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STATISTICAL METHODS FOR EVALUATING BIOMARKERS SUBJECT

TO DETECTION LIMIT

Yeonhee Kim, PhD

University of Pittsburgh, 2011

As a cost effective diagnostic tool, numerous candidate biomarkers have been emerged for

different diseases. The increasing effort of discovering informative biomarkers highlights

the need for valid statistical modeling and evaluation. Our focus is on the biomarker data

which are both measured repeatedly over time and censored by the sensitivity of given assay.

Inappropriate handling of these types of data can cause biased results, resulting in erroneous

medical decision.

In the first topic, we extend the discriminant analysis to censored longitudinal biomarker

data based on linear mixed models and modified likelihood function. The performance of

biomarker is evaluated by area under the receiver operation characteristic (ROC) curve

(AUC). The simulation study shows that the proposed method improves both parameter

and AUC estimation over substitution methods when normality assumption is satisfied for

biomarker data. Our method is applied to the biomarker study for acute kidney injury

patients. In the second topic, we introduce a simple and practical evaluation method for

censored longitudinal biomarker data. A modification of the linear combination approach

by Su and Liu [1] enables us to calculate the optimum AUC as well as relative importance of

measurements from each time point. The simulation study demonstrates that the proposed

method performs well in a practical situation. The application to real-world data is provided.

In the third topic, we consider censored time-invariant biomarker data to discriminate time

to event or cumulative events by a particular time point. C-index and time dependent ROC

curve are often used to measure the discriminant potential of survival model. We extend
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these methods to censored biomarker data based on joint likelihood approach. Simulation

study shows that the proposed methods result in accurate discrimination measures. The

application to a biomarker study is provided.

Both early detection and accurate prediction of disease are important to manage serious

public health problems. Because many of diagnostic tests are based on biomarkers, discovery

of informative biomarker is one of the active research areas in public health. Our method-

ology is important for public health researchers to identify promising biomarkers when the

measurements are censored by detection limits.
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1.0 INTRODUCTION

Biomarkers are measurable factors that can be used as an indicator of disease or a progres-

sion of disease. For example, cholesterol level works as a risk predictor of vascular disease,

and serum creatinine is a surrogate for renal disease progression. Due to a biomarkers’ cost-

effective benefit for the diagnosis and prognosis of acute and chronic diseases, discovery of

a new biomarker is one of the active areas in medical research. Researchers have developed

several evaluation tools for biomarker discovery. Diagnostic measures quantify biomarker’s

ability of discrimination. It focuses on whether the biomarker can separate patients into

event/non-event group. On the other hand, prognostic measures indicate biomarker’s pre-

dictive capacity of disease occurrence. The risk can be expressed as a function of biomarker

through a statistical model such as logistic regression or Cox proportional hazard model.

Biomarker data are collected from many different procedures, designs and sampling

schemes. For instance, biomarkers can be collected only at one time point, or collected

repeatedly over several time points. Regardless of the data structure, it is tempting to use

only the most recent data in the analysis because of a complexity in handling longitudinal

data. Besides the high dimensionality of longitudinal data, analysis of biomarker data be-

comes more complicated if some measurements are censored. The censoring occurs due to

a limit of detection (LOD). In this case, only measurements which lie between lower and

upper detection limits are observable.

We encountered longitudinal censored data from two biomarker studies: The Genetic and

Inflammatory Markers of Sepsis (GenIMS) study and the Biological Markers of Recovery for

the Kidney (BioMaRK) study. The GenIMS study is a multicenter, cohort study of 2320

patients with community acquired pneumonia (CAP) followed over time. The CAP is the

most common cause of sepsis that can lead to death. A set of biomarkers were measured
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daily for a week or longer during the hospitalization. One of the goals of this study was to

find the relationship between pathways of biomarkers and the risk of sepsis and death. Be-

cause of the sensitivity of the assays used to measure the biomarkers, concentration of some

biomarkers was below the detectable limit, resulting in a portion of unquantifiable data.

The BioMaRK study was conducted as a part of a large randomized clinical trial [2], and

enrolled patients who have a renal-replacement therapy for acute kidney injury. The acute

kidney injury is a clinically challenging problem for both physicians and patients. Although

it is directly related to the health care cost and well-being of patients, effective treatment

of acute kidney injury is still not available. Hence, many clinical studies were initiated to

explore informative biomarkers for the outcome of renal function. In BioMaRK study, multi-

ple plasma and urinary biomarkers are measured repeatedly, and the measurements of some

biomarkers are censored due to detection limits. In the previous analysis of longitudinal

data, it was common to analyze the biomarker at each time point separately. Censored

data were usually deleted or substituted by LOD or LOD/2 with the justification that it

is easy to implement and widely understood [3]. However, investigators are frequently in-

terested in longitudinal performance of biomarkers. Furthermore, disregarding the censored

data often causes significant biases in the estimates of the fixed effects and variance com-

ponents, inaccurate estimates of summary statistics, and inaccuracies in risk assessments

[4] [5]. The objectives of our research are (1) to develop a classification method for the

longitudinal biomarkers subject to left or right censoring due to lower or upper detection

limit, and (2) to evaluate the censored biomarker performance for both binary and survival

outcomes. The organization of the dissertation is as follows. In chapter 2, we review the

models for longitudinal data and existing methods for handling censored data. Underlying

theory on the classification method is introduced, followed by statistical evaluation tools for

binary and survival outcomes. Chapter 3 contains the classification methods for longitudinal

censored data. In chapter 4, we present how to incorporate the longitudinal biomarkers in

the ROC analysis for both censored and non-censored cases. In chapter 5, we change the

outcome of interest from binary data to survival data. With the baseline censored biomarker

measurements, we calculate the discrimination accuracy for survival outcome by modifying

2



the original estimation methods for time dependent ROC and C-index. In chapter 6, we

close the dissertation with summary on the proposed methods and discussion about future

extensions.
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2.0 LITERATURE REVIEW

2.1 CLASSIFICATION METHODS

Linear discriminant analysis (LDA) and logistic regression are two standard statistical meth-

ods for classification. They are similar in terms of comparing the posterior probabilities that

a subject is from group k (Groupk) when deciding a group membership. Suppose biomarker

Y from Groupk is an n× 1 vector of observations with mean µk and covariance matrix Σk.

The πk is the prior probability of a subject belonging to Groupk (k = 0, 1). LDA assumes

that biomarker data follow a normal distribution with common covariance matrix, Σ0 = Σ1

=Σ. The probability density function of Y from Groupk is

fk(Y ) =
1

(2π)n/2|Σ|1/2
exp

[
−(Y − µk)tΣ−1(Y − µk)

2

]
.

Using the Bayes’s rule, the posterior probability of Groupk is calculated as

Pr(Groupk|Y ) =
fk(Y )πk

f0(Y )π0 + f1(Y )π1 .

Two posterior probabilities are compared in a log scale so that the log ratio of posterior

probabilities leads to an equation linear in Y [6]. We call it as a discriminant function of

LDA. Because when Σ0 = Σ1 = Σ,

log
Pr(Group1|Y )

Pr(Group0|Y )
= log

f1(Y )

f0(Y )
+ log

π1
π0

= log
π1
π0

− 1

2
(µ1 + µ0)tΣ−1(µ1 − µ0) + Y tΣ−1(µ1 − µ0).

(2.1)
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The assumption of LDA is generalized in quadratic discriminant analysis (QDA) by

allowing different covariance matrices between groups. If Y from Groupk is distributed

according to N(µk, Σk), the quadratic discriminant function is

Y t
(
Σ0

−1 − Σ1
−1
)
Y

2
+ Y t

(
Σ1

−1µ1 − Σ0
−1µ0

)
+ log

π1
π0

− log|Σ1|/|Σ0|
2

− 1

2

(
µ1tΣ1

−1µ1 − µ0tΣ0
−1µ0

)
.

While LDA has a linear discriminant boundary, the discriminant function of QDA has a

quadratic term of Y , leading to a quadratic boundary. Non-linear boundary for classification

works better especially in case of non-normal data and heterogeneous covariance matrix for

two groups.

More generally, likelihood ratio method has long been recognized as an optimal classifi-

cation rule and it does not require assumptions such as normality or homogeneous covariance

matrix. Using the Bayes rule, it can be shown that the likelihood ratio rule is equivalent

to rules based on the posterior probability Pr(Groupk|Y ). In this sense, the discriminant

analysis provides classification which achieves optimality [7].

The discriminant function is compared with a cutoff point to determine a group member-

ship. A cutoff point c is set by the decision theory. The most common goal in the decision

theory is to minimize the expected loss. Let L(Groupk, Groupj) be a loss function that

indicates the loss by misclassifying a subject in Groupk as in Groupj (j = 1 · · · d). The

minimum expected loss can be written in a functional as

minc(Expected loss) = minc

[
d∑

j=1

L(Groupk, Groupj)Pr(Groupj|Y )

]
.

The loss function is chosen depending on the cost of a false positive and false negative.

In a logistic regression, log odds of a posterior probability is assumed to be linear in Y :

log
Pr(Group1|Y )

Pr(Group0|Y )
= β0 + β1Y. (2.2)

It follows from the equations (2.1) and (2.2) that

log
π1
π0

− 1

2
(µ1 + µ0)tΣ−1(µ1 − µ0) + Y tΣ−1(µ1 − µ0) = β0 + β1Y.

5



The only difference between LDA and logistic regression is a distributional assumption. LDA

assumes that the biomarker in each group follows a normal distribution with common co-

variance matrix. In contrast, logistic regression does not impose any restrictions on the

distribution. It is known that logistic regression is more flexible and performs better when

the normal assumption is violated. However, LDA is shown to perform better and yield more

efficient estimates of parameters with smaller variance when the assumption is satisfied. In

addition, results from LDA are more stable when subjects are classified into more than two

groups [6].

Fisher’s linear discriminant analysis

Fisher’s discriminant analysis is closely linked to LDA. Fisher’s discriminant analysis finds a

coefficient λ that can best discriminate the data in different classes. The principle of the best

discrimination is to maximize the ratio of between class variance to within class variance.

The objective function to maximize is expressed as

J(λ) =
λtSBλ

λtSWλ
,

where

SB =
d∑

k=1

πk(µ
k − µ)(µk − µ)t, SW =

d∑
k=1

πk

[
1

nk

∑
y∈Groupk

(Y − µk)(Y − µk)t

]
,

µ is the grand mean, nk is the number of subjects in Groupk and λ indicates a linear subspace

within which the projection of observations from different classes are best separated. When

there are two classes, the solution for λ is S−1
W (µ1 − µ0) [8]. We can recognize that the

linear coefficient of Y in the discriminant function (2.1) is exactly the same as Fisher’s linear

discriminant coefficient, given the fact that

Y tΣ−1(µ1 − µ0) = (µ1 − µ0)tΣ−1Y = {Σ−1(µ1 − µ0)}tY = {S−1
W (µ1 − µ0)}tY.

LDA projects biomarker measurements into the linear subspace generated by Σ−1(µ1 − µ0),

which is the Fisher’s linear discriminant coefficient, and clusters them into different groups

that are separated by a linear boundary based on the minimum expected loss.
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2.2 STATISTICAL METHODS FOR CENSORED DATA

When an instrument is not sensitive enough to measure very high or low values, only observ-

able values are reported for the analysis. Several parametric and non-parametric methods

such as deletion, substitution, imputation, and maximum likelihood method have been pro-

posed to resolve the problems.

Deletion means the elimination of all censored data. It reduces the sample size and could

produce a large bias. The missing pattern due to elimination is ’nonignorable missing’ be-

cause the absence of data depends on detection limits. Alternative method is a substitution

of censored values by LOD, LOD/2 or LOD/
√
2 [9]. The substitution method is widely used

in practice due to its simplicity. However, the substitution still leads to a biased estimation

if the distribution of a biomarker beyond LOD is still informative. If the distributional as-

sumption is possible for measurement data, conditional expected value E(Y |Y < LOD) can

be assigned to censored data, which is calculated based on the parameters of the distribution

and detection limit value [10]. Another, but similar method is single imputation method [11].

From the estimated distribution, it replaces censored data with randomly sampled values.

The single imputation method can make estimates minimally biased, but still produces too

narrow confidence interval particularly when more than 30% observations are censored. The

major problem of single imputation is that the method ignores complexity of the model as

well as variability of the imputation process [12]. For left-censored data, one might think

that they are not important because the actual values must be extremely small. However,

censored data still have a large effect on the estimates of mean and variance, descriptive

statistics, regression coefficient, its standard errors, and power of hypothesis tests, especially

when the proportion of censoring is not small [13].

To protect against above problems, multiple imputation (MI) method is suggested for

censored data [12] [14]. In MI method, maximum likelihood estimates are first obtained for

parametric distribution using all available data. With the estimated parameters, censored

data are imputed by a sampling procedure. Because the imputed values are not real data, the

imputation process is usually repeated several times to create multiple complete data sets.

The analysis result from each dataset is combined later to account for variability. The MI
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method provides accurate estimates and robust results even though the censoring proportion

is high [15]. Another promising statistical approach from methodological perspective is

a maximum likelihood estimation (MLE) method. It uses a modified likelihood function

that can incorporate the mechanism of censoring in parametric models [16]. The tobit

model, which uses a truncated normal distribution for censored data, is one of the widely

applied parametric models [17]. MLE method provides less biased estimates and increased

standard errors compared to the substitution method when data follow approximately normal

distribution [18] [15]. Although some drawbacks exist, for example, MLE works poor when

a sample size is small and outliers exist, this method is still preferred to others because

MLE itself has several desirable properties such as consistency, asymptotic unbiasedness,

and efficiency. It is often considered the gold standard provided that the data are well

described by a (log)normal distribution [4] [19] [3] [20].

2.3 EVALUATION OF BIOMARKER

Biomarker’s usefulness is often evaluated from either discrimination or risk prediction point

of view. Discrimination describes how well a model separates subjects into event and non-

event group. Risk prediction concerns a predictive capacity of a biomarker. The predictive

capacity is quantified by a risk distribution in the population [21]. According to this def-

inition, a biomarker is said to be useful if predicted risks have a wide distribution in the

population so that clinicians can easily divide patients into low and high risk group with

fewer subjects being left in the intermediate equivocal risk range. Discrimination and risk

prediction are originated from different perspectives. If the objective is a correct classifi-

cation, discrimination approach is appropriate. If the clinical utility of a biomarker is of

interest, risk prediction approach is preferred. There is no gold standard for the evaluation

method. It is recommended to choose a proper method depending on the objective of the

study. [22]
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Table 1: Concept of sensitivity and specificity

Test negative (T=0) Test positive (T=1)

Non-disease (D=0) Pr(T = 0|D = 0) = TNF Pr(T = 1|D = 0) = FPF

Disease (D=1) Pr(T = 0|D = 1) = FNF Pr(T = 1|D = 1) = TPF

2.3.1 ROC curve

Discrimination performance is usually expressed through sensitivity and specificity. When

a test result is dichotomized (i.e. disease/non-disease, positive/negative), sensitivity and

specificity directly show a frequency of correct classification. Assuming that a positive test

result indicates the presence of a disease, sensitivity is defined as a probability of a positive

test result given a patient has a disease. Specificity is defined as a probability of a negative

test result given a patient doesn’t have a disease. Alternatively, sensitivity can be expressed

as true positive fraction (TPF) or 1 - false negative fraction (FNF). Another expression of

specificity is true negative fraction (TNF) or 1 - false positive fraction (FPF) (Table 1).

