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Catalyst discovery through high throughput screening can greatly take advantage of automated 

microreactor technology. Quantitative analysis of reaction outcomes is necessary for evaluating 

catalyst activities and GC and/or LC are common tools. Few microfluidic systems, however, 

have the capability of automatically screening catalysts in slow reactions with in situ 

chromatography analysis. Thus, a novel microreactor was developed that integrated sample 

loading, reaction and online analysis functions in a totally automated format. An autosampler 

and syringe pump load homogeneous catalysts and reagents. The chemicals are mixed and 

reacted in a long capillary followed by online analysis, either by GC or UHPLC. The approach of 

parallel reactions in a flow stream is good for either slow reactions or fast reactions depending on 

the operation mode. Some palladium and ligand complex catalysts for the Stille reaction were 

chosen and screened by a stop-flow approach with GC analysis for validation. The screening 

results were in good accordance with the literature. 

The first application of this microreactor was to discover peptidic catalysts for the direct 

aldol reaction. A major difficulty was the poor solubility of peptidic catalysts. This was solved 

by allowing catalysts to react with one of the aldol substrates to form soluble catalyst adduct, 

which was then loaded into the microreactor to complete the reaction. This two-step approach 

was used to screen a diverse set of amino acids and short peptidic catalysts, in which two groups 

of peptides containing γ-Glu and β-Asp residues showed higher activities than other catalysts.  

Capillary-based Microreactor System Integrated with UHPLC/GC for High 

Throughput Screening of Catalysts for Organic Reactions 

Hui Fang, Ph.D. 

University of Pittsburgh, 2009
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The second application was to screen Brønsted or Lewis acid catalysts for an internal 

cyclization reaction. This reaction can be used to prepare large libraries of amide compounds for 

drug discovery. A continuous flow approach with online UHPLC analysis was applied to study 

this relatively fast reaction. The experimental throughput can reach 9 reactions/h. Results showed 

that strong acids are generally good for conversion and yield. Lanthanide triflate compounds, 

although having weak acidity, had better conversion and selectivity than other acids. Side 

reaction analysis by GC-MS and LC-MS indicated that strong and weak Brønsted acids can lead 

to the formation of different major byproducts. 

 

 



 vi 

TABLE OF CONTENTS 

LIST OF ABBREVIATIONS ............................................................................................... XVII 

PREFACE (ACKNOWLEDGEMENT) ............................................................................. XVIII 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 LAB-ON-A-CHIP ................................................................................................ 1 

1.1.1 Introduction ..................................................................................................... 1 

1.1.2 Chip fabrication ............................................................................................... 2 

1.1.3 Fluid control of microfluidics ......................................................................... 4 

1.1.4 Applications of lab-on-a-chip/μTAS .............................................................. 5 

1.2 MICROREACTORS ........................................................................................... 7 

1.2.1 Merits of microreactors ................................................................................... 8 

1.2.1.1 Mixing .................................................................................................... 8 

1.2.1.2 Heat transfer efficiency ........................................................................ 9 

1.2.1.3 Safety .................................................................................................... 10 

1.2.1.4 Automated process control ................................................................. 10 

1.2.1.5 Scaling-up and numbering-up ........................................................... 11 

1.2.2 Construction of microreactors ..................................................................... 11 

1.2.3 Synthetic applications of microreactors ...................................................... 13 

1.2.3.1 Stoichiometric reactions ..................................................................... 14 



 vii 

1.2.3.2 Catalytic reactions ............................................................................... 15 

1.2.3.3 Precipitate-forming reactions ............................................................ 17 

1.2.3.4 Photochemistry and microwave-assistant reactions ........................ 18 

1.2.3.5 Electrochemical reactions and flash chemistry ................................ 19 

1.2.3.6 Macromolecular synthesis .................................................................. 21 

1.2.3.7 Nanomaterial synthesis ....................................................................... 21 

1.3 MICROREACTORS FOR HIGH-THROUGHPUT CATALYST 

DISOCVERY ...................................................................................................................... 22 

1.3.1 Traditional approach for catalyst discovery ............................................... 22 

1.3.2 Parallelization of chemical reactions in microreactors .............................. 24 

1.3.3 Flow microreactor systems for catalyst screening ...................................... 32 

1.4 RESEARCH MOTIVATION AND PLAN ..................................................... 33 

BIBLIOGRAPHY ....................................................................................................................... 35 

2.0 MICROREACTOR CONSTRUCTION AND VALIDATION BY THE STILLE 

REACTION ................................................................................................................................. 46 

2.1 INTRODUCTION ............................................................................................. 46 

2.2 EXPERIMENTAL SECTION .......................................................................... 47 

2.2.1 Chemicals and Materials............................................................................... 47 

2.2.2 Instrumentation ............................................................................................. 47 

2.2.3 Microreactor construction ............................................................................ 48 

2.2.4 Online analysis by GC ................................................................................... 50 

2.2.5 Screening of catalysts for the Stille reaction ............................................... 50 

2.2.6 Statistical calculation of yield ....................................................................... 51 



 viii 

2.3 RESULTS AND DISCUSSION ........................................................................ 52 

2.3.1 Microreactor operation mechanism............................................................. 52 

2.3.2 The Stille reaction and GC separation ........................................................ 58 

2.3.3 Screening efficiency and microreactor performance ................................. 59 

2.4 CONCLUSION .................................................................................................. 62 

BIBLIOGRAPHY ....................................................................................................................... 63 

3.0 PEPTIDE SCREENING FOR THE ALDOL REACTION ................................... 64 

3.1 INTRODUCTION ............................................................................................. 64 

3.2 EXPERIMENTAL SECTION .......................................................................... 65 

3.2.1 Chemicals and Materials............................................................................... 65 

3.2.2 Instrumentation ............................................................................................. 66 

3.2.3 Bench-top reactions ....................................................................................... 67 

3.2.4 GC analysis of aldol products ....................................................................... 68 

3.2.5 Screening experiments in the microreactor ................................................ 68 

3.2.6 Calibration curve and statistical calculation of yields ............................... 69 

3.2.7 Capillary electrophoresis for identification of reaction intermediates ..... 69 

3.2.8 LC-ESI-MS for identification of reaction intermediates ........................... 69 

3.3 RESULTS AND DISCUSSION ........................................................................ 70 

3.3.1 The aldol reaction .......................................................................................... 70 

3.3.2 Solubility of peptides ..................................................................................... 70 

3.3.3 Identification of key reaction intermediates ............................................... 76 

3.3.4 Experimental validation of the catalyst solubilization method ................. 81 

3.3.5 Screening of peptides in the microreactor ................................................... 84 



 ix 

3.3.6 Enantioselectivity of peptide-catalyzed aldol reaction ............................... 90 

3.3.7 Throughput of the microreactor .................................................................. 92 

3.3.8 Green chemistry character of the microreactor ......................................... 93 

3.4 CONCLUSION .................................................................................................. 94 

BIBLIOGRAPHY ....................................................................................................................... 95 

4.0 SCREENING OF ACID CATALYSTS FOR AN INTERNAL ACYLIMMINIUM 

ION CYCLIATION REACTION ............................................................................................. 97 

4.1 INTRODUCTION ............................................................................................. 97 

4.2 EXPERIMENTAL SECTION .......................................................................... 99 

4.2.1 Chemicals and materials ............................................................................... 99 

4.2.2 Instrumentation ........................................................................................... 100 

4.2.3 Microreactor construction .......................................................................... 101 

4.2.4 Synthesis of the substrate acyl aminals ..................................................... 102 

4.2.5 UHPLC analysis ........................................................................................... 103 

4.2.6 Continuous flow reactions in the capillary ................................................ 104 

4.2.7 Calibration curve for yield and conversion determination ..................... 104 

4.2.8 Byproduct analysis by GC-EI-MS and LC-ESI-MS ................................ 105 

4.3 RESULTS AND DISCUSSSION .................................................................... 106 

4.3.1 Continuous flow reactions in the capillary ................................................ 106 

4.3.2 Online UHPLC analysis .............................................................................. 111 

4.3.3 Reaction parameters investigation ............................................................. 114 

4.3.4 High-throughput screening of acid catalysts............................................. 118 

4.3.5 Throughput of the microreactor ................................................................ 121 



 x 

4.3.6 Side reaction analysis .................................................................................. 122 

4.4 CONCLUSION ................................................................................................ 129 

BIBLIOGRAPHY ..................................................................................................................... 130 

APPENDIX A ............................................................................................................................ 132 

APPENDIX B ............................................................................................................................ 134 

APPENDIX C ............................................................................................................................ 137 



 xi 

 LIST OF TABLES 

Table 1. Yield of the Stille reaction with various palladium precatalysts and ligands. ................ 61 

Table 2. Yields of the aldol reaction of acetone and benzaldehyde catalyzed by amino acids. ... 83 

Table 3. Yields of the aldol reactions of acetone with benzaldehyde catalyzed by peptides. ...... 85 

Table 4. Enantioselectivities of the aldol reaction catalyzed by amino acids and peptides. ......... 92 

Table 5. Screening of acids in the microreactor at two different temperatures. ......................... 119 

  

 

 

 

 

 

 

 

 

 

 

 

 



 xii 

LIST OF FIGURES 

 

Figure 1. Typical procedures of photolithography and wet etching fabrication of channels on a 

glass chip. ........................................................................................................................................ 3 

Figure 2. Images of various types of microreactors. ..................................................................... 12 

Figure 3. Photographs of an integrated chip reactor (silicon-quartz) interfaced with chuck, tubing 

and UV fiber optics. ...................................................................................................................... 19 

Figure 4. Photographs of a H-type cell (L) and a microflow reactor (R) for electrosynthesis and 

flash chemistry. ............................................................................................................................. 20 

Figure 5. Substrate-Catalyst coimmobilization method for high-throughput screening of 

tripeptide catalysts. ....................................................................................................................... 24 

Figure 6. Schematic view of 2×2 parallel synthesis on four chips. .............................................. 26 

Figure 7. Schematic view of three dimensional microchannels on a two-layer glass chip for 2×2 

parallel synthesis. .......................................................................................................................... 27 

Figure 8. Schematic view and image of the multi-capillary microreactor. ................................... 28 

Figure 9. Photographs of microdroplets formed in microchannels. .............................................. 29 

Figure 10. Images of a microreactor array and its assembly. ....................................................... 31 

Figure 11. Schematic view of the microreactor screening system. ............................................... 49 

Figure 12. Schematic view of the sample loading section of the microreactor system. ............... 52 



 xiii 

Figure 13. Absorbance response (wavelength 525 nm) of parallel zones of neutral red solution 

staying in the reactor capillary at varied residence times. ............................................................ 54 

Figure 14. The schematic view of the analysis section of the microreactor system. .................... 56 

Figure 15. The screening software window and its controlling parameters. ................................ 57 

Figure 16. The schematic view of the 10-port double-loop injector working at two positions A 

and B for simultaneous loading and injection............................................................................... 58 

Figure 17. Chromatogram of products of the Stille reaction by online GC. ................................. 59 

Figure 18. UV absorbance of 20 Stille reaction zones passing through the fiber optic UV detector 

after flowing out of the reactor outlet. .......................................................................................... 60 

Figure 19. Yields of the Stille reaction with as a function of molar equivalents of AsPh3 and 

PdCl2(CH3CN)2. ............................................................................................................................ 62 

Figure 20. GC chromatogram of the aldol reaction products. Peak 1: product ; peak 2: major 

byproduct. ..................................................................................................................................... 71 

Figure 21. The effect of catalyst concentrations of Pro-Gly on reaction yields. .......................... 72 

Figure 22. The catalytic cycle of L-proline-catalyzed direct aldol reaction. ................................. 74 

Figure 23. CE spectrums of positively charged species formed in four different samples. ......... 77 

Figure 24. LC-MS studies of aldol reaction intermediates. .......................................................... 79 

Figure 25. The possible structures of reaction intermediates idnetified by LC-MS. .................... 80 

Figure 26. Absorbance response of 21 reaction zones passing through the UV-Vis detector. ..... 82 

Figure 27. Normalized yields of the aldol reactions catalyzed by amino acids. Normalization is 

done by dividing yields by the maximum. .................................................................................... 84 

Figure 28. Normalized yields of peptides in the microreactor and bench-top reactions. ............. 86 

Figure 29. Plausible transition states of amino acid catalyzed aldol reaction. ............................. 87 



 xiv 

Figure 30. Plausible transition states of dipeptide catalyzed aldol reaction. ................................ 88 

Figure 31. Structures of γ–Glu-Gly and β–Asp-Gly. .................................................................... 89 

Figure 32. Chromatogram of aldol products analyzed by chiral GC. ........................................... 90 

Figure 33. Chromatogram of aldol products separated by chiral HPLC. ..................................... 91 

Figure 34. Schematic view of the microreactor system interfaced to UHPLC. .......................... 101 

Figure 35. Schematic view of 10-port injector for continuous sample loading and analysis. .... 102 

Figure 36. Schematic view of flow dispersion of reaction zones. .............................................. 107 

Figure 37. UV response of zones going through the reactor capillary at different flow rates. ... 108 

Figure 38. Absorbance response of 54 reaction zones flowing out of the reactor and passing 

through the UV-Vis optical detector at a flow rate of 0.9 µL/min. ............................................ 109 

Figure 39. The linear regression of time points when 54 zones hit the UV-Vis detector in a 

continuous flow (R
2
=0.99999). ................................................................................................... 110 

Figure 40. Peak widths at half height of 54 reaction zones. The average half width is 84.2±3.9 

seconds. ....................................................................................................................................... 111 

Figure 41. Online UHPLC analysis of continuous-flow reaction zones. .................................... 113 

Figure 42. The normalized retention times (product) and peak areas (IS, 4-ethyl anisole) in all 54 

reaction zones.............................................................................................................................. 114 

Figure 43. The effect of temperature on yield, conversion and selectivity. ................................ 115 

Figure 44. Reaction yield, conversion and selectivity as a function of catalyst concentrations 

(Diphenyl phosphate). ................................................................................................................. 116 

Figure 45. Reaction yield, conversion and selectivity as a function of catalyst concentrations 

(trichloroacetic acid). .................................................................................................................. 117 

Figure 46. Reaction yield and conversion as a function of time. ................................................ 118 



 xv 

Figure 47. Chromatogram of cyclization reactions catalyzed by strong acid HClO4 (A) and weak 

acid CHCl2COOH (B)................................................................................................................. 123 

Figure 48. GC-MS studies of batch reaction catalyzed by perchloric acid. ............................... 124 

Figure 49.  LC-MS studies of reaction sample catalyzed by trifluoroacetic acid. ...................... 125 

Figure 50. GC-MS studies of reaction sample catalyzed by trichloroacetic acid. ...................... 127 

Figure 51. LC-MS studies of reaction sample catalyzed by trichloroacetic acid. ...................... 128 



 xvi 

 LIST OF SCHEMES 

Scheme 1. The direct aldol reaction of benzaldehyde and acetone catalyzed by peptide. ........... 70 

Scheme 2. Possible pathways for catalyst preparation and the aldol reaction in the microreactor.

....................................................................................................................................................... 75 

Scheme 3. One-pot or two-step synthesis of bicyclic amide compounds via acid catalysis. ....... 97 

Scheme 4. Acid catalyzed cyclization reaction forming bicyclic amide libraries. ..................... 106 

Scheme 5. Possible mechanism of Unknown 1 formation via the Ritter process. ...................... 126 

Scheme 6. Possible mechanism of Unknown 2 formation by hydration. ................................... 129 

 



 xvii 

LIST OF ABBREVIATIONS 

 

GC  Gas chromatography  

UHPLC  Ultra-high pressure liquid chromatography  

HRMS  High resolution mass spectrum  

IR Infrared spectroscopy 

CE Capillary electrophoresis 

THF Tetrahydrofuran 

DMSO Dimethyl sulfoxide 

DMF Dimethylformamide 

AN Acetonitrile  

MeOH Methanol 

IS Internal standard 

  

  

  

  

  

  

 



 xviii 

PREFACE (ACKNOWLEDGEMENT) 

“Genius only means hard-working all one's life.”- Dmitri Mendeleev 

First of all, I would like to express my deep gratitude to my supervisor, Prof. Stephen G Weber. I 

really enjoyed working with him in the past five years. He is not only a distinguished scientist 

but also an excellent teacher. His broad knowledge and deep insight often inspired my research a 

lot. I am truly honored to pursue my Ph.D. degree under the guidance of Prof. Weber.  

Second, I want to thank all of our project collaborators including Prof. Scott Nelson, Prof. 

Paul Floreancig, Prof. Peter Wipf, Prof. Stephane Petoud and Prof. Nathaniel Rosi. I gained a 

great deal of knowledge and expertise in multiple fields of chemistry from them, which 

contributed to my research accomplishments very much. Besides, I am also grateful to Prof. 

Billy Day who mentored my proposal and served on my dissertation committee. Prof. Kay 

Brummond and Prof. Shiregu Amemiya are also greatly appreciated for their guidance on my 

comprehensive exam. 

Third, I want to thank all of my lab colleagues for their generous help on my research. 

The Weber group is just like a big family to me. I have been thriving in this family to become an 

independent and creative researcher.  

Finally, I would like to genuinely thank my wife Manyan Wang, who is also my lab 

colleague, and my parents for their long-lasting selfless support of my education and research. I 

could not achieve the success without their love. 



 1 

1.0  INTRODUCTION 

Microfluidics is a new science and technology field that generally processes very small amounts 

of liquids, gases or fluidized solids/particles within micron-dimensioned channels either on chips 

or in tubes. It originated from some popular capillary microanalytical methods such as capillary 

GC/HPLC and capillary CE in the 1980s. The channel dimension usually ranges from several 

micrometers to some hundreds of micrometers and sample volumes range from a few nanoliters 

to several microliters. The fundamental advantages of miniaturization for biology and chemistry 

enabled microfluidics to undergo tremendous growth in the last two decades, in which ‗lab-on-a-

chip‘ and ‗microreactor‘, two closely related microfluidic technologies, have shown great 

potential in bioanalytical chemistry and synthetic chemistry, with great promise to revolutionize 

the traditional macroscale approaches that have been performed for decades.  

1.1 LAB-ON-A-CHIP 

1.1.1 Introduction 

Lab-on-a-chip is one of the most popular microfluidic technologies. It has been widely used in a 

variety of fields such as biology, chemistry and medicine with major contributions to biological 

analyses and cell-based assays. The name of ‗lab-on-a-chip‘ derives from its basic format and 
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function, which is the use of miniaturized devices to perform chemical or biological processes in 

a highly automated and integrated manner. The merits of lab-on-a-chip include high-throughput 

analysis capability, minimal sample usage, high integration of functionalities, automated 

processing and excellent portability.  

Micro Total Analysis Systems (μTAS) are often referred to as lab-on-a-chip. However, 

they are not exactly the same concept. Generally, μTAS refers to specific systems that are able to 

carry out whole stage of analyses such as sampling, sample pretreatment, mixing, transport, 

reaction, separation, detection and data processing in a fully integrated fashion, whereas lab-on-

a-chip is a broader term that can apply to any kind of technology that miniaturizes chemical or 

biological processes on microfluidic devices. Some systems such as sensors or arrays, which are 

often termed as biochips, are also categorized as lab-on-a-chip technology.  

1.1.2 Chip fabrication 

Most lab-on-a-chip or microreactor applications are carried out on chips. Currently, there is a 

great variety of microfabrication techniques suitable for fabricating diverse types of microfluidic 

chips on materials like glass, silicon, quartz, metal, biomaterials and polymeric materials. Glass 

is well known for its chemical compatibility and mechanical strength, and so it is predominantly 

used to make chips that have to perform chemical or biochemical processes involved with 

significant amounts of organic solvents, or under harsh conditions such as high temperature, high 

pressure, corrosive solvents, and so on. Microreactors, commonly used for synthetic chemistry, 

are usually fabricated on glass chips. The general method for glass fabrication is 

photolithography combined with chemical etching. Various channel patterns on can be 
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constructed. Some newly developed methods do not need special expertise or expensive clean 

facilities to fabricated complicated small-dimension channels on glass chips.   

 

Figure 1. Typical procedures of photolithography and wet etching fabrication of channels 

on a glass chip. 

(Photograph is reproduced with permission from Elsevier.1) 

 

The typical fabrication process of a glass chip is schematically shown in Figure 11. The 

commercially-sold photolithographic glass plates (ca. 3 mm thickness) generally have two 

precoated layers, a positive photoresist (0.5-2.0 μm) layer above a thin metal etch mask 
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(normally chromium). The design of channel network is produced and printed with the aid of 

some computer softwares like Corel Draw or CAD programs. The printed drawing produces the 

optical mask that is placed on the photoresist layer. The negative mask (clear lines with a black 

background) is typically used in glass fabrication. The pattern of the channels on chip follows the 

optical mask. Through UV exposure, the photoresist develops at the place of clear lines. After 

evaporating the solvents, chemical etching is performed on the patterned glass plates using a 

mixture of aqueous 1% HF and 5% NH4F with ultrasound agitation. Once the plate is etched for 

the required time, post-etch cleaning is then carried out to remove the remaining photoresist and 

metal. The base plate containing the channel network is sealed by thermally bonding to an upper 

glass plate containing pre-drilled holes. These holes act as reservoirs or connectors to outer 

pumps or capillaries.  

