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Most real-world data sets contain outliers that have unusually large or small values when 

compared with others in the data set.  Outliers may cause a negative effect on data analyses, such 

as ANOVA and regression, based on distribution assumptions, or may provide useful 

information about data when we look into an unusual response to a given study.  Thus, outlier 

detection is an important part of data analysis in the above two cases.   Several outlier labeling 

methods have been developed.  Some methods are sensitive to extreme values, like the SD 

method, and others are resistant to extreme values, like Tukey’s method.  Although these 

methods are quite powerful with large normal data, it may be problematic to apply them to non-

normal data or small sample sizes without knowledge of their characteristics in these 

circumstances.  This is because each labeling method has different measures to detect outliers, 

and expected outlier percentages change differently according to the sample size or distribution 

type of the data.   

Many kinds of data regarding public health are often skewed, usually to the right, and 

lognormal distributions can often be applied to such skewed data, for instance, surgical 

procedure times, blood pressure, and assessment of toxic compounds in environmental analysis.        

This paper reviews and compares several common and less common outlier labeling methods 

and presents information that shows how the percent of outliers changes in each method 

according to the skewness and sample size of lognormal distributions through simulations and 

application to real data sets.  These results may help establish guidelines for the choice of outlier 

detection methods in skewed data, which are often seen in the public health field. 
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1.0  INTRODUCTION 

This chapter consists of two sections:  the Background and Outlier Detection Method.  In the 

Background, basic ideas of an outlier are discussed such as definitions, features, and reasons to 

detect outliers.  In the Outlier Detection Method section, characteristics of the two kinds of 

outlier detection methods are described briefly:  formal and informal tests.  

1.1 BACKGROUND 

Observed variables often contain outliers that have unusually large or small values when 

compared with others in a data set.  Some data sets may come from homogeneous groups; others 

from heterogeneous groups that have different characteristics regarding a specific variable, such 

as height data not stratified by gender.  Outliers can be caused by incorrect measurements, 

including data entry errors, or by coming from a different population than the rest of the data.  If 

the measurement is correct, it represents a rare event.  Two aspects of an outlier can be 

considered.   

The first aspect to note is that outliers cause a negative effect on data analysis. Osbome 

and Overbay (2004) briefly categorized the deleterious effects of outliers on statistical analyses:  
1) Outliers generally serve to increase error variance and reduce the power of statistical tests. 

2) If non-randomly distributed, they can decrease normality (and in multivariate analyses, violate 

assumptions of sphericity and multivariate normality), altering the odds of making both Type I and Type 

II errors.  

3) They can seriously bias or influence estimates that may be of substantive interest.   
The following example simply shows how one outlier can highly distort the mean, 

variance, and 95% confidence interval for the mean.  Let’s suppose there is a simple data set 

composed of data points 1, 2, 3, 4, 5, 6, 7 and its basic statistics are as shown in Table 1.  Now, 
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let’s replace data point 7 with 77.  As shown in Table 2, the mean and variance of the data are 

much larger than that of the original data set due to one unusual data value, 77.  The 95% 

confidence interval for the mean is also much broader because of the large variance.  It may 

cause potential problems when data analysis that is sensitive to a mean or variance is conducted. 

 
Table 1: Basic Statistic of a Simple Data Set 

Mean Median Variance 95 % Confidence Interval for the mean 

4 4 4.67 [2.00 to 6.00] 

 
Table 2: Basic Statistic After Changing 7 into 77 in the Simple Data Set 

Mean Median Variance 95 % Confidence Interval for the mean 

14 4 774.67 [-11.74 to 39.74] 

 

The second aspect of outliers is that they can provide useful information about data when 

we look into an unusual response to a given study.  They could be the extreme values sitting 

apart from the majority of the data regardless of distribution assumptions.  The following two 

cases are good examples of outlier analysis in terms of the second aspect of an outlier: 1) to 

identify medical practitioners who under- or over-utilize specific procedures or medical 

equipment, such as an x-ray instrument; 2) to identify Primary Care Physicians (PCPs) with 

inordinately high Member Dissatisfaction Rates (MDRs) (MDRs = the number of member 

complaints / PCP practice size) compared to other PCPs.23   

In summary, there are two reasons for detecting outliers.  The first reason is to find 

outliers which influence assumptions of a statistical test, for example, outliers violating the 

normal distribution assumption in an ANOVA test, and deal with them properly in order to 

improve statistical analysis.  This could be considered as a preliminary step for data analysis.  

The second reason is to use the outliers themselves for the purpose of obtaining certain critical 

information about the data as was shown in the above examples.   
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1.2 OUTLIER DETECTION METHOD 

There are two kinds of outlier detection methods: formal tests and informal tests.  Formal and 

informal tests are usually called tests of discordancy and outlier labeling methods, respectively. 

 Most formal tests need test statistics for hypothesis testing.  They are usually based on 

assuming some well-behaving distribution, and test if the target extreme value is an outlier of the 

distribution, i.e., weather or not it deviates from the assumed distribution.  Some tests are for a 

single outlier and others for multiple outliers.  Selection of these tests mainly depends on 

numbers and type of target outliers, and type of data distribution.1  Many various tests according 

to the choice of distributions are discussed in Barnett and Lewis (1994) and Iglewicz and 

Hoaglin (1993).  Iglewicz and Hoaglin (1993) reviewed and compared five selected formal tests 

which are applicable to the normal distribution, such as the Generalized ESD, Kurtosis statistics, 

Shapiro-Wilk, the Boxplot rule, and the Dixon test, through simulations.   

Even though formal tests are quite powerful under well-behaving statistical assumptions 

such as a distribution assumption, most distributions of real-world data may be unknown or may 

not follow specific distributions such as the normal, gamma, or exponential.  Another limitation 

is that they are susceptible to masking or swamping problems.  Acuna and Rodriguez (2004) 

define these problems as follows: 
Masking effect: It is said that one outlier masks a second outlier if the second outlier can be considered as 

an outlier only by itself, but not in the presence of the first outlier. Thus, after the deletion of the first 

outlier the second instance is emerged as an outlier.  

Swamping effect: It is said that one outlier swamps a second observation if the latter can be considered as 

an outlier only under the presence of the first one. In other words, after the deletion of the first outlier the 

second observation becomes a non-outlying observation.   

Many studies regarding these problems have been conducted by Barnett and Lewis (1994), 

Iglewicz and Hoaglin (1993), Davies and Gather (1993), and Bendre and Kale (1987). 

On the other hand, most outlier labeling methods, informal tests, generate an interval or 

criterion for outlier detection instead of hypothesis testing, and any observations beyond the 

interval or criterion is considered as an outlier.  Various location and scale parameters are mostly 

employed in each labeling method to define a reasonable interval or criterion for outlier detection.  

There are two reasons for using an outlier labeling method.  One is to find possible outliers as a 

screening device before conducting a formal test.  The other is to find the extreme values away 
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from the majority of the data regardless of the distribution.  While the formal tests usually 

require test statistics based on the distribution assumptions and a hypothesis to determine if the 

target extreme value is a true outlier of the distribution, most outlier labeling methods present the 

interval using the location and scale parameters of the data.  Although the labeling method is 

usually simple to use, some observations outside the interval may turn out to be falsely identified 

outliers after a formal test when the outliers are defined as only observations that deviate from 

the assuming distribution.  However, if the purpose of the outlier detection is not a preliminary 

step to find the extreme values violating the distribution assumptions of the main statistical 

analyses such as the t-test, ANOVA, and regression, but mainly to find the extreme values away 

from the majority of the data regardless of the distribution, the outlier labeling methods may be 

applicable.  In addition, for a large data set that is statistically problematic, e.g., when it is 

difficult to identify the distribution of the data or transform it into a proper distribution such as 

the normal distribution, labeling methods can be used to detect outliers. 

This paper focuses on outlier labeling methods.  Chapter 2 presents the possible problems 

when labeling methods are applied to skewed data.  In Chapter 3, seven outlier labeling methods 

are outlined.  In Chapter 4, the average percentages of outliers in the standard normal and log 

normal distributions with the same mean and different variances is computed to compare the 

outlier percentage of the selected five outlier labeling methods according to the degree of the 

skewness and different sample sizes.  In Chapter 5, the five selected methods are applied to real 

data sets. 
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2.0  STATEMENT OF PROBLEM 

Outlier-labeling methods such as the Standard Deviation (SD) and the boxplot are commonly 

used and are easy to use. These methods are quite reasonable when the data distribution is 

symmetric and mound-shaped such as the normal distribution.  Figure 1 shows that about 68%, 

95%, and 99.7% of the data from a normal distribution are within 1, 2, and 3 standard deviations 

of the mean, respectively.  If data follows a normal distribution, this helps to estimate the 

likelihood of having extreme values in the data3, so that the observation two or three standard 

deviations away from the mean may be considered as an outlier in the data.     

 

Figure 1: Probability density function for a normal distribution according to the standard deviation.  

 

The boxplot which was developed by Tukey (1977) is another very helpful method since 

it makes no distributional assumptions nor does it depend on a mean or standard deviation.19  

The lower quartile (q1) is the 25th percentile, and the upper quartile (q3) is the 75th percentile of 

the data.  The inter-quartile range (IQR) is defined as the interval between q1 and q3.   
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Tukey (1997) defined q1-(1.5*iqr) and q3+(1.5*iqr) as “inner fences”, q1-(3*iqr) and 

q3+(3*iqr) as “outer fences”, the observations between an inner fence and its nearby outer fence 

as “outside”, and anything beyond outer fences as “far out”.31  High (2000) renamed the 

“outside” potential outliers and the “far out” problematic outliers.19  The “outside” and “far out” 

observations can also be called possible outliers and probable outliers, respectively.  This method 

is quite effective, especially when working with large continuous data sets that are not highly 

skewed.19 

Although Tukey’s method is quite effective when working with large data sets that are 

fairly normally distributed, many distributions of real-world data do not follow a normal 

distribution.  They are often highly skewed, usually to the right, and in such cases the 

distributions are frequently closer to a lognormal distribution than a normal one.21  The 

lognormal distribution can often be applied to such data in a variety of forms, for instance, 

personal income, blood pressure, and assessment of toxic compounds in environmental analysis.  

