Flow Pre 
Orthostatic Stimulation 

Skin Blood Flow Post 
Orthostatic Stimulation 

% 
Difference 

1 2.00 1.84 -7.63 
2 2.66 1.73 -34.70 
3 5.00 2.81 -43.67 
4 2.82 1.55 -44.77 
5 2.51 1.32 -47.47 

Average 2.99 1.85 -38.12 
 

Skin blood flow at 37 °C following orthostatic stimulation shows a remarkable decrease, 

as compared to pre-orthostatic stimulation skin blood flow values.  On average, skin blood flow 

decreased by -38.12% following orthostatic stimulation.  A nonparametric test of significance, 

Wilcoxon Signed Ranks Test, was performed and this difference is statistically significant to 

(p<0.05).  Following orthostasis skin blood flow values remained decreased throughout the 

seating period.   

Transcutaneous oxygenation at 37 °C over the right sacrum showed a general decline 

throughout the testing period, with orthostasis causing no significant effect on TcPO2 values.   

Transcutaneous oxygenation values over all 4 sites (left/right sacrum and left/right heel) were 

plotted against time for each subject (Figures 23-27).  In certain instances all 4 probes could not 

be calibrated.  In this case the left heel was not used as a test site.  If two probes could not be 
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calibrated both the left heel and the left sacrum were not tested.  This allowed for comparison of 

glabrous (heel) versus non-glabrous (sacrum) skin.   
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Figure 23. Subject 1, TcPO2 during orthostatic stimulation at 37 °C 
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Figure 24. Subject 2, TcPO2 during orthostatic stimulation at 37 °C 
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Figure 25. Subject 4, TcPO2 during orthostatic stimulation at 37 °C 
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Figure 26. Subject 4, TcPO2 during orthostatic stimulation at 37 °C 
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Figure 27. Subject 5, TcPO2 during orthostatic stimulation at 37 °C 
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TcPO2 data at 37 °C shows a general negative trend, with orthostasis causing no effect on 

values (aside from artifact during movement).  Due to the general downward trend seen in the 

data, with orthostasis providing no effect, pre and post orthostatic stimulation values of TcPO2 

were not compared.   

Wavelet analysis was performed on the skin blood flow data for each subject.  The power 

was normalized and averaged for all five subjects, the results of which are depicted in Figure 25.  

No significant increase or decrease in power was detected (p=.05). 
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Figure 28. Normalized power comparison of the five characteristic frequency bands 
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4.3 HYPEREMIC RESPONSE AT 44 °C 

Skin blood flow data over the right sacrum and transcutaneous oxygenation data over the 

right sacrum, both at 44 °C, was plotted against time for each subject (Figures 29-33).  Skin 

blood flow data was reduced from 20 Hz to 1 data point for every 10 seconds by averaging the 

blood flow data over this time period.     

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

Sk
in

 B
lo

od
 F

lo
w

 (m
l/m

in
/1

00
g 

tis
su

e)

0

5

10

15

20

25

30

35

40

45

Tr
an

sc
ut

an
eo

us
 O

xy
ge

na
tio

n 
(m

m
H

g)

Skin Blood Flow

Transcutaneous Oxygenation

3 mmHg

150 mmHg

3 mmHg

 

Figure 29. Subject 1, skin blood flow and TcPO2 during hyperemic response at 44 °C 
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Figure 30. Subject 2, skin blood flow and TcPO2 during hyperemic response at 44 °C 
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Figure 31. Subject 3, skin blood flow and TcPO2 during hyperemic response at 44 °C 
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Figure 32. Subject 4, skin blood flow and TcPO2 during hyperemic response at 44 °C 
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Figure 33. Subject 5, skin blood flow and TcPO2 during hyperemic response at 44 °C 
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A nonparametric test of correlation, Spearman’s rho, was performed on each subject’s 

right sacrum skin blood flow and transcutaneous oxygenation.  Correlation coefficients were 

obtained and a two tailed t-test was performed for significance; results are depicted in Table 8.  

The average correlation coefficient between the five subjects was 0.6526.  