  A drawback of this method is the time-consuming process. Therefore researchers 

developed another more efficient method called soft lithography to fabricate chips. This method 

usually works on polymeric materials like polydimethylsiloxane (PDMS). PDMS chips are 

mostly used for biological applications such as biomolecule analysis or cell assays
2-4

, due to its 

excellent gas permeability, good biocompatibility and no toxicity. By using soft lithography, 

complex microstructures on PDMS chips like 3-D or multi-layer patterns can be made in a rather 

efficient and cost-effective way. PDMS is not compatible with organic solvents, however, 

limiting its uses for microreactor construction for synthetic chemistry applications. 

1.1.3 Fluid control of microfluidics 

Electrokinetic or hydrodynamic pumping is generally used to motivate liquid flow in 

microchannels. Electroosmotic flow (EOF) offers a very convenient pumping mechanism for 
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fluid manipulation, particularly for aqueous solutions, with minimal hydrodynamic dispersion.
2-6

 

Electrodes are placed in the appropriate reserviors to which specific voltage sequences can be 

delivered under automated computer control. No external pumps or moving parts are needed, 

allowing EOF to work well on complicated channel structures.  

Pressure-driven flow (PD), on the other hand, takes advantage of conventional micro-

scale pumps to maneuver solutions around the channel network.
7-11

 Those pumps like HPLC or 

syringe pumps are usually commercially-sold and easily connected to chip ports. In addition, 

there are several important theoretical advantages of PD over EOF pumping: (i) the control of 

flow velocity is more accurate by PD than EOF because PD is independent of factors such as pH, 

electrolyte concentration, channel material, surface adsorption, and composition of sample 

matrix. (ii) PD has a better solvent compatibility. EOF has to pump solvents with certain 

polarity, which limits its use in pumping non-polar organic liquids. (iii) When electrochemical 

detection method is preferred, there would be little interference for PD because the electric field 

generating EOF can interfere with the electrical field for detection. (iv) PD has a broader choice 

of chip materials too. It is necessary that the channel constructing materials should have a very 

low electrical conductivity to insulate the electric field, then, some common materials like silicon 

have to be excluded by EOF method.
12

 

1.1.4 Applications of lab-on-a-chip/μTAS  

Lab-on-a-chip or μTAS systems are primarily developed for biochemical analyses, clinical 

diagnostics and cell biology studies, in which one of the focuses is the high efficient analysis of 

nucleic acids or proteins in support of biological and pharmaceutical researches.  
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DNA or RNA sequence analysis involves polymerase chain reaction processes (PCR) 

which can be incorporated onto glass or PDMS chips by microfabrication. To have a complete 

analysis, a single chip usually integrates multiple functionalities such as sample loading and 

mixing, PCR heating and temperature control, electrophoresis separation, fluorescence detection 

and collection of eluted samples. The process is highly automated and efficient. Typical sample 

volume is several to hundreds of nanoliters and the processing time is less than a few minutes.
13, 

14
 Recently, high-throughput μTAS systems that can carry out parallel analysis have aroused a lot 

of attention.
15-17

 A typical example is the chip platform developed by Ottensen
17

 who used 

microfluidic digital PCR to amplify and analyze multiple, different genes obtained from single 

bacterial cells. This device contained 12 sample panels and each panel can be partitioned into 

1176 chambers. The system was very efficient for simultaneous multigene analysis.  

 In addition to nucleic acids, lab-on-a-chip technologies have also been widely used for 

analyses of proteins or other biomolecules, a common approach for understanding the cell 

mechanisms.
18-20

 Two-dimensional electrophoretic separation of protein mixtures or sequence 

analysis of amino acids can be dramatically accelerated by miniaturization technology.
21, 22

 

Huang developed an automated single-cell analysis chip by complicated integration.
23

 The 

system consisted of serial sections including single cell manipulation, cell lysis, generic labeling 

of proteins, CE separation of proteins and single-molecule counting by high efficiency 

fluorescence method.  

Crystallization is an important technique for protein characterization. High-throughput 

lab-on-a-chip systems can significantly reduce the time and effort for screening protein 

crystallization conditions.
24

 Zhou used degassed PDMS microchannels to dispense nanoliters of 

liquids into a 3 × 52 array of microwells (156 wells) for studies of four protein crystallizing 
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conditions.
25

 This dispensing system can also work on commerically-available microplates like 

96-well or 384-well formats, allowing the general laboratory to use it for diverse applications.  

Lab-on-a-chip devices have also been used for cell cultivation and research. A novel 

micro-bioreactor developed by Figallo showed the high potential of using microfluidic devices 

for parallel cultivation of a large amount of cells.
26

 The bioreactor integrated the microchannels 

with small-dimensioned cell culture wells on a PDMS chip, overcoming the difficulty of putting 

large-sized cells directly into the microchannels. An array of wells was constructed to cultivate 

diverse cells in a high-throughput and independent manner. Nutrients and media were supplied in 

a continuous flow from the microchannels. The cultivation of human embryonic stem cells 

(hESCs), which is often challenging in traditional methods, seemed to be easier. It demonstrated 

the benefits of microfluidic approach for cell growth and studies.  

1.2 MICROREACTORS  

While most of ‗lab-on-a-chip‘ applications have been directed toward chemical or biological 

analyses, another microfluidic technology called ‗microreactor‘ or ‗micro reaction technology‘ 

has been exclusively studied for synthetic chemistry.
27, 28

 In a similar constructing format and 

fluid control mechanism to μTAS, microreactors are often built on glass chips containing a series 

of interconnecting micro-dimensioned channels in which organic reactions are usually carried 

out in a flow stream. Microreactors are often flow devices manipulated by electroosmotic flow or 

pressure-driven flow. Although microreactors are still at the early development stage, this new 

technology has shown great impact on synthetic chemistry and related fields like combinatorial 

chemistry and pharmaceutical chemistry. A broad range of applications have been studied so far, 
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in both academia and industry.
29-37

 The research of microreactors is still growing at a tremendous 

speed.  

1.2.1 Merits of microreactors 

The reason that microreactors acquire so much attention is due to their fundamental advantages 

over traditional macroscale batch reactors such as round-bottom flasks or tubes. The advantages 

exhibit in many aspects, e.g., mixing, heat transfer, safety, cost, environmental effect, and 

scalability, and so on. 

1.2.1.1 Mixing 

Microfluidic transport is basically different from macroscale transport. The Reynolds number 

(Re) can be used to evaluate the degree of flow turbulence in tubes. It is generally defined by Eq. 

(1). The channel dimension contributes significantly to the magnitude of Re. 

  𝑅𝑒 =
𝜌𝑉𝐷

𝜇
   

𝜌: 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 𝑉: 𝑓𝑙𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦; 𝐷: 𝑡𝑢𝑏𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟;  𝜇: 𝑓𝑙𝑢𝑖𝑑 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦. 

 

In large reactors like round-bottom flasks and test tubes, due to the large dimension, 

Reynolds number is typically high and turbulence is usually dominant. In microchannels, 

however, turbulence is almost unattainable and laminar flow is dominant with a characteristic of 

mass transfer primarily controlled by molecular diffusion.
38

  

In batch reactors, mixing process generally involves two steps: first, turbulence generated 

by mechanical stirring creates a highly-dispersed heterogeneous mixture; second, molecules 

 (1) 
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located in adjacent regions diffuse to form a homogeneous solution. Thus mechanical stirring is 

indispensable for creation of strong turbulence to rapidly bring reagent or catalyst molecules 

close enough to allow efficient mixing by diffusion. The time-scale of turbulent mixing is much 

longer than that of diffusion. If batch reactors are downsized to the dimension near micrometers, 

mixing can be well done by only diffusion, a very rapid process that reaction rates are probably 

only limited by inherent reaction kinetics rather than the time for homogenizing reagents.
31

 

Therefore, many reactions carried out in microreactors often produce good yield within 

seconds/minutes in contrast to hours/days taken by batch reactions. Greenway
39

 studied the 

synthesis of 4-cyanobiphenyl at room temperature in a flow microreactor, achieving a yield of 

67.7% within 25 seconds, whereas under other identical conditions, bench-top synthesis can only 

give 10% yield in 8 hours. Besides reaction rates, better mixing can also contribute to higher 

product yield by minimizing the extent of side reactions due to the inhomogeneity of reaction 

solutions. 

1.2.1.2 Heat transfer efficiency 

Microreactors are also good at heat transfer. Temperature is an important factor for organic 

reactions. Due to the large surface-to-volume ratio of microchannels, heat transfer efficiency in 

microreactors may be higher several orders of magnitude than that of conventional vessels or 

heat exchangers.
40

 Efficient heat transfer can result in fast and accurate heating and cooling of 

reactions, allowing researchers to exert precise control on process temperature. This can largely 

minimize some side reactions due to uneven temperature distribution. Moreover, to extremely 

exothermic processes, rapid heat dissipation and close temperature control can maximumly lower 

the chance of explosion or side reaction occurrence.    
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1.2.1.3 Safety 

Safety is a major concern in synthetic chemistry. Compared to larger reaction vessels, 

microreactors are much safer for organic reactions involved with toxic, hazardous or radioactive 

chemicals due to their small chemical usage and totally enclosed reaction environment. The high 

efficiency of heat transfer makes microreactors very suitable for investigating extremely 

exothermic reactions. For example, Fortt
41

 used a continuous-flow microreactor to generate 

diazonium reactive intermediates, a notorious industrial process as diazonium salts are sensitive 

to the environment and rapidly uncontrollable explosion can happen as induced by heat, light, 

shock, static electricity, and dehydration. The industry usually applies stringent safety 

procedures; however, the authors demonstrated this reaction runs very efficiently and safely in 

the microreactor. Yield was also increased a lot compared to traditional approaches. 

1.2.1.4 Automated process control  

Thanks to microfabrication techniques, microreactors can be integrated with a variety of on-chip 

or off-chip components like pumps, valves, heaters or detectors. The whole reaction process in 

microreactors can be automatically controlled by computer programs or instruments in a similar 

way to µTAS, allowing very efficient and precise control of chemical processing. Besides, by 

employing flow-through concept, microreactors are capable of integrating synthesis and analysis 

by coupling versatile detection systems like UV-Vis, fluorescence, GC-MS and LC-MS to the 

reaction channel for online analysis of synthetic outcomes. This can greatly improve the 

processing efficiency which would be very beneficial for high-throughput screening or process 

optimization.  
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1.2.1.5  Scaling-up and numbering-up 

Since most microreactors are flow devices using continuous flow processes, many researchers 

state that reaction conditions studied in microreactors can be directly transferred to large flow 

reactors in the production site with no need to reoptimize those conditions.
42

 The usual scaling-

up process is very time-consuming and costly. Some researchers state that 50% of industrially 

interested reactions can benefit from continuous flow processes and 44% of these reactions can 

take advantage of this benefit of microreactors.
33

 The major limitation is that microreactors are 

not suitable for reactions involved with solids which indeed occupy a large portion of organic 

transformations processed by industry. 

In addition to scaling-up, it is also reasonable to argue that when microreactors are 

parallelized, a large number of microreactors can directly transform laboratory scale into 

production scale. Numbering-up of synthetic processes has been applied in industry. Cytos
®

 Lab 

System, a microreactor with a channel width of less than 100 µm, can be parallelized to form 

Cytos
®

 Pilot System that includes 10 reactors with a cumulative product mass flow of 0.6 kg/h, 

comparable to the conventional pilot production vessels.
43

 

1.2.2 Construction of microreactors 

A majority of microreactors are built on chips. Glass is the most popular material due to its 

chemical inertness and mechanical strength, but other materials such as silicon, metals and 

polymers are also widely used for specific reaction demands. Figure 2 shows some typical 

microreactors built on chips.
44
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Figure 2. Images of various types of microreactors.   

a. Stainless steel microreactor system with pressure-driven flow; b. Glass microreactor 

with EOF pumping; c. Stainless steel microreactor of the CYTOS Lab system; d. Silicon-

based microreactor; e. Glass microreactor of the AFRICA System. 

(Photograph is reproduced with permission from Wiley InterScience.
44

 ) 

 

The complicated fabrication process and expensive fabrication facilities limits the use of 

chip-based microreactors in ordinary synthetic laboratories. Consequently, some researchers 

have developed capillary-based microreactors by connecting a series of commercially available, 

micrometer-sized capillaries to form the fluid microchannels, while integrating other components 

such as mixers, heaters, and detectors just like lab-on-a-chip approach. The commercially-sold 

capillaries generally include metal tubing (nickel and stainless steel tubing), fused-silica tubing, 

Teflon tubing and PEEK tubing, among which fused-silica capillary has a great variety of 

dimensions, good chemical stability, high temperature and pressure tolerance, high maneuver 
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flexibility and low cost, making it very appropriate to construct microreactors. Actually, fused-

silica capillaries have long been used in CE and capillary LC, and they work similarly to 

microchannels on chips in terms of high fluid conservation, isolation from the atmosphere, inert 

capillary surface, and ease of transport of species by using EOF or pressure induced flow. Thus, 

microreactors built from fused-silica capillaries are important alternatives to chips. 

Comer and Organ
45

 have developed a single-capillary-based flow reactor coupled with 

microwave irradiation (MW). Microwave has become a very popular heating method for 

synthetic chemistry. However, no one has tried to use microwave to heat reactions on chips 

because it is difficult to interface small chips with large microwave generators and heating 

efficiency is usually low due to the large thickness of chip plates. The capillary wall is much 

thinner and heating efficiency is very high. A variety of organic reactions have been done in 

capillary-based reactors by the authors. The more recent work by Comer and Organ
46

 also 

demonstrated the feasibility to develop a multiple capillary reactor for parallel synthesis.  

1.2.3 Synthetic applications of microreactors 

Due to the significant advantages of microreactors, the applications of microreactors for 

synthetic chemistry are wide, covering most types of reaction types. Liquid-, gas- and even some 

solid-phased reactions have been successfully performed in microreactors. Not only small 

organic molecules, but polymers and nanomaterials can be synthesized under various 

microfluidic approaches. 
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1.2.3.1  Stoichiometric reactions 

Up to now, microreactors have been tested to carry out a large number of stoichiometric 

transformations, including: 1) Carbon-carbon formation reactions, e.g., aldol reactions
47

, Michael 

additions
48

, Wittig reactions
49

, cyclization reactions
50

, enolate
51

 or enamine
52

 formation 

reactions, Ugi four component coupling
53

 and other multicomponent reactions
54

. 2) 

Heterocyclization reactions, e.g., generation of pyrazoles
55

, thiazoles
56

, imidazoles
57

 and 

pyridones
58

. 3) Oxidation and reduction reactions, e.g., sodium borohydride reductions
58

, Swern 

oxidations
59

. 4) Fluorination
60

 and nitration reactions
61, 62

. 5) Carbon-nitrogen and Carbon-

oxygen formation reactions, e.g., esterification reactions
63

, peptide synthesis
64-67

. 6) Phase 

transfer reactions, e.g., diazo coupling reactions
68

. 

Chambers and Spink
60

 first reported the use of a nickel microreactor for direct 

fluorination and perfluorination of organic compounds by elemental fluorine. In bulk scale, it is 

always troublesome to handle corrosive gaseous fluorine and control reaction conditions exactly 

due to the extreme exothermic nature of fluorination. Microreactors are advantageous for this 

dangerous process due to its sealed compartment, small volume and close control, enabling high 

efficiency with great safety. 

Wiles
47

 used a borosilicate glass microreactor to carry out an aldol reaction of silyl enol 

ethers of acetophenone and cyclohexanone with 4-bromobenzaldehyde. The conversion of silyl 

enol ethers to β-hydroxyketones was completely done in 20 min in the microreactor, while it 

required 24 h for a typical batch reactor to achieve the similar conversion. Reaction rate and 

yield were significantly increased by using the microreactor. 

Watts
69

 demonstrated microreactors can not only improve reaction conversion but also 

the diastereoselectivity due to better mixing and heat exchange in micron-dimensioned channels. 
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They studied the alkylation of enolates in a flow glass microreactor at -100 
o
C with a yield of 

41% and a diastereometric ratio of 47:3. In a batch reaction under the same temperature, the best 

yield was 31% and the diastereometric ratio of 15:3. The authors estimated that higher yield and 

selectivity are possible in the microreactor through reaction optimization.  

Peptide synthesis is a well-known multi-step process involving a series of protection and 

deprotection procedures along with the addition of amino acids. Solid-phase synthesis based on 

polymer supports is traditionally used for peptide construction. This method needs expensive 

polymer supports, however, requires tedious procedures to couple and decouple protecting 

groups repeatedly, which is particularly time-consuming and costly for preparing long 

peptides.
70, 71

 Watts and coworkers
66

 demonstrated the efficacy to assemble β-peptides in 

solution-phase reactions in a continuous-flow glass microreactor using electroosmotic pumping. 

Through microfabrication, a network of reagent reservoirs and channels can be produced on chip 

and multi-step syntheses of dipeptides or tripeptides proved that microfluidic approach can 

achieve higher atom efficiency than solid-phase synthesis. It was also possible to remove 

protecting agents from peptides downstream in microchannels.  

1.2.3.2 Catalytic reactions  

A large number of organic transformations are involved with catalysts, either metal-based 

catalysts or organocatalysts derived from amino acids, peptides or enzymes. Some catalysts are 

soluble in reaction solvents to perform homogeneous catalysis while a lot of catalysts that have 

poor solubility in certain solvents have to catalyze the reaction heterogeneously. Many catalytic 

reactions have been performed in microreactors including both homogeneous and heterogeneous 

processes.
72-82
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Homogeneous catalysis 

Catalysts that are soluble in reaction solutions can be easily loaded into microchannels and 

reactions proceed just like ordinary stoichiometric reactions. For example, Mikami
83

 investigated 

a Baeyer–Villiger oxidation reactions catalyzed by fluorous lanthanide catalysts in a nanoflow 

reactor system. The Baeyer–Villiger reaction was complete in a few seconds with excellent yield 

and regioselectivity.  

Heterogeneous catalysis 

Microreactors are incompatible with chemical processes containing insoluble solids or 

particulates because they can easily clog microchannels and hinder the flow stream. Therefore, 

most microreactors that work on heterogeneous catalysis either immobilize insoluble catalysts 

onto the channel surface or embed solid-supported catalysts into microchannels like packed-bed 

reactors. Microreactors are particularly advantageous for surface-based catalysis of gas-liquid, 

gas-solid or liquid-solid reactions due to their large surface-to-volume ratio, which can greatly 

enhance contacting between catalysts and reagents. As for packed-bed catalysis, since the 

common solid supports are polymers such as Merrifield resins, there is always a danger for 

microchannels being clogged by swelling resins in organic solvents.
84

 Non-swelling supports like 

silica or alumina have been used as catalyst carriers;
80

 however, their applications are limited to 

wide reactor channels (usually larger than millimeters) because of high backpressure produced in 

narrow reaction channels just like typical packed column for liquid chromatography. 

 Haswell
10

 immobilized nickel catalysts onto Merrifield resins and loaded beads into 

polypropylene tubing (2 mm i.d.) and/or glass tubing (1 mm i.d.) to catalyze a Kumada-Corriu 

reaction by a pressure-driven flow. Compared to bench-top reactions, reaction rates in the 
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microreactor can be dramatically increased to over three orders of magnitude. The usual 24 h 

batch reaction can be done in a few minutes by the flow microreactor.  

 Organ and coworkers
82

 studied Suzuki–Miyama and Heck reactions in a borosilicate 

capillary reactor (1.1 mm i.d.) coated with Pd film on its inner surface as catalyst. Reactions 

were carried out in a pressure-driven flow at high temperature under microwave irradiation. The 

authors characterized Pd films (approximately 6 µm in thickness) by SEM, which consist of 

clusters of highly porous nanometer grains. The films have excellent mechanical strength to 

withstand constant fast flow and high temperature. Reactions with a variety of substrates can 

range from a few minutes to several days.  

Enzyme bioreactor can also take advantage of surface immobilization techniques.
5, 85, 86

 

Enzyme biocatalysts can be immobilized onto the inner wall of microchannels to perform 

heterogeneous catalysis in a flow stream. Ho
87

 developed a long-lived capillary-based enzyme 

microreactor coated with glucose oxidase on its inner surface, which can determine glucose 

concentration with higher sensitivity and better stability than regular packed columns.   

1.2.3.3 Precipitate-forming reactions 

Immobilization techniques can circumvent the clogging problem of heterogeneous catalysis in 

microreactors; however, for some reactions that are prone to form precipitating products or 

byproducts, immobilization techniques might not work well. McQuade
88

 developed a two-phase 

droplet flow approach to handle insoluble solid particles in precipitate-forming reactions. The 

synthesis of indigo, which can form small solid particles during the reaction, was successfully 

carried out in a monodisperse droplet flow in mineral oil without causing channel blockage at all. 

Mineral oil was very effective to stop particles from sticking to the channel wall. However, this 

approach, while clever and effective, is not really microfluidic in nature since it requires large 
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reactor tubing (1.68 mm i.d.) and high flow rate (0.3 mL/min) to prevent particle sticking and 

clogging in microchannels. Basically, reactor channels less than hundreds of micrometers may be 

hard to take advantage of this approach due to high channel backpressure when using viscous 

liquids like mineral oil. 

