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Single-cell electroporation (SCEP) is a recently developing powerful technique for cell analysis 

and cell manipulation. In the first chapter of this thesis, a review about the theories and 

techniques is fulfilled, including a detailed description of the factors affecting SCEP, and a 

discussion about how to optimize SCEP for high efficiency and survivability. Based on the 

previous experimental results and numerical simulation, a hypothesis is proposed which leads us 

to find that small tips could be a solution to electroporate small cells with simultaneous 

maximization of electroporation efficiency and survivability when using electrolyte-filled 

capillaries (EFC) with pulled tips. 

In the second chapter, an integrated circuit for SCEP and controlling is demonstrated. 

EFCs with 2 µm tips are constructed and used for SCEP of A549 cells with an extremely high 

spatial resolution. Distance between tip and cell is revealed to be vital in SCEP because of its 

direct control of the local electric field distribution and strength; to control distance precisely, a 

current measurement method inspired by tip-cell giga-seals is applied. High temporal resolution 

videos hint an abrupt intracellular fluorescence loss at the time scale of pulse duration followed 

by recovery in the small portion of cell membrane facing the tips. Viability of cells is highly 

related to the fluorescence loss, fluorescence exposure and dye types. Comsol simulation using 

the real shape capillaries helps to guide the electroporation throughout our experiments. 

SINGLE-CELL ELECTROPORATION USING ELECTROLYTE-FILLED 

CAPILLARIES WITH MICRO-SCALE TIPS 

Manyan Wang, M.S. 

University of Pittsburgh, 2008
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However, this protocol evokes overcoming technical difficulties in terms of getting high 

survivability and decreasing variance, which are our two main aims. The advantage of small tips 

and the hypothesis are still to be examined. This is referred in the third chapter, as well as other 

following-up future work. 
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1.0  INTRODUCTION OF SINGLE-CELL ELECTROPORATION 

1.1 INTRODUCTION OF ELECTROPORATION 

1.1.1 What is electroporation 

Electroporation, also called electropermeabilization, is a phenomenon that occurs when a high 

voltage is applied to the cells. In the applied electric field, nanoscale pores form in the cell 

membrane, thus allowing molecules to be transported into and out of the cells. Pores formation 

can be reversible or irreversible depending on the electric and cell characteristics. Pores seal in 

reversible electroporation (RE), while irreversible electroporation (IRE) breaks down the cell 

membrane permanently and induces death of the cells. Electroporation can lead to several 

outcomes as shown in Figure 1.1 [1]. 

Electroporation was first achieved in the late 1960s and early 1970s. People found that 

the application of high voltage direct current (DC) pulses in μs and kV/cm range to cell 

suspensions can lead to rupture of the membrane. Later in 1980s and 1990s people found this 

membrane permeability change could be transient using longer duration (ms scale) and lower 
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voltage. Currently electroporation has been applied to many cell types including plant cells [2-

4], yeasts [5-7], fungi [8-10], bacterial cells [11, 12] and mammalian cells [13, 14]. 

 

 

Figure 1. 1: Exposure of a cell to an electric field may result in either permeabilization of cell 

membrane or its destruction. In this process, the electric field parameters play a key role. If 

these parameters are within certain range, the permeabilization is reversible; therefore it can be 

used in applications such as introduction of small or large molecules into the cytoplasm, 

insertion of proteins into cell membrane or cell fusion. ©2004 Elsevier B.V. 

 

Electroporation is now widely applied in industries and medicine. IRE has been 

developed in the field of food and environmental industries for microbial inactivation and non-

thermal food pasteurization[15]. In terms of RE, electroporative delivery has been carried out 

both in vitro and in vivo of many drugs including drugs [13, 14], proteins [16, 17], 

oligonucleotides [18], RNA [5, 11, 19] and DNA [20]. It is reported that in vivo electroporation 
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may dramatically increase transfection efficiency for a variety of tissues, and consequently led 

to the rapid development of a new cancer treatment modality called electrochemotherapy [20]. 

 

1.1.2 Basic electroporation notions 

1.1.2.1 Transmembrane potential 

Though the mechanism of pore formation in electroporation process is still unclear, the 

following concepts are widely accepted. 

When an external electric field is applied to the cell, due to the dielectric cell 

membrane, a high potential drop arises across the membrane. The potential difference m  

across a cell membrane consists of two major contributions, natural 0  (also called as resting 

potential) and induced E  membrane potential differences. In living cell membranes, 0  is 

metabolically maintained due to ions concentration gradient. Typically, 0  is about -40 to -

60 mV, where the potential of the outside surface is taken as zero [21]. 

Em   0  

The electrically induced potential difference E  is the difference between the 

potential inside the cell in  and the potential outside the cell out . In a uniform electric field E, 

at a point M on the cell surface at time t E  is given by:  

))/exp(1)((cos)()(  tMERgft outinE       (1) 

)5.0( oim rrRC            (2) 
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where τ is the charging time of the pulsed cell membrane, f is related to the shape of the cell, g 

depends on the conductivities λ of the membrane, of the cytoplasm and of the extracellular 

medium, R is the radius of the spherical cell (in case the cell is non-spherical, it is replaced by 

the semiaxis oriented in the field direction [22, 23]), E the field strength , θ(M) the angle 

between the normal to the membrane at the position M and the direction of the field (refer to 

Figure 1.2), mC  is membrane capacity and ir  and or  are resistivities inside and outside of the 

cell [24, 25]. 

The charging time τ is typically less than 1 μs, thus the exponential term can be ignored 

if the pulse length is much longer than a few microseconds. Under the hypotheses that the cell 

shape is spherical and the membrane is a pure dielectric, 5.1f  and 1)( g  [25]. 

1.1.2.2 Polarization of cells in external electric field 

As stated above, the external electric field induces a position-dependent modulation of the 

membrane potential difference E  which is superimposed on the resting potential 

difference 0 . As a result of this spatial distribution of transmembrane potential, cells are 

polarized under external E. The anode facing side is hyperpolarized while cathode facing side 

is depolarized as shown in Figure 1-2. This polarization phenomenon was imaged using 

potential sensitive fluorescent dye [26]. 
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Figure 1. 2: Polarization of a cell in external electric field. The arrows are the vectorial 

representation of the electrical potential gradient direction. Open arrows for resting potential; 

closed arrows for electric field induced potential. Their length is indicative of the magnitude of 

the potential difference[27]. © 1993 by the Biophysical Society 

 

The polarization of cells under external E causes the anode facing side to become more 

permeable than the cathode facing side, especially with short pulse duration [28, 29]. This 

asymmetry of molecular transfer was demonstrated by direct visualization of PI penetration 

into a single cell [30]. 

1.1.2.3 Critical transmembrane potential (TMPc) for electroporation 

It is widely accepted that when m  goes above a critical threshold c (or TMPc) 

electroporation occurs. The critical value has been experimentally determined to be in the range 

of 200 mV - 1 V. The corresponding critical electric field Ep ranges from 100 V/cm in terms of 

large cells such as muscle cells to 1-2 kV/cm in terms of bacteria [27, 31]. It is easy to see that 

under uniform electric field, larger cell size needs smaller Ep to reach the critical value (refer to 
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equation (1) in transmembrane potential part). The critical field Ep appears to be characteristic 

quantity of a given cell type, it depends on the cell size and cell species. 

1.1.2.4 Kinetic description of reversible electroporation 

Kinetic studies of RE based on experimental monitoring of membrane conductance alteration 

with submicrosecond imaging [28, 32] led to a description in 5 steps which is widely adopted 

[25]. 

(1) Induction 

The external electric field induces an increase in the transmembrane until it reaches the 

critical value. This step is associated with the threshold TMPc of the membrane. A delay may 

be present due to the charging time τ of the pulsed cell membrane. This step is evaluated to be 

< 1 μs. Recently the study of nanosecond pulses for electroporation indicates that this step may 

be as short as several nanoseconds [33, 34]. 

(2) Expansion 

The induction step is followed by a continuous increase in permeability as long as the 

field is maintained at an overcritical value [32]. This can be explained by an expansion step. 

During this stage, the local density of pores increases, and structural reorganization of the 

membrane presents depending on the pulse duration. The time scale of expansion depends on 

the pulse duration, typically in the range of μs ~ ms. 
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(3) Stabilization 

As soon as the electric intensity decreases to subcritical level, a stabilization process 

takes place within a few milliseconds. A dramatic recovery of membrane organization occurs, 

inducing a strongly drop in membrane conductance. Nevertheless, a long living permeability 

particularly for small molecules persists beyond this step [28]. 

(4) Resealing 

A slow resealing to the membrane intrinsic impermeability then occurs on a scale of 

seconds and minutes spontaneously. It is a first order process depending on pulse duration, 

pulse number and ambient temperature [35, 36]. Most of the extent of electroloading takes 

place during this recovery stage.  

(5) Memory 

The complete resealing of the membrane prevents the cell from rupture and preserves 

the viability of cells in most pulsing conditions. Nevertheless, some changes in the membrane 

properties (flip-flop) and cellular physiological (macropinocytosis) properties remain present 

on a longer time scale (minutes to hours). The cell alteration may lead to cell death in the long 

term. 

1.1.3 Important parameters in electroporation 

Electric field, cellular factors and physicochemical factors all affect the efficiency of 

electroporation and its applications.  
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1.1.3.1 Electrical parameters 

These include pulse amplitude E, pulse duration Td, pulse repetition frequency f, number of 

pulses N, and pulse types (polarity and shape).  

(1) Electric field strength E 

 

 

Figure 1. 3: Role of electric field on electroporation. A cell is submitted to an electric field. The 

gray area represents the cell surface that is prone to be permeabilized. This area increases with 

E. When the cell is submitted to a constant E but to increasing N and/or Td, the size of the 

potentially permeabilizable area remains constant, but the density of transient permeated 

structures in that area, i.e., the permeabilization, increases by increasing these parameters 

(which is represented by gray hatching). © 2006 Elsevier B.V. 

 

As mentioned above, only when E > Ep, electroporation occurs. For a given E > Ep, 

electroporation occurs only inside a cone where m  > TMPc. In a uniform external E, the half 

angle p  of this cone is determined by pp EE cos . 

Thus E topologically determines the membrane area at the cell level where 

permeabilization can occur, while Td and N determine the density and/or size of permeated 

structures, as shown in Figure 1.3 [31, 35].  
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Increasing E may increase the transport of molecules; the tradeoff is that it may induce 

a loss in cell viability. So researchers seek to optimize pulse durations and other parameters to 

get best efficiency of electropermeability. 

(2) Duration of pulses Td, pulse repetition frequency f and number of pulses N 

The effect of Td and N has been described above. To be specific, prolonged Td enhances 

the transport through the pores but does not increase the pore density, while larger N can create 

more pores in the cell membrane [37]. Under conditions where cell viability is preserved, Td is 

shown to be crucial for the penetration of macromolecules into cells. Cumulative effects are 

observed when repeated pulses are applied. At a constant number of NTd duration product, 

transfer of macromolecules is strongly affected by Td. The resealing process appears to be first-

order with a decay time linearly related to the pulse duration [35]. There‟s also a tradeoff, too 

long Td or/and multiple pulses will increase the death rate. 