Table 8. 44°C hyperemic response correlation coefficients 

 

Subject Correlation Coefficient Significance Level 

1 .302 .01 

2 .544 .01 

3 .818 .01 

4 .853 .01 

5 .746 .01 

Average .6526 -- 

 

To characterize the skin blood flow’s response to occluding pressure the following 

variables have been calculated.  They are:  

Resting Skin Blood Flow- The average skin blood flow value (ml/min/100g tissue) before 
indentation calculated by averaging the 200 seconds before indentation.  

Peak Skin Blood Flow- The average value of skin blood flow (ml/min/100g tissue) following 
occlusion calculated by averaging the 200 seconds following occlusion. 

Percent Difference- Percent difference between peak skin blood flow and resting skin blood 
flow. 

Time to Peak- The amount of time (s) following occlusion needed to reach the maximum skin 
blood flow value. 

These values are depicted in Table 9. 
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Table 9. 44°C hyperemic response skin blood flow 

 

 Subject 
1 

Subject 2 Subject 3 Subject 4 Subject 5 Average 

Resting Skin 
Blood Flow 

11.02 8.41 14.66 21.58 16.12 14.36 

Peak Skin 
Blood Flow 

15.16 10.72 26.18 18.21 19.35 17.93 

Percent 
Difference 

37.55 27.39 78.46 -15.63 10.85 22.52 

Time to Peak 80 470 700 790 900 588 

 

 

Four of the five subjects displayed a peak blood flow response following release of 

occluding pressure.  This peak is a significant increase using the Wilcoxon Signed Ranks Test 

(p<0.05).  Subject 4 displayed a non significant decrease following release of occluding pressure; 

however, this subject did show an increasing trend in skin blood flow in the post occlusion time 

period.  Blood flow tended to increase throughout the post occlusion time period, showing an 

upward trend of blood flow from release of occluding pressure.  This however was not the case 

for one subject, subject 1, who displayed a return to baseline levels following transient increases 

in skin blood flow.   

Similar variables were analyzed to determined transcutaneous oxygenation’s response 

during the occluding pressure protocol.  They are: 

Resting TcPO2- The average transcutaneous oxygenation value (mmHg) before indentation 
calculated by averaging the 200 seconds before indentation. 

Peak TcPO2- The average value of TcPO2 (mmHg) following occlusion calculated by averaging 
the 200 seconds following occlusion. 
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Percent Difference- Percent difference between peak transcutaneous oxygenation and resting 
transcutaneous oxygenation. 

Time to Peak- The amount of time (s) following occlusion needed to reach the maximum TcPO2 
value. 

 

The values of these variables are depicted in Table 10. 

 
Table 10. 44°C hyperemic response transcutaneous oxygenation 

 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Average 

Resting 
TcPO2 

23.47 32.19 52.47 164.90 
 

29.28 60.47 

Peak 
TcPO2 

26.19 35.29 51 167.29 34.57 62.87 

Percent 
Difference 

11.56 9.62 -2.81 1.44 18.05 3.97 

Time to 
Peak 

460 20 200 730 80 298 

 

Subjects’ transcutaneous oxygenation values displayed unique characteristics following 

release of occluding pressure.  Three subjects (2,3,5) have transcutaneous oxygenation values 

which peak following a removable of occluding pressure and trend to baseline or near baseline 

levels.  Two subjects (1,4) had increasing trends of transcutaneous oxygenation following 

removal of occluding pressure.  In all transcutaneous oxygenation values were increased by 

3.97% following removal of occluding pressure.  This is a significant increase, measured using 

the Wilcoxon Signed Ranks Test, (p<0.05).  In order to get to this peak level, it took on average 

298 seconds, with a range from 20 seconds to 730 seconds.  

Each subjects’ transcutaneous oxygenation values over each anatomical site was plotted 

against time (Figures 34-38). 
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Figure 34. Subject 1, TcPO2 during hyperemic response at 44 °C 
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Figure 35. Subject 2, TcPO2 during hyperemic response at 44 °C 
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Figure 36. Subject 3, TcPO2 during hyperemic response at 44 °C 
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Figure 37. Subject 4, TcPO2 during hyperemic response at 44 °C 
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Figure 38. Subject 5, TcPO2 during hyperemic response at 44 °C 

Within subjects there appears to be a strong relationship between each sacrum and each 

heel’s levels of transcutaneous oxygenation.  This holds true for each subject, except for Subject 

2’s sacral data.   