1.2.3.4 Photochemistry and microwave-assistant reactions 

Photochemistry is a powerful technique for organic synthesis. However, batch reactions are often 

limited by the size and power of lamps. Flow reactors are more suitable for photochemical 

reactions due to its scalability to large-scale production. Microreactors are an excellent tool to 

carry out photochemical synthesis because their small dimensions and fast mass transfer rates. 

Small lamp is good enough to produce good conversion. So far, a number of photochemical 

reactions have been studied in microreactors, including oxygen oxidations,
89

 pinacol formation 

reactions,
90

 photocyanation reactions,
91

 cyclization reactions.
92

 An example chip-based 

photochemical reactor is shown in Figure 3.
90

 The chip was made by bonding quartz wafers to 

patterned silicon wafers at low temperature. Under the fiber optic UV illumination, the 

pinacolation process of benzophenone was highly efficient.  

Just like photochemistry, microwave irradiation is also very suitable for flow reactors. 

Capillaries or tubes are often used to carry out microwave-assisted continuous-flow organic 

synthesis (MACOS).
82, 93, 94

 Reaction rate and conversion can be significantly enhanced by 

microfluidic approach. Moreover, heated by a single microwave source, it is likely to carry out 

sequential reactions in a single capillary or parallel reactions in multiple capillaries 

simultaneously.
45, 46

 Both ways are very efficient towards the synthesis of a large collection of 

compounds. 
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Figure 3. Photographs of an integrated chip reactor (silicon-quartz) interfaced with chuck, 

tubing and UV fiber optics. 

(Photograph is reproduced with permission from RSC Publishing.
90

) 

1.2.3.5 Electrochemical reactions and flash chemistry 

Electrosynthesis is a fast and powerful method to make complex compounds from simple 

molecules. Very reactive anion, cation or free radical intermediates are generated electro-

chemically and reactions are usually complete in a very short time ranging from milliseconds to 

seconds. This process is similar to a concept called flash chemistry, which was recently defined 

by Yashida
95

 as ―a field of chemical synthesis where extremely fast reactions are conducted in a 

highly controlled manner to produce desired compounds with high selectivity‖. Due to the nature 

of flash chemistry, batch reactors are not appropriate because they cannot provide precise 
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monitoring of reaction conditions that play a key role in the reactivity and selectivity of reactive 

species. Microreactors are highly desirable for investigating fast electrochemical reactions or 

flash chemical processes.
96-101

 Efficient mixing, fast heat dissipation and accurate condition 

control all contribute to the ease of controlling highly reactive, short-lived intermediates.  

    

Figure 4. Photographs of a H-type cell (L) and a microflow reactor (R) for electrosynthesis 

and flash chemistry. 

(Photographs are reproduced with permission from RSC Publishing.
105

) 

 

 Yoshida‘s group is very active in the field of electrochemical synthesis and flash 

chemistry using microfluidics.
102, 103

 They first developed the ―cation pool‖ method using an H-

type electrochemical cell (as shown in Figure 4, left image) to electrolyze the substrate at low 

temperature to prevent side reactions. The generated cations in the cation chamber can then react 

with the subsequently-added nucleophiles to complete the reaction in a batch mode. His group 

used this method to perform [4+2] cycloaddition reactions, in which a N-acyliminium ion pool 

generated by low temperature electrolysis is able to react with different dienophiles, e.g., alkenes 

or alkynes, to produce high yield of products. In addition to the cell-type reactor, his group also 

developed a flow electrochemical system (Figure 4, right image) that can generate a continuous-
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flow stream of cations by low temperature electrolysis. This ―cation flow‖ method is more like a 

typical microfluidic approach, allowing scaling-up to the production scale. Both above systems 

are useful for fast synthesis of either small molecules or large polymers.  

1.2.3.6 Macromolecular synthesis 

Many polymerization processes are highly exothermic and very fast. Therefore, in principle, 

polymer synthesis could benefit from microfluidic technology. Efficient reagent mixing can 

promote homogenization and fast heat transfer can reduce temperature distribution. Moreover, 

close control of conditions like time, temperature, concentration is good for monitoring 

polymerization extent. However, applications of microfluidic technology are still very limited so 

far. The major issue is that a lot of polymerization reactions are involved with solid or highly 

viscous substances that might induce very high backpressure in microchannels or completely 

disrupt the flow. Thus, reaction conditions for polymer synthesis have to be screened with great 

care. Currently, a number of polymerization reactions have been successfully studied, most of 

which are fast reactions.
104-110

 For example, Wilms
108

 studied synthesis of hyperbranched 

polyglycerols by a continuous flow microreactor. Results showed that not only reaction time can 

be largely shortened, but molecular weight dispersion of different fractions of polyglycerols can 

all be significantly narrowed, particularly for some high molecular weight fractions that usually 

have much broader distribution in bench-top synthesis. 

1.2.3.7 Nanomaterial synthesis  

In a similar manner to polymer synthesis, synthesis of nanomaterials, such as nanoparticles or 

nanocrystals, often involves the accumulation of a large amount of building atoms or molecules 

within a short time period. Batch reactors may suffer from solution inhomogeneity and 
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temperature variation in reaction vessels, leading to huge variation of sizes and shapes of 

nanomaterials. Microreactors, on the contrary, provide powerful mixing and heating that can lead 

to better yield and more uniform particle size and shape. The early work by Wagner and 

Kohler
111

, who investigated the process of continuous direct synthesis of gold nanoparticles in a 

microreactor, demonstrated that the microreactor was able to give more uniformed-shape 

nanoparticles than batch method. Currently, many researchers are focusing on combining 

microfluidic technology with nanotechnology to advance their applications.
111-114

 Some typical 

synthesis modes include continuous-flow synthesis,
115-118

 segmented-flow synthesis where 

reactions take place in large liquid slugs,
119-121

 and nanoscale droplet-flow synthesis where 

precursors and solvents are encapsulated in small droplets.
122-124

 Those methods are applicable 

for various types of nanomaterial synthesis in microreactors. 

1.3 MICROREACTORS FOR HIGH-THROUGHPUT CATALYST DISOCVERY 

1.3.1 Traditional approach for catalyst discovery 

Many organic transformations need catalysts. Synthetic chemists have long been endeavoring to 

discover new catalysts that possess high catalytic efficiency and selectivity, low cost, and green 

to the environment. The best natural catalysts, enzymes, capable of catalyzing the formation of 

diverse organic molecules or biomolecules under mild and benign conditions, are refined and 

optimized by nature over millions of years evolution following ―a survival of the fittest 

approach‖. This natural process involves millions of times of repetition of enzyme synthesis and 

modification in order to make the best catalysts. It is basically a natural screening process. 
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Scientists have been trying to find useful catalysts for synthetic chemistry by mimicking this 

natural catalyst discovery approach. Combinatorial chemistry is a very valuable tool for catalyst 

discovery. After generating a large collection of catalysts with different structures and properties 

through combinatorial synthesis, active catalysts can be rapidly identified through certain high-

throughput screening (HTS) methods. Therefore, the efficiency of catalyst discovery depends on 

both synthesis and screening processes.
125-128

 

In a traditional batch approach, combinatorial synthesis and high-throughput screening 

are usually done on solid supports because this solid-phase method requires fewer amounts of 

reagents and solvents than solution-phase reactions. The procedures of post-reaction purification 

and characterization are also much simpler. A well-known combinatorial approach called ‗one-

bead-one-compound‘ has been widely used for simultaneous generation and screening of large 

‗split-and-mix‘
129

 libraries of catalysts based on solid-phase synthesis and screening.
130-132

  

Wennemers
130

 developed a ―catalyst-substrate coimmobilization‖ method that works with 

‗one-bead-one-compound‘ synthesis to generate and identify large libraries of peptidic catalysts 

for the aldol reaction. The authors prepared an encoded
133

 ‗split-and-mix‘ library of 15
3
 (3375) 

different tripeptides synthesized from 15 D- and L-amino acids for each of the three residues in a 

tripeptide molecule on the TentaGel resin. Then one of the substrate was immobilized onto the 

resins. While the other substrate tagged with dye was added in the solution, the reaction of two 

substrates catalyzed by immobilized peptides will lead to the colorization of some beads that can 

be observed by a microscope. The extent of color depends on reaction conversion. Colored beads 

were then isolated and peptides were cleaved followed by sequence analysis to identify their 

structures. This combinatorial method is depicted in Figure 5
130

. It combines combinatorial 

synthesis and high-throughput screening in a highly efficient way. 
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Figure 5. Substrate-Catalyst coimmobilization method for high-throughput screening of 

tripeptide catalysts.  

(Image is reproduced with permission from ACS.
130

) 

1.3.2 Parallelization of chemical reactions in microreactors 

Solid-phase synthesis is a straightforward method; however, a lot of additional effort is usually 

needed, e.g., preparing polymer supports, immobilizing and demobilizing catalysts/reagents on 

solid supports, chemically or physically encoding and decoding the supports in order to track 

synthesized compounds. Deactivation of catalysts/reagents during immobilization is also a 



 25 

potential problem. Besides, reactions on solid supports are usually slower than solution-phase 

reactions due to the hindrance of mass transfer by bulky supports, leading to lower synthesis and 

screening efficiency. Therefore, solution-phase reaction is of still great interest for combinatorial 

chemistry.
134

 

Microreactor technology is deemed as a very promising approach for solution-phase 

combinatorial chemistry.
135, 136

 To synthesize and screen a large library of compounds, 

parallelization of reactions is necessary to achieve high efficiency and throughput. Microreactors 

are excellent for conducting simultaneous reactions under close process control. The cost and 

effort for synthesis and screening can also be minimized in terms of atom efficiency and 

chemical consumption in microreactors. Moreover, flow-through process makes it easy for 

microreactors to combine parallel synthesis and analysis in a highly integrated and automated 

manner.
55, 137

 A representative system is the Miniaturised-SYNthesis and Total Analysis System 

(μSYNTAS) developed by Mitchell
138

 This system is capable of conducting continuous-flow 

reactions in a silicon chip microreactor which is interfaced with a time-of-flight mass 

spectrometer (TOF-MS) for online product analysis. An Ugi multicomponent reaction (MCR) 

carried out in μSYNTAS demonstrated the efficiency of this system for sequence synthesis of a 

large number of compounds. In fact, in addition to MS detectors, a variety of online analytical 

techniques have been studied, including IR
139

, UV-Vis
8, 140

, fluorescence
141

, X-ray
142

, mass 

spectrometry
7, 143, 144

, NMR
145

, GC-MS
146

 and LC-MS
147, 148

. GC-MS and LC-MS are excellent 

tools because they are particularly useful to identify unknown compounds for library generation.  

Currently, there are a number of ways to conduct parallelized reactions in microreactors. 

For instance, parallel reactions are conducted in an array of microreactors; a single reactor with 

multiple layers of microchannels performs parallel reactions; sequential reactions are conducted 
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in slugs or droplets in a single microchannel; or microreactor array like 96-well plate performs 

parallel reactions in an array of micron-dimensioned chambers.  

Reactions in parallel microreactors 

A simple model of combinatorial synthesis on different chips is shown in Figure 6.
149

 Two 

reagents from one library mixed with two in another library in 2×2 combination delivered by 

four syringe pumps. Four reactions take place on individual single-channel chips. This approach 

is very straightforward; however, many chips, pumps, tubing and connectors have to be used to 

carry out large numbers of reactions, requiring considerable effort of chip fabrication and high 

cost of instruments and apparatus.  

  

Figure 6. Schematic view of 2×2 parallel synthesis on four chips.  

(Photograph is reproduced with permission from RSC Publishing.
149

) 

 

Kikutani
149

 reported an example of glass chip microreactor consisting of two layers of 

microchannels on a single chip (Figure 7). By using the regular photolithography method, 

several layers of microchannels can be fabricated on a glass chip to form a three-dimensioned 

microchannel network. The efficacy of this two-layer microreactor was demonstrated by a 2×2 

parallel synthesis of amide compounds. In principle, more layers can be constructed on a single 
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chip; however, the fabrication process will become more and more complicated with the 

increasing complexity of channel networks. 

 

Figure 7. Schematic view of three dimensional microchannels on a two-layer glass chip for 

2×2 parallel synthesis.  

(Photograph is reproduced with permission from RSC Publishing.
149

)  

 

A simple and economical way to run chemical reactions on parallel reactors is to use 

cheap, commercially-sold capillaries rather than expensive glass chips. Each capillary works just 

like a microchannel. Comer and Organ
46

 proved the efficacy of parallel capillary system (Figure 

8) for combinatorial synthesis by carrying out 2×2 parallel reactions in a four-capillary 

microreactor, which can also be heated by microwave irradiation.  
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Figure 8. Schematic view and image of the multi-capillary microreactor.  

(Photograph is reproduced with permission from Wiley InterScience.
46

) 

Serial reactions in slugs or droplets  

Multiphase slug flow (also called segmented flow) or droplet flow is a common microfluidic 

method to conduct dynamic sequential reactions for combinatorial synthesis.
150, 151

 The general 

method usually involves two immiscible phases, e.g., gas/liquid phases or liquid/liquid phases 

such as organic, aqueous, or fluorous phases. Both phases are injected simultaneously into a 

microchannel on chip or a capillary tube via a mixer. Continuous flow is usually employed and 

parallel reactions take place in a train of separate slugs or droplets that behave just like individual 

reactors. Slugs or droplets can have very small volumes from microliters down to picoliters, 

allowing extremely fast mass and heat transfer within one phase or between adjacent phases 

when used for phase transfer reactions.
121, 152, 153

 

 The droplet flow approach is good for a variety of reactions, not only homogeneous 

reactions, but some solid-involving reactions such as heterogeneous catalysis
154

, precipitate-
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forming reactions
88

 or nanoparticle synthesis.
155

 Solutions containing solids or particulates are 

incorporated into droplets and suspended in the carrier liquid, completely stopping them sticking 

to the channel surface to induce blockage. This is a potential solution to solve the clogging 

problem of microreactors; however, it does need optimization of a number of factors before 

running, such as size of droplets, channel dimensions, flow rates, injection modes and so on, in 

order to generate stable and uniform droplets for good reaction reproducibility and minimal 

clogging danger.  

 

 

Figure 9. Photographs of microdroplets formed in microchannels.  

(a) formation of small droplets under a slow flow velocity of water; (b) large droplets 

formed in a fast flow stream of water. 

(Photograph is reproduced with permission from Royal Society Publishing.
156

) 

 

The aforementioned research work by McQuade‘s group
88

 demonstrated the principle of 

carrying out precipitate-forming reactions in a droplet flow. Figure 9 shows an example of serial 

droplets of picoliter volumes formed and delivered through a winding microchannel.
156

 Three 
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streams of aqueous solutions are simultaneously injected into a narrow channel and mixed 

together at the junction site to form a laminar flow stream which then rapidly transforms into tiny 

droplets pushed by constant flow oil. Each droplet is surrounded by the carrier liquid oil without 

touching the wall. Fast mixing is achieved by both convection and diffusion, and red dye can 

quickly fill the whole droplet after only walking a short length along the channel. The droplet 

shape and size can be precisely controlled by flow rates and channel diameter. High flow rate of 

aqueous solution leads to the formation of large droplets while slow rate results in small droplets. 

Microreactor arrays 

Commercialized automated or semi-automated synthesis systems based on micro well plates are 

popular tools for combinatorial synthesis and screening.
157

 Reaction solutions are serially loaded 

by robotic dispensing systems and reacted in parallel chambers like 96- or 384-deep-well 

reactors. Reaction outcomes can be either collected for offline analysis or analyzed by some in-

situ instruments like HPLC or GC. This approach is still in batch nature and usually requires lots 

of samples (hundreds of microliters to some milliliters) and external shaking to facilitate reagent 

mixing. Thus, some researchers developed micro reactor arrays on glass or PDMS chips,
158-161

 

which can have very high-density format through delicate microfabrication techniques. 

Compared to regular micro well plates, microreactor arrays can downsize volume of reaction 

chambers to nanoliters.  

Gross
159

 designed a glass microreactor array with 1563 parallel nanoliter-volume wells, 

which is also assembled with robot-controlled bead loading and liquid dispensing systems 

(Figure 10). A model combinatorial approach to generate a multiple core structure library for 

diversity-oriented synthesis was carried out on this microreactor array with a ―split-and-mix‖ 

solid-phase synthesis strategy. An individual bead in each well was encoded by its spacial 
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position in the array instead of tedious chemical or physical coding. The history of each 

synthesized compound can be easily tracked by this one-bead-one-well approach, which is 

impossible for traditional ―split-and-mix‖ method that can only track a group of beads since 

individual bead information is lost during a split-and-recombine process. 

 

 

Figure 10. Images of a microreactor array and its assembly.  

1) Reactor module with the gasket bearing plates. 2) Beads in the chambers. 3) Robot 

Syringe for solution dispensing. 4) Microreactor array filled with beads and reaction 

solution, before enclosing. 

(Photograph is reproduced with permission from Wiley InterScience.
159

) 
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Microreactor arrays are good at throughput and automation; however, it does have certain 

drawbacks. For example, solution loss by evaporation is a common problem for 96-deep-well 

reactors especially when high temperature or long period of time is needed. It becomes more 

serious for microreactor arrays since solution volume inside a well is too little. Unlike flow 

reactors that have closed channels, microreactor arrays have open wells sealed by removable 

covers. Thus, tight sealing is very important to prevent evaporation. However, evaporation can 

happen during solution dispense or reagent transfer when there is no cover on top of wells. 

Chemical crosstalk in close chambers is also a potential threat to reaction reproducibility. 

Besides, microreactor arrays with robotic dispensing systems are expensive and complicated, 

which are not very applicable for ordinary synthetic laboratories. 

1.3.3 Flow microreactor systems for catalyst screening 

Currently, most microreactors are developed aiming for synthesis rather than screening. But it is 

apparent that high-throughput screening can benefit a lot from microreactor technology, 

especially automated reactor technology. Catalyst screening usually requires the accumulation of 

large amounts of reaction data and the whole discovery process can be significantly simplified 

and economized by using automated microreactor systems integrating both synthesis and 

analysis functionalities.  

 However, catalyst screening in microreactors is still limited so far. Most of the studies are 

focused on screening packed-bed solid metal catalysts for gas-phase reactions,
135, 162-167

 e.g., 

hydrogenation over Pd catalysts coated in capillaries or tubes. Typically, reaction is faster and 

screening throughput is higher in microreactors. For example, Yi
168

 developed a 64-channel (8×8 

parallel channels) tubing microreactor that can screen 64 fixed-bed catalysts simultaneously. The 
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authors screened some metal catalysts for oxidation of propylene and the product acrolein can be 

analyzed by an efficient online colorimetric imaging method.   

Few researchers have built microreactors specifically for liquid-phase catalyst screening. 

A main limitation is the threat of catalyst precipitating or formation of insoluble byproducts in 

microchannels when unknown catalysts are screened with different substrates or under varied 

conditions. Most current microreactors are developed for proof-of-purpose. Reaction process and 

conditions are usually well understood or have been studied in batch reactions previously. 

Therefore, it will be very significant to build a practical microreactor system specifically for 

high-throughput catalyst screening in liquid phase, which could greatly facilitate catalyst 

discovery for synthetic chemistry. 

1.4 RESEARCH MOTIVATION AND PLAN 

In view of the inadequacy of current microreactor technology for high-throughput catalyst 

screening, I decided to develop a new type of microreactor system that can fill this application 

gap. The design idea was to make this system useful and practical for ordinary synthetic 

laboratories and organic chemists. Thus, besides screening efficiency, I also wanted this system 

to have a straightforward design and economic construction. Capillary is preferred to build this 

microreactor due to its good adaptability, high flexibility and low cost. Considering most current 

microreactors are limited to work on fast reactions, I want to extend the scope to slow reactions, 

allowing more organic reactions applicable for this microreactor. The ultimate goal of my 

research is to provide the synthetic community with a powerful and flexible prototype 

microreactor system possessing the capability of synthesis with in-situ analysis. The major 
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application focus of this microreactor will be high-throughput screening of catalysts, but it may 

also find applications in combinatorial chemistry such as diversity-oriented organic synthesis or 

biological chemistry such as biochemical analyses or enzyme reactors.  

  The planned research will include: 1. Construct the microreactor system with capillaries 

and some commonly used instruments; 2. Validate the system‘s performance by a well-studied 

organic reaction with known catalysts to test its screening efficacy; 3. Extend the application 

scope to some important organic reactions: optimize reaction conditions, screen new catalysts 

and study reaction mechanisms by the microreactor. The detailed research work will be 

described in the next several chapters. 
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2.0   MICROREACTOR CONSTRUCTION AND VALIDATION BY THE STILLE 

REACTION 

Some work in this section has been published in Analytical Chemistry 2006, 78, (6), 1972-1979. 

Photographs are reproduced with permission from American Chemical Society (ACS). 

2.1 INTRODUCTION 

I aim to develop a novel microreactor system that is good for high-throughput screening of 

catalysts for either slow reactions or fast reactions. The prototype design of this microreactor
1
, 

which was initialized by some previous lab colleagues, Guoyue Shi, Quansheng Liang and Feng 

Hong, was based on the simple idea of combining standard flow injection and continuous slug 

flow approach together with chromatography for quantitative online analysis. This microreactor 

is an integrated system including serial injection of reagents and catalysts by pumps, reacting in 

parallel in a long capillary and in situ analysis by GC or LC. All instruments and parts like 

pumps, capillaries, valves and detectors are commercially available and inexpensive, which 

makes this system very suitable for ordinary synthetic laboratory uses. 