In order to illustrate how the theoretical percentage of outliers changes according to the skewness 

of the data in the SD method (Mean ± 2 SD, Mean ± 3 SD) and Tukey’s method, lognormal 

distributions with the same mean (0) but different standard deviations (0.2, 0.4, 0.6, 0.8, 1.0, 1.2) 

are used for the data sets with different degrees of skewness, and the standard normal distribution 

is used for the data set whose skewness is zero.  The computation of the mean, standard 

deviation, and skewness in a lognormal distribution is in Appendix A.  According to Figure 2, 

the two methods show a different pattern, e.g., the outlier percentage of Tukey’s method 

increases, unlike the SD method.  It shows that the results of outlier detection may change 

depending on the outlier detection methods or the distribution of the data. 
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Figure 2: Theoretical Change of Outliers’ Percentage According to the Skewness of the Lognormal 

Distributions  in the SD Method and Tukey’s Method 

 

When data are highly skewed or in other respects depart from a normal distribution, 

transformations to normality is a common step in order to identify outliers using a method which 

is quite effective in a normal distribution.  Such a transformation could be useful when the 

identification of outliers is conducted as a preliminary step for data analysis and it helps to make 

possible the selection of appropriate statistical procedures for estimating and testing as well.21  

However, if an outlier itself is a primary concern in a given study, as was shown in a previous 

example in the identification of medical practitioners who under- or over-utilize such medical 

equipment as x-ray instruments, a transformation of the data could affect our ability to identify 

outliers.  For example, 50 random samples (x) are generated through statistical software R in 

order to show the effect of the transformation.   The random variable X has a lognormal 

distribution (Mean=1, SD=1), and its logarithm, Y=log(x), has a normal distribution.  If the 

observations which are beyond the mean by two standard deviations are considered outliers, the 

expected outliers before and after transformation are totally different.  As shown in Figure 3, 

while three observations which have large values are considered as outliers in the original 50 

random samples(x), after log transformation of these samples, two observations of small values 

appear to be outliers, and the former large valued observations are no longer considered to be 

outliers.  The vertical lines in each graph represent cutoff values (Mean ± 2*SD).  Lower and 
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upper cutoff values are (-1.862268, 9.865134) and (-0.5623396, 2.763236), respectively, in the 

lognormal data(x) and its logarithm(y).  

Although this approach is not be affected by extreme values because it does not depend 

on the extreme observations after transformation, after an artificial transformation of the data, 

however, the data may be reshaped so that true outliers are not detected or other observations 

may be falsely identified as outliers.21  
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Figure 3: Density Plot and Dotplot of the Lognormal Distribution (sample size=50) with Mean=1 and 

SD=1, and its Logarithm, Y=log(x). 

 

Several methods to identify outliers have been developed.  Some methods are sensitive to 

extreme values like the SD method, and others are resistant to extreme values like Tukey’s 

method.  The objective of this paper is to review and compare several common and less common 

labeling methods for identifying outliers and to present information that shows how the average 

percentage of outliers changes in each method according to the degree of skewness and sample 

size of the data in order to help establish guidelines for the choice of outlier detection methods in 

skewed data when an outlier itself is a primary concern in a given study. 
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3.0  OUTLIER LABELING METHOD 

This chapter reviews seven outlier labeling methods and gives examples of simple numerical 

computations for each test.   

3.1 STANDARD DEVIATION (SD) METHOD 

The simple classical approach to screen outliers is to use the SD (Standard Deviation) method.  It 

is defined as 

2 SD Method: x  ± 2 SD 

3 SD Method: x  ± 3 SD, where the mean is the sample mean and SD is the sample 

standard deviation. 

The observations outside these intervals may be considered as outliers.  According to the 

Chebyshev inequality, if a random variable X with mean μ and variance σ2 exists, then for any k 

> 0, 

 1  ]  |[| 2k
kXP ≤≥− σμ    

0        , 1 - 1  ]  |[| 2 >≥<− k
k

kXP σμ  

the inequality [1-(1/k)2] enables us to determine what proportion of our data will be within k 

standard deviations of the mean3.  For example, at least 75%, 89%, and 94% of the data are 

within 2, 3, and 4 standard deviations of the mean, respectively.  These results may help us 

determine the likelihood of having extreme values in the data3.  Although Chebychev's therom is 

true for any data from any distribution, it is limited in that it only gives the smallest proportion of 

observations within k standard deviations of the mean22.  In the case of when the distribution of a 
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random variable is known, a more exact proportion of observations centering around the mean 

can be computed.  For instance, if certain data follow a normal distribution, approximately 68%, 

95%, and 99.7% of the data are within 1, 2, and 3 standard deviations of the mean, respectively; 

thus, the observations beyond two or three SD above and below the mean of the observations 

may be considered as outliers in the data.  

The example data set, X, for a simple example of this method is as follows: 

3.2, 3.4, 3.7, 3.7, 3.8, 3.9, 4, 4, 4.1, 4.2, 4.7, 4.8, 14, 15. 

For the data set, x = 5.46, SD=3.86, and the intervals of the 2 SD and 3 SD methods are (-2.25, 

13.18) and (-6.11, 17.04), respectively.  Thus, 14 and 15 are beyond the interval of the 2 SD 

method and there are no outliers in the 3 SD method. 

3.2 Z-SCORE 

Another method that can be used to screen data for outliers is the Z-Score, using the mean and 

standard deviation.   

sd
xx

Z i
i

−
= , where Xi ~ N (µ, σ2), and sd  is the standard deviation of data. 

The basic idea of this rule is that if X follows a normal distribution, N (µ, σ2), then Z  

follows a standard normal distribution, N (0, 1), and Z-scores that exceed 3 in absolute value are 

generally considered as outliers.  This method is simple and it is the same formula as the 3 SD 

method when the criterion of an outlier is an absolute value of a Z-score of at least 3.  It presents 

a reasonable criterion for identification of the outlier when data follow the normal distribution.   

According to Shiffler (1988), a possible maximum Z-score is dependent on sample size, and it is 

computed as nn /)1( − .  The proof is given in Appendix B.  Since no z-score exceeds 3 in a 

sample size less than or equal to 10, the z-score method is not very good for outlier labeling, 

particularly in small data sets21.  Another limitation of this rule is that the standard deviation can 

be inflated by a few or even a single observation having an extreme value.  Thus it can cause a 

masking problem, i.e., the less extreme outliers go undetected because of the most extreme 

outlier(s), and vice versa.  When masking occurs, the outliers may be neighbors.  Table 3 shows 
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a computation and masking problem of the Z-Score method using the previous example data set, 

X.  
Table 3: Computation and Masking Problem of the Z-Score 

Case 1 ( x =5.46, sd=3.86) Case 2 ( x =4.73, sd=2.82) 
i 

xi Z-Score xi Z-Score 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

3.2 

3.4 

3.7 

3.7 

3.8 

3.9 

4 

4 

4.1 

4.2 

4.7 

4.8 

14 

15 

-0.59 

-0.54 

-0.46 

-0.46 

-0.43 

-0.41 

-0.38 

-0.38 

-0.35 

-0.33 

-0.20 

-0.17 

2.21 

2.47 

3.2 

3.4 

3.7 

3.7 

3.8 

3.9 

4 

4 

4.1 

4.2 

4.7 

4.8 

14 

- 

-0.54 

-0.47 

-0.37 

-0.37 

-0.33 

-0.29 

-0.26 

-0.26 

-0.22 

-0.19 

-0.01 

0.02 

3.29 

- 

 

For case 1, with all of the example data included, it appears that the values 14 and 15 are 

outliers, yet no observation exceeds the absolute value of 3.  For case 2, with the most extreme 

value, 15, among example data excluded, 14 is considered an outlier.  This is because multiple 

extreme values have artificially inflated standard deviations.   

3.3 THE MODIFIED Z-SCORE 

Two estimators used in the Z-Score, the sample mean and sample standard deviation, can be 

affected by a few extreme values or by even a single extreme value.  To avoid this problem, the 

median and the median of the absolute deviation of the median (MAD) are employed in the 
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modified Z-Score instead of the mean and standard deviation of the sample, respectively 

(Iglewicz and Hoaglin, 1993).   

|}~{| xxmedianMAD i −= , where x~  is the sample median. 

The modified Z-Score ( iM ) is computed as  

MAD
xxM i

i
)~(6745.0 −

=   , where E( MAD )=0.675 σ for large normal data. 

Iglewicz and Hoaglin (1993) suggested that observations are labeled outliers 

when| iM |>3.5 through the simulation based on pseudo-normal observations for sample sizes of 

10, 20, and 40.21   The iM  score is effective for normal data in the same way as the Z-score. 

 
Table 4: Computation of Modified Z-Score and its Comparison with the Z-Score 

i xi Z-Score modified Z-Score 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

3.2 

3.4 

3.7 

3.7 

3.8 

3.9 

4 

4 

4.1 

4.2 

4.7 

4.8 

14 

15 

-0.59 

-0.54 

-0.46 

-0.46 

-0.43 

-0.41 

-0.38 

-0.38 

-0.35 

-0.33 

-0.20 

-0.17 

2.21 

2.47 

-1.80 

-1.35 

-0.67 

-0.67 

-0.45 

-0.22 

0 

0 

0.22 

0.45 

1.57 

1.80 

22.48 

24.73 

 

Table 4 shows the computation of the modified Z-Score and its comparison with the Z-

Score of the previous example data set.  While no observation is detected as an outlier in the Z-

Score, two extreme values, 14 and 15, are detected as outliers at the same time in the modified Z-

Score since this method is less susceptible to the extreme values.   
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3.4 TUKEY’S METHOD (BOXPLOT) 

Tukey’s (1977) method, constructing a boxplot, is a well-known simple graphical tool to display 

information about continuous univariate data, such as the median, lower quartile, upper quartile, 

lower extreme, and upper extreme of a data set.  It is less sensitive to extreme values of the data 

than the previous methods using the sample mean and standard variance because it uses quartiles 

which are resistant to extreme values.  The rules of the method are as follows:   

1. The IQR (Inter Quartile Range) is the distance between the lower (Q1) and upper (Q3) 

quartiles.   

2. Inner fences are located at a distance 1.5 IQR below Q1 and above Q3 [Q1-1.5 IQR, 

Q3+1.5IQR].  

3. Outer fences are located at a distance 3 IQR below Q1 and above Q3 [Q1-3 IQR, Q3+3 IQR]. 

4. A value between the inner and outer fences is a possible outlier.  An extreme value beyond the 

outer fences is a probable outlier.  There is no statistical basis for the reason that Tukey uses 1.5 

and 3 regarding the IQR to make inner and outer fences.   