Wavelet analysis was performed on the skin blood flow data for each subject. The data 

was broken up into two segments, pre occlusion skin blood flow and post occlusion skin blood 

flow.  The first two minutes of pre occlusion skin blood was eliminated from analysis to 

eliminate any edge effects.  The last two minutes of post occlusion skin blood flow was also 

eliminated to eliminate any edge effects.  The power was normalized and averaged for all five 

subjects, the results of which are depicted in Figure 37.  A two-tailed test of significance was 

performed on post and pre occlusion values.  No significant increase or decrease in power was 

detected (p=.05).  
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Figure 39. Normalized power comparison of the five characteristic frequency bands 

4.4 HYPEREMIC RESPONSE AT 37 °C 

Skin blood flow data over the right sacrum and transcutaneous oxygenation data over the 

right sacrum, both at 37 °C, was plotted against time for each subject (Figures 40-44).  Skin 

blood flow data was reduced from 20 Hz to 1 data point for every 10 seconds by averaging the 

blood flow data over this time period.     
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Figure 40. Subject 1, skin blood flow and TcPO2 during hyperemic response at 37 °C 
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Figure 41. Subject 2, skin blood flow and TcPO2 during hyperemic response at 37 °C 
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Figure 42. Subject 3, skin blood flow and TcPO2 during hyperemic response at 37 °C 
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Figure 43. Subject 4, skin blood flow and TcPO2 during hyperemic response at 37 °C 
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Figure 44. Subject 5, skin blood flow and TcPO2 during hyperemic response at 37 °C 

 

A nonparametric test of correlation, Spearman’s rho, was performed on each subject’s 

right sacrum skin blood flow and transcutaneous oxygenation.  Correlation coefficients were 

obtained and a two tailed t-test was performed for significance; results are depicted in Table 11.  

The average correlation coefficient between the five subjects was 0.626.  
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Table 11. 37°C hyperemic response correlation coefficients 

 

Subject Correlation Coefficient Significance Level 

1 .677 .01 

2 .305 .01 

3 .818 .01 

4 .516 .01 

5 .813 .01 

Average .626 -- 

 

To characterize the skin blood flow’s response to occluding pressure the following 

variables have been calculated.  They are:  

Resting Skin Blood Flow- The average skin blood flow value (ml/min/100g tissue) before 
indentation calculated by averaging the 200 seconds before indentation.  

Peak Skin Blood Flow- The average value of skin blood flow (ml/min/100g tissue) following 
occlusion calculated by averaging the 200 seconds following occlusion. 

Percent Difference- Percent difference between peak skin blood flow and resting skin blood 
flow. 

Time to Peak- The amount of time (s) following occlusion needed to reach the maximum skin 
blood flow value. 

 
 

The values of these variables are depicted in Table 12. 
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Table 12. 37°C hyperemic response skin blood flow 

 

 1 2 3 4 5 Average 

Resting Skin 
Blood Flow 

3.90 3.59 8.40 3.32 9.16 5.67 

Peak Skin 
Blood Flow 

5.83 5.81 20.15 5.91 15.24 10.59 

Percent 
Difference 

49.47 61.86 139.87 78.06 66.38 86.61 

Time to Peak 10 10 80 0 40 28 

 

All subjects displayed a peak blood flow response following release of occlusion 

pressure.  This peak is significantly different than the resting skin blood flow value, using a 

Wilcoxon Signed Ranks Test, (p<0.05).  Blood flow tended to decrease throughout the post 

occlusion time period; however, blood flow did not return to baseline levels.  Therefore, the time 

to peak is typically low because of the transient increase following release of pressure (average 

of 28 seconds).   

Similar variables were analyzed to determined transcutaneous oxygenation’s response 

during the occluding pressure protocol.  They are: 

Resting TcPO2- The average value of TcPO2 (mmHg) before indentation calculated by 
averaging the 200 seconds before indentation. 