 The Stille reaction is a well-known carbon-carbon bond formation process.
2-6

 Soluble 

metal-ligand complexes catalysts are commonly used to catalyze the reaction. The large number 

of metal precatalysts and ligands suggests a combinatorial approach for catalyst discovery. Thus, 
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this reaction will be a good model to test the efficacy of the microreactor for homogeneous 

catalyst screening. The preliminary validation work was mostly done by Guoyue Shi and other 

colleagues. I collaborated with them on some testing experiments that will be described in this 

context.    

2.2 EXPERIMENTAL SECTION 

2.2.1 Chemicals and Materials 

HPLC grade methanol, tetrahydrofuran, Tributyl (vinyl) tin, iodobenzene, dodecane and styrene 

were purchased from Sigma (St.Louis, MO). Neutral red was purchased from J. T. Baker 

Chemical Co. (Phillipsburg, NJ). The ligands, AsPh3, PPh3, (2-furyl)3P, (4-FC6H4)3P and (4-

ClC6H4)3P were also purchased from Sigma. The palladium precatalysts, Pd2dba3, Pd[(C6H5)3P]4, 

Pd[(C6H5)3P]4, PdCl2[(C6H5)3P]2, Pd(OAC)2 were purchased from Strem Chemicals 

(Newburyport, MA). PdCl2(CH3CN)2 was locally synthesized in Dr. Nelson‘s lab. Nitrogen, 

argon, hydrogen and air were obtained from Valley National Gases Inc. (Washington, PA) 

2.2.2 Instrumentation 

Syringe pumps were purchased from Harvard Apparatus Inc. (Holliston, MA). The Waters M-45 

pump was from Waters Corp. (Milford, MA). The HP 1050 autosampler was purchased from 

Agilent (Palo Alto, CA). VICI six-port injector (Model E60), VICI 10-port valve (model EPCA-

CE) and M6 pump were purchased from Valco Instruments Co, Inc. (Houston, TX). A USB 
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2000 optical fiber UV-visible absorbance detector was purchased from Ocean Optics, Inc. 

(Dunedin, FL). The heater for the reactor capillary was constructed locally. The temperature 

controller and standard round mica heater were from Minco Products Inc. (Minneapolis, MN). 

The fused-silica capillary with 75-µm i.d., 360-µm o.d. was purchased from Polymicro 

Technologies, L.L.C (Phoenix, AZ). The Focus GC was purchased from Thermo-Electron. It has 

a single column (RTX-5, 7 m × 0.32 mm (0.25-µm thick phase), Restek Corporation) and 

detector (FID).  

2.2.3 Microreactor construction 

This microreactor system, which is schematically shown in Figure 11, includes three basic 

modules: sample loading section, parallel reaction section and online analysis section. A standard 

HPLC autosampler loads vials of catalysts. Catalysts sampled by the autosampler are combined 

with reagents pushed by a syringe pump (SP1) at equal flow rates (15 µL/min) in a locally-made 

nano-volume tee mixer.
7, 8

 The combined fluids pass through and fill a loop (750 nL) in a 6-port 

nano-volume injector (L1). Then the injector is switched to the „inject‟ position triggered by the 

autosampler program and the contents of the loop are injected into the reaction capillary by 

another syringe pump (SP2) filled with THF solvent operating at a constant rate of 250 nL/min. 

Following injection, the injector is returned to the „load‟ position. The 750 nL loop is then filled 

with a solution containing the next catalyst and reagents. The cycling of autosampler injection 

and injector turning will push a serial of reaction solutions containing same reagents and 

different catalysts into the reaction capillary that are defined as parallel reaction zones. 

Individual zone contains 750 nL of reaction solution and separated by THF solvent from SP2. 

The original reactor design does not include filters in the flow stream between the autosampler 
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and the 750 nL loop;
1
 however, in order to prevent any particulates entering the nano-volume 

injector and reaction capillary, an ultra-low-volume precolumn filters with 0.5 µm stainless steel 

frits (Upchurch Scientific, Inc., Oak Harbor, WA) is installed at four positions in the flow 

stream, which are shown in Scheme 2 depicted as green bars.  

The reaction capillary is a 75-µm-i.d., 6.7-m-long piece of fused-silica capillary tube. It is 

directly connected to the injector L1. When all reaction zones are loaded into it, a digitally- 

controlled heater can warm the capillary to the required temperature and the flow from SP2 can 

be stopped for a defined reaction time. Then all reactions take place in individual zones in a 

static mode just like batch reactor. 

 

 

Figure 11. Schematic view of the microreactor screening system. 
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When the reactions are completed, the flow from SP2 is turned on again to push the 

zones continuously out of the reaction capillary. The zones first go through a cross-shaped flow 

cell monitored by a UV-Vis, fiber optic-based detector which captures the absorbance signal 

from zones and send signals to the computer to trigger the online injection process. A 10-port 

double-loop (750 nL) nano-volume injector (L2) enables the loading of one loop from the 

capillary while the contents of the other loop are chromatographed. The contents of the 750 nL 

loop are pushed into the GC with a low-pressure, refillable M6 pump that can deliver a short 

pulse flow at high rate 100 µL/min. The whole chromatographic injection and analysis process is 

under automated control by a self-written screening software. 

2.2.4 Online analysis by GC 

The initial oven temperature of 85 °C was held for 0.8 min. The temperature was then increased 

from 85 °C to 200 °C at 100 °C/min. Two minutes was allowed for cooling. Typically, flow-

splitting was used to inject 10% of the 1.0-µL loop contents. A programmed M6 pump filled 

with isopropanol pushed the contents in the loop into the GC inlet at a flow rate of 100 µL/min 

for a duration time of 3 seconds. GC was triggered to start running at the same time of sample 

injection by the M6 pump. 

2.2.5 Screening of catalysts for the Stille reaction 

The Stille reaction was carried out in the microreactor at 50˚C in anhydrous THF solvent. A 

group of precatalysts, Pd2dba3, Pd[(C6H5)3P]4, Pd[(C6H5)3P]4, PdCl2[(C6H5)3P]2, Pd(OAC)2 and 

PdCl2(CH3CN)2, and a group of ligands, AsPh3, PPh3, (2-furyl)3P, (4-FC6H4)3P and (4-ClC6H4)3P 
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were selected to create the model catalyst library for the screening experiment. Various molar 

equivalents of palladium precatalysts and ligands were mixed in 6mL of THF to form the 

catalyst. The aliquots (100 µL) of catalyst solutions were hold in 1.5 mL autosampler vials and 

placed on the tray of the autosampler. A mixture of 75 μL of PhI and 250 μL of Bu3SnCH=CH2 

in 3 mL THF were taken as the reactants which also contain 24 μL of dodecane as the internal 

standard. Reactants were loaded in gas-tight syringe and driven by SP1 in a constant flow. The 

autosampler was cycling to inject all catalyst solutions. After loading all reaction zones into the 

capillary, SP2 was turned off to stop the flow and the heater was turned on. Then the reactions 

were carried out in the reactor for varying times at a certain temperature. When reaction was 

complete, SP2 was turned on and all reaction zones were pushed out of the capillary and 

analyzed as described above. 

2.2.6 Statistical calculation of yield 

A calibration curve was prepared from standard solutions of styrene and the internal standard 

(IS) dodecane. A series of stock solutions with various mole ratios of styrene and IS were 

prepared in THF to obtain standards for GC analysis. The calibration curve for product yield 

determination was obtained by plotting the mole ratios of styrene to IS as a function of peak area 

ratios of styrene to IS. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Microreactor operation mechanism 

Sample injection by syringe pump and autosampler 

I used a syringe pump to load reagents continuously into a six-port dual-position injector. A 

standard HP 1050 autosampler loads catalysts serially into the injector. Two flow streams are 

mixed first at equal flow rates, which are optimal at 15 µL/min, to ensure equal proportion of 

reagent and catalyst. The combined solutions then fill the loop and are injected into the capillary 

reactor by SP2. The schematic view of the injection section of the microreactor is shown in 

Figure 12.  

 

Figure 12. Schematic view of the sample loading section of the microreactor system. 

 

The autosampler is claimed as capable of microliter sampling; however, in fact it is not so 

reliable for injecting volumes of samples less than tens of microliters. To have a reproducible 

microscale injection for each sample, I changed the typical functioning program of the 
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autosampler to let the internal syringe aspirate the sample from the vial and then eject the sample 

into the injection port that connects to the mixer by a short capillary. This procedure skips the 

function of autosampler pump and is very effective to create a significant wide plateau in the 

concentration-time profile of samples emanating from the autosampler when 25 µL of samples 

are withdrawn. This enables catalysts to be injected into the six-port injector with reproducible 

volumes and concentrations, which is very important for reaction reproducibility and screening 

reliability. To minimize the carryover of serial injections by the autosampler, a regular HPLC 

pump is connected to wash internal tubes and the needle of the autosampler between adjacent 

catalyst injections by setting the functions of the autosampler. Thus, the autosampler is the key 

controller of the injection section of this microreactor. 

Parallel reactions in the capillary 

All reaction samples are injected into the reaction capillary by SP2. The flow rate of SP2 

controls the residence time of reaction zones in the capillary when continuous-flow mode is 

applied. However, for slow reactions with long reaction time like the Stille reaction which 

usually takes 5 h or more, a stop-flow approach is better for the throughput. Reaction zones are 

loaded in the capillary and then SP2 flow is stopped, so all zones stay and react in parallel for the 

required time. When reactions finish, SP2 is turned on and all zones are pushed serially out of 

the capillary.  

An important concern for this parallel reaction method is bandspreading between 

adjacent zones caused by hydrodynamic dispersion. Unlike the typical slug-flow approach that 

employs immiscible biphase liquids, I used the same solvent THF to separate reaction zones 

whose solvent is also THF. This single phase approach avoids the usage of expensive fluorous 

solvents that needs additional efforts for recycling; however, the single phase method may result 
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in bandspreading of zones in the open capillary like chromatography peaks, leading to unwanted 

reaction zone overlapping. Therefore, small-diameter capillary tubing has to be used because 

axial dispersion of molecules can be markedly lessened when channel dimension is downsized to 

a certain extent.  However, it is obvious that the smaller the channel dimensions, the higher the 

flow backpressures, especially for a long capillary. In our experiment, I used 75 µm i.d. tubing as 

the reaction capillary that is small enough and backpressure is still tolerable for syringe pump.  
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Figure 13. Absorbance response (wavelength 525 nm) of parallel zones of neutral red 

solution staying in the reactor capillary at varied residence times.   

(Photograph is reproduced with permission from ACS.
1
) 

 

Due to the bandspreading, it is necessary to control the distance between adjacent 

reactions zones. The zone that is filled with solvent THF is defined as non-reactive zone whose 
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length is controlled by time. Two times play roles: one is the time required by the autosampler to 

withdraw the catalyst and eject it into the loop of six-port injector. It is the sample loading time 

controlled by sampling rate of the autosampler, which dictates the non-reactive zone length 

(time). The other is the time needed to empty the loop and inject sample into the reactor, which is 

the reaction zone time. SP2 rate and loop size control this time. SP2 also controls the velocity of 

zones flowing in the reactor. When a small loop 750 nL is used, SP2 flow rate and above two 

times are primarily responsible for the bandspreading and the total time needed to fill and empty 

all zones through the reactor capillary. In Figure 13, I tested zone bandspreading with neutral red 

solutions. Absorbances were detected by a UV-Vis optical fiber detector at 530 nm. The neural 

solution was made by THF, same to the carrier solvent THF of SP2. The zones are loaded into 

the reactor and stayed for different times. It shows that there is no significant difference of zone 

widths between 24 h and 1 h. Actually, absorbance signals of all four times seem identical, 

indicating bandspreading of zones mainly comes from flow dispersion while static diffusion 

leads to only little broadening when zones stay in the capillary without moving. 

Automated analysis by online GC 

The analysis section includes an optic fiber UV-Vis detector, a 10-port double-loop double-

position injector, a M6 pump and a GC system without autosampler. The schematic view of the 

analyzer section is shown in Figure 14.  

When reaction time is reached, SP2 is then turned on and all zones are pushed out of the 

reactor capillary in sequence. Zones first go through a cross-shape flow cell which is connected 

to a fiber optic UV-Vis detector. The absorbance response of zones captured by the detector is 

sent to a screening software written by our lab which is used to trigger the injector switch and 

start the GC program. The software window is shown in Figure 15. I can set a number of 
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parameters in this software, in which I empirically define the start of a zone as 0.8 (absorbance 

ascending) and the end as 0.2 (absorbance descending). When the absorbance signal of a zone 

reaches the end point 0.2, the software will alert the injector to switch positions so that the just-

detected zone is captured and sent to GC inlet by a M-6 pump for chromatographic analysis. 

 

Figure 14. The schematic view of the analysis section of the microreactor system. 

(Photograph is reproduced with permission from ACS.
1
) 

 

A very short capillary connects the flow cell (UV-Vis detector) to the 10-port injector. 

After zones leave the detection point of the cell, they will immediately enter the loop of the 

injector. The 10-port injector has two loops, and the configuration of flow path enables one loop 

connecting to the reactor outlet while the other connecting to the GC inlet. The alternating switch 

of two positions A and B makes it possible to conduct sample loading and GC analysis 

simultaneously and continuously. The schematic view of 10-port injector is shown in Figure 16. 
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The switch of the injector is automatically controlled by the screening software whose signals 

come from absorbance response of zones captured by the UV-Vis detector. 

 

x

x
start point

stop point
noise tolerence

Signal  

Figure 15. The screening software window and its controlling parameters. 

 

A short capillary is used to connect the 10-port injector with the GC inlet. The capillary is 

inserted directly into the vaporization chamber of GC through the septum. The M6 pump, which 

is also controlled by the screening software, delivers a high-speed pulse of flow to push the 

contents of the loop into the GC inlet. GC, in the same time, starts the temperature program to 

analyze the reaction sample. 
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Figure 16. The schematic view of the 10-port double-loop injector working at two positions 

A and B for simultaneous loading and injection. 

 

 The whole analysis process is automated under the computer control with the aid of the 

self-programmed screening software. When UV-Vis detector sense a reaction zone loaded into 

the loop, 10-port injector valve, M6 pump and GC are all triggered in a synchronized manner, 

which ensures automated analysis without any human involvement. 

2.3.2 The Stille reaction and GC separation 

The Stille reaction is a well-studied carbon-carbon formation process which is usually catalyzed 

by palladium-ligand complex catalysts. The activity of catalysts largely depends on the 

combination of palladium precatalysts and the ligands. A diverse set of catalysts can be 

generated based on the combinatorial coupling of metals and ligands. Thus, this process is very 

suitable to validate the microreactor‘s efficiency and robustness. A model reaction of 
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iodobenzene and tributyl (vinyl) tin is shown below. Both substrate and product styrene are 

commerically available and appropriate for GC analysis.  

 

 

PhI + Bu3SnCH=CH2                           PhCH=CH2 + Bu3SnI 

Figure 17. Chromatogram of products of the Stille reaction by online GC. 

 

GC is used to analyze reaction outcomes and determine product yield. Besides the 

substrates, there are a few by-product peaks eluted later behind styrene (Figure 17). A calibration 

curve made from standard solutions of styrene and dodecane are used to quantify the yield. The 

curve for styrene/dodecane is farily linear (R
2
=0.997) in the range from 0 to 100% yield. 

2.3.3 Screening efficiency and microreactor performance 

Parallel reactions are carried out in the microreactor and the maximum number of reactions in a 

6.7-meter-long reaction capillary is 20 reactions under non-optimized conditions. More reactions 

can be done in a longer reactor capillary. The UV response of 20 zones coming out of the 

Catalyst 

Styrene 
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capillary is shown in Figure 18. Since reaction time is 5 h, after loading all reaction zones, I stop 

the flow and let all zones stay in the capillary for 5 h at 50 
o
C. Referring to Figure 18, I see all 

zones are well separated with only a little overlapping. 

 

Figure 18. UV absorbance of 20 Stille reaction zones passing through the fiber optic UV 

detector after flowing out of the reactor outlet. 

(Photograph is reproduced with permission from ACS.
1
) 

 

A small library of palladium precatalysts includes Pd2dba3, Pd[(C6H5)3P]4, 

PdCl2(C6H5CN)2, PdCl2[(C6H5)3P]2, Pd(OAC)2 and PdCl2(CH3CN)2, and a library of ligands 

includes AsPh3, PPh3, (2-furyl)3P, (4-FC6H4)3P and (4-ClC6H4)3P. The screening results are 

shown in Table 1. Precatalysts were first screened with a common good ligand AsPh3 and the 

best one PdCl2(CH3CN)2 was used to test a number of ligands under other identical conditions. 

The best ligand is still AsPh3, which is in good accordance with the literature.
9
 All catalysts were 

repeated in three successive reactions for statistical calculation and small standard deviations of 

yields indicate good reaction reproducibility in the microreactor.  
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Table 1. Yield of the Stille reaction with various palladium precatalysts and ligands. 

Precatalysts Pd2dba3 Pd[(C6H5)3P]4 PdCl2(C6H5CN)2 PdCl2(CH3CN)2 PdCl2[(C6H5)3P]2 Pd(OAC)2 

Yield (%)
a 49.2±0.9 38.0±0.7 43.8±0.7 50.7±1.1 15.9±0.7 23.0±1.5 

Ligands AsPh3 PPh3 (2-furyl)3P (4-FC6H4)3P (4-ClC6H4)3P  

Yield (%)
b
 51.7±0.7 28.5±0.5 40.0±0.7 21.1±0.7 15.5±0.4  

 

a 
Reactants: 75 L PhI + 250 L Bu3SnCH=CH2 + 24 L dodecane + 3 mL THF ; Catalysts: Pd 

compound (2 mole %)+ 8.2 mg AsPh3 (4 mole %) + 3 mL THF, 50 C for 5h in the microreactor. 

Results are shown as mean ± SEM, n=3. 

b
 Reactants: 75 L PhI + 250 L Bu3SnCH=CH2 + 24 L dodecane + 3 mL THF  ; Catalysts: 

PdCl2(CH3CN)2 (2 mole %) + ligand (4 mole %)+ 3 mL THF, 50 C for 5h in the microreactor. 

Results are shown as mean ± SEM, n=3. 

 

The strength of this microreactor is not only for high-throughput catalyst screening, but 

can conduct process optimization by studying a large number of reaction parameters in a high 

efficient manner. After finding out the best precatalyst and ligand, I used the microreactor to 

optimize the ratio of precatalyst to ligand which plays a key role in catalyst reactivity. The 

results in Figure 19 show that the yield of styrene is only ~35% with 2 mole % AsPh3 and 2 mole 

% PdCl2(CH3CN)2; however, it increases to 65% as AsPh3 increases to 6 mole % while the yield 

is reaching a plateau up to 12 mole %. I conclude that the catalyst composed of 2 mole % 

PdCl2(CH3CN)2 and 6 mole % AsPh3 is the most active. This stoichiometry was in accordance 

with batch synthesis,
9, 10

 validating the screening efficacy of this microreactor system. 
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Figure 19. Yields of the Stille reaction with as a function of molar equivalents of AsPh3 and 

PdCl2(CH3CN)2. 

(Photograph is reproduced with permission from ACS.
1
) 

2.4 CONCLUSION 

In this section, the microreactor screening system based on capillaries and instruments were 

established and validated with the well-studied Stille reaction. Microliter volumes of reagents 

and catalysts can be combined and reacted in this capillary-based reactor for specific time and 

temperature. Online GC analyzed reaction products. The preliminary screening of six palladium 

precatalysts and five ligands were carried out in a high throughput approach and the investigation 

of mole ratios of precatalyst to ligand indicated PdCl2(CH3CN)2 (2 mole %) and AsPh3 (6 mole 

%) are the optimum catalyst which agrees with the traditional synthesis very well. It convinces 

the efficiency and efficacy of this microreactor system for high-throughput catalyst screening. 
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3.0  PEPTIDE SCREENING FOR THE ALDOL REACTION 

3.1 INTRODUCTION 

In this section, I applied the microreactor system for studying the peptide-catalyzed direct 

asymmetric aldol reaction. The aldol reaction is one of the most powerful and best-studied 

carbon-carbon bond forming processes. Peptides and peptidomimetics represent novel 

organocatalysts for this reaction.
1-5

 Compared to traditional metal based complex catalysts, e.g., 

for Stille reaction, peptides have many advantages: they are essentially non-toxic, possess high 

reactivity, relatively cheap and scaleable, and often demonstrate excellent regio- and 

enantioselectivity. They are also readily customized and work under benign reaction conditions. 

Peptides are believed to have better catalytic reactivity and selectivity than smaller 

organocatalysts such as L-proline because of their more complex structures and diverse 

functionalities.
6
 However, most active catalysts discovered so far are proline-terminal peptides, 

representing only a small portion of the whole peptide family. I wonder if I could take advantage 

of the microreactor approach to explore a broad range of peptides facilitating the discovery of 

novel peptide catalysts for the aldol reaction.  