Sometimes researchers want to know the averaged sensitivity over all specificity region to

compare overall performances. Especially when the outcome has ordinal or continuous scale,

the ROC curve is a useful tool for summarization. The ROC curve is a graph of sensitivity on

y-axis as a function of (1-specificity) on x-axis under series of cutoff points. In Figure 1, the

larger the AUC, the better the biomarker discriminates between diseased and non-diseased

subjects. The perfect accuracy corresponds to AUC of 1, and the practical lower limit for

the AUC is 0.5, which can be achieved by a random chance.

Nonparametric ROC curve

Empirical ROC curve is estimated without any assumptions on the distribution of biomarker

data. Let Y0i(i = 1, · · · , n0) and Y1j(j = 1, · · · , n1) be continuous test results from patients

without and with a disease, respectively. Nonparametric ROC curve is a non-smooth step

9
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Figure 1: Biomarker a shows the perfect accuracy whereas d shows the worst accuracy

function that changes values at most n0 + n1 + 1 points. Two coordinates of each point is

defined by

1− Specificity =
1

n0

n0∑
i=1

I(Y0i > c)

Sensitivity =
1

n1

n1∑
j=1

I(Y1j > c).

The AUC is a summation of the areas under the trapezoids and it is also equivalent to

Mann-Whitney U-statistics. The nonparametric estimator of AUC is expressed by

ÂUC =
1

n0n1

n1∑
j=1

n0∑
i=1

ψ(Y0i, Y1j),

where

ψ(Y0i, Y1i) =


1 if Y1i > Y0i

1
2

if Y1i = Y0i

0 if Y1i < Y0i
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The trapezoidal method is easy to implement, but underestimates the area when the number

of distinct test values is small. There are different methods to derive the variance for AUC,

such as methods by Bamber [23], Hanley and McNeil [24] and DeLong et al. [25]. Define

Y0-components V10 for ith subject and Y1-components V01 for jth subject as

V10(Y0i) =
1

n1

n1∑
j=1

ψ(Y0i, Y1j), (i = 1, · · · , n0)

V01(Y1j) =
1

n0

n0∑
i=1

ψ(Y0i, Y1j), (j = 1, · · · , n1).

DeLong et al. [25] proposed the variance estimator for nonparametric ÂUC as

V̂ ar(ÂUC) =
1

n0

S10 +
1

n1

S01,

where

S10 =
1

n0 − 1

n0∑
i=1

(V10(Y0i)− ÂUC)2

S01 =
1

n1 − 1

n1∑
j=1

(V01(Y1j)− ÂUC)2.

Parametric ROC curve

The binormal ROC model is often employed as a parametric method to obtain a smooth

ROC curve. The binormal ROC model postulates a pair of overlapping normal distribu-

tions to represent the distribution of two populations [26]. Suppose continuous test results

from non-diseased population Y0 ∼ N(µ0, σ2
0), and from diseased population Y1 ∼ N(µ1, σ2

1).

Under each cutoff point c,

Sensitivity = Pr(Y1 > c) = Φ

(
µ1 − c

σ1

)
1− Specificity = Pr(Y0 > c) = Φ

(
µ0 − c

σ0

)
, (2.3)
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where Φ is a standard normal cumulative distribution function. It follows from the equation

(2.3) that

Sensitivity = Φ

[
µ1 − µ0

σ1
+
σ0
σ1

× Φ−1(1− Specificity)

]
.

The ROC curve is entirely determined by two parameters u and v, where u = (µ1 - µ0)/σ1

is the standardized difference in the means of diseased and non-diseased population, and v

= σ0/σ1 is the ratio of the standard deviations of two populations. The AUC is calculated

as

AUC = Pr(Y0 < Y1) = Φ

(
µ1 − µ0√
σ2
0 + σ2

1

)
= Φ

(
u√

1 + v2

)
.

By Taylor’s expansion, the variance formula for the parametric estimator of AUC is

V ar(ÂUC) =

(
∂AUC

∂u

)2

V ar(û) +

(
∂AUC

∂v

)2

V ar(v̂) +

(
∂AUC

∂u

)(
∂AUC

∂v

)
Cov(û, v̂).

Under the asymptotic normality, 100(1 - α)% confidence interval for AUC is given by

ÂUC ± Zα/2

√
V̂ ar(ÂUC).

ROC curve for censored data

The parametric ROC curve has been extended to incorporate the censored measurements due

to detection limit. Perkins et al. [27] [28] developed the method to estimate AUC by obtain-

ing consistent estimates for µ1, µ0, σ2
0 and σ2

1. Their AUC, Φ

(
µ1−µ0√
σ2
0+σ2

1

)
, yields the similar

value to the AUC from completely observed data. Vexler et al. [29] developed the maximum

likelihood ratio test to compare AUCs from two biomarkers subject to LOD. Because two

biomarker measurements (for example, cholesterol and HDL-cholesterol) from one subject

can be correlated, they took both censoring and correlation into account. They employed

bivariate normal distribution and used a cumulative distribution function for censored data

conditioning on non-censored data.
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Figure 2: Biomarker 1 is more predictive than biomarker 2.

2.3.2 Predictiveness curve

Although ROC curve has been the most popular method for a biomarker evaluation, it

does not take a risk distribution into account. Suppose all diseased subjects have same risk

values of 0.52 and all non-diseased subjects have values of 0.51. In the ROC analysis, this

would result in a perfect discrimination. Such a weakness triggers researchers to evaluate

biomarkers from a different perspective. Huang et al. [21] published a predictiveness curve as

a graphical way to present a predicted risk. It is a plot of predicted risk R(v) against the vth

percentile of the biomarker, where R(v) = Pr[D = 1|Y = F−1(v)] and F is the cumulative

distribution function of biomarker Y . Even though the original scales of the biomarkers

are not comparable because the measurement can be different, they are transformed to a

common scale in the predictiveness curve by using a percentile of the biomarker. It has been

pointed out in many papers that the biomarker with a strong predictive capacity has steeper

curves that corresponds to a wide variation in risk [21] [30] [31]. In Figure 2, the biomarker

1 is more predictive than the biomarker 2 because more subjects are in high or low end of
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the risk. For example, the subjects in the bottom 10% of the marker distribution have risks

in the range of (0.15, 0.30) according to biomarker 1, but in a much higher range (0.30,

0.40) according to biomarker 2. If the predictiveness curve is close to the horizontal line, the

biomarker is no more helpful for making a medical decision.

2.3.3 C-index

The C-index was proposed by Harrell et al. [32] as an overall measure of discrimination

accuracy for survival outcome. The concept of C-index was motivated by Kendall’s τ , a

nonparametric version of correlation. In their original paper, the C-index was applied not

only to survival data but also to binary data. They pointed out that the C-index for binary

outcome is equivalent to the AUC. The definition of AUC for binary outcome is the prob-

ability that the diseased subject has worse biomarker value than the non-diseased subject.

Changing the outcome from a binary to survival time, the C-index is defined as the prob-

ability that the patient with better biomarker value will have a longer survival time than

the patient with worse biomarker record, assuming that these two patients are selected at

random.

Suppose that (Zi, Ui, Wi, Yi) are the actual survival time, predicted survival time,

predicted probability of survival at time t, and time-invariant biomarker measurements for

ith subject (i = 1,· · · , N), respectively. Harrell et al. [33] expressed C-index as Pr(Ui <

Uj|Zi < Zj). In practice, it is hard to predict individual’s survival time. It is noted that

the predicted probability of survival until any fixed time point (Wi) can take place of the

predicted survival time(Ui), if two estimates have one-to-one correspondence. One advantage

in the application is that this relationship holds when the proportional hazard assumption

is satisfied. Under the proportional hazard model, S(t|Yi) = (S0(t))
βtYi , where S(t|Yi) is the

survival function given the biomarker value Yi, S0(t) is the baseline survival function and β

is a regression parameter, the Ui and Wi are exchangeable, because [34]

Wi < Wj ⇐⇒ S(t|Yi) < S(t|Yj) ⇐⇒
∫ ∞

0

S(t|Yi)dt <
∫ ∞

0

S(t|Yj)dt⇐⇒∫ ∞

0

t · f(t|Yi)dt <
∫ ∞

0

t · f(t|Yj)dt⇐⇒ Ui < Uj.
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Therefore, Pr(Ui < Uj|Zi < Zj) = Pr(Wi < Wj|Zi < Zj) = Pr(βYi > βYj|Zi < Zj). The

C-index of 1 indicates that the model has a perfect discrimination power, whereas a value

of 0.5 corresponds to an uninformative model.

Nonparametric version of estimation is possible for the C-index. A pair of subjects is

said to be concordant if (βYi > βYj , Zi < Zj) or (βYi < βYj , Zi > Zj). In contrast, a pair

(βYi > βYj , Zi > Zj) or (βYi < βYj , Zi < Zj) is said to be discordant. It is noted that not

all pairs are usable to determine concordance and discordance. A pair is usable only when

one subject has an event before the other experiences an event or censored. For example,

we discard pairs if neither of subjects have events or two individuals have the same survival

time. Let R be a set of all usable pairs and Q be a total number of usable pairs in R. The

C-index is estimated by

Ĉ =
1

Q

∑
(i,j)∈R

cij,

where

cij =

 1 if (Zi < Zj and βYi > βYj) or (Zi > Zj and βYi < βYj)

0 if (Zi < Zj and βYi < βYj) or (Zi > Zj and βYi > βYj).

The original C-index is investigated further to overcome shortcomings. Yan and Greene [35]

found that the C-index depends on the number of tied pairs. Therefore, in the presence

of large proportion of tied pairs, they recommended to report both C-indices with and

without ties. Another modification is done by Uno et al. [36] for censored survival data. To

overcome the C-index’s dependence on the underlying censoring distribution, they presented

the consistent estimates which is free of censoring by using an inverse probability weighting

technique. The confidence interval for Ĉ is developed by Pencina and D’Agostino [34]. The
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100(1 - α)% confidence interval is Ĉ ± zα/2

√
V̂ ar(Ĉ),

V̂ ar(Ĉ) =
4

N(pc + pd)4
(p2dpcc − 2pcpdpcd + p2cpdd),

pc =
1

N(N − 1)

∑
i

ci , pd =
1

N(N − 1)

∑
i

di

pcc =
1

N(N − 1)(N − 2)

∑
i

ci(ci − 1) , pdd =
1

N(N − 1)(N − 2)

∑
i

di(di − 1)

pcd =
1

N(N − 1)(N − 2)

∑
i

cidi,

and ci is the number of concordant pairs, di is the number of disconcordant pairs with the ith

subject in the sample, and zα/2 is (1 - α/2) percentile of the standard normal distribution.

2.3.4 Time dependent ROC analysis

When a biomarker is used for a diagnosis of disease that changes over time, the original

ROC analysis is no longer applicable. In the interval monitoring framework, DeLong et

al. [37] and Parker and DeLong [38] developed the new ROC methodology using parameter

estimates from discrete logistic regression. When continuous time to event data are available,

however, time dependent ROC analysis could be performed. The time dependent ROC was

introduced as an extension of the existing concept for sensitivity and specificity to survival

outcome. We assume that the higher biomarker values are more indicative of shorter survival

time. There are three different definitions of time dependent ROC.

A cumulative/dynamic time dependent ROC is used when the main question is whether

the biomarker can distinguish the patients who have experienced the event by time t and

who have not [39]. The cumulative case refers to the subject who has experienced the event

during the time interval (0, t], whereas the dynamic control refers to the subject with no

event by time t. With the cutoff point of c, sensitivity and specificity are defined as

Sensitivity(t) = Pr(Y > c|Z ≤ t)

Specificity(t) = Pr(Y ≤ c|Z > t).
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The time dependent sensitivity and specificity are estimated using Kaplan-Meier estima-

tor based on the subset of Y ≥ c or weighted Kaplan-Meier estimator based on nearest

neighbor kernel. The confidence interval of time dependent ROC curve is calculated by

bootstrap method. This ROC method can be used clinically when the sensitivity of stan-

dard and new diagnostic measures are compared at certain time points to check whether

the new measure provides improved discrimination during the follow-up time. Later, the

cumulative/dynamic time dependent ROC is generalized to longitudinal biomarker [40] and

competing risk outcomes [41]. For the longitudinal biomarker, the question of interest is

how well a biomarker measured at a certain time point after the baseline can discriminate

diseased and non-diseased subjects in a subsequent time interval.

Alternative approach is an incident case and dynamic control time dependent ROC [42].

Under this definition, only subject who has an event at time t plays a role of case. The

dynamic control corresponds to the subject who is event free by time t. The incident/dynamic

time dependent sensitivity and specificity are defined as

Sensitivity(t) = Pr(Y > c|Z = t)

Specificity(t) = Pr(Y ≤ c|Z > t).

The sensitivity can be estimated under proportional hazard model by computing the ex-

pected fraction of failures with a biomarker level greater than c. The specificity is estimated

by the empirical distribution function for biomarker among those who survive beyond t.

Bootstrap confidence interval can be constructed for nonparametric time dependent ROC.

It is particularly useful when investigators want to display the incident discrimination ability

over time. It is interesting to know that the C-index is a weighted average of the area under

the incident/dynamic time dependent ROC [42].

The last version of time dependent ROC is defined with respect to incident case and

static control [43] [44]. Defining the case as the subject who experiences an event at time

t, the control is the subject who has not developed an event until a fixed time point at t♯.

Unlike the other two definitions, the incident/static ROC curve changes over time depending
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only on the case group. The sensitivity and specificity is given as

Sensitivity(t) = Pr(Y > c|Z = t)

Specificity(t) = Pr(Y ≤ c|Z > t♯).

Zheng and Heagerty [45] estimated the incident/static time-dependent ROC curve by model-

ing the biomarker distribution conditional on the event status in a semiparametric way. The

ROC curve was expressed as a function of location and scale parameters from the biomarker

distribution. Incident/static ROC method is useful in a retrospective study especially when

the time to event is certain. As an alternative estimation method, the direct regression

approach of ROC curve was comprehensively reviewed and extended by Cai et al. [46] and

Pepe et al. [47]. Confidence interval of the ROC curve can be based on bootstrap samples

or asymptotic property under certain regularity condition.