Classical electroporation utilizes pulses in the ms - μs range and electric fields that are 

near 1 kV/cm. Recently, electroporation of cells has been carried out using very high pulses 

with a very short duration (3-300 ns, up to 300 KV/cm). Calculations show the transmembrane 

potential expects to reach 1 V in less than 2 ns. Cellular responses to these previously 

uninvestigated very short pulse widths are similar to those observed with longer duration 

pulses. Phospholipids rearrangements and the influx of small molecules from the medium into 

the cytoplasm has been imaged [33, 34].  
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(3) Pulse types 

Bipolar waves are reported to have higher efficiency of electropermeability than 

unipolar waves [38, 39], and significantly reduce the electrolytic contamination caused by the 

electrode reaction [40]. For different pulse shapes, the duration of above-critical pulse 

amplitude has a major role in the efficiency of electropermeabilization [41].  

Different types of pulse generation techniques are compared by Marko Puc et al. as 

shown in Table 1-1. A summary of commercial devices can also be found in the same paper. 

 

Table 1. 1: Comparison of most commonly used techniques of signal generation for 

electroporation [1]. © 2004 Elsevier B.V. 

 

1.1.3.2 Cellular factors 

These include cell type, cell size, cell shape, cell density, growth phase and cell cycle. 

(1) Cell type and cell size 

As described above, cell type and cell size are critical for TMPc.  
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(2) Cell shape and orientation 

In equation (1), f is related to the shape of the cell. Given a uniform electric field, when 

cell is spherical, 5.1f . For prolate spheroids with the long axis perpendicular to the external 

field, 25.1  f . For prolate spheroids with the long axis parallel to the external field, 

5.11  f . For oblate spheroids with the short axis parallel to the field, 2f [24].  

(3) Cell density 

The effect of cell concentration is explained quantitatively by electric field 

perturbations caused by neighboring cells. Higher cell concentration decreases the local field 

experienced by a cell, thus affects the efficiency of electroporation and cell survivability [42, 

43].  

(4) Cell cycle for eukaryotic cells (Synchronization) 

 

 

Figure 1. 4: Cell cycle. The cell cycle is divided into four phases: G1, S, G2 and M. Cells in the 

first cell cycle phase (G1) do not always continue through the cycle. Instead they can exit from 

the cell cycle and enter a resting stage (G0). (http://learninglab.co.uk/headstart/cycle3.htm) 

http://en.wikipedia.org/wiki/Eukaryote
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://learninglab.co.uk/headstart/cycle3.htm
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The cell cycle, or cell-division cycle, is the series of events that take place in a 

eukaryotic cell leading to its replication. It consists four phases as shown in Figure 1.4. The 

duration of the cell cycle varies between different cell types. In most mammalian cancer cells it 

lasts between 10 and 30 hours. 

The cell cycle leads to the change of cell state such as size, membrane tension, osmotic 

pressure and so on, therefore may play an important role in the electroporation process. 

Nevertheless, few studies of the effect of cell synchronization on cell electroporation have been 

reported. Sukhorukov et al. reported electric membrane properties of both G1/S phase (arrested 

by aphidicolin) and G2/M (arrested by doxorubicin) mammalian cells are similar to 

asynchronous cells [44]. Slight changes of resting membrane potential 0  during cell cycle 

have been reported [45]. DNA expression is enhanced in G2/M phase synchronized cells; while 

synchronization in G1 phase has no effect on permeabilization and transfection [46]. 

(5) Growth phase 

The study on growth phase effect concentrates on bacterial. Conflicting results about 

the best electroporation efficiency have been obtained during log phase, lag phase and 

stationary phase, respectively [47-49]. 

1.1.3.3 Physicochemical factors 

The composition of the electroporation buffer and ambient temperature also play an important 

role in electroporation. 

http://en.wikipedia.org/wiki/Eukaryote
http://en.wikipedia.org/wiki/Cell_%28biology%29
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(1) Electroporation buffer 

The composition of the buffer determines its specific resistivity, osmolarity and K
+
-

dependent membrane resting potential, hence influences the electroporation yield [50, 51]. 

Higher conductivity or/and lower K
+
 concentration has been reported to correspond to lower 

electric threshold [52]. The buffer pH is also important. In general, the buffer composition and 

pH should mimic the cytoplasm of the cell. The usual intracellular pH is around 7.2. When 

applying high voltage with long duration, lower salt compositions are usually used to avoid 

excess Joule heating produced by the high voltage. 

(2) Temperature 

Ambient temperature has a great effect on electroporation. It acts on electric field, pore 

resealing and conductivity of buffer. Though conflicting data on the temperature dependence of 

electrotransfection have been reported, many researchers reported increased susceptibility to 

permeabilization and a shortened resealing period upon elevated temperature [53-56]. It is 

reported that cells can be kept permeabilized for up to 4 h at 4 °C, while at 37 °C, the 

membrane resealing occurs in less than 5 min. A fast resealing at higher temperature increases 

the viability and hence the transfection efficiency. A higher level of transfection is obtained 

when Chinese Hamster Ovary cells are pre-pulse incubated at 4 °C and post-pulse incubated at 

37 °C [57, 58]. 
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1.1.4 Brief introduction to mechanism study of electroporation 

1.1.4.1 The mechanism of electroporation remains unclear 

The actual mechanism of electrically induced instabilities has yet to be well understood. Many 

theoretical models have been set up attempting to explain the mechanism of electroporation. 

Some models are concerned with more macroscopic reasons for instability as lipid membrane 

thinning, related to electrostriction, undulation and elastic properties of the membranes. Other 

models based on the Smoluchowski equation [59-62] find the explanation in formation and 

expansion of tiny pores. Recently the nanoscale pulse induced electroporation models has 

stimulated models based on molecular dynamic simulations, which try to explain the pore 

permeabilization process from the atomic aspect [63-66]. 

1.1.4.2 Pores 

(1)Energy barrier 

In spite of the different models for electroporation, there is a common accepted concept 

about pore creation: the pores form in a scale of nanoseconds, and need to overcome a common 

energy barrier of kT5045 [67]. This pore radius-related energy barrier was initially thought 

as increasing within a critical pore radius cr and decreasing beyond cr  [68], then was later 

corrected in improved models to be self-constraining (which means the energy barrier keeps 

increasing with the increasing of pore radius) to prevent resulting uncontrollable pore growth 
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and expansion. These improved models take into account the feedback brought by the current 

flowing across the pore on the induced potential difference [69]. 

(2) Pore structure 

The only experimental visualization of the actual transient pores was performed by 

Chang and Reese in 1990 [70]. They used rapid-freezing electron microscopy to examine 

human red blood cells exposed to a radio-frequency electric field. The observed crater-like 

pores had a size range of 20-120 nm. Nevertheless, this unique report was criticized as 

misleading because red blood cells under strong hypo-osmolar conditions were used. As a 

matter of fact, no such defects were ever observed under iso-osmolar conditions on other cell 

models [25]. 

 

 

Figure 1. 5: Hypothetical bilayer membrane structural rearrangements. (A) Free volume 

fluctuation; (B) Local membrane compression and thinning; (C) Hydrophobic pore; (D) 

Hydrophilic pore believed to dominate electroporation onset; (E) Composite pore involving a 
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membrane protein; (F) Insertion of a long, charged molecule into a hydrophilic pore while 

m  is large. © 2000 IEEE 

 

Hydrophilic pores are believed to be the major contribution to the transient membrane 

distortion. It is listed along with other hypothetical bilayer membrane structural rearrangements 

in Figure 1.5 [71]. 

(3) Models studied pore density, distribution and sizes 

Recent models for electroporation of a single spherical cell in an uniform electric field 

give theoretical estimation of pore information [59, 72, 73]. According to these models, the 

pore density can be high in the order of 10
9
 pores/cm

2
, of which > 97% are small pores having 

~1 nm radius. The highest pore density occurs on the depolarized and hyperpolarized poles but 

the largest pores, which may grow to ~ 0.5 μm, are on the border of the electroporated regions 

of the cell. Despite their much smaller number, large pores comprise 95% of the total pore area 

and contribute 66% to the increased cell conductance [73]. 

1.2 PROGRESS IN SINGLE-CELL ELECTROPORATION (SCEP) 

1.2.1 Why study single-cell electroporation？ 

According to the population of target cells, electroporation divides into two groups: bulk cell 

electroporation and single-cell electroporation (SCEP). It was not until this recent decade that 
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SCEP has gained attention as a potential approach of single cell handling. Unlike traditional 

bulk cell electroporation, in SCEP either the single cell is isolated from its population or an 

inhomogeneous electric field is focused on the target individual cell, leaving neighboring cells 

unaffected. SCEP is a powerful tool for single-cell manipulation and analysis, it helps to gain 

knowledge of cells on a micro-basis of one individual cell, which is very important in 

understanding the cytophysiological process inside a single cell, how/why the individual differs 

from each other, how one affects the whole and vice versa. These could also be incredibly 

useful for applications such as converting single cells into intracellular biosensors and 

administering genes or drugs into single cells in complex tissues such as the brain [74]. 

Because of the complex system condition in SCEP, which especially comes from the 

non-uniform electric field of microtechnology, it is hard to set up a theoretical model for 

calculation. So far most researchers focus on the technique development of SCEP and the 

reported experimental results have been mainly qualitative. 

1.2.2 SCEP with solid micoelectrodes 

SCEP with subcellular spatial resolution, high transfection efficiency and survival rate was first 

accomplished with solid microelectrodes [75]. Microelectrodes are flexible in usage and low 

voltage (several volts) is enough for electroporation. 

The microelectrodes for SCEP have mainly been developed by Dr. Owe Orwar‟s group. 

In 1998 they first performed SCEP [75]. Carbon fiber microelectrodes with tip size of ≈ 5 μm 
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in diameter were placed 2-5 μm away from adherent cells at an angle of 0–20° and 160–180° 

with respect to the object plane as shown in Figure 1.6(A). A single 1 ms rectangular low 

voltage pulse (~ 2 V) electroporated cells with 97% transfection yield and survival rate. Later 

this microelectrode technology was combined with patch clamp glass pipette positioned in 90° 

angle to the electrodes to record the current across the buffer (membrane) and give TMPc, pore 

expansion and resealing information (Figure 1.6 (B)) [76]. In 2001 they substituted the patch 

clamp pipette with a microinjection pipette to expose the cell to high concentration of analytes 

during electroporation, which showed a success transfection rate of 34 ± 7% [77].  

Despite the above success in SCEP, the solid microelectrode method has many 

disadvantages: (1) loading agents need to be added to the buffer solution surrounding the cell or 

delivered specifically to the targeted area by using, e.g., a superfusion micropipette; (2) 

Potential loss must be taken into account at the electrode/solution interface due to electrode 

reaction and formation of double layer; (3) Some potential cytotoxic products such as oxides 

are produced at the electrode, especially when long pulse durations and short cell-electrode 

distances are applied. To overcome these problems, people are looking for other SCEP 

methods. 
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Figure 1. 6: (A) SCEP with two carbon fiber microelectrodes; (B) Combining with patch clamp 

technique. © 2000 by the Biophysical Society 

 

1.2.3 SCEP with patch micropipette and capillaries 

Many researchers have shown interests in SCEP with micropipette and capillaries because of 

their advantages over microelectrodes system: (1) they can delivery cell-loading agents through 

the micropipette/capillaries by electroosmotic and electrophoretic flow; (2) Electrode reactions 

take place far away from the electroporated cell, thus dramatically decrease the toxic product 

problem. 