I screened 21 commercially available amino acids in the microreactor initially for 

validation of the general approach. Subsequently, I screened 27 commercially available, short 

peptides in the microreactor. A major difficulty was the poor solubility of some amino acids and 
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peptides in common organic solvents. I solved this problem by allowing a condensation reaction 

to occur between peptides and benzaldehyde, one of the reaction substrates, followed by loading 

the resulting complex into the microreactor. The screening results demonstrated that γ-Glu- and 

β-Asp-containing peptides had better reactivity than other peptides. Catalytic activities 

determined in the microreactor were mostly in agreement with bench-top reactions under similar 

conditions. This work supports the idea that the structure of N-terminal amino acid has an 

important impact on the catalytic activity of the peptide. Enantioselectivities of reactive peptides 

were determined by analysis of bench-top reactions with chiral normal-phase HPLC. With this 

catalyst preparation approach, it is possible to screen peptide catalysts with various molecular 

weights and avoid solubility problems.  

3.2 EXPERIMENTAL SECTION 

3.2.1 Chemicals and Materials   

HPLC grade acetonitrile, acetone, tetrahydrofuran (THF) and dodecane were purchased from 

Sigma (St.Louis, MO). ACS grade dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) 

were purchased from J.T. Baker Chemical Co. (Phillipsburgh, NJ). Benzaldehyde, trans-4-

phenyl-3-buten-2-one and L-(-)-proline were purchased from Acros (Morris Plains, NJ). Ethyl 

acetate, hexanes and isopropanol were purchased from EMD Chemicals Inc. (Gibbstown, NJ). L-

alanine, L-valine, L-arginine, L-isoleucine, L-serine, L-leucine, L-lysine, L-histidine, L-

phenylalanine, L-threonine, L-tyrosine, L-methionine, glycine, L-proline, trans-4-hydroxy-L-

proline, L-glutamine, L-cystine, L-cysteine, L-glutamic acid, L-tryptophan, and L-asparagine were 
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purchased from Sigma (St.Louis, MO). Pro-Gly and Pro-Phe were purchased from Bachem (San 

Carlos, CA). Ala-Ala, (Ala)3, (Ala)4, β-Ala-Ala, Ala-Gly, β-Ala-Gly, Gly-Trp, Gly-Phe, Gly-

Phe-NH2, Asp-Ala, Asp-Gly, Asp-Val, α-Glu-Trp, α-Glu-Val, γ-Glu-Val, γ-Glu-Glu, γ-Glu-Gly, 

reduced L-glutathione (γ-Glu-Cys-Gly, GSH), oxidized L-glutathione (GSSG), p-Glu-His, p-Glu-

Gly-Arg-Phe, β-Asp-Ala, β-Asp-Gly, β-Asp-Val, and albumin were purchased from Sigma 

(St.Louis, MO). Nitrogen, argon, hydrogen and compressed air were purchased from Valley 

National Gases Inc. (Washington, PA).  

3.2.2 Instrumentation 

Syringe pumps were purchased from Harvard Apparatus Inc. (Holliston, MA). The Waters M-45 

pump was from Waters Corp. (Milford, MA). The HP 1050 autosampler was purchased from 

Agilent (Palo Alto, CA). VICI six-port injector (Model E60), VICI 10-port valve (model EPCA-

CE) and a pump (M6) for injection into the GC were purchased from Valco Instruments Co, Inc. 

(Houston, TX). A USB 2000 optical fiber UV-visible absorbance detector was purchased from 

Ocean Optics, Inc. (Dunedin, FL). The heater for organic reactions was constructed locally. The 

temperature controller and standard round mica heater was from Minco Products Inc. 

(Minneapolis, MN). The fused-silica capillary with 75-µm i.d., 360-µm o.d. that was used as the 

reactor was purchased from Polymicro Technologies, L.L.C (Phoenix, AZ). The Focus GC was 

purchased from Thermo-Electron. It has a single column (RTX-5, 7 m × 0.32 mm (0.25-µm thick 

phase)) and detector (FID). The X-LC (UHPLC) was purchased from Jasco, Inc. The 

CHIRALPAK IA column (2.1 mm × 150 mm, 5 µm) was purchased from Daicel Chemical 

Industries, LTD).  



 67 

3.2.3 Bench-top reactions  

The general procedures for the conventional bench-top aldol reactions followed a literature 

precedence.
7
 Amino acids or peptides (10 mole %) were suspended in 1 mL of a DMSO:acetone 

(4:1 v/v) mixture containing 0.2 mmol aromatic aldehyde (benzaldehyde/p-nitrobenzaldehyde). 

The mixture was stirred at room temperature for 24 h. The reaction yields were determined by 

GC analysis. To get pure products, reactions were quenched by adding 1 mL of sat. aq. NH4Cl 

solution. The precipitated catalysts were removed with a syringe filter and the filtrate was 

extracted twice with 2 mL of ethyl acetate. The combined organic layers were washed with 1 mL 

of sat. aq. NaCl and dried (Na2SO4). Then, all volatile components were removed in vacuo by 

rotary evaporation and the residue was purified by chromatography on SiO2. (hexanes:ethyl 

acetate, 1:3 (v/v), 40–63 µm particle size, 60 Å pore, Sorbent Technologies, Inc., Atlanta, GA).  

1
H NMR spectra (see Appendix C) were recorded on a Brucker-300 MHz spectrometer. 

They were in accordance with the literature.
7
 The enantiomeric excess of aldol product was 

determined by HPLC (Jasco XLC) with a Daicel CHIRALPAK IA column. Separation 

conditions: isocratic i-PrOH:hexanes, 5:95 (v/v), flow rate 0.22 mL/min, 25 
o
C, injection volume 

0.5 µL, UV-Vis absorbance detector at 210 nm. The retention times tR for the enantiomers are 

8.45 min and 9.12 min. 

4-Hydroxy-4-phenyl-butan-2-one: 
1
H NMR (300 MHz, CDCl3)  7.23-7.36 (m, 5H), 5.14 (dd, 

1H), 3.26 (brs, 1H), 2.83 (2×dd, 2H), 2.18 (s, 3H).  

4-Hydroxy-4-(4’-nitrophenyl)-butan-2-one: 
1
H NMR (300 MHz, CDCl3)  8.20 (d, J = 8.7 Hz, 

2H), 7.53 (d, J= 8.7 Hz, 2H), 5.25 (m, 1H), 3.56 (d, J = 3.3 Hz, 1H), 2.83 (m, 2H), 2.20 (s, 3H).  



 68 

3.2.4 GC analysis of aldol products 

 The initial oven temperature of 80 °C was held for 0.3 min. The temperature was increased from 

80 °C to 200 °C at 100 °C/min. Two minutes were allowed for cooling. Typically, flow-splitting 

was used to inject 5% of the 750-nL reaction mixture into the loop. A programmed M6 pump 

filled with isopropanol pushed the contents in the loop into the GC inlet at a flow rate of 100 

µL/min with a duration time of 3 seconds. GC was triggered to start analysis at the same time of 

sample injection by the M6 pump.  

3.2.5 Screening experiments in the microreactor  

Preparation of catalyst solutions:  

Amino acids or peptides (10 mole %) were suspended in 1 mL of DMSO with 0.2 mmol of 

benzaldehyde and stirred at room temperature until the catalysts were totally soluble.  

Screening of amino acids and peptides:  

The aldol reaction was carried out in DMSO:acetone (1:1) at room temperature for 24 h. 

Solutions of amino acid or peptide catalysts in DMSO were placed into 1.5-mL glass 

autosampler vials. The catalyst vials were placed into the autosampler tray. The reagents (3 mL 

of acetone containing 30 µL of dodecane (internal standard)) were loaded in a syringe and driven 

by SP1. As the flow rates of SP1 and injection rate of autosampler were equal, the injected 

reaction zone contained half catalyst solution and half acetone. The flow of SP2 was stopped 

after all the zones were loaded into the reactor capillary. After reaction completion, SP2 was 

turned on and reaction zones were analyzed by online GC as described above. 



 69 

3.2.6 Calibration curve and statistical calculation of yields 

A calibration curve was prepared from standard solutions of product 4-hydroxy-4-phenyl-butan-

2-one (locally synthesized), the major side product trans-4-phenyl-3-buten-2-one (commercially 

available) and the internal standard (IS) dodecane. A series of stock solutions with various mole 

ratios of pure product, side product and IS were prepared in acetone to obtain standards for GC 

analysis. The calibration curve for product yield determination was obtained by plotting the mole 

ratios of product to IS as a function of peak area ratios of product to IS.  

3.2.7 Capillary electrophoresis for identification of reaction intermediates 

The crude reaction mixture was injected into ISCO 3850 Electropherograph System by vacuum 

with a duration time of 10 seconds. The separation column is a fused-silica capillary tube (50 µm 

i.d., 70 cm length). The separation voltage is set at 20 kV (polarity ‗+‘) and the buffer solution is 

50 mM phosphate aqueous solution at pH 1.80. The UV-Vis detector is set at 210 nm.  

3.2.8 LC-ESI-MS for identification of reaction intermediates 

The crude reaction mixture placed in vials was injected into HP 1100 (LC/ESI-MS) by an 

autosampler. The LC column is Xterra MS C18, 3.5 µm particle, 4.6 mm ×100 mm. The 

separation conditions are: 0.5 mL/min, gradient 10-90% AN/water (0.1% HCOOH) in 10 min, 

held for 5 min, oven 40 
o
C.  
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3.3 RESULTS AND DISCUSSION 

3.3.1 The aldol reaction 

In the literature, p-nitrobenzaldehyde and acetone are commonly used substrates for 

investigations of peptide catalysts.  However, GC is not suitable for quantitative analysis of their 

aldol product due to its high boiling point. I prefer GC to HPLC because GC is more efficient 

and sensitive, requiring much simpler method development for the analysis of complex samples. 

GC is especially advantageous for separating low-molecular-weight organic compounds. Thus, I 

chose benzaldehyde as the substrate for studying the aldol reaction in the microreactor (Scheme 

1). Reaction yields were determined by online GC. Figure 20 shows fast separation of a crude 

reaction mixture by achiral GC, containing product, dehydration side product, substrates and 

internal standard (IS) dodecane. 

 

Scheme 1. The direct aldol reaction of benzaldehyde and acetone catalyzed by peptide. 

 

3.3.2 Solubility of peptides  

Many amino acids and peptides are poorly soluble in pure organic solvents due to their high 

polarity. Water is generally not used in the direct asymmetric aldol reaction because excess water 
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can severely compromise the reaction rate and enantioselectivity.
8, 9

 DMSO is one of the most 

commonly used aprotic solvent for the aldol reaction due to its high polarity; however, it is still a 

poor solvent to dissolve amino acids or peptides. Low solubility does not affect bench-top 

synthesis because the conventional method allows catalysts suspended in solution which can 

dissolve gradually upon reaction progress.
10

 However, in order to prevent clogging in the 

microreactor, it is necessary to prepare a homogeneous catalyst solution before starting the 

reaction.  

 

Figure 20. GC chromatogram of the aldol reaction products. Peak 1: product ; peak 2: 

major byproduct. 

Reactant: benzaldehyde, 75 nmol; Catalyst: 10 mole % L-proline; Solvent: acetone:DMSO, 1:1 

(v/v, 750 nL total). Column: RTX-5, 7 m×0.32 mm (0.25 µm stationary phase coating). Initial 

temperature, 80 
o
C; held for 0.3 min; then increased at 100 °C/min to 200 °C; held for 0 min. 

 

A straightforward way to solve the solubility problem is to lower the catalyst 

concentration below the saturation level. However, for the aldol reaction, catalyst concentration 

has a significant effect on reaction rate and yield. In the literature, due to the side reactions 
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between catalyst and substrate, the aldol reaction is always performed with a relatively large 

catalyst loading (20-40 mole %) in order to get a high reaction yield.
3, 8, 11

 Figure 21 shows that 

the yield in the bench-top aldol reaction has almost a linear dependence on the Pro-Gly 

concentration. I used p-nitrobenzaldehyde as the substrate rather than benzaldehyde in this study 

because the former has a higher reactivity at lower catalyst concentration. I can take advantage of 

this linear yield-concentration relationship for catalyst screening in the microreactor. When the 

catalyst concentration is lowered to a tolerable level for the microreactor, although reaction yield 

decreases, reaction still occurs. In this way, relative catalyst efficiency can be evaluated from the 

relative reaction yields. However, under typical conditions with catalyst loading less than 5 mole 

%, reaction yield is too low to be quantitated, and therefore it is still necessary to find an 

appropriate solubilization method that can increase catalyst solubility to a level where enough 

product can be formed for quantitative analysis by GC. 

 

Figure 21. The effect of catalyst concentrations of Pro-Gly on reaction yields. 
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I tested a number of chemical methods to increase peptide solubility. For example, I tried 

to added organic additives (e.g., organic acids or bases), surfactants (e.g., Aerosol OT) or 

cosolvents (e.g., ionic liquids
12

) into the DMSO to prepare the catalyst solution. Unfortunately, 

all of these methods caused a significant drop in yield. Some reagents like surfactants can also 

lead to channel clogging by forming large micelles during the reaction.  

I observed during bench-top reactions that amino acids and peptides eventually dissolve 

in the reaction mixture. This phenomenon has been reported by List
10

 and a number of other 

researchers who studied the direct aldol reaction catalyzed by L-proline. Actually, Orsini
13

 

reported in the 1980s that amino acids and aliphatic/aromatic aldehydes can rapidly form imines 

and then transform into oxazolidinones in organic solvents in a process involving the imine-

oxazolidinone equilibrium. Both cyclic (proline) and acyclic amino acids can react with 

aldehydes.  

In 2004, List
14

 found that not only aldehydes, but ketones can react reversibly to form 

imines and oxazolidinones with proline during the aldol reaction. The ketone-proline enamines, 

which are the key aldol reaction intermediates, are actually in equilibrium with ketone-proline 

oxazolidinones. The generally proposed catalytic mechanism by proline is shown in Figure 22. 

These oxazolidinones are believed to be soluble in organic solvents. In 2007, Seebach
15

 stated 

that oxazolidinones are indeed not a by-product of the aldol reaction but rather play an important 

role in the catalytic cycle. The authors believed that the catalytic process might follow the 

„oxazolidinone route‟, in which oxazolidinone intermediates are involved in all steps of the aldol 

reaction.  
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Figure 22. The catalytic cycle of L-proline-catalyzed direct aldol reaction. 

 

Inspired by the solubility of oxazolidinones, I tried a novel approach to prepare 

homogeneous catalyst solutions by reacting amino acids or peptides with one of the substrates in 

DMSO before loading the mixture into the reactor in combination with the other substrate. I 

tested both benzaldehyde and acetone as reactants, and found that benzaldehyde improved the 

solubility to a greater extent than acetone. The -carboxylic acid group in an amino acid is 

essential for the formation of an oxazolidinone; however, peptides do not have this functionality. 

Thus, I believe peptides and benzaldehyde mostly form imine intermediates which are soluble in 

DMSO, while amino acids may also form oxazolidinones through the imine-oxazolidinone 

equilibrium.
13

 I found that when acetonitrile was added to a DMSO solution of the 
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benzaldehyde-catalyst complex, peptides or amino acids can precipitate out of the solution, as 

the precipitate is confirmed by NMR. This effect indicates that the solubilization is indeed a 

reversible process. Northrup and MacMillan
16

 have successfully performed the direct 

enantioselective aldehyde-aldehyde dimerization reaction by proline catalysis, supporting the 

reversibility of the formation of imines and oxazolidinones from aldehydes and catalysts.  

The aldol reaction proceeds when acetone is mixed with the benzaldehyde-catalyst 

complex solution. I hypothesize that when a large amount of acetone is present, the formation of 

acetone-catalyst enamines and/or oxazolidinones will drive the dissociation of benzaldehyde-

catalyst imines and/or oxazolidinones simply by a concentration-dependent equilibrium shift. 

The formation of aldol products can also lead to the generation of acetone-catalyst enamines. 

Possible routes for the solubilization of catalysts and the subsequent aldol reaction are shown in 

Scheme 2.
13, 14, 17

 

 

Scheme 2. Possible pathways for catalyst preparation and the aldol reaction in the 

microreactor. 
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3.3.3 Identification of key reaction intermediates 

In order to validate above proposed solubilization and reaction approach, I need to 

confirm the presence of some key reaction intermediates like benzaldehyde-catalyst imines or 

acetone-catalyst imines. Since these intermediates are mostly charged species, I decided to use 

capillary electrophoresis (CE) to study the reaction mixture in order to find the presence of some 

charged intermediates. I prepared four samples in regular vials: the first sample contains only 

pure peptide Pro-Phe in DMSO; the second contains the mixture of Pro-Phe and benzaldehyde 

after overnight stirring; the third contains the mixture of Pro-Phe and acetone after overnight 

stirring; and the last one contains both substrates and the catalyst carrying out a complete aldol 

reaction. Samples were injected into CE column directly with aqueous buffers. The goal of this 

study is to confirm that peptide can form charged intermediates with benzaldehyde and acetone 

respectively. A problem is that neutral molecules like substrates and solvents may interfere with 

the separation of charged species, resulting in a complex CE spectrum. An easy way to address 

this problem is to delay the elution of neutral compounds by using very acidic buffer to hinder 

the electroosmotic flow in the fused-silica capillary channel, allowing charged molecules moving 

much faster than neutral compounds under only electrophoretic motivation.  

CE spectra of four reaction samples are shown in Figure 23, in which all peaks represent 

positively charged species because neutral compounds like acetone requires more than 90 min to 

elute out of the channel. In Figure 23, the sample containing pure Pro-Phe show only one large 

peak that is positively charged peptide itself. The samples containing Pro-Phe/benzaldehyde and 

Pro-Phe/acetone have shown one significant peak respectively that elutes at different times, 

indicating they are intermediates with different molecular weights and likely to be Pro-Phe/ 

benzaldehyde and Pro-Phe/acetone adduct complexes. The intermediate of benzaldehyde/Pro-
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Phe elutes slower than that of acetone/Pro-Phe, which agrees with the electrophoretic principle 

that larger molecules move slower than smaller molecules under same electrophoretic conditions. 

The aldol reaction mixture is much more complex, including a number of peaks shown in the CE 

spectrum that correspond to the presence of multiple charged species. 

 

Figure 23. CE spectrums of positively charged species formed in four different samples.  

CE Column: fused-silica capillary (50 µm i.d., 70 cm length); Separation voltage: 20 kV (polarity 

„+‟); Buffer solution: 50 mM aqueous phosphate solution at pH 1.80; UV-Vis detector 210 nm. 
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Figure 24. LC-MS studies of aldol reaction intermediates. 

A1. Total ion chromatogram of benzaldehyde/Pro-Phe mixture; A2. MS spectrum of 

chromatographic peak in A1 at tR=9.8 min; B1. Total ion chromatogram of acetone/Pro-Phe 

mixture; B2. MS spectrum of chromatographic peak in B1 at tR=6.8 min; C1. Total ion 

chromatogram of benzaldehyde/acetone/Pro-Phe mixture; C2. MS spectrum of chromatographic 

peak in C1 at tR=10.6 min. 

 

CE is good for separating charged species; however, with only UV-Vis detector, it is hard 

to identify the structures of those intermediates. LC-MS is an excellent tool for structure 

clarification. I prepared three reaction samples, benzaldehyde/Pro-Phe, acetone/Pro-Phe and 

benzaldehyde/acetone/Pro-Phe (complete aldol reaction), and injected them directly into LC-MS 

with electron spray ionization (ESI). The LC-MS results are shown in Figure 24. 
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The homogeneous mixture of benzaldehyde and Pro-Phe exhibits only one significant 

peak as shown in the chromatogram of Figure 24-A1 after overnight stirring, which is in 

accordance with those CE studies. This peak is likely to be the intermediate that leads to the 

dissolution of peptides. Mass spectrum in Figure 24-A2 identifies two ions, m/z 351 and m/z 373, 

corresponding to molecular ions of this intermediate and its sodium-plus ion. The structure of 

this benzaldehyde/Pro-Phe adduct is shown in Figure 25.  

 

N
N
H

O
HO O

Adduct of benzaldhyde/Pro-Phe
(M.W: 351.1)

N
N
H

O
HO O

Adduct of acetone/Pro-Phe
(M.W: 303.1)

N
N
H

O
HO O

OH

Adduct of benzaldehyde/acetone/Pro-Phe
(M.W: 409.2)  

Figure 25. The possible structures of reaction intermediates idnetified by LC-MS. 

 

Acetone/Pro-Phe shows similar results. In chromatogram Figure 24-B1, there is only one 

large peak and it corresponds to the molecular ions, m/z 303 and m/z 325, in the mass spectrum 

of Figure 24-B2. The aldol reaction mixture, containing both substrates and Pro-Phe, exhibits a 

number of peaks in the chromatogram of Figure 24-C1, one of which elutes at tR=10.6 min 

corresponding to characteristic molecular ions, m/z 409 and m/z 431, matching the molecular 
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weight of the adduct of benzaldehyde, acetone and Pro-Phe (Figure 25). Actually, in the 

chromatogram of Figure 24-C1, I can also see the peaks of both intermediates of 

benzaldehyde/Pro-Phe (tR=9.8 min) and acetone/Pro-Phe (tR=6.8 min), proving the reaction 

mixture contains all those intermediates. 