For the previous example data set, Q1=3.725, Q3=4.575, and IQR=0.85.  Thus, the inner 

fence is [2.45, 5.85] and the outer fence is [1.18, 7.13].  Two extreme values, 14 and 15, are 

identified as probable outliers in this method.  Figure 4 is a boxplot generated using the statistical 

software STATA for the example data set. 

0
5

10
15

 
Figure 4: Boxplot for the Example Data Set 
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While previous methods are limited to mound-shaped and reasonably symmetric data 

such as the normal distribution21, Tukey’s method is applicable to skewed or non mound-shaped 

data since it makes no distributional assumptions and it does not depend on a mean or standard 

deviation.  However, Tukey’s method may not be appropriate for a small sample size21.  For 

example, let’s suppose that a data set consists of data points 1450, 1470, 2290, 2930, 4180, 

15800, and 29200.  A simple distribution of the data using a Boxplot and Dotplot are shown in 

Figure 5.  Although 15800 and 29200 may appear to be outliers in the dotplot, no observation is 

shown as an outlier in the boxplot.   
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Figure 5: Boxplot and Dotplot.  (Note: No outlier shown in the boxplot) 

3.5 ADJUSTED BOXPLOT 

Although the boxplot proposed by Tukey (1977) may be applicable for both symmetric and 

skewed data, the more skewed the data, the more observations may be detected as outliers,32 as 

shown in Figure 2.   This results from the fact that this method is based on robust measures such 

as lower and upper quartiles and the IQR without considering the skewness of the data.  

Vanderviere and Huber (2004) introduced an adjusted boxplot taking into account the medcouple 

(MC)32, a robust measure of skewness for a skewed distribution.  
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When Xn={ nxxx ,...,, 21 } is a data set independently sampled from a continuous 

univariate distribution and it is sorted such as nxxx ≤≤≤ ...21 , the MC of the data is defined as 

ij

ikkj
n xx

xmedmedx
medxxMC

−

−−−
=

)()(
),...,( 1 ,where kmed is the median of Xn, and  i 

and j have to satisfy ix ≤ kmed ≤ jx , and ix ≠ jx .  The interval of the adjusted boxplot is as 

follows (G. Bray et al. (2005)): 

[L, U] = [Q1-1.5 * exp (-3.5MC) * IQR, Q3+1.5 * exp (4MC) * IQR] if MC ≥ 0 

= [Q1-1.5 * exp (-4MC) * IQR, Q3+1.5 * exp (3.5MC) * IQR] if MC ≤ 0,  

where L is the lower fence, and U is the upper fence of the interval.  The observations which fall 

outside the interval are considered outliers. 

The value of the MC ranges between -1 and 1.  If MC=0, the data is symmetric and the 

adjusted boxplot becomes Tukey’s box plot.  If MC>0, the data has a right skewed distribution, 

whereas if MC<0, the data has a left skewed distribution.32  A simple example for computation of 

MC and a brief comparison of classical and MC skewness are in Appendix C. 

For the previous example data set, Q1=3.725, Q3=4.575, IQR=0.85, and MC=0.43. Thus, 

the interval of the adjusted boxplot is [3.44, 11.62].  Two extreme values, 14 and 15, and the two 

smallest values, 3.2 and 3.4, are identified as outliers in this method.  Figure 6 shows the change 

of the intervals of two boxplot methods, Tukey’s method and the adjusted boxplot, for the 

example data set.  The vertical dotted lines are the lower and upper bound of the interval of each 

method.  Although the example data set is artificial and is not large enough to explain their 

difference, we can see a general trend that the interval of the adjusted boxplot, especially the 

upper fence, moves to the side of the skewed tail, compared to Tukey’s method. 
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5 10 15

Inner fences of Tukey Method (Q1-1.5*IQR, Q3+1.5*IQR) 

5 10 15

Outer fences of Tukey Method (Q1-3*IQR, Q3+3IQR) 

5 10 15

Single fence of adjusted box plot (Q1-1.5 * exp (-3.5MC) * IQR, Q3+1.5 * exp (4MC) * IQR) 
 

Figure 6: Change of theIintervals of Two Different Boxplot Methods 

 (Tukey’s Method vs. the Adjusted Boxplot) 

 

Vanderviere and Huber (2004) computed the average percentage of outliers beyond the 

lower and upper fence of two types of boxplots, the adjusted Boxplot and Tukey’s Boxplot, for 

several distributions and different sample sizes.  In the simulation, less observations, especially 

in the right tail, are classified as outliers compared to Tukey’s method when the data are skewed 

to the right.32  In the case of a mildly right-skewed distribution, the lower fence of the interval 

may move to the right and more observations in the left side will be classified as outliers 

compared to Tukey’s method.  This difference mainly comes from a decrease in the lower fence 

and an increase in the upper fence from Q1 and Q3, repectively.32 
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3.6 MADE METHOD 

The MADe method, using the median and the Median Absolute Deviation (MAD), is one of the 

basic robust methods which are largely unaffected by the presence of extreme values of the data 

set.11  This approach is similar to the SD method.  However, the median and MADe are 

employed in this method instead of the mean and standard deviation. The MADe method is 

defined as follows; 

2 MADe Method: Median ± 2 MADe 

    3 MADe Method: Median ± 3 MADe,  

where MADe=1.483×MAD for large normal data. 

MAD is an estimator of the spread in a data, similar to the standard deviation11, but has 

an approximately 50% breakdown point like the median21.   The notion of breakdown point is 

delineated in Appendix D. 

MAD= median (|xi – median(x)| i=1,2,…,n)   

When the MAD value is scaled by a factor of 1.483, it is similar to the standard deviation 

in a normal distribution.  This scaled MAD value is the MADe. 

For the example data set, the median=4, MAD=0.3, and MADe=0.44.  Thus, the intervals 

of the 2 MADe and 3 MADe methods are [3.11, 4.89] and [2.67, 5.33], respectively. 

Since this approach uses two robust estimators having a high breakdown point, i.e., it is 

not unduly affected by extreme values even though a few observations make the distribution of 

the data skewed, the interval is seldom inflated, unlike the SD method. 

3.7 MEDIAN RULE 

The median is a robust estimator of location having an approximately 50% breakdown point.  It 

is the value that falls exactly in the center of the data when the data are arranged in order.   
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That is, if x1, x2, …, xn is a random sample sorted by order of magnitude, then the median 

is defined as: 

Median, x~ = xm     when n is odd 

x~ = (xm+xm+1)/2    when n is even, where m=round up (n/2) 

For a skewed distribution like income data, the median is often used in describing the 

average of the data.  The median and mean have the same value in a symmetrical distribution.   

Carling (1998) introduces the median rule for identification of outliers through studying 

the relationship between target outlier percentage and Generalized Lambda Distributions (GLDs).  

GLDs with different parameters are used for various moderately skewed distributions12.  The 

median substitutes for the quartiles of Tukey’s method, and a different scale of the IQR is 

employed in this method.  It is more resistant and its target outlier percentage is less affected by 

sample size than Tukey’s method in the non-Gaussian case12.  The scale of IQR can be adjusted 

depending on which target outlier percentage and GLD are selected.  In my paper, 2.3 is chosen 

as the scale of IQR; when the scale is applied to normal distribution, the outlier percentage turns 

out to be between Tukey’s method of 1.5 IQR and that of 3 IQR, i.e., 0.2 %. 

It is defined as: 

[C1, C2]=Q2± 2.3 IQR, where Q2 is the sample median. 

For the example data set, Q2=4, and IQR=0.85.  Thus, the interval of this method is [2.05, 

5.96]. 
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4.0  SIMULATION STUDY AND RESULTS FOR THE FIVE SELECTED LABELING 

METHODS  

Most intervals or criteria to identify possible outliers in outlier labeling methods are effective 

under the normal distribution.  For example, in the case of a well-known labeling method such as 

the 2 SD and 3 SD methods and the Boxplot (1.5 IQR), the expected percentages of observations 

outside the interval are 5%, 0.3%, and 0.7%, respectively, under large normal samples.  

Although these methods are quite powerful with large normal data, it may be problematic to 

apply them to non-normal data or small sample sizes without information about their 

characteristics in these circumstances.  This is because each labeling method has different 

measures to detect outliers, and expected outlier percentages change differently according to the 

sample size or distribution type of the data. 

The purpose of this simulation is to present the expected percentage of the observations 

outside of the interval of several labeling methods according to the sample size and the degree of 

the skewness of the data using the lognormal distribution with the same mean and different 

variances.  Through this simulation, we can know not only the possible outlier percentage of 

several labeling methods but also which method is more robust according to the above two 

factors, skewness and sample size.  The simulation proceeds as follows: 

Five labeling methods are selected: the SD Method, the MADe Method, Tukey’s Method 

(Boxplot), Adjusted Boxplot, and the Median Rule.  The Z-Score and modified Z-Score are not 

considered because their criteria to define an outlier are based on the normal distribution.   

Average outlier percentages of five labeling methods in the standard normal (0,1) and 

lognormal distributions with the same mean and different variances (mean=0, variance=0.22, 0.42, 

0.62, 0.82, 12) are computed.  For each distribution, 1000 replications of sample sizes 20 and 50, 

300 replications of the sample size 100, and 100 replications of the sample sizes 300 and 500 are 

considered.  To illustrate the shape of each distribution, i.e., the degree of skewness of the data, 
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500 random observations were generated from the distributions, and their density plots and 

skewness are as shown in Figure 7.   
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Figure 7: Stnadard Normal Distribution and Lognormal Distributions  

(cs=classical skewness , mc=medcouple skewness) 

Figures 8 and 9 visually show the characteristics of the five labeling methods according 

to the sample size and skewness of the data using the lognormal distribution.  All the values of 

the Figures including their standard error of the average percentage are reported in Table 5.  The 

results of this simulation are as follows: 

1. The 2 MADe method classifies more observations as outliers than any other method.  

This method approaches the 2 SD method in large normal data; however, as the data increases in 

skewness, the difference in outlier percentages between the MADe method and the SD method 
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becomes larger since the location and scale measures such as the median and MADe become the 

same as the mean and standard variance of the SD method when data follows a normal 

distribution with a large sample size.  The MADe, Tukey’s method, and the Median rule increase 

in the total average percentages of outliers the more skewed the data, while the SD method and 

adjusted boxplot seldom change over different sample sizes. 

2. The Median rule classifies less observations than Tukey’s 1.5 IQR method and more 

observations than Tukey’s 3 IQR method.   