In this dissertation, we focus on the cumulative/dynamic time dependent ROC. One of

the questions addressed from our study is how well a biomarker can discriminate subjects

who had an event until time point t and those who remained event free up to t. To measure a

biomarker’s discrimination potential for cumulative events by time t, which are time depen-

dent measures, cumulative/dynamic time dependent ROC analysis may be more appropriate

than others.
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3.0 DISCRIMINANT ANALYSIS FOR CENSORED LONGITUDINAL

BIOMARKER DATA

Discriminant analysis is commonly used to evaluate the ability of candidate biomarkers to

separate patients into pre-defined groups. Extension of discriminant analysis to longitudinal

data enables us to improve the classification accuracy based on biomarker profiles rather

than on a single biomarker measurement. However, the biomarker measurement is often

limited by the sensitivity of the given assay, resulting in data that are censored either at

the lower or upper limit of detection. We develop a discriminant analysis method for cen-

sored longitudinal biomarker data based on mixed models. The biomarker performance is

assessed by AUC. Through the simulation study, we show that our method is better than

the simple substitution methods in terms of parameter estimation and evaluating biomarker

performance. We apply our method to a biomarker study aiming to identify biomarkers that

are predictive of the recovery from acute kidney injury for patients on renal replacement

therapy.

3.1 INTRODUCTION

As a noninvasive and cost-effective tool for diagnosis and prognosis of acute and chronic

diseases, biomarkers have received increasing attention for many decades. Two questions

raised commonly in the biomarker studies are (1) how to classify subjects into disease and

non-disease groups based on their measurements and (2) how to evaluate the clinical utility

of the biomarker. For classification and evaluation, several methods such as logistic re-

gression, discriminant analysis, and ROC curve have been widely applied for cross-sectional
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data. However, more and more studies highlight the importance of the temporal change

of biomarkers which can provide better understanding of the development of a disease [48].

Longitudinal biomarkers have been shown to lead to more accurate diagnosis than single

measurement. For example, de Leon et al. [49] stated that the diagnostic accuracy of mild

cognitive impairment is improved when longitudinal cerebrospinal fluid marker is used. If

biomarkers are measured repeatedly over several time points, we may need specialized tech-

niques for capturing important time-related patterns in the repeated measurements. The

other concern in the biomarker study is the LOD. If an instrument is not sensitive enough

to detect very high and low concentrations, only measurements which lie between lower and

upper detection limits are observable. The results from inappropriate handling of these types

of data may mislead physicians in medical decision making.

Our work is motivated from the Biological Markers of Recovery for the Kidney (BioMaRK)

study. The recovery of a kidney function following the acute kidney injury (AKI) is an im-

portant determinant of morbidity and may have long-term implications for the health and

well-being of patients [50]. Hence, identifying informative biomarkers for predicting a 60-

day recovery is one of the primary goals of this study. There has been much effort in the

biomarker discovery related to AKI due to its unacceptably high mortality rates. Most stud-

ies focus on evaluating biomarker performance based on a single measurement. Even when

the biomarkers are measured over time, it is common to analyze the biomarker at each time

point separately or choose arbitrarily a summary measure such as change score or slope to

incorporate the longitudinal information. However, investigators are often more interested

in the overall performance of the longitudinal biomarker because biomarker evolution can

reveal better the biological process of a disease. In the BioMaRK study, multiple urinary

biomarkers are longitudinally measured, and the measurements of some biomarkers are cen-

sored due to detection limits. The objective of our research is to develop a classification

method for the longitudinal biomarkers subject to left or right censoring due to lower or

upper detection limit.

We develop the new classification and evaluation methods to take both censoring and

repeated measures into account. Discriminant analysis has been extended to the longitudinal

setting with a discriminant function estimated from mixed models [51] [52] [53] [54]. Further
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generalization to multivariate longitudinal data has been discussed by Marshall et al. [55]

using multivariate nonlinear mixed models. Kohlmann et al. [56] introduced the longitudinal

quadratic discriminant analysis and evaluated the classification performance using the ROC

curve and Brier score. If longitudinal data are censored due to a detection limit, however,

earlier proposed methods cannot produce an expected result. The problem of left-censoring

has been studied by many researchers [4] [19] [18]. They considered maximum likelihood

approaches to incorporate the censoring issue. As a related work to our objective from a

discriminant analysis perspective, Langdon et al. [57] discussed how to classify subjects

based on two censored variables. They estimated parameters by maximizing the marginal

likelihood function of bivariate normal distribution. These estimates were plugged into the

classifier formed by Bayes optimum decision rule. We extend the idea of Langdon et al. [57]

to develop classification methods for longitudinal censored data, and show how AUC can be

constructed from discriminant analysis.

The organization of this chapter is as follows. In section 3.2, we introduce the underlying

theory of our discriminant analysis method. We describe how to classify subjects and how

to evaluate biomarker performance in the presence of censoring. In section 3.3, we compare

our method with simple substitution methods using simulated data. Finally, our method is

applied to the BioMaRK study to predict a patient’s recovery status from AKI within 60

days after the enrollment.

3.2 METHOD

3.2.1 Linear mixed model for biomarker data

High dimensionality, serial correlations, unbalanced or unequally spaced repeated measures,

and missing data are typical issues that people encounter in the longitudinal analysis. Mixed

model is one of the popular approach to handle these problems [58]. The linear mixed model

captures the correlations between repeated measurements within a subject via random effects

(also called subject specific effects). Also, it can accommodate missing data when the missing
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and measurement processes are independent (missing completely at random; MCAR), or the

missing process depends only on the observed measurements (missing at random; MAR). Let

Yij be the biomarker measurement on the ith individual at the jth time point, (i = 1,· · · , N ;

j = 1,· · · , ni). Thus, Yi = (Yi1, · · · , Yini
)t is an ni× 1 vector of measurements corresponding

to the ith subject. The linear mixed model relating Yi to a set of covariates can be expressed

in the matrix notation as

Yi = Xiβ + Ziγi + ei,

where Xi is an ni × p design matrix of fixed effect, β is a p× 1 population parameter vector,

and Zi is an ni×q design matrix of random effect. Random error ei and random effect γi are

independent and normally distributed with ei ∼ N(0, Ri) and γi ∼ N(0, Gi). Marginally, Yi

is normally distributed with mean Xiβ and covariance matrix Σi = ZiGiZ
t
i +Ri.

Parameters in the linear mixed model can be estimated from the likelihood function

formulated given the random effects. A likelihood function is simplified based on the mixed

model assumption that longitudinal observations are independent given the random effects.

To handle the censoring of biomarker measurements, we use the method similar to Lyles et

al. [19]. Suppose lower detection limit and upper detection limit are τlo and τup, respec-

tively. The likelihood function is constructed using the normal density function f(Yij|γi) for

observed measurements and the cumulative distribution function F (τlo|γi) or 1 − F (τup|γi)

for censored parts. Let θ denote the vector of parameters in the covariance matrices. The

final likelihood function for the covariance parameter vector θ and coefficient vector β is

given by

L(β, θ;Y ) =
N∏
i=1

[∫
Rq

ni∏
j=1

{f(Yij|γi)I(dij=0)F (τlo|γi)I(dij=1) (1− F (τup|γi))I(dij=2)}f(γi)dγi

]
,

dij =


0 if Yij is completely observed

1 if Yij is left censored at τlo

2 if Yij is right censored at τup,

I(·) is an indicator function.
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Once the likelihood function is defined depending on the censoring types, set of param-

eters θ and β are estimated by maximizing the likelihood function. Because the likelihood

function includes cumulative distribution function to account for censored biomarker, we

apply SAS procedure Proc nlmixed to obtain the estimates. The Proc nlmixed proce-

dure allows us to specify the general form of distribution given the random effects. Integral

approximation is done by an adaptive Gaussian quadrature method and the likelihood is

maximized by dual quasi-Newton algorithm [59].

3.2.2 Discriminant analysis

We adopt the concept of discriminant analysis to construct the classifier using longitudinal

censored biomarker measurements. Discriminant analysis arises from the desire to use an

optimal classification rule, and it is often based on the assumption of normal distribution

for two separate groups. Let fk(y) denote the normal density function (with mean µk and

variance matrix Σk) of the longitudinal biomarker measurements for the subjects in group k

(k = 0, 1). For a subject with biomarker data Y , the posterior probability of assigning the

subject into group k is given by

Pr(Groupk|Y ) =
fk(Y )πk

f0(Y )π0 + f1(Y )π1
,

where πk is the prior probability that a subject belongs to group k without the knowledge

of Y . The ratio Pr(Group1|Y )/Pr(Group0|Y ) is then used as a discriminant function and

compared with a pre-defined cutoff point to determine the group membership. Noting that

the corresponding log ratio

log
Pr(Group1|Y )

Pr(Group0|Y )
= log

f1(Y )

f0(Y )
+ log

π1
π0 ,

we refer to the first term as a risk score S = log(f1(Y )/f0(Y )). When two groups have same

variance matrix (i.e. Σ0 = Σ1 = Σ), the risk score is simplified as

S =

{
Y − 1

2
(µ1 + µ0)

}t

Σ−1(µ1 − µ0). (3.1)
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When variance matrices for two groups have different forms (i.e. Σ0 ̸= Σ1), the risk score is

S =
Y t
(
Σ0

−1 − Σ1
−1
)
Y

2
+ Y t

(
Σ1

−1µ1 − Σ0
−1µ0

)
− log|Σ1|/|Σ0|

2

− 1

2

(
µ1tΣ1

−1µ1 − µ0tΣ0
−1µ0

)
.

The distributional parameters can be estimated from the mixed model. The estimation of S

for each individual depends on whether the subject has censored measurement or not. When

Y is completely observed, the risk score S can be directly calculated from equation (3.2.2)

using Y . If some components of Y are censored, we will substitute fk(Y ) in equation (3.2.2)

by f ∗
k (Y ), defined as

f ∗
k (Y ) =

∫
Rq

ni∏
j=1

{fk(Yij|γi)I(dij=0)Fk(τlo|γi)I(dij=1) (1− Fk(τup|γi))I(dij=2)}fk(γi)dγi

A new patient is classified by comparing his/her risk score to a pre-selected threshold. For

example, if we use the cutoff point driven by the decision theory with Bayes 0-1 loss function,

the subject is classified into group 1 if Ŝ > 0, and classified into group 0, otherwise.

3.2.3 Evaluation of classification performance

AUC has long been defined for cross-sectional test results. Suppose variables T 0 and T 1

are the test results from normal and disease groups. The AUC is defined as Pr(T 1 > T 0),

that is, a probability that the test result for a randomly chosen individual with a disease is

more indicative of that disease than the test result from a normal subject. The test result

can be a continuous biomarker measurement. When the biomarker is measured over time,

the test result is a multivariate measure. To summarize the classification performance of a

multivariate test result to a univariate measure, we use the risk score S to serve as a test

result in the AUC calculation. In the following, we show how non-parametric and parametric

estimates of AUC are calculated based on the risk score S.

Nonparametric estimation of AUC
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With risk score S used as a test result, we may define S1 and S0 as the risk scores for

a randomly chosen subject from group 1 and group 0 respectively. Suppose there are n0

controls and n1 cases in the data set. The sensitivity and specificity based on the estimated

risk score Ŝ can be formulated as

1− Specificity =
1

n0

n0∑
i=1

I
(
Ŝ0

i > c
)

Sensitivity =
1

n1

n1∑
j=1

I
(
Ŝ1

j > c
)
,

for a threshold c. The empirical ROC curve is obtained by connecting points [sensitivity(c),

1-specificity(c)]. The posterior probabilities Pr(Groupk|Y ) have also been used to construct

the empirical ROC curve [52] [55] [56] in the longitudinal discriminant analysis. Note that

the posterior probability of belonging to group 1 is Pr(Group1|Y ) = eS / (eS + 1), which is a

monotone transformation of S. Thus these two approaches lead to the same AUC given the

invariant property of ROC curve under monotone transformations. We can use trapezoids

method to estimate AUC and the method by DeLong et al. [25] for variance estimation. In

the presence of censoring, empirical AUC tends to produce lower values because it reflects

the actual discrimination ability of incomplete information rather than a potential discrimi-

nation ability which could be achieved if LOD is eliminated.

Parametric estimation of AUC

In a special case when two groups have a common covariance matrix, the risk score has

a linear form in terms of Y (3.1). Then the AUC can be estimated based on the distribu-

tional assumption of the longitudinal biomarker measurements. A smooth ROC curve can

be obtained by

Sensitivity = Φ

(
λt(µ1 − µ0)√

λtΣλ
+ Φ−1(1− Specificity)

)
, with λ = Σ−1(µ1 − µ0),
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and the AUC is defined as

AUC = Pr
[
S1 > S0

]
= Pr

[{
Y 1 − 1

2
(µ1 + µ0)

}t

Σ−1(µ1 − µ0) >

{
Y 0 − 1

2
(µ1 + µ0)

}t

Σ−1(µ1 − µ0)

]
= Pr

[{
Σ−1(µ1 − µ0)

}t
Y 1 >

{
Σ−1(µ1 − µ0)

}t
Y 0
]

= Φ

(
λt(µ1 − µ0)√
λt(2Σ)λ

)
, (3.2)

where Φ is a standard normal cumulative distribution function. The ROC curve and AUC

are estimated using µ̂0, µ̂1 and Σ̂ from the linear mixed model. Because the AUC is entirely

determined by parameters µ1, µ0, and Σ, it remains intact unless the estimates µ̂1, µ̂0, Σ̂

are biased by the censored data. The standard error of AUC estimate can be calculated

following McClish’s method [60].