The studies of key reaction intermediates by CE and LC-MS demonstrate that in our 

catalyst preparation approach, benzaldehyde form soluble adduct with Pro-Phe, which can then 

transform into acetone/Pro-Phe adduct with the addition of large amounts of acetone through 

equilibrium. The reaction process basically follows the proposed catalytic mechanisms. 

3.3.4 Experimental validation of the catalyst solubilization method  

In addition to mechanistic studies by CE and LC-MS, I also performed experiments of screening 

model catalysts to validate this approach. I chose 21 commercially available amino acids and 

screened them in the microreactor with the above catalyst preparation method. The autosampler 

loaded each catalyst three times in succession. The microreactor (with 6.7-m-long capillary) can 

run 21 twenty-four-hour reactions in a single run that include 7 catalysts in triplicate repetition. 

Figure 26 shows the passage of 21 reaction zones through the UV-Vis fiber optic detector 

followed by online GC analysis. Zones are well separated with little overlapping. Bench-top 

reactions were also carried out under similar conditions. Each catalyst was examined in one 

bench-top reaction for comparison.  

Yields of both product 1 and side product 2 are shown in Table 2. A comparison of 

reaction yields of amino acids in the microreactor and in bench-top reactions shows that most 

amino acids lead to somewhat lower yields in the microreactor. When the yields were 

normalized by dividing them by the maximum yield in the microreactor and bench-top reactions, 
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the relative yields in the microreactor were mostly in agreement with those of bench-top 

reactions as shown in Figure 27.   

 

Figure 26. Absorbance response of 21 reaction zones passing through the UV-Vis detector. 

Detection wavelength: 260 nm; Solvent of SP2: THF; Flow rate: 250 nL/min; Zone volume: 750 nL. 

Each catalyst is present in three successive zones. 

 

Among all amino acids, L-proline and trans-4-hydroxy- L-proline have the largest yield 

loss in the microreactor although they still show higher yields than other amino acids. I 

hypothesize that enamines or oxazolidinones formed by benzaldehyde and secondary amine of 

proline are more stable than those formed by benzaldehyde and primary amines. If the addition 

of acetone cannot shift the benzaldehyde-catalyst equilibrium, less catalyst will be released to 

participate in the aldol reaction, and will result in a lower reaction yield because it greatly 

depends on catalyst concentration. In fact, it has been found that the formation of benzaldehyde-

proline oxazolidinones is more favorable than the formation of acetone-proline enamines.
14

 As a 

result, the ketone is usually used in large excess to suppress the formation of oxazolidinones.  
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Table 2. Yields of the aldol reaction of acetone and benzaldehyde catalyzed by amino acids. 

Entry Catalyst 

Yield (%) of 1 (product)a Yield (%) of 2 (side product) 

Microreactorb Batch reactionc Microreactor Batch reaction 

1 L-alanine 2.5 ± 0.3d 4.4e 5.6 ± 0.6 2.2 

2 L-valine 1.3 ± 0.2 1.5 1.7 ± 0.3 1.3 

3 L-arginine 1.2 ± 0.2 0.3 8.8 ± 0.8 0.6 

4 L-isoleucine 4.2 ± 0.5 2.9 8.0 ± 0.4 10.9 

5 L-serine 6.6 ± 0.1 6.3 4.5 ± 0.2 13.5 

6 L-leucine 2.2 ± 0.1 6.3 4.4 ± 0.2 9.1 

7 L-lysine 1.3 ± 0.1 1.3 7.6 ± 0.2 19.3 

8 L-histidine 3.6 ± 0.2 2.3 11.9 ± 0.7 13.8 

9 L-phenylalanine 3.0 ± 0.1 4.5 4.1 ± 0.8 10.1 

10 L-threonine 3.1 ± 0.1 10.5 1.7 ± 0.1 11.8 

11 L-tyrosine 3.5 ± 0.1 5.0 2.9 ± 0.1 7.2 

12 L-methionine 4.7 ± 0.2 6.2 3.9 ± 0.1 12.2 

13 glycine 10.8 ± 0.7 8.8 18.9 ± 1.5 27.1 

14 L-proline 8.4 ± 1.6 33.8 0.3 ± 0.0 19.7 

15 trans-4-hydroxy-L-proline 19.3 ± 0.9 48.3 0.7 ± 0.1 13.2 

16 L-glutamine 2.3 ± 0.1 4.7 1.8 ± 0.1 3.7 

17 L-cystine 0.4 ± 0.1 0 0.3 ± 0.1 0 

18 L-cysteine 0.1 ± 0.0 0.1 0.2 ± 0.0 0.6 

19 L-glutamic acid 1.7 ± 0.1 6.7 1.7 ± 0.1 5.7 

20 L-tryptophan 1.4 ± 0.1 6.0 1.7 ± 0.0 8.6 

21 L-asparagine 0.8 ± 0.0 1.1 8.3 ± 0.6 19.1 

 

a Yields of product and side product are determined by GC.  

b 10 mole % amino acids, 75 nmol benzaldehyde, acetone:DMSO, 1/1 (v/v, 750 nL total). Reactions 

conducted at room temperature for 24 h in the microreactor.  

c 10 mole % amino acids, 0.2 mmol benzaldehyde, acetone:DMSO, 1/4 (v/v, 1 mL total). Reactions 

conducted at room temperature for 24 h in the vials.  

d Average yield for three runs (mean ± SEM, n=3). 

e Yield from a single run. 
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Figure 27. Normalized yields of the aldol reactions catalyzed by amino acids. Normalization 

is done by dividing yields by the maximum. 

 

The objective of catalyst screening is to identify the relative activities of the catalysts. I 

am less concerned about yield because the objective is not to produce product. Thus, although 

the microreactor approach may result in a somewhat lower yield, it can still be used for rapid 

preliminary screening of large catalyst libraries based on relative reaction yields. Some catalysts 

with better activities can be further studied in batch reactions under fully-optimized conditions.  

3.3.5 Screening of peptides in the microreactor 

I screened 27 commercially available peptides in the microreactor. L-glutathione (GSH) in 

reduced form is γ-Glu-Cys-Gly and its oxidized form (GSSG) is the disulfide. Screening of 

peptides follows the procedures of screening amino acids. Catalyst solutions were prepared by 
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the same method. Each catalyst was studied in three successive reactions. I also carried out 

bench-top reactions for those 27 peptides for comparison. Yields of both product 1 and side 

product 2 are shown in Table 3. The normalized yields are shown in Figure 28. 

Table 3. Yields of the aldol reactions of acetone with benzaldehyde catalyzed by peptides. 

Entry Catalyst 

Yield (%) (1, product)a Yield (%) (2, side product) 

Microreactorb Batch reactionc Microreactor Batch reaction 

1 Ala-Ala 0.6 ± 0.0d 1.1e 0.6 ± 0.0 0.6 

2 Ala-Ala-Ala 0.9 ± 0.1 0.7 1.1 ± 0.0 0.3 

3 Ala-Ala-Ala-Ala 0.9 ± 0.0 0.9 0.7 ± 0.0 0.9 

4 β-Ala-Ala 0.3 ± 0.0 0.1 2.7 ± 0.1 1.0 

5 β-Ala-Gly 0 0.1 1.7 ± 0.1 1.1 

6 Ala-Gly 0.7 ± 0.0 0.9 0.7 ± 0.1 0.4 

7 Gly-Trp 0.2 ± 0.0 0.3 0.7 ± 0.0 0.3 

8 Gly-Phe 1.3 ± 0.1 0.9 2.0 ± 0.1 0.4 

9 Gly-Phe-NH2 0.3 ± 0.0 1.5 0.6 ± 0.0 0.1 

10 Albumin 0.2 ± 0.0 0 0.4 ± 0.1 0.1 

11 Pro-Gly 0 2.6 0.3 ± 0.0 1.5 

12 Pro-Phe 0.2 ± 0.0 6.1 0.4 ± 0.0 2.1 

13 Asp-Ala 0.4 ± 0.0 0.7 0.6 ± 0.1 0.5 

14 Asp-Val 0.8 ± 0.2 0.4 1.1 ± 0.1 0.4 

15 Asp-Gly 1.1 ± 0.2 0.4 1.4 ± 0.3 0.4 

16 α-Glu-Val 0.2 ± 0.0 0.8 0.4 ± 0.0 1.0 

17 α-Glu-Trp 0.2 ± 0.0 0.4 0.4 ± 0.0 0.3 

18 γ-Glu-Val 4.7 ± 0.2 3.5 3.8 ± 0.1 4.6 

19 γ-Glu-Glu 6.9 ± 0.4 3.0 10.2 ± 0.7 4.2 

20 γ-Glu-Gly 9.9 ± 0.4 3.0 14.1 ± 0.8 4.1 

21 β-Asp-Gly 5.8 ± 0.2 1.8 8.7 ± 0.7 2.5 

22 β-Asp-Val 5.2 ± 0.3 - 7.3 ± 0.5 - 

23 β-Asp-Ala 7.2 ± 0.4 - 19.6 ± 1.3 - 

24 Glutathione (oxidized) 7.2 ± 0.2 - 33.7 ± 1.5 - 

25 Glutathione (reduced) 3.1 ± 0.1 - 17.2 ± 0.3 - 

26 p-Glu-Gly-Arg-Phe 0.1 ± 0.0 - 0.4 ± 0.0 - 

27 p-Glu-His 0.7 ± 0.4 - 3.2 ± 0.9 - 

 

 

a Yields of product and side product are determined by GC.  
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b 10 mole % peptides, 75 nmol benzaldehyde, acetone:DMSO, 1/1 (v/v, 750 nL total). Reactions 

conducted at room temperature for 24 h in the microreactor.  

c 10 mole % peptides, 0.2 mmol benzaldehyde, acetone:DMSO, 1/4 (v/v, 1 mL total). Reactions 

conducted at room temperature for 24 h in the vials.  

d Average yield for  three runs (mean ± SEM, n=3). 

e Yield from a single run. 

 

 

Figure 28. Normalized yields of peptides in the microreactor and bench-top reactions. 

The normalization is done by dividing yields by the maximum in the microreactor and bench-top 

reactions. 

 

In Figure 28, it shows that two groups of peptides show relatively higher reactivities than 

other peptides, namely γ–Glu- and β–Asp-containing peptides. Bench-top reactions agree mostly 

with the microreactor except for Pro-Gly and Pro-Phe which exhibit nearly no reactivity in the 

microreactor. Their yield loss should be due to the similar reasons discussed above for L-proline.  
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L-proline is a well-studied catalyst for the aldol reaction and its proposed catalytic 

mechanism is based on the plausible tricyclic transition state I (Figure 29) stabilized by 

intermolecular hydrogen bonding between the enamine intermediate and the carbonyl group on 

the aldehyde.
10

 This transition state also accounts for the stereochemistry of the aldol products. 

The proton on the carboxylic acid group plays a key role in the formation of this hydrogen-

bonded framework. It is believed that other acyclic amino acids can also form a similar chair-like 

bicyclic transition state II.
5
 trans-4-hydroxy- L-proline shows a better yield than L-proline in our 

study which agrees with results reported in the literature.
10

 I hypothesize that its higher reactivity 

may be due to the hydroxyl group‟s participation in the hydrogen-bonding network of the 

enamine, contributing to the higher stability of transition state III. The enantioselectivity of 

trans-4-hydroxy- L-proline is also reported to be higher than L-proline,
10

 which is also indicative 

of the contribution of the hydroxyl group to the transition state III. 

 

  

Figure 29. Plausible transition states of amino acid catalyzed aldol reaction. 
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Short peptides are believed to operate by a catalytic process similar to amino acids. 

However, in peptides, the N-terminal amine and C-terminal carboxylic acid group are on remote 

amino acid residues, the reactivity of peptides basically depends on the spatial proximity of the 

amine to a carboxylic acid. Some active peptides published in the literature,
6
 e.g., L-pro-L-pro-L-

asp-NH2 and L-pro-D-ala-D-asp-NH2, have turn-like 3D conformations in which the secondary 

amine function of proline is in close proximity to the carboxylic acid of aspartic acid. Short N-

terminal-proline peptides, e.g., dipeptides, are proposed to have a transition state IV
4
 and other 

short  acyclic-amino-acid peptides have a plausible transition state V (Figure 30).
5
 Since peptides 

have more complex and restricted conformations, they are usually superior to amino acids in 

stereoselectivity because the peptide backbone can assist in the stabilization of the transition 

state. The N-terminal amino acid in short peptides is believed to control most of the reaction 

enantioselectivity.
5
 However, the chirality of the C-terminal amino acid for some turn-like 

peptides mentioned above has an important effect on the asymmetric catalysis as well.
6
  

 

 

Figure 30. Plausible transition states of dipeptide catalyzed aldol reaction. 
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In addition to proline peptides, other peptide catalysts with N-terminal acyclic amino 

acids have also been investigated.
18, 19

 Those peptides show good reactivity and stereoselectivity 

towards different substrates. Here, I found that two groups of short peptides, γ–Glu and β–Asp, 

have relatively higher reactivity than other peptides, which has not yet been reported. The 

structures of γ–Glu or β–Asp peptides have a unique common characteristic (Figure 31). The 

primary amine of the N-terminal amino acid is in proximity to a carboxylic acid just like in an 

amino acid. As for proline-terminal peptides, I believe that the reactivity and stereoselectivity of 

those two groups of peptides mostly depends on the N-terminal amino acids, γ–Glu and β–Asp. 

In these cases, catalysis is likely to proceed through transition state II. As the yields of the γ–Glu 

and β–Asp peptides are not identical, I infer that there is an influence of peptide backbone 

structure. 

 

 

Figure 31. Structures of γ–Glu-Gly and β–Asp-Gly. 

 

In Table 3, GSH provides approximately half the yield of GSSG in both the microreactor 

and bench-top reactions. GSSG has two γ–Glu moieties; this apparent doubling of catalyst 



 90 

loading may be responsible for the approximate proportional increase in yield. This effect is a 

testimony to the reliability of this catalyst screening approach.  

3.3.6 Enantioselectivity of peptide-catalyzed aldol reaction 

Peptides are chiral catalysts and reaction stereoselectivity is an important criterion to determine 

catalyst activities. Since I used achiral GC for online analysis, I initially performed chiral 

separation by chiral GC with Chiraldex GTA column. The chromatogram of a crude reaction 

mixture is shown in Figure 32, in which a pair of enantiomers is separated within a short time 

period. However, a potential problem is that this chiral column “Chiraldex GTA (10 m×0.32 

mm)” with a stationary phase of trifluoroacetylated ((2,6-di-O-pentyl-3-trifluoacetyl) γ-

cyclodextrin) is very vulnerable to water moisture, especially at high temperature when GC runs. 

Even a minute amount of water can hydrolyze the column and compromise its selectivity. 

DMSO is a notoriously hygroscopic solvent, and therefore the robustness of this column is not 

very good when reaction mixture is directly analyzed by GC without pretreatment.  

 

Figure 32. Chromatogram of aldol products analyzed by chiral GC. 



 91 

GC column: Chiraldex GTA, 10 m × 0.32 mm; Separation conditions: Oven temperature from 70 

o
C to 150 

o
C at 16 

o
C/min, He flow 6.5 mL/min, inlet temperature 250 

o
C, flow spilt ratio 50.  

Due to this potential problem of chiral GC column, I switched to chiral HPLC for 

analysis of aldol products. I offline studied reaction enantioselectivities of several relatively 

reactive amino acids and peptides that are discovered in the screening by chiral normal-phase 

HPLC. The column is Chiralpak IA (2.1mm ×150 mm, 5 µm silica gel) with a stationary phase 

of Amylose tris (3,5-dimethylphenylcarbamate). The LC chromatogram is shown in Figure 33.  

 

Figure 33. Chromatogram of aldol products separated by chiral HPLC. 

HPLC column: Chiralpak IA (2.1mm ×150 mm); Separation conditions: 0.22 mL/min, isocratic 

hexane/isopropanol 95/5 (v/v), oven 25 
o
C, UV detector 210 nm.  

 

Table 4 shows that L-proline, trans-4-hydroxy-proline and proline-terminal peptides have 

somewhat better enantioselectivities than γ–Glu and β–Asp peptides based on benzaldehyde and 

acetone substrates. Other peptides like Gly-Phe lead to poor stereoselectivity. This analysis 

clearly supports the concept that N-terminal amino acid is responsible for peptide 

stereoselectivity. As expected, trans-4-hydroxy- L-proline has a higher enantioselectivity than L-

proline due to its additional hydroxyl group which can stabilize the transition state. The newly 
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discovered γ–Glu or β–Asp peptide catalysts have moderate reactivity and stereoselectivity 

towards the aldol reaction between benzaldehyde and acetone. 

Table 4. Enantioselectivities of the aldol reaction catalyzed by amino acids and peptides. 

 
Entry Catalyst ee (%)a  

1 L-proline 58.1 

2 trans-4-hydroxy-L-proline 71.2 

3 Gly-Phe 10.5 

4 Pro-Gly 58.8 

5 Pro-Phe 73.0 

6 γ-Glu-Glu 35.2 

7 γ-Glu-Gly 41.4 

8 Glutathione 38.5 

9 β-Asp-Gly 26.2 

10 β-Asp-Val 28.4 

 

3.3.7 Throughput of the microreactor 

I define the reactor throughput as the number of reactions done in a unit time. For the aldol 

reaction, I used a short 6.7-m-long capillary to load 21 reactions (containing 7 catalysts) in 

parallel and allow them to react for 24 h followed by online analysis. The times required for this 

operation are as follows: Catalyst weighing and solution preparation take about 18 h; loading 

catalysts into the reaction capillary takes about 2 h; GC analysis of all reaction zones takes about 

2 h. Thus, the non-optimized throughput based on 6.7-m-long capillary is about 0.5 (24-h-

reaction) reactions/h as shown in Eq. (1).  

Technically, I am able to load more reaction zones in a longer reaction capillary to 

increase reactor throughput. In addition to the throughput, catalyst screening is mostly carried 

out in an automated way by the microreactor system, and the major human effort is the 
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preparation of catalyst solutions which usually takes about 1 h for weighing and dissolving of 7 

catalysts. The effort for operating the microreactor is trivial. Consequently, the entire screening 

process is more efficient than traditional batch approach.  

3.3.8 Green chemistry character of the microreactor 

Catalyst screening in the microreactor requires much less reagent and solvent than a typical 

bench-top reaction. To load each reaction zone (750 nL) into the reactor capillary, the 

autosampler withdraws 25 µL of catalyst solution (DMSO) while SP1 delivered approximately 

90 µL of reagent solution (acetone) at a flow rate of 15 µL/min. The flow rate of carrier solvent 

(THF) that delivers all zones through the capillary is set at 15 µL/h by SP2. The total running 

time is about 4 h for zone loading and GC analysis. Therefore, in this experiment, to screen 21 

catalysts, the total solvent consumption is calculated below approximately 2.5 mL, or about 120 

µL per catalyst. By further optimization of the operation, especially lowering the flow rate of 

SP1, the microreactor is capable of screening with even less solvent. 
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3.4 CONCLUSION 

Peptides are important organocatalysts for the asymmetric aldol reaction. In this section, a model 

aldol reaction between benzaldehyde and acetone was chosen and a variety set of short peptides 

were screened in the capillary-based microreactor with good throughput. The volume of an 

individual reaction was 750 nL and reaction yield was determined by online GC. Considering the 

reaction is very slow, a stop-flow approach was employed to carry out the aldol reaction. To 

increase the peptide solubility in DMSO, I developed a benzaldehyde-peptide adduct approach to 

prepare homogeneous catalyst solutions before loading into the reactor. Two classes of peptides, 

γ-Glu- and β-Asp-containing peptides, were found to possess higher catalytic reactivities towards 

the aldol reaction. Chiral HPLC studies showed that these two types of catalysts have moderate 

stereoselectivity but are inferior to some known proline-containing peptides. The activities of 

those peptides are highly dependent on the γ-Glu and β-Asp residues, which demonstrate the 

notion that N-terminal amino acid is primarily responsible for peptide catalytic activities. 
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4.0  SCREENING OF ACID CATALYSTS FOR AN INTERNAL ACYLIMMINIUM 

ION CYCLIATION REACTION 

4.1 INTRODUCTION 

Acids are important catalysts for many organic transformations. In collaboration with Prof. Paul 

Floreancig‘s group, I want to apply our microreactor system to discover new acid catalysts for a 

novel internal cyclization reaction involved with acyliminium ion intermediate. This new 

synthetic protocol is useful for diversity-oriented organic synthesis, which can prepare 

structurally diverse amide libraries through either a one-pot synthesis or a two-step synthesis 

(Scheme 3).
1
 By this protocol, a variety of bicyclic amide compounds can be synthesized from 

cynaohydrin ethers and the resulting products would be useful molecular scaffolds for 

constructing drug-like compounds.  

 

Scheme 3. One-pot or two-step synthesis of bicyclic amide compounds via acid catalysis. 
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In the two-step synthetic protocol, a stable acyl aminal intermediate is isolated and 

purified first, then transformed into the bicyclic amide product by treatment of Lewis acids. I 

want to specifically study the second-step transformation from isolated acyl aminal to bicyclic 

amide because it can not only increase product yield and enhance the diastereocontrol, but is 

applicable for more substrates because one-pot synthesis is often compromised by decomposition 

of acylimine intermediate. The catalysis by acids is crucial for this cyclization process. 