1.2.3.1 Micropipet 

The electrode close to the cell is a solute-filled micropipette made of filament fused glass with 

a metal electrode inside. Another electrode couples with this micropipet electrode to carry 

current through the target cells. Usually the micropipette is pushed against the cells to create 



 20 

membrane tension that lower the required voltage, and the volume of inserted molecules can be 

as small as the micropipet tip (< 1.0 μL). 

The micropipet system was first developed by Karlsson et al. in 2000 [78]. They 

combined micropipet electroporation with pressure-driven microinjection for efficient loading 

of biopolymers and colloidal particles into single-cell-sized unilamellar liposomes. As shown in 

Figure 1.7, single liposomes were positioned between a ~ 2 μm tip diameter solute-filled glass 

micropipet containing a Pt electrode and a 5 μm diameter carbon fiber electrode. The induced 

dielectric membrane breakdown facilitated the penetration of micropipet tip into the liposome 

to inject a small volume of loading agents. 

 

   

Figure 1. 7: Electroinjection of fluorescein into a giant unilamellar vesicle with a 

microelectrode and injection micropipette. (A) A mechanical pressure was applied on the 

vesicle by moving the injection tip toward the microelectrode, forcing the vesicle into a 

kidneylike shape. (B) By applying a voltage pulse, the membrane was permeabilized, the 

vesicle slid onto the injection tip, and a fluorescein solution was injected into the vesicle. © 

2000 American Chemical Society 
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In 2001 Haas, Sin et al. performed a delivery of DNA or other macromolecules into 

single neuron and glia in the brain of intact Xenopus tadpoles or rat hippocampal slices merely 

by SCEP using micropipet method [79]. Figure 1.8 shows the setup. A silver wire placed inside 

the filament micropipette having a tip diameter of 0.6–1 μm filled with loading solution was 

connected to a silver electrode in the circuit. A voltage of 10-80 V was used. Optimization of 

electric parameters led to a transfection efficiency of 20% in vivo [80]. 

 

      

Figure 1. 8: SCEP of slices with micropipette. (A) The SCEP setup. The current passing 

through this circuit can be monitored by measuring the voltage drop across a known resistor 

with an oscilloscope. (B) SCEP of neurons in vivo was carried out by inserting a glass 

micropipette filled with DNA solution into the tadpole brain. Stimulation delivered between the 

micropipette and an external ground electroporated a single cell at the micropipette tip. © 2001 

by Cell Press 

 

The low permeabilization efficiency was improved by accurate positioning of 

micropipet contacting the cells. To do this, Rae applied modified patch-clamp techniques [81]. 

A cultured cell was indented by a micropipet having a pulled tip ~ 0.5 μm and electroporated 

A A B 
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through the same micropipet when the resistance increased by 25% due to the indention. A 

success rate of 60–100% was obtained using 5~10 V square pulses for gene insertion. 

Rathenberg used two-photon microscopy for real-time visualization at the cellular level when 

electroporating single cells in neurons using fluorescently labeled oligonucleotides and plasmid 

DNA ( figure 1.9), which led to a high efficiency of 50%~80% [82]. 

 

 

Figure 1. 9: Illustration of the modified SCEP-mediated transfection setup. The culture was 

placed in a perfusion chamber and visualized using gradient-contrast illumination and IR video 

microscopy. Individual neurons can be identified on the monitor screen. The DNA filled 

micropipette can be targeted precisely to the membrane of a single soma. © 2003 Elsevier B.V. 

 

SCEP using micropipet has been widely used. To increase the throughput, in 2006, Bae 

automated SCEP using the modified patch micropipet method [83]. Many applications have 

been reported concerning morphological staining, DNA and macromolecules transfection, 

investigation of Ca
2+

 physiological role, electrophysiological response after pulse and so on 

[84-88]. Typically people use small micropipet tip with a diameter of 0.5 μm ~ 2 μm for SCEP 
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with micropipet, which is also the standard size for patch-clamp recording. Nevertheless, larger 

tip opening is also used with stronger voltage pulses. Uesaka used a tip diameter of 30-50 μm 

and 200-300 μm for in vitro morphological and electrophysiological study of neurons [89, 90].  

1.2.3.2 Electrolyte-filled capillaries (EFC) 

Fused-silica capillaries filled with electrolyte are also favorable for SCEP. The main 

differences between EFC and micropipet are that (1) EFC contains no electrode or filament 

fused in the wall and thus current goes through electrolyte inside the EFC; (2) EFC is placed 

away from target cells at a distance of several microns. Similar to micropipet method, EFC 

minimizes volume of loading solute, can obtain high spatial resolution with reduced physical 

dimension. Less cell trauma is expected because there is no physical force added to cell 

membrane by the tip, and the electrode is farther from the cell. The EFC is also used for 

separation in capillary electrophoresis (CE). Electroporation and chemical fractionation might 

be performed with the same EFC. The disadvantage is that longer pulse duration and higher 

voltage are required because of high resistance inside EFC. 

Figure 1.10 shows a typical experimental setup of SCEP using EFC built by the Orwar 

group [91]. An EFC (30 cm long, 375 μm in outer diameter, 30 μm in inner diameter) with 

outlet end tapered to outer diameter ~ 50 μm was placed 5 μm away from the cells. A large-

voltage pulse (2 kV-10 kV, duration 5 s) applied across the EFC gave rise to a small electric 

field outside the terminus of the EFC, which caused pore formation in cell membranes. The 

electroosmotic flow delivered agents at the site of pore formation. The electroporation protocol 
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was demonstrated by introduction of fluorogenic dyes into single NG108-15 cells and small 

populations of cells in organotypic hippocampal cultures in vitro, and more testing on rats brain 

in vivo. Patch-clamp recordings were performed in the whole cell and cell-attached 

configuration. The electroporation region had diameters of 50-100 μm. They also used 

untapered capillaries with the same size for electroporation of single targeted cell or small 

confined groups with higher voltage and longer duration (DC 10 kV, duration 5-60 s, cell-

capillary gap distance 20-40 μm) [92], and even broader capillaries (0.4 mm inner diameter) 

but lower voltage and shorter duration (gap height 50-100 μm, 200-225 V pulses of 10-25 ms) 

for scanning electroporation [93]. 

 

 

Figure 1. 10: SCEP with EFC: schematic picture of the experimental setup. © 2001 American 

Chemical Society 

 

When inner diameter of the capillary is uniform, current density and electric field E are 

all uniform inside the capillary. E is approximated as ψ/Lc where ψ is the applied potential in 

volts and Lc is the length of the EFC. The major potential drop occurs inside the capillary. Then 
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the magnitude of the electric field decays quickly along the axis of symmetry of the EFC lumen 

extending out into solution, which is given by:  

 

where Z is the dimensionless distance from the EFC tip, z/a, where z is the distance from the 

EFC tip and a is the EFC lumen radius [91].  

SCEP with EFC is also studied in our lab. Instead of using a uniform inner diameter 

capillary, we use a pulled tip fused-silica capillary with tip opening 2 ~ 5 μm to obtain a much 

higher spatial resolution. This micro-scale tip gives more complicated electric field distribution. 

Most potential drop occurs at capillary tip, and decays quickly when extending into solution 

outside EFC. I will describe SCEP using the pulled EFC later in this chapter. 

1.2.4 SCEP with microfabricated chips 

A fast growing part of SCEP is the employment of microchips. Microchips have many merits: 

(1) Integration with separation and detection and single-cell analysis thereof, (2) small sample 

amount, (3) high surface/volume ratio decreases heat effect, (4) automated SCEP can be easily 

developed with high efficiency and throughput, and (5) selectively trapping of specific target 

cells (for instance, via antibody-antigen reaction). The disadvantages are that fabrication is 

time-consuming with high-cost, and in most cases it can only use fixed microelectrode. 

In 1999 the Rubinsky group first developed the SCEP microchip. Using standard silicon 

microfabrication technology they built a vertically stacked device with two microfabricated 
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silicon substrates bonded together with a glass cover slip [94, 95]. A microhole etching through 

the nitride membrane connected the fluid chambers and electroporation electrodes, producing a 

constricted field as illustrated in Figure 1.11 (A). A single cell was flowing-through, captured 

in the microhole by pressure difference, electroporated by the constricted filed, uploaded with 

exogenous compounds, released and replaced by the next cell. Current measurement flowing 

between the electrodes gave the information of cell trapping and electroporation status as well 

as the breakdown voltage. Later their group presented a new microchip coupling microfluidic 

channels enabling cell manipulation and thus SCEP in a flow-through manner. Membrane 

impermeable nucleic acid stain YOYO-1 and enhanced green fluorescent protein (EGFP) were 

loaded into ND-1 cells with a 100% gene transfer rate under controlled electroporation (Figure 

1.11 (B)).  Further studies showed that nanoscale channels formed between exterior of the cell 

and pore wall, which may need consideration when performing micropore electroporation [96]. 

Similar SCEP setup based on PDMS was successfully developed by Kurosawa in 2006 at a 

yield of almost 100% with 1.5 V pulses regardless of the cell size, shape or orientation [97]. 

Instead of using microholes of 1-3 μm, Sarkar applied a flow-through microfabricated 40-μm 

sense-porate aperture to electroporate the cells. Cells can pass the aperture and be identified by 

impedance change [98]. 
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Figure 1. 11: First SCEP microchip. (A) Electroporation using the field constriction [97]. © 

2006 IOP Publishing Ltd; (B) Optical image of the layout of microhole, microchannel and 

integrated electrodes of a flow-through microelectroporation chip with microfluidic channels 

for precise cell transport. © 2003 Elsevier Science B.V. 

 

In 2005, Luke Lee group developed a PDMS microfluidic chip that can laterally 

immobilize and locally electroporate cells in parallel (Figure 1.12) [99, 100]. The electrode was 

not incorporated on chip, eliminating production of adverse products from electrode reactions. 

Potential drop occurred mainly in the trapped cell membrane area. Hela cells were 

electroporated using low voltages (~ 0.76V) with escape of Calcein and entrance of Trypan 

blue. Cells were trapped by negative pressure via an attached syringe. This integrated multiple 

patch-clamp array microfluidic PDMS chip was recently mated with disposable bottom-less 96-

well plate, enabling cells to be manipulated and monitored individually [101]. Usage of 

Ag/AgCl electrodes and a patch clamp amplifier allowed accurate current traces and therefore 

cell resistance variation monitoring.  