3. The decrease range of the total outlier percentage of the adjusted boxplot is larger than 

other methods as the sample size increases.  

4. Most methods except the adjusted boxplot show similar patterns in the average outlier 

percentages on the left side of the distribution.  They decrease in left outlier percentage rapidly, 

especially in 2 MADe and 2 SD methods, the more skewed the data; however, the adjusted 

boxplot decreases slowly in sample sizes over 300.  Different patterns of the adjusted boxplot, 

e.g., increase in left outlier percentage in small sample sizes, may be due to the following: 

• The left fence of the interval may move to the right side because of the MC skewness 

and a few observations may be distributed outside the left fence by chance.   

• Although the number of the observations is small, the ratio in a small sample size could 

large.  This may affect an increase in the average of the percentage of outliers on the left of the 

distribution.  

• The adjusted boxplot may still detect observations on the left side of the distribution in 

right skewed data, especially mildly skewed data; however, the average percentages are quiet 

low. 

5. The MADe, Tukey’s method, and the Median rule increase in the percentage of 

outliers on the right side of the distribution as the skewness of the data increases while the SD 

method and adjusted boxplot seldom change in each sample size (the SD method increases 

slightly and plateaus). The right fence of the intervals of both methods, the SD method and 

adjusted boxplot, move to the right side of the distribution as the skewness of the data increases.  

Since the adjusted boxplot takes into account the skewness of the data, its right fence of the 

interval moves more to the side of the skewed tail, here the right side of the distribution, as the 

skewness increases.  On the other hand, the interval of the SD method is just inflated because of 

the extreme values. 
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Sample size 20 

 
Sample size 50 

 
Figure 8: Change in the Outlier Percentages According to the Skewness of the Data 
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Sample100 

 
Sample size 300 

 
Figure 8 (continued) 
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Sample size 500 

 

 
Figure 8 (continued)
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Figure 9: Change in the Total Percentages of Outliers According to the Sample Size 
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Figure 9 (continued) 
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Table 5: The Average Percentage of Left Outliers, Right Outliers and the Average Total Percent of Outliers for the Lognormal Distributions with the 

Same Mean and Different Variances (mean=0, variance=0.22, 0.42, 0.62, 0.82, 1.02) and the Standard Normal Distribution with Different Sample Sizes. 

SD Method MADe Method 
Mean ± 2 SD Mean ± 3 SD Median ± 2 MADe Median ± 3 MADe 

Distribution 
n 
 
 

CS MC 
Left 
 (%) 

Right 
(%) 

Total 
(%) 

Left 
 (%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

20 0.006 
(0.015) 

-0.004 
(0.007)

1.865 
(0.080) 

1.87 
(0.083)

3.735 
(0.101) 

0.03 
(0.012) 

0.025 
(0.011) 

0.055 
(0.016) 

3.35 
(0.150) 

3.53 
(0.156) 

6.88 
(0.241)

0.685 
(0.066) 

0.77 
(0.073) 

1.455 
(0.109)

50 -0.017 
(0.010) 

-0.009 
(0.005)

2.176 
(0.053) 

2.09 
(0.052)

4.266 
(0.063) 

0.086 
(0.013) 

0.076 
(0.012) 

0.162 
(0.017) 

2.948 
(0.095) 

2.676 
(0.088) 

5.624 
(0.141)

0.366 
(0.032) 

0.296 
(0.027) 

0.662 
(0.045)

100 -0.006 
(0.013) 

0.001 
(0.006)

2.26 
(0.066) 

2.19 
(0.060)

4.45 
(0.079) 

0.093 
(0.017) 

0.113 
(0.020) 

0.207 
(0.026) 

2.637 
(0.115) 

2.573 
(0.109) 

5.21 
(0.184)

0.233 
(0.032) 

0.253 
(0.036) 

0.487 
(0.055)

300 0.006 
(0.015) 

0.0004 
(0.006)

2.267 
(0.073) 

2.307 
(0.060)

4.573 
(0.086) 

0.117 
(0.019) 

0.14 
(0.021) 

0.257 
(0.026) 

2.347 
(0.121) 

2.31 
(0.099) 

4.657 
(0.173)

0.167 
(0.029) 

0.18 
(0.028) 

0.347 
(0.042)

SN 

500 -0.008 
(0.010) 

0.004 
(0.005)

2.266 
(0.051) 

2.17 
(0.047)

4.436 
(0.059) 

0.13 
(0.016) 

0.138 
(0.017) 

0.268 
(0.025) 

2.2 
(0.078) 

2.17 
(0.080) 

4.37 
(0.133)

0.146 
(0.019) 

0.148 
(0.019) 

0.294 
(0.029)

20 0.436 
(0.016) 

0.084 
(0.007)

0.555 
(0.050) 

3.195 
(0.092)

3.75 
(0.095) 

0 
(0) 

0.2 
(0.031) 

0.2 
(0.031) 

1.615 
(0.110) 

5.67 
(0.183) 

7.285 
(0.227)

0.195 
(0.034) 

1.765 
(0.108) 

1.96 
(0.119)

50 0.527 
(0.012) 

0.086 
(0.005)

0.71 
(0.037) 

3.434 
(0.055)

4.144 
(0.059) 

0 
(0) 

0.508 
(0.028) 

0.508 
(0.028) 

1.16 
(0.060) 

5.092 
(0.114) 

6.252 
(0.141)

0.03 
(0.008) 

1.334 
(0.057) 

1.364 
(0.059)

100 0.574 
(0.018) 

0.079 
(0.006)

0.723 
(0.052) 

3.57 
(0.073)

4.293 
(0.076) 

0.003 
(0.003) 

0.623 
(0.038) 

0.627 
(0.038) 

0.93 
(0.077) 

4.96 
(0.139) 

5.89 
(0.168)

0.017 
(0.009) 

1.113 
(0.065) 

1.13 
(0.067)

300 0.604 
(0.020) 

0.093 
(0.006)

0.676 
(0.044) 

3.49 
(0.071)

4.167 
(0.081) 

0 
(0) 

0.657 
(0.035) 

0.657 
(0.035) 

0.737 
(0.060) 

4.947 
(0.160) 

5.683 
(0.185)

0 
(0) 

1.09 
(0.068) 

1.09 
(0.068)

LN (0, 0.2) 

500 0.609 
(0.015) 

0.094 
(0.004)

0.594 
(0.035) 

3.602 
(0.064)

4.196 
(0.065) 

0 
(0) 

0.71 
(0.029) 

0.71 
(0.029) 

0.524 
(0.040) 

4.73 
(0.116) 

5.254 
(0.132)

0 
(0) 

1.024 
(0.051) 

1.024 
(0.051)

20 0.864 
(0.020) 

0.161 
(0.007)

0.095 
(0.022) 

4.385 
(0.090)

4.48 
(0.090) 

0 
(0) 

0.715 
(0.055) 

0.715 
(0.055) 

0.795 
(0.091) 

8.15 
(0.197) 

8.945 
(0.225)

0.07 
(0.030) 

3.51 
(0.141) 

3.58 
(0.144)

50 1.062 
(0.017) 

0.170 
(0.005)

0.04 
(0.009) 

4.522 
(0.055)

4.562 
(0.054) 

0 
(0) 

1.132 
(0.037) 

1.132 
(0.037) 

0.234 
(0.025) 

7.816 
(0.127) 

8.05 
(0.133)

0.002 
(0.002) 

3.068 
(0.084) 

3.07 
(0.085)

100 1.143 
(0.027) 

0.181 
(0.007)

0.02 
(0.008) 

4.46 
(0.073)

4.48 
(0.073) 

0 
(0) 

1.157 
(0.044) 

1.157 
(0.044) 

0.107 
(0.023) 

7.743 
(0.168) 

7.85 
(0.173)

0 
(0) 

2.763 
(0.110) 

2.763 
(0.110)

300 1.251 
(0.033) 

0.167 
(0.006)

0.007 
(0.005) 

4.297 
(0.065)

4.303 
(0.066) 

0 
(0) 

1.247 
(0.046) 

1.247 
(0.046) 

0.033 
(0.014) 

7.3 
(0.158) 

7.333 
(0.163)

0 
(0) 

2.467 
(0.094) 

2.467 
(0.094)

LN (0, 0.4) 

500 1.303 
(0.025) 

0.170 
(0.005)

0.002 
(0.002) 

4.244 
(0.056)

4.246 
(0.057) 

0 
(0) 

1.296 
(0.032) 

1.296 
(0.032) 

0.014 
(0.005) 

7.518 
(0.149) 

7.532 
(0.151)

0 
(0) 

2.684 
(0.074) 

2.684 
(0.074)

20 1.212 
(0.024) 

0.219 
(0.007)

0 
(0) 

5.035 
(0.084)

5.035 
(0.084) 

0 
(0) 

1.3 
(0.069) 

1.3 
(0.069) 

0.24 
(0.042) 

9.965 
(0.216) 

10.205
(0.224)

0.005 
(0.005) 

5.150 
(0.164) 

5.155 
(0.165)

50 1.623 
(0.024) 

0.250 
(0.005)

0 
(0) 

4.868 
(0.056)

4.868 
(0.056) 

0 
(0) 

1.74 
(0.038) 

1.74 
(0.038) 

0.034 
(0.011) 

10.39 
(0.140) 

10.424
(0.140)

0 
(0) 

5.008 
(0.105) 

5.008 
(0.105)

100 1.774 
(0.039) 

0.251 
(0.006)

0 
(0) 

4.793 
(0.074)

4.793 
(0.074) 

0 
(0) 

1.777 
(0.050) 

1.777 
(0.050) 

0.01 
(0.01) 

10.047 
(0.170) 

10.057
(0.171)

0 
(0) 

4.963 
(0.133) 

4.963 
(0.133)

300 2.120 
(0.063) 

0.254 
(0.007)

0 
(0) 

4.413 
(0.086)

4.413 
(0.086) 

0 
(0) 

1.817 
(0.051) 

1.817 
(0.051) 

0 
(0) 

10.23 
(0.178) 

10.23 
(0.178)

0 
(0) 

4.877 
(0.146) 

4.877 
(0.146)

LN (0, 0.6) 

500 2.199 
(0.064) 

0.255 
(0.005)

0 
(0) 

4.368 
(0.068)

4.368 
(0.068) 

0 
(0) 

1.68 
(0.047) 

1.68 
(0.047) 

0 
(0) 

10.124 
(0.145) 

10.124
(0.145)