3.3 SIMULATION STUDY

We conduct simulation study to evaluate the performance of the proposed discrimination

method. In practice, substitution methods are often used to handle the censored data due

to detection limits. Usually the censored observations are replaced by LOD or LOD/2. We

investigate how the discrimination measure AUC is affected by the censoring problem and

under what scenarios the naive substitution methods tend to introduce significant bias. We

also examine the impact of misspecification of covariance structure on the discrimination

evaluation of longitudinal biomarker profile. In the simulation, we use the same set of sub-

jects in the estimation of parameters and AUC, which tends to make classification accuracy

overoptimistic. However, the bias of AUC due to this will be negligible for considered sample

size and number of parameters.
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We generate longitudinal biomarker measurement Yij for the subject i at time point Tij

from the mixed model:

Yij = φ1 + φ2Xi + φ3Tij + φ4(Xi × Tij) + ai + biTij + eij, (3.3)

where

eij ∼ N(0, σ2) and

 ai

bi

 ∼ N

 0

0

 ,

 σ2
a σab

σab σ2
b

 .
Xi is a dichotomous variable, indicating the group membership (0 or 1) and Tij is a time

factor, indicating the follow up times of measurements (Tij = 1,2,3,4). Random intercept ai

and random slope bi are included in the model to reflect the deviation of the subject specific

trajectory from the population trajectory. We assume that random effects are independent of

the random error. Note that the classification performance of a biomarker is determined by

the underlying separability in biomarker measurements between groups. The separability not

only depends on the regression coefficient parameters which specify the difference in mean,

but also the parameters in the covariance matrix. Larger variability in Y makes it more

difficult to divide the two groups. We fix the regression parameters at φ1 = 1.0, φ2 = φ3 =

0.5, φ4 = -1.0, and the covariance parameters at σ2 = 1.0, σab = 0.0. This corresponds to the

scenario where the trajectories of two groups start at different baseline levels and increase over

time for one group and decrease for another group. Moreover, the variabilities of biomarker

measurements increase over time. To simulate biomarker data with different discrimination

ability, we change the variance in Y through the variance parameters of random effects, i.e.,

σ2
a = σ2

b = 0.5, 1.0, and 2.0 with higher values representing poor separation between two

groups. We choose lower detection limit τlo empirically so that the censoring rate of 20% and

40% can be achieved. We simulate 100 datasets, each including 200 subjects from individual

group.

The parameter estimates from the linear mixed model as well as parametric estimates

of AUCs, associated standard errors (se) and empirical 95% coverage probabilities (CP) are

summarized in Table 2. Comparing to the omniscient estimates based on the uncensored

complete data, the parameter estimates of the group (φ2) and interaction (φ4) effects are
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Table 2: Parametric estimation of AUC: Comparison of the discriminant ability between

proposed method (PM) and substitution methods (φ2 = 0.5, φ4 = -1.0, σ2 = 1.0)

Pr(censor) σ2
a, σ

2
b Method φ̂2 φ̂4 σ̂2 σ̂2

a σ̂2
b

ˆAUC(se) CP

0.2 2.0 Omni 0.488 -0.991 1.001 1.950 2.014 0.687(0.026) 0.960
LOD 0.140 -0.665 0.808 2.483 1.025 0.669(0.026) 0.890

LOD/2 0.129 -0.611 0.765 2.218 0.914 0.664(0.026) 0.860
PM 0.487 -0.991 1.003 1.927 2.012 0.688(0.026) 0.940

1.0 Omni 0.489 -0.994 1.001 0.963 1.008 0.740(0.024) 0.960
LOD 0.150 -0.673 0.782 1.266 0.525 0.709(0.025) 0.880

LOD/2 0.139 -0.628 0.736 1.147 0.481 0.717(0.025) 0.840
PM 0.487 -0.994 1.001 0.957 1.005 0.741(0.024) 0.950

0.5 Omni 0.489 -0.995 1.001 0.472 0.505 0.802(0.021) 0.970
LOD 0.168 -0.688 0.765 0.664 0.273 0.787(0.022) 0.900

LOD/2 0.158 -0.654 0.725 0.616 0.257 0.783(0.022) 0.850
PM 0.489 -0.996 1.002 0.469 0.504 0.803(0.021) 0.960

0.4 2.0 Omni 0.488 -0.991 1.001 1.950 2.014 0.687(0.026) 0.960
LOD 0.198 -0.548 0.567 1.242 0.791 0.660(0.026) 0.810

LOD/2 0.187 -0.556 0.589 1.351 0.803 0.661(0.026) 0.820
PM 0.470 -0.987 1.001 1.911 2.056 0.685(0.026) 0.910

1.0 Omni 0.489 -0.994 1.001 0.963 1.008 0.740(0.024) 0.960
LOD 0.201 -0.551 0.551 0.616 0.409 0.709(0.025) 0.690

LOD/2 0.181 -0.569 0.598 0.747 0.424 0.711(0.025) 0.740
PM 0.488 -0.996 1.001 0.966 1.000 0.742(0.024) 0.920

0.5 Omni 0.489 -0.995 1.001 0.472 0.505 0.802(0.021) 0.970
LOD 0.207 -0.555 0.537 0.304 0.216 0.767(0.023) 0.500

LOD/2 0.181 -0.587 0.611 0.431 0.228 0.773(0.023) 0.620
PM 0.492 -0.999 0.999 0.479 0.501 0.804(0.021) 0.920
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Table 3: Nonparametric estimation of AUC: Comparison of the discriminant ability between

proposed method (PM) and substitution methods (φ2 = 0.5, σ2 = 1.0)

Pr(censor) σ2
0, σ

2
1 Method φ̂2 σ̂2 σ̂2

0 σ̂2
1

ˆAUC(se)

0.2 0.5,1.0 Omni 0.492 1.002 0.498 1.000 0.638(0.023)
LOD 0.438 0.763 0.273 0.711 0.636(0.023)
PM 0.492 1.001 0.496 1.000 0.639(0.023)

0.5,2.0 Omni 0.489 1.002 0.498 1.994 0.681(0.022)
LOD 0.514 0.779 0.292 1.354 0.673(0.022)
PM 0.485 0.994 0.483 1.999 0.677(0.022)

0.4 0.5,1.0 Omni 0.492 1.002 0.498 1.000 0.638(0.023)
LOD 0.357 0.569 0.112 0.456 0.630(0.023)
PM 0.488 1.001 0.490 1.000 0.634(0.023)

0.5,2.0 Omni 0.489 1.002 0.498 1.994 0.681(0.022)
LOD 0.464 0.589 0.117 0.896 0.662(0.022)
PM 0.501 0.993 0.469 1.998 0.670(0.022)

heavily biased when the censored observations are replaced by LOD or LOD/2. The pro-

posed method (PM) provides approximately unbiased estimates. As expected, the bias of

estimates continuously acts on the discriminant analysis and attenuates the AUC. Substi-

tution methods provide increasingly smaller AUCs with poor coverage probabilities as the

censoring proportion is increased. Our method, however, presents comparable AUCs to the

omniscient values, and the coverage probabilities are close to the nominal level of 0.95.

Generalizing the assumption on the variance matrix, we also estimate the AUC empiri-

cally as described in section 3.2.3. We make the variance matrices for two groups different

by allowing two random effects in the linear mixed model:

Yij = φ1 + φ2Xi + φ3Tij + a0i + a1i + eij,

where eij ∼ N(0, σ2), a0i ∼ N(0, σ2
0) and a1i ∼ N(0, σ2

1). Two random intercepts a0i, a1i

and error eij are assumed to be independent each other. The parameters are fixed at φ1

= φ3 = 1.0, φ2 = 0.5, σ2 = 1.0, and (σ2
0, σ

2
1) = (0.5, 1.0), (0.5, 2.0). Individual group

includes 300 subjects, each subject having 3 longitudinal time points. Table 3 summarizes
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Table 4: Performance measures and fit statistics from different models

Pr(censor) σ2
a, σ

2
b Model AIC BIC AUC(se)

0.2 2.0 True 0.687
RI 6604.35 6628.30 0.782(0.022)
RS 5686.15 5710.10 0.683(0.026)

RI + RS 5599.84 5631.77 0.688(0.026)

1.0 True 0.741
RI 5991.66 6015.61 0.844(0.019)
RS 5347.83 5371.77 0.732(0.024)

RI + RS 5312.57 5344.50 0.741(0.024)

0.5 True 0.803
RI 5492.32 5516.27 0.898(0.015)
RS 5083.71 5107.66 0.794(0.022)

RI + RS 5070.54 5102.47 0.803(0.021)

0.4 2.0 True 0.687
RI 5236.54 5260.49 0.772(0.023)
RS 4630.07 4654.02 0.689(0.026)

RI + RS 4568.18 4600.10 0.685(0.026)

1.0 True 0.741
RI 4836.06 4860.01 0.829(0.020)
RS 4401.94 4425.89 0.736(0.024)

RI + RS 4376.95 4408.88 0.742(0.024)

0.5 True 0.803
RI 4513.40 4537.35 0.884(0.016)
RS 4228.21 4252.16 0.797(0.022)

RI + RS 4219.54 4251.47 0.804(0.021)
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the result averaged over 100 datasets. Unlike the parametric estimate of AUC, the empirical

AUC estimate tends to be smaller than a potential AUC because the nonparametric ROC

curve is constructed based on the individual’s score. If the individual has censored data

for at least one time point, his/her score is affected by incomplete measurements and its

original discriminative potential is reduced. In contrast, the parametric AUC is close to the

omniscient estimate which reflects the potential discrimination ability, because it does not

depend on the individual’s score, but depends on the mean and variance for each group.

To examine the impact of model misspecification on the biomarker evaluation, we gen-

erate the data from model (3.3), which is referred to as random intercept and slope (RI +

RS) model, but fit the data with three different models: RI + RS model, random intercept

(RI) only model, and random slope (RS) only model. Table 4 shows the AUC estimates,

associated standard errors, and goodness-of-fit statistics, Akaike information criterion (AIC)

and Bayesian information criterion (BIC), from three mixed models. Both RI only and RS

only models yield biased AUC estimates. The RI model overestimates the AUC, while the

RS model underestimates the AUC. Only the correct RI + RS model produces AUC estimate

close to the true one. In practice when we rarely know the true model, how can we believe

that we have a correct performance measure? It appears that the goodness of fit statistics

such as AIC and BIC can be used as a general guideline. Overall, the model with better

goodness of fit (smaller AIC and BIC) produces AUC estimate closer to the true one. Our

results are consistent with what was pointed out by Kohlmann et al. [56], incorrect model

specification may lead to spuriously better or worse performance measures.

3.4 APPLICATION TO BIOMARK STUDY

The Biological Markers of Recovery for the Kidney (BioMaRK) is an observational study

conducted as an ancillary study of the NIDDK-funded Acute Renal Failure Trial Network

(ATN) study. ATN study is a multicenter, prospective trial of two strategies for renal re-

placement therapy in critically ill patients with acute kidney injury (AKI) [61]. One of

the primary goals of the BioMaRK study is to find biomarkers predictive for the recovery
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Figure 3: Boxplots of the log transformed NGAL and HA by recovery status

of renal function by 60 days after enrollment. The ’Recover’ is defined as a survival with

dialysis-independent renal function, and ’No-recover’ indicates a death or dependence on

dialysis. Serial measurements of plasma and urinary biomarkers are collected from the ATN

study participants who signed the consent form for biomarker determination. For illustration

purpose, we focus on the analysis of two urinary markers, Neutrophil Gelatinase-Associated

Lipocalin (NGAL) and Hyaluronic Acid (HA), that are obtained for 76 patients at day 1, 7,

and 14 after enrollment. Among 76 subjects, 38 (50%) recovered from AKI. NGAL is one

of the widely used urinary biomarkers for prediction of AKI. HA is a new biomarker that is

recently reported to correlate with both proteinuria and renal function in progressive renal

disease. NGAL measurements are censored by two upper detection limits at 500 and 10000

ng/mg.Cr. The proportions of censoring at day 1, 7 and 14 are 25.4%, 34.0%, and 27.3%,

respectively. HA level over 2029931.3 ng/mg.Cr is not measurable due to the detection

limit. Most of HA levels are within the detection limit and only 2.7% are censored at day 1.

We take a log transformation for NGAL and HA measurements to normalize the distribution.
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Figure 3 presents the group-level boxplots of NGAL and HA on a log scale over three time

points, where the censored observations are replaced with the detection limit. It appears

that both HA and NGAL levels go up a little at day 7 for the non-recovery group, but go

down over time for the recovery group. We consider several candidate models of different

covariance matrices (RI only, RS only, and RI + RS model) and different form of group-

specific trajectories. We choose the final model with the smallest AIC and BIC as follows.

Yij = φ1 + φ2Recoveri + φ3Timeij + φ4Recoveri × Timeij + ai + eij

where

eij ∼ N(0, σ2) , ai ∼ N(0, σ2
a)

Recoveri =

 0 if subject i didn’t recover within 60 days

1 if subject i recovered within 60 days

The parameter estimates are shown in Table 5. The HA level correlates with the group

membership a little stronger than the NGAL does, as indicated by the magnitude and

significance of the group effect and group by time interaction effect. It gives an evidence

that HA may have better discriminant ability than NGAL. The parametric AUC estimate

(standard error) for NGAL is 0.822 (0.047), and for HA is 0.853 (0.043) (Figure 4 left: the

black solid line and blue dotted line is for NGAL and HA, respectively). Substitution method

using LOD/2 produces AUC estimates of 0.612 (0.063) for NGAL and 0.841 (0.040) for

HA. We also perform cross sectional analysis to examine the discrimination ability of single

biomarker measurement. The AUCs for NGAL day 1, day 7, and day 14 measurements

are 0.662, 0.519, and 0.729 respectively. The corresponding AUCs for HA are 0.659, 0.563,

and 0.849. Clearly, the discrimination performance is significantly improved by using the

biomarker profile rather than the measurement on a single day.

To assess the prediction capacity of the biomarkers, we take the risk distribution into

account using a predictiveness curve presented by Huang et al. [21]. Predictiveness curve is
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Table 5: Parameter estimates and standard errors from the linear mixed models for NGAL

and HA

NGAL HA

parameter estimate (se) P-value estimate (se) P-value

φ1 6.960 (0.310) <0.0001 8.746 (0.321) <0.0001
φ2 1.107 (0.440) 0.014 1.363 (0.460) 0.004
φ3 0.064 (0.039) 0.109 0.071 (0.040) 0.083
φ4 -0.189 (0.051) 0.001 -0.237 (0.054) <0.0001
σ2
a 1.202 1.106

σ2 1.816 2.254

a plot of predicted risk against the percentile of the biomarker. It has been pointed out in

many papers that the biomarker with a strong predictive capacity has a steeper curve that

corresponds to a wide variation in risk [21] [30] [31]. If the predictiveness curve is close to the

horizontal line, the biomarker is no more helpful for making a medical decision. In Figure 4

(right: the black solid line and blue dotted line is for NGAL and HA, respectively), marker

HA is more predictive than marker NGAL because more subjects are classified into high

or low end of the risk. For example, the subjects in the bottom 10% of the risk score (S)

distribution have recovery probabilities in the range of (0.02, 0.19) according to marker HA,

but in a higher range (0.11, 0.23) according to marker NGAL. In the same way, the subjects

above 90th percentile of the distribution show higher recovery probabilities as predicted by

HA (0.91, 0.97) than NGAL (0.80, 0.92).