 

A 
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Figure 1. 12: Layout of the chip and cell. (A) A multiplexed patch clamp array for high-

throughput measurements. (B) A schematic view of the cross-section of the chip. ©The Royal 

Society of Chemistry 2005 

 

 

Figure 1. 13: Schematic view of the electroporation device. Cells in the sample reservoir 

flowed to the receiving reservoir in a DC field. Electroporation was confined in the narrow 

section of the channel due to the amplified field inside. The inset shows a microscope image of 

a part of a fabricated device. The devices have the following dimensions: L1 2.5 mm, L2 2.0 

mm, W1 213 μm and W2 33 μm. © 2006 American Chemical Society 

 

In 2006 Wang reported a simple technique for SCEP with high throughput on a 

microfluidic platform (Figure 1.13) [102, 103]. Electroporation only happened in a defined 

section of a microfluidic channel due to the local field amplification by geometric variation. 

A 
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Exposure time of the cells to this high field was determined by velocity of the cells and length 

of the section. Chinese hamster ovary cells were electroporated reversibly and irreversibly by 

attenuating field strength. The correlation between cell swelling during electroporation and 

buffer osmolarity was also studied. 

 

 

Figure 1. 14: μPREP chip. (a) 3D schematic diagram of the μPREP chip, (b) a μPREP chip die. 

The electrodes in vertical direction were used for multiple electric field input, while those in 

lateral direction were for future current detection during electroporation, (c) Photograph of a 

packaged device. Within the red circle is the μPREP chip die which was wire-bonded on the 

PCB board, (d) Schematic diagram of a packaged device for optical detection. © 2005 Elsevier 

Science B.V. 
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He et al. brought up a new micro pulsed radio frequency electroporation (μPREP) chip 

based on MEMS technology illustrated in Figure 1.14 [104, 105]. A large amount of cells can 

be electroporated under different pulse conditions at the same time. A statistical “phase 

diagram” resulting from parametric study (pulse amplitude and pulse duration vs. fluorescent 

intensity variations and cell viability) helped to optimize electroporation efficiency and cell 

viability as shown in Figure 1.15 (A). More recently they modified the chip with increased 

height electrodes ( from 0.5 μm to 12 μm) to increase permeabilization efficiency of the cells at 

a more powerful 3D electric field [106]. Electroporation phase diagram of Hela cells from 

loading of five different size fluorescence-labeled dextrans (from 10 kDa to 70 kDa with 

approximate physical diameters of 4.6 nm to 12 nm) showed a strong dependence between 

permeability and molecular weight, and a size cut-off criterion of ~ 40 kDa (Figure 1.15 (B) ). 

      

Figure 1. 15: The phase diagram for electroporation and cell lysis. (A) PI uptake in cabbage 

cells, (B) electroperation of Hela cells with four different sizes of dextrans. © Elsevier B.V. 
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1.2.5 Other techniques for SCEP: multi-walled carbon nanotubes 

In 2005 Rojas-Chapana reported a plasmid delivery system based on water dispersible multi-

walled carbon nanotubes (CNTs) that can simultaneously target the bacterial surface and 

deliver plasmids into the cells via temporary nanochannels across the cell envelope [107]. No 

electrodes were needed. Water dispersible CNTs (~40 nm in diameter, <0.6 μm in length) 

having an anionic surface charge attached to the surface of Gram negative bacteria mainly by 

an electrostatic interaction between the CNTs and the likewise charged bacterial surface. On 

the other hand, the effect of a microwave electromagnetic field pulse on the interaction of 

CNTs with the cells leaded to electropermeabilization through individual CNTs. Using this 

technique, gold nanoparticles were transported into E. coli cells without affecting cell growth 

and cell morphology ( Figure 1.16). 

 

   

Figure 1. 16: TEM image of CNT electroporation. (A) an individual CNT, (B) bacterial cell 

interacting with CNTs, (C) bacterial cell interacting with CNTs and gold nanoparticles by 

microwave-treatment. ©The Royal Society of Chemistry 2005 
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1.2.6 Single-cell analysis and SCEP 

A prominent potential application of SCEP is to do single-cell analysis without affecting 

natural behavior of the target cells. Electroporation is considered as an appropriate technique 

being able to keep the proliferation and viability of cells. It not only provides a way to 

introduce interest molecular probes into a single cell and prohibit alterations in cell contents 

due to the loss of cell functions, but also makes it possible to have a dynamic study in a long 

time at the single or subcellular level. On the other hand, analysis based on single cell is an 

essential part during the study of SCEP. 

Single-cell analysis has become the focus of the frontier with great challenge in 

analytical chemistry [108]. It is the pith of biological reductionism. Thousands of different 

biochemical processes are simultaneously performed with the aid of proteins and information 

stored in DNA. Multiple processes interact, giving rise to complicated biological phenomena. 

Due to the ultra small size of single cell (diameter 7-200 μm, volume fL-nL), ultratrace amount 

of components (zmol-fmol) and ultrarapid biochemical reactions (ms), single-cell analysis 

typically requires high sensitivity, high selectivity, high temporal resolution and ultrasmall 

sampling-volume. 

A conventional procedure for single-cell analysis is: cell manipulation (by 

dielectrophoretic tweezers, optical tweezers, micropipets and microfluidic chips) → injection 

(into channels of capillary or chips) → lysis (by detergent, hypoosmotic solution, 

ultrasonication, laser pulse and electric pulse) → separation and detection (CE or flow 



 33 

cytometry with laser-induced fluorescence (LIF) electrochemical detection and mass 

spectrometry) [109]. Hua reported a single-cell analysis combing electroporation for 

intracellular immuno-reaction followed by CE-LIF detection in this typical procedure [110].  

A variety of microscopic techniques have been developed for imaging analysis of single 

cells including a common fluorescence microscope/or an inverted epifluorescence microscope 

equipped with a charged coupled device (CCD) camera, confocal laser-scanning microscopy 

(CLSM), multiphoton fluorescence microscopy, total internal reflection fluorescence 

microscopy (TIRFM), atomic force microscopy (AFM), and scanning electrochemistry 

microscopy (SCEM) etc.  

Studies on dynamic process of single-cell are very important for understanding its 

function and activity. Novel analysis techniques with high spatial and time resolution have been 

developed for real-time dynamic monitoring of the signal molecules released from single living 

cell, or even from subcellular vesicles. Combination of ultra-microelectrodes with a patch 

clamp has been used for the real-time measurement [111]. Techniques such as laser ablation, 

chemical etching and lithography have been used to fabricate vials with volumes in the 

nanoliter or even picoliter range. These micro-machined ultra-small-volume vials have been 

used for sample preparation and detection [112]. 

As described in SCEP techniques, the advanced techniques of single-cell analysis help 

to understand the cell behavior under electroporation by fluorescence imaging. One challenge 

for application of SCEP in single-cell analysis is the collection and analysis of the leaking 
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substances from a single living cell while electroporating it. However, it is believed that SCEP 

will ultimately be a protocol for real-time, single living cell analysis. 

1.2.7 Optimization of SCEP for high efficiency and survivability 

As mentioned before, so far most reports of SCEP are qualitative. Researchers find optimized 

pulse conditions to obtain high efficiency RE for their specific setup, but no other variables 

have been investigated in detail. In the following text, I will describe what variables affect the 

results of SCEP and some latest progress achieved in study with EFC. Then a possible way for 

technique improvement will be proposed leading to our efforts in the recent and future work. 

1.2.7.1 Larger variance in SCEP than in bulk electroporation 

Different from bulk electroporation where the average information is collected and uniform 

electric field is applied, SCEP is characterized by results from individual cells and a restricted 

non-uniform electric field in most cases. Small alterations in the device geometry and 

individual cell conditions matter more than in bulk electroporation and would induce a lot 

variance. Thus a large variance is expected for SCEP. This is demonstrated in our experiments 

with EFC where the same EFC, same geometry (tip-cell distance) and same pulse conditions 

are applied on two cells with similar shape and diameter in the same cell dish (Figure 1.17).  

Statistical analysis is necessary in SCEP to reveal the origins of the variance and 

optimize parameters for best efficiency and survivability, like the phase diagram described by 

He [106]. In the other way, efforts should be paid to narrow the variance, which in the other 
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words is to get better control of the SCEP by governing the variables. This is one aim of our 

experimental work. 
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Figure 1. 17: Whole-cell fluorescence intensity vs. time during electroporation of single A549 

cells. Cells were pre-stained by Thioglo
®

 1. Upon electroporation, the fluorescent Thioglo
®

 1-

GSH complex flew out of the cell, resulting the decrease of whole-cell fluorescence intensity. 

The data were normalized by setting the initial fluorescence intensity as 1. 

1.2.7.2 Distance is a vital factor for electric field distribution 

As a matter of fact, all the parameters (electric parameters, cellular factors and physicochemical 

factors) discussed in chapter 1.1.3 act on SCEP. In this miniaturized electroporation 

environment, the geometry effect on electroporation is magnified. One most important factor 

among them is the distance (or position) of microelectrodes or micropipette or EFC with 

respect to the target cells. 
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In our group, pulled EFC are used for SCEP to achieve high spatial resolution. Earlier 

statistical analysis based on experimental results with an pulled EFC demonstrated that the 

distance between the cell and capillary tips greatly affects electroporation efficiency and cell 

survivability in a degree over the pulse duration, cell size and cell shape  [113, 114]. This is 

because the strength and distribution of the inhomogeneous electric field dramatically relies on 

tip-cell distance, as reported by numerical simulation using a finite element method (FEM) 

program Comsol Multiphysics [113]. The strong relationship between potential drop and 

distance was also examined in the case of microelectrodes and being considered for 

electroporation device optimization [106, 115]. 

 

 

Figure 1. 18: Determination of optimal parameters to achieve maximum cell survivability and 

electroporation. Contour plot of the fraction of electroporated cells (solid contour lines) 

superimposed on a contour plot of cell survivability (shaded contour). The contour plot of cell 
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survivability percentage was plotted as a function of the pulse duration and cell-capillary tip 

distance. © 2007 American Chemical Society 

 

In the next experiments chapter, I will explain how the electric field looks like at the tip 

of a pulled capillary when extending into solutions by simulation. When the pulse generators 

limit the pulses strength and duration, adjusting the capillary geometry and the tip-cell distance 

is an effective complementary method to yield best electroporation. A vivid example in Figure 

1.18 came from our previous work by maximizing the cell permeabilization and viability 

simultaneously using a 5 μm opening EFC. 

Smaller tips usually lead to more dependence of electroporation yield on the cell-tip 

distance. Thus precise manipulation of distance is required to get good control of 

electroporation. The positions of microelectrodes in microchip have always been fixed. While 

in the cases of using EFC or solid electrodes, micromanipulators are applied. I have tried to set 

up electronics for accurate distance control. Details will be described in the experimental 

chapter. 

1.2.7.3 Small-sized cell is a challenge 

Our previous research reveals that small-sized cells require severer condition for electroportion 

than large cells, which is consistent with the electroporation theory. However, the results also 

shows that small cells tend to die after being electroporated. The contour plots in Figure 1.19 

indicate that when using a 5 μm opening capillary, a wide range of values of pulse duration and 
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cell-capillary tip distance can give good results for a large spherical cell (plot C); while small 

cells have a small probability for simultaneous cell survivability and success [113]. 