0 
(0) 

4.724 
(0.106) 

4.724 
(0.106)
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Table 5 (continued) 

SD Method MADe Method 
Mean ± 2 SD Mean ± 3 SD Median ± 2 MADe Median ± 3 MADe 

Distribution 
n 
 
 

CS MC 
Left 
 (%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

20 1.560 
(0.024) 

0.31 
(0.007)

0.005 
(0.005) 

5.71 
(0.081)

5.715 
(0.081) 

0 
(0) 

1.86 
(0.076) 

1.86 
(0.076) 

0.095 
(0.031) 

13.4 
(0.218) 

13.495
(0.224)

0.005 
(0.005) 

7.915 
(0.191) 

7.92 
(0.191)

50 2.126 
(0.030) 

0.315 
(0.005)

0 
(0) 

5.05 
(0.058)

5.05 
(0.058) 

0 
(0) 

2.132 
(0.038) 

2.132 
(0.038) 

0.006 
(0.004) 

12.932 
(0.143) 

12.938
(0.144)

0 
(0) 

7.33 
(0.120) 

7.33 
(0.120)

100 2.548 
(0.058) 

0.314 
(0.007)

0 
(0) 

4.693 
(0.084)

4.693 
(0.084) 

0 
(0) 

2.177 
(0.049) 

2.177 
(0.049) 

0 
(0) 

12.577 
(0.183) 

12.577
(0.183)

0 
(0) 

7.283 
(0.151) 

7.283 
(0.151)

300 3.179 
(0.152) 

0.327 
(0.007)

0 
(0) 

4.25 
(0.103)

4.25 
(0.103) 

0 
(0) 

1.967 
(0.053) 

1.967 
(0.053) 

0 
(0) 

12.75 
(0.193) 

12.75 
(0.193)

0 
(0) 

7.217 
(0.160) 

7.217 
(0.160)

LN (0, 0.8) 

500 2.928 
(0.096) 

0.324 
(0.005)

0 
(0) 

4.48 
(0.076)

4.48 
(0.076) 

0 
(0) 

1.942 
(0.041) 

1.942 
(0.041) 

0 
(0) 

12.84 
(0.132) 

12.84 
(0.132)

0 
(0) 

7.09 
(0.120) 

7.09 
(0.120)

20 1.876 
(0.026) 

0.353 
(0.007)

0 
(0) 

6.03 
(0.078)

6.03 
(0.078) 

0 
(0) 

2.455 
(0.079) 

2.455 
(0.079) 

0.05 
(0.025) 

15.065 
(0.217) 

15.115
(0.218)

0.02 
(0.016) 

10.175 
(0.195) 

10.195
(0.195)

50 2.626 
(0.034) 

0.384 
(0.005)

0 
(0) 

5.048 
(0.060)

5.048 
(0.060) 

0 
(0) 

2.486 
(0.037) 

2.486 
(0.037) 

0 
(0) 

15.65 
(0.152) 

15.65 
(0.152)

0 
(0) 

10.124 
(0.133) 

10.124
(0.133)

100 3.086 
(0.079) 

0.400 
(0.006)

0 
(0) 

4.76 
(0.096)

4.76 
(0.096) 

0 
(0) 

2.273 
(0.051) 

2.273 
(0.051) 

0 
(0) 

15.527 
(0.190) 

15.527
(0.190)

0 
(0) 

9.963 
(0.165) 

9.963 
(0.165)

300 4.113 
(0.183) 

0.399 
(0.007)

0 
(0) 

4.027 
(0.108)

4.027 
(0.108) 

0 
(0) 

2.013 
(0.060) 

2.013 
(0.060) 

0 
(0) 

15.26 
(0.211) 

15.26 
(0.211)

0 
(0) 

9.67 
(0.187) 

9.67 
(0.187)

LN (0, 1.0) 

500 4.052 
(0.155) 

0.394 
(0.005)

0 
(0) 

4.15 
(0.085)

4.15 
(0.085) 

0 
(0) 

1.992 
(0.046) 

1.992 
(0.046) 

0 
(0) 

15.43 
(0.137) 

15.43 
(0.137)

0 
(0) 

9.732 
(0.126) 

9.732 
(0.126)

 
 
 

 
Tukey’s Method Adjusted Boxplot Median Rule 

Q1-1.5 IQR / Q3+1.5 IQR Q1-3 IQR / Q3+3 IQR 
Q1-1.5exp(-3.5mc)/ 

Q3+1.5exp(4mc) 
Q2 ±2.3 IQR 

Distribution n CS MC 
Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

20 0.006 
(0.015) 

-0.004 
(0.007) 

1.1 
(0.083) 

1.17 
(0.089) 

2.27 
(0.137) 

0.065 
(0.019) 

0.04 
(0.014) 

0.105 
(0.026) 

2.39 
(0.135) 

2.75 
(0.153) 

5.14 
(0.178) 

0.615 
(0.061) 

0.685 
(0.067) 

1.3 
(0.102) 

50 -0.017 
(0.010) 

-0.009 
(0.005) 

0.704 
(0.043) 

0.66 
(0.041) 

1.364 
(0.065) 

0.006 
(0.003) 

0.002 
(0.002) 

0.008 
(0.004) 

1.462 
(0.090) 

2.07 
(0.110) 

3.532 
(0.121) 

0.292 
(0.028) 

0.236 
(0.024) 

0.528 
(0.039) 

100 -0.006 
(0.013) 

0.001 
(0.006) 

0.537 
(0.049) 

0.51 
(0.049) 

1.047 
(0.078) 

0.003 
(0.003) 

0.003 
(0.003) 

0.007 
(0.005) 

1.05 
(0.101) 

1.18 
(0.107) 

2.23 
(0.125) 

0.18 
(0.026) 

0.183 
(0.028) 

0.363 
(0.042) 

300 0.006 
(0.015) 

0.0004 
(0.006) 

0.42 
(0.045) 

0.363 
(0.038) 

0.783 
(0.061) 

0 
(0) 

0 
(0) 

0 
(0) 

0.59 
(0.077) 

0.647 
(0.093) 

1.237 
(0.098) 

0.127 
(0.025) 

0.13 
(0.024) 

0.257 
(0.035) 

SN 

500 -0.008 
(0.010) 

0.004 
(0.005) 

0.342 
(0.029) 

0.354 
(0.030) 

0.696 
(0.047) 

0 
(0) 

0.002 
(0.002) 

0.002 
(0.002) 

0.564 
(0.071) 

0.468 
(0.057) 

0.892 
(1.172) 

0.112 
(0.016) 

0.11 
(0.016) 

0.222 
(0.023) 
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Table 5 (continued) 

Tukey’s Method Adjusted Boxplot Median Rule 

Q1-1.5 IQR / Q3+1.5 IQR Q1-3 IQR / Q3+3 IQR 
Q1-1.5exp(-3.5mc)/ 

Q3+1.5exp(4mc) 
Q2 ±2.3 IQR 

Distribution n CS MC 
Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

20 0.436 
(0.016) 

0.084 
(0.007) 

0.415 
(0.052) 

2.29 
(0.113) 

2.705 
(0.137) 

0 
(0) 

0.21 
(0.033) 

0.21 
(0.033) 

2.725 
(0.146) 

2.395 
(0.143) 

5.12 
(0.177) 

0.19 
(0.035) 

1.575 
(0.098) 

1.765 
(0.111) 

50 0.527 
(0.012) 

0.086 
(0.005) 

0.146 
(0.020) 

1.806 
(0.067) 

1.952 
(0.075) 

0 
(0) 

0.108 
(0.015) 

0.108 
(0.015) 

1.864 
(0.103) 

1.548 
(0.091) 

3.412 
(0.118) 

0.028 
(0.008) 

1.114 
(0.052) 

1.142 
(0.054) 

100 0.574 
(0.018) 

0.079 
(0.006) 

0.063 
(0.012) 

1.6 
(0.076) 

1.663 
(0.078) 

0 
(0) 

0.063 
(0.015) 

0.063 
(0.015) 

0.95 
(0.101) 

1.1 
(0.103) 

2.05 
(0.125) 

0.003 
(0.003) 

0.913 
(0.055) 

0.917 
(0.055) 

300 0.604 
(0.020) 

0.093 
(0.006) 

0.02 
(0.009) 

1.587 
(0.086) 

1.607 
(0.086) 

0 
(0) 

0.077 
(0.016) 

0.077 
(0.016) 

0.82 
(0.103) 

0.543 
(0.068) 

1.363 
(0.097) 

0 
(0) 

0.94 
(0.064) 

0.94 
(0.064) 

LN (0. 0.2) 

500 0.609 
(0.015) 

0.094 
(0.004) 

0.012 
(0.006) 

1.512 
(0.060) 

1.524 
(0.060) 

0 
(0) 

0.036 
(0.009) 

0.036 
(0.009) 

0.472 
(0.070) 

0.356 
(0.039) 

0.828 
(0.066) 

0 
(0) 

0.838 
(0.044) 

0.838 
(0.044) 

20 0.864 
(0.020) 

0.161 
(0.007) 

0.145 
(0.033) 

3.805 
(0.131) 

3.95 
(0.139) 

0 
(0) 

0.755 
(0.063) 

0.755 
(0.063) 

2.785 
(0.153) 

2.16 
(0.130) 

4.945 
(0.175) 

0.025 
(0.011) 

2.87 
(0.120) 

2.895 
(0.121) 

50 1.062 
(0.017) 

0.170 
(0.005) 

0.01 
(0.004) 

3.496 
(0.088) 

3.506 
(0.088) 

0 
(0) 

0.506 
(0.034) 

0.506 
(0.034) 

2.038 
(0.110) 

1.504 
(0.087) 

3.542 
(0.119) 

0 
(0) 

2.538 
(0.076) 

2.538 
(0.076) 

100 1.143 
(0.027) 

0.181 
(0.007) 

0 
(0) 

3.03 
(0.105) 

3.03 
(0.105) 

0 
(0) 

0.373 
(0.038) 

0.373 
(0.038) 

1.437 
(0.143) 

0.717 
(0.071) 

2.153 
(0.143) 

0 
(0) 

2.143 
(0.092) 

2.143 
(0.092) 

300 1.251 
(0.033) 

0.167 
(0.006) 

0 
(0) 

2.903 
(0.095) 

2.903 
(0.095) 

0 
(0) 

0.363 
(0.040) 

0.363 
(0.040) 

0.587 
(0.098) 

0.553 
(0.061) 