3.5 DISCUSSION

We propose a new discriminant analysis method to incorporate censored longitudinal biomarker

data. In the simulation study, we show that the substitution methods yield biased parameter

estimates and different discrimination results. The bias of our method is almost ignorable,

and the performance is satisfactory. The empirical AUC computed from the risk score

reflects the actual discrimination power of longitudinal censored biomarkers. This AUC nat-
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Figure 4: ROC curve (left) and predictiveness curve (right) for NGAL and HA.

urally tends to be lower than the discrimination ability achievable with completely observed

biomarker measurements. It is also noted that the model selection is important to correctly

evaluate the biomarkers. Thus we recommend selecting the linear mixed model by comparing

fit statistics. Our methodology can be widely applied to clinical decision-making when it is

necessary to handle below or above the threshold values, such as an investigation of health

effects from chronic low-level exposures [62].

The proposed classification method is based on the discriminant analysis that assumes

normal distribution for the longitudinal measurements. However, the biomarker data are

often highly skewed. Box-Cox transformation is an effective tool to make the distribution

of data close to normal. Several papers have discussed the Box-Cox transformation for cen-

sored data [63] [64] and for correlated data [65] [66]. Application of Box-Cox transformation

to censored multivariate data merits further research. We show discriminant analysis under

equality assumption of variance matrix for two groups and later generalize the assumption.

The generalized method is more applicable and flexible, but increasing number of parame-

ters may cause a computational issue if the sample size is not large enough. Although we

introduce the discriminant analysis based on a single censored longitudinal biomarker, the
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extension to the multiple censored longitudinal biomarkers is possible because a complex

covariance structure can be used in the linear mixed model to account for the correlations

within subjects and between biomarkers.
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4.0 BEST LINEAR COMBINATION FOR LONGITUDINAL BIOMARKER

DATA

The diagnostic performance of a biomarker is commonly assessed by AUC. Estimation of

AUC is often complicated if biomarkers are collected over time, and even censored by the

sensitivity limitation of a given assay. For a practical biomarker evaluation, we extend the

linear combination method by Su and Liu [1] to censored longitudinal biomarker data. The

combination coefficient derived from this method enables us to calculate maximum AUC

that can be obtained from fully observed data. Moreover, it can inform investigators which

time point is more important in making a medical decision. Simulation studies demonstrate

that the proposed method performs better than LOD/2 substitution method. Application

is presented for the GenIMS study to evaluate inflammatory and coagulation biomarkers.

4.1 INTRODUCTION

Biomarkers are biochemical, genetic and molecular factors which can monitor biological and

pathological processes in human body. Because biomarkers are measurable before a disease

is clinically detected, they can help to make an important decision and reduce medical costs.

Scientists have made a big effort to develop new biomarkers for several indications such

as cancer and Alzheimer’s disease. One of the important processes in biomarker research

is a performance evaluation. In many cases, ROC analysis is used to measure diagnostic

accuracy of a biomarker. As a summary measure of the ROC curve, AUC for a single

time point measurement has well been developed in both parametric and non-parametric

ways. For the evaluation of repeated measures, researchers have tried to use conditional
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probability and posterior probability calculated from Bayesian model or latent class model

[67] [68] [44] [69]. However, some methods are only applicable for specific conditions and any

standard approaches for longitudinal data have not emerged yet. One way to incorporate high

dimensional data is to use a linear combination so that we can use the original definition

of ROC curve. Researchers frequently would like to discover a biomarker which provides

higher AUC. With the investigators’ goal of biomarker discovery in mind, an interesting

question at this point is how to condense longitudinal measurements and maximize AUC at

the same time. Besides the high dimension problem, researchers face another obstacle when

biomarkers are subject to detection limit. It is clear that results are biased if censoring is

not appropriately handled. Our goal is to find a linear combination coefficient for each time

point to produce the best AUC.

The idea of our method is based on the linear combination of multiple markers to find an

ideal biomarker which has high sensitivity and specificity. The linear combination methods

were explored by researchers to maximize the sensitivity over the entire specificity range

[1] [70], over a range of high specificity [71] and at a fixed specificity [72]. Whereas many

approaches are based on the distributional assumption, Pepe and Thompson [73] proposed

the distribution free approach to optimize AUC. However, all of these methods are only

applicable for fully observed data. For censored measurements due to LOD, a parametric

ROC method was investigated by Perkins et al. [27] [28]. They calculated AUC formulated

by parameters estimated from the modified likelihood function for the censored observations.

In the following sections, we present the formula for the best linear combination coefficient

in terms of parameters of binormal distribution. We show how to estimate the parameters

from the linear mixed model for both biomarkers with and without LOD. Our method is

applied to the Genetic and Inflammatory Markers of Sepsis (GenIMS) study examining

biomarker’s discrimination power for the 90-day mortality for patients with community-

acquired pneumonia.
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4.2 METHOD

4.2.1 Best linear combination of longitudinal biomarker data

If biomarker concentrations are measured over time from the same individual, multiple

within-person level data are collected. Suppose the biomarker Y 0 from non-disease group

with n0 subjects and Y
1 from disease group with n1 subjects are expanded to p-dimensional

vectors. Assume Y 0 = (y01, · · · , y0p)t ∼MVNp(µ
0,Σ0) and Y

1 = (y11, · · · , y1p)t ∼MVNp(µ
1,Σ1),

where Σ1 and Σ0 are p × p positive definite matrices. With a linear combination coeffi-

cient λ = (λ1, · · · , λn), we can make one-dimensional scores λtY 0 ∼ N(λtµ0, λtΣ0λ) and

λtY 1 ∼ N(λtµ1, λtΣ1λ). Now, the condensed measures λtY 0 and λtY 1 take a role of con-

tinuous test results in ROC analysis. The AUC is calculated based on the distributional

assumption :

AUC = Pr(λtY 0 < λtY 1) = Φ

(
λt(µ1 − µ0)√
λt(Σ0 + Σ1)λ

)
,

where Φ is standard normal cumulative distribution function. Our objective is to find the

combination coefficient λ which maximizes the AUC. Since Φ is a strictly increasing function,

the maximization of AUC is equivalent to

max
λ

[
λt(µ1 − µ0)(µ1 − µ0)tλ

λt(Σ0 + Σ1)λ

]
. (4.1)

The combination coefficient which maximizes (4.1) is an eigenvector of (Σ0 + Σ1)
−1(µ1 −

µ0)(µ1 − µ0)t. What we actually care about λ is only a direction, not a magnitude. For ex-

ample, λ=(1, 2, 3) gives the same AUC with λ=(2, 4, 6). In other words, AUC is maximized

when λ is proportional to (Σ0+Σ1)
−1(µ1−µ0). This is the same result given by Su and Liu

[1] and Liu et al. [71].
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4.2.2 AUC estimation for the best linear combination

Based on the best linear combination coefficient, we can obtain a smooth ROC curve, that

is,

Sensitivity = Φ

(
λt(µ1 − µ0) + Φ−1(1− Specificity)

√
λtΣ0λ√

λtΣ1λ

)
,

where λ = (Σ0+Σ1)
−1(µ1−µ0). The corresponding point estimate of the optimum AUC is,

ÂUCopt = Φ

(
û√

1 + v̂2

)
, where u =

λt(µ1 − µ0)√
λtΣ1λ

, v =

√
λtΣ0λ√
λtΣ1λ .

(4.2)

To estimate parameters µ0, µ1, Σ0 and Σ1, we fit the linear mixed model accounting for

correlations between repeated measures. Suppose the subject i (i = 1,· · · , N) has p× 1

vector of longitudinal biomarker measurements Yi = (Yi1, · · · , Yip)t. The linear mixed model

we consider is

Yi = Xiβ + Ziγi + ei,

where Xi is an p× r matrix of fixed effect, β is a r× 1 parameter vector, and Zi is an p× q

matrix of random effect. Random error ei and random effect γi are independent and normally

distributed. If a biomarker measurement is not censored due to LOD, its contribution to

the likelihood function is through the normal density function f(Yij|γi). Otherwise, the

cumulative distribution function F (τlo|γi) or 1−F (τup|γi) are used for left or right censored

parts, where τlo and τup are lower and upper detection limit, respectively. The likelihood

function for the covariance parameter vector θ and coefficient parameter vector β is given by

L(β, θ;Y ) =
N∏
i=1

[∫
Rq

p∏
j=1

{f(Yij|γi)I(dij=0)F (τlo|γi)I(dij=1) (1− F (τup|γi))I(dij=2)}f(γi)dγi

]
,

dij =


0 if Yij is completely observed

1 if Yij is left censored at τlo

2 if Yij is right censored at τup,

I(·) is an indicator function.
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The confidence interval for AUC is constructed using asymptotic normality property of

maximum likelihood estimate. The 100(1 - α)% two-sided confidence interval is ÂUC ±

zα/2

√
V̂ ar(ÂUC). The variance of ÂUC is estimated by [60]

V̂ ar(ÂUC) =

( ̂∂AUC
∂∆

)2

V̂ ar(∆̂) +

( ̂∂AUC
∂σ2

0

)2

V̂ ar(σ̂2
0) +

( ̂∂AUC
∂σ2

1

)2

V̂ ar(σ̂2
1),

where ∆ = λtµ1 − λtµ0, σ2
k = λtΣkλ (k = 0, 1), N = n0 + n1 and

̂∂AUC
∂∆

=
e−û2/(2+2v̂2)√
2π(1 + v̂2)σ̂2

1̂∂AUC
∂σ2

0

= − ûv̂e−û2/(2+2v̂2)

2σ̂0σ̂1
√
2π(1 + v̂2)3̂∂AUC

∂σ2
1

= −
(

û

2σ̂1

)( ̂∂AUC
∂∆

)
− v̂2

( ̂∂AUC
∂σ2

0

)

V̂ ar(∆̂) =
σ̂2
1

n0

+
σ̂2
0

n1

V̂ ar(σ̂2
0) =

2σ̂0
4

n0 − 1

V̂ ar(σ̂2
1) =

2σ̂1
4

n1 − 1 .

In practice, the value of AUC is bounded by 0.5 and 1.0. If a true optimum AUC ap-

proaches 0.5 or 1.0, the distribution of estimated AUC becomes skewed, especially under a

small sample size. It is well known that Fisher’s Z-transformation improves the behavior

of confidence intervals when assessed by coverage rate. Even though the transformed AUC

does not strictly follow normal distribution, it tends to become normal rapidly with a small

increase of a sample size. The 100(1 - α)% confidence interval for Z-transformed AUCz is

ÂUCz ± zα/2

√
V̂ ar(ÂUCz), where

AUCz = ln

(
1 + AUC

1− AUC

)
, V ar(ÂUCz) =

4

(1− AUC2)2
V ar(ÂUC),

and zα/2 is (1 - α/2) percentile of the standard normal distribution. The back transformation

(eAUCz−1)/(eAUCz+1) enables us to construct the confidence interval for AUC in the original

scale [70] [60].
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We can notice that the AUC evaluating the performance of linear discriminant analy-

sis for longitudinal biomarker data is equivalent to the optimum AUC derived from linear

combination coefficient under a certain condition. Suppose the covariance matrices for two

groups are same, i.e. Σ0 = Σ1 = Σ. In section 3.2.3, we have shown that AUC from the

linear discriminant analysis is

Pr
[{

Σ−1(µ1 − µ0)
}t
Y 1 >

{
Σ−1(µ1 − µ0)

}t
Y 0
]
. (4.3)

Notice that the linear combination coefficient λ is proportional to Σ−1(µ1 − µ0). We can

rewrite (4.3) in terms of λ as Pr [λtY 1 > λtY 0] = Φ

(
λt(µ1−µ0)√

λt(2Σ)λ

)
, which has the same form as

that of the maximum AUC (4.2). Because this AUC depends only on the mean and variance

for each group, it remains intact for the censored biomarkers as long as the parameter

estimates are consistent.

4.3 SIMULATION STUDY

The linear combination coefficient and the corresponding AUC depend on µ0, µ1, Σ0 and

Σ1. When biomarkers are subject to LOD, conventional approach (so called substitution

method) have been widely used, which substitutes censored data to LOD or LOD/2 level.

However, we recommend to estimate parameters using the modified likelihood function. In

this simulation study, we compare the performance of our method and substitution method

by calculating the bias, standard error and coverage probability.

We simulate longitudinal biomarker data from two different random coefficient models to

alter the covariance matrix. The data for the first simulation are generated from the random

intercept model,

Yij = φ1 + φ2Xi + φ3Tij + φ4Xi × Tij + ai + eij, where eij ∼ N(0, σ2) and ai ∼ N(0, σ2
a),

where Xi is the categorical variable of group membership (0 or 1) and Tij is follow up time

point (Tij = 1,2,3,4). The correlation between two measurements is ρ = σ2
a/(σ

2 + σ2
a). The

parameters are fixed at φ1 = 1.0, φ2 = 0.9, φ3 = 0.1, φ4 = -0.2, σ2 = 1.0. The σ2
a are
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Table 6: Optimum AUC for the best linear combination of longitudinal biomarker measure-

ments that are generated from the random intercept model.

Pr(censor) ρ AUCtrue AUCopt SE Std CP Coefficient

Proposed method

0.1 0.2 0.695 0.693 0.016 0.016 0.950 (0.25, 0.15, 0.05, -0.05)
0.5 0.657 0.656 0.017 0.017 0.935 (0.19, 0.09, -0.01, -0.11)
0.8 0.635 0.633 0.017 0.017 0.940 (0.16, 0.06, -0.04, -0.14)

0.2 0.2 0.695 0.693 0.016 0.016 0.930 (0.25, 0.15, 0.05, -0.05)
0.5 0.657 0.656 0.017 0.017 0.930 (0.19, 0.09, -0.01, -0.11)
0.8 0.635 0.634 0.017 0.017 0.945 (0.16, 0.06, -0.04, -0.14)

0.3 0.2 0.695 0.693 0.016 0.016 0.945 (0.25, 0.15, 0.05, -0.05)
0.5 0.657 0.656 0.017 0.017 0.935 (0.19, 0.09, -0.01, -0.11)
0.8 0.635 0.634 0.017 0.018 0.935 (0.16, 0.06, -0.04, -0.14)

0.4 0.2 0.695 0.693 0.016 0.017 0.940 (0.25, 0.15, 0.05, -0.05)
0.5 0.657 0.656 0.017 0.018 0.910 (0.19, 0.09, -0.01, -0.11)
0.8 0.635 0.634 0.017 0.019 0.890 (0.16, 0.06, -0.04, -0.14)

LOD/2

0.1 0.2 0.695 0.691 0.017 0.016 0.970 (0.27, 0.16, 0.06, -0.05)
0.5 0.657 0.652 0.017 0.016 0.950 (0.20, 0.10, -0.01, -0.11)
0.8 0.635 0.626 0.016 0.017 0.895 (0.16, 0.06, -0.04, -0.14)

0.2 0.2 0.695 0.689 0.017 0.016 0.940 (0.27, 0.16, 0.06, -0.05)
0.5 0.657 0.650 0.017 0.017 0.930 (0.21, 0.10, -0.01,-0.11)
0.8 0.635 0.623 0.015 0.017 0.845 (0.17, 0.07, -0.04,-0.14)

0.3 0.2 0.695 0.687 0.017 0.016 0.930 (0.27, 0.17, 0.06, -0.05)
0.5 0.657 0.648 0.016 0.016 0.910 (0.21, 0.10, -0.01,-0.11)
0.8 0.635 0.620 0.015 0.017 0.795 (0.17, 0.07, -0.04,-0.14)

0.4 0.2 0.695 0.683 0.016 0.016 0.890 (0.27, 0.17, 0.06, -0.04)
0.5 0.657 0.644 0.016 0.017 0.865 (0.21, 0.10, -0.04,-0.11)
0.8 0.635 0.616 0.014 0.017 0.725 (0.17, 0.07, -0.04,-0.14)
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varied so that ρ attains the value 0.2, 0.5 and 0.8. We generate 200 datasets, each having

500 diseased subjects and 500 normal subjects. A subject is assumed to have left censored

longitudinal biomarker measurements with censoring rates from 10% to 40%.