Electroporation in a milder extracellular HEPES buffer where we find fast resealing happens 

gives the similar results (data not shown).  

 

 

 

Figure 1. 19: Contour plots of probabilities of cell survivability and electroporation success as a 

function of pulse duration and cell-capillary tip distance and cell properties. Cell diameters: (A) 

small (19 μm), (B) median (25 μm), and (C) large (39 μm). Black area: 0-50% electroporation 

success. Red area: 0-50% cell survivability. Green area: >50% electroporation success and 

>50% cell survivability. Blue area: >90% electroporation success and >90% cell survivability. 

© 2007 American Chemical Society 

1.2.7.4 Our hypothesis of cell electroporation and survivability 

Two dimensional simulation (details provided in the experimental section) of above different 

size cells gives the electroporated membrane area (PoreArea), fraction of electroporated 

membrane area (FEA) and the maximum TMP (at 0 ). The capillary in these simulation has 
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a total length of 15 cm, inner diameter (i.d.) of 100 μm and outer diameter (o.d.) of 375 μm, its 

end close to the cell being pulled to form a tip with a taper length of ~ 2mm and i.d. = o.d. = 3.6 

μm. Figure 1.20 shows that given the same tip-cell distance, smaller cells have smaller 

electroporated areas but larger FEA and smaller maximum TMP. Further 3D simulation shows 

similar trends. 
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Figure 1. 20: Simulated FEA, Maximum TMP and electroporated area plotted as a function of 

distance for different sized cells. Cell diameters: small (19 μm), median (25 μm), and large (39 

μm). Tip size: 3.6 μm. A 500 V square DC pulse is applied. 
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It is easy to link maximum TMP with the probability of electropermeabilization 

according to the existence of TMP threshold. Therefore, a rational conclusion from both the 

simulation and transmembrane potential theory (refer to equation (1)) is that smaller maximum 

TMP can cause small cells harder to be electroporated than large cells. An additional important 

point about the influence of TMP is that too large TMP will induce membrane breakdown. 

In the meanwhile, it seems that the large FEA might be the cause of death of small cells. 

It is of great possibility because large FEA means large extent of intra-extra cellular substances 

exchange, which is an origin of cell death during electroporation. 

To summarize, based on the present theory, simulation and experimental results, we 

hypothesize that large maximum TMP means high probability of electroporation while small 

FEA leads to high cell survivability. Following this hypothesis, we seek for appropriate 

solution to electroporate small cells with simultaneous maximization of electroporation 

efficiency and survivability. 
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2.0  SCEP WITH EFC MICRO-TIPS 

- INSTRUMENTATION, EXPERIMENTS AND SIMULATION 

2.1 INTRODUCTION: SMALLER TIP SIZE OF EFC MAY SOLVE THE 

PROBLEM OF SMALL-SIZED CELLS 

Through simulation, we find small capillary tips give small FEA at the same maximum TMP as 

shown in Figure 2.1. A clearer comparison for a 2 μm tip and a 3.6μm tip with regard to the 

relationship of FEA and maximum TMP is given in Figure 2.2. As we hypothesize, the smaller 

tips should benefit electroporation of small cells while keeping the same viability. 

Therefore one of our aims is to use small tips (~ 2 μm) for SCEP to improve the 

probability of electroporating small cells reversibly. It is a challenge in some extent because of 

increased technical difficulty when handling small tips, and enhanced demand for accurate 

control of the distance between capillary tip and the cell. 
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Figure 2. 1: FEA and Maximum TMP plotted as a function of distance for different sized cells 

at 25 °C. Cell diameters: small (19 μm), median (25 μm), and large (39 μm). Tip size: 2 μm. 
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Figure 2. 2: Comparison of 2 μm and 3.6 μm tips regarding FEA and maximum TMP for 

different sized cells at 25 °C. At the same FEA, smaller tip results larger maximum TMP. 
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

The chemicals used for buffer preparations were all of analytical grade and purchased from 

Sigma (St. Louis, MO). Thioglo-1 was purchased from Covalent Associates (Woburn, MA). 

Propidium iodide, calcein AM and NeutrAdivin FluoreSphere were purchased from 

Invitrogen/Molecular Probes (Eugene, OR). A549 cell lines were obtained from American 

Type Culture Association (Manassas, VA). Basal medium Eagle (BME), 0.25% trypsin-EDTA, 

One Shot
TM

 fetal bovine serum (FBS), L-glutamine, and penicillin- Streptomycin were all 

obtained from Invitrogen, GIBCO (Carlsbad, CA). Milli-Q (Millipore Synthesis A10, Billerica, 

MA) water was used. Extracellular buffer consisted of NaCl (140 mM), KCl (5 mM), MgCl2 

(1.5 mM), CaCl2 (2 mM), D-glucose (10 mM) and HEPES (20 mM); pH adjusted to 7.4 and 

filtered with 0.45 μm Nylon filters prior to use. Pt wires (diameter 0.5 mm, high purity 99.99+ 

%) were bought from Goodfellow (OAKDALE, PA). 

2.2.2 Cell culture and preparation 

A549 Human Lung Carcinoma cells (adherent, epithelial and with a doubling time ~22 hours) 

were cultured in BME supplied with 10% FBS, 2 mM L-glutamine, 100 units/ml penicillin and 

100 μg/ml streptomycin. Cells were grown in 75-cm
2
 cell culture flasks (Nunc* Sterile 

EasYFlask) in a CO2 cell culture incubator (HERA cell incubator, Newtown, CT) at 37 °C and 
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5% CO2, and were subcultured when reaching ~ 80% confluency every 3-4 days. Cells were 

counted with a Hausser Bright-Line Phase counting chamber to get a seeding density of 1x10
7
 

cells / 75 cm
2
 in culture flasks. Before the experiments, cells were plated on 35-mm gridded 

uncoated glass-bottom cell culture dishes (MatTek Corp., Ashland, MA) in a seeding density of 

1.8   10
4
 / 962 mm

2
. Experiments were performed on the second and third days following the 

cell plating. 

2.2.3 Cell fluorescence staining 

2.2.3.1 Staining for SCEP observation 

The cells were stained with cell-permeable calcein AM or Thioglo
®

 1 for flow-out-of-cell 

visualization. Cell-impermeable propidium iodide (PI) was used for taken-up visualization. 

Thioglo
®

 1 is a non-fluorescent maleimide-based reagent that gives a highly green 

fluorescent product upon its reaction with active SH groups in proteins, enzymes, and small 

peptides [116]. When cells were treated with Thioglo
®

 1, the triggered-on fluorescence was 

ascribed to GSH- Thioglo
®

 1 adduct [117], thus Thioglo
®
 1 can be used for detection and 

titration of GSH, which plays a vital anti-oxidation and free-radicals-remover role in cell 

functions and metabolism. The Thioglo
®

 1-GSH adduct has an absorbance max at 379nm and 

emission max at 513 nm. Low concentration of Thioglo
®

 1 (< 10 μM) was reported to be non-

cytotoxic [117]. For staining, cells were washed 3 times by extracellular buffer and stained with 
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2 μM Thioglo
®

 1 in 0.5 ml extracellular buffer for 30 s at room temperature, then washed again 

and finally bathed in the extracellular buffer for electroporation. 

Calcein AM is a widely used green-fluorescent cell marker for the studies of cell 

membrane integrity and for long term cell tracing. It is a non-fluorescent, cell permeant 

compound that can be hydrolyzed by intracellular esterases into the green-fluorescent anion 

calcein (absorbance max at 494nm, emission max at 517 nm) in living cells. Cells were stained 

with 1 μM calcein AM in 2 ml culture media for 1 hour at 37 °C and washed with extracellular 

buffer before employed in electroporation. 

PI is a popular red-fluorescent nuclear and chromosome counterstain (absorbance max at 

536nm, emission max at 617 nm). This membrane impermeant dye stains by intercalating into 

nucleic acid molecules between the bases with little or no sequence preference. It binds both 

DNA and RNA. PI is also commonly used for identifying dead cells. When using PI as an 

indicator of electroporation, the electroporation media was replaced by 2 µM PI in 2 ml 

extracellular HEPES buffer. 

2.2.3.2 Cell viability check 

After electroporation, the viability of cells was examined by fluorescent kits calcein AM and 

/or PI. Cells pre-stained with Thioglo
®

 1 were exposed to both 0.5 μM calcein AM and 0.5 μM 

PI in 2 ml culture media at 37 °C for 40 min. If cells were pre-stained by calcein AM, only PI 

was used to identify dead cells. When electroporation was conducted in the presence of PI, 

calcein AM staining helped to tell integrity of the cell membrane after electroporation. 
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2.2.4 EFC fabrication and buffer filling 

We adopt pulled capillaries for electroporation. The benefits compared to the unpulled 

capillaries are: (1) higher spatial resolution; (2) lower voltage is required because the voltage 

drop concentrates at the cell tip region; (3) decrease the osmotic flow; (4) potentially smaller 

volume for delivery. 

The fabrication of EFC with pulled tips was done in a clean hood. Fused-silica 

capillaries from Polymicro Technology (Phoenix, AZ) were used. The dimensions of the fused-

silica capillary were o.d. 367 μm and i.d. 100 μm. Capillaries were pulled at one end by using a 

CO2 laser puller (Sutter Instruments Co. P-2000, Novato, CA). Before the capillary was pulled, 

a 2-cm-center section of a 35-cm-long capillary was burned with flame to remove the 

protective polyimide coating, then flushed with filtered Milli-Q water (filtered by an online pre-

column 0.2 μm filter) and carefully truncated at the ends to get a final length of 30 cm with a 

Shortix™ fused-silica tubing cutter. These capillaries were pulled using four-line programs as 

listed in Table 2.1 to create reproducible capillaries with a short pulled tip having an i.d. of 4-5 

μm or ~ 2 μm (Figure 2.3). The final length of the capillary was 15 cm. 

Before the experiments, the capillaries were filled with extracellular HEPES buffer by a 

plastic syringe. An online pre-column filter was put between the syringe and the capillary to 

eliminate the possibility of capillary clogging induced by particulates in the solution. The high 

pressure caused by the small tip requires an airtight flow from the syringe to the capillary. 
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Figure 2. 3: Pictures of pulled capillaries under microscope (40 ). The taper length is about 2 

mm. (A) i.d. 4-5 μm. (B) i.d. ~ 2 μm. 

 

Table 2. 1: Programs for capillary pulling 

Line No. 

4-5 μm ~2 μm 

Heat Filament Velocity Delay Pull Heat Filament Velocity Delay Pull 

1 250 0 30 200 0 250 0 30 200 0 

2 250 0 30 200 0 250 0 30 200 0 

3 250 0 30 200 0 250 0 30 200 0 

4 254 0 30 200 0 270 0 30 200 0 

  

2.2.5 Microscope imaging 

The cell dish was fixed in a cell chamber (DH 35i culture dish incubator, Warner Instruments, 

Holliston, MA) mounted on the stage of an inverted fluorescence microscope (Olympus IX 71, 

Melville, NY) coupled with a CCD (ORCA-285 IEEE 1394 -Based Digital Camera, 

Hamamatsu Photonics K.K., Japan) for fluorescence imaging. A HBO 100 W mercury lamp in 

the microscope was used as the excitation source. Cells were observed through a 20x 0.70 NA 

UPlanApo objective lens. Image processing was performed by the image acquisition software 

A B 

A B 
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SimplePCI from Compix Inc (Sewickley, PA). Fluorescent Intensity was corrected by 

background deduction.  