Peak TcPO2- The average value of TcPO2 (mmHg) following occlusion calculated by averaging 
the 200 seconds following occlusion. 
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Percent Difference- Percent difference between peak transcutaneous oxygenation and resting 
transcutaneous oxygenation 

Time to Peak- - The amount of time (s) following occlusion needed to reach the maximum 
TcPO2 value 

The values of these variables are depicted in Table 13. 
Table 13. 37°C hyperemic response transcutaneous oxygenation 

 

 1 2 3 4 5 Average 

Resting 
TcPO2 

1 2.19 2 1.52 1.19 1.58 

Peak  TcPO2 3.38 2.67 23.33 2.14 2.10 6.72 

Percent 
Difference 

238.10 21.77 1066.67 40.98 76.07 325.57 

Time to Peak 80 770 120 860 190 404 

 

Subjects’ transcutaneous oxygenation values displayed unique characteristics following 

release of occluding pressure.  All subjects displayed very low pre occlusion values for TcPO2. 

All subjects showed a significant increase in transcutaneous oxygenation following removal of 

occlusion pressure using the Wilcoxon Signed Ranks Test (p<0.05). Subject 1 displayed a 

transient increase in TcPO2 with a return to or slightly above baseline.  Subject 2 displayed 

elevated TcPO2 valued following the entire post occlusion period.  Subject 3 displayed a very 

high in magnitude, transient increase in TcPO2 which eventually decreased to near baseline 

levels. Subject 4 displayed low pre occlusion TcPO2 values, and occluding pressure had no effect 

on TcPO2 levels.  Following removal of occlusion, Subject 4 displayed slightly elevated TcPO2 

values throughout the entire post occlusion period. Subject 5 displayed very low pre occlusion 

values with slightly elevated post occlusion values throughout the entire testing period.  Each 
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subjects transcutaneous oxygenation values over each anatomical site was plotted against 

time(Figures 45-49). 
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Figure 45. Subject 1, TcPO2 during hyperemic response at 37 °C 
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Figure 46. Subject 2, TcPO2 during hyperemic response at 37 °C 

 70 



0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

Tr
an

sc
ut

an
eo

us
 O

xy
ge

na
tio

n 
(m

m
H

g)
Right Sacrum Left Sacrum

Right Heel

 

Figure 47. Subject 3, TcPO2 during hyperemic response at 37 °C 
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Figure 48. Subject 4, TcPO2 during hyperemic response at 37 °C 
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Figure 49. Subject 5, TcPO2 during hyperemic response at 37 °C 

Wavelet analysis was performed on the skin blood flow data for each subject. The data 

was broken up into two segments, pre occlusion skin blood flow and post occlusion skin blood 

flow.  The first two minutes of pre occlusion skin blood was eliminated from analysis to 

eliminate any edge effects.  The last two minutes of post occlusion skin blood flow was also 

eliminated to eliminate any edge effects.  The power was normalized and averaged for all five 

subjects, the results of which are depicted in Figure 50.  A two-tailed test of significance was 

performed on post and pre occlusion values.  No significant increase or decrease in power was 

detected (p=.05). 
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Figure 50. Normalized power comparison of the five characteristic frequency bands 
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5.0  DISCUSSION 

5.1 ORTHOSTATIC STIMULATION 

The results of orthostatic stimulation suggest that both anatomical location and heat have 

major implications in the outcome of skin blood flow and transcutaneous oxygenation following 

orthostasis.  The results of our study show that skin blood flow at 44 °C over the right sacrum 

increases on average 96.86 percent following change in posture from prone to sitting.  

Conversely, skin blood flow at 37 °C over the right sacrum decreases on average 38.12 percent 

following change in posture from prone to sitting.  This suggests that heating the skin to higher 

temperatures completely eliminates the vasoconstrictive response typically seen following 

orthostatic stimulation, while slightly lower, but still heated temperatures are not sufficient to 

overcome the postural vasoconstriction response.  The effects on postural change on 

transcutaneous oxygenation are mixed, depending largely on anatomical site.  At 44 °C TcPO2 

values over the right and left sacrum increased following orthostasis on average by 76.16% and 

116.24% respectively.  However, at 44 °C TcPO2 values over the right and left heels decreased 

following orthostasis on average by 9.87% and 13.27% respectively.  TcPO2 values at 37 °C 

provided no information, with orthostasis resulting in no effect on values. 

Glabrous skin, such as the heel, is known to have numerous arteriovenous shunts.  These 

shunts are controlled mainly by the sympathetic nervous system.  Although the exact mechanism 
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of posture induced vasoconstriction is controversial, these results suggest that the sympathetic 

nervous system plays a vital role in posture induced vasoconstriction.   