Table 6 summarizes the estimation results of optimum AUC (AUCopt) averaged over 200

datasets from the proposed method and LOD/2 substitution. The AUCtrue is calculated

using the true parameter values from which the data are generated. The SE indicates the

average of the estimated standard error. As an empirical standard error (Std), the standard

deviation of ÂUCopt, is presented. The estimated optimum AUC from our method is very

close to the true AUC, and the standard error is comparable to the empirical standard error.

Up to the censoring proportion of 30%, empirical coverage probabilities (CP) are near to

0.95. The bias of AUC from the LOD/2 method gets larger with the increase of censoring

proportion and the coverage probabilities are generally worse than the proposed method.

Irrespective of the methods, the measurement at the first time point has the highest weight

in the combination. This is not surprising because the trajectory pattern we simulated for the

two groups starts far apart each other and becomes narrower in the later time points. Besides,

the correlation between two consecutive measurements are same over time. Accordingly, the

contribution of biomarkers at the first time point to the discrimination ability is the most

important.

In the second simulation, we simulate the data from the random intercept and slope

model,

Yij = φ1 + φ2Xi + φ3Tij + ai + biTij + eij,

where eij ∼ N(0, σ2) and

 ai

bi

 ∼ N

 0

0

 ,

 σ2
a ωσaσb

ωσaσb σ2
b


.

In this model, correlations between two measurements are not fixed, but different depending

on the time points. The covariance parameters σ2
a and σ2

b are set to 1.0 with other coefficient

parameters being remained same as before. We change the correlation between the random

intercept and random slope ω from -0.8 to 0.8. Total 100 datasets are generated with 200

subjects in each group.
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Table 7: Optimum AUC for the best linear combination of longitudinal biomarker measure-

ments that are generated from the random intercept and slope model.

Pr(censor) ω AUCtrue AUCopt SE Std CP Coefficient

Proposed method

0.1 -0.8 0.811 0.810 0.021 0.020 0.960 (0.41, 0.24, 0.06,-0.11)
0.0 0.728 0.728 0.024 0.022 0.950 (0.25, 0.13, 0.01,-0.11)
0.8 0.723 0.723 0.025 0.023 0.950 (0.29, 0.14, 0.00,-0.16)

0.2 -0.8 0.811 0.810 0.021 0.020 0.950 (0.41, 0.24, 0.06,-0.11)
0.0 0.728 0.729 0.024 0.023 0.970 (0.25, 0.13, 0.01,-0.11)
0.8 0.723 0.722 0.025 0.024 0.930 (0.29, 0.14, 0.00,-0.16)

0.3 -0.8 0.811 0.810 0.021 0.022 0.950 (0.41, 0.24, 0.06,-0.11)
0.0 0.728 0.728 0.024 0.023 0.970 (0.25, 0.13, 0.01,-0.11)
0.8 0.723 0.724 0.025 0.025 0.930 (0.29, 0.14,-0.01,-0.16)

0.4 -0.8 0.811 0.810 0.021 0.023 0.920 (0.41, 0.24, 0.07,-0.11)
0.0 0.728 0.728 0.024 0.026 0.940 (0.25, 0.13, 0.01,-0.11)
0.8 0.723 0.723 0.025 0.026 0.810 (0.29, 0.14,-0.01,-0.16)

LOD/2

0.1 -0.8 0.811 0.808 0.023 0.020 0.980 (0.37, 0.22, 0.06,-0.10)
0.0 0.728 0.728 0.028 0.023 1.000 (0.25, 0.13, 0.01,-0.11)
0.8 0.723 0.723 0.026 0.023 0.970 (0.29, 0.14,-0.01,-0.16)

0.2 -0.8 0.811 0.805 0.023 0.021 0.980 (0.30, 0.18, 0.05,-0.07)
0.0 0.728 0.721 0.030 0.024 0.980 (0.18, 0.09, 0.01,-0.08)
0.8 0.723 0.720 0.028 0.025 0.980 (0.27, 0.13,-0.01,-0.16)

0.3 -0.8 0.811 0.800 0.023 0.024 0.950 (0.25, 0.15, 0.05,-0.05)
0.0 0.728 0.721 0.030 0.024 0.980 (0.18, 0.09, 0.01,-0.08)
0.8 0.723 0.717 0.029 0.026 0.990 (0.23, 0.11,-0.01,-0.13)

0.4 -0.8 0.811 0.792 0.024 0.025 0.860 (0.20, 0.12, 0.04,-0.04)
0.0 0.728 0.713 0.031 0.026 0.950 (0.14, 0.07, 0.01,-0.06)
0.8 0.723 0.706 0.031 0.028 0.930 (0.17, 0.08,-0.01,-0.10)
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From the estimates of AUC, SE, and coverage probability in Table 7, we observe similar

results as we see for the mixed model with random intercept only. We can notice that the

linear combination coefficients are not the same across different time points. The highest

and lowest absolute weights are assigned to the measurements from the first and third time

points, respectively.

4.4 APPLICATION TO GENIMS STUDY

The Genetic and Inflammatory Markers of Sepsis (GenIMS) study is a multicenter cohort

study of patients admitted to the emergency department with community acquired pneumo-

nia (CAP) between 2001 and 2003. The patients with CAP often experience severe sepsis

and infection related death, which costs $8.4 billion each year in the United States [74] [75].

Because these patients are reported to exhibit abnormal levels in biomarkers of inflammation

and coagulation, further investigation in the biomarkers helps physicians to efficiently man-

age CAP. The study enrolled 2320 patients and their biomarker levels were measured daily

during the first seven days of hospitalization. The secondary objective of the study is to

identify biomarkers which predict patient’s death by 90 days after hospitalization. We select

the pro-inflammatory marker, interleukin-6 (IL-6) and the coagulation marker, D-dimer for

illustration. All biomarker measurements are transformed in a log scale to normalize the

distribution. The IL-6 has two lower detection limits at 2 pg/mL and 5 pg/mL. Censoring

proportions from day 1 to day 7 are 15.1%, 22.3%, 29.6%, 33.2%, 34.4%, 35.1%, and 34.2%.

Boxplots are presented in Figure 5 to show a group-specific trajectory. Although the box-

plots overlap between survival and death groups, IL-6 profile for the death group is higher

than that for the survival group. In both groups, IL-6 levels fall rapidly from day 1 to day

2, but drop slowly after day 3. Based on this profile, we include the variable ’Day after

hospitalization’ as a reciprocal form. The estimated linear mixed model for log(IL-6) is

Yij = 1.463 + 1.104Xi + 2.139Tij + ai + biTij + eij,
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Figure 5: Boxplots for log transformed IL-6 and D-dimer by survival and mortality groups

where

eij ∼ N(0, 0.551) and

 ai

bi

 ∼ N

 0

0

 ,

 2.127 −1.389

−1.389 5.031



Xi =

 0 if subject i was not dead at 90 days after hospitalization

1 if subject i was dead at 90 days after hospitalization

Tij =
1

Day after hospitalizationij

The mean vectors and covariance matrices for the survival and death groups are calculated

from the parameter estimates of the linear mixed model. The best linear combination coeffi-

cient for each time point is (0.016, 0.038, 0.045, 0.048, 0.050, 0.052, 0.053) showing that the

most recent measurement has the highest weight. The optimum AUC and 95% confidence

interval for IL-6 are 0.718 (0.683, 0.750). Next, the lower detection limit for D-dimer is 110
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ng/mL and its censoring proportions are lower than IL-6 with 5.3%, 4.4%, 5.0%, 5.4%, 4.5%,

3.7%, and 4.0% over 7 days. Logarithm of D-dimer level for death group is a bit higher than

that of the survival group (Figure 5). The estimated linear mixed model for log(D-dimer) is

Yij = 6.215 + 0.729Xi + 0.021Tij + ai + biTij + eij

eij ∼ N(0, 0.113) and

 ai

bi

 ∼ N

 0

0

 ,

 1.063 −0.061

−0.061 0.023



Xi =

 0 if subject i was not dead at 90 days after hospitalization

1 if subject i was dead at 90 days after hospitalization

Tij = Day after hospitalizationij

The linear combination coefficient for each time point is (0.144, 0.070, 0.045, 0.033, 0.026,

0.021, 0.017). Contrary to the IL-6, the weights of the measurements for D-dimer decrease

over time. The optimum AUC for D-dimer is 0.695 (0.641, 0.741), which is smaller than the

AUC for IL-6.

4.5 DISCUSSION

High dimensionality and censoring issue are often a problem in the evaluation of biomarkers.

Motivated by the GenIMS study, we propose the method to find the best linear combination

coefficient for longitudinal biomarker measurements. By combining data from multiple time

points, we can reduce the time dimension of longitudinal data into one and capture different

evolution patterns. The combination coefficient enables us to evaluate biomarker’s maximum

classification power via AUC. Investigators can also predict the relative importance of each

time point to the discrimination ability. The method is applicable for both censored and non-

censored measurements. It is noted that the AUC calculated from the linear discriminant
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analysis is mathematically equal to the optimum AUC from the best linear combination

coefficient. One of the limitations of our method is that it only considers the group level

parameters such as mean and variance for event and non-event groups, it’s impossible to

know individual’s classification result based on each subject’s biomarker records. However,

the method is practically useful in terms of short computational time to provide a summary

statistic for biomarker’s discrimination ability, especially when the biomarker is repeatedly

measured over several time points and censored due to LOD.
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5.0 DISCRIMINATION MEASURE OF CENSORED BIOMARKER FOR

SURVIVAL OUTCOME

Censoring due to a detection limit is an increasingly common and challenging problem in

biomarker studies. When a biomarker is used to predict survival outcome, one of the impor-

tant problems due to censored biomarker data is corrupted evaluation measures. Biomarker’s

discrimination potential for survival outcome is frequently evaluated by C-index and time

dependent ROC curve. In this chapter, we extend these two methods to left-censored base-

line biomarker data. To incorporate the censored biomarker measurements, we use the joint

likelihood based method. We derive the analytic form of C-index and time dependent AUC,

which is a function of parameters in the joint likelihood function. Simulation study shows

that the proposed method outperforms over simple substitution methods in terms of param-

eter estimation, resulting in less biased evaluation measures. We provide the application

with the dataset from biomarker study for acute kidney injury patients.

5.1 INTRODUCTION

The ROC curve has been widely used in the evaluation of diagnostic accuracy for dichoto-

mous outcomes. In a prospective study when the disease onset is observed over a continuous

follow-up time, the essential outcome of interest is not only the occurrence of disease (bi-

nary) but also the time to event (continuous). In the context of survival outcome, it is more

appropriate to consider event time in the calculation of ROC curve. A common example

of the extended version of ROC curve to survival outcome is C-index, so called a global

accuracy summary measure. The C-index measures how well a biomarker correctly ranks
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patients by their survival time throughout the whole study period. When a priori time t is

specified, however, time-dependent ROC curve is more desired. The time-dependent ROC

curve summarizes the discriminant potential of a biomarker for cumulative events occurred

by time t. In this way, the ROC curve is expressed as a function of time. In the Biological

Markers of Recovery for the Kidney (BioMaRK) study, one of the scientific hypotheses is

that urinary biomarkers can predict the recovery outcome of renal function for critically ill

patients with acute kidney injury (AKI). It derives the consequent questions that (1) which

biomarker has the best discrimination ability for the time to recovery overall and (2) how

well the biomarker can distinguish patients who will recover with those who will not by the

follow-up time of t. The first question can be answered by the C-index because scientific

interest is more on the biomarker’s global discrimination ability for the whole study period.

Cumulative/dynamic ROC curve can be applied for the analysis of second question, which

focuses more on case or control group on the basis of their vital status at t.

The C-index and time dependent ROC curve have been successful evaluation methods for

survival outcome. The C-index and its property were studied by Harrell et al. [32], Pencina

and D’Agostino [34], and investigated further to obtain a stable estimation in the presence of

tied pairs or censoring in the survival outcome [35] [36]. Later, Gönen and Heller [76] derived

analytical expression of the concordance probability in the Cox proportional hazard model.

The standard ROC curve has been extended to time to event outcome by Heagerty et al. [39]

in the form of cumulative/dynamic time dependent ROC. They introduced a new definition

of sensitivity, specificity, and ROC curve in a time dependent manner. Chambless and

Diao [77] developed two different estimation method for time dependent AUC as a summary

measure of time dependent ROC. However, all of these methods have a limitation to be

directly applied to the BioMaRK study because they were developed based on fully detectable

data. In our application example, some of urinary biomarker measurements are not observed

due to detection of limit. To incorporate censored biomarker data as a covariate in the

analysis of survival outcome, D’Angelo et al. [78] presented an index approach in the Cox

proportional hazard model. When estimating model, they replaced the censored observations

with conditional expectation given fully observed covariates. In this chapter, we will propose

a modification of the C-index and time dependent ROC for censored biomarker data. We
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start from the joint likelihood based approach to analyze survival outcome in the presence

of censored covariate. We briefly review the existing estimation methods for the C-index

and time dependent ROC and explain our remedy for censored biomarker measurements. In

section 5.3, we examine the performance of the proposed method using simulation study. In

section 5.4, the proposed methods are applied to the BioMaRK study in order to evaluate

the inflammatory marker interleukin-6 (IL-6) and IL-18 in the prediction of time to recovery

outcome.

5.2 METHOD

5.2.1 Survival model with censored covariates

Survival data are commonly fitted by a density function of parametric distribution or by a

semiparametric Cox proportional hazard model. While many researches have been done for

censored outcome, a model for both censored outcome and censored covariate has not been

extensively investigated yet. In this section, we consider the joint likelihood based approach

to handle the censored covariates in the survival model.