In the previous sections, I described the efficacy of coupling online GC to the 

microreactor for investigation of the Stille reaction and aldol reaction.
2
 GC is a fast and highly 

reproducible instrument; however, it is only appropriate for separating volatile and thermally 

stable compounds, whereas HPLC is suitable for analysis of most organic compounds. For the 

above cyclization reaction, reaction substrate acyl aminal is thermally unstable and can quickly 

decompose in GC column at high temperature. Thus, I decide to couple HPLC instead of GC to 

the microreactor for online analysis of reaction products. However, conventional HPLC is not so 

efficient for separating complex reaction mixture, which may compromise the screening 

throughput a lot.  

A new chromatography technique, Ultra-high Pressure LC (UHPLC), seems to be a good 

solution for our microreactor system. It allows very fast separation with adequate peak capacity. 

By using shorter columns packed with sub-2-µm particles, UHPLC is able to perform high 

efficiency separation of complex organic reaction mixtures.
3-9

 In this section, I integrated a 

commercial Jasco X-LC system (UHPLC) to a Teflon-capillary-based microreactor
2
 to build a 

new screening system. Compared to fused-silica tubing, Teflon capillary is very inert to acids, 

hardly protonated. This new microreactor is capable of conducting a large number of parallel 

reactions with online quantitative analysis by UHPLC.  
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I validated a continuous-flow approach for catalyst screening through the investigation of 

zone dispersion in the reaction capillary under varied flow rates. The analysis of 54 reaction 

samples in sequence confirmed UHPLC‘s high efficiency and reproducibility. The experimental 

throughput was about nine one-hour reactions/h.  

I investigated several reaction parameters that are important for reaction conversion, 

including reaction time, temperature and catalyst concentration. Under similar conditions, I 

chose a diverse set of acids and screened them in a single run by a continuous flow approach. 

Results showed that product yield strongly depends on acid genre and its acidity. Byproduct 

analysis by GC-MS and LC-MS also showed different acids will lead to different side reaction 

pathways. Lewis acids were generally better than Brønsted acids in terms of reaction yield and 

selectivity. Among all acids, lanthanide catalysts were found to be the best, although they are 

much less acidic compared to other strong acids. Considering the exceptional capability and 

generality of lanthanide catalysts towards organic synthesis, I believe they will be highly 

potential catalysts for this bicyclic-amide-forming reaction.  

4.2 EXPERIMENTAL SECTION 

4.2.1 Chemicals and materials 

HPLC grade acetonitrile (AN) was purchased from Sigma-Aldrich (St. Louis, MO). 4-

ethylanisole and p-toluenesulfonic acid monohydrate were purchased from Fisher Scientific 

(Fairlawn, NJ). Acetic acid (glacial), hydrochloric acid (38%) and perchloric acid (72%) were 

purchased from J. T. Baker Chemical Co. (Phillipsburgh, NJ). Trifluoroacetic acid, chloroacetic 
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acid, dichloroacetic acid and trichloroacetic acid were purchased from Sigma-Aldrich (St. Louis, 

MO). Phosphoric acid (85%), sulfuric acid (98%) and nitric acid (70%) were purchased from 

EMD Chemicals (Gibbstown, NJ). Tin (V) chloride, antimony (V) chloride, boron trifluoride 

diethyl etherate, boron trifluoride tetrahydrofuran complex, europium (III) trifluoromethane 

sulfonate,  ytterbium (III) trifluoromethane sulfonate, holmium (III) trifluoromethane sulfonate, 

erbium (III) trifluoromethane sulfonate, terbium (III) trifluoromethane sulfonate were purchased 

from Sigma-Aldrich (St. Louis, MO). Purified water was obtained from a Millipore A10 water 

purification system (Billerica, MA). 

4.2.2 Instrumentation 

The UHPLC system with dual wavelength UV-Vis detector was from Jasco, Inc (X-LC system, 

Easton, MD). The Acquity UHPLC BEH C18 1.7 µm 1.0 × 50 mm column was purchased from 

Waters Corp. (Milford, MA). The VICI six-port HPLC injector (Model E60), VICI UHPLC 

15000-psi 10-port nanobore valve (model C72NX) and VICI UHPLC 15000-psi 6-port nanobore 

valve (model C72NX) were purchased from Valco Instruments Co, Inc. (Houston, TX). The UV 

light source (model D 1000CE) was purchased from Analytical Instrument Systems, Inc. 

(Flemington, NJ). A USB 2000 optical fiber UV-visible absorbance detector was purchased from 

Ocean Optics, Inc. (Dunedin, FL). Harvard Pump 11 Plus syringe pumps were purchased from 

Harvard Apparatus Inc. (Holliston, MA). The HP 1050 autosampler was purchased from Agilent 

(Palo Alto, CA). The Waters 515 HPLC pump was purchased from Waters Corp. (Milford, MA). 

The Teflon FEP tubing (100 µm i.d., 1/16‖ o.d.) that was used as the microreactor was purchased 

from Upchurch Scientific (Oak Harbor, WA).  
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4.2.3 Microreactor construction 

Catalyst and reagent loading of this new microreactor is same to the previous reactor design. The 

different sections are the reaction and analysis parts (Figure 34). Instead of using fused-silica 

capillary, the reaction channel is made by a piece of 100 µm i.d., 1/16‖ o.d., 6.1 m long Teflon 

capillary tube. A water/oil bath with a thermometer is used for heating or cooling the reaction 

capillary to the required temperature. Syringe pump 2 constantly delivers carrier solvent 

acetonitrile (AN) to push all reaction zones in and out of the capillary. In a continuous flow 

mode, reaction time is controlled by the flow rate of AN and the length of reaction capillary. 

 

 

Figure 34. Schematic view of the microreactor system interfaced to UHPLC. 

 

When reaction zones flow out of the capillary, they first go through a flow cell monitored 

by a UV-Vis fiber optic detector before entering a 10-port 2-position double-loop (1.0 µL) valve 

(L2). L2 is a 15,000-psi high pressure valve connected to UHPLC pumps and its column. The 
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detailed configuration is shown in Figure 35. It enables the loading of one loop from the reaction 

capillary while the contents of the other loop are chromatographed by UHPLC. A single UHPLC 

chromatographic run is set to analyze all reaction zones over a long period of time and serial 

injection of samples is done automatically by the switch of L2 which is triggered by the 

screening software that captures absorbance signals from the fiber optic detector.  

 

   

Figure 35. Schematic view of 10-port injector for continuous sample loading and analysis. 

4.2.4 Synthesis of the substrate acyl aminals  

The substrate of the cyclization reaction was synthesized and isolated by Dr. Qing Xiao in Prof. 

Floreancig‘s group. The synthesis procedures are described as follows. 

N-(3-(3,4-dimethoxyphenyl)-1-methoxy-2,2-dimethylpropyl) isobutyramide:
10

  A solution of 

3-(3,4-dimethoxyphenyl)-2,2-dimethylpropanenitrile (0.4892 g, 2.23 mmol) in THF (23 mL) was 

treated with Cp2Zr(H)Cl (0.72 g, 2.79 mmol) at room temperature. The reaction mixture was 

stirred at room temperature for 60 min, then isobutyrylchloride (0.29 mL, 2.79 mmol) was 
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added. The mixture was stirred for another 30 min at room temperature. Then MeOH (2.7mL, 

66.9 mmol) was added, and the mixture was stirred for another 10 min. The reaction was 

quenched with saturated NaHCO3. The mixture was extracted with ethyl acetate. The extracts 

were washed with H2O and brine then dried over MgSO4. The solvent was evaporated under 

vacuum and the residue was purified by column chromatography to give the product as light 

yellow oil (0.621g, 86.0%).  

1
H MNR (300 MHz, CDCl3):  6.82-6.79 (m, 1H), 6.73-6.71 (m, 2H), 5.47 (d, 1H, J = 9.9 Hz), 

4.83 (d, 1H, J = 10.2 Hz), 3.87 (s, 3H), 3.86 (s, 3H), 3.32 (s, 3H), 2.64 (d, 1H, J = 13.3 Hz), 2.52 

(d, 1H, J = 13.3 Hz), 2.30 (sept, 1H, J = 6.9 Hz), 1.10 (d, 3H, J = 6.9 Hz), 1.09 (d, 3H, J = 6.9 

Hz), 0.92 (s, 3H), 0.91 (s, 3H);  

13
C NMR (300 MHz, CDCl3):  177.5, 148.6, 147.8, 131.1, 123.0, 114.3, 111.1, 86.2, 56.09, 

56.08, 56.04, 43.7, 39.6, 36.2, 24.3, 22.2, 19.8, 19.7;  

IR (neat): 3306.7, 2965.7, 2934.1, 2832.4, 1657.0, 1589.3, 1515.3, 1465.4, 1271.4, 1236.3, 

1089.6, 1029.2, 765.5 cm
-1

;  

High Resolution MS (Electron Ionization): calculated for C18H29NO4 323.2097, found m/z 

323.2094. 

4.2.5 UHPLC analysis 

The chromatographic separation was done in an isocratic mode. The column was Acquity 

UHPLC BEH C18 1.7 µm 1.0 × 50 mm column. The mobile phase was composed of AN:Water 

(24:76, v/v) at a flow rate of 0.35 mL/min. The column oven was set at 70 
o
C and injection 

volume (double loops of L2) was 1.0 µL. A single chromatographic run was set to analyze all 

reaction zones.  
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4.2.6 Continuous flow reactions in the capillary 

Investigation of reaction parameters 

Acid solutions (x mole % in AN) were placed in 1.5-mL glass autosampler vials. Catalyst vials 

were set on the tray of the autosampler. The reagents containing 0.01 M substrate and 0.01 M 4-

ethylanisole (internal standard, IS) in AN were loaded in a 2.5 mL gas-tight syringe (Hamilton 

Company, Reno, Nevada) and constantly driven by syringe pump 1. Syringe pump 2 delivered 

the carrier solvent AN at a certain flow rate to push all reaction zones through the capillary. The 

flow rate is set to correspond to the required reaction time. For example, for 1-h-reaction, the 

flow rate was set at 0.9 µL/min; for 2-h-reaction, the flow rate was set at 0.45 µL/min. The 

capillary was heated or cooled in an oil bath to the required temperature. Reaction zones were 

serially analyzed by online UHPLC when they flow out of the reaction capillary.  

Screening of catalysts 

Solutions of a diverse set of Brønsted and Lewis acids (20 mole % in AN) were loaded by the 

autosampler following the above procedure. The reagents (0.01 M substrate and 0.01 M 4-

ethylanisole in AN) were loaded by syringe pump 1. Syringe pump 2 delivered the carrier 

solvent (AN) at a certain flow rate to push all reaction zones through the capillary followed by 

online analysis by UHPLC.  

4.2.7 Calibration curve for yield and conversion determination  

A calibration curve was prepared from standard solutions of product, substrate and internal 

standard (IS) 4-ethylanisole (commercially available). A series of stock solutions with various 
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mole ratios of pure product, substrate and IS were made in AN to obtain standards. I 

chromatographed those stock solutions by UHPLC. The calibration curve for product 

determination was made by plotting the mole ratios of product to IS as a function of peak area 

ratios of product to IS. The calibration curve for substrate conversion was made by plotting the 

mole ratios of substrate to IS as a function of peak area ratios of substrate to IS. 

4.2.8 Byproduct analysis by GC-EI-MS and LC-ESI-MS 

Crude reaction mixtures are injected directly into GC-MS and LC-MS for analysis without 

pretreatment. GC-MS system: Shimadzu GC-17A and QP5050A. GC column: XTI-5, 30 m, 

thickness 0.25 µm, diameter 0.25 mm. GC separation conditions: 100 
o
C  250 

o
C at 25 

o
C/min, 

held 10 min, inlet temperature 250 
o
C, carrier flow 3 mL/min He, split ratio 50. LC-MS system: 

Shimadzu UFLC SIL-20AC and ABI API2000 QqQ (LC/MS/MS) with turbo electron spray. LC 

column: Dionex Acclaim C18, 3 µm, 120 Å pore, 2.1mm ×150 mm. LC separation conditions: 

0.2 mL/min, gradient 5-95% ACN/water (0.1% CH3COOH) in 20 min, oven 40 
o
C, UV detector 

220 nm.  
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4.3 RESULTS AND DISCUSSSION 

4.3.1 Continuous flow reactions in the capillary 

The cyclization reaction starting from acyl aminals is a relatively fast reaction (Scheme 4) that is 

usually complete within an hour. Therefore, I carried out this reaction using a continuous-flow 

approach by delivering all zones through the capillary by a constant flow stream of AN.  

 

Scheme 4. Acid catalyzed cyclization reaction forming bicyclic amide libraries. 
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In the capillary, flow dispersion due to hydrodynamics can cause spreading of zones in 

the capillary which have been discussed in previous sections. The zone shapes are schematically 

shown in Figure 36. When zones are just injected into the reaction capillary, they are in 

rectangular shape without dispersion; while when they flow in the capillary, they usually show 

some extent of dispersion like chromatographic peaks. The dispersion extent depends on a 

number of factors such as flow rate, temperature, channel diameter, diffusion coefficients and 

viscosity.
11

 Because the wings of dispersed zones have lower concentrations of reagents and 

catalysts due to dilution, reaction yield might show large variations in these regions of zones. 

Thus, I programmed the screening software to inject only the center region of reaction zones into 

the UHPLC for best reaction reproducibility.  
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Figure 36. Schematic view of flow dispersion of reaction zones. 

Zones are first in rectangular shape after immediate injection, and then disperse when flowing 

through the channel. The peak maximum has highest product concentration, while the peak wings 

have lower product concentration.  

 

In the continuous-flow mode, the residence time of zones is mainly controlled by the 

flow rate that also determines the extent of dispersion. Basically, the higher the flow rates, the 

shorter the residence time and then the narrower the zones. I studied the effect of flow rates on 

dispersion by loading and pushing reaction zones continuously through the capillary under varied 

flow rates. Figure 37 shows the shapes of three reaction zones at varied flow rates. I see at high 

flow rate, zones are very narrow but still in good symmetry without much tailing. The width and 

height of zones are very reproducible, indicating good reproducibility of the microreactor system 

which is important for catalyst screening. By simply controlling the distance between adjacent 
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zones, I can effectively minimize zone overlapping. In Figure 37, zones can be well separated 

even when residence time is more than 3 h. 
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Figure 37. UV response of zones going through the reactor capillary at different flow rates. 

The Teflon capillary is 6.1 m, 100 µm i.d.; Solvent is acetonitrile; UV detection wavelength is 225 

nm. Residence times of zones correspond to their flowing time in the reaction capillary. 

 

A major concern for any screening approach is reaction reproducibility. Many operational 

factors play a role, such as flow rate, zone volume, mixing ratio of catalyst and reagent and 

temperature. The flow rate determines the reaction time, zone shape, dispersion and overlapping. 

I used a Harvard syringe pump to deliver precision flow for accurate control. Figure 38 shows an 

example of absorbance response of 54 reaction zones serially passing through the reactor 

capillary with a residence time of 1 h. I repeated three reactions for studying one catalyst and 

therefore, it is clearly shown that the absorbances of three successive zones are mostly identical, 

indicating reproducible product concentrations in repetitive zones. The space between adjacent 
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zones is highly reproducible. As shown in Figure 39, a linear regression curve is plotted based on 

the time points when the zones hit the UV-Vis detector as a function of zone numbers. The first 

zone has a residence time of 60 min which equals to the reaction time. Since individual zones 

should take the same time to load and flow through the reaction capillary, then they should come 

out of the capillary in equally-spaced time periods. The perfect linearity (R
2
=0.99999) of times 

of all 54 zones shown in Figure 39 confirms the excellent system stability over a long period of 

time.  Therefore, screening a large number of zones in a continuous flow is technically possible 

under precise instrumental control as long as the syringes can feed enough reagents and solvents 

to the reaction capillary.   

 

 

Figure 38. Absorbance response of 54 reaction zones flowing out of the reactor and passing 

through the UV-Vis optical detector at a flow rate of 0.9 µL/min.  
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Figure 39. The linear regression of time points when 54 zones hit the UV-Vis detector in a 

continuous flow (R
2
=0.99999).  

 

As mentioned before, the product concentrations vary in a single reaction zone. In 

principle, if all zones have the same composition, they should have the same shape and width. 

However, in reality, reaction substrates and products will have different concentrations in 

different zones depending on reaction conversion. The detection wavelength of UV-Vis optic 

fiber detector is empirically set at 225 nm and at this wavelength, molar absorptivities of product 

and substrate are close because they have similar major chromophore groups. Most catalysts, 

protic acids or transition-metal Lewis acids, have low absorbance at this wavelength. Thus, 

generally, the peak height and peak width of all zones should have little difference because the 

total concentration of product and substrate is constant for all zones. In Figure 40, the peak width 

at half height of 54 zones is plotted as a function of zone numbers. It shows that zone width has a 

little variation represented as a time length of 84.2±3.9 sec. The relative standard deviation is 
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4.6%. This small variation of half widths indicates the product concentration variations in zones 

do have a little effect on peak shapes. Moreover, the presence of some unknown byproducts that 

may have different molecular absorptivities can also contribute to the variation of peak height 

and peak width.  

 

Figure 40. Peak widths at half height of 54 reaction zones. The average half width is 

84.2±3.9 seconds. 

4.3.2 Online UHPLC analysis 

The high throughput screening capacity of the microreactor is largely dependent on the online 

analysis efficiency. UHPLC is interfaced to the outlet of reaction capillary via a 10-port double-

loop valve. The separation column was chosen based on its generality, separation efficiency, pH 

and temperature tolerance. Waters Acquity UHPLC BEH column fits our requirement very well. 

This column contains 1.7 µm C18 silica particles and it has very high efficiency and broad 
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applicability for organic compounds. The maximum temperature is 90 
o
C and its pH range is 

from 1 to 12. It is very suitable for analyzing reaction mixtures containing strong acids.  

A typical chromatogram including peaks from 54 reaction zones in a single screening run 

is shown in Figure 41-a, in which peaks from all zones are densely packed. Figure 41-b shows a 

tiny portion of the whole chromatogram containing peaks from one reaction zone which has a 

number of by-products, product, internal standard (IS) and substrate. By separating reaction 

samples at high temperature, high flow rate and high pressure (>10000 psi), the excellent peak 

capacity can be gained. Besides, the separation shows very good reproducibility in terms of peak 

height, width, retention time and resolution, after more than 6 h operation (Figure 41-c).  
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Figure 41. Online UHPLC analysis of continuous-flow reaction zones. 

a. total chromatogram of 54 reaction zones; b. peaks from one reaction zone containing several by-

product (1), product (2), internal standard (4-ethylanisole) (3), and substrate (4); c. partial 

chromatogram of last six zones containing 2 catalysts (each catalyst is contained in three zones).  

 

In an automated system, there is no opportunity to intervene and make corrections, thus 

system stability and reproducibility are critical. I have quantitatively studied two parameters: the 

adjusted retention time, 𝑡𝑅
′ , of the product, and the peak area of the IS. In Figure 42, I normalize  

𝑡𝑅
′  and peak area by dividing them by the mean of the 54 zones. The normalized retention times 

show very good consistency with a relative standard deviation of 0.8% (n=54). Thus, there is no 

concern about drift in retention times. On the other hand, the peak area of the IS shows some 

random variations with a relative standard deviation of 9.7% (n=54). The purpose to incorporate 

IS is to correct several related errors, one of which is the injection variability. In Figure 40, we 

have seen that small variations of half peak widths of reaction zones. The trigger for sensing the 

presence of a zone is based on optical absorbance. Thus, zones with different maximum 

absorbances or slightly different shapes (widths) may trigger the injection at different times (with 

respect to the centroid of each individual reaction zone), which can cause different portions of 
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zones that contain different amounts of reagents injected into UHPLC due to dilution. I believe 

this factor plays a key role of injection volume variation. Another is evaporation of solvent 

leading to concentration changes. I would expect a continually increasing IS peak area resulting 

from solvent evaporation, but this I do not see. The whole reactor system is completely sealed to 

prevent solvent leaking, so solvent evaporation is very unlikely to happen. In any cases, it is 

clear that the IS is necessary to achieve accurate results. 

 

Figure 42. The normalized retention times (product) and peak areas (IS, 4-ethyl anisole) in 

all 54 reaction zones.  

4.3.3 Reaction parameters investigation 

In order to have a good understanding of the reaction process, I studied several parameters by the 

microreactor before screening catalysts, which include reaction time, temperature and catalyst 

concentration. I chose some moderately active acids like diphenyl phosphate and trichloroacetic 

acid as model catalysts to investigate above reaction parameters.  
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Temperature 

Temperature has an important effect on catalyst activity. Four different temperatures, 0 
o
C, 20 

o
C, 40 

o
C and 60

 o
C, were studied. At each temperature, three successive reactions were carried 

out for statistical calculation of yield and conversion. The yield is determined by comparing peak 

area of the product with that of the IS while the conversion is calculated by comparing the peak 

area of substrate with that of the IS. Higher temperature above 60 
o
C was not investigated 

because solvents will probably form bubbles in the reactor channel.  
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Figure 43. The effect of temperature on yield, conversion and selectivity.  