For Thioglo
®

 1, an Omega fluorescence filter cube (especially built, exciter XF1075-

387AF28, dichroic XF2004-410DRLP, emitter XF3087-480ALP, Omega Optical, Brattleboro, 

VT) was used for excitation at 378 nm and emission at 480 nm. For calcein AM and PI 

imaging, BrightLine
® 

DA/FI/TX-3X-A triple band pinkel filter set from Semrock (Rochester, 

NY) was used (exciter 1, 387 nm; exciter 2, 494 nm; exciter 3, 575 nm; emission, 457, 530, 628 

nm). In electroosmotic flow study, a filter cube for calcein was used. 

2.3 INSTRUMENTATION FOR SCEP WITH EFC 

2.3.1 Circuit design and electronics  

The experimental setup is depicted in Figure 2.4. It comprises two switchable circuits: 

electroporation circuit and test circuit. When doing experiments, the test circuit helps to 

examine the status of capillaries (clogging problem, resistance) and set the tip-cell distance via 

current measurement. After desired distance and satisfactory capillary status are obtained, the 

switches are altered to activate the electroporation circuit for electroporation accompanied with 

current monitoring. 
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Figure 2. 4: Schematic diagram of the experimental setup. Two circuits, electroporation with 

current monitoring and test circuit are switchable from each other. By switching from A to B 

and A‟ to B‟, the active circuit converts from the test circuit to the electroporation circuit. 

2.3.1.1 Electroporation circuit 

When the switches were put in B and B‟ position, the electropotation circuit was in active. The 

15-cm-long pulled capillary was positioned using a MP-285 motorized micromanipulator from 

Sutter (Novato, CA). The tip end was carefully placed near the target cell at a desired distance. 

The other end of the capillary was inserted into a vial filled with extracellular HEPES buffer. A 

platinum electrode placed in this vial was connected to the electroporator (BTX
®

 ECM 830, 

Harvard Apparatus, San Diego, CA), and the electrical circuit was completed with another 

platinum electrode placed in the cell dish connecting to an added 100 kΩ resistor and 

oscilloscope (NI 5911 Digital Oscilloscope for PCI, National Instruments Corp. Austin, Texas) 

for current monitoring. 
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The added resistor was chosen to be 100 kΩ in order to (1) meet the measurement 

limitation of the oscilloscope (Max. 10 V), (2) minimize noise/signal ratio, (3) minimize the 

effect of the supplementary part to the whole electroporation circuit, that is, to minimize the 

resistance from the supplementary part. Since the resistance of EFC was always > 10 MΩ, the 

extra 100 kΩ resistor barely affected the electroporation current. Ignoring the other impedance 

sources, the expected reading in oscilloscope is given by (the oscilloscope has an input 

impedance of 1 MΩ), 









MR

M
VR

RR

V
V

EFC

applyplementary

plementaryEFC

apply

peoscillosco
091.0

091.0
sup

sup

 

In our experiments, the applied voltage for electroporation was a single DC square wave 

having a magnitude of 500 V and duration of 300-400 ms; the current flowed through with a 

rising time of ~ 200 μs and a decay time of ~ 300 μs.  

The distance between the tip and cell d for electroporation was 3.5 or 4 μm and 

determined in two ways. One was by putting a scale bar to visually measure the distance, and 

this observed distance between the capillary tip and the cell was the projection of the images in 

the horizontal imaging plane (cell dish surface). The other way was to find the cell-tip touching 

point via current measurement followed by horizontal retreat to obtain the desired distance. 

2.3.1.2 Test circuit 

The test circuit helped to learn the behavior of the capillary. The other function of it was to help 

control the distance between cell and tip by defining the touching point. Besides the Pt wire-

vial filled with buffer-EFC-cell dish-Pt part, this circuit also included a synthesized function 
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generator (SRS Model DS 340, Stanford Research Systems, Inc., Sunnyvale, CA) and a lock-in 

amplifier (SRS Model SR 830 DSP). The function generator gave a continuous 2 V AC signal 

at 100 Hz. This signal passed through EFC and cell dish and was finally captured by lock-in 

amplifier. The lock-in amplifier was set to lock the specific frequency by input of the signal 

from function generator to the reference channel, thus measured the current of the whole circuit 

at this specific frequency. Those unwanted noise at other frequencies were eliminated.  

When the capillary tip was away from the cells, the current reading from lock-in 

amplifier provided information of capillary resistance, helped to examine if the capillary was 

clogged or the capillary size was satisfied. In the case when tip was approaching to the cell, the 

current told us how close the distance was; in this way, we can determine the tip-cell touching 

point and control the distance by retreating the tip from the cell with a micromanipulator. 

2.3.2 EFC resistance 

Resistance of the EFC can be estimated by the current reading from lock-in amplifier when 

capillary tip was away from cells: 

)(

2

AmplifierinLockfromreadingI

V
REFC


  

Because this calculated resistance also contained resistance from the buffer solution in 

vial/cell dish and electronics, it was always larger than the real value. The above estimation 

was based on the fact that the total resistance of the vial/cell buffer and electronics were much 

smaller than the EFC resistance (several kΩ compared to > 12 MΩ).  
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We tested the pulled capillaries‟ resistance with different tip sizes. Under the situation 

that EFC with a 2-μm tip was clear and desirably sized, the experimental reading from lock-in 

amplifier was 0.12 ~ 0.13 μA, which corresponded to a resistance of ~ 16 MΩ. When the tip 

grew to 4-5 μm, the reading increased to 0.13 ~ 0.14 μA corresponding to ~ 14 MΩ. These 

were very close to the simulated values (see simulation part). If the capillary was clogged, the 

reading decreased a lot. Therefore we were able to select a suitable sized capillary without 

clogging before carrying out electroporation by simply reading from the lock-in amplifier. 

2.3.3 Current measurement controlled tip-cell distance 

As mentioned in 2.2.2, we can control the tip-cell distance by current measurement in test 

circuit. When the capillary tip was touching the cell, a seal was formed. Cell membranes have 

been reported to have affinity to substrate materials such as glass [96]. In patch-clamp 

technology, people have been using glass pipets having an opening of 0.5 ~ 1 μm to create a 

giga-seal on cells to study the electrophysiological behavior of ion channels [118, 119]. In our 

case, the tip was larger, and a smaller seal was expected. Figure 2.5 shows how the system 

resistance in test circuit changes when the tip approaches to the cell.  
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Figure 2. 5: Resistance changes when a 5 μm capillary tip seals with cell membrane. We set the 

point when the resistance begins to change as distance zero. Based on the microscope 

observation and simulation, this zero point is extremely close to the touching point. 

 

Relying on the reading from lock-in amplifier, we were able to tell a change of > 2%. In 

the following simulation part, we found that this extent of change happened only when the 

distance decreased to zero. A deeper indent enhanced the resistance change, which helped to 

tell the real change from the already weakened noise. Combined with a high resolution 

micromanipulator, we were able to find the zero distance point, and then retreated from the 

point to get a desired distance. 

A significant advantage of this distance control method over the scale bar measurement 

is that higher spatial resolution can be achieved. Usually the scale bar method is limited beyond 

1 μm. With the current measurement method, the limitation mainly comes from the noise and 

micromanipulator. A high resolution micromanipulator can possibly help to obtain a spatial 
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resolution of 0.1 μm. Some other advantages are (1) the freedom to approach the EFC from any 

angle to the cell; (2) the distance is not necessary the projection one on the horizontal plane 

(this may induce distance variance by the gap between the tip and cell dish), it can be a direct 

distance between the tip and cell. 

2.4 NUMERICAL SIMULATION 

As mentioned before, the inhomogeneous electric field makes analytical calculation difficult. 

The Orwar group gave analytical formula for electric field distribution at the symmetric axis 

produced by a uniform i.d. capillary. However, we are using a pulled capillary; hence the 

situation of electric field distribution is much more complicated. Predecessor in our lab has 

developed a numerical simulation model for SCEP in Comsol Multiphysics 3.3, and used the 

model to anticipate the FEA and TMP. Here we applied the similar method for numerical study 

of SCEP, capillary resistance and electric field distribution. 

2.4.1 Model setup and parameters 

2.4.1.1 Capillary drawing in Comsol 

A typical capillary with a 2 μm tip opening and a taper length of 2 mm was chosen for real 

capillary drawing in the model. Because the length of capillary (15 cm) was much larger than 

the tip opening, only part of the capillary, including the tapered 2 mm and 0.5 mm unpulled 
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section (L=2 mm, mm 0.5l in Figure 2-6) was modeled. The real dimensions (o.d./i.d. ~ 

distance from the tip end) were measured after taking images under 20x, 40x, and 60x. These 

data were imported into OriginLab and fitted into 3 Sigmoidal Boltzman functions (0-100 

μm/100-600 μm/600-1600 μm) for smoothing. The joint parts were either fitted with blended 

functions or corrected based on the real data. Finally 62 points were given to structure the 

capillary for inner wall and outer wall, separately. For comparison, a model with a capillary of 

3.6 μm was also built in the similar way. 

 

  

Figure 2. 6: SCEP modeling geometry. Boundary conditions, defined by line styles, are 

described in the figure. The capillary is positioned perpendicular to the dish surface and is 

centered above the cell. Rotational symmetry is used to simplify the simulation. In simulations, 

the actual shape of the capillary tip shown in Figure 2.1 (B) is used. Components are not drawn 

to scale [113]. © 2007 by the Biophysical Society 
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2.4.1.2 Model and parameters 

 

Table 2. 2: Parameters and constants 

Total capillary length Ltot 0.15 (m) or 0.10 (m) 

Simulated capillary length Lsim 0.0025 (m) 

Applied voltage Vapp 500 (V) 

Conductivity of extracellular buffer s * 2

CBA 273.15)-(TC273.15)-(TCC   (S/m) 

Conductivity of cytoplasm c  
s

60

13
 (S/m) 

Conductivity of cell membrane m  5103.5   (S/m) 

Cell membrane thickness Δ 9107   (m) 

Critical TMP 0.25 (V) 

Tip-Cell distance d 0.5 ~ 8 (μm) 

Cell radius R Small cells R = 10 μm, Median cells R = 12.5 μm 

Large cells R = 20 μm 

  

*
 The value of s  was measured by applying an electric potential across two electrodes 

(plates) immersed in a test solution under different temperature and fitted into a polynomial 

curve. CA=1.11669, CB=0.01838 and -4

C 101.65C  . 