Parametric distribution of survival time

First, we assume the parametric form for the distribution of survival time. One of frequently

used distributions for survival time is exponential distribution, which has the constant haz-

ard during the whole study period. Denote by Zi the survival time for the ith subject with

baseline biomarker value Yi (i = 1 · · · N). The relationship between Yi and Zi is determined

through the exponential distribution function, h(zi|yi) = λiexp(−λizi), where λi = exp(βyi).

For each subject, what we actually observe for survival time is Ti = min(Zi, Ci), where Ci

represents a censoring time. Let δi be the censoring indicator, δi = 1 if the subject develops

an event within a study period, i.e. Ti = Zi, and δi = 0 for the subject who is either loss of

follow up or event free at the end of a study, i.e. Ti = Ci. The baseline biomarker Yi has a

density function fθ(·), which is often assumed to follow (log)normal distribution. We specify
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the censoring indicator for a biomarker with lower detection limit at τ as follows.

ωi =

 1 if Yi ≤ τ

0 if Yi > τ

To incorporate left censored biomarker data in the estimation of a set of parameters {θ, β},

we use the join likelihood based method, similar to Lyles et al.[19]. The likelihood function

for the observed data (t, δ, y)=(ti, δi, yi, i = 1 · · · N) is given by

L(θ, β; t, δ, y) =
N∏
i=1

[
{fθ(yi)h(ti|yi)δi{1−H(ti|yi)}1−δi}1−ωi (5.1)

{
∫ τ

−∞
fθ(yi)h(ti|yi)δi{1−H(ti|yi)}1−δidyi}ωi

]
, (5.2)

where H(·) denotes the cumulative distribution function for survival time.

Cox proportional hazard model of survival time

The parametric distribution for survival outcome is not always useful, especially in case of

survival time after a major surgery. Semiparametric methods are more appropriate in such

a situation. The Cox proportional hazard model has been the most widely used procedure

in biomedical survival analysis. We can generalize our survival model to Cox proportional

hazard model. The Cox proportional hazard model is defined as λi(z) = λ0(z)exp(βyi),

where λi(·) is the hazard function given yi, λ0(·) is the baseline hazard function and β is

regression parameter. With left-censored covariates, the likelihood function is modified as

L(β, θ; t, δ, y) =
N∏
i=1

[
{fθ(yi) (λ0(ti)exp(βyi))δi exp

(
−
∫ ti

0

λ0(u)exp(βyi)du

)
}1−ωi

× {
∫ τ

−∞
fθ(yi) (λ0(ti)exp(βyi))

δi exp

(
−
∫ ti

0

λ0(u)exp(βyi)du

)
dyi}ωi

]
. (5.3)

Rather than specifying a certain distribution for the baseline hazard, we adopt the piecewise

constant baseline hazard function. We divide a follow-up period until last event into 20

intervals, which are found out to give stable parameter estimates in our simulation study.

The piecewise constant baseline is simple but powerful function in terms of flexibility and

practical applicability. Another advantage of using it in the estimation process is that we

can avoid computational difficulties by employing Gaussian quadrature techniques. It is
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pointed out that Gaussian quadrature technique for the Cox proportional hazard model

assuming piecewise constant baseline hazards yields satisfactory parameter estimates [79].

We implement the Gaussian quadrature technique using SAS Proc nlmixed procedure.

5.2.2 C-index

The C-index measures biomarker’s discrimination ability for survival outcome over the whole

study period. Let’s denote the actual survival time for ith subject as Zi, predicted survival

time as Ui, predicted probability of survival at time t as Wi, and time-invariant biomarker

measurement as Yi (i = 1 · · · N). Harrell et al. [33] defined the C-index as Pr(Ui < Uj|Zi <

Zj), the probability that the person with a shorter event time has a shorter predicted survival

time assuming two persons are randomly selected from a cohort. It is pointed out that Ui

and Wi are exchangeable if they have one-to-one correspondence. Furthermore, under the

proportional hazards assumption, the C-index can be rewritten as Pr(Wi < Wj|Zi < Zj) =

Pr(βYi > βYj|Zi < Zj) [34].

There are two ways to estimate the C-index. Without a distributional assumption on

biomarker data, the C-index (Cn) is estimated by

Ĉn =
1

Q

∑
(i,j)∈R

cij,

where R is a set of all usable pairs, Q is the total number of usable pairs in R, and

cij =

 1 if (Zi < Zj and βYi > βYj) or (Zi > Zj and βYi < βYj)

0 if (Zi < Zj and βYi < βYj) or (Zi > Zj and βYi > βYj).

Alternately, distributional assumptions on biomarker data enable us to calculate the C-index.

Suppose g(z, y) denote the joint density function of actual survival time and biomarker.

For illustration, we assume that the subject with higher risk of event has larger biomarker

measurements, i.e. β > 0. Then the C-index can be calculated as

Cp = Pr(βYi > βYj|Zi < Zj) =
Pr(Yi > Yj, Zi < Zj)

Pr(Zi < Zj)

=

∫∞
−∞

∫ yi
−∞

∫∞
0

∫ zj
0

g(zi, yi)g(zj, yj) dzidzjdyjdyi∫∞
−∞

∫∞
−∞

∫∞
0

∫ zj
0

g(zi, yi)g(zj, yj) dzidzjdyjdyi .
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Because we derive the C-index, Cp, directly from the joint likelihood function, it only depends

on the parameters in the distribution function. Therefore, Cp can be estimated correctly even

in the presence of censored covariates and censored outcomes if we can obtain the unbiased

parameter estimates.

Estimation under parametric distribution

Going back to the parametric distribution for survival data, we additionally assume that

biomarker Yi is independently, identically and normally distributed with mean µ and vari-

ance σ2. We can rewrite the joint density function g(z, y) as conditional density of survival

time, h(z|y), multiplied by the marginal density of biomarker, f(y). Then Cp is expressed

numerically by

Cp =

∫∞
−∞

∫ yi
−∞

∫∞
0

∫ zj
0

h(zi|yi)h(zj|yj) f(yi)f(yj) dzidzjdyjdyi∫∞
−∞

∫∞
−∞

∫∞
0

∫ zj
0

h(zi|yi)h(zj|yj)f(yi)f(yj) dzidzjdyjdyi

=

∫∞
−∞

∫ yi
−∞

∫∞
0

∫ zj
0
λiexp(−λizi) λjexp(−λjzj) exp

(
−(yi−µ)2

2σ2

)
exp

(
−(yj−µ)2

2σ2

)
dzidzjdyjdyi∫∞

−∞

∫∞
−∞

∫∞
0

∫ zj
0
λiexp(−λiti) λjexp(−λjtj) exp

(
−(yi−µ)2

2σ2

)
exp

(
−(yj−µ)2

2σ2

)
dzidzjdyjdyi

,

where µ, σ2 and β are estimated by maximizing the joint likelihood function (5.1).

Estimation under Cox proportional hazard model

In the framework of Cox proportional hazard model and Yi ∼ N(µ, σ2), the C-index is for-

mulated even more simpler. Rather than starting directly from the joint distribution, we

express Cp in terms of Pr(Zi < Zj|Yi = yi, Yj = yj) as follows :

Cp =
Pr(Yi > Yj, Zi < Zj)

Pr(Zi < Zj)
=

∫∞
−∞

∫ yi
−∞ Pr(Zi < Zj|yi, yj)f(yi)f(yj) dyjdyi∫∞

−∞

∫∞
−∞ Pr(Zi < Zj|yi, yj)f(yi)f(yj) dyjdyi .

Because

Pr(Zi < Zj|Yi = yi, Yj = yj) =

∫ ∞

0

S(z|yi)dS(z|yj) =
1

1 + exp(βyj − βyi) ,
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where S(.) denotes a survival function, Cp can be calculated using only regression parameter

β, distributional parameter µ and σ2 estimated from the joint likelihood function (5.3) [76].

The analytic form of Cp is given by

Cp =

∫∞
−∞

∫ yi
−∞ exp

(
−(yi−µ)2

2σ2

)
exp

(
−(yj−µ)2

2σ2

)
/ (1 + exp(βyj − βyi)) dyjdyi∫∞

−∞

∫∞
−∞ exp

(
−(yi−µ)2

2σ2

)
exp

(
−(yj−µ)2

2σ2

)
/ (1 + exp(βyj − βyi)) dyjdyi

.

5.2.3 Cumulative/dynamic time dependent ROC

If the biomarker’s discriminant ability throughout the time interval (0, t] is of clinical in-

terest, cumulative/dynamic time dependent ROC can be used as a standard summary of

accuracy. If Y denotes the baseline biomarker measurement with higher value being more

indicative of event and Z is actual survival time, sensitivity and specificity are specified

as Sensitivity(t) = Pr(Y > c|Z ≤ t) and Specificity(t) = Pr(Y ≤ c|Z > t). In other

words, sensitivity is evaluated using events which occur in the time interval (0, t], whereas

specificity is calculated based on events after the time t. The AUC at time t is defined as

AUC(t) = Pr(Yi > Yj|Zi ≤ t, Zj > t), the probability that subjects with an event by time t

has a higher biomarker level than those without an event.

Heagerty et al. [39] showed nonparametric estimation method for AUC(t) employing

the Kaplan-Meier estimator for survival function and empirical distribution function for

biomarker measurements. The estimator for sensitivity and specificity at time t is given by

Sensitivity(t) =
{1− Ŝ(t|Y > c)}{1− K̂(c)}

1− Ŝ(t)

Specificity(t) =
Ŝ(t|Y ≤ c)K̂(c)

Ŝ(t) ,

where K̂(c) =
N∑
i=1

I(Yi ≤ c)/N and Ŝ(t|Y ≥ c) is the Kaplan-Meier estimator based on

the subset of subjects with {Y ≥ c}. Using the sensitivity(t) and specificity(t) over all

possible values of c, AUC can be estimated by the trapezoidal rule. As an alternative

estimation approach, Chambless and Diao [77] derived the direct formula for AUC(t) in

terms of a survival function and density function for biomarker. Denote the conditional
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density function of biomarker as q(y|z) and marginal density function of biomarker as f(y).

Then,

AUC(t) = Pr(Yi > Yj|Zi ≤ t, Zj > t) =

∫ ∞

−∞

∫ ∞

yj

q(yi|Zi ≤ t)q(yj|Zj > t) dyidyj.

Because

q(yi|Zi ≤ t) =
Pr(Zi ≤ t|Yi = yi)f(yi)

Pr(Zi ≤ t)
=

(1− S(t|yi))f(yi)∫∞
−∞(1− S(t|yi))f(yi)dyi

=
(1− S(t|yi))f(yi)
E [(1− S(t|Yi))]

,

where E indicates the expectation with respect to Yi. Therefore, the AUC(t) can be written

as ∫ ∞

−∞

∫ ∞

yj

(1− S(t|yi)) f(yi)S(t|yj)f(yj)dyidyj
E [1− S(t|Yi)]E [S(t|Yj)]

=
E [(1− S(t|Yi))S(t|Yj)I(Yi > Yj)]

E [1− S(t|Yi)]E [S(t|Yj)] .

Estimation under parametric distribution

We first assume the parametric distributions for both survival time and biomarker data

censored by a lower detection limit as follows. Yi = µ+ ei , ei ∼ N(0, σ2)

Zi|Yi ∼ EXP(λi) ,where λi = exp(βYi).

Under this assumption, the AUC(t) is given by

AUC(t) =

∫∞
−∞

∫∞
yj

(1− exp(−λit)) exp(−λjt) exp
(

−(yi−µ)2

2σ2

)
exp

(
−(yj−µ)2

2σ2

)
dyidyj∫∞

−∞

∫∞
−∞ (1− exp(−λit)) exp(−λjt) exp

(
−(yi−µ)2

2σ2

)
exp

(
−(yj−µ)2

2σ2

)
dyidyj

,

where µ̂, σ̂2, λ̂i and λ̂j are maximum likelihood estimates obtained from (5.1).

Estimation under Cox proportional hazard model

Everything being same as before, we use the Cox proportional hazard model λi(z) =

λ0(z)exp(βyi) for survival outcome. In this case, the survival function at time z is specified as

S(z|yi) = S0(z)
exp(βyi), where baseline survival function S0(z) is given by exp(−

∫ z

0
λ0(u)du).

The C-index depends only on the regression coefficient β in the Cox proportional hazard
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model, so the estimation of baseline hazard is unnecessary. However, we cannot estimate

AUC(t) without obtaining baseline hazard function. In the semiparametric model, the base-

line hazard is usually unspecified and it can have any form. By assuming the piecewise

constant hazard, however, we can circumvent this problem. Suppose we divide the follow-up

period into 20 intervals and denote Ik (k=1,· · · ,20) as every 5th quantile. The λ0k is the

piecewise constant baseline hazard in each interval, i.e. λ0(t) = λ0k for [Ik−1 < t ≤ Ik].

Then, the cumulative baseline hazard is [79]

∫ t

0

λ0(u)du =
20∑
k=1

λ0k max (0, min (Ik − Ik−1, t− Ik−1)).

Now the AUC(t) can be obtained by using the parameter estimates from the likelihood

function (5.3) and the estimate of cumulative baseline hazard,

AUC(t) =

∫∞
−∞

∫∞
yj

(
1− S0(t)

exp(βyi)
)
S0(t)

exp(βyj) exp
(

−(yi−µ)2

2σ2

)
exp

(
−(yj−µ)2

2σ2

)
dyidyj∫∞

−∞

∫∞
−∞ (1− S0(t)exp(βyi)) S0(t)exp(βyj) exp

(
−(yi−µ)2

2σ2

)
exp

(
−(yj−µ)2

2σ2

)
dyidyj

.

5.3 SIMULATION

In the first simulation, we present the point estimates of C-index calculated from the pro-

posed method as well as those from the substitution methods, in which censored biomarker

measurements are replaced by LOD and LOD/2. True value of the C-index is obtained from a

numerical integration using the known parameter values. For data generation, time-invariant

biomarker measurements are simulated from Y ∼ N(µ, σ2). The actual survival time Z is

assumed to follow the exponential distribution Z|Y ∼ EXP (λ), where λ = exp(β0 + β1y).

We simulate censoring time C from the uniform distribution U(0, 4) and take the observed

time as T=min(Z, C). The C-index is expected to be larger when biomarker data are widely

distributed so that biomarker level from a subject with shorter survival time shows big dif-

ference from that from a subject who lives longer. Correspondingly, the variability of Y , σ2,

is varied at the level of 0.1, 1.0, and 5.0. Other parameters are fixed at µ=0.0, β0=0.0 and

β1=1.0. Under this setup, a subject with higher biomarker value has higher risk of event.
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The lower detection limit for biomarker Y is chosen empirically so that the censoring rate

is set to 0.2 and 0.4. Total 500 observations are generated for each dataset. For evaluation,

estimated C-indices and parameter estimates are averaged over 100 datasets. Later, we gen-

eralize the distributional assumption for survival time and use the Cox proportional hazard

model. Fixing other simulation setup the same as before, we regenerate the actual survival

time Z based on the hazard function λ(z) = λ0(z)exp(βy), where λ0(z) = 2z and β=1.