Catalysts: 1.0 molar equivalent (eq) of diphenyl phosphate in AN; Conditions: continuous flow 

reaction in the microreactor for 1 h.  Yield & Conversion = mean ± SEM (n=3). 

 

In Figure 43, we see that higher temperature is more favorable for the conversion and the 

ratio of yield to conversion has an almost linear increase with the rising temperature. The 

maximum ratio at 60 
o
C is about 80% whose data point is overlapping with the yield data. Higher 



 116 

temperature leads to faster reaction rate, then better reaction selectivity, which indicates the 

presence of kinetically competing side reactions to the major cyclization process. I chose the 

benign temperature 40 
o
C for further experiments. In terms of the small standard errors of 

yield/conversion, reactions in the microreactor are very reproducible. 

Catalyst concentration  

Catalyst concentration is an important factor affecting reaction kinetics and product yield. I study 

the catalyst concentrations of two acids, diphenyl phosphate (Figure 44) and trichloroacetic acid 

(Figure 45). Results show that for both acids, yield and conversion are strongly dependent on the 

catalyst concentrations. The ratio of yield to conversion also increases almost linearly with 

increasing catalyst concentrations. However, at very high concentrations of catalysts, the yield 

and conversion seem to reach an equilibrium which is clearly shown in Figure 45.  
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Figure 44. Reaction yield, conversion and selectivity as a function of catalyst concentrations 

(Diphenyl phosphate).  
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Reagents: 0.01 M substrate and 0.01 M 4-ethylanisole (IS, 1 eq) in AN; Catalysts: x mole % 

diphenyl phosphate in AN; Conditions: 1 h continuous flow reaction in the microreactor. Yield & 

Conversion = mean ± SEM (n=3).  

 

Based on those results and above temperature studies, I believe that reaction kinetics play 

a significant role in this process. Under the catalysis of acids, a number of side reactions may 

compete with the major cyclization process that can become more favorable at faster reaction 

rates induced by higher temperature and larger catalyst concentrations.  
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Figure 45. Reaction yield, conversion and selectivity as a function of catalyst concentrations 

(trichloroacetic acid).  

Reagents: 0.01 M substrate and 0.01 M 4-ethylanisole (IS, 1 eq) in AN; Catalysts: x mole % 

trichloroacetic acid in AN; Conditions: 1 h continuous flow reaction in the microreactor. Yield & 

Conversion = mean ± SEM (n=3).  
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Reaction time 

The effect of reaction time on the yield and conversion is shown in Figure 46. The cyclization 

process reaches the equilibrium in about 3 h to give the maximum conversion about 90% under 

the catalysis of weak acid diphenyl phosphate. This equilibrium can be seen in Figure 45 at very 

high catalyst concentrations as well. A possible reason for this equilibrium is due to the 

accumulation of methanol in the reaction solution which may react with the acyliminium ion 

intermediate to reverse the process.  
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Figure 46. Reaction yield and conversion as a function of time.  

Reagents: 0.01 M substrate and 0.01 M 4-ethylanisole (IS, 1 eq) in AN; Catalysts: 1 eq diphenyl 

phosphate in AN; Yield & Conversion = mean ± SEM (standard error) (n=3).  

4.3.4 High-throughput screening of acid catalysts 

The aforementioned studies indicate reaction rate plays a key role on reaction yield and 

conversion. To improve the yield, weak acids like trichloroacetic acid or diphenyl phosphate 



 119 

have to be used with high concentration in order to accelerate the catalytic process. However, for 

strong acids or extremely strong acids like perchloric acid, lower concentration will be enough to 

gain good conversion. Using too much amount of strong acids may lead to more unexpected side 

reactions, and also damage the stainless tubing and column of UHPLC system. Therefore, for 

catalyst screening, I reduced all acid concentrations to the catalytic amounts. As mentioned in 

previous chapters, I can evaluate the catalyst efficiencies based the relative reaction yields.  

Table 5. Screening of acids in the microreactor at two different temperatures. 

Entry Catalyst 

Temperature, 0 oC a Temperature, 40 oC b  

Yield (%) c Conversion 
(%) 

Ratio of yield/ 
conversion 

(%) d 
Yield (%) 

Conversion 
(%) 

Ratio of yield/ 
conversion  

(%) 

1 H2SO4 (98%) 9.4 ± 1.2 79.5 ± 0.6 11.8 61.4 ± 0.3 98.8 ± 0.1 62.1 

2 H3PO4 (85%) 2.2 ± 2.4 53.6 ± 4.0 4.1 40.9 ± 0.2 72.1 ± 0.1 56.7 

3 HNO3 (70%) 0 44.8 ± 2.1 0 38.7 ± 1.2 71.5 ± 0.5 54.1 

4 HClO4 (70%) 63.3 ± 0.8 98.3 ± 0.2 64.3 80.1 ± 3.0 99.6 ± 0.6 80.4 

5 HCl (38%) 2.6 ± 2.4 55.4 ± 4.1 4.8 47.1 ± 3.9 84.8 ± 3.1 55.6 

6 CH3SO3H 4.4 ± 0.8 69.9 ± 3.3 6.3 61.4 ± 0.3 97.9 ± 0.1 62.6 

7 TosOH.H2O 11.8 ± 0.3 78.8 ± 1.1 14.9 61.5 ± 0.1 100 61.5 

8 CF3COOH 0 22.8 ± 6.0 0 5.1 ± 2.4 24.7 ± 5.4 20.7 

9 CCl3COOH 0 17.3 ± 0.5 0 1.3 ± 0.3 8.2 ± 2.9 16.3 

10 SnCl4 48.6 ± 1.5 96.9 ± 0.2 50.1 78.5 ± 0.3 100 78.5 

11 SbCl5 51.1 ± 0.3 98.8 ± 0.2 51.6 58.8 ± 0.6 100 58.8 

12 BF3.O(C2H5)2 52.3 ± 0.4 99.0 ± 0.1 52.8 70.0 ± 0.2 100 70.0 

13 BF3.THF 56.7 ± 0.2 99.0 ± 0.1 57.2 65.9 ± 0.3 100 65.9 

14 Eu(OTf)3 32.8 ± 6.4 91.1 ± 4.5 36.1 88.2 ± 5.4 97.2 ± 0.9 88.2 

15 Tb(OTf)3 25.8 ± 2.8 83.9 ± 1.3 30.8 85.5 ± 3.1 91.8 ± 1.2 93.2 

16 Er(OTf)3 23.6 ± 1.4 82.3 ± 0.8 28.7 93.2 ± 0.3 95.7 ± 0.1 97.4 

 

 a Reagents: 0.01 M substrate and 0.01 M 4-ethylanisole (IS, 1 eq) in AN; Catalysts: 20 mole % acids in 

AN; Conditions: 0 oC, 1 h continuous flow reaction. 
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b Reagents: 0.01 M substrate and 0.01 M 4-ethylanisole (IS, 1 eq) in AN; Catalysts: 20 mole % acids in 

AN; Conditions: 40 oC, 0.5 h continuous flow reaction. 

c Yields of product and conversions of substrate are determined by UHPLC. Yield & conversion = mean ± 

SEM (n=3) 

d Percentage ratio of yield to conversion. 

 

I chose a diverse set of acids including 9 Brønsted acids and 7 Lewis acids. Screens were 

done at two different temperatures, 0 
o
C and 40 

o
C in two separate runs. In each run, 48 reactions 

were carried out containing 16 catalysts. The screening results are shown in Table 5, in which it 

clearly shows that high temperature 40 
o
C is better than lower temperature 0 

o
C in terms of 

reaction conversion, yield and selectivity. It agrees with the previous temperature studies in 

Figure 43 that side reactions are more serious at lower temperature. Among those protic acids, 

perchloric acid shows good yield and high conversion even at low temperature. I believe its high 

activity is just due to its very strong acidity, allowing the cyclization process fast enough to 

compete over other side reactions. It is noteworthy that a lot of reactions catalyzed by low 

concentrations of strong acids can achieve 100% conversion without exhibiting the equilibrium 

trend, which is a proof that strong acids may lead to some unknown side reactions which can 

deplete the substrate completely.  

Lewis acids are generally better than Brønsted acids in terms of conversion and 

selectivity. Both strong and weak Lewis acids show good yield and conversion at high 

temperature; while at low temperature, strong Lewis acids (entry 10 to entry 13) show only a 

little yield loss. Lanthanide series of Lewis acids (entry 14 to entry 16) show higher yield and 

selectivity at 40 
o
C than any other acids. When looking at the chromatogram, few by-products 

peaks are present in the reaction samples catalyzed by lanthanides. Even at low temperature, they 
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still have moderate conversion and yield that are better than some strong Brønsted acids. This is 

a surprising discovery because I initially thought catalyst activities mainly depend on their 

acidities. I believe the exceptional reactivities of lanthanide catalysts rely on their strong oxygen-

binding capacity, making it easier to eliminate methoxy group and form the acyliminium ion 

intermediate.
12

 Few side reactions happen as a result of their weak acidities. They seem to be 

very promising catalysts for the cyclization reaction. Other organic processes that employ the 

similar route may also take advantage of lanthanide series of catalysts. 

4.3.5 Throughput of the microreactor 

In the continuous flow approach, reactor throughput is largely dependent on the sample loading 

time and reaction time. The analysis time by UHPLC is short enough, so it can be neglected 

because sample loading, reaction and analysis are carried out simultaneously. The current non-

optimized throughput of the microreactor is about 9 one-hour reactions per hour for studying 54 

reactions with a typical sample loading time of 5.5 min. Flow rate depends on reaction time. 

Slower reaction needs lower flow rate to increase residence time.  

 

𝑅𝑒𝑎𝑐𝑡𝑜𝑟 𝑇𝑕𝑟𝑜𝑢𝑔𝑕𝑝𝑢𝑡 =
# 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑖𝑚𝑒
=

𝑁

𝑡𝑖 + 𝑡𝑟 + 𝑡𝑎
 

ti: sum of loading times of all reaction zones; tr: single zone flowing-out time (reaction time) ; ta: 

single zone analysis time. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑕𝑟𝑜𝑢𝑔𝑕𝑝𝑢𝑡 =
54

  5.5  min × 54 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 +  60  𝑚𝑖𝑛  𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 +  5.5  𝑚𝑖𝑛  𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠
 

≈ 9 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠/𝑕 
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In the above calculation, the loading time for a single reaction zone is about 5.5 min and 

analysis time is also 5.5 min. The flowing time is equal to the reaction time. If N is very large, 

reaction and analysis time can be both neglected in the calculation. So reactor throughput only 

depends on the loading time of individual zones, and the above reactor throughput will become 

11 reactions/h with the loading time of 5.5 min. It is clear that shorter loading time can 

significantly increase reactor‘s throughput with large N, which can be realized by optimization of 

sample loading parameters and procedures. When N is not so large, reaction time plays a role in 

the reactor throughput. Slower reaction leads to somewhat lower throughput which can be 

counterbalanced by screening larger numbers of zones in a single microreactor run. 

4.3.6 Side reaction analysis 

From above studies, I know that the cyclization reaction is in the competition with some 

unknown side reaction processes. I want to identify those side reactions, which could help better 

understanding the reaction mechanisms. In Figure 47, UHPLC chromatograms of three reaction 

zones catalyzed by strong perchloric acid (Figure 47-A) and weak dichloroacetic acid (Figure 

47-B) exhibit two different by-product peaks, which I defines as Unknown 1 and Unknown 2. 

Perchloric acid and other strong acids mainly lead to the formation of a large Unknown 1 peak 

whose area is comparable to the product. This by-product eludes very early, indicating it has a 

much higher polarity than the product and substrate. Weak acids like dichloroacetic acid, on the 

contrary, result in very little Unknown 1 but a significant amount of Unknown 2 which is in 

close proximity to the isolated aldehyde byproduct as shown in chromatogram Figure 47-B. Few 

products are formed when weak acids are applied, which means the cyclization process is largely 
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inhibited. These two by-products resulting from two different acids are indicative of the presence 

of two different side reaction pathways that are directly related to the acid catalysts.  

 

 

Figure 47. Chromatogram of cyclization reactions catalyzed by strong acid HClO4 (A) and 

weak acid CHCl2COOH (B). 

 

GC-MS and LC-MS are common tools to characterize synthetic intermediates when they 

are hard to be isolated by column chromatography. I prepared the reaction samples with acid 

catalysts in the regular vials and injected those samples directly into GC-MS and LC-MS without 

purification. In Figure 48-A, Unknown 1 and the product are well separated by GC. In Figure 48-

B, the mass spectrum of Unknown 1 peak shows the possible molecular ion of 263 m/z. When 

comparing it to the product mass spectrum (Figure 48-C), we see that except their molecular ions 

A 

B 
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(product, 291 m/z), most of their fragmentation ions are identical. This consensus implies that 

Unknown 1 should have similar basic structures to the product with only minor difference. 

 

 

Figure 48. GC-MS studies of batch reaction catalyzed by perchloric acid.  

GC chromatogram of reaction solution (A), mass spectrum of Unknown 1 (B) and mass spectrum of 

product (C).  

Unknown 1 
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Figure 49.  LC-MS studies of reaction sample catalyzed by trifluoroacetic acid. 

 

The results of LC-MS analysis of reaction outcomes are shown in Figure 49. Positive ion 

spectrum shows the protonated molecular ion of Unknown 1 is 264 m/z and sodium plus ion is 

286 m/z. The molecular weight of Unknown 1 should be just 263, similar to the GC-MS study. 

With the knowledge of its molecular weight and similar structure to the product, I deduct that 

Unknown 1 is a bicyclic acetamide that is quite similar to the product isobutylamide. The 

possible structure of Unknown 1 is shown in Scheme 5 and this side reaction probably follows 

the well-known Ritter process
13, 14

 in which strong acids can decompose the product into 

benzylic cation intermediate that react with the solvent acetonitrile and transform into the 

acetamide with the addition of water. This side process happens only under the presence of 
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strong acids and may consume some products. However, in principle, it does not influence the 

cyclization reaction, so substrate conversion by strong acids is usually very good.  

 

Scheme 5. Possible mechanism of Unknown 1 formation via the Ritter process. 

 

 

 

 

 

 

 

 

Unknown 2 is predominantly formed as weak acids are applied. Weak acids often lead to 

very low product yield and moderate substrate conversion. I first tried to use GC-MS to get the 

molecular weight and structure information of this byproduct; however, as shown in Figure 50, 

the substrate is not stable at high temperature and can decompose in GC column to form a large 

bump overlapping with a number of peaks in the GC chromatogram. The only identifiable peak 

is the isolated aldehyde byproduct whose mass spectrum and exact structure is shown in Figure 

50. This known aldehyde byproduct largely comes from the thermal decomposition of the 

substrate. Thus, Unknown 2 is hardly identified by GC-MS when a large amount of substrate is 

present in the reaction solution. This is not a problem for the identification of Unknown 1 

because when strong acids are applied, substrate can be totally depleted during the reaction and 

GC chromatogram is very clean without much interference from the substrate (Figure 48-A). 
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Figure 50. GC-MS studies of reaction sample catalyzed by trichloroacetic acid. 

 

LC-MS is good to analyze reaction samples containing weak acid catalysts. In Figure 51, 

positive ion spectrum shows two fragment ion peaks corresponding to the molecular ion of 

Unknown 2 as 309 m/z. This byproduct is prone to lose a hydroxyl group during ionization, 

resulting in a major fragmentation ion of 292 m/z. From the negative ion spectrum, I can deduct 

the same molecular weight. Therefore, I hypothesize that Unknown 2 is unstable and prone to 

dehydrolyze. The possible mechanism to form Unknown 2 is shown in Scheme 6, in which water 

reacts with the acyliminium ion intermediate and lead to the formation of Unknown 2. This 

byproduct can also decompose into the known aldehyde byproduct. This side reaction is likely to 

consume a lot of acyliminium ion intermediates that can compromise the cyclization process 
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severely. When low concentrations of weak acids are used, the cyclization process becomes so 

slow that this side reaction becomes very prominent and lead to very low yield. Therefore, 

reaction solution has to be dried very well to minimize this side reaction, especially under the 

catalysis of weak acids.  

 

 

Figure 51. LC-MS studies of reaction sample catalyzed by trichloroacetic acid. 
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Scheme 6. Possible mechanism of Unknown 2 formation by hydration. 
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4.4 CONCLUSION 

A new microreactor system integrated with UHPLC was constructed and evaluated by 

investigation of a novel acyliminium ion cyclization reaction. By integrating UHPLC to the 

microreactor, complex reaction samples can be rapidly analyzed with excellent resolution and 

reproducibility. The screening of acid catalysts was carried out in the microreactor in a 

continuous-flow, high throughput mode. Fifty four reactions were studied in a single run of 6 h 

which corresponds to a screening rate of nine reactions per hour. Yield and conversion 

determined by UHPLC showed that Lewis acids mediated reactions have better product 

selectivity than Brønsted acids, especially at relatively lower temperature. Among Lewis acids, 

lanthanide series compounds show best yield and selectivity at ambient temperature. The 

analysis of byproducts by GC-MS and LC-MS indicates that two different side reaction 

pathways probably exist and compete with the cyclization process. Water plays a key role in the 

formation of these byproducts. In principle, the removal of water can lessen side reactions and 

increase the yield and selectivity to certain extent. 
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APPENDIX A 

SAMPLING PROGRAM OF HPLC AUTOSAMPLER (HP1050) FOR CATALYST 

LOADING AND 6-PORT INJECTOR TRIGGERING 

10  Utility Contact 1 off 

20  Utility Contact 2 on   //   6-port injector: switch to load position 

30  Wait 0.01 min 

40  Utility Contact 2 off  

50  Utility Valve bypass 

60  Eject max sample into seat at max speed   //   prepare sample loading 

70  Draw 25 µL sample from vial at max speed   //  Sample withdrawal 

80  Eject max sample into seat at speed 15 µL/min   //  Sample loading into 6-port injector, 

speed equal to the syringe pump for equal mixing with reagent. 

90  Utility Contact 1 on   //  6-port injector: switch to inject position 

100  Wait 0.01 min 

110  Utility Contact 1 off 

120  Wait 3.0 min   //  6-port injector: injection time into the microreactor 

130  Utility Contact 2 on   //   6-port injector: switch to load position 
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140  Wait 0.01 min 

150  Utility Control 2 off 

160  Utility Valve mainpass   //   washing pump to clean the autosampler  
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APPENDIX B 

MICROREACTOR PARTS AND SPECIFICATIONS 
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(1) Washing pump: clean the autosampler tubes and injection needle. 

Waters 515 HPLC Pump (115-230 V), Isocratic pump, Pulse free solvent delivery, Flow rate 

range 0.001 to 10.000 mL/min. 

(2) Autosampler: load catalysts from vials. 

HP 1050 autosampler, 21-position sample tray, programmable, injection volumes 0.1 — 100 µl.  

(3) 6-port microinjector: load and inject reaction samples into reaction capillary. 

6 port valve – Model CN2, nanovolume - 5,000 psi - 1/32" Cheminert fittings, 0.10 mm ports 

(.004"). With standard electric actuator E60 (included in CN2-4346E): Standard two position 

electric actuators- 110 VAC. 60 degree, closeout. 

(4) Syringe pump 2: deliver carrier flow (solvent) into the reactor capillary. 

Harvard Pump 11 plus, standard infusion only, single syringe pump, flow rate 0.0014 µl/hr to 

26.56 ml/min, syringe size 0.5 µL to 60 mL. 

(5) Syringe pump 1: deliver carrier flow (solvent) into the reactor capillary. 
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Harvard Pump 11 plus, standard infusion only, single syringe pump, flow rate 0.0014 µl/hr to 

26.56 ml/min, syringe size 0.5 µL to 60 mL. 

(6) Reactor capillary: immersed into a water batch on a heating plate. 

Teflon FEP tubing, 100 µm i.d., 1/16‖ o.d. 

(7) UV-Vis light source: emit UV light to the flow cell (cross) via a fiber optic 

DT-1000, dual fiber optic UV/Vis Source, wavelength range 190 to 850 nm 

(8) Fiber optic UV-Vis detector: detect UV response of reaction zones 

USB2000 Plug-and-Play Miniature Fiber Optic Spectrometer; Computer interface: USB-to-PC; 

Detector: 2048-element linear silicon CCD array; Wavelength range: 200-1100 nm. 

(9) 10-port microinjector: load and inject reaction zones into UHPLC. 

UHPLC 10-port 15,000 psi nanobore valve – Model C72X - 1/16" Valco fittings, 0.15 mm ports 

(.006"). With microelectric actuator EH (included in C72X-6694EH), two position, high speed.  

(10)  UHPLC: analyze reaction products. 

Jasco X-LC (15,000 psi), dual wavelength UV-Vis detector (190 nm— 650 nm). 
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APPENDIX C  

The aldol product:4-Hydroxy-4-phenyl-butan-2-one (
1
H NMR 300 MHz, CDCl3) 
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The aldol product: 4-Hydroxy-4-(4‟-nitrophenyl)-butan-2-one (
1
H NMR 300 MHz, CDCl3) 
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