1.14 
(0.098) 

0 
(0) 

2.047 
(0.083) 

2.047 
(0.083) 

LN (0, 0.4) 

500 1.303 
(0.025) 

0.170 
(0.005) 

0 
(0) 

3.078 
(0.077) 

3.078 
(0.077) 

0 
(0) 

0.41 
(0.030) 

0.41 
(0.030) 

0.402 
(0.059) 

0.514 
(0.048) 

0.916 
(0.065) 

0 
(0) 

2.254 
(0.067) 

2.254 
(0.067) 

20 1.212 
(0.024) 

0.219 
(0.007) 

0.01 
(0.007) 

5.005 
(0.151) 

5.015 
(0.152) 

0 
(0) 

1.48 
(0.086) 

1.48 
(0.086) 

3.075 
(0.169) 

1.94 
(0.117) 

5.015 
(0.181) 

0 
(0) 

4.145 
(0.139) 

4.145 
(0.139) 

50 1.623 
(0.024) 

0.250 
(0.005) 

0 
(0) 

4.82 
(0.095) 

4.82 
(0.095) 

0 
(0) 

1.27 
(0.050) 

1.27 
(0.050) 

2.178 
(0.123) 

1.154 
(0.069) 

3.332 
(0.125) 

0 
(0) 

4.098 
(0.087) 

4.098 
(0.087) 

100 1.774 
(0.039) 

0.251 
(0.006) 

0 
(0) 

4.873 
(0.128) 

4.873 
(0.128) 

0 
(0) 

1.15 
(0.069) 

1.15 
(0.069) 

1.397 
(0.134) 

0.767 
(0.077) 

2.163 
(0.136) 

0 
(0) 

3.897 
(0.119) 

3.897 
(0.119) 

300 2.120 
(0.063) 

0.254 
(0.007) 

0 
(0) 

4.81 
(0.132) 

4.81 
(0.132) 

0 
(0) 

1.193 
(0.061) 

1.193 
(0.061) 

0.633 
(0.128) 

0.593 
(0.066) 

1.227 
(0.132) 

0 
(0) 

3.97 
(0.119) 

3.97 
(0.119) 

LN (0, 0.6) 

500 2.199 
(0.064) 

0.255 
(0.005) 

0 
(0) 

4.59 
(0.093) 

4.59 
(0.093) 

0 
(0) 

1.07 
(0.048) 

1.07 
(0.048) 

0.52 
(0.074) 

0.496 
(0.058) 

1.016 
(0.078) 

0 
(0) 

3.702 
(0.082) 

3.702 
(0.082) 

20 1.560 
(0.024) 

0.31 
(0.007) 

0.01 
(0.01) 

6.815 
(0.162) 

6.825 
(0.163) 

0 
(0) 

2.595 
(0.113) 

2.595 
(0.113) 

3.46 
(0.177) 

1.955 
(0.122) 

5.415 
(0.191) 

0 
(0) 

5.91 
(0.157) 

5.91 
(0.157) 

50 2.126 
(0.030) 

0.315 
(0.005) 

0 
(0) 

6.366 
(0.102) 

6.366 
(0.102) 

0 
(0) 

2.28 
(0.068) 

2.28 
(0.068) 

2.134 
(0.122) 

1.218 
(0.074) 

3.352 
(0.127) 

0 
(0) 

5.484 
(0.098) 

5.484 
(0.098) 

100 2.548 
(0.058) 

0.314 
(0.007) 

0 
(0) 

6.397 
(0.131) 

6.397 
(0.131) 

0 
(0) 

2..227 
(0.084) 

2..227 
(0.084) 

1.28 
(0.147) 

0.99 
(0.093) 

2.27 
(0.158) 

0 
(0) 

5.65 
(0.128) 

5.65 
(0.128) 

300 3.179 
(0.152) 

0.327 
(0.007) 

0 
(0) 

6.267 
(0.137) 

6.267 
(0.137) 

0 
(0) 

2.153 
(0.075) 

2.153 
(0.075) 

0.59 
(0.125) 

0.64 
(0.062) 

1.23 
(0.119) 

0 
(0) 

5.553 
(0.134) 

5.553 
(0.134) 

LN (0, 0.8) 

500 2.928 
(0.096) 

0.324 
(0.005) 

0 
(0) 

6.166 
(0.113) 

6.166 
(0.113) 

0 
(0) 

1.974 
(0.068) 

1.974 
(0.068) 

0.242 
(0.056) 

0.532 
(0.052) 

0.774 
(0.063) 

0 
(0) 

5.388 
(0.103) 

5.388 
(0.103) 

 



  30

 
Table 5 (continued) 

 
Tukey’s Method Adjusted Boxplot Median Rule 

Q1-1.5 IQR / Q3+1.5 IQR Q1-3 IQR / Q3+3 IQR 
Q1-1.5exp(-3.5mc)/ 

Q3+1.5exp(4mc) 
Q2 ±2.3 IQR 

Distribution n CS MC 
Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

Left 
(%) 

Right 
(%) 

Total 
(%) 

20 1.876 
(0.026) 

0.353 
(0.007) 

0 
(0) 

8.37 
(0.166) 

8.37 
(0.166) 

0 
(0) 

4.005 
(0.133) 

4.005 
(0.133) 

3.185 
(0.179) 

2.385 
(0.134) 

5.57 
(0.197) 

0 
(0) 

7.695 
(0.163) 

7.695 
(0.163) 

50 2.626 
(0.034) 

0.384 
(0.005) 

0 
(0) 

8.126 
(0.110) 

8.126 
(0.110) 

0 
(0) 

3.596 
(0.083) 

3.596 
(0.083) 

1.968 
(0.121) 

1.412 
(0.076) 

3.38 
(0.127) 

0 
(0) 

7.464 
(0.107) 

7.464 
(0.107) 

100 3.086 
(0.079) 

0.400 
(0.006) 

0 
(0) 

7.887 
(0.144) 

7.887 
(0.144) 

0 
(0) 

3.357 
(0.120) 

3.357 
(0.120) 

1.2 
(0.135) 

0.847 
(0.074) 

2.047 
(0.138) 

0 
(0) 

7.263 
(0.143) 

7.263 
(0.143) 

300 4.113 
(0.183) 

0.399 
(0.007) 

0 
(0) 

7.723 
(0.158) 

7.723 
(0.158) 

0 
(0) 

3.23 
(0.101) 

3.23 
(0.101) 

0.423 
(0.114) 

0.687 
(0.062) 

1.11 
(0.116) 

0 
(0) 

7.04 
(0.148) 

7.04 
(0.148) 

LN (0, 1.0) 

500 4.052 
(0.155) 

0.394 
(0.005) 

0 
(0) 

7.682 
(0.120) 

7.682 
(0.120) 

0 
(0) 

3.186 
(0.075) 

3.186 
(0.075) 

0.134 
(0.042) 

0.616 
(0.052) 

0.75 
(0.058) 

0 
(0) 

6.986 
(0.116) 

6.986 
(0.116) 

 
(standard error of the average percentage of outliers) 
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5.0  APPLICATION 

In this chapter the five selected outlier labeling methods are applied to three real data sets and 

one modified data set of one of the three real data sets. These real data sets are provided by 

Gateway Health Plan, a managed care alternative to the Department of Public Welfare’s Medical 

Assistance Program in Pennsylvania.  These data sets are part of Primary Care Provider (PCP)’s 

basic information which is needed to identify providers (PCPs) associated with Member 

Dissatisfaction Rates (MDRs = the number of member complaints/PCP practice size) that are 

unusually high compared with other PCPs of similar sized practices23.  Case 1 (data set 1) is 

“visit per 1000 office med”, and its distribution is not very different from the normal distribution.   

Case 2 (data set 2) is “Scripts per 1000 Rx”, and its distribution is mildly skewed to the right.  

Case 3 (data set 3) is “Svcs per 1000 early child im”, and its distribution is highly skewed to the 

right because of one observation which has an extremely large value.  Case 4 (data set 4) is the 

data set which is modified from the data set 3 by means of excluding the most extreme value 

from the data set 3 to see the possible effect of the one extreme outlier over the outlier labeling 

methods.  Figure 10 shows the basic statistics and distribution of each data set (Case 1-Case 4).       

 
Min: 30.08000 
1st Qu.: 3003.230 
Mean: 3854.081 
Median: 3783.320 
3rd Qu.: 4754.180 
Max: 8405.530 
Total N: 209 
Variance: 1991758 
Std Dev.: 1411.297 
SE Mean: 97.621 
LCL Mean: 3661.627 
UCL Mean: 4046.535 
Skewness: 0.2597 
Kurtosis: 0.2793 
Medcouple skewness: 0.064     

                 Figure 10: Histogram and Basic Statistics of Case 1-Case 4 
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Min: 3065.420 
1st Qu.: 17700.58 
Mean: 24574.59 
Median: 22428.26 
3rd Qu.: 29387.86 
Max: 85018.02 
Total N: 209.0000 
Variance: 132580400 
Std Dev.: 11514.35 
SE Mean: 796.4646 
LCL Mean: 23004.41 
UCL Mean: 26144.77 
Skewness: 1.9122 
Kurtosis: 6.8409 
Medcouple skewness: 0.187 

 
 
Min: 681.82 
1st Qu.: 4171.395 
Mean: 6153.383 
Median: 5395.580 
3rd Qu.: 7016.580 
Max: 72000 
Total N: 127 
Variance: 39593430 
Std Dev.: 6292.331 
SE Mean: 558.354 
LCL Mean: 5048.417 
UCL Mean: 7258.349 
Skewness: 9.252583 
Kurtosis: 96.8279 
Medcouple skewness: 0.121 

 

 

Min: 681.820 
1st Qu.: 4165.698 
Mean: 5630.791 
Median: 5370.060 
3rd Qu.: 6985.942 
Max: 16000 
Total N: 126 
Variance: 4948672 
Std Dev.: 2224.561 
SE Mean: 198.1796 
LCL Mean: 5238.569 
UCL Mean: 6023.013 
Skewness: 1.008251 
Kurtosis: 3.036602 
Medcouple skewness: 0.119 

 
Figure 10 (continued)  
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Table 6 shows the left, right, and total number of outliers identified in each data set after 

applying the five outlier labeling methods.  Sample programs for Case 4 are given in 

APPENDIX E. 
Table 6: Interval, Left, Right, and Total Number of Outliers According to the Five Outlier Methods 