 Heating the skin to 44 °C completely eliminated the postural vasoconstriction response 

on skin blood flow following orthostasis, in all subjects.  Under unheated conditions, skin blood 

flow is expected to decrease following orthostasis, which is supported in numerous 

studies.101,103,106  

Under heated conditions, skin blood flow’s response to orthostasis has been shown to be 

unpredictable.  Using LDF under slightly heated conditions of 33 °C, Hassan reported a normal 

response to orthostasis in subjects over the dorsum of the foot, and a non-significant reduction in 

skin blood flow over the plantar surface of the big toe following orthostasis.171  At 35 °C Rendell 

reported no significant difference in blood flow following orthostasis on skin sites with and 

without arteriovenous shunts.  At 44 °C Rendell reported a large, significant increase in blood 

flow following orthostasis at skin sites with and without arteriovenous shunts.104  Ubbink 

reported increased skin blood flow following orthostasis using LDF at 36 °C over the pulp of the 

great toe.107  Under heated conditions of 44 °C we found that skin blood flow over the right 

sacrum increased, on average 96.86 percent, following orthostasis.  However at 37 °C we found 

that skin blood flow over the right sacrum decreased, on average 38.12 percent, following 

orthostasis. 

The differences between our study and prior studies in skin blood flow following 

orthostasis most likely are a result of methodological differences. Our results are from direct 

heating over the sacrum, a site known to have very few arteriovenous shunts, and following an 

orthostatic stimulation of having the subject change positions from a prone to a seated position.  

Other studies have used different heating methods, on different sites, and different methods of 
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orthostatic stimulation.  Hassan used an indirect heating method.  He used an electric warming 

blanket placed around the trunk of the subjects to induce a skin temperature increase to 33 °C 

over the plantar surface of the big toe and the dorsum of the foot.171  The dorsum of the foot is 

also known to have few arteriovenous shunts, and he observed decreased skin blood flow upon 

dependency. On the plantar surface of the big toe, a site known for many arteriovenous shunts, 

Hassan reported small, non-significant increases in skin blood flow following orthostasis.  

Hassan induced dependency by passively lowering the foot 50 cm below the heart.171  Rendell 

also induced dependency by passively lowering the arm or leg.  Rendell measured areas that are 

known to have large and small amounts of arteriovenous shunts.104  Ubbink measured skin blood 

flow on the bulb of the great toe, inducing dependency by changing posture from supine to 

sitting.107  

The temperature used, the site of testing, and the method to induce dependency all may 

play a role in the results following orthostatic simulation.  The results of our study suggest that 

temperature and location play a critical role in the response to orthostatic stimulation.  Although 

we did not test the effects that different means of inducing dependency have on the results, 

Vissing has reported that method of inducing dependency has many effects on the orthostatic 

stimulation.109   

Perhaps another methodological difference in our study, compared to others, is the lack 

of allowance to steady state levels before testing began.  One of the aims of our study was to 

simultaneously measure both skin blood flow and transcutaneous oxygenation and to calculate 

their correlation.  Previous studies on orthostatic stimulation have allowed variables of interested 

to reach steady state level, usually by allowing 20 minutes, before beginning actual baseline and 

intervention phases.  Because we took simultaneous measures, and skin blood flow has been 
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reported to reach a steady state after 50 minutes of heating and transcutaneous oxygenation after 

20 minutes of heating, we allowed no time for the response to reach steady state levels.  On that 

end we found that skin blood flow and transcutaneous oxygenation have correlation coefficients 

of 0.423 and 0.661 at 37 and 44 °C, respectively, throughout the entire orthostatic stimulation 

test.  Skin blood flow appears to better correlated with TcPO2 at higher temperatures.  This is 

somewhat paradoxical because TcPO2 dependents largely on arterial pO2 at higher temperatures 

and is more dependent on local skin blood flow at lower temperature.  However, the values of 

TcPO2 we obtained at lower temperatures (37 °C) had a continual downward trend that 

orthostasis made no difference in, thus TcPO2 was not correlated well with skin blood flow.  

Perhaps if TcPO2 levels stabilized prior to testing, then TcPO2 values at lower temperature would 

be better correlated to skin blood flow.       