 

The simulation of SCEP utilized a conductive Media DC with 2D axis-symmetric. This 

model solved a partial differential equations (PDE): –∇(σ∇V) = Q , where σ is the 
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conductivity and Q is the current source. Figure 2.6 shows the modeling geometry and 

boundary conditions. Parameters and constants used are listed in Table 2.2. Two model 

navigators, dcout and dcins, separate the inside cell and outside cell domains. They are related by 

membrane boundary condition set to be Jn (dcout) = (Vi-Vo)* m /Δ and Jn (dcins) = (Vo-Vi)* m /Δ. 

The voltage at the simulated capillary unpulled end is related to the applied voltage with the 

equation, )L-L(EVV simtoty_dcoutapp0  . Accurate calculation of V0 requires to turn on the 

„„weak boundary condition‟‟. 

A simplified model comprising only a capillary in the whole geometry simulated the 

resistance of capillary. A potential was applied at the top end and the capillary tip end was set 

as ground. 

2.4.2 Potential and electric field distribution near the EFC tip 

Figure 2.7 shows how the potential and electric field distribute near the tip when a capillary 

having a 2 μm tip is put 15.5 μm away from the cell dish surface. With an apply voltage of 

500V, approximately 75% potential drop happens in the untapered section, and more than 20% 

voltage drop occurs exponentially at the 2 mm tapered section. At the tip where in the figures 

corresponding to d = 0, the potential is only several volts. The existence of cell barely affects 

the potential drop across the capillary (plot (C) and (D)). Placing a cell under the capillary 

induces the formation of a sharp potential drop across the cell membrane (plot (D) insets). 
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Figure 2. 7: Simulated electric field and potential distribution. (A) and (C): no cell; (B) and (D): 

with a median-sized cell. (A) and (B) show the surface plots for potential distribution and 

streamline plots for electric field distribution around the 2 μm tip. (C) and (D) are the potential 

drop curves along the central axial of capillary, with insets for the extension into the 

solution/cell. 
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C 
D 



 59 

The streamline plots in Figure 2.7 indicate an intense electric field at the tip and an 

exponentially dropping electric field when going farther into the bath buffer (plot A). The 

electric field is distorted by the presence of a cell (plot B). 

2.4.3 Resistance for EFC with different tip size 

The capillaries with tip i.d. of 2 μm and 3.6 μm were simulated by simply setting the top end 

with a potential source of 500V and the tip end as grounding. The resistance of EFC was then 

calculated by 

)(_

)(500

AdcJ

V

J

U

A

U
R

Z
  

where J is the current density across the lumen of the capillary. 

Table 2.3 gives the resistance of these two different tip-sized capillaries at different 

temperature. Apparently the resistance decreases along with the increase of temperature 

because of the enlarged conductivity. The resistance of 2 μm tip capillary is slightly larger than 

3.6 μm one. At room temperature, they give resistance of 14.5 MΩ and 13.7 MΩ respectively. 
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Table 2. 3: Simulated resistance of different tip-sized capillaries at different temperature 

T 

(°C) 

2 μm tip capillary 3.6 μm tip capillary Difference 

Resistance 

(MΩ) 

Reading 
* 

(μA) 

Resistance 

(MΩ) 

Reading 

(μA) 

Resistance 

(MΩ) 

Reading 

(μA) 

0 21.87303 0.09144 20.61623 0.09701 1.2568 0.00557 

15 17.08537 0.11706 16.10472 0.12419 0.98065 0.00713 

20 15.75421 0.12695 14.85008 0.13468 0.90413 0.00773 

25 14.5434 0.13752 13.70913 0.14589 0.83427 0.00837 

30 13.44442 0.14876 12.67316 0.15781 0.77126 0.00905 

37 12.07474 0.16563 11.38215 0.17571 0.69259 0.01008 

  

* Reading: Calculated reading from lock-in amplifier given the function generator 

produces 2 Vrms without considering the other sources of resistance. 

 

2.4.4 Resistance with cells at various tip-cell distances 

Using the same model for SCEP simulation, the resistances of EFC and the whole 

electroporation system were calculated by the voltage drop and integrated current 
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By this method, we investigated the resistances of the two types of capillaries with 

presence of cells at various tip-cell distances at 25 °C. Table 2.4 shows results for the small cell 

with 2 μm tip capillary. The capillary resistances obtained in this model are similar to those in 

Table 2.3. The tip-cell distance changing from 100 μm to 0.5 μm induces no noticeable change 

of the resistance and current. A deeper inspection indicates that the change of resistance cannot 

be detected unless tip-cell distance is extremely small, as shown in Table 2.5 in terms of large 

cells, 2 μm tip capillary and short distance. 

 

Table 2. 4: Resistance measurement in electroporation simulation model with small cells (R = 

10 μm) and 2 μm tip EFC 

Tip-cell 

distance 

(µm) 

Voltage at tip 

(V) 

Current 

Integration 

(μA) 

Capillary 

Resistance 

(MΩ) 

System 

Resistance 

(MΩ) 

Current  (µA) 

100 4.84035 34.1064 14.51807 14.65999 0.13643 

8 4.88908 34.1031 14.51804 14.66141 0.13641 

1 5.66939 34.0539 14.51612 14.68261 0.13622 

0.5 6.85438 33.9866 14.51001 14.71169 0.13595 
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Simulation with 3.6 μm tip capillaries shows similar results. Though the real system 

resistance is larger than the simulated due to other resistance sources, this theoretical result still 

strongly supports our current measurement-based distance control method. 

 

Table 2. 5: Short distance resistance measurement in electroporation simulation model with 

large cells (R = 20 μm) and 2 μm tip EFC 

Tip-cell 

distance 

(µm) 

Voltage at 

tip 

(V) 

Current 

Integration 

(μA) 

System 

Resistance 

(MΩ) 

Change 

(%) 

Lock-in amplifier 

Reading 

(µA) 

1 5.8022 34.0451 14.68641 0 0.136 

0.5 7.10299 33.9704 14.71868 -0.16861 0.136 

0.25 9.19321 33.8556 14.76859 -0.38853 0.136 

0.125 11.65082 33.7166 14.8295 -0.72575 0.135 

0 19.809961 33.1995 15.060048 -2.64643 0.133 

Seal (-

0.047) 

29.134133 32.5574 15.35750 -4.53046 0.130 

Dent -1 156.74168 24.0030 20.83069 -29.6166 0.096 

  

2.4.5 FEA and TMP for electroporation 

This model also gives FEA and TMP as introduced in chapter 1. TMP corresponds to the 

difference value between the potential at the outside and inner side of the membrane, and FEA 
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is calculated by dividing the area where TMP ≥ 0.25 V by the whole cell area. Shorter distance 

means higher TMP and larger FEA. The simulated electroporation behavior at different tip-cell 

distances with 2 µm and 3.6 µm tips was demonstrated in Figure 2.2.  

2.5 ELECTROOSMOTIC FLOW DURING ELECTROPORATION 

The EFC we used is a fused-silica capillary without any modification in the inner wall; 

therefore because of the negative-charged characteristic of silica surface, electroosmotic flow is 

a factor that may affect the electroporation. An experimental observation of this effect was that 

a neutral molecule can move out of the capillary tip into the buffer bath when the external 

applied current flowed from the unpulled inlet towards the pulled tip. 

Electroosmotic flow phenomena were studied using Invitrogen FluorSphere® beads 

labeled by NeutrAvidin
TM

 (Polystyrene microsphere, diameter 0.04 μm, yellow-green 

fluorescent ex505/em 515). The isoelectric point (PI) of NeutrAvidin
TM

 is 6.3. The beads are 

close to neutral in pH 7.4 extracellular buffer. Before experiments, the beads solution were 

sonicated, mixed with HEPES extracellular buffer at random concentration, filtered by 0.11 µm 

Nylon filter and filled into the EFC with the aid of a syringe. The EFC was then used for 

electroporation setup. Electroosmotic flow was observed while applying a single pulse or a 

train of pulses at different durations and frequencies. Figure 2.8 is a fluorescence picture of a 

beads-filled EFC tip immersed in the buffer solution. The mean fluorescence intensity change 

within the red circle for different sized tips (2, 4 and 6 μm) was measured (Figure 2.9). 
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Figure 2. 8: A picture of fluorescent-beads-filled capillary for eletroosmotic flow study 
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Figure 2. 9: Fluorescence intensity change within the focused tip portion when pulses are 

applied on the fluorescent-beads-filled capillaries. (A) 2 μm tip, a single 300 ms pulse of 500 
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V; (B) 4 μm tip, a single 400 ms pulse of 500 V; (C) 4 μm tip, a train of 1 s pulses of 500 V; 

(D) 6 μm tip, a train of 1 s pulses of 500 V. 

 

A sharp decrease in Figure 2.9 (A) indicates a noticeable electroosmotic flow when a 2 

μm capillary tip is exposed under the experimental electroporation pulse conditions (a single 

pulse, 300-400 ms, 500V). With the similar pulses, a 4 μm tip shows no obvious intensity 

change (Figure 2.9 (B)). However, stronger pulses enhance the electroosmotic flow (Figure 2.9 

(C)). When the tip size continues to increase, the electroosmotic flow keeps fading away 

(Figure 2.9 (D)). 

Based on above results, we conclude that smaller tips have larger osmotic flow than 

large tips in the range of 2-6 μm. When tip opening is larger than 4 μm, no noticeable 

electroosmotic flow occurs at a single short pulse (300-400ms) which is usually applied for 

electroporation. An explanation for this is that smaller tip has much larger electric field at the 

tip. In the future, we will investigate deeper into the electroosmotic flow and electrophoresis 

during electroporation with the aid of Comsol numerical simulation. If necessary, we can coat 

the capillary with polysaccharides to suppress the electroosmotic flow. An advantage from the 

electroosmotic flow is that it can help to deliver the loading agent into cells. 
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2.6 ELECTROPORATION RESULT 

2.6.1 Excellent spatial resolution 

An excellent spatial resolution was obtained with such a small EFC tip. Neighboring cells are 

never electroporated throughout the whole electroporation experiments, even when there is no 

gap between the target cell and its neighbors. Figure 2.10 shows a fast temporal resolution 

electroporation of a target calcein AM-stained cell 1.1 without affecting the adjacent cell 1.2. 
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Figure 2. 10: High spatial resolution of electroporation with a 2 μm tip EFC. The sharp jump of 

fluorescence intensity in cell 1.1 indicates electroporation, while cell 1.2 only shows 

photobleaching under exposure to light. 
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2.6.2 Fluorescence exposure and dye selection affect cell viability 

We reveal that the fluorescence exposure dose affects the survivability of electroporated cells. 

Two kinds of imaging manners were adopted. One was taking fluorescence sequences in a 

speed of 1 frame / second, the other was only snapping fluorescence images right before 

applying the pulse and 2 min after electroporation. In both manners, the microscope was set to 

minimize photobleaching. Table 2.6 gives the success electroporation rate and survival rate of 

the target cells when a tip-cell distance of 3.5 μm is applied under these two imaging manners. 

Although similar success rates are obtained, the reduced light exposure from two single-snaps 

significantly improves the survivability of cells. This could be a result of the creation of hazard 

radicals upon photobleaching. 