Tables 8 and 9 summarize the simulation results under the assumption of exponential

distribution and Cox proportional hazard model, respectively. The parameter estimates from

the proposed method are close to the true values, while larger biases are shown in the sub-

stitution methods as censoring proportion becomes higher. The C-index from substitution

methods tends to be biased downward. Our method produces C-index that is much closer

to the true value, which is competently similar to the omniscient estimate obtained from

complete data.

The second part of the simulation study is designed to compare the performance of our

method in estimating AUC(t) to that of the substitution methods. In this simulation, base-

line biomarker measurements are generated from Y ∼ N(µ, σ2) with µ = 0 and σ2 = 4 and 9.

We simulate actual survival time Z from exponential distribution, EXP [exp(β0+β1y)] with

β0 = 0 and β1 = 0.1. The censoring time C follows uniform distribution U(0, 4). For the Cox

proportional hazard model, we generate the actual survival time Z with exponential survival

for S0(Z) and β1 = 0.1. Tables 10 and 11 present the results averaged over 100 datasets. The

simulation results show that the proposed method produces comparable AUC(t) estimates

to omniscient and true values. However, the biases of both parameter and AUC(t) estimates

from the substitution methods increase with the censoring proportion.

5.4 APPLICATION TO BIOMARK STUDY

Acute kidney injury (AKI) is the most common problem in the intensive care unit, which

affects negatively on patient’s quality of life and causes subsequent health care cost [80].

Conducted as a part of the Acute Renal Failure Trial Network study (ATN study), the
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Table 8: Comparison of C-index estimated from the proposed method (PM) and substitution

methods (LOD, LOD/2) assuming exponential distribution for survival time (µ = 0, β0 =

0, β1 = 1)

σ2 Pr(censor) Method µ̂ σ̂2 β̂0 β̂1 C Ĉ(SD)

0.1 0.2 Omni -0.001 0.100 0.004 1.017 0.586 0.588(0.015)
LOD 0.034 0.069 -0.037 1.167 0.584(0.014)

LOD/2 0.061 0.056 -0.073 1.236 0.580(0.013)
PM 0.001 0.098 0.002 1.032 0.588(0.014)

0.4 Omni -0.001 0.100 0.004 1.017 0.586 0.588(0.015)
LOD 0.089 0.044 -0.118 1.349 0.578(0.014)

LOD/2 0.105 0.040 -0.146 1.399 0.577(0.013)
PM 0.004 0.097 0.000 1.039 0.588(0.014)

1.0 0.2 Omni -0.004 1.004 0.007 1.004 0.725 0.726(0.010)
LOD 0.108 0.695 -0.090 1.110 0.713(0.009)

LOD/2 0.193 0.561 -0.200 1.184 0.707(0.009)
PM -0.001 0.994 0.006 1.008 0.725(0.010)

0.4 Omni -0.004 1.004 0.007 1.004 0.725 0.726(0.010)
LOD 0.281 0.448 -0.329 1.282 0.702(0.010)

LOD/2 0.333 0.396 -0.415 1.333 0.699(0.010)
PM 0.001 0.993 0.004 1.009 0.725(0.010)

5.0 0.2 Omni -0.009 5.020 0.003 1.003 0.801 0.800(0.004)
LOD 0.243 3.481 -0.096 1.050 0.801(0.003)

LOD/2 0.432 2.809 -0.277 1.112 0.799(0.003)
PM -0.005 4.990 0.002 1.004 0.800(0.004)

0.4 Omni -0.009 5.020 0.003 1.003 0.801 0.800(0.004)
LOD 0.628 2.239 -0.510 1.188 0.795(0.004)

LOD/2 0.745 1.977 -0.684 1.235 0.793(0.004)
PM -0.007 5.006 0.002 1.004 0.800(0.004)
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Table 9: Comparison of C-index estimated from the proposed method (PM) and substitution

methods (LOD, LOD/2) assuming Cox proportional hazard model for survival time (µ = 0,

β = 1)

σ2 Pr(censor) Method µ̂ σ̂2 β̂ C Ĉ(SD)

0.1 0.2 Omni -0.001 0.100 0.993 0.586 0.586(0.013)
LOD 0.034 0.069 1.143 0.582(0.013)

LOD/2 0.061 0.056 1.208 0.578(0.013)
PM 0.001 0.099 1.003 0.586(0.014)

0.4 Omni -0.001 0.100 0.993 0.586 0.586(0.013)
LOD 0.089 0.045 1.326 0.577(0.013)

LOD/2 0.105 0.040 1.374 0.575(0.012)
PM 0.004 0.097 1.016 0.586(0.014)

1.0 0.2 Omni -0.004 1.004 1.007 0.725 0.726(0.011)
LOD 0.108 0.695 1.118 0.714(0.011)

LOD/2 0.193 0.561 1.165 0.704(0.011)
PM -0.001 0.994 1.010 0.726(0.012)

0.4 Omni -0.004 1.004 1.007 0.725 0.726(0.011)
LOD 0.281 0.448 1.263 0.700(0.011)

LOD/2 0.333 0.396 1.300 0.695(0.011)
PM 0.001 0.992 1.012 0.726(0.012)

5.0 0.2 Omni -0.009 5.020 1.008 0.843 0.844(0.008)
LOD 0.243 3.475 1.081 0.829(0.008)

LOD/2 0.432 2.809 1.111 0.818(0.008)
PM -0.005 4.989 1.004 0.843(0.008)

0.4 Omni -0.009 5.020 1.003 0.843 0.844(0.008)
LOD 0.628 2.239 1.188 0.812(0.009)

LOD/2 0.745 1.977 1.235 0.807(0.009)
PM -0.007 5.006 1.004 0.843(0.008)
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Table 10: Comparison of AUC(t) estimated from the proposed method (PM) and substitu-

tion methods (LOD, LOD/2) assuming exponential distribution for survival time

Pr(censor) Method µ̂ σ̂2 β̂0 β̂1 ̂AUC(3)(SD) ̂AUC(5)(SD)

True 0.000 4.000 0.000 0.100 0.663 0.737

0.2 Omni -0.005 4.001 0.018 0.102 0.665(0.037) 0.738(0.044)
LOD 0.218 2.770 -0.010 0.119 0.661(0.037) 0.732(0.045)
LOD/2 0.386 2.239 -0.033 0.127 0.656(0.038) 0.726(0.048)
PM -0.002 3.971 0.016 0.103 0.665(0.037) 0.738(0.045)

0.4 Omni -0.005 4.001 0.018 0.102 0.665(0.037) 0.738(0.044)
LOD 0.564 1.779 -0.063 0.140 0.653(0.040) 0.723(0.050)
LOD/2 0.667 1.573 -0.082 0.146 0.650(0.040) 0.719(0.050)
PM 0.003 3.955 0.016 0.104 0.667(0.039) 0.740(0.046)

True 0.000 9.000 0.000 0.100 0.727 0.803

0.2 Omni -0.009 9.003 0.015 0.102 0.726(0.029) 0.805(0.029)
LOD 0.327 6.233 -0.024 0.117 0.719(0.030) 0.798(0.031)
LOD/2 0.582 5.041 -0.058 0.125 0.713(0.032) 0.791(0.034)
PM -0.004 8.943 0.015 0.102 0.726(0.030) 0.804(0.030)

0.4 Omni -0.009 9.003 0.015 0.102 0.726(0.029) 0.805(0.029)
LOD 0.848 4.010 -0.104 0.137 0.709(0.033) 0.787(0.034)
LOD/2 0.999 3.539 -0.129 0.143 0.705(0.033) 0.784(0.036)
PM 0.001 8.917 0.015 0.103 0.727(0.032) 0.805(0.032)

62



Table 11: Comparison of AUC(t) estimated from the proposed method (PM) and substitu-

tion methods (LOD, LOD/2) assuming Cox proportional hazard model for survival time

Pr(censor) Method µ̂ σ̂2 β̂ ̂AUC(1)(SD) ̂AUC(2)(SD)

True 0.000 4.000 0.100 0.588 0.624

0.2 Omni -0.008 4.017 0.098 0.586(0.023) 0.620(0.031)
LOD 0.217 2.780 0.113 0.583(0.023) 0.617(0.031)
LOD/2 0.386 2.247 0.119 0.580(0.023) 0.613(0.031)
PM -0.004 3.988 0.099 0.587(0.024) 0.623(0.034)

0.4 Omni -0.008 4.017 0.098 0.586(0.023) 0.620(0.031)
LOD 0.562 1.791 0.132 0.580(0.023) 0.614(0.023)
LOD/2 0.666 1.581 0.136 0.578(0.022) 0.612(0.031)
PM -0.003 3.987 0.100 0.587(0.025) 0.623(0.034)

True 0.000 9.000 0.100 0.629 0.677

0.2 Omni -0.012 9.037 0.099 0.627(0.023) 0.672(0.028)
LOD 0.325 6.254 0.113 0.623(0.023) 0.668(0.028)
LOD/2 0.579 5.055 0.119 0.618(0.023) 0.664(0.029)
PM -0.007 8.983 0.100 0.628(0.023) 0.675(0.030)

0.4 Omni -0.012 9.037 0.099 0.627(0.023) 0.672(0.028)
LOD 0.842 4.030 0.131 0.618(0.023) 0.665(0.030)
LOD/2 0.999 3.558 0.134 0.615(0.025) 0.662(0.034)
PM -0.007 8.987 0.100 0.628(0.024) 0.675(0.031)
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Biological Markers of Recovery for the Kidney (BioMARK) study is designed to investigate

the role of plasma and urinary biomarkers in prediction of renal outcomes. The objective of

our analysis is to measure the biomarker’s predictive accuracy for time to recover of renal

function. Furthermore, we investigate the biomarker’s discrimination power for cumulative

recovery events by time t. The baseline urine biomarkers were collected from 76 participants

in the intensive monitoring cohort. We select IL-6 and IL-18 as biomarkers of interest for

the illustration purpose of our method. The censoring proportions for the baseline IL-6 and

IL-18 are 14.9% and 15.5%, respectively. Recovery of renal function is defined by survival

and dialysis independence. For this analysis, all deaths are treated as censored at the end

of the follow-up, 60 days. Total 53% subjects have censored survival outcome.

We assume the log-normal distribution for baseline biomarker measurements and use the

Cox proportional hazard model for time to recover data. The estimated value of the C-index

for IL-6 is 0.579. The LOD and LOD/2 substitutions produce the C-indices of 0.570 and

0.575. As expected, the substitution methods report lower discrimination power for time to

recovery. For IL-18, we calculate AUC(t) at t=20 and t=40. The discrimination potential

for IL-18 is pretty low; 0.508 at 20 days and 0.509 at 40 days. The AUC(t) from substitution

method (LOD/2) is 0.501 for both time points.

5.5 DISCUSSION

In this chapter, we extend the C-index and time dependent ROC methods to time-invariant

censored biomarker data. In the estimation procedure, both methods require to fit a survival

model including biomarker measurements as a covariate. In order to reduce a bias caused

by censored covariates in the survival model, we use joint likelihood approach. The simula-

tion study shows that our approach provides improved estimates than the LOD or LOD/2

substitution methods for the considered scenarios. Better parameter estimation enables us

to calculate the C-index and time dependent AUC correctly because those measures depend

on the parameters in the joint likelihood function.
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In the survival analysis, all the subjects in the cohort are followed in a given study

period. At the end of the study, subject can have an event of interest, does not experience

an event, or can be lost during the follow-up without an event. The proposed estimation

method considers all of these cases in the model. Thus C-index and time-dependent AUC

are not sensitively affected by censoring proportion of survival outcome.
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6.0 CONCLUSION

The main objective of this dissertation is to develop discriminant models and corresponding

evaluation methods for censored biomarker data when the outcome is either binary or time

to event data. For the binary outcome, we propose a new discriminant analysis method.

We use the likelihood based method to account for the censoring due to detection limit.

The classification is based on the newly calculated risk scores that are derived using a linear

mixed model. Through the simulation, we point out that the linear mixed model should

be carefully specified by comparing fit statistics. The discrimination power is evaluated by

AUC. Furthermore, we assess the biomarker’s predictive capacity by predictiveness curve.

As an alternative classification method, joint modeling approach is desirable. The ba-

sic idea under the joint modeling is that the linear mixed model for censored longitudinal

biomarker data and logistic regression model for binary outcome can be linked via shared

random effect parameters. In this case, posterior probability of event takes a role of the

risk score from our discriminant analysis. Patients can be classified into two groups based

on the the posterior probability. One of the difficulties in this approach is the estimation

of individual’s random effects, which are not actually observed. Further research should be

carried out to calculate individual’s posterior probability which is a function of random effect

parameters.

Regarding the evaluation of biomarker performance, we investigate the AUC calculation

for biomarkers with large time dimensions. Rather than directly handling longitudinal data,

some researchers want to use condensed measure which contains all the information in the

longitudinal data. We derive the best linear combination of time points that maximizes the

AUC for both censored and non-censored biomarkers. Our methodology is easy and straight-

forward to implement with standard statistical software and provides satisfactory evaluation
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results. Although we introduce the optimum AUC for single longitudinal biomarker here,

the extension to the multiple longitudinal biomarkers would be possible.

For the survival outcome, we develop two evaluation methods for time-invariant censored

biomarker data. Previous studies have introduced the new definition of sensitivity and

specificity so that a biomarker’s performance can be evaluated in a time dependent manner.

In case a priori time point is not specified for evaluation, a global summary measure of

discrimination can be used. Based on these concepts, we develop the estimation methods

for a time dependent AUC and C-index by using a joint likelihood function of time to event

and censored biomarker data. The time to event data are fitted by either parametric model

or semi-parametric Cox proportional hazard model.

All the proposed methods are based on the assumption of normal distribution. However,

the biomarker data are often highly skewed and may not satisfy the normality assumption.

Appropriate treatment such as Box-Cox transformation can be considered to make the dis-

tribution of data close to normal. We mainly use the likelihood-based method to handle the

censored data. As an alternative, multiple imputation method is increasingly applied to the

analysis of censored data. Once the data set is completed by the imputed values, we can

utilize the evaluation methods for biomarker which have been developed for fully observed

data.

Our methodology can be widely applied to clinical decision-making when it is necessary

to handle below or above the detection limit values. The proposed methods are useful to

improve the quality of clinical decision making and facilitate health policy formation so that

patients can get better treatment with less health care cost.
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