Wavelet analysis was also performed on the skin blood flow signal at 37 and 44 °C.  The 

power from this time-frequency analysis is reported in the literature.41,42,85  This study did not 

produce any significant changes in pre and post orthostatic stimulation in any of the five 

characteristic frequency bands.  This could be due to the very low sample size, and/or the 

multiple, interrelated control mechanisms that may be in play with both heating and orthostatic 

stimulation.  At unheated temperatures, wavelet analysis may prove to be very powerful in 

detecting time-frequency changes in those undergoing an orthostatic stimulation test.   

The results of our study and the results of previous studies suggest that anatomical sites 

(those with and without arteriovenous shunts), the temperature and method of heating used, and 

the method to invoke dependency can greatly influence the results of the testing.  Postural 

changes are often used clinically to test the integrity of microvascular constriction mechanisms 

in leg ischemia, especially in the case of peripheral vascular occlusive disease.107  However, the 
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results could change if different methods of inducing the posture, amount of heat, and testing 

location are varied.  With more research into this field a standard procedure could be developed 

which would take into account the anatomical location of the testing site, methods of inducing 

dependency, and the level of heat to be used. 

  

5.2 HYPEREMIC RESPONSE 

Skin blood flow during the hyperemic response at 44 °C shows a gradual increase 

following occlusion.  Past studies have shown at 44 °C no increase in skin blood flow is 

observed following occlusion.21  However, in those studies skin blood flow is allowed to reach 

steady state levels before occlusion.  In our study, we aimed to correlate skin blood flow and 

TcPO2 and we allowed no time for the response to reach steady state levels before testing began.   

One subject, subject 1, showed a typical hyperemic response, characterized by a transient 

increase in skin blood flow with a gradual decrease to baseline levels.  However, the other 4 

subjects displayed an upward trend of skin blood flow throughout the entire post occlusion 

phase.   

At 37 °C a more typical hyperemic response is found.  There is a transient increase in 

skin blood flow following occlusion; however, post occlusion blood levels after the transient 

increase in skin blood flow remained elevated above pre occlusion skin blood flow values.  

These results suggests that at 44 °C vasoconstriction in inhibited, which is supported by the 

literature.22  
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Transcutaneous oxygenation values at 44 °C following occlusion are unclear.  In two 

subjects TcPO2 values continue to increase throughout the post occlusion phase.  In the other 

three subjects TcPO2 values do in fact show a typical hyperemic response, characterized by a 

transient increase in TcPO2 levels, with a gradual decline to baseline levels.  In these three 

subjects skin blood flow values are continuing to rise while TcPO2 values are returning to 

baseline levels.  At 37 °C, release of occluding pressure has a definite effect on TcPO2.  One 

subject displayed a transient increase in TcPO2 levels followed by a return to baseline.  All other 

subjects displayed an increase in TcPO2 following release of occluding pressure with subsequent 

TcPO2 values decreased, but above baseline levels.   

The effects that the hyperemic response has on transcutaneous oxygenation are unclear.  

However, upon examination of the contra-lateral sacrum more understanding can be established.  

At 44 °C release of occluding pressure causes no substantial change in TcPO2 values on the right 

sacrum compared to the left sacrum.  This suggests that vasoconstriction mechanisms are 

inhibited by the heat.  TcPO2 values over the left and right sacrum follow nearly identical 

oscillatory patterns throughout testing.  However, at 37 °C left and right sacrum TcPO2 values do 

not follow the same pattern following release of occluding pressure.  This suggests that 

vasoconstriction mechanisms are not inhibited by the lower heat.   

 These results differ from other researchers.  Ubbink measured TcPO2 levels during 

reactive hyperemia at 37 and 44 °C.  TcPO2 levels at both temperatures reached baseline levels 

following the removal of occluding pressure.21  In Ewald’s study at temperatures between 35-37 