Case 1 (Data set 1): N=209 

Method Interval Left (%) Right (%) Total (%) 

2 SD Method (1031.49, 6676.67) 2 (0.96) 6 (2.87) 8 (3.83) 

3 SD Method (-379.809, 8087.97) 0 (0) 1 (0.48) 1 (0.48) 

Tukey’s Method (1.5 IQR) (376.81, 7380.61) 1 (0.48) 2 (0.96) 3 (1.44) 

Tukey’s Method (3 IQR) (-2249.62, 10007.03) 0 (0) 0 (0) 0 (0) 

Adjusted Boxplot (905.41, 8149.69) 1 (0.48) 1 (0.48) 2 (0.96) 

2 MADe Method (1310.52, 6256.12) 4 (1.91) 11 (5.26) 15 (7.18) 

3 MADe Method (74.12, 7492.52) 1 (0.48) 2 (0.96) 3 (1.44) 

Median Rule (-243.87, 7810.51) 0 (0) 1 (0.48) 1 (0.48) 

 

Case 2 (Data set 2): N=209 

Method Interval Left (%) Right (%) Total (%) 

2 SD Method (1545.88, 47603.30) 0 (0) 8 (3.83) 8 (3.83) 

3 SD Method (-9968.47, 59117.65) 0 (0) 4 (1.91) 4 (1.91) 

Tukey’s Method (1.5 IQR) (169.66, 46918.78) 0 (0) 8 (3.83) 8 (3.83) 

Tukey’s Method (3 IQR) (-17361.26, 64449.70) 0 (0) 3 (1.44) 3 (1.44) 

Adjusted Boxplot (8580.85, 66385.47) 5 (2.39) 2 (0.96) 7 (3.35) 

2 MADe Method (5361.49, 39495.03) 4 (1.91) 20 (9.57) 24 (11.48) 

3 MADe Method (-3171.90, 48028.42) 0 (0) 6 (2.87) 6 (2.87) 

Median Rule (-4452.48, 49309.00) 0 (0) 5 (2.39) 5 (2.39) 

 
Case 3 (Data set 3): N=127 

Method Interval Left (%) Right (%) Total (%) 

2 SD Method (-6431.28, 18738.04) 0 (0) 1 (0.79) 1 (0.79) 

3 SD Method (-12723.61, 25030.38) 0 (0) 1 (0.79) 1 (0.79) 

Tukey’s Method (1.5 IQR) (-96.38, 11284.36) 0 (0) 3 (2.36) 3 (2.36) 

Tukey’s Method (3 IQR) (-4364.16, 15552.13) 0 (0) 2 (1.57) 2 (1.57) 

Adjusted Boxplot (1373.94, 13932.44) 1 (0.79) 2 (1.57) 3 (2.36) 

2 MADe Method (1142.27, 9648.89) 1 (0.79) 6 (4.72) 7 (5.51) 

3 MADe Method (-984.39, 11775.55) 0 (0) 3 (2.36) 3 (2.36) 

Median Rule (-1148.35, 11939.51) 0 (0) 3 (2.36) 3 (2.36) 
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Table 6 (continued) 

Case 4 (Data set 4): N=126 

Method Interval Left (%) Right (%) Total (%) 

2 SD Method (1181.67, 10079.91) 1 (0.79) 4 (3.17) 5 (3.97) 

3 SD Method (-1042.89, 12304.47) 0 (0) 1 (0.79) 1 (0.79) 

Tukey’s Method (1.5 IQR) (-64.67, 11216.31) 0 (0) 2 (1.59) 2 (1.59) 

Tukey’s Method (3 IQR) (-4295.04, 15446.68) 0 (0) 1 (0.79) 1 (0.79) 

Adjusted Boxplot (1375.92, 13793.89) 1 (0.79) 1 (0.79) 2 (1.59) 

2 MADe Method (1139.14, 9600.99) 1 (0.79) 5 (3.97) 6 (4.76) 

3 MADe Method (-976.33, 11716.45) 0 (0) 2 (1.59) 2 (1.59) 

Median Rule (-1116.50, 11856.62) 0 (0) 2 (1.59) 2 (1.59) 

 

Overall, the results of the applications show similar patterns to those in the simulation 

study.  First, when data are skewed, the difference of the average percentage of outliers between 

the 2 SD method and the 2 MADe method increases.  Second, the 2 MADe method classifies 

more observations as outliers than any other method does.  Third, in the mildly right skewed data 

set, Case 2, in which the adjusted boxplot is utilized, the number of the left outliers is larger than 

that of the right outliers.  Finally, the interval of the Median rule is between Tukey’s method 

with 1.5 IQR and Tukey’s method with 3 IQR.   

 As was shown in the results of Case 3 and Case 4, such methods with robust measures as 

the MADe method, Tukey’s method, the Median rule, and the Adjusted Boxplot are less affected 

by the extreme value than the SD method, and the interval of the SD method becomes much 

narrower after the single extreme value is excluded form data set 3 than other methods.  With 

regard to the 2 SD method, while one observation is found in Case 3, five observations are 

detected as outliers in Case 4.  That is, when there is a large gap between extreme values and the 

rest of values as shown in the data set 3, such outlier labeling methods with mean and standard 

deviation as the SD method and Z-Score may not detect the possible outliers which other 

methods could detect.  In the case of the two skewness measures, i.e., classical and medcouple 

skewness, classical skewness, unlike medcouple skewness, is highly affected by even a few 

extreme values.  The classical skewness in data set 3 was 9.25, but it decreased to 1.008 in data 

set 4 with the most extreme value—which was included in the data set 3—excluded, whereas the 

medcouple skewness decreased only a little. 
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6.0  RECOMMENDATIONS 

Figure 11 shows a decision making flowchart at to which outlier labeling method can be used in 

different data situations.  First, it is necessary to understand the data characteristics (explore data 

step).  When a data set consists of such subgroups as sex and income, it may be necessary to 

check if its research variables have different characteristics according to the subgroups.  For 

example, in the case of detecting outliers in the adult height variable, it may be necessary to 

adjust for sex since the distribution of height can vary by sex.  In such a case, an appropriate 

approach may be to stratify by sex.  All the labeling methods in this paper can be applicable if a 

data set has a normal distribution without a possible masking problem or large gap between the 

majority of the data and extreme values.  If the data set has a normal distribution with a possible 

masking problem or large gap between the majority of the data and extreme values, the Z-score 

and SD method may be inappropriate to use since these methods are highly sensitive to extreme 

values.  The methods for the data whose distribution is symmetric but not normal, e.g., a 

biomodal distribution, are beyond the purview of this study.  Tukey’s method, the MADe 

method, the Median rule, and the Adjusted Boxplot may be appropriate when a data set is 

skewed, such as in a lognormal distribution; however, among these four methods, the Adjusted 

Boxplot especially takes into account the skewness of the data32.  
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Modified Z-Score                    Z-Score                Not applicable      Adjusted Boxplot                           Tukey’s Method 

Tukey’s Method                      Modified Z-Score                                                                                   MADe Method 

MADe Method                        SD Method                                                                                             Median Rule 

Median Rule                            Tukey’s Method 

Adjusted Boxplot                    MADe Method 

                                                 Median Rule 

                                                 Adjusted Boxplot 

                                                

Figure 11: Flowchart of Outlier Labeling Methods 

 

 

 

 

Symmetric
Distribution

Masking 
Problem / 

Large Gap 

Yes No 

Normal 
Distribution 

Yes No 

Consideration 
for skewness 

Yes No

Masking 
Problem/ 

Large Gap 

Yes No 

Start 

Explore 
data 



  38

7.0  DISCUSSION AND CONCLUSIONS  

As shown in the simulation study, each method has different measures to detect outliers and 

shows different behaviors according to the skewness and sample size of the data.  The SD 

methods use less robust measures, such as the mean and standard deviation, which are highly 

affected by extreme values.  Thus, their intervals have a tendency to be inflated as the data 

increases in skewness, and consequently the average percentages of outliers change less than 

other types of methods such as the MADe, Tukey’s method and the Median rule.  Three methods 

such as the MADe, Tukey’s method and the Median rule show similar patterns in skewed data 

since they employ robust measures to build their intervals.  The total average percentages of 

outliers for these methods increase when data are skewed.  Although the basic idea of the 

adjusted boxplot is similar to Tukey’s method, it is different in that the adjusted boxplot has 

skewness measure to take into consideration.  Thus, the total average percentage of outliers for 

the adjusted boxplot seldom changes, even decreases very slightly, when data are skewed.  In 

addition, the range of the percentages declines more rapidly than other methods as the sample 

size increases.  The total average percentage of outliers for the method, consequently, becomes 

smaller than other methods as data becomes skewed and the sample size gets large. 

The simulation results reported in Table 5 may not be an exact index of the outlier 

percentage for each method according to the skewness and the sample size of the data as the real-

world data may not follow the same distributions employed in the simulation study as was shown 

in Chapter 5. However, understanding the general features which the methods show would be 

helpful in choosing the outlier labeling methods in normal or skewed data. 