 

Table 2. 6:  Summary of cell electroporation success and survival results at d = 3.5 μm 

Imaging manner  Number of Cells Success 

rate 

Survial 

rate Success Fail Alive Dead 

Sequence imaging 57 17 18 56 77% 24% 

Two single-snaps 39 10 24 25 80% 49% 

  

The selection of dyes may also influence the survivability of cells. One fact is that 

electroporation under PI staining yields more living cells than Thioglo
®

 1 (80% survivability 

with 93% success rate with 14 cells). The reason is unclear. One guess could be that in 

Thioglo
®

 1 experiments, cells were pre-stained before exposure to lights, while PI entered the 
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cells after electroporation. The other explanation could be that the photobleaching of Thioglo
®

 

1-induced fluorescence is very fast, thus more hazard radicals are produced. Furthermore, the 

cytotoxicity of dyes affects cell viability. Calcein AM staining is reported to be toxic to some 

cancer cells [120-122]. Our cell cytotoxicity studies also show that the calcein AM-stained cells 

were induced to death after fluorescence exposure when soaked in extracellular HEPES buffer 

for 2.5 hours. Thus despite the brighter fluorescence and lower photobleaching, calcein AM is 

not suitable for cell survivability examination after electroporation. We only used calcein AM 

staining to obtain high temporal resolution imaging, trying to get some dynamic information 

during electroporation. 

2.6.3 SCEP with Propidium Iodide staining 

    Pulse starts (00:00)      00:00 PI                00:02     00:30                00:30 PI   

         

Figure 2. 11: PI uptake in SCEP 

 

The cell membrane-impermeable PI was used in our experiments to validate the pore 

formation by uptake of PI into induced cells when applying the pulses. The electroporation was 

conducted with EFCs having 2 μm tips. A single 300 ms pulse of 500 V was applied while 

keeping the tip-cell distance 3.5 μm. Figure 2.11 shows that PI penetrates into a cell upon 
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electroporation and stains mainly the nuclear part. Most cells maintain viability after 

electroporation. From the bright field images, subcellular arrangement happens when the pulse 

is applied followed by a slow recovery phase. 

  

2.6.4 Fast temporal resolution imaging 

Calcein AM staining produces a bright fluorescence with less photobleaching than Thioglo
®

 1 

staining. Therefore we used calcein AM for high temporal imaging, trying to capture some 

dynamic information of electroporation. The EFC was placed at the top of cells right above the 

smaller circle in Figure 2.12. An average imaging rate of 5 frames / second was achieved. The 

normalized fluorescence intensity changes of the whole cell and the tip part were plotted as a 

function of time (Figure 2.12). Both 2 μm and 4 μm tips shows similar curve shapes. The whole 

cell has a smooth dropping curve while the tip part has some sudden drop in a time scale of 

several hundred milliseconds followed by a small recovery.  

One explanation of this interesting tip phenomenon could be that the electroosmotic 

flow brings fluorescent substances into the cells. It could also contain dynamic information of 

electroporation: pores opening at the tip part induce a sudden flow-out of fluorescent 

substances in expansion phase; then diffusion inside the cells complements this sudden loss 

during the stabilization and resealing phases. Coating capillary inner wall to eliminate the 

electroosmotic flow is required for further investigation. 
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Figure 2. 12: Normalized fluorescence intensity changes in calcein AM-staining fast temporal 

resolution SECP. The inlet magnifies the short pulse applying period. Red curve corresponds to 

the small circle right below the tip in electroporation, black one is for the whole cell.  

 

2.6.5 Technical issue limits distance control and small tips 

2.6.5.1 Preliminary electroporation results 

Electroporation using different tip sizes and different distance control methods were 

preliminarily tested. Cells were stained with Thioglo
®

 1 before electroporation. For 

comparison, EFCs were placed on one side of cells at a dihedral angle of 45 degree to the cell 

dish surface. Since a distance > 4 μm did not yield a good electroporation success rate (data not 
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shown), a distance of 3.5 μm was applied. Fluorescent images were captured in sequence at a 

rate of 1 frame / second. 

As shown in Figure 2.13, the results are not satisfactory. Large variance still exists. 

Distance control by current measurement does not help to narrow the deviations. Moreover, 

contrary to our expectation, the 2 μm tip opening does not help to improve the cell survivability 

by decreasing the loss of intracellular substances. 
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Figure 2. 13: Normalized fluorescence intensity changes in Thioglo
®
 1 - staining SECP. 

Different tip sizes and tip-cell distance control methods are applied. (A) Tip opening 2 μm, 
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current control; (B) Tip opening 2 μm, scale bar measurement; (C) Tip opening 3 μm, current 

control; (D) Tip opening 3 μm, scale bar measurement.  

 

Table 2. 7: Success and viability in SCEP with different cell sizes and shapes 

Cell No. Diameter 

(μm) 

Length 

(μm) 

Breath 

(μm) 

Roundness Greylevel F.I. 

Change 

Success Viability 

Start End 

1 19.73 44.67 6.84 0.36 12891 12946 0.4% − alive 

2 23.17 39.13 10.78 0.53 26177 24679 -5.7% − alive 

3 14.62 14.82 10.78 0.80 28674 26659 -7.03% + alive 

4 21.29 53.536 6.65 0.31 20754 18827 -9.3% + alive 

5 19.51 34.72 8.61 0.50 20731 17805 -14.11% + alive 

6 21.43 30.97 11.65 0.62 19538 16686 -14.6% + alive 

7 25.45 27.38 18.58 0.75 18946 15778 -16.7% + alive 

8 24.66 24.65 18.66 0.80 26066 21100 -19.1% + alive 

9 24.46 48.83 9.62 0.43 21279 10449 -50.9% + dead 

10 23.23 68.37 6.20 0.23 22868 10404 -54.5% + dead 

12 19.21 40.25 7.20 0.40 22967 6220 -72.9% + dead 

13 13.72 15.86 9.33 0.73 33966 7966 -76.5% + dead 

  

 

More experimental results without taking sequence imaging are shown in Table 2.7, 

which includes percentage loss of fluorescence and cell survivability for different cell sizes and 

shapes. It is clear that the cell viability depends on the fluorescence loss extent, which is highly 

related to the FEA. A loss above 50% induces the death of cells. However, the results show no 
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clue of the relationship between cell size and electroporation success rate and/or viability. More 

data are needed for statistical analysis. 

So why don‟t the small tip and advanced cell-tip distance control benefit the 

electroporation yield? In principle, they should promote the yield. However in reality, two 

major technical difficulties are encountered in our current experiments: (1) the irreproducibility 

of size and shape of the capillary tips; (2) the backlash problem of the micromanipulator. 

2.6.5.2 Capillary reproducibility 

When preparing capillaries, reproducibility is an important issue. Although a part of 

unqualified capillaries can be found by the test circuit, a large variety of tip size and shape still 

exist with similar current readings. This technical issue matters more in the scope of 2 μm tip 

capillaries than large tip capillaries considering the electric field distribution near the tips. In 

the future, we will use a high magnification objective lens for pre-experimental screening. 

2.6.5.3 Micromanipulator backlash 

Our present micromanipulator is gear-driven, and a backlash is produced when reversing the 

travel direction. This backlash is not reproducible and in a range of 0.2 ~ 2 μm. The effect of 

backlash is disastrous as the distance control depends fully on the current measurement. 

Therefore, a piezo-manipulator is now under construction to obtain an accurate distance. 
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2.7 CONCLUSIONS 

We have developed an integrated circuit not only for SCEP but also for pre-electroporation 

capillary testing and accurate distance control by current measurement. EFC with 2 μm tips 

were constructed for SCEP with an intention for better control of small cells. High spatial 

resolution of electroporation was obtained. Fluorescence exposure time and dye types were 

found to affect the viability of cells. Uptake of PI into cells and sudden loss of intracellular 

fluorescence were indicative of success electroporation. High temporal resolution experiments 

revealed an abrupt fluorescence loss at a time scale of several milliseconds followed by 

recovery in the small portion of cell membrane facing the tip. Cell survivability was 

demonstrated to be related with the fluorescence loss. Comsol numerical 2D axis-symmetric 

simulation helped to reveal electroporation situation and support the distance control by current 

measurement. The preliminary testing of small tips and current measurement distance control 

did not provide satisfactory results, which may be a result of our current technical limitations.  
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3.0  FUTURE WORK 

3.1 CONTINUE WORK ON SURVIVABILITY AND VARIANCES PROBLEM 

3.1.1 Piezo actuator for distance control 

A piezo actuator from Physik Instrumente will be attached to the present micromanipulator. 

The piezo has no backlash and has a travel distance of 30 μm. In this way, we will solve the 

backlash issue and provide precise distance manipulation. A labview program will be set up for 

the piezo control, it will also enable the automation of finding the cell-tip touching point by 

telling the percentage of current drop in the test circuit.   

3.1.2 Temperature control by PDMI-2 micro-incubator 

Temperature effect on SCEP has never been studied. We will use a PDMI-2 micro-incubator 

from Warner Instruments to control the temperature of the cell dish and investigate how 

temperature affects electroporation. A suitable temperature based on the results will be chosen 

for maximization of electroporation efficiency and survivability. 
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3.1.3 Cell Synchronization 

To study the effect of synchronization and eliminate the variance caused by cell cycles, we will 

arrest A 549 cells with drugs. Several drugs have been applied for A 549 cell synchronization. 

A549 cells were synchronized in the very early S phase by a double thymidine treatment, in 

late G1 using 600 μM of mimosine, at the G1/S boundary using 2 to 3 μg/ml of aphidicolin for 

20 h or 4 mM hydroxyurea, and at M phase using 50 ng/ml of nocodazole for 30 h [123-125]. 

 We are going to test above drugs for A549 cell synchronization. Cell synchrony will be 

monitored by DNA distribution assay, FACS analysis of the cells stained with propidium 

iodide after RNase digestion, which is a typical method for cell cycle assay. Cell survival with 

these drugs will be studied before applying the synchronized cells for electroporation. Once one 

or more effective drugs are selected, we will look into the influence of cell cycle on SCEP 

combining temperature control.  

3.1.4 Working on other parameters 

Other parameters including pulse duration, tip-cell distance, cell size and shape will be studied 

and analyzed statistically. Also the imaging system will be improved to reduce the exposure 

time by coupling a cool CCD. Our final aim is to improve the cell electroporation efficiency 

and survivability, and decrease the variance between cells by parameters control.  
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3.2 DYNAMIC AND PORE INFORMATION STUDY 

Dynamic study and pore information study will be carried out for better understanding of 

SCEP. A sequence of imaging during electroporation gives resealing information. Fast 

resolution imaging helps to capture the transient alternation of the whole cell and subcellular 

organisms. Potential sensitive dyes can be used for real time detection of TMP.  

The pore information including pores sizes and density will be studied by introducing 

fluorescent labeled macromolecules such as a series of different molecular weight fluorescence 

labeled dextrans into or out of the cells.   

 

3.3 SECP OF OTHER CELL LINES 

Beyond A549 cells, other types of adherent cells will also be used for quantitative and 

qualitative study of SCEP. The facts revealed from one cell line will be tested on other line to 

finally achieve some general rules. 
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