°C a reactive hyperemic response of TcPO2 was observed, with subsequent return to baseline 

levels.  At temperatures higher than 37 °C Ewald reported TcPO2 values to return to baseline 

following removal of occluding pressure.22   
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 The results obtained in our study had very different methodologies than those of Ubbink 

and Ewald.  Ubbink, measuring TcPO2 on the dorsal surface of the foot, induced occlusion by a 

pneumatic cuff around the ankle for 3 minutes.21  Ewald, measuring TcPO2 on the anterior 

forearm, induced occlusion by a pneumatic cuff for 4 minutes.22  There is evidence that direct 

compression (as in our experiment) and indirect compression (via a pneumatic cuff) have very 

different effects on the hyperemic response.  Direct compression results in a significantly greater 

hyperemic magnitude and duration when compared to proximal cuff compression.123  Direct 

compression may result in uneven pressure distribution (edge effects) which could affect skin 

blood flow.  A rounded indenter head fixed to an armature with multiple degrees of freedom was 

utilized in trying to achieve equal pressure distribution to minimize any edge effects.   In 

addition, our occlusion period differed from Ubbinks’s and Ewald’s.  In our study we applied an 

occluding pressure for 5 minutes, while Ubbink and Ewald used 3 and 4 minutes, respectively.  

Tee reported that the hyperemic response is dependent on the duration of the occluding 

pressure.124  In addition, we did not allow skin blood flow and TcPO2 to reach steady state levels 

before testing began, in order to obtain correlation coefficients.  Skin blood flow and 

transcutaneous oxygenation over the right sacrum have correlation coefficients of 0.626 and 

0.6526 at 37 and 44 °C, respectively.  TcPO2 at lower temperatures depends more on skin blood 

flow, while at higher temperatures TcPO2 is correlated with arterial oxygenation.  Perhaps if we 

allowed skin blood flow and TcPO2 levels to reach steady before testing then TcPO2 would be 

correlated more with skin blood flow at lower temperatures.   

 Wavelet analysis was performed on the skin blood flow data at 37 and 44 °C.  However 

there was no significant difference in any of the five characteristic frequency bands when 

comparing pre and post occlusion values.  Wavelet analysis has been shown to be very useful in 
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the study of skin blood flow.41,42,85  However, the sample size in our study was very small, and 

the interrelated control mechanisms that may be at work throughout the testing (heating and 

pressure) may have limited its ability in analysis of the skin blood flow data.   
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6.0  CONCLUSIONS, LIMITATIONS, FUTURE DIRECTIONS 

The results of our orthostatic stimulation study suggest that both location of testing and 

temperature effect how the microvasculature responds to orthostatic stimulation.  However, our 

results were obtained using a very small sample size, in a healthy population.  Future studies 

should examine how temperature, anatomical location, and method of inducing dependency 

affect the results of orthostatic stimulation in a larger sample size and different population bases, 

such as those with spinal cord injury.  Spinal cord injury patients may spend the majority of their 

day in an upright, orthostatic stimulated position while in a wheelchair.  Because of the effects 

this position has on skin blood flow and TcPO2, future work should examine how external 

pressure affects skin blood flow and transcutaneous oxygenation in the upright position.  This 

will allow for more accurate assessment of how pressure, and ultimately support surfaces affect 

the microvasculature of individuals with spinal cord injury.   

Skin blood flow during the hyperemic response suggests that at 44 °C the 

vasoconstriction mechanisms is inhibited, thus eliminating the normal return to baseline levels.  

At 37 °C however, the vasoconstriction mechanisms are not fully inhibited.  At 44 °C removal of 

occluding pressure does not appear to affect TcPO2 levels when comparing to the contra-lateral 

side.  However, at 37 °C there is a definite effect on TcPO2 levels. This study was limited by its 

small sample size.  In addition there were possibilities for edge effects by the computer 

controlled indenter which would allow for unequal pressure distribution.  The indenter head was 
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rounded and fixed to an armature with multiple degrees of freedom in order to minimize any 

edge effects; however, the possibility cannot be ruled out that there were indeed edge effects.  In 

addition, there was no allowance of steady state levels to be reached for skin blood flow and 

transcutaneous oxygenation.  Therefore, the data was still trending at the time of application of 

stimulus (orthostatic stimulation or occluding pressure).  Thus, any effects that the stimulus had 

on skin blood flow and transcutaneous oxygenation levels may not have been directly caused by 

the stimulus.  Data analysis was also limited by the allowance of near zero or erroneous data 

points in the data analysis.  TcPO2 values, especially at lower temperatures, displayed very low 

values, which in data analysis may have skewed the results.    

Future work in this field could be applied to spinal cord injury patients, since the 

hyperemic response appears in denervated tissue.  Simultaneous measures of skin blood flow and 

TcPO2 could yield significant information on blood flow and oxygenation control mechanisms in 

this population.    
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