There can be a gap between the majority and a small fraction of the data in a skewed data 

set.  In general, when the observations located in the small fraction apart from the majority of the 

data are considered target outliers, the likelihood of defining them as outliers can increase as the 

distance of the gap increases.  However, if the gap is not large enough, detecting outliers may 
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have different results depending on the methods.  In such a case, it may be hard to generalize 

how large the gap in each method should be in order to identify the observations in the small 

fraction as outliers since data are diversely distributed.  Another method to detect outliers is the 

formal test based on specific distribution assumptions.  This test defines the target outliers first, 

and then examines whether or not the outliers are true.  Some formal tests may define all of the 

observations in the small fraction as outliers, whereas others may define only some of the last 

observations in the tail of data distribution as outliers.  Selection of formal tests mainly depends 

on the number and the type of target outliers and the type of data distribution.1  In the future, 

formal tests in various distributions will be reviewed, compared, and discussed.   
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APPENDIX A 

THE EXPECTATION, STANDARD DEVIATION AND SKEWNESS OF A 

LOGNORMAL DISTRIBUTION 

Let X denote a random variable having a lognormal distribution, and then its natural 

logarithm, )log(XY = , has a normal distribution. Aitchison and Brown (1957) note that when 

Y has mean value μ=)(YE , and variance 2)( σ=YVar , the expected value and standard 

deviation of the original variable X  are as follows: 

)
2

exp()(
2σμ +=XE  

)2exp()22exp()( 22 σμσμ +−+=XSTDEV  

 

It is usually denoted by ),(~ 2σμLOGNX , i.e., ),(~ 2σμLOGNX  if and only if 

),(~)log( 2σμNXY = .  The skewness of X  can be denoted as follows: 

1)exp(]2)[exp()( 22 −+= σσXSKEW  

 

Simple example:  

If X  is a lognormal random variable with parameters μ  and σ , its natural logarithm, 

)log(XY = , follows N( μ , 2σ ) . When μ =0 and σ =1 forY , the corresponding mean, standard 

deviation, and skewness of X  can be determined from the following: 

649.1)5.00exp()
2

exp()(
2

=+=+=
σμXE  
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161.2)1exp()2exp()2exp()22exp()( 22 =−=+−+= σμσμXSTDEV  

185.61)1exp(]2)1[exp(1)exp(]2)[exp()( 22 =−+=−+= σσXSKEW  

 

We may compute the theoretical cutoff value of the SD method using this information.  For 

example, when a certain variable, X , follows )1,0(LOGN , the theoretical lower and upper cutoff 

value of the 2 SD method in the variable are 1.649 ± 2*2.161.   
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APPENDIX B 

MAXIMUM Z SCORES 

Shiffler (1988) showed that the maximum Z-Score depends on sample size n .  Let x1, x2 ,…,xn-

1,xn be an ordered random sample of size n from a population with unknown mean and variance, 

and let 1−nx  be zero.  The sample variance of the sample is presented as follows: 
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Now, the Z-Score of the sample is maximized when nS  is minimized.  Here, when 2
1−nS  is zero, 

nS  has the smallest value.  That is, the maximum Z-Score can be presented as follows:  
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It shows that no matter how large nx  is, the maximum Z-Score of the sample depends on sample 

size n .  The smallest achievable value for the negative Z-Score is - nn )1( − 28.  For several 

samples size n, the maximum absolute Z-Score is as follows: 

 

N Zmax 

3 1.16 

5 1.79 

10 2.85 

11 3.02 

15 

18 

3.61 

4.01 
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APPENDIX C 

CLASSICAL AND MEDCOUPLE (MC) SKEWNESS 

Skewness is a measure of the symmetry of data distribution.  Classical skewness, using the third 

moment of the distribution, i.e., 3)( xx
i

i −∑ , where any variable x, is commonly used.  It is 

defined as 

Classical skewness = 3

3

1

)1(

)(

sN

xx
N

i
i

−

−∑
= ,  

where s is the sample standard deviation and N is the sample size.  If the value of 

skewness is negative, the distribution of the data is skewed to the left, and if the value of 

skewness is positive, the distribution of the data is skewed to the right.  Any symmetric data has 

a zero value of skewness. 

Another type of skewness is the medcouple (MC), a robust alternative to classical 

skewness10, introduced by Brys et al. (2003).  When Xn={ nxxx ,...,, 21 } is a data set, 

independently sampled from a continuous univariate distribution, and it is sorted such as 

nxxx ≤≤≤ ...21 , the MC of the data is defined as follows: 

MC = med ),( ji xxh , where the kernel function h is given by: 

),( ji xxh =
ij

ikkj

xx
xmedmedx

−

−−− )()(
 , where kmed is the median of Xn, and  i and j have 

to satisfy ix ≤ kmed ≤ jx , and ix ≠ jx . The value of the MC ranges between -1 and 1.  If MC=0, 

the data is symmetric.  If MC>0, the data has a right skewed distribution, whereas if MC<0, the 

data has a left skewed distribution.32  While classical skewness is highly affected by one or more 
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extreme values of a data set since it is based on the third moments of distribution, MC is robust 

to the extreme values.10  Suppose that an example data set consists of  1, 2, 3, 4, 5, 6, 7, 10, 15, 

16 and the computation of the kernel function h(xi,xj) for the data set is as follows: 

                                                                                            (median = 5.5) 

xi             

xj 
6 7 10 15 16 

1 -0.800 -0.500 0.000 0.357 0.4 

2 -0.750 -0.400 0.125 0.462 0.500 

3 -0.667 -0.250 0.286 0.583 0.615 

4 -0.500 0.000 0.500 0.727 0.750 

5 0.000 0.500 0.800 0.900 0.909 

                        

Thus, MC = median ),( ji xxh  = 0.357.  Several properties of the MC including other types of 

robust skewness are presented well in Brys et al. (2003, 2004). 

Figure 12 shows that MC skewness is more robust than classical skewness as the sample 

size increases, especially in skewed data.  The skewness is the average value for repetition in the 

previous simulation study.  Classical skewness in skewed data increases and becomes flat while 

the MC seldom changes over different sample sizes, regardless of skewed data.  This is because 

more extreme values are generated from skewed distributions as the sample size gets large, and 

classical skewness is sensitive to the extreme values. 

 



  46

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600

sample size

c
la

s
s
ic

a
l 
s
k
e
w

n
e
s
s

SN

LN (0, 0.2)

LN (0, 0.4)

LN (0, 0.6)

LN (0, 0.8)

LN (0, 1.0)

 

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600

sample size

m
e
d
c
o
u
p
le

 s
k
e
w

n
e
s

SN

LN (0, 0.2)

LN (0, 0.4)

LN (0, 0.6)

LN (0, 0.8)

LN (0, 1.0)

 
Figure 12: Change of the Two Types of Skewness Coefficients According to the Sample Size and Data 

Distribution.   (Note: This results came from the previous simulation.  All the values are in Table 5 ) 
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APPENDIX D 

BREAKDOWN POINT 

The notion of breakdown point was introduced by Hodges (1967) and Hampel (1968, 1971).  It 

is a robustness measure of an estimator such as the mean and median or a related procedure 

using the estimators. The breakdown point of an estimator generally can be defined as the largest 

percentage of the data that can be changed into arbitrary values without distorting the estimator21.  

For example, if even one observation of a univariate data set is moved to infinity, the estimators 

of the data set such as the mean and variance go to infinity.  Thus, the breakdown point of these 

estimators is zero.  In contrast, the breakdown point of the median is approximately 50% and it 

varies slightly according whether the sample size n is odd or even.  The exact breakdown point 

of the median is 50(1-1/n) % and 50(1-2/n) % for odd sample size n and even sample size n, 

respectively21.  Therefore, if the breakdown point of an estimator is high, the estimator is robust. 
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APPENDIX E 

PROGRAM CODE FOR OUTLIER LABELING METHODS 

##SPLUS 2000 Professional  
##Data set of Case 4 in Chapter 5, Application, is used. 
 
##2SD METHOD 
#interval 
 sd2l_mean(case4)-2*stdev(case4) 
 sd2l 
 sd2u_mean(case4)+2*stdev(case4) 
 sd2u 
#number of outliers 
 sd2lrr_ifelse(case4<sd2l,1,0) 
 sum(sd2lrr) 
 sd2urr_ifelse(case4>sd2u,1,0) 
 sum(sd2urr) 
  
##3SD METHOD 
#interval 
 sd3l_mean(case4)-3*stdev(case4) 
 sd3l 
 sd3u_mean(case4)+3*stdev(case4) 
 sd3u 
#number of outliers 
 sd3lrr_ifelse(case4<sd3l,1,0) 
 sum(sd3lrr) 
 sd3urr_ifelse(case4>sd3u,1,0) 
 sum(sd3urr) 
 
##MADE 
median(case4) 
made_1.4826*(median(abs(median(case4)-case4))) 
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##2MADE METHOD 
#interval 
 made2l_median(case4)-2*made 
 made2l 
 made2u_median(case4)+2*made 
 made2u 
#number of outliers 
 made2lrr_ifelse(case4<made2l,1,0) 
 sum(made2lrr) 
 made2urr_ifelse(case4>made2u,1,0) 
 sum(made2urr) 
  
##3MADE METHOD 
#interval 
 made3l_median(case4)-3*made 
 made3l 
 made3u_median(case4)+3*made 
 made3u 
#number of outlier 
 made3lrr_ifelse(case4<made3l,1,0) 
 sum(made3lrr) 
 made3urr_ifelse(case4>made3u,1,0) 
 sum(made3urr) 
  
sortf_sort(case4)  
sortfi_sortf[1:63] 
sortfj_sortf[64:126] 
medk_median(case4) 
c_matrix(0,63,63) 
for (j in 1:63) { 
for (i in 1:63) { 
c[i,j]_((sortfj[j]-medk)-(medk-sortfi[i]))/(sortfj[j]-sortfi[i]) 
}} 
 
##MC (medcouple skewness) 
mc_median(c,na.rm=T) 
 
## CLASSICAL SKEWNESS 
clasicskew_mean((case4 - mean(case4))^3)/((mean((case4- mean(case4))^2))^1.5) 
 
 q1_quantile(case4,0.25) 
 q2_quantile(case4,0.5) 
 q3_quantile(case4,0.75) 
 iqr_q3-q1 
 
##ADJUSTED BOXPLOT 
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#interval 
 adjl_q1-1.5*exp(-3.5*mc)*iqr 
  adjl 
 adju_q3+1.5*exp(4*mc)*iqr 
  adju 
#number of outliers 
 adjlrr_ifelse(case4<adjl,1,0) 
 sum(adjlrr) 
 adjurr_ifelse(case4>adju,1,0) 
 sum(adjurr) 
  
## TUKEY’S METHOD  
#inner fence 
tukey1.5l_q1-1.5*iqr 
tukey1.5l 
tukey1.5u_q3+1.5*iqr 
tukey1.5u 
#outer fence 
tukey3l_q1-3*iqr 
tukey3l 
tukey3u_q3+3*iqr 
tukey3u 
#number of outliers (inner fence) 
tukey1.5lrr_ifelse(case4<tukey1.5l,1,0) 
sum(tukey1.5lrr) 
tukey1.5urr_ifelse(case4>tukey1.5u,1,0) 
sum(tukey1.5urr) 
#number of outliers (outer fence) 
tukey3lrr_ifelse(case4<tukey3l,1,0) 
sum(tukey3lrr) 
tukey3urr_ifelse(case4>tukey3u,1,0) 
sum(tukey3urr) 
 
##MEDIAN RULE 
#interval 
medianl_q2-2.3*iqr 
medianl 
medianu_q2+2.3*iqr 
medianu 
#number of outliers 
medianlrr_ifelse(case4<medianl,1,0) 
sum(medianlrr) 
medianurr_ifelse(case4>medianu,1,0) 
sum(medianurr) 
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